WorldWideScience

Sample records for renal medullary injury

  1. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    Thirteen patients with medullary sponge kidney underwent a short ammonium chloride loading test to investigate their renal acidification capacity. All but 1 presented with a history of recurrent renal calculi and showed bilateral widespread renal medullary calcification on X-ray examination. Nine...... of renal calculi in medullary sponge kidney, have considerable therapeutic implications....

  2. Proximal Tubular Injury in Medullary Rays Is an Early Sign of Acute Tacrolimus Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Diane Cosner

    2015-01-01

    Full Text Available Tacrolimus (FK506 is one of the principal immunosuppressive agents used after solid organ transplantations to prevent allograft rejection. Chronic renal injury induced by tacrolimus is characterized by linear fibrosis in the medullary rays; however, the early morphologic findings of acute tacrolimus nephrotoxicity are not well characterized. Kidney injury molecule-1 (KIM-1 is a specific injury biomarker that has been proven to be useful in the diagnosis of mild to severe acute tubular injury on renal biopsies. This study was motivated by a patient with acute kidney injury associated with elevated serum tacrolimus levels in whom KIM-1 staining was present only in proximal tubules located in the medullary rays in the setting of otherwise normal light, immunofluorescent, and electron microscopy. We subsequently evaluated KIM-1 expression in 45 protocol and 39 indicated renal transplant biopsies to determine whether higher serum levels of tacrolimus were associated with acute segment specific injury to the proximal tubule, as reflected by KIM-1 staining in the proximal tubules of the cortical medullary rays. The data suggest that tacrolimus toxicity preferentially affects proximal tubules in medullary rays and that this targeted injury is a precursor lesion for the linear fibrosis seen in chronic tacrolimus toxicity.

  3. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  4. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    Science.gov (United States)

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–17%), yet had opposite effects on renal blood flow and urine flow. Changes in bladder urine Po2 during these stimuli correlated strongly with changes in medullary Po2 (within-rabbit r2 = 0.87–0.90). Differences in the Po2 of saline infused into the ureter close to the kidney could be detected in the bladder, although this was diminished at lesser ureteric flow. Diffusion of oxygen across the wall of the bladder was very slow, so it was not considered in the computational model. The model predicts Po2 in the pelvic ureter (presumed to reflect medullary Po2) from known values of bladder urine Po2, urine flow, and arterial Po2. Simulations suggest that, across a physiological range of urine flow in anesthetized rabbits (0.1–0.5 ml/min for a single kidney), a change in bladder urine Po2 explains 10–50% of the change in pelvic urine/medullary Po2. Thus, it is possible to infer changes in medullary Po2 from changes in urinary Po2, so urinary Po2 may have utility as a real-time biomarker of risk of acute kidney injury. PMID:27385734

  5. Is renal medullary carcinoma the seventh nephropathy in sickle cell ...

    African Journals Online (AJOL)

    Introduction: Previous studies had enlisted renal medullary carcinoma (RMC) as the seventh nephropathy in sickle cell disease (SCD). Clinical experience has contradicted this claim and this study is targeted at refuting or supporting this assumption. Objective: To estimate the prevalence of RMC and describe other renal ...

  6. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow

    Directory of Open Access Journals (Sweden)

    S.I Gomez

    2008-02-01

    Full Text Available This study was undertaken in anesthetized dogs to evaluate the relative participation of prostaglandins (PGs and nitric oxide (NO in the maintenance of total renal blood flow (TRBF, and renal medullary blood flow (RMBF. It was hypothesized that the inhibition of NO should impair cortical and medullary circulation because of the synthesis of this compound in the endothelial cells of these two territories. In contrast, under normal conditions of perfusion pressure PG synthesis is confined to the renal medulla. Hence PG inhibition should predominantly impair the medullary circulation. The initial administration of 25 µM kg-1 min-1 NG-nitro-L-arginine methyl ester produced a significant 26% decrease in TRBF and a concomitant 34% fall in RMBF, while the subsequent inhibition of PGs with 5 mg/kg meclofenamate further reduced TRBF by 33% and RMBF by 89%. In contrast, the initial administration of meclofenamate failed to change TRBF, while decreasing RMBF by 49%. The subsequent blockade of NO decreased TRBF by 35% without further altering RMBF. These results indicate that initial PG synthesis inhibition predominantly alters the medullary circulation, whereas NO inhibition decreases both cortical and medullary flow. This latter change induced by NO renders cortical and RMBF susceptible to a further decrease by PG inhibition. However, the decrease in medullary circulation produced by NO inhibition is not further enhanced by subsequent PG inhibition.

  7. Renal cortical and medullary blood flow responses to altered NO availability in humans

    DEFF Research Database (Denmark)

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L

    2010-01-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were......-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P renal medullary region in which...... the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans....

  8. Experimental selective elevation of renal medullary blood flow in hypertensive rats: evidence against short-term hypotensive effect.

    Science.gov (United States)

    Bądzyńska, B; Sadowski, J

    2012-08-01

    Renal medullary blood flow (MBF) can be selectively increased by intrarenal or systemic infusion of bradykinin (Bk) in anaesthetized normotensive rats. We reproduced this effect in a number of rat models of arterial hypertension and examined whether increased perfusion of the renal medulla can cause a short-term decrease in blood pressure (BP) that is not mediated by increased renal excretion and depletion of body fluids. In uninephrectomized Sprague-Dawley rats, BP was elevated to approx. 145 mmHg by acute i.v. infusion of noradrenaline (NA) or angiotensin II (Ang II) (groups 1, 2), 2-week exposure to high-salt diet (3), high-salt diet + chronic low-dose infusion of Ang II using osmotic minipumps (4) or chronic high-dose Ang II infusion on normal diet (5). Uninephrectomized spontaneous hypertensive rats (SHR) were also examined (6,7). To selectively increase medullary perfusion, in anaesthetized rats, bradykinin was infused during 30-75 min into the renal medullary interstitium or intravenously. Bradykinin increased outer- and inner-medullary blood flow (laser-Doppler fluxes) by 10-20% in groups (1, 2), by 30-50% in groups (3, 4, 5) and approx. 20% in SHR (6, 7). The concurrent increase in total renal blood flow (Transonic probe) was < 3%. A minor (<3%) decrease in BP was seen only in rats acutely rendered hypertensive by NA or Ang II infusions; however, the decreases in BP and increases in medullary perfusion were not correlated. Thus, there was no evidence that in hypertensive rats, substantial selective increases in medullary perfusion can cause a short-term decrease in BP. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  9. Renal cortical and medullary blood flow during modest saline loading in humans

    DEFF Research Database (Denmark)

    Damkjær, M; Vafaee, M; Braad, P E

    2012-01-01

    Renal medullary blood flow (RMBF) is considered an important element of sodium homeostasis, but the experimental evidence is incongruent. Studies in anaesthetized animals generally support the concept in contrast to measurements in conscious animals. We hypothesized that saline-induced natriuresis...

  10. Imaging of renal medullary carcinoma in children and young adults: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Jesse K.; Khanna, Geetika [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Mullen, Elizabeth A. [Children' s Hospital Boston/Dana-Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA (United States); Cajaiba, Mariana M.; Perlman, Elizabeth J. [Northwestern University Feinberg School of Medicine, Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children' s Hospital of Chicago, Chicago, IL (United States); Smith, Ethan A. [University of Michigan Health System, Section of Pediatric Radiology, C. S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); Servaes, Sabah [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Geller, James I. [University of Cincinnati, Division of Pediatric Oncology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Ehrlich, Peter F. [University of Michigan Health System, Section of Pediatric Surgery, C. S. Mott Children' s Hospital, Department of Surgery, Ann Arbor, MI (United States); Cost, Nicholas G. [University of Colorado School of Medicine, Division of Urology, Department of Surgery, Aurora, CO (United States); Dome, Jeffrey S. [Children' s National Medical Center, Division of Pediatric Oncology, Washington, DC (United States); Fernandez, Conrad V. [Dalhousie University and IWK Health Centre, Department of Pediatrics, Halifax, NS (Canada)

    2017-11-15

    Renal medullary carcinoma is a rare renal malignancy of childhood. There are no large series describing the imaging appearance of renal medullary carcinoma in children. To characterize the clinical and imaging features of pediatric renal medullary carcinoma at initial presentation. We retrospectively analyzed images of 25 pediatric patients with renal medullary carcinoma enrolled in the Children's Oncology Group renal tumors classification, biology and banking study (AREN03B2) from March 2006 to August 2016. Imaging findings of the primary mass, and patterns of locoregional and distant spread were evaluated in correlation with pathological and surgical findings. Median age at presentation was 13 years (range: 6-21 years), with a male predominance (3.2:1). The overall stage of disease at initial presentation was stage 1 in 1, stage 2 in 2 and stage 4 in 22. Maximum diameter of the primary renal mass ranged from 1.6 to 10.3 cm (mean: 6.6 cm) with a slight right side predilection (1.5:1). Enlarged (>1 cm short axis) retroperitoneal lymph nodes were identified at initial staging in 20/25 (80%) cases, 10 of which were histologically confirmed while the others did not undergo surgical sampling. Enlarged lymph nodes were also identified in the mediastinum (14/25; 56%) and supraclavicular regions (4/25; 16%). Metastatic disease was present in the lungs in 19/25 (76%) and liver in 6/25 (24%). The pattern of lung metastases was pulmonary lymphangitic carcinomatosis: 10 cases (9 bilateral, 1 unilateral), pulmonary nodules with indistinct margins: 6 cases, pulmonary nodules with distinct margins: 2 cases, while 1 case had pulmonary nodules with both indistinct and distinct margins. Pulmonary lymphangitic carcinomatosis was pathologically confirmed in 4/10 cases. All cases with pulmonary lymphangitic carcinomatosis had associated enlarged mediastinal lymph nodes. Renal medullary carcinoma in children and young adults presents at an advanced local and distant stage in the

  11. Imaging of renal medullary carcinoma in children and young adults: a report from the Children's Oncology Group

    International Nuclear Information System (INIS)

    Sandberg, Jesse K.; Khanna, Geetika; Mullen, Elizabeth A.; Cajaiba, Mariana M.; Perlman, Elizabeth J.; Smith, Ethan A.; Servaes, Sabah; Geller, James I.; Ehrlich, Peter F.; Cost, Nicholas G.; Dome, Jeffrey S.; Fernandez, Conrad V.

    2017-01-01

    Renal medullary carcinoma is a rare renal malignancy of childhood. There are no large series describing the imaging appearance of renal medullary carcinoma in children. To characterize the clinical and imaging features of pediatric renal medullary carcinoma at initial presentation. We retrospectively analyzed images of 25 pediatric patients with renal medullary carcinoma enrolled in the Children's Oncology Group renal tumors classification, biology and banking study (AREN03B2) from March 2006 to August 2016. Imaging findings of the primary mass, and patterns of locoregional and distant spread were evaluated in correlation with pathological and surgical findings. Median age at presentation was 13 years (range: 6-21 years), with a male predominance (3.2:1). The overall stage of disease at initial presentation was stage 1 in 1, stage 2 in 2 and stage 4 in 22. Maximum diameter of the primary renal mass ranged from 1.6 to 10.3 cm (mean: 6.6 cm) with a slight right side predilection (1.5:1). Enlarged (>1 cm short axis) retroperitoneal lymph nodes were identified at initial staging in 20/25 (80%) cases, 10 of which were histologically confirmed while the others did not undergo surgical sampling. Enlarged lymph nodes were also identified in the mediastinum (14/25; 56%) and supraclavicular regions (4/25; 16%). Metastatic disease was present in the lungs in 19/25 (76%) and liver in 6/25 (24%). The pattern of lung metastases was pulmonary lymphangitic carcinomatosis: 10 cases (9 bilateral, 1 unilateral), pulmonary nodules with indistinct margins: 6 cases, pulmonary nodules with distinct margins: 2 cases, while 1 case had pulmonary nodules with both indistinct and distinct margins. Pulmonary lymphangitic carcinomatosis was pathologically confirmed in 4/10 cases. All cases with pulmonary lymphangitic carcinomatosis had associated enlarged mediastinal lymph nodes. Renal medullary carcinoma in children and young adults presents at an advanced local and distant stage in the

  12. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    Science.gov (United States)

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  13. Renal medullary AA amyloidosis, hepatocyte dissociation and multinucleated hepatocytes in a 14-year-old free-ranging lioness (Panthera leo

    Directory of Open Access Journals (Sweden)

    J.H. Williams

    2005-06-01

    Full Text Available A 14-year-old lioness, originating from Etosha in Namibia, and a member of a pride in Pilanesberg National Park since translocation in 1994, was euthanased due to fight-related vertebral fracture and spinal injury, incurred approximately 6-8 weeks previously. Blood specimens collected at the time of death showed mild anaemia and a leukogram reflecting stress and chronic infection. Necropsy conducted within 2 hours of death was on a dehydrated, emaciated animal with hindquarter wasting and chronic traumatic friction injuries from dragging her hindlegs. There was cellulitis in the region of bite-wounds adjacent to the thoraco-lumbar vertebral fracture, at which site there was spinal cord compression, and there was marked intestinal helminthiasis. The outer renal medullae appeared pale and waxy and the liver was macroscopically unremarkable. Histopathology and electron microscopy of the kidneys revealed multifocal to coalescing deposits of proximal medullary interstitial amyloid, which fluoresced strongly with thioflavine T, and was sensitive to potassium permanganate treatment prior to Congo Red staining, thus indicating inflammatory (AA origin. There was diffuse hepatocyte dissociation, as well as numerous binucleated and scattered multinucleated (up to 8 nuclei/cell hepatocytes, with swollen hepatocyte mitochondria, in liver examined light microscopically. Ultrastructurally, the mono-, bi- and multinucleated hepatocytes contained multifocal irregular membrane-bound accumulations of finely-granular, amorphous material both intra-cytoplasmically and intra-nuclearly, as well as evidence of irreversible mitochondrial injury. The incidence and relevance in cats and other species of amyloidosis, particularly with renal medullary distribution, as well as of hepatocyte dissociation and multinucleation, as reported in selected literature, is briefly overviewed and their occurrence in this lioness is discussed.

  14. Renal Medullary and Cortical Correlates in Fibrosis, Epithelial Mass, Microvascularity, and Microanatomy Using Whole Slide Image Analysis Morphometry.

    Directory of Open Access Journals (Sweden)

    Alton B Farris

    Full Text Available Renal tubulointerstitial injury often leads to interstitial fibrosis and tubular atrophy (IF/TA. IF/TA is typically assessed in the renal cortex and can be objectively quantitated with computerized image analysis (IA. However, the human medulla accounts for a substantial proportion of the nephron; therefore, medullary scarring will have important cortical consequences and may parallel overall chronic renal injury. Trichrome, periodic acid-Schiff (PAS, and collagen III immunohistochemistry (IHC were visually examined and quantitated on scanned whole slide images (WSIs (N = 67 cases. When tuned to measure fibrosis, IA of trichrome and Trichrome-PAS (T-P WSIs correlated for all anatomic compartments (among cortex, medulla, and entire tissue, r = 0.84 to 0.89, P all <0.0001; and collagen III deposition correlated between compartments (r = 0.69 to 0.89, P <0.0001 to 0.0002; however, trichrome and T-P measures did not correlate with collagen deposition, suggesting heterogeneous contributions to extracellular matrix deposition. Epithelial cell mass (EPCM correlated between cortex and medulla when measured with cytokeratin IHC and with the trichrome red portion (r = 0.85 and 0.66, respectively, all P < 0.0001. Visual assessment also correlated between compartments for fibrosis and EPCM. Correlations were found between increasing medullary inner stripe (IS width and fibrosis in all of the tissue and the medulla by trichrome morphometry (r = 0.56, P < 0.0001, and r = 0.48, P = 0.00008, respectively. Weak correlations were found between increasing IS width and decreasing visual assessment of all tissue EPCM. Microvessel density (MVD and microvessel area (MVA measured using a MVD algorithm applied to CD34 IHC correlated significantly between all compartments (r = 0.76 to 0.87 for MVD and 0.71 to 0.87 for MVA, P all < 0.0001. Overall, these findings demonstrate the interrelatedness of the cortex and medulla and the importance of considering the renal

  15. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  16. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    OpenAIRE

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.; Evans, Roger G.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–1...

  17. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging.

    Science.gov (United States)

    Wang, Feng; Jiang, Rosie; Takahashi, Keiko; Gore, John; Harris, Raymond C; Takahashi, Takamune; Quarles, C Chad

    2014-11-01

    The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~3h), day 1, day 3 and day 6 after injury, on a 7 T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (prenal cortical and medullary atrophy, cortical-medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    Science.gov (United States)

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  19. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats.

    Science.gov (United States)

    Schulman, Ivonne Hernandez; Zhou, Ming-Sheng; Treuer, Adriana V; Chadipiralla, Kiranmai; Hare, Joshua M; Raij, Leopoldo

    2010-01-01

    The susceptibility to fibrosis and progression of renal disease is mitigated by inhibition of the renin-angiotensin system (RAS). We hypothesized that activation of the intrarenal RAS predisposes to renal fibrosis in aging. Intrarenal expression of angiotensin II type 1 (AT(1)R), type 2 (AT(2)R), and (pro)renin receptors, ACE and ACE-2, as well as pro- and antioxidant enzymes were measured in 3-month-old (young), 14-month-old (middle-aged), and 24-month-old (old) male Sprague-Dawley rats. Old rats manifested glomerulosclerosis and severe tubulointerstitial fibrosis with increased fibronectin and TGF-β expression (7-fold). AT(1)R /AT(2)R ratios were increased in middle-aged (cortical 1.6-fold, medullary 5-fold) and old rats (cortical 2-fold, medullary 4-fold). Similarly, (pro)renin receptor expression was increased in middle-aged (cortical 2-fold, medullary 3-fold) and old (cortical 5-fold, medullary 3-fold) rats. Cortical ACE was increased (+35%) in old rats, whereas ACE-2 was decreased (-50%) in middle-aged and old rats. NADPH oxidase activity was increased (2-fold), whereas antioxidant capacity and expression of the mitochondrial enzyme manganese superoxide dismutase (cortical -40%, medullary -53%) and medullary endothelial nitric oxide synthase (-48%) were decreased in old rats. Age-related intrarenal activation of the RAS preceded the development of severe renal fibrosis, suggesting that it contributes to the increased susceptibility to renal injury observed in the elderly. Copyright © 2010 S. Karger AG, Basel.

  20. A new perspective on the pathogenesis of chronic renal disease in captive cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Mitchell, Emily P; Prozesky, Leon; Lawrence, John

    2018-01-01

    The sustainability of captive cheetah populations is limited by high mortality due to chronic renal disease. This necropsy study, conducted on 243 captive cheetahs from one institution, investigated the relationships between focal palatine erosions, gastritis, enterocolitis, glomerulosclerosis, chronic renal infarcts, renal cortical and medullary fibrosis, and renal medullary amyloidosis at death. Associations between the individual renal lesions and death due to chronic renal disease and comparisons of lesion prevalence between captive bred and wild born and between normal and king coated cheetahs were also assessed. All lesions were significantly positively correlated with age at death. Renal medullary fibrosis was the only lesion associated with the likelihood of death being due to chronic renal disease, and cheetahs with this lesion were younger, on average, than cheetahs with other renal lesions. Alimentary tract lesions were not associated with amyloidosis. All lesions, except for palatine erosions, were more common in wild born than in captive bred cheetahs; the former were older at death than the latter. Having a king coat had no clear effect on disease prevalence. These results suggest that age and renal medullary fibrosis are the primary factors influencing the pathogenesis of chronic renal disease in captive cheetahs. Apart from amyloidosis, these findings are analogous to those described in chronic renal disease in domestic cats, which is postulated to result primarily from repetitive hypoxic injury of renal tubules, mediated by age and stress. Cheetahs may be particularly susceptible to acute renal tubular injury due to their propensity for stress and their extended life span in captivity, as well as their adaptation for fecundity (rather than longevity) and adrenaline-mediated high speed prey chases. The presence of chronic renal disease in subadult cheetahs suggests that prevention, identification and mitigation of stress are critical to the

  1. Sonographic assessment of normal renal parenchymal and medullary pyramid thicknesses among children in Enugu, Southeast, Nigeria

    International Nuclear Information System (INIS)

    Eze, C.U.; Akpan, V.P.; Nwadike, I.U.

    2016-01-01

    Background: Renal parenchymal thickness (RPT) and renal medullary pyramid thickness (MPT) are important renal size parameters. This study was aimed at establishing normograms for RPT and MPT with respect to age and somatometric parameters among children. Methods: This was a cross sectional study done in Enugu, Nigeria between May 2013 and April 2014. The subjects were 512 children aged 1–17 years scanned with ultrasound equipment with 3.5 MHz and 5 MHz curvilinear transducers. The RPT was measured perpendicularly to the long axis of the kidney from the medullary papilla to the renal capsule and MPT was measured from the apex to the base of the medullary pyramid on the same plane. The age and somatometric parameters of the subjects were recorded. Results: The mean ± SD of RPT and MPT for the right kidney were 12.62 ± 1.67 mm and 7.10 ± 0.92 mm and the left kidney were 12.81 ± 1.7 and 7.23 ± 0.94 mm respectively. There was a significant difference between the right and left RPT and MPT (p < 0.05). The right and left RPT correlated strongly with age, body surface area (BSA), height, and weight but moderately with body mass index (BMI). A moderate positive correlation was observed between MPT and age, BSA, height, and weight. However, a weak correlation was observed between MPT and BMI. Conclusion: Normograms of RPT and MPT in relation to age could be useful for grading hydronephrosis in children. - Highlights: • Sonography of RPT and MPT at the anterior longitudinal axis of the kidney is simple. • RPT and MPT Measurements are reliable within and between experienced sonographers. • No significant gender differences in RPT and MPT values exist in this study. • Significant differences exist between the right and left RPT and MPT measurements. • Normative values of RPT and MPT in relation to age in children are useful.

  2. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury

    Directory of Open Access Journals (Sweden)

    Songhui Zhai

    2016-09-01

    Full Text Available The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs, serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6×106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+T lymphocytes, due to an increase in the percentage of CD8+T lymphocytes and a decrease in the percentage of CD4+T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV.

  3. Medullary cystic disease of the kidney: report of a case diagnosed by ultrasonography and computed tomography examinations

    International Nuclear Information System (INIS)

    Carvalho, Tarcisio Nunes; Araujo Junior, Cyrillo Rodrigues de; Fraguas Filho, Sergio Roberto; Costa, Marlos Augusto Bittencourt; Teixeira, Kim-Ir-Sen Santos; Ribeiro, Flavia Aparecida de Souza

    2003-01-01

    The terms medullary cystic disease, juvenile nephronophthisis or medullary cystic disease complex refer to a group of similar diseases in which the basic pathological abnormality is progressive renal tubular atrophy with secondary glomerular sclerosis and medullary cystic formation. Medullary cystic disease is an important cause of renal failure in adolescent patients. Imaging methods play a primary role in the diagnosis of these diseases. Cysts are characteristically seen in the renal medulla and cortico medullary junction whereas kidneys may be of normal to small size. In this article we present the ultrasonography and computed tomography findings of a female adolescent patient with characteristic clinical picture of medullary cystic disease. (author)

  4. Renal denervation prevents long-term sequelae of ischemic renal injury

    Science.gov (United States)

    Kim, Jinu; Padanilam, Babu J.

    2014-01-01

    Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury. PMID:25207878

  5. Fructokinase activity mediates dehydration-induced renal injury.

    Science.gov (United States)

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  6. MR imaging of medullary streaks in osteosclerosis: a case report

    International Nuclear Information System (INIS)

    Lee, Hak Soo; Joo, Kyung Bin; Park, Tae Soo; Song, Ho Taek; Kim, Yong Soo; Park, Dong Woo; Park, Choong Ki

    2000-01-01

    We present a case of medullary sclerosis of the appendicular skeleton in a patient with chronic renal insufficiency for whom MR imaging findings were characteristic. T1- and T2-weighted MR images showed multiple vertical lines (medullary streaks) of low signal intensity in the metaphyses and diaphyses of the distal femur and proximal tibia

  7. Dynamic autoregulation and renal injury in Dahl rats

    DEFF Research Database (Denmark)

    Karlsen, F M; Andersen, C B; Leyssac, P P

    1997-01-01

    of hypertension, a gradual impairment of autoregulatory control of renal blood flow might expose the glomerular circulation to periods of elevated pressure, resulting in renal injuries in Dahl S rats. Dynamic autoregulatory capacity was assessed in Dahl S and Dahl salt-resistant (Dahl R) rats, SHR, and Sprague......-Dawley rats by inducing broad-band fluctuations in the arterial blood pressure and simultaneously measuring renal blood flow. Dynamic autoregulation was estimated by the transfer function using blood pressure as the input and renal blood flow as the output. Renal morphological injuries were evaluated in Dahl......The Dahl salt-sensitive (Dahl S) rat develops hypertension and renal injuries when challenged with a high salt diet and has been considered to be a model of chronic renal failure. Renal injuries appear very early in life compared with the spontaneously hypertensive rat (SHR). During the course...

  8. Renal Medullary Carcinoma with an Aggressive Clinical Course: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Madhumati R. Kalavar

    2017-01-01

    Full Text Available Renal medullary carcinoma (RMC is a rare, yet aggressive malignancy of the kidney that is found predominantly in young patients with African descent and sickle cell hemoglobinopathies and most specifically sickle cell trait. Due to its aggressive nature, most cases have metastasis or local invasion at the time of diagnosis. Prognosis is extremely poor with survival less than 1 year after diagnosis. Here we present a case of metastatic RMC in a 29-year-old African female. Despite chemotherapy with cisplatin, gemcitabine, and paclitaxel, and initial shrinkage of the tumor, the patient died 5 months after diagnosis.

  9. SMARCB1/INI1 inactivation in renal medullary carcinoma.

    Science.gov (United States)

    Calderaro, Julien; Moroch, Julien; Pierron, Gaelle; Pedeutour, Florence; Grison, Camille; Maillé, Pascale; Soyeux, Pascale; de la Taille, Alexandre; Couturier, Jérome; Vieillefond, Annick; Rousselet, Marie Christine; Delattre, Olivier; Allory, Yves

    2012-09-01

    Renal medullary carcinoma (RMC), a rare and highly aggressive tumour which occurs in patients with sickle-cell disease, shares many clinicopathological features with collecting duct carcinoma (CDC). The molecular mechanisms underlying RMC and CDC are mainly unknown, and there is ongoing debate about their status as distinct entities. Loss of expression of SMARCB1/INI1, a chromatin remodelling regulator and repressor of cyclin D1 transcription, has been reported recently in RMC. The aim of our study was to investigate if such loss of expression is specific for RMC. SMARCB1/INI1 genetic alterations and cyclin D1 expression were also studied. Using immunochemistry, neoplastic cells showed complete loss of SMARCB1/INI1 expression in all six cases of RMC but in only one of 22 cases of CDC. In two RMC cases investigated, comparative genomic hybridization demonstrated complete loss of one SMARCB1/INI1 allele, with no other genomic imbalances, and no mutations were found on the remaining allele. Cyclin D1 was expressed in all RMCs, suggesting that SMARCB1/INI1 inactivation may result in increased cyclin D1 transcription. The specific SMARCB1/INI1 inactivation observed in RMCs suggests that RMC and CDC are different entities. © 2012 Blackwell Publishing Ltd.

  10. Blunt renal trauma in children: healing of renal injuries and recommendations for imaging follow-up

    International Nuclear Information System (INIS)

    Abdalati, H.; Bulas, D.I.; Sivit, C.J.; Majd, M.; Rushton, H.G.; Eichelberger, M.R.

    1994-01-01

    Initial CT grading of renal injury was correlated with the frequency of complications and the time course of healing in 35 children. All renal contusions (grade 1, 8) and small parenchymal lacerations (grade 2, 8) healed without complications. All lacerations extending to the collecting system (grade 3, 9) resulted in mild to severe loss of renal function with progressive healing over 4 months. One of four segmental infarcts (grade 4 A), and five of six vascular pedicle injuries (grade 4 B) resulted in severe loss of renal function. Complications, including urinoma (2), sepsis (1), hydronephrosis (1), and persistent hypertension (2), were limited to grade 3 and 4 injuries. Our results suggest that mild renal injuries do not require follow-up imaging. Major renal lacerations and vascular pedicle injuries, however, often result in loss of renal function and should be followed up closely due to the risk of delayed complications. Follow-up examinations should continue for 3-4 months until healing is documented. (orig.)

  11. Upregulation of Interleukin-33 in obstructive renal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chang, Ya-Jen [Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (China); Su, Chia-Hao [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Tsai, Tzu-Hsien [Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Chen, Shang-Der [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China); Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan (China); Yang, Jenq-Lin, E-mail: jyang@adm.cgmh.org.tw [Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (China)

    2016-05-13

    Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneys using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.

  12. Several issues regarding evaluation of renal injury and renal insufficiency in patients with liver disease

    Directory of Open Access Journals (Sweden)

    HAO Kunyan

    2016-07-01

    Full Text Available In patients with liver disease such as viral hepatitis and liver cirrhosis, renal injury and renal insufficiency can be generally classified as acute kidney injury (AKI, chronic kidney disease, and acute-on-chronic nephropathy. AKI can be classified as stage 1 (risk stage, stage 2 (injury stage, and stage 3 (failure stage. Traditionally hepatorenal syndrome is classified as types Ⅰ and Ⅱ, and in recent years, type Ⅲ hepatorenal syndrome with organic renal injury has been proposed. Hepatorenal disorder(HRD is used to describe any renal disease which occurs in patients with liver cirrhosis. At present, sensitive and accurate biochemical parameters used to evaluate renal function in patients with liver disease in clinical practice include estimated glomerular filtration rate, increase in serum creatinine within unit time, and serum cystatin C level, and urinary microalbumin level also plays an important role in the early diagnosis of nephropathy. Causes of liver disease, severity, complications including infection, nutritional status, therapeutic drugs, and underlying nephropathy may be associated with renal injury and renal insufficiency in patients with liver disease and should be differentiated.

  13. [Heavy metal poisoning and renal injury in children].

    Science.gov (United States)

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  14. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    Scott S Wildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  15. HV1 acts as a sodium sensor and promotes superoxide production in medullary thick ascending limb of Dahl salt-sensitive rats.

    Science.gov (United States)

    Jin, Chunhua; Sun, Jingping; Stilphen, Carly A; Smith, Susan M E; Ocasio, Hiram; Bermingham, Brent; Darji, Sandip; Guha, Avirup; Patel, Roshan; Geurts, Aron M; Jacob, Howard J; Lambert, Nevin A; O'Connor, Paul M

    2014-09-01

    We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na(+). We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H(+) currents. To test this hypothesis, we developed HV1(-/-) null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1(-/-) rats (Pthick limb and peritoneal macrophages only when HV1 was present. When fed a high-salt diet, blood pressure, outer medullary renal injury (tubular casts), and oxidative stress (4-hydroxynonenal staining) were significantly reduced in HV1(-/-) rats compared with wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na(+) is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats. © 2014 American Heart Association, Inc.

  16. Renal papillary necrosis

    Science.gov (United States)

    ... asking your provider. Alternative Names Necrosis - renal papillae; Renal medullary necrosis Images Kidney anatomy Kidney - blood and urine flow References Bushinsky DA, Monk RD. Nephrolithiasis and nephrocalcinosis. ...

  17. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure

    Science.gov (United States)

    Konkalmatt, Prasad R.; Asico, Laureano D.; Zhang, Yanrong; Yang, Yu; Drachenberg, Cinthia; Zheng, Xiaoxu; Han, Fei; Jose, Pedro A.; Armando, Ines

    2016-01-01

    Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure. PMID:27358912

  18. High-grade renal injuries are often isolated in sports-related trauma.

    Science.gov (United States)

    Patel, Darshan P; Redshaw, Jeffrey D; Breyer, Benjamin N; Smith, Thomas G; Erickson, Bradley A; Majercik, Sarah D; Gaither, Thomas W; Craig, James R; Gardner, Scott; Presson, Angela P; Zhang, Chong; Hotaling, James M; Brant, William O; Myers, Jeremy B

    2015-07-01

    Most high-grade renal injuries (American Association for Surgery of Trauma (AAST) grades III-V) result from motor vehicle collisions associated with numerous concomitant injuries. Sports-related blunt renal injury tends to have a different mechanism, a solitary blow to the flank. We hypothesized that high-grade renal injury is often isolated in sports-related renal trauma. We identified patients with AAST grades III-V blunt renal injuries from four level 1 trauma centres across the United States between 1/2005 and 1/2014. Patients were divided into "Sport" or "Non-sport" related groups. Outcomes included rates of hypotension (systolic blood pressure 110bpm), concomitant abdominal injury, and procedural/surgical intervention between sports and non-sports related injury. 320 patients met study criteria. 18% (59) were sports-related injuries with the most common mechanisms being skiing, snowboarding and contact sports (25%, 25%, and 24%, respectively). Median age was 24 years for sports and 30 years for non-sports related renal injuries (p=0.049). Males were more commonly involved in sports related injuries (85% vs. 72%, p=0.011). Median injury severity score was lower for sports related injuries (10 vs. 27, pinjury scale scores. Sports related trauma was more likely to be isolated without other significant injury (69% vs. 39% (psports and non-sports renal injuries (p=0.30). Sports injuries had lower transfusion (7% vs. 47%, psports vs. 18% non-sports, p=0.95). High-grade sports-related blunt renal trauma is more likely to occur in isolation without other abdominal or thoracic injuries and clinicians must have a high suspicion of renal injury with significant blows to the flank during sports activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Update in the classification and treatment of complex renal injuries.

    Science.gov (United States)

    Reis, Leonardo Oliveira; Kim, Fernando J; Moore, Ernest E; Hirano, Elcio Shiyoiti; Fraga, Gustavo Pereira; Nascimento, Barto; Rizoli, Sandro

    2013-01-01

    The "Evidence-Based Telemedicine - Trauma and Acute Care Surgery" (EBT-TACS) Journal Club performed a critical review of the literature and selected three up-to-date articles on the management of renal trauma defined as American Association for the Surgery of Trauma (AAST) injury grade III-V. The first paper was the proposal for the AAST grade 4renal injury substratification into grades 4a (Low Risk) and 4b (High Risk). The second paper was a revision of the current AAST renal injury grading system, expanding to include segmental vascular injuries and to establish a more rigorous definition of severe grade IV and V renal injuries.The last article analyses the diagnostic angiography and angioembolization in the acute management of renal trauma using a national data set in the USA. The EBT-TACS Journal Club elaborated conclusions and recommendations for the management of high-grade renal trauma.

  20. Individual renal function study using dynamic computed tomography

    International Nuclear Information System (INIS)

    Fukuda, Yutaka; Kiya, Keiichi; Suzuki, Yoshiharu

    1990-01-01

    Dynamic CT scans of individual kindneys were obtained after an intravenous bolus injection of contrast agent. Time-density curves measured from the renal cortex, medulla and pelvis revealed the changes in density produced by the contrast agent reflecting the differential phase of renal function. Renal cortical density increased rapidly after bolus administration and then renal medullary and pelvic density increased continuously. In analyzing time-density curve, the cortico-medullary junction time, which is the time when the cortical and medullary curves cross was 57±8 seconds in patients with normal renal function. The cortico-medullary junction time was delayed in patient with decreased glomerular filtration rate. The cortico-pelvic junction time, which is the time when the cortical and pelvic curves cross was 104±33 seconds in patients with normal renal function. The cortico-pelvic junction time was delayed in patients with declined urinary concentrating capacity. In patients with unilateral renal agenesis and patients who were treated surgically by ureteral sprits, the relationship between individual renal functions and these junction times was examined. As a result of study there were inversely significant correlations between C-M junction time and unilateral GFR and between C-P junction time and urinary concentrating capacity. These studies indicate that dynamic CT scanning is an effective way that individual renal function can be monitored and evaluated. (author)

  1. High-grade renal injuries are often isolated in sports-related trauma

    OpenAIRE

    Patel, Darshan P.; Redshaw, Jeffrey D.; Breyer, Benjamin N.; Smith, Thomas G.; Erickson, Bradley A.; Majercik, Sarah D.; Gaither, Thomas W.; Craig, James R.; Gardner, Scott; Presson, Angela P.; Zhang, Chong; Hotaling, James M.; Brant, William O.; Myers, Jeremy B.

    2015-01-01

    © 2015 Elsevier Ltd. All rights reserved. Introduction: Most high-grade renal injuries (American Association for Surgery of Trauma (AAST) grades III-V) result from motor vehicle collisions associated with numerous concomitant injuries. Sports-related blunt renal injury tends to have a different mechanism, a solitary blow to the flank. We hypothesized that high-grade renal injury is often isolated in sports-related renal trauma. Material and methods: We identified patients with AAST grades III...

  2. Emergent endovascular embolization of iatrogenic renal vascular injuries

    International Nuclear Information System (INIS)

    Liu Fengyong; Wang Maoqiang; Duan Feng; Wang Zhijun; Wang Zhongpu

    2007-01-01

    Objective: To evaluate the efficacy and safety of the interventional techniques for emergent treatment of iatrogenic renal injuries. Methods: Nine patients with iatrogenic renal vascular injuries were treated with superselective renal arterial embolization. The causes of renal injury included post-renal biopsy in 5 patients, endovascular interventional procedure-related in 2, post-renal surgery in 1, and post-percutaneous nephrostomy in 1 patient. The patients presented clinically with hemodynamical unstability with blood loss shock in 7 patients, severe flank pain in 7, and hematuria in 8 patients. Perirenal hematoma was confirmed in 8 patients by CT and ultrasonography. The embolization materials used were microcoils in 7 and standard stainless steel coils in 2 patients, associated with polyvinyl alcohol particles (PVA) in 5, and gelfoam particles in 2 cases. Results: Renal angiogram revealed intra-renal arteriovenous fistula in 6 cases, intrarenal pseudoaneurysm in 2 cases, and the contrast media extravasation in 1 patient. The technical success of the arterial embolization was achieved in all 9 cases within a single session. All angiographies documented complete obliteration of the abnormal vessels together with all major intrarenal arterial branches maintaining patent. Seven patients with hemodynamically compromise experienced immediate relief of their blood loss related symptoms, and another 7 with severe flank pain got relief progressively.. Hematuria ceased in 8 patients within 2-14 days after the embolization and impairment of renal function occurred after the procedure in 5 cases, including transient aggravation (n=3 )and developed new renal dysfunction (n=2). Two of these patients required hemodialysis. Perirenal hematoma were gradually absorbed on ultrasonography during 2-4 months after the procedures. Follow-up time ranged from 6-78 months (mean, 38 months), 4 patients died of other primary diseases of renal and multi-organ failures. Five patients are

  3. The cellular basis of renal injury by radiation

    International Nuclear Information System (INIS)

    Williams, M.V.

    1986-01-01

    This review with substantial bibliography summarises renal assay techniques available and discusses the histological and functional studies leading to differing opinions between the belief that vascular injury provides a general explanation of the late effects of radiotherapy and the opposing view that parenchymal cell damage is more important. It is proposed that the link between glomerular and tubular function obscures the primary site of injury and that radiation injury will result in a reduction of functioning nephron mass by primary damage to the tubules or glomeruli. Compensatory renal vasodilation would close a positive feedback loop. Radiation could also cause direct vascular injury; decreased renal perfusion and hypertension would result. Again sensitisation to hypertensive vascular damage would close a feedback loop. (UK)

  4. Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion.

    Science.gov (United States)

    Moreno, Carol; Llinás, María T; Rodriguez, Francisca; Moreno, Juan M; Salazar, F Javier

    2016-03-01

    Regulation of medullary blood flow (MBF) is essential in maintaining renal function and blood pressure. However, it is unknown whether outer MBF (OMBF) and papillary blood flow (PBF) are regulated independently when extracellular volume (ECV) is enhanced. The aim of this study was to determine whether OMBF and PBF are differently regulated and whether there is an interaction between nitric oxide (NO), prostaglandins (PGs) and angiotensin II (Ang II) in regulating OMBF and PBF when ECV is enhanced. To achieve these goals, OMBF and PBF were measured by laser-Doppler in volume-expanded rats treated with a cyclooxygenase inhibitor (meclofenamate, 3 mg/kg) and/or a NO synthesis inhibitor (L-nitro-arginine methyl ester (L-NAME), 3 μg/kg/min) and/or Ang II (10 ng/kg/min). OMBF was unchanged by NO or PGs synthesis inhibition but decreased by 36 % (P blood flows to the outer medulla and renal papilla are differently regulated and showing that there is a complex interaction between NO, PGs and Ang II in regulating OMBF and PBF when ECV is enhanced.

  5. The renin-angiotensin system; development and differentiation of the renal medulla

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Robdrup Tinning, Anne; Marcussen, Niels

    2013-01-01

    on mechanisms of postnatal development the renal medulla and putting medullary developmental lesions into perspective with regard to the programming effect. Moreover, the renin-angiotensin system is critically involved in mammalian kidney development and signaling disorders give rise to developmental renal...... disturbances reaching into adulthood. A review of current knowledge of the role of the renin-angiotensin system for renal medullary development will be given. Acta Physiologica © 2013 Scandinavian Physiological Society....... lesions that has been associated with hypertension later in life. A consistent finding in both experimental animal models and in human case reports is atrophy of the renal medulla with developmental lesions to both medullary nephron segments and vascular development with concomitant functional...

  6. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  7. Vascular endothelial growth factor signaling is necessary for expansion of medullary microvessels during postnatal kidney development

    DEFF Research Database (Denmark)

    Robdrup Tinning, Anne; Jensen, Boye L; Johnsen, Iben

    2016-01-01

    Postnatal inhibition or deletion of angiotensin II (ANG II) AT1 receptors impairs renal medullary mircrovascular development through a mechanism that may include vascular endothelial growth factor (VEGF). The present study was designed to test if VEGF/VEGF receptor signaling is necessary....... In human fetal kidney tissue, immature vascular bundles appeared early in the third trimester (GA27-28) and expanded in size until term. Rat pups treated with the VEGF receptor-2 (VEGFR2) inhibitor vandetanib (100 mg·kg(-1)·day(-1)) from P7 to P12 or P10 to P16 displayed growth retardation and proteinuria...... for the development of the renal medullary microcirculation. Endothelial cell-specific immunolabeling of kidney sections from rats showed immature vascular bundles at postnatal day (P) 10 with subsequent expansion of bundles until P21. Medullary VEGF protein abundance coincided with vasa recta bundle formation...

  8. Effect of indomethacin and salt depletion on renal proton MR imaging

    International Nuclear Information System (INIS)

    Heyman, S.N.; Mammen, M.

    1991-01-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.)

  9. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury

    Directory of Open Access Journals (Sweden)

    Honglei Guo

    2016-01-01

    Full Text Available Aldosterone (Aldo is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA, and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo.

  10. Retrograde Renal Cooling to Minimize Ischemia

    Directory of Open Access Journals (Sweden)

    Janet L. Colli

    2013-01-01

    Full Text Available Objective: During partial nephrectomy, renal hypothermia has been shown to decrease ischemia induced renal damage which occurs from renal hilar clamping. In this study we investigate the infusion rate required to safely cool the entire renal unit in a porcine model using retrograde irrigation of iced saline via dual-lumen ureteral catheter. Materials and Methods: Renal cortical, renal medullary, bowel and rectal temperatures during retrograde cooling in a laparoscopic porcine model were monitored in six renal units. Iced normal saline was infused at 300 cc/hour, 600 cc/hour, 1000 cc/hour and gravity (800 cc/hour for 600 seconds with and without hilar clamping. Results: Retrograde cooling with hilar clamping provided rapid medullary renal cooling and significant hypothermia of the medulla and cortex at infusion rates ≥ 600 cc/hour. With hilar clamping, cortical temperatures decreased at -0.9° C/min. reaching a threshold temperature of 26.9° C, and medullary temperatures decreased at -0.90 C/min. reaching a temperature of 26.1° C over 600 seconds on average for combined data at infusion rates ≥ 600 cc/hour. The lowest renal temperatures were achieved with gravity infusion. Without renal hilum clamping, retrograde cooling was minimal at all infusion rates. Conclusions: Significant renal cooling by gravity infusion of iced cold saline via a duel lumen catheter with a clamped renal hilum was achieved in a porcine model. Continuous retrograde irrigation with iced saline via a two way ureteral catheter may be an effective method to induce renal hypothermia in patients undergoing robotic assisted and/or laparoscopic partial nephrectomy.

  11. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion.

    Science.gov (United States)

    Xue, Yuquan; Xu, Zhibin; Chen, Haiwen; Gan, Weimin; Chong, Tie

    2017-07-01

    To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.

  12. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    Science.gov (United States)

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  13. Late evaluation of the relationship between morphological and functional renal changes and hypertension after non-operative treatment of high-grade renal injuries

    Directory of Open Access Journals (Sweden)

    Pereira Júnior Gerson

    2012-08-01

    Full Text Available Abstract Objective To evaluate the anatomical and functional renal alterations and the association with post-traumatic arterial hypertension. Methods The studied population included patients who sustained high grades renal injury (grades III to V successfully non-operative management after staging by computed tomography over a 16-year period. Beyond the review of medical records, these patients were invited to the following protocol: clinical and laboratory evaluation, abdominal computed tomography, magnetic resonance angiography, DMSA renal scintigraphy, and ambulatory blood pressure monitoring. The hypertensive patients also were submitted to dynamic renal scintigraphy (99mTc EC, using captopril stimulation to verify renal vascular etiology. Results Of the 31 patients, there were thirteen grade III, sixteen grade IV (nine lacerations, and seven vascular lesions, and two grade V injuries. All the patients were asymptomatic and an average follow up post-injury of 6.4 years. None had abnormal BUN or seric creatinine. The percentage of renal volume reduction correlates with the severity as defined by OIS. There was no evidence of renal artery stenosis in Magnetic Resonance angiography (MRA. DMSA scanning demonstrated a decline in percentage of total renal function corresponding to injury severity (42.2 ± 5.5% for grade III, 35.3 ± 12.8% for grade IV, 13.5 ± 19.1 for grade V. Six patients (19.4% had severe compromised function ( Conclusions Late results of renal function after conservative treatment of high grades renal injuries are favorable, except for patients with grades IV with vascular injuries and grade V renal injuries. Moreover, arterial hypertension does not correlate with the grade of renal injury or reduction of renal function.

  14. Renal autotransplantation--a possibility in the treatment of complex renal vascular diseases and ureteric injuries.

    Science.gov (United States)

    Hau, Hans Michael; Bartels, Michael; Tautenhahn, Hans-Michael; Morgul, Mehmet Haluk; Fellmer, Peter; Ho-Thi, Phuc; Benckert, Christoph; Uhlmann, Dirk; Moche, Michael; Thelen, Armin; Schmelzle, Moritz; Jonas, Sven

    2012-12-31

    We report our contemporary experiences with renal autotransplantation in patients with complicated renal vascular diseases and/or complex ureteral injuries. Since its first performance, renal autotransplantation has been steadily improved and become a safe and effective procedure. Between 1998 and 2006, 6 renal autotransplantations in 6 patients were performed at the University Medical Center of Leipzig. After nephrectomy and renal perfusion ex vivo, the kidney was implanted standardized in the fossa iliaca. The vessels were anastomized to the iliac vessels, the ureter was reimplanted in an extravesical tunneled ureteroneocystostomy technique according to Lich-Gregoir. Demographic, clinical, and laboratory data of the patients were collected and analyzed for pre-, intra-, and postoperative period. Indications for renal autotransplantation were complex renovascular diseases in 2 patients (1 with fibromuscular dysplasia and 1 with Takayasu's arteritis) and in 4 patients with complex ureteral injuries. The median duration of follow-up was 9.7 years (range: 5.6-13.3). The laboratory values of our 6 patients showed improvements of creatinine, urea and blood pressure levels in comparison to the preoperative status at the end of follow-up period. The present study reports excellent results of renal autotransplantation in patients with renovascular disease or complex ureteric injuries. After a median follow-up of 9.7 years all 6 patients present with stable renal function as well as normal blood pressure values. Postoperative complications were observed with a rate comparable to other studies.

  15. Urinary calprotectin and posttransplant renal allograft injury

    DEFF Research Database (Denmark)

    Tepel, Martin; Borst, Christoffer; Bistrup, Claus

    2014-01-01

    OBJECTIVE: Current methods do not predict the acute renal allograft injury immediately after kidney transplantation. We evaluated the diagnostic performance of urinary calprotectin for predicting immediate posttransplant allograft injury. METHODS: In a multicenter, prospective-cohort study of 144...... incipient renal transplant recipients, we postoperatively measured urinary calprotectin using an enzyme-linked immunosorbent assay and estimated glomerular filtration rate (eGFR) after 4 weeks, 6 months, and 12 months. RESULTS: We observed a significant inverse association of urinary calprotectin...... concentrations and eGFR 4 weeks after transplantation (Spearman r = -0.33; Prelative risk, 4.3; P

  16. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  17. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    L. Zafrani (Lara); B. Ergin (Bulent); Kapucu, A. (Aysegul); C. Ince (Can)

    2016-01-01

    textabstractBackground: The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Methods: Twenty-seven Wistar

  18. Sonographic findings in primary diseases of renal pyramids

    International Nuclear Information System (INIS)

    Rao, B.K.

    1987-01-01

    Primary pathologic processes involving the renal pyramids such as papillary necrosis, drug-induced necrosis or calcinosis, cysts, neoplasms, and medullary nephrocalcinosis are rare. Thirty-four patients with primary renal pyramid diseases underwent US evaluation for altered morphology; a 5-MHz transducer was used. In 20 patients site-specific changes in the pyramid (e.g., papillary necrosis at the apex, small cysts at the base in medullary cystic disease, tubular calcification in MSK, corticomedullary hyperechogenicity in oxalosis) were noted on US. Sonographic delineation of the site and pattern of pathologic changes in the renal pyramid may help to identify specific diseases

  19. The effect of a concomitant renal injury on the outcome of colonic trauma.

    Science.gov (United States)

    Oosthuizen, G V; Weale, R; Kong, V Y; Bruce, J L; Urry, R J; Laing, G L; Clarke, D L

    2017-12-06

    The management of colon injuries has steadily evolved over the course of the last half century. So too has the management of renal trauma. It is not clear from the literature as to whether concomitant colon and renal injuries carry increased risk of morbidity and mortality, and whether this combination of injuries necessitates a specifically tailored management approach. A retrospective review was carried out for the period January 2012 to December 2016. All patients over the age of 18 years who were subjected to laparotomy for penetrating trauma (gunshot wounds or stab wounds) and who sustained an intra-operatively proven colonic injury were included in this study. Operative management and outcomes were investigated. A direct comparison was made between patients with a combined colonic and renal injury and those with only a colonic injury. Over the five-year period a total of 268 patients sustained a colonic injury. The 239 patients with a colonic injury (Group A) were compared to the 29 patients with a combined colonic and renal injury (Group B). Regarding the management of the colonic injuries, there were no differences in the rates of primary repair, anastomosis, exteriorization, or damage control surgery between groups A and B. As for the management of the renal injury, 14 were not explored at laparotomy; in 12 a nephrectomy was performed and in 3 the renal injury was repaired. The nephrectomy cohort were more likely to have undergone damage control surgery, to be admitted to ICU, to receive a colostomy, and had higher mortality. While there was no difference in the need for damage control surgery or mortality between groups, Group B had a significantly greater need for ICU admission. Morbidity was similar between the two groups - in particular, there was no difference in the rates of either gastro-intestinal complications or acute kidney injury between the two groups. In patients with combined colon and renal injuries, it seems reasonable to treat each organ

  20. Serum Iron Protects from Renal Postischemic Injury.

    Science.gov (United States)

    Vaugier, Céline; Amano, Mariane T; Chemouny, Jonathan M; Dussiot, Michael; Berrou, Claire; Matignon, Marie; Ben Mkaddem, Sanae; Wang, Pamella H M; Fricot, Aurélie; Maciel, Thiago T; Grapton, Damien; Mathieu, Jacques R R; Beaumont, Carole; Peraldi, Marie-Noëlle; Peyssonnaux, Carole; Mesnard, Laurent; Daugas, Eric; Vrtovsnik, François; Monteiro, Renato C; Hermine, Olivier; Ginzburg, Yelena Z; Benhamou, Marc; Camara, Niels O S; Flamant, Martin; Moura, Ivan C

    2017-12-01

    Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients ( n =169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF- κ B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants. Copyright © 2017 by the American Society of Nephrology.

  1. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-01-01

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into

  2. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    Science.gov (United States)

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-02-20

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Medullary sponge kidney and isolated hemihyperplasia

    Directory of Open Access Journals (Sweden)

    P S Priyamvada

    2014-01-01

    Full Text Available The term hemihyperplasia refers to an enlargement of body parts beyond the normal asymmetry. Hemihyperplasia can be isolated or associated with various well-described malformation syndromes. Medullary sponge kidney (MSK has been described with isolated and syndromic hemihyperplasia; the actual prevalence is not known The hemi hypertrophy can be so subtle that it may be easily overlooked. MSK need not be limited to the side of hemihyperplasia - most often it is bilateral. Around 33 cases has been reported from different parts of the world of which 15 cases are isolated hemi hyperplasia (IHH, the remaining occurring in the context of various malformation syndromes So far only one case has been reported from India. We report a case of IHH involving right side of the body, recurrent renal stones, incomplete distal renal tubular acidosis hypercalciuria and imaging showing bilateral MSKs.

  4. Thyroid cancer - medullary carcinoma

    Science.gov (United States)

    Thyroid - medullary carcinoma; Cancer - thyroid (medullary carcinoma); MTC; Thyroid nodule - medullary ... in children and adults. Unlike other types of thyroid cancer, MTC is less likely to be caused by ...

  5. Novel resveratrol analogues attenuate renal ischemic injury in rats

    Science.gov (United States)

    Khader, Adam; Yang, Weng-Lang; Kuncewitch, Michael; Prince, Jose M.; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Background Renal ischemia-reperfusion (I/R) is a severe clinical complication with no specific treatment. Resveratrol has been shown as a promising experimental agent in renal I/R due to its effect on cellular energy metabolism, oxidative stress, and inflammation. Recently, we identified two biologically active resveratrol analogues (RSVAs), RSVA405 and RSVA314. We hypothesized that both RSAVs would attenuate I/R-induced renal injury. Methods Adult male rats were subjected to renal I/R through bilateral renal pedicle clamping for 60 min, followed by reperfusion. RSVA405 (3 mg/kg BW), RSVA314 (3 mg/kg BW), or vehicle (10% DMSO and 33% Solutol in PBS) was administered by intraperitoneal injection 1 h prior to ischemia. Blood and renal tissues were collected 24 h after I/R for evaluation. Results Administration of RSVA405 and RSVA314 significantly reduced the serum levels of renal dysfunction and injury markers, including creatinine, blood urea nitrogen, aspartate aminotransferase, and lactate dehydrogenase, compared to vehicle. The protective effect of RSVA405 and RSVA314 was also reflected on histologic evaluation. Both RSVAs reduced the number of apoptotic cells by more than 60% as determined by TUNEL assay, compared to vehicle. The renal ATP levels of the vehicle group was decreased to 52.4% of control, while those of the RSVA405 and RSVA314 groups were restored to 72.3% and 79.6% of control, respectively. Both RSVAs significantly reduced the protein expression of inducible nitric oxide synthase and nitrotyrosine, and the mRNA levels of TNF-α, IL-6 and IL-1β. Conclusions RSVA405 and RSVA314 attenuate I/R-induced renal injury through the modulation of energy metabolism, oxidative stress, and inflammation. PMID:25214260

  6. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    Science.gov (United States)

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  8. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Zhao, J.; Wang, Z.J.; Liu, M.; Zhu, J.; Zhang, X.; Zhang, T.; Li, S.; Li, Y.

    2014-01-01

    Aim: To assess the performance of diffusion-weighted magnetic resonance imaging (MRI) for the assessment of renal fibrosis in chronic kidney disease (CKD), with histopathology as a reference standard. Materials and methods: Forty patients with CKD and 30 healthy volunteers were recruited for the study. All participants underwent diffusion-weighted MRI. Renal biopsy was performed in 25 patients with CKD. Mean renal medullary and cortical apparent diffusion coefficient (ADC) values were compared between CKD patients and the healthy volunteers. Pearson's correlation coefficient was calculated to investigate the relationship between ADC values, serum creatinine (SCr), estimated glomerular filtration rate (eGFR), 24 h urinary protein (24h-UPRO), and renal histopathological scores. Results: Cortical and medullary ADC values in the CKD group were significantly lower compared to those in the healthy controls. In the CKD group, a significant negative correlation was found between cortical ADC values and SCr/24h-UPRO, and significant positive correlation was found between cortical ADC and eGFR. There was also a significant negative correlation between medullary ADC values and SCr. Both cortical and medullary ADC values were significantly correlated with histopathological fibrosis score. Conclusion: Renal ADC values strongly correlate with histological measures of fibrosis, and have the potential to enhance the non-invasive monitoring of chronic kidney disease. - Highlights: • Renal ADC values in the CKD patients were lower than those in controls. • Renal ADC values were strongly correlated with histological fibrosis score. • Renal ADC values have the potential to enhance the noninvasive monitoring of CKD

  9. Protection of Liver as a Remote Organ after Renal Ischemia-Reperfusion Injury by Renal Ischemic Postconditioning

    Directory of Open Access Journals (Sweden)

    Behjat Seifi

    2014-01-01

    Full Text Available This study was designed to investigate the protective effects of local renal ischemic postconditioning (POC on liver damage after renal ischemia-reperfusion (IR injury. Male rats were divided into three groups  (n=8. They underwent a right nephrectomy before induction of 45 minutes of left kidney ischemia or sham operation. POC was performed by four cycles of 10 seconds of ischemia and 10 seconds of reperfusion just at the beginning of 24 hours of reperfusion. Then blood and liver samples were collected to measure serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, and liver oxidative stress parameters including superoxide dismutase (SOD activity and malondialdehyde (MDA level. Renal IR caused a significant increase in liver functional indices as demonstrated by increased serum AST and ALT compared to sham group. These parameters reduced significantly in POC group compared to IR group. Liver MDA levels increased and SOD activity decreased in IR group compared to sham group. Induction of POC reduced the elevated liver MDA levels and increased the reduced liver SOD activity. These results revealed that renal IR injury causes liver damage as a remote organ and POC protects liver from renal IR injury by a modification in the hepatic oxidative stress status.

  10. Application of Color Doppler Ultrasound in Renal Medullary Calcium%彩色多普勒超声在肾髓质钙质沉着症中的应用分析

    Institute of Scientific and Technical Information of China (English)

    金丽梅

    2016-01-01

    目的:分析彩色多普勒超声在肾髓质钙沉着症中的应用价值。方法回顾性分析2011—2015年期间在该院行彩色多普勒超声诊断肾髓质钙沉着症的68例患者的临床资料,观察患者的超声诊断特点以及血流动力学改变。结果68例行彩色多普勒超声诊断肾髓质钙沉着症的患者中,诊断阳性共65例,阴性3例,诊断的准确率为95.6%,65例肾髓质钙沉着症患者中包括皮质型30例,髓质型32例,混合型3例,患者的两侧肾脏大小正常,形态对称,包膜光滑,皮质和髓质界限较为清楚,肾脏的皮质厚度和回声均正常,在患者的髓质内,有密集点状的强回声,形态和椎体的形态基本一致,有一侧有弱声影。结论彩色多普勒超声在肾髓质钙沉着症中应用,准确率较高,可以有效的显示内部的形态、血流变化等指标,具有重要的临床诊断价值。%Objective To analyze the value of color Doppler ultrasound in the renal medulla of calcium applications. Methods Convenient selection a retrospective analysis of clinical data by color Doppler ultrasound diagnosis of renal medullary calcinosis disease 68 patients were retrospectively analyzed the period from 2011 to 2015, observed in patients with ultrasonic diagnostic characteristics and hemodynamic change. Results 68 patients with routine color Doppler ultra-sound diagnosis of renal medullary calcinosis disease, the diagnosis of a total of65 positive cases, negative in 3 cases, the diagnostic accuracy was 95.6%, 65 cases of renal medullary calcinosis patients included cortical 30 cases, 32 cases of medullary, mixed three cases, both sides of the patient's normal kidney size, shape symmetry, smooth coated, cortex and medulla boundaries more clearly, renal cortical thickness and echo were normal in patients within the medulla, a strong e-cho dense point-like, form and shape of the vertebral body are basically the same, there is one

  11. Effect of indomethacin and salt depletion on renal proton MR imaging; An experimental study in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, S.N.; Mammen, M. (Harvard Medical School, Boston, MA (United States). Charles A Dana Research Inst. Beth Israel Hospital, Boston, MA (United States))

    1991-11-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.).

  12. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    Science.gov (United States)

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  13. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    Science.gov (United States)

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  14. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  15. Update on the renal toxicity of iodinated contrast drugs used in clinical medicine

    Directory of Open Access Journals (Sweden)

    Andreucci M

    2017-05-01

    Full Text Available Michele Andreucci,1 Teresa Faga,1 Raffaele Serra,2 Giovambattista De Sarro,3 Ashour Michael1 1Renal Unit, Department of Health Sciences, 2Interuniversity Center of Phlebolymphology (CIFL, International Research and Educational Program in Clinical and Experimental Biotechnology, Department of Medical and Surgical Sciences, 3Pharmacology Unit, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy Abstract: An important side effect of diagnostic contrast drugs is contrast-induced acute kidney injury (CI-AKI; a sudden decrease in renal function occurring 48–72 hours after injection of a contrast drug that cannot be attributed to other causes. Its existence has recently been challenged, because of some retrospective studies in which the incidence of AKI was not different between subjects who received a contrast drug and those who did not, even using propensity score matching to prevent selection bias. For some authors, only patients with estimated glomerular filtration rate <30 mL/min/1.73 m2 are at significant risk of CI-AKI. Most agree that when renal function is normal, there is no CI-AKI risk. Many experimental studies, however, are in favor of the existence of CI-AKI. Contrast drugs have been shown to cause the following changes: renal vasoconstriction, resulting in a rise in intrarenal resistance (decrease in renal blood flow and glomerular filtration rate and medullary hypoxia; epithelial vacuolization and dilatation and necrosis of proximal tubules; potentiation of angiotensin II effects, reducing nitric oxide (NO and causing direct constriction of descending vasa recta, leading to formation of reactive oxygen species in isolated descending vasa recta of rats microperfused with a solution of iodixanol; increasing active sodium reabsorption in the thick ascending limbs of Henle’s loop (increasing O2 demand and consequently medullary hypoxia; direct cytotoxic effects on endothelial and tubular epithelial cells (decrease

  16. The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury.

    Directory of Open Access Journals (Sweden)

    Jaklien C Leemans

    Full Text Available Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2 is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2(-/- or TLR2(+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-beta in kidneys of TLR2(-/- mice compared with TLR2(+/+ animals. Although, the obstructed kidneys of TLR2(-/- mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis.

  17. Kidney injury after sodium phosphate solution beyond the acute renal failure.

    Science.gov (United States)

    Fernández-Juárez, Gema; Parejo, Leticia; Villacorta, Javier; Tato, Ana; Cazar, Ramiro; Guerrero, Carmen; Marin, Isabel Martinez; Ocaña, Javier; Mendez-Abreu, Angel; López, Katia; Gruss, Enrique; Gallego, Eduardo

    2016-01-01

    Screening colonoscopy with polipectomy reduces colonorectal cancer incidence and mortality. An adequate bowel cleansing is one of the keys to achieving best results with this technique. Oral sodium phosphate solution (OSP) had a widespread use in the 90s decade. Its efficacy was similar to polyethylene glycol (PEG) solution, but with less cost and convenient administration. Series of patients with acute renal failure due to OSP use have been reported. However, large cohorts of patients found no difference in the incidence of renal damage between these two solutions. From 2006 to 2009 we identified twelve cases of phosphate nephropathy after colonoscopy prepared with OSP. All patients were followed up to six months. All patients had received just a single dose. We analyzed 12 cases with phosphate nephropathy; three patients debuted with AKI and nine patients had chronic renal injury. Four cases were confirmed with renal biopsy. One patient with AKI needed hemodialysis at diagnosis without subsequent recovery. Two patients (both with chronic damage) fully recovered their previous renal function. The remaining patients (nine) had an average loss of estimated glomerular filtration rate of 24ml/min/1.73m(2). The use of OSP can lead to both acute and chronic renal damage. However, chronic injury was the most common pattern. Both forms of presentation imply a significant and irreversible loss of renal function. Further studies analyzing renal damage secondary to bowel cleaning should consider these two different patterns of injury. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    International Nuclear Information System (INIS)

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr.

    1987-01-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of [ 3 H]prazosin, [ 3 H]rauwolscine, and [ 125 I]iodocyanopindolol were used to quantitate α 1 -, α 2 -, and β-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B max , per milligram membrane protein) for α 1 -, and α 2 -, and β-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K D ) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine

  19. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    Science.gov (United States)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  20. Kidney injury molecule-1 in renal disease

    NARCIS (Netherlands)

    Waanders, Femke; van Timmeren, Mirjan M.; Stegeman, Coen A.; Bakker, Stephan J. L.; van Goor, Harry

    Kidney injury molecule-1 (KIM-1) is a marker for renal proximal tubular damage, the hallmark of virtually all proteinuric, toxic and ischaemic kidney diseases. KIM-1 has gained increasing interest because of its possible pathophysiological role in modulating tubular damage and repair. In this

  1. The protective effects of tadalafil on renal damage following ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Bulent Erol

    2015-09-01

    Full Text Available Ischemia-reperfusion injury can cause renal damage, and phosphodiesterase inhibitors are reported to regulate antioxidant activity. We investigated the prevention of renal damage using tadalafil after renal ischemia reperfusion (I/R injury in rats. A total of 21 adult male Wistar albino rats were randomly divided into three groups of seven, including Group 1-control, Group 2-I/R, and Group 3-tadalafil + I/R group (I/R-T group received tadalafil intraperitoneally at 30 minutes before ischemia. Inducible nitric oxide synthase, endothelial nitric oxide synthase, malondialdehyde, and total antioxidant capacity levels were evaluated, and histopathological changes and apoptosis in the groups were examined. Tadalafil decreased malondialdehyde levels in the I/R group and increased the total antioxidant capacity level. Histopathological and immunohistochemical findings revealed that tadalafil decreased renal injury scores and the ratios of injured cells, as measured through apoptotic protease activating factor 1, inducible nitric oxide synthase, and endothelial nitric oxide synthase levels. We suggest that tadalafil has protective effects against I/R-related renal tissue injury.

  2. Frequency and clinical significance of transient hyperechoic renal medulla in neonates

    International Nuclear Information System (INIS)

    Cho, Sung Shick; Kim, Jung Hoon; Hong, Hyun Sook; Shin, Ji Hoon; Hwang, Jung Hwa; Goo, Dong Erk; Kwon, Kui Hyang; Choi, Deuk Lin

    2001-01-01

    To evaluate the clinical significance of transient hyperechogenicity of the renal medulla in neonates by comparing the clinical features, urinalysis and follow-up ultrasonographic examination of the control group. One hundred ten neonates were divided into 2 groups, hyperechoic and normal renal medulla groups, and all of them underwent abdominal ultrasound with a 7.5 MHz linear transducer (Sonoace 8800MT, Medicine, Korea) from November 1999 to January 2000. Whether there was any difference in clinical features including birth weight, body surface area, gestational age, sex, date of examination and mode of delivery between two groups was evaluated. In addition, any difference in their urinary osmolarity, albumin, uric acid and calcium in 41 neonates who underwent urinalysis was evaluated. In ten neonates with hyperechoic renal medulla underwent follow-up study, the follow-up ultrasonographic findings were compared with the initial study. In 67 of 110 (61%) neonates, ultrasonography demonstrated hyperechoic renal medulla. There was no difference in clinical features between the hyperechoic renal medullary group and normal group. In 41 neonates, there was no significant difference in urinalysis between two groups. (Osmolarity=146.46 ± 68.4 mOsml/KgH 2 O in the hyperechoic renal medullary group vs. 149.8 ± 77.7 mOsml/KgH 2 O in the normal group; albumin=13.9 ± 10.2 mg/ml vs. 17.6 ± 13.6 mg/dl; uric acid=50.0 ± 23.3 mg/dl vs. 44.9 ± 34.1 mg/dl; calcium=1.38 ± 3.0 mg/ dl vs. 0.44 ± 0.07 mg/dl.) Ten neonates who underwent follow-up ultrasonography within 20 days after the initial study showed the normal medullary echogenicity. There were no significant difference between the hyperechoic renal medullary group and the normal echogenic group in their clinical features and urinalysis. Therefore, the hyperechoic renal medullar in neonate is considered as an usual and transient finding which disappears on follow-up study.

  3. Methods of Blood Oxygen Level-Dependent Magnetic Resonance Imaging Analysis for Evaluating Renal Oxygenation

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI has recently been utilized as a noninvasive tool for evaluating renal oxygenation. Several methods have been proposed for analyzing BOLD images. Regional ROI selection is the earliest and most widely used method for BOLD analysis. In the last 20 years, many investigators have used this method to evaluate cortical and medullary oxygenation in patients with ischemic nephropathy, hypertensive nephropathy, diabetic nephropathy, chronic kidney disease (CKD, acute kidney injury and renal allograft rejection. However, clinical trials of BOLD MRI using regional ROI selection revealed that it was difficult to distinguish the renal cortico-medullary zones with this method, and that it was susceptible to observer variability. To overcome these deficiencies, several new methods were proposed for analyzing BOLD images, including the compartmental approach, fractional hypoxia method, concentric objects (CO method and twelve-layer concentric objects (TLCO method. The compartmental approach provides an algorithm to judge whether the pixel belongs to the cortex or medulla. Fractional kidney hypoxia, measured by using BOLD MRI, was negatively correlated with renal blood flow, tissue perfusion and glomerular filtration rate (GFR in patients with atherosclerotic renal artery stenosis. The CO method divides the renal parenchyma into six or twelve layers of thickness in each coronal slice of BOLD images and provides a R2* radial profile curve. The slope of the R2* curve associated positively with eGFR in CKD patients. Indeed, each method invariably has advantages and disadvantages, and there is generally no consensus method so far. Undoubtedly, analytic approaches for BOLD MRI with better reproducibility would assist clinicians in monitoring the degree of kidney hypoxia and thus facilitating timely reversal of tissue hypoxia.

  4. ROLE OF THE RENAL MICROCIRCULATION IN PROGRESSION OF CHRONIC KIDNEY INJURY IN OBESITY

    Science.gov (United States)

    Chade, Alejandro R.; Hall, John E.

    2016-01-01

    Background Obesity is largely responsible for the growing incidence and prevalence of diabetes, cardiovascular, and renal disease. Current strategies to prevent and treat obesity and its consequences have been insufficient to reverse the ongoing trends. Lifestyle modification or pharmacological therapies often produce modest weight loss which is not sustained and recurrence of obesity is frequently observed, leading to progression of target organ damage in many obese subjects. Therefore, research efforts have focused not only on the factors that regulate energy balance, but also on understanding mechanisms of target organ injury in obesity. Summary and Key message Microvascular disease plays a pivotal role in progressive kidney injury from different etiologies such as hypertension, diabetes, and atherosclerosis, which are all important consequences of chronic obesity. The microvascular networks are anatomical units that are closely adapted to specific functions of nutrition and removal of waste in every organ. Damage of the small vessels in several tissues and organs has been reported in obesity and may increase cardio-renal risk. However, the mechanisms by which obesity and its attendant cardiovascular and metabolic consequences interact to cause renal microvascular injury and chronic kidney disease are still unclear, although substantial progress has been made in recent years. This review addresses potential mechanisms and consequences of obesity-induced renal microvascular injury as well as current treatments that may provide protection of the renal microcirculation and slow progressive kidney injury in obesity. PMID:27771702

  5. Long-term follow-up of patients after acute kidney injury: patterns of renal functional recovery.

    Directory of Open Access Journals (Sweden)

    Etienne Macedo

    Full Text Available BACKGROUND AND OBJECTIVES: Patients who survive acute kidney injury (AKI, especially those with partial renal recovery, present a higher long-term mortality risk. However, there is no consensus on the best time to assess renal function after an episode of acute kidney injury or agreement on the definition of renal recovery. In addition, only limited data regarding predictors of recovery are available. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: From 1984 to 2009, 84 adult survivors of acute kidney injury were followed by the same nephrologist (RCRMA for a median time of 4.1 years. Patients were seen at least once each year after discharge until end stage renal disease (ESRD or death. In each consultation serum creatinine was measured and glomerular filtration rate estimated. Renal recovery was defined as a glomerular filtration rate value ≥60 mL/min/1.73 m2. A multiple logistic regression was performed to evaluate factors independently associated with renal recovery. RESULTS: The median length of follow-up was 50 months (30-90 months. All patients had stabilized their glomerular filtration rates by 18 months and 83% of them stabilized earlier: up to 12 months. Renal recovery occurred in 16 patients (19% at discharge and in 54 (64% by 18 months. Six patients died and four patients progressed to ESRD during the follow up period. Age (OR 1.09, p<0.0001 and serum creatinine at hospital discharge (OR 2.48, p = 0.007 were independent factors associated with non renal recovery. The acute kidney injury severity, evaluated by peak serum creatinine and need for dialysis, was not associated with non renal recovery. CONCLUSIONS: Renal recovery must be evaluated no earlier than one year after an acute kidney injury episode. Nephrology referral should be considered mainly for older patients and those with elevated serum creatinine at hospital discharge.

  6. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Cao, Wei; Li, Aiqing; Li, Jiawen; Wu, Chunyi; Cui, Shuang; Zhou, Zhanmei; Liu, Youhua; Wilcox, Christopher S; Hou, Fan Fan

    2017-09-01

    A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p renal damage and dysfunction persisted after controlling blood pressure with hydralazine. This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.

  7. Lower pole renal cut injury due to the iliac wing fracture: A rare case report

    Directory of Open Access Journals (Sweden)

    Çaglar Yildirim

    2015-07-01

    Full Text Available The most frequent causes of blunt genitourinary injuries are falls from heights, motor vehicle accidents and sports injuries. Firearm injuries and penetrating stab wounds are also frequently encountered. Skeletal system traumas in the vicinity of the urogenital system can cause urological organ injuries. Though rarely, renal traumas can be dependent on the kinetic energy of the trauma and the retroperitoneal movement capacity of the kidneys and cannot be explained with the proximity of the kidney to the skeletal system. In cases with high-energy decelerations, renal pedicle and ureteropelvic junction traumas are more frequently observed. Herein, we presented a grade 3 left kidney lower pole injury developed secondary to A2 type pelvic fracture following a high energy deceleration trauma. It should not be forgotten that especially in this type of fractures, injuries of the lower renal pole can occur.

  8. Cordyceps sinensis protects against renal ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Wang, Hua-Pin; Liu, Ching-Wen; Chang, Hsueh-Wen; Tsai, Jen-Wei; Sung, Ya-Zhu; Chang, Li-Ching

    2013-03-01

    Cordyceps sinensis (CS) is an entomogenous fungus used as a tonic food and Chinese medicine to replenish health. This study investigated the protective effects of CS in rats post-renal ischemia-reperfusion (I/R) sequence by analyzing the influence on stromal cell-derived factor-1α (SDF-1α and chemokine (C-X-C motif) receptor 4 (CXCR4) expressions and senescence during recovery. Chemokine SDF-1 [now called chemokine C-X-C motif ligand 12 (CXCL12)] and its receptor CXCR4 are crucial in kidney repair after ischemic acute renal failure. CS treatment significantly alleviated I/R-induced renal damage assessed by creatinine levels (p < 0.05) and abated renal tubular damages assessed by periodic acid-Schiff with diastase (PASD) staining. CS induced early SDF-1α expression and increased CXCR4 expression 1-6 h post-reperfusion. Histology studies have revealed that CS induced SDF-1α in squamous cells of Bowman's capsule, mesangial cells, distal convoluted tubules (DCT), and proximal convoluted tubules (PCT). CS also improved renal repair in I/R-induced injury by increasing Ki-67 staining. I/R induced renal senescence after 3 and 6 h of reperfusion. However, CS alleviated I/R-induced senescence at early stage (1 and 3 h). We conclude that CS protects against I/R injury via the SDF-1/CXCR4-signaling axis and alleviates senescence.

  9. Dual Gas Treatment With Hydrogen and Carbon Monoxide Attenuates Oxidative Stress and Protects From Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Nishida, T; Hayashi, T; Inamoto, T; Kato, R; Ibuki, N; Takahara, K; Takai, T; Yoshikawa, Y; Uchimoto, T; Saito, K; Tanda, N; Kouno, J; Minami, K; Uehara, H; Hirano, H; Nomi, H; Okada, Y; Azuma, H

    Hydrogen (H 2 ) and carbon monoxide (CO) gas are both reported to reduce reactive oxygen species and alleviate tissue ischemia-reperfusion (I-R) injury. The present study was conducted to evaluate the effects of a mixture of H 2 gas and CO gas (dual gas) in comparison with hydrogen gas (H 2 : 2%) alone on I-R renal injury (composition of dual gas; N 2 : 77.8%; O 2 : 20.9%; H 2 : 1.30%; CO: 250 parts per million). Adult male Sprague-Dawley rats (body weight 250-280 g) were divided into 5 groups: (1) sham operation control, (2) dual gas inhalation (dual treatment) without I-R treatment, (3) I-R renal injury, (4) H 2 gas alone inhalation (H 2 treatment) with I-R renal injury, and (5) dual treatment with I-R renal injury. I-R renal injury was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion, and then contralateral nephrectomy was performed 2 weeks later. Renal function was markedly decreased at 24 hours after reperfusion, and thereafter the effects of dual gas were assessed by histologic examination and determination of the superoxide radical, together with functional and molecular analyses. Pathologic examination of the kidney of I-R rats revealed severe renal damage. Importantly, cytoprotective effects of the dual treatment in comparison with H 2 treatment and I-R renal injury were observed in terms of superoxide radical scavenging activity and histochemical features. Rats given dual treatment and I-R renal injury showed significant decreases in blood urea nitrogen. Increased expression of several inflammatory cytokines (tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, nuclear factor-κB, hypoxia inducible factor-1α, and heme oxygenase-1) was attenuated by the dual treatment. Dual gas inhalation decreases oxidative stress and markedly improves I-R-induced renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Basolateral P2X receptors mediate inhibition of NaCl transport in mouse medullary thick ascending limb (mTAL)

    DEFF Research Database (Denmark)

    Marques, Rita D; de Bruijn, Pauline I.A.; Sørensen, Mads Vaarby

    2012-01-01

    Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (m...

  11. Effect of tanshinone combined with valsartan therapy on the renal injury and endothelial injury in patients with hypertensive nephropathy

    Directory of Open Access Journals (Sweden)

    Wen-Tao Ma1

    2017-04-01

    Full Text Available Objective: To study the effect of tanshinone combined with valsartan therapy on the renal injury and endothelial injury in patients with hypertensive nephropathy. Methods: A total of 72 patients with hypertensive nephropathy who were treated in our hospital between January 2013 and April 2016 were selected and randomly divided into the control group (n=36 who received conventional treatment + valsartan therapy and the observation group (n=36 who received conventional treatment + tanshinone combined with valsartan therapy, and both therapies lasted for 2 weeks. Before treatment and after 2 weeks of treatment, automatic biochemical analyzer was used to determine the renal function indexes in peripheral blood, enzyme-linked immunosorbent assay (ELISA was used to determine the levels of endothelial injury markers and inflammatory cytokines in peripheral blood, and RIA method was used to determine the serum levels of oxidative stress indexes. Results: Before treatment, the differences in the peripheral blood renal function indexes and endothelial injury markers as well as the serum inflammatory factors and oxidative stress indexes were not statistically significant between two groups of patients. After 2 weeks of treatment, peripheral blood renal function indexes Scr and BUN levels as well as urine mAlb level of observation group were lower than those of control group, and endothelial injury indexes E-selectin and ET levels were lower than those of control group while NOS and CGRP levels were higher than those of control group; serum inflammatory cytokines IL-1, IL-6, CRP and TNF-α levels of observation group were lower than those of control group, and oxidative stress index GSH-Px level was higher than that of control group while MDA and AOPP levels were lower than those of control group. Conclusion: Tanshinone combined with valsartan can reduce the renal injury and endothelial injury in patients with hypertensive nephropathy, and the specific

  12. Comprehensive renal scintillation procedures in spinal cord injury: comparison with excretory urography

    International Nuclear Information System (INIS)

    Lloyd, L.K.; Dubovsky, E.V.; Bueschen, A.J.; Witten, D.M.; Scott, J.W.; Kuhlemeier, K.; Stover, S.L.

    1981-01-01

    A 131 iodine orthoiodohippurate comprehensive renal scintillation procedure was performed and compared to results of excretory urography in 200 spinal cord injury patients. No severe urographic abnormalities were undetected by the comprehensive renal scintillation procedure. Only 1.4 per cent of renal units had greater than minimal pyelocaliectasis or ureterectasis in the presence of a normal radionuclide examination. A relatively large number of abnormalities were detected on the renal scintillation procedure when the excretory urogram was normal. Serial followup will be required to determine the significance of these findings but present data suggest that a comprehensive renal scintillation procedure and a plain film of the kidneys, ureters and bladder may be used for screening upper urinary tract abnormalities in lieu of an excretory urogram. This is particularly advantageous for the spinal cord injury population, since there have been no toxic or allergic reactions reported, no bowel preparation or dehydration is required and there is relatively low radiation exposure

  13. Successful renal transplantation from a brain-dead deceased donor with head injury, disseminated intravascular coagulation and deranged renal functions

    Directory of Open Access Journals (Sweden)

    P P Ghuge

    2013-01-01

    Full Text Available Deceased donors (DDs with the brain death due to head injury are the major source of organs for transplantation. The incidence of post-head injury disseminated intravascular coagulation (DIC ranges from 24% to 50%. Many centers do not accept organs from donors with DIC due to increased risk of primary graft non-function and/or high chances of morbidity/mortality. We performed two successful renal transplants from a DD with head injury with DIC and deranged renal function. One of the recipients developed transient thrombocytopenia, but there was no evidence of DIC or delayed graft functions in either of the recipients. Over a follow-up of 1 month, both are doing well with stable graft function and hematological profile. Thus, a carefully selected DD with severe DIC even with deranged renal function is not a contraindication for organ donation if other risk factors for primary non-function are excluded. This approach will also help in overcoming organ shortage.

  14. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.

    Science.gov (United States)

    May, Philip C; Kreider, Wayne; Maxwell, Adam D; Wang, Yak-Nam; Cunitz, Bryan W; Blomgren, Philip M; Johnson, Cynthia D; Park, Joshua S H; Bailey, Michael R; Lee, Donghoon; Harper, Jonathan D; Sorensen, Mathew D

    2017-08-01

    Burst wave lithotripsy (BWL) is a transcutaneous technique with potential to safely and effectively fragment renal stones. Preclinical investigations of BWL require the assessment of potential renal injury. This study evaluates the capabilities of real-time ultrasound and MRI to detect and evaluate BWL injury that was induced in porcine kidneys. Ten kidneys from five female farm pigs were treated with either a 170 or 335 kHz BWL transducer using variable treatment parameters and monitored in real-time with ultrasound. Eight kidneys were perfusion fixed and scanned with a 3-Tesla MRI scanner (T1-weighted, T2-weighted, and susceptibility-weighted imaging), followed by processing via an established histomorphometric technique for injury quantification. In addition, two kidneys were separately evaluated for histologic characterization of injury quality. Observed B-mode hyperechoes on ultrasound consistent with cavitation predicted the presence of BWL-induced renal injury with a sensitivity and specificity of 100% in comparison to the histomorphometric technique. Similarly, MRI detected renal injury with a sensitivity of 90% and specificity of 100% and was able to identify the scale of lesion volumes. The injuries purposefully generated with BWL were histologically similar to those formed by shock wave lithotripsy. BWL-induced renal injury can be detected with a high degree of sensitivity and specificity by real-time ultrasound and post-treatment ex vivo MRI. No injury occurred in this study without cavitation detected on ultrasound. Such capabilities for injury detection and lesion volume quantification on MRI can be used for preclinical testing of BWL.

  15. Comparison of the Protective Effects of Erythropoietin and Melatonin on Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Banaei, Shokofeh; Ahmadiasl, Nasser; Alihemmati, Alireza

    2016-07-01

    Renal ischemia-reperfusion (IR) contributes to the development of acute renal failure (ARF). Oxygen free radicals are considered to be the principal components involved in the pathophysiological tissue alterations observed during renal IR. In this study, we compared the effects of melatonin (MEL) and erythropoietin (EPO), both known antioxidant and anti-inflammatory agents, on IR-induced renal injury in rats. Wistar albino rats were unilaterally nephrectomized and then subjected to 45 minutes of renal pedicle occlusion followed by 24 hours of reperfusion. MEL (10 mg/kg, i.p) and EPO (5000 U/kg, i.p) were administered prior to the onset of ischemia. After 24 hours of reperfusion and following decapitation, blood samples were collected for the determination of the hemoglobin (Hb) and hematocrit (Hct) levels. Additionally, renal samples were taken for histological evaluation. Ischemia-reperfusion significantly decreased the observed Hb and Hct values. The histopathological findings in the IR group confirmed that there was an increase in the hyaline cast and thickening of the Bowman capsule basement membrane. Treatment with EPO or MEL significantly increased the Hb and Hct values. In the MEL + IR group, the histopathological changes were lower than those found in the EPO + IR group. Treatment with EPO and MEL had a beneficial effect on renal IR injury. The results may also indicate that MEL protects against morphological damage better than EPO in renal IR injury.

  16. VAC Therapy Direct to the Medullary Cavity for Chronic Tibial Osteomyelitis.

    Science.gov (United States)

    Miyamura, Satoshi; Tsuji, Shigeyoshi; Iwai, Takao; Hamada, Masayuki

    2016-06-01

    Vacuum-assisted wound closure (VAC) is useful for difficult wound beds, although sites where bleeding or infection is expected are usually regarded as problematic for this therapy. This report outlines the treatment of chronic tibial osteomyelitis (Cierny- Mader type III) due to mixed infection with Nocardia spp and Bacteroi- des fragilis by postoperative VAC therapy direct to the medullary cavity, followed by wound coverage with a gastrocnemius myocutaneous skin flap. A 64-year-old man developed chronic left tibial os- teomyelitis after a work injury. The nonviable tissues were debrided, including a sequestrum. Nocardia spp and B. fragilis were isolated from surgical bone specimens, and chronic tibial osteomyelitis due to mixed infection was diagnosed. Postoperatively, VAC therapy was performed directly to the open medullary cavity of the tibia and sub- sequently covered the residual soft tissue defect with a gastrocnemius myocutaneous flap. The authors could not find any English literature on VAC therapy direct to the medullary cavity combined with transplantation of a myocutaneous flap for osteomyelitis. Nocardia spp can cause a variety of infections, among which osteomyelitis occupies a relatively small percentage. This case raises the possibil- ity of treating chronic tibial osteomyelitis caused by mixed infection with Nocardia spp and B. fragilis by applying postoperative VAC ther- apy directly to the medullary cavity and covering the residual wound with a gastrocnemius myocutaneous flap.

  17. Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature.

    Directory of Open Access Journals (Sweden)

    Keiko Takahashi

    Full Text Available Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RPTPs in renal endothelium are poorly understood, though coupled and counterbalancing roles of RPTKs and RPTPs are well defined in other systems. In this study, we evaluated the promoter activity and immunolocalization of two endothelial RPTPs, VE-PTP and PTPμ, in developing and adult renal vasculature using the heterozygous LacZ knock-in mice and specific antibodies. In adult kidneys, both VE-PTP and PTPμ were expressed in the endothelium of arterial, glomerular, and medullary vessels, while their expression was highly limited in peritubular capillaries and venous endothelium. VE-PTP and PTPμ promoter activity was also observed in medullary tubular segments in adult kidneys. In embryonic (E12.5, E13.5, E15.5, E17.5 and postnatal (P0, P3, P7 kidneys, these RPTPs were expressed in ingrowing renal arteries, developing glomerular microvasculature (as early as the S-shaped stage, and medullary vessels. Their expression became more evident as the vasculatures matured. Peritubular capillary expression of VE-PTP was also noted in embryonic and postnatal kidneys. Compared to VE-PTP, PTPμ immunoreactivity was relatively limited in embryonic and neonatal renal vasculature and evident immunoreactivity was observed from the P3 stage. These findings indicate 1 VE-PTP and PTPμ are expressed in endothelium of arterial, glomerular, and medullary renal vasculature, 2 their expression increases as renal vascular development proceeds, suggesting that these RPTPs play a role in maturation and maintenance of these vasculatures, and 3 peritubular capillary VE-PTP expression

  18. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas-González, Mariana C.; Del Razo, Luz M. [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); Barrera-Chimal, Jonatan [Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D. F., México (Mexico); Jacobo-Estrada, Tania [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); López-Bayghen, Esther [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  19. Enamel renal syndrome: A rare case report

    Directory of Open Access Journals (Sweden)

    S V Kala Vani

    2012-01-01

    Full Text Available Enamel renal syndrome is a very rare disorder associating amelogenesis imperfecta with nephrocalcinosis. It is known by various synonyms such as amelogenesis imperfecta nephrocalcinosis syndrome, MacGibbon syndrome, Lubinsky syndrome, and Lubinsky-MacGibbon syndrome. It is characterized by enamel agenesis and medullary nephrocalcinosis. This paper describes enamel renal syndrome in a female patient born in a consanguineous family.

  20. Renal deterioration after spinal cord injury is associated with length of detrusor contractions during cystometry

    DEFF Research Database (Denmark)

    Elmelund, Marlene; Klarskov, Niels; Bagi, Per

    2017-01-01

    AIMS: To investigate which urodynamic parameters are associated with renal deterioration over a median of 41 years follow-up after traumatic spinal cord injury. METHODS: Medical records of patients with a traumatic spinal cord injury sustained 1944-1975 were reviewed from time of injury until 2012....... Patients who attended regular renography and/or renal clearance examinations and had minimum one cystometry and pressure-flow study were included. Renal deterioration was diagnosed as split renal function ≤30% in one kidney or relative glomerular filtration rate ≤51% of expected according to age and gender....... Detrusor function, presence of detrusor sphincter dyssynergia, maximum detrusor pressure, post-void residual volume, and cystometric bladder capacity were obtained. In patients with detrusor overactivity, a detrusor overactivity/cystometry ratio was calculated using duration of detrusor contraction...

  1. Prior intake of Brazil nuts attenuates renal injury induced by ischemia and reperfusion

    Directory of Open Access Journals (Sweden)

    Natassia Alberici Anselmo

    2018-04-01

    Full Text Available ABSTRACT Introduction: Ischemia-reperfusion (IR injury results from inflammation and oxidative stress, among other factors. Because of its anti-inflammatory and antioxidant properties, the Brazil nut (BN might attenuate IR renal injury. Objective: The aim of the present study was to investigate whether the intake of BN prevents or reduces IR kidney injury and inflammation, improving renal function and decreasing oxidative stress. Methods: Male Wistar rats were distributed into six groups (N=6/group: SHAM (control, SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75 or 150 mg of BN. The IR procedure consisted of right nephrectomy and occlusion of the left renal artery with a non-traumatic vascular clamp for 30 min. BN was given daily and individually for 7 days before surgery (SHAM or IR and maintained until animal sacrifice (48h after surgery. We evaluated the following parameters: plasma creatinine, urea, and phosphorus; proteinuria, urinary output, and creatinine clearance; plasmatic TBARS and TEAC; kidney expression of iNOS and nitrotyrosine, and macrophage influx. Results: Pre-treatment with 75 mg of BN attenuated IR-induced renal changes, with elevation of creatinine clearance and urinary output, reducing proteinuria, urea, and plasmatic phosphorus as well as reducing kidney expression of iNOS, nitrotyrosine, and macrophage influx. Conclusion: Low intake of BN prior to IR-induced kidney injury improves renal function by inhibition of macrophage infiltration and oxidative stress.

  2. Renal cystic disease: A practical overview

    International Nuclear Information System (INIS)

    Hartman, D.S.

    1987-01-01

    Renal cystic disease includes a group of lesions with extremely diverse clinical, radiographic, and pathologic findings. The recent development of multiple imaging systems to study renal cystic disease has resulted in considerable interest in correlating the images obtained by different modalities with each other and with the underlying gross pathology. A thorough knowledge of the disturbed morphology and natural history of these diseases will lead to a better understanding of their appearance on radiologic imaging. This refresher course correlates disturbed morphology with appearances on diagnostic imaging, urography, US, angiography, CT, and MR imaging. The advantages and limitations of each imaging method are detailed. A practical classification emphasizing differential features is presented. The presentation is divided into two parts. In the first part typical and atypical cystic masses, including acquired cystic disease (from dialysis), Von Hippel-Lindau disease, and the cystic disease of tuberous sclerosis are discussed. In the second part, polycystic kidney disease (dominant and recessive), medullary cystic disease, medullary sponge kidney, multicycle-dysplastic kidney, renal sinus cysts (peripelvic), and pluricystic kidney disease are discussed

  3. Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping.

    Science.gov (United States)

    Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming

    2015-01-01

    To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.

  4. Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Boris Betz

    2012-01-01

    Full Text Available Background. Nitric oxide (NO-signal transduction plays an important role in renal ischemia/reperfusion (I/R injury. NO produced by endothelial NO-synthase (eNOS has protective functions whereas NO from inducible NO-synthase (iNOS induces impairment. Rosiglitazone (RGZ, a peroxisome proliferator-activated receptor (PPAR-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg was administered i.p. to SD-rats (f subjected to bilateral renal ischemia (60 min. Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3 was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

  5. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Science.gov (United States)

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  6. Predicting renal recovery after liver transplant with severe pretransplant subacute kidney injury: The impact of warm ischemia time.

    Science.gov (United States)

    Laskey, Heather L; Schomaker, Nathan; Hung, Kenneth W; Asrani, Sumeet K; Jennings, Linda; Nydam, Trevor L; Gralla, Jane; Wiseman, Alex; Rosen, Hugo R; Biggins, Scott W

    2016-08-01

    Identifying which liver transplantation (LT) candidates with severe kidney injury will have a full recovery of renal function after liver transplantation alone (LTA) is difficult. Avoiding unnecessary simultaneous liver-kidney transplantation (SLKT) can optimize the use of scarce kidney grafts. Incorrect predictions of spontaneous renal recovery after LTA can lead to increased morbidity and mortality. We retrospectively analyzed all LTA patients at our institution from February 2002 to February 2013 (n = 583) and identified a cohort with severe subacute renal injury (n = 40; creatinine <2 mg/dL in the 14-89 days prior to LTA and not on renal replacement therapy [RRT] yet, ≥2 mg/dL within 14 days of LTA and/or on RRT). Of 40 LTA recipients, 26 (65%) had renal recovery and 14 (35%) did not. The median (interquartile range) warm ischemia time (WIT) in recipients with and without renal recovery after LTA was 31 minutes (24-46 minutes) and 39 minutes (34-49 minutes; P = 0.02), respectively. Adjusting for the severity of the subacute kidney injury with either Acute Kidney Injury Network or Risk, Injury, Failure, Loss, and End-Stage Kidney Disease criteria, increasing WIT was associated with lack of renal recovery (serum creatinine <2 mg/dL after LTA, not on RRT), with an odds ratio (OR) of 1.08 (1.01-1.16; P = 0.03) and 1.09 (1.01-1.17; P = 0.02), respectively. For each minute of increased WIT, there was an 8%-9% increase in the risk of lack of renal recovery after LTA. In a separate cohort of 98 LTA recipients with subacute kidney injury, we confirmed the association of WIT and lack of renal recovery (OR, 1.04; P = 0.04). In LT candidates with severe subacute renal injury, operative measures to minimize WIT may improve renal recovery potentially avoiding RRT and the need for subsequent kidney transplant. Liver Transplantation 22 1085-1091 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  7. Forty-five-year follow-up on the renal function after spinal cord injury

    DEFF Research Database (Denmark)

    Elmelund, M; Oturai, P S; Toson, B

    2016-01-01

    rate (GFR) ⩽75% of expected according to age and gender) was 58%. The cumulative risk of severe renal deterioration (functional distribution outside 30-70% on renography or relative GFR⩽51%) was 29% after 45 years postinjury. Only dilatation of UUT and renal/ureter stone requiring removal significantly...... increased the risk of moderate and severe renal deterioration. CONCLUSION: Renal deterioration occurs at any time after injury, suggesting that lifelong follow-up examinations of the renal function are important, especially in patients with dilatation of UUT and/or renal/ureter stones....

  8. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  9. The normal and pathologic renal medulla: a comprehensive overview.

    Science.gov (United States)

    López, José I; Larrinaga, Gorka; Kuroda, Naoto; Angulo, Javier C

    2015-04-01

    The renal medulla comprises an intricate system of tubules, blood vessels and interstitium that is not well understood by most general pathologists. We conducted an extensive review of the literature on the renal medulla, in both normal and pathologic conditions. We set out in detail the points of key interest to pathologists: normal and pathological development, physiology, microscopic anatomy, histology and immunohistochemistry; and the specific and most common other types of disease associated with this part of the kidney: developmental abnormalities, (multicystic dysplastic kidney, autosomal dominant and recessive polycystic kidney diseases, medullary cystic kidney disease), inflammatory conditions (xanthogranulomatous pyelonephritis, malakoplakia), hyperplasia and dysplasia, and neoplastic processes (oncocytoma, atypical oncocytic tumors, chromophobe cell carcinoma, collecting duct carcinoma, urothelial carcinoma, other carcinomas, renal medullary fibroma and metastatic tumors). This condensed overview of the origin, function and pathology of the renal medulla, both in terms of development, inflammation and neoplastic processes, should help focus the interest of clinical pathologists on this widely overlooked part of the kidney. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    Science.gov (United States)

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. © The Author(s) 2015.

  11. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    Science.gov (United States)

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in

  12. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    Science.gov (United States)

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  13. The effect of biological sealants and adhesive treatments on matrix metalloproteinase expression during renal injury healing.

    Directory of Open Access Journals (Sweden)

    José Miguel Lloris-Carsí

    Full Text Available Renal injuries are relatively common in cases of abdominal trauma. Adhesives and sealants can be used to repair and preserve damaged organs. Using a rat model, this study explores the activity of different matrix metalloproteinases (MMP during the healing of renal injuries treated by two biological adhesives (TachoSil and GelitaSpon and a new synthetic elastic cyanoacrylate (Adhflex.Renal traumatic injuries were experimentally induced in 90 male Wistar rats by a Stiefel Biopsy Punch in the anterior aspect of the left kidney. Animals were divided into five groups: 1, sham non-injured (n = 3; 2, non-treated standard punch injury (n = 6; 3, punch injury treated with TachoSil (n = 27; 4, punch injury treated with GelitaSpon (n = 27; and, 5, punch injury treated with Adhflex (n = 27. Wound healing was evaluated 2, 6, and 18 days after injury by determining the expression of MMPs, and the histopathological evolution of lesions.Histologically, the wound size at 6 days post-injury was larger in Adhflex-treated samples than in the other treatments, but the scarring tissue was similar at 18 days post-injury. Only the MMPs subtypes 1, 2, 8, 9, and 13 were sufficiently expressed to be quantifiable. Both time since injury and treatment type had a significant influence on MMPs expression. Two days after injury, the expression of MMP8 and MMP9 was predominant. MMP2 expression was greater 6 days after injury. The Adhflex-treated group had a significantly higher MMPs expression than the other treatment groups at all healing stages.All three sealant treatments induced almost similar expression of MMPs than untreated animals indicating a physiological healing process. Given that all renal trauma injuries must be considered emergencies, both biological and synthetic adhesives, such as Adhflex, should be considered as a treatment options.

  14. Stent revascularization restores cortical blood flow and reverses tissue hypoxia in atherosclerotic renal artery stenosis but fails to reverse inflammatory pathways or glomerular filtration rate.

    Science.gov (United States)

    Saad, Ahmed; Herrmann, Sandra M S; Crane, John; Glockner, James F; McKusick, Michael A; Misra, Sanjay; Eirin, Alfonso; Ebrahimi, Behzad; Lerman, Lilach O; Textor, Stephen C

    2013-08-01

    Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na(+) intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R(2)*) were measured by blood oxygen level-dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R(2)*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase-associated lipocalin, tumor necrosis factor-α, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (Pblood flow, whereas GFR and neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-α remained unchanged. These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly

  15. Evaluation of renal oxygenation level changes after water loading using susceptibility-weighted imaging and T2{sup *} mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jiule; Xing, Wei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shi Jun [Dept. of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou (China); Wu, Dong Mei [Shanghai Key Laboratory of Magnetic Resonance Imaging, East China Normal University, Shanghai (China); Dai, Yong Ming [Philips Healthcare, Shanghai (China)

    2015-08-15

    To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2{sup *} mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2{sup *} values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2{sup *} changes (p > 0.05). Interobserver reliability was excellent for the T2{sup *} values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2{sup *} value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2{sup *} mapping.

  16. Generation of a tenascin-C-CreER2 knockin mouse line for conditional DNA recombination in renal medullary interstitial cells.

    Directory of Open Access Journals (Sweden)

    Wenjuan He

    Full Text Available Renal medullary interstitial cells (RMIC are specialized fibroblast-like cells that exert important functions in maintaining body fluid homeostasis and systemic blood pressure. Here, we generated a RMIC specific tenascin-C promoter driven inducible CreER2 knockin mouse line with an EGFP reporter. Similar as endogenous tenascin-C expression, the reporter EGFP expression in the tenascin-C-CreER2(+/- mice was observed in the inner medulla of the kidney, and co-localized with COX2 but not with AQP2 or AQP1, suggesting selective expression in RMICs. After recombination (tenascin-C-CreER2(+/-/ROSA26-lacZ(+/- mice + tamoxifen, β-gal activity was restricted to the cells in the inner medulla of the kidney, and didn't co-localize with AQP2, consistent with selective Cre recombinase activity in RMICs. Cre activity was not obvious in other major organs or without tamoxifen treatment. This inducible RMIC specific Cre mouse line should therefore provide a novel tool to manipulate genes of interest in RMICs.

  17. Impact of Mannose-Binding Lectin Deficiency on Radiocontrast-Induced Renal Dysfunction

    Directory of Open Access Journals (Sweden)

    Michael Osthoff

    2013-01-01

    Full Text Available Contrast-induced nephropathy (CIN is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL, a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN.

  18. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    Science.gov (United States)

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  19. Anticancer Drug 2-Methoxyestradiol Protects against Renal Ischemia/Reperfusion Injury by Reducing Inflammatory Cytokines Expression

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2014-01-01

    Full Text Available Background. Ischemia/reperfusion (I/R injury is a major cause of acute renal failure and allograft dysfunction in kidney transplantation. ROS/inflammatory cytokines are involved in I/R injury. 2-Methoxyestradiol (2ME2, an endogenous metabolite of estradiol, inhibits inflammatory cytokine expression and is an antiangiogenic and antitumor agent. We investigated the inhibitory effect of 2ME2 on renal I/R injury and possible molecular actions. Methods. BALB/c mice were intraperitoneally injected with 2ME2 (10 or 20 mg/kg or vehicle 12 h before and immediately after renal I/R experiments. The kidney weight, renal function, tubular damages, and apoptotic response were examined 24 h after I/R injury. The expression of mRNA of interleukin-1β, tumor necrosis factor- (TNF α, caspase-3, hypoxia inducible factor- (HIF 1α, and proapoptotic Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3 in kidney tissue was determined using RT-PCR, while the expression of nuclear factor κB (NF-κB, BCL-2, and BCL-xL, activated caspase-9, and HIF-1α was determined using immunoblotting. In vitro, we determined the effect of 2ME2 on reactive oxygen species (ROS production and cell viability in antimycin-A-treated renal mesangial (RMC and tubular (NRK52E cells. Results. Serum creatinine and blood urea nitrogen were significantly higher in mice with renal I/R injury than in sham control and in I/R+2ME2-treated mice. Survival in I/R+2ME2-treated mice was higher than in I/R mice. Histological examination showed that 2ME2 attenuated tubular damage in I/R mice, which was associated with lower expression TNF-α, IL-1β, caspase-9, HIF-1α, and BNIP3 mRNA in kidney tissue. Western blotting showed that 2ME2 treatment substantially decreased the expression of activated caspase-9, NF-κB, and HIF-1α but increased the antiapoptotic proteins BCL-2 and BCL-xL in kidney of I/R injury. In vitro, 2MR2 decreased ROS production and increased cell viability in antimycin

  20. Injúria Renal Aguda no paciente politraumatizado Acute Renal Injury in polytrauma patients

    Directory of Open Access Journals (Sweden)

    Thiago Gomes Romano

    2013-03-01

    Full Text Available A Injúria Renal Aguda (IRA no contexto do paciente politraumatizado ocorre, na maioria das vezes, por uma conjuntura de fatores que passam por eventos correlacionados à ressuscitação volêmica inicial, ao grau de resposta inflamatória sistêmica associada ao trauma, ao uso de contraste iodado para procedimentos diagnósticos, à rabdomiólise e à síndrome compartimental abdominal. Atualmente, passamos por uma fase de uniformização dos critérios diagnósticos da IRA com o Acute Kidney Injury Network (AKIN, sendo a referência mais aceita. Consequentemente, o estudo da IRA no politraumatismo também passa por uma fase de reformulação. Esta revisão da literatura médica visa trazer dados epidemiológicos, fisiológicos e de implicação clínica para o manuseio destes pacientes, bem como expor os riscos do uso indiscriminado de expansores volêmicos e particularidades sobre a instituição de terapia renal substitutiva em indivíduos sob risco de hipertensão intracraniana.Acute Kidney Injury (AKI in trauma is, in most cases, multifactorial. Factors related to the initial ressuscitation protocol, degree of the systemic inflamatory response to trauma, contrast nephropathy in diagnostic procedures, rhabdomyolysis and abdominal compartment syndrome are some of those factors. Nowadays a uniformization in diagnostic criteria for AKI has been proposed by the Acute Kidney Injury Network (AKIN and as a result the incidence of AKI and its impact in outcomes in trauma patients also needs to be reconsider. In this review we aim to approach epidemiologic, physiologic and clinical relevant data in the critical care of patients victims of trauma and also to expose the risks of indiscriminate use of volume expanders and the interaction between renal replacement theraphy and intracranial hypertension.

  1. Mitochondria-Targeted Antioxidant Mito-Tempo Protects Against Aldosterone-Induced Renal Injury In Vivo

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2017-11-01

    Full Text Available Background/Aims: Growing evidence suggests mitochondrial dysfunction (MtD and the Nlrp3 inflammasome play critical roles in chronic kidney disease (CKD progression. We previously reported that Aldosterone (Aldo-induced renal injury in vitro is directly caused by mitochondrial reactive oxygen species (mtROS-mediated activation of the Nlrp3 inflammasome. Here we aimed to determine whether a mitochondria-targeted antioxidant (Mito-Tempo could prevent Aldo-induced kidney damage in vivo. Methods: C57BL/6J mice were treated with Aldo and/or Mito-Tempo (or ethanol as a control for 4 weeks. Renal injury was evaluated by Periodic Acid-Schiff reagent or Masson’s trichrome staining and electron microscopy. ROS were measured by DCFDA fluorescence and ELISA. MtD was determined by real-time PCR and electron microscopy. Activation of the Nlrp3 inflammasome and endoplasmic reticulum stress (ERS was detected via western blot. Results: Compared with control mice, Aldo-infused mice showed impaired renal function, increased mtROS production and MtD, Nlrp3 inflammasome activation, and elevated ERS. We showed administration of Mito-Tempo significantly improved renal function and MtD, and reduced Nlrp3 inflammasome activation and ERS in vivo. Conclusion: Mitochondria-targeted antioxidants may attenuate Aldo-infused renal injury by inhibiting MtD, the Nlrp3 inflammasome, and ERS in vivo. Therefore, targeting mtROS might be an effective strategy for preventing CKD.

  2. Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance

    Science.gov (United States)

    Jin, Jianliang; Lv, Xianhui; Chen, Lulu; Zhang, Wei; Li, Jinbo; Wang, Qian; Wang, Rong; Lu, Xiang; Miao, Dengshun

    2014-01-01

    To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury. PMID:24915841

  3. Change in iron metabolism in rats after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guang-Liang Xie

    Full Text Available Previous studies have indicated that hepcidin, which can regulate iron efflux by binding to ferroportin-1 (FPN1 and inducing its internalization and degradation, acts as the critical factor in the regulation of iron metabolism. However, it is unknown whether hepcidin is involved in acute renal ischemia/reperfusion injury (IRI. In this study, an IRI rat model was established via right renal excision and blood interruption for 45 min in the left kidney, and iron metabolism indexes were examined to investigate the change in iron metabolism and to analyze the role of hepcidin during IRI. From 1 to 24 h after renal reperfusion, serum creatinine and blood urea nitrogen were found to be time-dependently increased with different degrees of kidney injury. Regular variations in iron metabolism indexes in the blood and kidneys were observed in renal IRI. Renal iron content, serum iron and serum ferritin increased early after reperfusion and then declined. Hepcidin expression in the liver significantly increased early after reperfusion, and its serum concentration increased beginning at 8 h after reperfusion. The splenic iron content decreased significantly in the early stage after reperfusion and then increased time-dependently with increasing reperfusion time, and the hepatic iron content showed a decrease in the early stage after reperfusion. The early decrease of the splenic iron content and hepatic iron content might indicate their contribution to the increase in serum iron in renal IRI. In addition, the duodenal iron content showed time-dependently decreased since 12 h after reperfusion in the IRI groups compared to the control group. Along with the spleen, the duodenum might contribute to the decrease in serum iron in the later stage after reperfusion. The changes in iron metabolism indexes observed in our study demonstrate an iron metabolism disorder in renal IRI, and hepcidin might be involved in maintaining iron homeostasis in renal IRI. These

  4. Gender difference and sex hormone production in rodent renal ischemia reperfusion injury and repair

    Directory of Open Access Journals (Sweden)

    Ghazali Daniel

    2011-06-01

    Full Text Available Abstract Background Several lines of evidence suggest a protective effect of female sex hormones in several organs subjected to ischemia-reperfusion injury. The aim of the study was to investigate sex hormone production in male rats after a renal ischemia-reperfusion sequence and analyze the influence of gender differences on tissue remodelling during the recovery process. Method Age-matched sexually mature male and female rats were subjected to 60 min of renal unilateral ischemia by pedicle clamping with contralateral nephrectomy and followed for 1 or 5 days after reperfusion. Plasma creatinine, systemic testosterone, progesterone and estradiol levels were determined. Tubular injury, cell proliferation and inflammation, were evaluated as well as proliferating cell nuclear antigen, vimentin and translocator protein (TSPO expressions by immunohistochemistry. Results After 1 and 5 days of reperfusion, plasma creatinine was significantly higher in males than in females, supporting the high mortality in this group. After reperfusion, plasma testosterone levels decreased whereas estradiol significantly increased in male rats. Alterations of renal function, associated with tubular injury and inflammation persisted during the 5 days post-ischemia-reperfusion, and a significant improvement was observed in females at 5 days of reperfusion. Proliferating cell nuclear antigen and vimentin expression were upregulated in kidneys from males and attenuated in females, in parallel to injury development. TSPO expression was transiently increased in proximal tubules in male rats. Conclusions After ischemia, renal function recovery and tissue injury is gender-dependent. These differences are associated with a modulation of sex hormone production and a modification of tissue remodeling and proliferative cell processes.

  5. STUDIES OF THE RENAL CONCENTRATING MECHANISM IN HUMANS. I. THE EFFECT OF HYPERTHYROIDISM,

    Science.gov (United States)

    Summary: (1) The maximum urinary osmolality after dehydration and exogenous vasopressin was significantly decreased during thyrotoxicosis in... thyrotoxicosis , TcH2O during a moderate mannitol diuresis was unchanged in most patients. The data suggest that the decreased Umax and normal TcH2O...in thyrotoxic individuals is probably caused by an increase in medullary blood flow with a decrease in medullary osmolality. (2) Renal hemodynamics

  6. Dual energy CT monitoring of the renal corticomedullary sodium gradient in swine

    International Nuclear Information System (INIS)

    Kumar, Rahi; Wang, Zhen J.; Forsythe, Carlos; Fu Yanjun; Chen, Yunn-Yi; Yeh, Benjamin M.

    2012-01-01

    Objective: To evaluate the feasibility of dual-energy CT (DECT) for monitoring dynamic changes in the renal corticomedullary sodium gradient in swine. Material and methods: This study was approved by our Institutional Animal Care and Use Committee. Four water-restricted pigs were CT-scanned at 80 and 140 kVp at baseline and at 5 min intervals for 30 min during saline or furosemide diuresis. The renal cortical and medullary CT numbers were recorded. A DECT basis material decomposition method was used to quantify renal cortical and medullary sodium concentrations and medulla-to-cortex sodium ratios at each time point based on the measured CT numbers. The sodium concentrations and medulla-to-cortex sodium ratios were compared between baseline and at 30 min diuresis using paired Student t-tests. The medulla-to-cortex sodium ratios were considered to reflect the corticomedullary sodium gradient. Results: At baseline prior to saline diuresis, the mean medullary and cortical sodium concentrations were 103.8 ± 8.7 and 65.3 ± 1.7 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.59. At 30 min of saline diuresis, the medullary and cortical sodium concentrations decreased to 72.3 ± 1.0 and 56.0 ± 1.4 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.29 (P < 0.05). At baseline prior to furosemide diuresis, the mean medullary and cortical sodium concentrations were 110.5 ± 3.6 and 66.7 ± 4.1 mmol/l, respectively, corresponding to a medulla-to-cortex sodium ratio of 1.66. At 30 min of furosemide diuresis, the medullary and cortical sodium concentrations decreased to 68.5 ± 0.3 and 58.9 ± 4.0 mmol/l, respectively, corresponding to a significantly reduced medulla-to-cortex sodium ratio of 1.16 (P < 0.05). One of the 4 pigs developed acute tubular necrosis likely related to prolonged hypoxia during intubation prior to the furosemide diuresis experiment. The medulla-to-cortex sodium ratio for this

  7. Calpastatin overexpression prevents progression of S-1,2-dichlorovinyl-L-cysteine (DCVC)-initiated acute renal injury and renal failure (ARF) in diabetes

    International Nuclear Information System (INIS)

    Dnyanmote, Ankur V.; Sawant, Sharmilee P.; Lock, Edward A.; Latendresse, John R.; Warbritton, Alan A.; Mehendale, Harihara M.

    2006-01-01

    Previously we have shown that 90% of streptozotocin (STZ)-induced type-1 diabetic (DB) mice survive from acute renal failure (ARF) and death induced by a normally LD 9 dose (75 mg/kg, i.p.) of the nephrotoxicant S-1,2-dichlorovinyl-L-cysteine (DCVC). This remarkable protection is due to a combination of slower progression of DCVC-initiated renal injury and increased compensatory nephrogenic tissue repair in the DB kidneys. BRDU immunohistochemistry revealed that the DB condition led to 4-fold higher number of proximal tubular cells (PTC) entering S-phase of cell cycle. In the present study, we tested the hypothesis that DB-induced augmentation of PTC into S-phase is accompanied by overexpression of the calpain-inhibitor calpastatin, which endogenously prevents the progression of DCVC-initiated renal injury mediated by the calpain escaping out of damaged PTCs. Immunohistochemical detection of renal calpain and its activity in the urine, over a time course after treatment with the LD 9 dose of DCVC, indicated progressive increase in leakage of calpain into the extracellular spaces of the injured PTCs of the non-diabetic (NDB) kidneys as compared to the DB kidneys. Calpastatin expression was minimally detected in the NDB kidneys, using immunohistochemistry, over the time course. On the other hand, consistently higher number of tubules in the DB kidney showed calpastatin expression over the time course. The lower leakage of calpain in the DB kidneys was commensurate with constitutively higher expression of calpastatin in the S-phase-laden PTCs of these mice. To test the protective role of newly divided/dividing PTCs, DB mice were given the anti-mitotic agent colchicine (CLC) (2 mg/kg and 1.5 mg/kg, i.p., on days 8 and 10 after STZ injection) prior to challenge with a LD 9 dose of DCVC, which led to 100% mortality by 48 h. Mortality was due to rapid progression of DCVC-initiated renal injury, suggesting that newly divided/dividing cells are instrumental in mitigating

  8. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  9. The role of hemosorption detoxication in the modification of medullary hemoroisis caused by acute irradiation injury

    International Nuclear Information System (INIS)

    Nikolaev, V.G.; Rodionova, N.K.; Petrenko, S.V.; Bychkova, N.P.; Pinchouk, L.B.

    2003-01-01

    Using the model of a medullar form of acute radiation disease in dogs, we have shown that early detoxification through extracorporal hemosorption in various modifications is of high efficiency. On the basis of results of experimental research, a high efficiency of detoxification therapy of the medullary form of acute radiation diseases is established. It is revealed that the toxicity of liquid media of the body is reduced after the application of various modifications of extracorporal extracorporal hemosorption. The main indicators of the efficiency of these methods are the considerable relief of the medullary syndrome severity, lower level of clinical symptoms, and high survival rate of animals

  10. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  11. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  12. Magnetization Transfer Magnetic Resonance Imaging Noninvasively Detects Renal Fibrosis in Swine Atherosclerotic Renal Artery Stenosis at 3.0 T.

    Science.gov (United States)

    Jiang, Kai; Ferguson, Christopher M; Woollard, John R; Zhu, Xiangyang; Lerman, Lilach O

    2017-11-01

    Renal fibrosis is a useful biomarker for diagnosis and evaluation of therapeutic interventions of renal diseases but often requires invasive testing. Magnetization transfer magnetic resonance imaging (MT-MRI), which evaluates the presence of macromolecules, offers a noninvasive tool to probe renal fibrosis in murine renal artery stenosis (RAS) at 16.4 T. In this study, we aimed to identify appropriate imaging parameters for collagen detection at 3.0 T MRI and to test the utility of MT-MRI in measuring renal fibrosis in a swine model of atherosclerotic RAS (ARAS). To select the appropriate offset frequency, an MT-MRI study was performed on a phantom containing 0% to 40% collagen I and III with offset frequencies from -1600 to +1600 Hz and other MT parameters empirically set as pulse width at 16 milliseconds and flip angle at 800 degrees. Then selected MT parameters were used in vivo on pigs 12 weeks after sham (n = 8) or RAS (n = 10) surgeries. The ARAS pigs were fed with high-cholesterol diet to induce atherosclerosis. The MT ratio (MTR) was compared with ex vivo renal fibrosis measured using Sirius-red staining. Offset frequencies at 600 and 1000 Hz were selected for collagen detection without direct saturation of free water signal, and subsequently applied in vivo. The ARAS kidneys showed mild cortical and medullary fibrosis by Sirius-red staining. The cortical and medullary MTRs at 600 and 1000 Hz were both increased. Renal fibrosis measured ex vivo showed good linear correlations with MTR at 600 (cortex: Pearson correlation coefficient r = 0.87, P 3.0 T. Therefore, MT-MRI may potentially be clinically applicable and useful for detection and monitoring of renal pathology in subjects with RAS.

  13. Adrenal medullary hyperplasia. Hyperplasia-pheochromocytoma sequence.

    Science.gov (United States)

    Kurihara, K; Mizuseki, K; Kondo, T; Ohoka, H; Mannami, M; Kawai, K

    1990-09-01

    We present a case of unilateral adrenal medullary hyperplasia in a 63-year-old woman with clinical signs and symptoms of pheochromocytoma unassociated with multiple endocrine neoplasia. The surgically removed adrenal gland revealed diffuse medullary hyperplasia with multiple micronodules measuring up to 2 mm. The micronodules were composed of enlarged chromaffin cells with atypia, histologically similar to those of pheochromocytoma, forming small solid alveolar patterns separated by a fibrovascular stroma. Removal of the hyperplastic adrenal gland resulted in disappearance of paroxysmal nocturnal hypertension and palpitation. These results suggest that diffuse and nodular medullary hyperplasia is the precursor of pheochromocytoma.

  14. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury.

    Science.gov (United States)

    Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv

    2015-02-01

    In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A high-fat diet increases oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by Korea red ginseng.

    Science.gov (United States)

    Park, Sok; Kim, Chan-Sik; Min, Jinah; Lee, Soo Hwan; Jung, Yi-Sook

    2014-01-01

    Declining renal function is commonly observed with age. Obesity induced by a high-fat diet (HFD) may reduce renal function. Korean red ginseng (KRG) has been reported to ameliorate oxidative tissue injury and have an anti-aging effect. This study was designed to investigate whether HFD would accelerate the D-galactose-induced aging process in the rat kidney and to examine the preventive effect of KRG on HFD and D-galactose-induced aging-related renal injury. When rats with D-galactose-induced aging were fed an HFD for 9 wk, enhanced oxidative DNA damage, renal cell apoptosis, protein glycation, and extracellular high mobility group box 1 protein (HMGB1), a signal of tissue damage, were observed in renal glomerular cells and tubular epithelial cells. However, treatment of rats with HFD- plus D-galactose-induced aging with KRG restored all of these renal changes. Our data suggested that a long-term HFD may enhance D-galactose-induced oxidative renal injury in rats and that this age-related renal injury could be suppressed by KRG through the repression of oxidative injury.

  16. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg, renal mercury (RHg, serum creatinine (SCr, and urine kidney injury molecule 1 (KIM-1 were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway.

  17. Glucose supplementation does not interfere with fasting-induced protection against renal ischemia/reperfusion injury in mice.

    Science.gov (United States)

    Verweij, Mariëlle; van de Ven, Marieke; Mitchell, James R; van den Engel, Sandra; Hoeijmakers, Jan H J; Ijzermans, Jan N M; de Bruin, Ron W F

    2011-10-15

    Preoperative fasting induces robust protection against renal ischemia/reperfusion (I/R) injury in mice but is considered overcautious and possibly detrimental for postoperative recovery in humans. Furthermore, fasting seems to conflict with reported benefits of preoperative nutritional enhancement with carbohydrate-rich drinks. Here, we investigated whether preoperative ingestion of a glucose solution interferes with fasting-induced protection against renal I/R injury. Mice were randomized into the following groups: fasted for 3 days with access to water (fasted) or a glucose solution (fasted+glc) and fed ad libitum with water (fed) or a glucose solution (fed+glc). After induction of bilateral renal I/R injury, all animals had free access to food and water. Calorie intake, body weight, insulin sensitivity, kidney function, and animal survival were determined. Fed+glc mice had a comparable daily calorie intake as fed mice, but 50% of those calories were obtained from the glucose solution. Fasted+glc mice had a daily calorie intake of approximately 75% of the intake of both fed groups. This largely prevented the substantial body weight loss seen in fasted animals. Preoperative insulin sensitivity was significantly improved in fasted+glc mice versus fed mice. After I/R injury, kidney function and animal survival were superior in both fasted groups. The benefits of fasting and preoperative nutritional enhancement with carbohydrates are not mutually exclusive and may be a clinically feasible regimen to protect against renal I/R injury.

  18. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications

    International Nuclear Information System (INIS)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J.

    2010-01-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2 * -weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  19. Protective effects of Rosmarinic acid against renal ischaemia/reperfusion injury in rats

    International Nuclear Information System (INIS)

    Ozturk, H.; Ozturk, H.; Terzi, E.H.

    2014-01-01

    Objective: To investigate the potential protective effects of Rosmarinic acid (RA) on rats exposed to ischaemia/reperfusion renal injury. Methods: The prospective study was conducted at Abant Izzet Baysal University, Turkey, and comprised 21 male Spraque Dawley rats weighing 250-270g each. They were divided into three equal groups. Unilaterally nephrectomised rats were subjected to 60 minutes of left renal ischaemia followed by 60 minutes of reperfusion. Group 1 had shamoperated animals; group 2 had ischaemia/reperfusion untreated animals; and group 3 had ischaemia/reperfusion animals treated with rosmarinic acid. Serum creatinine, blood urea nitrogen, tissue malondialdehyde, glutathione peroxidase, superoxide dismutase and myeloperoxidase (MPO) activities, and light microscopic findings were evaluated. SPSS 17 was used for statistical analysis. Results: Treatment of rats with rosmarinic acid produced a reduction in the serum levels of creatinine and blood urea nitrogen compared to the other groups. However, no statistically significant difference was found. The levels of malondialdehyde and myeloperoxidase were decreased in the renal tissue of group 3, while glutathione peroxidose and superoxide dismutase levels remained unchanged. The injury score decreased in the treatment group rats compared to the untreated group. Rosmarinic acid significantly decreased focal glomerular necrosis, dilatation of Bowman's capsule, degeneration of tubular epithelium, necrosis in tubular epithelium, and tubular dilatation. Conclusions: Rosmarinic acid prevented ischaemia/reperfusion injury in the kidneys by decreasing oxidative stress. (author)

  20. Effect of Intervention in Mast Cell Function Before Reperfusion on Renal Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Fei Tong

    2016-06-01

    Full Text Available Background/Aims: Mast cells are sparsely distributed in the kidneys under normal conditions; however, the number of mast cells increases dramatically during renal ischemia/reperfusion injury (RI/RI. When mast cells are stimulated, numerous mediators are released, and under pathological conditions, they produce a wide range of biological effects. The aim of this study was to investigate the effect of intervention in mast cell function before reperfusion on RI/RI. Methods: Sprague-Dawley (SD rats (n=50 were randomized into five groups: sham group, ischemia/reperfusion (I/R group, cromolyn sodium treatment group (CS+I/R group, ketotifen treatment group (K+I/Rgroup, and compound 48/80 treatment group (C+I/R group. I/R injury was induced by bilateral renal artery and vein occlusion for 45 min followed by 24 h of reperfusion. The agents were intravenously administered 5 min before reperfusion through the tail vein. The serum levels of blood urea nitrogen(BUN, serum creatinine (Scr and histamine and the kidney levels of malondialdehyde (MDA, superoxide dismutase (SOD, tumor necrosis factor α (TNF-α and interleukin-6 (IL-6 were assessed. The expression of intracellular adhesion molecule-1 (ICAM-1 in renal tissue was also measured. Results: I/R injury resulted in severe renal injury, as demonstrated by a large increase in injury scores; serum levels of BUN, Scr and histamine; and kidney levels of MDA, TNF-α, and IL-6; this was accompanied by reduced SOD activity and upregulated ICAM-1 expression. Treatment with cromolyn sodium or ketotifen markedly alleviated I/R-mediated kidney injury, whereas compound 48/80 further aggravated kidney injury. Conclusion: Intervention in mast cell activity prior to reperfusionhas a strong effect on RI/RI.

  1. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    International Nuclear Information System (INIS)

    Wolff, S.D.; Eng, C.; Balaban, R.S.

    1988-01-01

    The present study characterizes the 31 P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the 31 P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises ∼30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by 23 Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content

  2. Stem cells and their role in renal ischaemia reperfusion injury.

    Science.gov (United States)

    Bagul, Atul; Frost, Jodie H; Drage, Martin

    2013-01-01

    Ischaemia-reperfusion injury (IRI) remains one of the leading causes of acute kidney injury (AKI). IRI is an underlying multifactorial pathophysiological process which affects the outcome in both native and transplanted patients. The high morbidity and mortality associated with IRI/AKI and disappointing results from current available clinical therapeutic approaches prompt further research. Stem cells (SC) are undifferentiated cells that can undergo both renewal and differentiation into one or more cell types which can possibly ameliorate IRI. To carry out a detailed literature analysis and construct a comprehensive literature review addressing the role of SC in AKI secondary to IRI. Evidence favouring the role of SC in renal IRI and evidence showing no benefits of SC in renal IRI are the two main aspects to be studied. The search strategy was based on an extensive search addressing MESH terms and free text terms. The majority of studies in the field of renal IRI and stem cell therapy show substantial benefits. Studies were mostly conducted in small animal models, thus underscoring the need for further pre-clinical studies in larger animal models, and results should be taken with caution. SC therapy may be promising though controversy exists in the exact mechanism. Thorough scientific exploration is required to assess mechanism, safety profile, reproducibility and methods to monitor administered SC. Copyright © 2012 S. Karger AG, Basel.

  3. Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shokofeh Banaei

    2016-11-01

    Full Text Available Renal ischemia-reperfusion (IR contributes to the development of acute renal failure (ARF. Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL and erythropoietin (EPO, which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p and EPO (5000 U/kg, i.p were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD, glutathione peroxidase (GPx, and malondialdehyde (MDA levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury.

  4. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  5. Readmission after treatment of Grade 3 and 4 renal injuries at a Level I trauma center: Statewide assessment using the Comprehensive Hospital Abstract Reporting System.

    Science.gov (United States)

    Winters, Brian; Wessells, Hunter; Voelzke, Bryan B

    2016-03-01

    One criticism of the existing renal trauma research is the limited outpatient follow-up after index hospitalization. We assessed readmission rates following treatment for American Association for the Surgery of Trauma (AAST) Grade 3 and 4 renal injury using the Comprehensive Hospital Abstract Reporting System (CHARS). We evaluated all patients with AAST Grade 3 and 4 renal injuries admitted to Harborview Medical Center (HMC) between 1998 and 2010, the only Level 1 trauma center in Washington state. Grade 4 renal injuries were stratified by collecting system laceration (CSL) or segmental vascular injury. Data were abstracted from the CHARS database for readmissions to any Washington state hospital within 6 months of renal injury. Clinical variables, diagnoses, and procedures were queried based on DRG International Classification of Diseases-9th Rev. codes. A total of 477 Grade 3 and 159 Grade 4 renal injuries were initially treated at HMC. On admission, 111 patients required intervention: 75 (16%) of 477 Grade 3 and 36 (23%) of 159 Grade 4 injuries. Within 6 months of index hospitalization, 86 (18%) of 477 Grade 3 and 38 (24%) of 159 Grade 4 patients were readmitted to any Washington state hospital. Eighty percent of Grade 3 injuries and 66% of Grade 4 injuries returned to HMC compared with secondary hospitals (p = 0.08). At readmission, 19 (22%) of 86 Grade 3 and 16 (42%) of 38 Grade 4 injuries had a urologic diagnosis. Subsequent procedural intervention was required on readmission in 6 (7%) of 86 Grade 3 and 5 (13%) of 38 Grade 4 renal injuries (all CSL injuries). A subset of patients treated for Grade 3 and 4 renal trauma will be readmitted for further management. While urologic diagnoses and additional procedures may be low overall, readmission to outside hospitals may preclude accurate determination of renal trauma outcomes. Based on these data, patients with Grade 4 CSL injuries seem to be at the highest risk for readmission and to require a subsequent

  6. OCTREOTIDE FOR MEDULLARY-THYROID CARCINOMA ASSOCIATED DIARRHEA

    NARCIS (Netherlands)

    SMID, WM; DULLAART, RPF

    Medullary thyroid carcinoma associated diarrhoea can be disabling. A 75-yr-old man with metastatic medullary thyroid carcinoma and refractory diarrhoea is described. Subcutaneous administration of the somatostatin analogue, octreotide, 100-mu-g thrice daily, resulted in a sustained improvement in

  7. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  8. Atherosclerotic renal artery stenosis is associated with elevated cell cycle arrest markers related to reduced renal blood flow and postcontrast hypoxia.

    Science.gov (United States)

    Saad, Ahmed; Wang, Wei; Herrmann, Sandra M S; Glockner, James F; Mckusick, Michael A; Misra, Sanjay; Bjarnason, Haraldur; Lerman, Lilach O; Textor, Stephen C

    2016-11-01

    Atherosclerotic renal artery stenosis (ARAS) reduces renal blood flow (RBF), ultimately leading to kidney hypoxia and inflammation. Insulin-like growth factor binding protein-7 (IGFBP-7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) are biomarkers of cell cycle arrest, often increased in ischemic conditions and predictive of acute kidney injury (AKI). This study sought to examine the relationships between renal vein levels of IGFBP-7, TIMP-2, reductions in RBF and postcontrast hypoxia as measured by blood oxygen level-dependent (BOLD) magnetic resonance imaging. Renal vein levels of IGFBP-7 and TIMP-2 were obtained in an ARAS cohort (n= 29) scheduled for renal artery stenting and essential hypertensive (EH) healthy controls (n = 32). Cortical and medullary RBFs were measured by multidetector computed tomography (CT) immediately before renal artery stenting and 3 months later. BOLD imaging was performed before and 3 months after stenting in all patients, and a subgroup (N = 12) underwent repeat BOLD imaging 24 h after CT/stenting to examine postcontrast/procedure levels of hypoxia. Preintervention IGFBP-7 and TIMP-2 levels were elevated in ARAS compared with EH (18.5 ± 2.0 versus 15.7 ± 1.5 and 97.4 ± 23.1 versus 62.7 ± 9.2 ng/mL, respectively; Pblood flow (r = -0.59, P= 0.004). These data demonstrate elevated IGFBP-7 and TIMP-2 levels in ARAS as a function of the degree of reduced RBF. Elevated baseline IGFBP-7 levels were associated with protection against postimaging hypoxia, consistent with 'ischemic preconditioning'. Despite contrast injection and stenting, AKI in these high-risk ARAS subjects with elevated IGFBP-7/TIMP-2 was rare and did not affect long-term kidney function. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  9. MEDULLARY THYROID CARCINOMA

    Directory of Open Access Journals (Sweden)

    V. S. Medvedev

    2013-01-01

    Full Text Available Medullary thyroid carcinoma belongs to orphan diseases affecting a small part of the population. Multicenter trials are required to elaborate a diagnostic algorithm, to define treatment policy, and to predict an outcome.

  10. Dynamic Contrast-Enhanced MR Imaging of Renal Ischemia-Reperfusion Injury

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Jun Hyun; Ahn, Myeong Im; Park, Young Ha; Chung, Soo Kyo [Catholic University, Seoul (Korea, Republic of)

    2010-02-15

    To evaluate the usefulness of magnetic resonance imaging (MRI) in a renal ischemia-reperfusion injury. Twenty-four rabbits were randomly divided into four groups, including a sham operated group (n=3). Renal ischemia was induced for 30 minutes (group 1), 60 minutes (group 2) and 120 minutes (group 3). MR imaging was performed before ischemia as well as one hour, 24 hours, and 72 hours after reperfusion. A 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy was performed before ischemia, as well as 24 hours and 72 hours after reperfusion. The signal-to-noise ratio (SNR) on the T2WI, time-relative signal intensity (%RSI) curve on dynamic enhanced images, and relative left renal uptake (%) on DMSA scan were obtained and compared to the histologic findings. The SNR of the cortex on the T2WI changed significantly over the course of the reperfusion time (p<0.001), but was not significantly different among the ischemia groups. The area under the time-%RSI curve gradually decreased from cortex to inner medulla before ischemia, which was reversed and gradually increased after reperfusion. The areas under the time-%RSI curve of outer and inner medulla were significantly different among the ischemia groups (p=0.04, p=0.008). The relative renal uptake (%) of left kidney decreased significantly over the reperfusion time (p=0.03), and was also significantly different among the ischemia groups (p=0.005). Tubular cell necrosis was observed in 16 rabbits (76.2%). The histologic grades of group 3 were higher than those of group 1 and group 2 (p=0.002). Even in rabbits without tubular cell necrosis, the areas under the time-%RSI curves of the cortex, outer, and inner medulla after a 72 hour reperfusion time were significantly lower than those before ischemia (p=0.007, p=0.005, p=0.004). The results of this study suggest that dynamic enhanced MR imaging could be a useful tool for the evaluation of renal ischemia and reperfusion injury.

  11. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model.

    Science.gov (United States)

    Xu, Xianlin; Fan, Min; He, Xiaozhou; Liu, Jipu; Qin, Jiandi; Ye, Jianan

    2014-03-01

    Ischemia-reperfusion injury (IRI) has been considered as the major cause of acute kidney injury and can result in poor long-term graft function. Functional recovery after IRI is impaired in the elderly. In the present study, we aimed to compare kidney morphology, function, oxidative stress, inflammation, and development of renal fibrosis in young and aged rats after renal IRI. Rat models of warm renal IRI were established by clamping left pedicles for 45 min after right nephrectomy, then the clamp was removed, and kidneys were reperfused for up to 12 wk. Biochemical and histologic renal damage were assessed at 12 wk after reperfusion. The immunohistochemical staining of monocyte macrophage antigen-1 (ED-1) and transforming growth factor beta 1 (TGF-β1) and messenger RNA level of TGF-β1 in the kidney were analyzed. Renal IRI caused significant increases of malondialdehyde and 8-hydroxydeoxyguanosine levels and a decrease of superoxide dismutase activity in young and aged IRI rats; however, these changes were more obvious in the aged rats. IRI resulted in severe inflammation and tubulointerstitial fibrosis with decreased creatinine (Cr) clearance and increased histologic damage in aged rats compared with young rats. Moreover, we measured the ratio of Cr clearance between young and aged IRI rats. It demonstrated that aged IRI rats did have poor Cr clearance compared with the young IRI rats. ED-1 and TGF-β1 expression levels in the kidney were significantly higher in aged rats than in young rats after IRI. Aged rats are more susceptible to IRI-induced renal failure, which may associate with the increased oxidative stress, increased histologic damage, and increased inflammation and tubulointerstitial fibrosis. Targeting oxidative stress and inflammatory response should improve the kidney recovery after IRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Renal Podocyte Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2012-01-01

    Full Text Available Hyperglycemia promotes oxidative stress and hence generation of reactive oxygen species (ROS, which is known to play a crucial role in the pathogenesis of diabetic nephropathy. Metformin, an oral hypoglycemic drug, possesses antioxidant effects. The aim of this paper is to investigate the protective effects of metformin on the injury of renal podocytes in spontaneously diabetic Torii (SDT rats, a new model for nonobese type 2 diabetes. Metformin (350 mg/kg/day was given to SDT rats for 17 weeks. Blood glucose, glycated haemoglobin (HbA1c, and albuminuria were examined. Kidney histopathology, renal 8-hydroxydeoxyguanosine (8-OHdG levels and apoptosis were examined. In 43-week-old SDT rats, severe hyperglycemia was developed, and albuminuria was markedly increased. Diabetes induced significant alterations in renal glomerular structure. In addition, urinary and renal 8-OHdG levels were highly increased, and podocyte loss was shown through application of the TUNEL and synaptopodin staining. However, treatment of SDT rats with metformin restored all these renal changes. Our data suggested that diabetes-induced podocyte loss in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxidative injury.

  13. Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure.

    Science.gov (United States)

    Yaqoob, Noreen; Evans, Andrew; Foster, John R; Lock, Edward A

    2014-09-02

    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500mg/kg/day) or TCE-OH at (100mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for metabolism

  14. Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure

    International Nuclear Information System (INIS)

    Yaqoob, Noreen; Evans, Andrew; Foster, John R.; Lock, Edward A.

    2014-01-01

    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500 mg/kg/day) or TCE-OH at (100 mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for

  15. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Zheng

    Full Text Available BACKGROUND: To explore the characteristics of diffusion tensor imaging (DTI and magnetic resonance (MR imaging in healthy native kidneys. METHODS: Seventy-three patients without chronic kidney disease underwent DTI-MRI with spin echo-echo planar (SE-EPI sequences accompanied by an array spatial sensitivity encoding technique (ASSET. Cortical and medullary mean, axial and radial diffusivity (MD, AD and RD, fractional anisotropy (FA and primary, secondary and tertiary eigenvalues (λ1, λ2, λ3 were analysed in both kidneys and in different genders. RESULTS: Cortical MD, λ2, λ3, and RD values were higher than corresponding medullary values. The cortical FA value was lower than the medullary FA value. Medullary λ1 and RD values in the left kidney were lower than in the right kidney. Medullary λ2, and λ3 values in women were higher than those in men. Medullary FA values in women were lower than those in men. Medullary FA (r = 0.351, P = 0.002 and λ1 (r = 0.277, P = 0.018 positively correlated with eGFR. Medullary FA (r = -0.25, P = 0.033 negatively correlated with age. CONCLUSIONS: Renal water molecular diffusion differences exist in human kidneys and genders. Age and eGFR correlate with medullary FA and primary eigenvalue.

  17. Medullary bone and humeral breaking strength in laying hens

    International Nuclear Information System (INIS)

    Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C.

    1998-01-01

    To test the hypothesis that large amounts of medullary bone in the humeral diaphysis may increase breaking strength, various parameters of bone quality and quantity were examined in two large flocks of hens near end of lay. We conclude that the amount of medullary bone in the humerus of hens during the laying period influences bone strength. This medullary bone may not have any intrinsic strength, but may act by contributing to the fracture resistance of the surrounding cortical bone. Using a quantitative, low dose, radiographic technique, we can predict, from early in the laying period, those birds which will develop large amounts of medullary bone in their humeri by the end of the laying period. The formation of medullary bone in the humeral diaphysis is not at the expense of the surrounding radiographed cortical bone

  18. MR imaging of renal transplant rejection

    International Nuclear Information System (INIS)

    Hanna, S.; Helenon, O.; Legendre, C.; Chichie, J.F.; Di Stefano, D.; Kreis, H.; Moreau, J.F.; Hopital Necker, 75 - Paris

    1991-01-01

    The results of 62 consecutive MR examinations were correlated with the subsequent clinical course and histologic results. Twenty-six cases of rejection showed a marked diminution of cortico-medullary differentiation (CMD). The renal parenchymal vascular pattern and visibility of renal sinus fat were not markedly altered in rejection and there was no difference between normal and rejected allograft shape. The ability of MR imaging to diagnose renal transplant rejection is only based on CMD, which, however, is non-specific. In 2 cases of severe rejection, T2 weighted images showed an abnormal signal intensity of the cortex due to renal infarction. Our preliminary results in 8 patients with Gd-DOTA injection showed 2 cases with necrosis seen as areas with absent contrast enhancement. This technique seems to be promising in the detection of perfusion defects. (orig.)

  19. Mannan-binding lectin is involved in the protection against renal ischemia/ reperfusion injury by dietary restriction

    NARCIS (Netherlands)

    Shushimita; P. van der Pol (Pieter); R.W.F. de Bruin (Ron); J.N.M. IJzermans (Jan); C. van Kooten (Cees); F.J.M.F. Dor (Frank)

    2015-01-01

    textabstractPreoperative fasting and dietary restriction offer robust protection against renal ischemia/ reperfusion injury (I/RI) in mice.We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on

  20. Molecular Mechanisms of Curcumin Renoprotection in Experimental Acute Renal Injury

    Directory of Open Access Journals (Sweden)

    Youling Fan

    2017-12-01

    Full Text Available As a highly perfused organ, the kidney is especially sensitive to ischemia and reperfusion. Ischemia-reperfusion (IR-induced acute kidney injury (AKI has a high incidence during the perioperative period in the clinic and is an important link in ischemic acute renal failure (IARF. Therefore, IR-induced AKI has important clinical significance and it is necessary to explore to develop drugs to prevent and alleviate IR-induced AKI. Curcumin [diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxiphenyl-1,6-heptadiene-3,5-dione] is a polyphenol compound derived from Curcuma longa (turmeric and was shown to have a renoprotective effect on ischemia-reperfusion injury (IRI in a previous study. However, the specific mechanisms underlying the protective role of curcumin in IR-induced AKI are not completely understood. APPL1 is a protein coding gene that has been shown to be involved in the crosstalk between the adiponectin-signaling and insulin-signaling pathways. In the study, to investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin treatment significantly increased the expression of APPL1 and inhibited the activation of Akt after IR treatment in the kidney. Our in vitro results showed that apoptosis of renal tubular epithelial cells was exacerbated with hypoxia-reoxygenation (HR treatment compared to sham control cells. Curcumin significantly decreased the rate of apoptosis in renal tubular epithelial cells with HR treatment. Moreover, knockdown of APPL1 activated Akt and subsequently aggravated apoptosis in HR-treated renal tubular epithelial cells. Conversely, inhibition of Akt directly reversed the effects of APPL1 knockdown. In summary, our study demonstrated that curcumin mediated upregulation of APPL1 protects against ischemia reperfusion induced AKI by inhibiting Akt phosphorylation.

  1. Clinical review: Optimal dose of continuous renal replacement therapy in acute kidney injury.

    Science.gov (United States)

    Prowle, John R; Schneider, Antoine; Bellomo, Rinaldo

    2011-01-01

    Continuous renal replacement therapy (CRRT) is the preferred treatment for acute kidney injury in intensive care units (ICUs) throughout much of the world. Despite the widespread use of CRRT, controversy and center-specific practice variation in the clinical application of CRRT continue. In particular, whereas two single-center studies have suggested survival benefit from delivery of higher-intensity CRRT to patients with acute kidney injury in the ICU, other studies have been inconsistent in their results. Now, however, two large multi-center randomized controlled trials - the Veterans Affairs/National Institutes of Health Acute Renal Failure Trial Network (ATN) study and the Randomized Evaluation of Normal versus Augmented Level (RENAL) Replacement Therapy Study - have provided level 1 evidence that effluent flow rates above 25 mL/kg per hour do not improve outcomes in patients in the ICU. In this review, we discuss the concept of dose of CRRT, its relationship with clinical outcomes, and what target optimal dose of CRRT should be pursued in light of the high-quality evidence now available.

  2. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  3. Constitutive Activation of Smoothened in the Renal Collecting Ducts Leads to Renal Hypoplasia, Hydronephrosis, and Hydroureter.

    Science.gov (United States)

    Gupta, Deepak Prasad; Hwang, Jae-Won; Cho, Eui-Sic; Kim, Won; Song, Chang Ho; Chai, Ok Hee

    2017-01-01

    Sonic Hedgehog (Shh) signaling plays a major role in and is essential for regulation, patterning, and proliferation during renal development. Smoothened (Smo) plays a pivot role in transducing the Shh-glioma-associated oncogene Kruppel family member. However, the cellular and molecular mechanism underlying the role of sustained Smo activation in postnatal kidney development is still not clearly understood. Using a conditional knockin mouse model that expresses a constitutively activated form of Smo (SmoM2) upon Homeobox-B7-mediated recombination (Hoxb7-Cre), the effects of Shh signaling were determined in postnatal kidney development. SmoM2;Hoxb7-Cre mutant mice showed growth retardation with a reduction of body weight. Constitutive activation of Smo in the renal collecting ducts caused renal hypoplasia, hydronephrosis, and hydroureter. The parenchymal area and glomerular numbers were reduced, but the glomerular density was increased in SmoM2;Hoxb7-Cre mutant mice. The expression of Patched 1, the receptor of Shh and a downstream target gene of the Shh signaling pathway, was highly restricted and it was upregulated in the inner medullary collecting ducts of the kidney. The proliferative cells in the mesenchyme and collecting ducts were decreased in SmoM2;Hoxb7-Cre mutant mice. This study showed for the first time that sustained Smo inhibits postnatal kidney development by suppressing the proliferation of the mesenchyme and medullary collecting ducts in mice. © 2017 S. Karger AG, Basel.

  4. Risk factors for renal injury in children with a solitary functioning kidney.

    NARCIS (Netherlands)

    Westland, R.; Kurvers, R.A.; Wijk, J.A. van; Schreuder, M.F.

    2013-01-01

    OBJECTIVE: The hyperfiltration hypothesis implies that children with a solitary functioning kidney are at risk to develop hypertension, proteinuria, and chronic kidney disease. We sought to determine the presenting age of renal injury and identify risk factors for children with a solitary

  5. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Renal Ischaemia-reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Zhenyu Qiu

    2014-08-01

    Full Text Available Objective This study aims to observe the function of umbilical cord-mesenchymal stem cells (UC-MSCs labelled with enhanced green fluorescent protein (eGFP in the repair of renal ischaemia-reperfusion (I/R injury, to determine the effects on inflammatory cascade in an established rat model and to explore possible pathogenesis. Materials and Methods Sixty rats were randomly divided into three groups: the sham-operated, I/R and UC-MSC treatment groups. All rats underwent right nephrectomy. Ischaemia was induced in the left kidney by occlusion of the renal artery and vein for 1hour, followed by reperfusion for 24 hours or 48 hours. Kidney samples were collected to observe morphological changes. Immunohistochemistry was performed to assess the expression of intercellular adhesion molecule 1 (ICAM-1 in the renal tissue sample, as well as the number of infiltrating polymorphonuclear neutrophils (PMNLs and UC-MSCs with positive eGFP. Results Renal histopathological damages and the expression of ICAM-1 and PMNL increased significantly in the I/R group compared with those in the sham-operated group, whereas the damages were less conspicuous in the UC-MSC treatment group. Conclusions Renal ICAM-1, which mediated PMNL infiltration and contributed to renal damage, was significantly up-regulated in the I/R group. UC-MSCs were identified to inhibit these pathological processes and protect the kidney from I/R injury.

  6. Medullary Thyroid Carcinoma Program | Center for Cancer Research

    Science.gov (United States)

    Medullary Thyroid Carcinoma Program Multiple endocrine neoplasia (MEN) types 2A and 2B are rare genetic diseases, which lead to the development of medullary thyroid cancer, usually in childhood. Surgery is the only standard treatment.

  7. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    Science.gov (United States)

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  8. Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm?

    Science.gov (United States)

    Prowle, John; Bagshaw, Sean M; Bellomo, Rinaldo

    2012-12-01

    Global renal blood flow is considered pivotal to renal function. Decreased global renal blood flow (decreased perfusion) is further considered the major mechanism of reduced glomerular filtration rate responsible for the development of acute kidney injury (AKI) in critically ill patients. Additionally, urinary biochemical tests are widely taught to allow the differential diagnosis of prerenal (functional) AKI and intrinsic [structural AKI (so-called acute tubular necrosis)]. In this review we will examine recent evidence regarding these two key clinical paradigms. Recent animal experiments and clinical studies in humans using cine-phase contrast magnetic resonance technology are not consistent with the decreased perfusion paradigm. They suggest instead that changes in the intra-renal circulation including modification in efferent arteriolar function and intra-renal shunting are much more likely to be responsible for AKI, especially in sepsis. Similarly, recent human studies indicate the urinary biochemistry has limited diagnostic or prognostic ability and is dissociated form biomarker and microscopic evidence of tubular injury. Intra-renal microcirculatory changes are likely more important than changes in global blood flow in the development of AKI. Urinary biochemistry is not a clinically useful diagnostic or prognostic tool in critically ill patients at risk of or with AKI.

  9. Attenuated renal and intestinal injury after use of a mini-cardiopulmonary bypass system

    NARCIS (Netherlands)

    Huybregts, Rien A. J. M.; Morariu, Aurora M.; Rakhorst, Gerhard; Spiegelenberg, Stefan R.; Romijn, Hans W. A.; de Vroege, Roel; van Oeveren, Willem

    Background. Transient, subclinical myocardial, renal, intestinal, and hepatic tissue injury and impaired homeostasis is detectable even in low-risk patients undergoing conventional cardiopulmonary bypass (CPB). Small extracorporeal closed circuits with low priming volumes and optimized perfusion

  10. Hypomagnesemia is a risk factor for nonrecovery of renal function and mortality in AIDS patients with acute kidney injury

    Directory of Open Access Journals (Sweden)

    M.S. Biagioni Santos

    2010-03-01

    Full Text Available The objective of the present study was to determine the prevalence of electrolyte disturbances in AIDS patients developing acute kidney injury in the hospital setting, as well as to determine whether such disturbances constitute a risk factor for nephrotoxic and ischemic injury. A prospective, observational cohort study was carried out. Hospitalized AIDS patients were evaluated for age; gender; coinfection with hepatitis; diabetes mellitus; hypertension; time since HIV seroconversion; CD4 count; HIV viral load; proteinuria; serum levels of creatinine, urea, sodium, potassium and magnesium; antiretroviral use; nephrotoxic drug use; sepsis; intensive care unit (ICU admission, and the need for dialysis. Each of these characteristics was correlated with the development of acute kidney injury, with recovery of renal function and with survival. Fifty-four patients developed acute kidney injury: 72% were males, 59% had been HIV-infected for >5 years, 72% had CD4 counts <200 cells/mm³, 87% developed electrolyte disturbances, 33% recovered renal function, and 56% survived. ICU admission, dialysis, sepsis and hypomagnesemia were all significantly associated with nonrecovery of renal function and with mortality. Nonrecovery of renal function was significantly associated with hypomagnesemia, as was mortality in the multivariate analysis. The risks for nonrecovery of renal function and for death were 6.94 and 6.92 times greater, respectively, for patients with hypomagnesemia. In hospitalized AIDS patients, hypomagnesemia is a risk factor for nonrecovery of renal function and for in-hospital mortality. To determine whether hypomagnesemia is a determinant or simply a marker of critical illness, further studies involving magnesium supplementation in AIDS patients are warranted.

  11. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    International Nuclear Information System (INIS)

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden

  12. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.

    Science.gov (United States)

    Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C

    2016-12-01

    Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sorting the Alphabet Soup of Renal Pathology: A Review.

    Science.gov (United States)

    Curran-Melendez, Sheilah M; Hartman, Matthew S; Heller, Matthew T; Okechukwu, Nancy

    2016-01-28

    Diseases of the kidney often have their names shortened, creating an arcane set of acronyms which can be confusing to both radiologists and clinicians. This review of renal pathology aims to explain some of the most commonly used acronyms within the field. For each entity, a summary of the clinical features, pathophysiology, and radiological findings is included to aid in the understanding and differentiation of these entities. Discussed topics include acute cortical necrosis, autosomal dominant polycystic kidney disease, angiomyolipoma, autosomal recessive polycystic kidney disease, acute tubular necrosis, localized cystic renal disease, multicystic dysplastic kidney, multilocular cystic nephroma, multilocular cystic renal cell carcinoma, medullary sponge kidney, paroxysmal nocturnal hemoglobinuria, renal papillary necrosis, transitional cell carcinoma, and xanthogranulomatous pyelonephritis. Copyright © 2016 Mosby, Inc. All rights reserved.

  14. Renal oxygenation and hemodynamics in acute kidney injury and chronic kidney disease

    Science.gov (United States)

    Singh, Prabhleen; Ricksten, Sven-Erik; Bragadottir, Gudrun; Redfors, Bengt; Nordquist, Lina

    2013-01-01

    Summary 1. Acute kidney injury (AKI) puts a major burden on health systems that may arise from multiple initiating insults, including ischemia-reperfusion injury, cardiovascular surgery, radio-contrast administration as well as sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage kidney disease (ESRD). 2. Although the mechanisms for development of AKI and progression of CKD remain poorly understood, initial impairment of oxygen balance is likely to constitute a common pathway, causing renal tissue hypoxia and ATP starvation that will in turn induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop-diuretics, inducible nitric oxide synthase inhibitors and atrial natriuretic peptide, substances that target kidney oxygen consumption and regulators of renal oxygenation such as nitric oxide and heme oxygenase-1. PMID:23360244

  15. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p OSI were found to be significantly increased in the control group compared to others groups (p model.

  16. Anemia and Long-Term Renal Prognosis in Patients with Post-Renal Acute Kidney Injury of Nonmalignant Cause.

    Science.gov (United States)

    Sasaki, Sho; Kawarazaki, Hiroo; Hasegawa, Takeshi; Shima, Hideaki; Naganuma, Toshihide; Shibagaki, Yugo

    2017-01-01

    The renal prognosis of post-renal acute kidney injury (PoR-AKI) has not been verified so far. The objective of this study was to assess the association of baseline anemia with long-term renal prognosis in patients with PoR-AKI. We performed a multicenter retrospective cohort study. Consecutive adult patients from December 2006 to February 2010, who met the requirements as mentioned in the definition of PoR-AKI, were included. Patients without data on baseline renal function and at 6 months after PoR-AKI were excluded. We set baseline hemoglobin (Hb) level (g/dl) as the main exposure to be tested. The main outcome measure was long-term renal prognosis as determined by the difference between proximate estimated glomerular filtration rate (eGFR) at 6 months after diagnosis of PoR-AKI and baseline eGFR prior to the occurrence of the present PoR-AKI (ΔeGFR after 6 months) using the general linear model. We included 136 patients with PoR-AKI. The most frequent cause of PoR-AKI was malignancy, accounting for 39.0% (n = 53) of cases. Multivariate analysis adjusted for possible confounders showed that ΔeGFR after 6 months significantly changed by -4.28 ml/min/1.73 m2 for every 1 g/dl lower Hb at diagnosis (95% CI 1.86-6.69, p < 0.01). An additional multivariate analysis that was stratified by the presence or absence of malignancy as the cause of PoR-AKI yielded the same significant result only in the stratum of the nonmalignant cause of PoR-AKI. Patients with a nonmalignant cause of PoR-AKI who have baseline anemia may have poor long-term renal prognosis. In these cases, close observation of renal function after renal recovery may be required. © 2016 S. Karger AG, Basel.

  17. Medicare Program; End-Stage Renal Disease Prospective Payment System, Payment for Renal Dialysis Services Furnished to Individuals With Acute Kidney Injury, and End-Stage Renal Disease Quality Incentive Program. Final rule.

    Science.gov (United States)

    2017-11-01

    This rule updates and makes revisions to the end-stage renal disease (ESRD) prospective payment system (PPS) for calendar year (CY) 2018. It also updates the payment rate for renal dialysis services furnished by an ESRD facility to individuals with acute kidney injury (AKI). This rule also sets forth requirements for the ESRD Quality Incentive Program (QIP), including for payment years (PYs) 2019 through 2021.

  18. Angiotensin-(1-7 relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis

    Directory of Open Access Journals (Sweden)

    W. Lu

    Full Text Available We aimed to study the renal injury and hypertension induced by chronic intermittent hypoxia (CIH and the protective effects mediated by angiotensin 1-7 [Ang(1-7]. We randomly assigned 32 male Sprague-Dawley rats (body weight 180-200 g to normoxia control, CIH, Ang(1-7-treated normoxia, and Ang(1-7-treated CIH groups. Systolic blood pressure (SBP was monitored at the start and end of each week. Renal sympathetic nerve activity (RSNA was recorded. CTGF and TGF-β were detected by immunohistochemistry and western blotting. Tissue parameters of oxidative stress were also determined. In addition, renal levels of interleukin-6, tumor necrosis factor-α, nitrotyrosine, and hypoxia-inducible factor-1α were determined by immunohistochemistry, immunoblotting, and ELISA. TUNEL assay results and cleaved caspase 3 and 12 were also determined. Ang(1-7 induced a reduction in SBP together with a restoration of RSNA in the rat model of CIH. Ang(1-7 treatment also suppressed the production of reactive oxygen species, reduced renal tissue inflammation, ameliorated mesangial expansion, and decreased renal fibrosis. Thus, Ang(1-7 treatment exerted renoprotective effects on CIH-induced renal injury and was associated with a reduction of oxidative stress, inflammation and fibrosis. Ang(1-7 might therefore represent a promising therapy for obstructive sleep apnea-related hypertension and renal injury.

  19. Renal Artery Embolization of Perirenal Hematoma in Hemorrhagic Fever with Renal Syndrome: A Case Report

    International Nuclear Information System (INIS)

    Choi, Hee Seok; Lee, Yong Seok; Lim, Ji Hyon; Kim, Kyung Soo; Yoon, Yup; Hwang, Jae Cheol

    2007-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an acute viral disease characterized by fever, hemorrhage and renal failure. Among the various hemorrhagic complications of HFRS, spontaneous rupture of the kidney and perirenal hematoma are very rare findings. We report here on a case of HFRS complicated by massive perirenal hematoma, and this was treated with transcatheter arterial embolization. Hemorrhagic fever with renal syndrome (HFRS) is an acute infectious disease caused by hantavirus. HFRS is clinically characterized by fever, renal failure and hemorrhage in organs such as lung, kidney, spleen and the pituitary gland. Renal medullary hemorrhage is a well-known complication in the kidney, but spontaneous rupture of the kidney and perirenal hematoma in HFRS is rare, and patients showing continuous bleeding and massive perirenal hematoma have often been surgically treated. We report here on a case of HFRS complicated by massive perirenal hematoma, and the patient was treated with transcatheter arterial embolization. In summary, spontaneous rupture of the kidney and perirenal hematoma is a rare complication of HFRS. We report here on a case of HFRS that caused massive perirenal hematoma, and this was treated with superselective renal artery embolization

  20. Renal Artery Embolization of Perirenal Hematoma in Hemorrhagic Fever with Renal Syndrome: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seok; Lee, Yong Seok; Lim, Ji Hyon; Kim, Kyung Soo; Yoon, Yup [Dongguk University College of Medicine, Goyang (Korea, Republic of); Hwang, Jae Cheol [Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)

    2007-08-15

    Hemorrhagic fever with renal syndrome (HFRS) is an acute viral disease characterized by fever, hemorrhage and renal failure. Among the various hemorrhagic complications of HFRS, spontaneous rupture of the kidney and perirenal hematoma are very rare findings. We report here on a case of HFRS complicated by massive perirenal hematoma, and this was treated with transcatheter arterial embolization. Hemorrhagic fever with renal syndrome (HFRS) is an acute infectious disease caused by hantavirus. HFRS is clinically characterized by fever, renal failure and hemorrhage in organs such as lung, kidney, spleen and the pituitary gland. Renal medullary hemorrhage is a well-known complication in the kidney, but spontaneous rupture of the kidney and perirenal hematoma in HFRS is rare, and patients showing continuous bleeding and massive perirenal hematoma have often been surgically treated. We report here on a case of HFRS complicated by massive perirenal hematoma, and the patient was treated with transcatheter arterial embolization. In summary, spontaneous rupture of the kidney and perirenal hematoma is a rare complication of HFRS. We report here on a case of HFRS that caused massive perirenal hematoma, and this was treated with superselective renal artery embolization.

  1. The effect of prolonged of warm ischaemic injury on renal function in an experimental ex vivo normothermic perfusion system.

    Science.gov (United States)

    Hosgood, Sarah A; Shah, K; Patel, M; Nicholson, M L

    2015-06-30

    Donation after circulatory death (DCD) kidney transplants inevitably sustain a degree of warm ischaemic injury, which is manifested clinically as delayed graft function. The aim of this study was to define the effects of prolonged periods of warm ischaemic injury on renal function in a normothermic haemoperfused kidney model. Porcine kidneys were subjected to 15, 60, 90 (n = 6 per group) and 120 min (n = 4) of in situ warm ischaemia (WI) and then retrieved, flushed with cold preservation fluid and stored in ice for 2 h. Kidneys then underwent 3 h of normothermic reperfusion with a whole blood-based perfusate using an ex vivo circuit developed from clinical grade cardiopulmonary bypass technology. Creatinine clearance, urine output and fractional excretion of sodium deteriorated sequentially with increasing warm time. Renal function was severely compromised after 90 or 120 min of WI but haemodynamic, metabolic and histological parameters demonstrated the viability of kidneys subjected to prolonged warm ischaemia. Isolated kidney perfusion using a warm, oxygenated, red cell-based perfusate allows an accurate ex vivo assessment of the potential for recovery from warm ischaemic injury. Prolonged renal warm ischaemic injury caused a severe decrement in renal function but was not associated with tissue necrosis.

  2. Quantified kidney echogenicity in mice with renal ischemia reperfusion injury: evaluation as a noninvasive biomarker of acute kidney injury.

    Science.gov (United States)

    Murata, Shinya; Sugiyama, Noriyuki; Maemura, Kentaro; Otsuki, Yoshinori

    2017-09-01

    The purpose is to evaluate quantified kidney echogenicity as a biomarker for the early diagnosis of acute kidney injury (AKI) and predicting progression to chronic kidney disease (CKD) in a mouse model of ischemia-reperfusion injury (IRI). Two separate protocols of murine models of IRI were used: (1) 10, 30, and 40 min of bilateral ischemia duration and (2) 45 and 60 min of unilateral ischemia duration. Renal echogenicity was measured with ultrasound and compared with serum creatinine or urine neutrophil gelatinase-associated lipocalin (NGAL) at various timepoints after IRI. In mice subjected to 10, 30, and 40 min of bilateral ischemia, renal echogenicity increased about 2 h after IRI for all ischemia times, earlier than serum creatinine or urine NGAL. In those subjected to 45 and 60 min of unilateral ischemia, 60 min of unilateral ischemia, which represents atrophic changes 28 days after IRI, resulted in a sustained high level of echogenicity and was significantly different 24 h after IRI, while 45 min of unilateral ischemia resulted in trivial levels of histological damage 28 days after IRI. Renal echogenicity might have the potential to be a biomarker for the early diagnosis of AKI and the prognosis of CKD.

  3. H+, Water and Urea Transport in the Inner Medullary Collecting Duct and Their Role in the Prevention and Pathogenesis of Renal Stone Disease

    Science.gov (United States)

    Wall, Susan M.; Klein, Janet D.

    2008-09-01

    The inner medullary collecting duct (IMCD) is the final site within the kidney for the reabsorption of urea, water and electrolytes and for the secretion of H+ before the luminal fluid becomes the final urine. Transporters expressed in the IMCD contribute to the generation of the large ion gradients that exist between the interstitium and the collecting duct lumen. Thus, the luminal fluid within the human IMCD can reach an osmolality of 1200 mOsm/kg H2O and a pH of 4. This ability of the human nephron to concentrate and acidify the urine might predispose to stone formation. However, under treatment conditions that predispose to stone formation, such as during hypercalciuria, the kidney mitigates stone formation by reducing solute concentration by reducing H2O reabsorption. Moreover, the kidney attenuates stone formation by tightly controlling acid-base balance, which prevents the bone loss, hypocitraturia and hypercalciuria observed during metabolic acidosis by augmenting net H+ excretion by tightly regulating H+ transporter function and through luminal buffering, particularly with NH3. This article will review the ion transporters present in the mammalian IMCD and their role in the prevention and in the pathogenesis of renal stone formation.

  4. Renal Support for Acute Kidney Injury in the Developing World

    Directory of Open Access Journals (Sweden)

    Rajeev A. Annigeri

    2017-07-01

    Full Text Available There is wide variation in the management of acute kidney injury (AKI and the practice of renal replacement therapy (RRT around the world. Clinicians in developing countries face additional challenges due to limited resources, reduced availability of trained staff and equipment, cultural and socioeconomic aspects, and administrative and governmental barriers. In this article, we report the consensus recommendations from the 18th Acute Dialysis Quality Initiative conference in Hyderabad, India. We provide the minimal requirements for provision of acute RRT in developing countries, including patient selection, choice of RRT modality and monitoring, transition, and termination of acute RRT. We also discuss areas of uncertainty and propose themes for future research. These recommendations can serve as a foundation for clinicians to implement renal support for AKI in low resource settings.

  5. Dynamic computed tomography (CT) in the rat kidney and application to acute renal failure models

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Saito, Tadashi; Ishii, Hirofumi; Bansho, Junichi; Koyama, Yukinori; Tobita, Akira

    1995-01-01

    Renal dynamic CT scanning is suitable for determining the excretion of contrast medium in the cortex and medulla of the kidney, which is valuable for understanding the pathogenesis of disease processes in various conditions. This form of scanning would be convenient for use, if a method of application to the rat kidney were available. Therefore, we developed a method of applying renal dynamic CT to rats and evaluated the cortical and medullary curves, e.g., the corticomedullary junction time which is correlated to creatinine clearance, in various rat models of acute renal failure. The rat was placed in a 10deg oblique position and a bilateral hilar slice was obtained before and 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160 and 180 sec after administering 0.5 ml of contrast medium using Somatom DR. The width of the slice was 4 mm and the scan time was 3 sec. The corticomedullary junction time in normal rats was 23.0±10.5 sec, the peak value of the cortical curve was 286.3±76.7 Hounsfield Unit (HU) and the peak value of the medullary curve was 390.1±66.2 HU. Corticomedullary junction time after exposure of the kidney was prolonged compared to that of the unexposed kidney. In rats with acute renal failure, the excretion pattern of contrast medium was similar in both the glycerol- and HgCl2-induced acute renal failure models. The peak values of the cortical curve were maintained three hours after a clamp was placed at the hilar region of the kidney for one hour, and the peak values of the medullary curve were maintained during the administration of 10μg/kg/min of angiotensin II. Dynamic CT curves in the acute renal failure models examined were slightly different from those in human acute renal failure. These results suggest that rats do not provide an ideal model for human acute renal failure. However, the application of dynamic CT to the rat kidney models was valuable for estimating the pathogenesis of various human kidney diseases. (author)

  6. Knockout of the interleukin-36 receptor protects against renal ischemia-reperfusion injury by reduction of proinflammatory cytokines.

    Science.gov (United States)

    Nishikawa, Hirofumi; Taniguchi, Yoshinori; Matsumoto, Tatsuki; Arima, Naoki; Masaki, Mamoru; Shimamura, Yoshiko; Inoue, Kosuke; Horino, Taro; Fujimoto, Shimpei; Ohko, Kentaro; Komatsu, Toshihiro; Udaka, Keiko; Sano, Shigetoshi; Terada, Yoshio

    2018-03-01

    IL-36, a newly named member of the IL-1 cytokine family, includes 3 isoforms, IL-36α, IL-36β, and IL-36γ, all of which bind to a heterodimer containing the IL-36 receptor (IL-36R). Little is known about the role of the IL-36 axis in acute kidney injury (AKI) pathogenesis. Therefore, we evaluated IL-36 function in the bilateral renal ischemia-reperfusion injury model of AKI using IL-36R knockout and wild-type mice. IL-36R was found to be expressed in the kidney, mainly in proximal tubules. In IL-36R knockout mice, plasma creatinine, blood urea nitrogen, and IL-6 levels after ischemia-reperfusion injury were significantly lower than those in wild-type mice. Immunohistological analysis revealed mild tubular injury. IL-36α/β/γ levels were increased after ischemia-reperfusion injury, and IL-36α was expressed in lymphocytes and proximal tubular cells, but post-ischemia-reperfusion injury mRNA levels of IL-6 and TNF-α were low in IL-36R knockout mice. In primary cultures of renal tubular epithelial cells, IL-36α treatment upregulated NF-κB activity and Erk phosphorylation. Notably, in patients with AKI, urine IL-36α levels were increased, and IL-36α staining in renal biopsy samples was enhanced. Thus, IL-36α/IL-36R blockage could serve as a potential therapeutic target in AKI. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. An analysis of 30 patients with renal trauma

    International Nuclear Information System (INIS)

    Sakamoto, Eiji; Kuriki, Osamu; Takashi, Munehisa

    1989-01-01

    Thirty patients with renal trauma were studied by computerized tomography (CT) and angiography. Causes of injuries were traffic accidents in 19 patients (63%), falls in 5 (17%), sports in 2 (7%), and others in 4 (13%). Twenty-nine patients (97%) had hematuria, which was unrelated to the severity of injury. The remaining 3 patients (10%) had shock caused by severe renal injury. Of the 30 patients, 18 (60%) had renal contusions, 7 (23%) had minior laceration, 4 (13%) had major laceration and one had vascular injury. One patient had penetrating trauma and the other 29 had blunt trauma. Two patients (7%) had pre-existing renal anomalies. Sixteen patients (53%) had associated injuries that had no relation to the severity of the renal injury. In detecting subcapsular and perirenal hematoma, CT was more sentitive than excretory pyelography. Findings of renal angiography provided additional anatomical information in both deciding immediate surgical treatment and selecting operative methods for salvage of the kidney. Two patients with major lacerations and one with vascular injury underwent nephrectomy. The remaining 27 patients were managed successfully with conservative therapy. No late complications were seen, except in one case of pseudocyst formation. The persistence of microhematuria after injury was related to the severity of renal injury: a mean of 4.1 days for renal contrusions, 13 days for minor lacerations and 42 days for major lacerations. In conclusion, CT was useful for discriminating the severity of renal injury. When CT suggests major lacerations and vascular injuries, renal angiography should be performed for deciding immediate surgical intervention. (Namekawa, K)

  8. Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.

    Science.gov (United States)

    Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael

    2017-04-01

    To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Protective effect of calcium dobesilate combined with benazepril therapy on renal injury in patients with early diabetic nephropathy and the possible molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-06-01

    Full Text Available Objective: To explore the protective effect of calcium dobesilate combined with benazepril therapy on renal injury in patients with early diabetic nephropathy and the possible molecular mechanisms. Methods: A total of 50 patients with early diabetic nephropathy treated in our hospital between May 2012 and January 2016 were collected, and according to the random number table, the patients were divided into observation group (n=25 and control group (n=25. On the basis of conventional treatment, control group of patients received benazepril therapy, observation group of patients received calcium dobesilate combined with benazepril therapy, and the treatment lasted for 3 months. Before and after treatment, automatic biochemical analyzer was used to detect the levels of renal injury indexes in peripheral blood, RIA method was used to detect the levels of renal injury indexes in urine, ELISA method was used to detect the levels of renal fibrosis indexes and Western-blot method was used to detect the protein expression of TGF-β1/BMP-7 and Smad signaling pathway molecules in renal tissue. Results: Before treatment, differences in renal injury index levels, renal fibrosis index levels and signaling pathway molecule protein expression were not statistically significant between two groups of patients. After treatment, BUN, SCr and β-TP levels in the peripheral blood as well as KIM-1 level in urine of observation group were lower than those of control group; renal fibrosis indexes TGF-β1, CTGF, TIMP-1, LN and HA levels in serum of observation group were lower than those of control group; TGF-β1 and Smad2/3 protein expression in renal tissue of observation group were lower than those of control group while Smad7 and BMP-7 protein expression were higher than those of control group. Conclusion: Calcium dobesilate combined with benazepril therapy can reduce the renal injury and inhibit the fibrosis process in patients with early diabetic nephropathy, and it

  10. Renal Replacement Therapy Modality in the ICU and Renal Recovery at Hospital Discharge.

    Science.gov (United States)

    Bonnassieux, Martin; Duclos, Antoine; Schneider, Antoine G; Schmidt, Aurélie; Bénard, Stève; Cancalon, Charlotte; Joannes-Boyau, Olivier; Ichai, Carole; Constantin, Jean-Michel; Lefrant, Jean-Yves; Kellum, John A; Rimmelé, Thomas

    2018-02-01

    Acute kidney injury requiring renal replacement therapy is a major concern in ICUs. Initial renal replacement therapy modality, continuous renal replacement therapy or intermittent hemodialysis, may impact renal recovery. The aim of this study was to assess the influence of initial renal replacement therapy modality on renal recovery at hospital discharge. Retrospective cohort study of all ICU stays from January 1, 2010, to December 31, 2013, with a "renal replacement therapy for acute kidney injury" code using the French hospital discharge database. Two hundred ninety-one ICUs in France. A total of 1,031,120 stays: 58,635 with renal replacement therapy for acute kidney injury and 25,750 included in the main analysis. None. PPatients alive at hospital discharge were grouped according to initial modality (continuous renal replacement therapy or intermittent hemodialysis) and included in the main analysis to identify predictors of renal recovery. Renal recovery was defined as greater than 3 days without renal replacement therapy before hospital discharge. The main analysis was a hierarchical logistic regression analysis including patient demographics, comorbidities, and severity variables, as well as center characteristics. Three sensitivity analyses were performed. Overall mortality was 56.1%, and overall renal recovery was 86.2%. Intermittent hemodialysis was associated with a lower likelihood of recovery at hospital discharge; odds ratio, 0.910 (95% CI, 0.834-0.992) p value equals to 0.0327. Results were consistent across all sensitivity analyses with odds/hazards ratios ranging from 0.883 to 0.958. In this large retrospective study, intermittent hemodialysis as an initial modality was associated with lower renal recovery at hospital discharge among patients with acute kidney injury, although the difference seems somewhat clinically limited.

  11. Total glucosides of paeony attenuate renal tubulointerstitial injury in STZ-induced diabetic rats: role of Toll-like receptor 2.

    Science.gov (United States)

    Zhang, Wei; Zhao, Li; Su, Shuang-Quan; Xu, Xing-Xin; Wu, Yong-Gui

    2014-01-01

    Accumulating evidence suggested that macrophages induce tubulointerstitial injury. Total glucosides of paeony (TGP), extracted from Paeonia lactiflora, has presented anti-inflammatory activities in diabetic kidney disease. This research will investigate the protective effect of TGP on renal tubulointerstitium and its mechanism in streptozotocin-induced diabetic rats. TGP was administered orally at a dose of 50, 100, and 200 mg·kg(-1)·d(-1) for 8 weeks. Tubulointerstitial injury was quantified, followed by immunohistochemistry analysis of renal α-smooth muscle actin (α-SMA), E-cadherin (E-cad) expression, nuclear factor kappa B (NF-κB)-p-p-65(+), Toll-like receptor (TLR)2(+), and ED-1(+) cell infiltration in renal tubulointerstitium. Renal TLR2(+) macrophages were detected by double immunohistochemical staining. Western blotting was used to detect the TLR2 expression. Histologically, there was marked accumulation of TLR2(+), NF-κB-p-p-65(+), ED-1(+) cells, and ED-1(+)TLR2(+) cells (macrophages) in the diabetic kidney and TGP treatment could alleviate it. Accompanying with that, the tubulointerstitial injury was ameliorated, α-SMA expression was lower, and E-cad expression was higher compared with the diabetic rats. Western blot analysis showed that the expression of TLR2 protein was significantly increased in the kidney of the diabetic rats, whereas TGP treatment reduced it. Our study showed that TGP could prevent renal tubulointerstitium injury in diabetic rats through a mechanism that may be at least partly correlated with suppression of increased macrophage infiltration and the expression of TLR2.

  12. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  13. Does complete renal denervation translate into superior clinical outcomes? Lessons learned from denervation of accessory renal arteries

    OpenAIRE

    Mendelsohn, Farrell O.

    2014-01-01

    Pre-clinical studies of renal denervation would suggest that the extent of renal nerve injury correlates with outcomes. The “completeness” of renal nerve injury following renal denervation correlates with treatment-based variables such as the depth of ablation, the number of ablations along the length of the artery, and the number of renal arteries successfully ablated. Renal denervation techniques targeting only main renal arteries may lead to suboptimal results in patients with accessory re...

  14. MR evaluation of renal function. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Beomonte Zobel, B; Giammarile, F; Matarese, A; Gallucci, M; Mascicchi, C; Passariello, R; Di Renzi, P; Splendiani, G; Casciani, C U

    1988-01-01

    The amount of functioning renal parenchyma can be estimated by MRI by considering the ratio between the mean intensities of cortical and medullar zones of the kidney. Fifty-six patients and 5 healthy volunteers were studied by MRI in our department. Scanning was performed with a superconductive magnet system operating at 0.5 Tesla. Pulse sequence was Spin-Echo with TR 300/TE 30 ms. The cortimedullary ratio (CMR) and differentiation (CMD) were standardized and related with creatine blood levels. CMR data ranged from 1.05 to 3.00, while CMD data ranged from 0.04 to 0.50. High values (good cortico-medullary contrast) were observed in subjects with normal renal function. Patients with renal diseases had low CMR and CMD, proportionally to the degree of renal failure, as proved by laboratory findings. Our preliminary study seems to demonstrate that MRI is an useful technique in the follow-up of patients with chronic renal disease. 19 refs.

  15. Análise comparativa da avaliação funcional realizada na lesão medular em animais Comparative analysis of functional evaluation performed in medullary injury in animals

    Directory of Open Access Journals (Sweden)

    Alessandra Iague Molina

    2004-03-01

    Full Text Available A avaliação comportamental após, a contusão da medula espinhal, enfocou por um tempo a locomoção em campo aberto usando uma escala de classificação desenvolvida por Tarlov et al.(18. Tarlov(17 realizou estudos experimentais em cães, produzindo compressão medular com atribuição de zero a cinco para graduação dos movimentos do animal. Contudo, esta escala tem sido modificada por pesquisadores e suas alterações feitas por vários grupos tornaram as comparações das medidas do resultado locomotor difíceis. Um aspecto crítico da pesquisa utilizando lesão medular em animais é a padronização da avaliação da recuperação locomotora. A escala desenvolvida por Tator(19 é simples e de fácil utilização, porém pode não analisar todos os aspectos necessários . Basso, Beattie e Bresnahan(2,3 apresentaram uma escala de classificação com índice de recuperação locomotora em ratos que sofreram lesão medular produzida em laboratório. Os dados indicam que a escala BBB é uma medida válida para a recuperação locomotora capaz de distinguir os resultados comportamentais em função de ferimentos diferentes e para prever alterações anatômicas no centro da lesão. O propósito deste estudo foi analisar e comparar escalas de classificação locomotora sem ambigüidade, eficientes e expandida para se padronizar as medidas resultantes nos laboratórios.The behavior evaluation after a spinal medulla injury focused the locomotion in field during a certain time, using a classification scale developed by Tarlov et al.(18. Tarlov(17 performed experimental studies in dogs, producing medullary compression and assigning a graduation from zero to five to the animal movements. However, this scale has been changed by researchers and its changes, made by several groups, became difficult the comparisons of the measures of the locomotor result. One critical aspect of the research with medullary injury in animals is the standardization of the

  16. Drug-induced renal injury

    African Journals Online (AJOL)

    The kidney receives a rich blood flow of 25% of resting cardiac output ... Drugs can cause acute renal failure by causing pre-renal, intrinsic or .... tubular epithelial cells causing cell swelling ... the dose as required or prescribe alternative drugs.

  17. Injury - kidney and ureter

    Science.gov (United States)

    ... kidney; Ureteral injury; Pre-renal failure - injury, Post-renal failure - injury; Kidney obstruction - injury Images Kidney anatomy Kidney - blood and urine flow References Molitoris BA. Acute kidney injury. In: Goldman ...

  18. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Nathalie Le Clef

    Full Text Available Acute kidney injury (AKI is an underestimated, yet important risk factor for development of chronic kidney disease (CKD. Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD. Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data.

  19. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    Science.gov (United States)

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  1. Role of Calcium Sensing Receptor in Streptozotocin-Induced Diabetic Rats Exposed to Renal Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-02-01

    Full Text Available Background/Aims: Renal ischemia/reperfusion (I/R injury (RI/RI is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations at its onset, which can result in inflammation, abnormal lipid metabolism, the production of reactive oxygen species (ROS, and nitroso-redox imbalance. The calcium-sensing receptor (CaSR is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic RI/ RI remains unclear. The present study was intended to investigate the role of CaSR on RI/RI in diabetes mellitus (DM. Methods: The bilateral renal arteries and veins of streptozotocin (STZ-induced diabetic rats were subjected to 45-min ischemia followed by 2-h reperfusion with or without R-568 (agonist of CaSR and NPS-2143 (antagonist of CaSR at the beginning of I/R procedure. DM without renal I/R rats served as control group. The expressions of CaSR, calmodulin (CaM, and p47phox in the renal tissue were analyzed by qRT-PCR and Western blot. The renal pathomorphology, renal function, oxidative stress, inflammatory response, and calcium disorder were evaluated by detection of a series of indices by hematoxylin-eosin (HE staining, transmission electron microscope (TEM, commercial kits, enzyme-linked immunosorbent assay (ELISA, and spectrophotofluorometry, respectively. Results: Results showed that the expressions of CaSR, CaM, and p47phox in I/R group were significantly up-regulated as compared with those in DM group, which were accompanied by renal tissue injury, increased calcium, oxidative stress, inflammation, and nitroso-redox imbalance. Conclusion: These results suggest that activation of CaSR is involved in the induction of damage of renal tubular epithelial cell during diabetic RI/RI, resulting in lipid peroxidation, inflammatory response, nitroso-redox imbalance, and apoptosis.

  2. Injuria renal aguda en la sepsis grave Acute kidney injury in severe sepsis

    Directory of Open Access Journals (Sweden)

    Hernán Trimarchi

    2009-06-01

    Full Text Available La sepsis afecta al 40% de los pacientes críticos, siendo su mortalidad de aproximadamente un 30% en el caso de la sepsis grave, y de 75% con injuria renal aguda, la cual sucede en el 20-51% de los casos. Se realizó un estudio prospectivo, observacional, longitudinal, en 80 pacientes sépticos graves en el lapso de 1 año para determinar el desarrollo de injuria renal aguda y su relación con la mortalidad; correlacionar antecedentes clínicos y variaciones del laboratorio con la mortalidad; determinar la tasa de mortalidad de la sepsis grave; relacionar óbito y foco séptico primario; evaluar la predictibilidad de mortalidad según niveles de creatinina de ingreso y sus variaciones finales. Se definieron dos grupos: Obito (n = 25 y No-óbito (n = 55. Analizados según la creatinina de ingreso, 39 tenían valores normales de creatinina (10 óbitos y 41 la presentaban elevada (15 óbitos; según la creatinina de egreso, 48 presentaron creatinina normal y fallecieron 7, mientras que 32 tenían daño renal agudo, de los cuales 18 fallecieron. De los 25 pacientes fallecidos, el 72% presentaron daño renal. De éstos, 7 pacientes vivos y 2 fallecidos requirieron hemodiálisis. El foco primario más frecuente fue el respiratorio (26.4%. El desarrollo de daño renal es un alto predictor de mortalidad en la sepsis, independientemente de los valores iniciales de creatinina. Edad más avanzada, hipertensión arterial, score APACHE más elevado, anemia más grave, hipoalbuminemia, hiperfosfatemia e hiperkalemia se asociaron a mayor mortalidad. La mortalidad global fue 31.3%. La imposibilidad de identificar el foco séptico primario se asoció a mayor mortalidad. El foco respiratorio se relacionó a mayor riesgo de requerir hemodiálisis.Sepsis affects 40% of critically ill patients, with a reported mortality of approximately 30% in severe sepsis, raising to 75% when acute kidney injury ensues, which occurs in about 20-51% of cases. The present study

  3. Recovery of Dysphagia in Lateral Medullary Stroke

    Directory of Open Access Journals (Sweden)

    Hitesh Gupta

    2014-01-01

    Full Text Available Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function.

  4. Recovery of Dysphagia in lateral medullary stroke.

    Science.gov (United States)

    Gupta, Hitesh; Banerjee, Alakananda

    2014-01-01

    Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function.

  5. Recovery of Dysphagia in Lateral Medullary Stroke

    Science.gov (United States)

    Gupta, Hitesh; Banerjee, Alakananda

    2014-01-01

    Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia and its outcome in brainstem stroke particularly lateral medullary stroke motivated the author to present an actual case study of a patient who had dysphagia following a lateral medullary infarct. This paper documents the severity and management approach of dysphagia in brainstem stroke, with traditional dysphagia therapy and VitalStim therapy. Despite being diagnosed with a severe form of dysphagia followed by late treatment intervention, the patient had complete recovery of the swallowing function. PMID:25045555

  6. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Esther, E-mail: esther.peters@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Department of Pharmacology and Toxicology, Radboud university medical center, PO Box 9101, Internal Mailbox 149, 6500 HB, Nijmegen (Netherlands); Ergin, Bülent, E-mail: b.ergin@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Kandil, Asli, E-mail: aslikandil@istanbul.edu.tr [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Gurel-Gurevin, Ebru, E-mail: egurelgurevin@gmail.com [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Elsas, Andrea van, E-mail: a.vanelsas@am-pharma.com [AM-Pharma, Rumpsterweg 6, 3981 AK, Bunnik (Netherlands); Masereeuw, Rosalinde, E-mail: r.masereeuw@uu.nl [Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, PO Box 80082, 3508 TB Utrecht (Netherlands); Pickkers, Peter, E-mail: peter.pickkers@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Ince, Can, E-mail: c.ince@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)

    2016-12-15

    Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n = 18) were subjected to renal ischemia (30 min) and reperfusion (I/R), or sham-operated. In a second model, rats (n = 18) received a 30 min infusion of lipopolysaccharide (LPS; 2.5 mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000 U/kg) was administered intravenously (15 min before reperfusion, or 90 min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. - Highlights: • Human recombinant alkaline phosphatase (recAP) is a potential new therapy for sepsis-associated acute kidney injury (AKI). • RecAP can modulate renal oxygenation and hemodynamics immediately following I/R-induced AKI. • RecAP did not modulate endotoxemia-induced changes in systemic hemodynamics and renal oxygenation. • RecAP did exert a clear renal protective

  7. Renal ultrasound provides low utility in evaluating cardiac surgery associated acute kidney injury.

    Science.gov (United States)

    Young, Allen; Crawford, Todd; Pierre, Alejandro Suarez; Trent Magruder, J; Fraser, Charles; Conte, John; Whitman, Glenn; Sciortino, Christopher

    2017-09-02

    Renal ultrasonography is part of the algorithm in assessing acute kidney injury (AKI). The purpose of this study was to assess the clinical utility of renal US in postoperative cardiac patients who develop AKI. We conducted a retrospective study of 90 postoperative cardiac surgery patients at a single institution from 1/19/2010 to 3/19/2016 who underwent renal US for AKI. We reviewed provider documentation to determine whether renal US changed management. We defined change as: administration of crystalloid or colloid, addition of inotropic or vasopressor, or procedural interventions on the renal system. Mean age of study patients was 68 ± 13 years. 48/90 patients (53.3%) had pre-existing chronic kidney disease of varying severity. 48 patients (53.3%) had normal renal US with incidental findings and 31 patients (34.4%) had US evidence of medical kidney disease. 10 patients (11.1%) had limited US results due to poor visualization and 1 patient (1.1%) had mild right-sided hydronephrosis. No patients were found to have obstructive uropathy or renal artery stenosis. Clinical management was altered in only 4/90 patients (4.4%), which included 3 patients that received a fluid bolus and 1 patient that received a fluid bolus and inotropes. No vascular or urologic procedures resulted from US findings. Although renal ultrasound is often utilized in the work-up of AKI, our study shows that renal US provides little benefit in managing postoperative cardiac patients. This diagnostic modality should be scrutinized rather than viewed as a universal measure in the cardiac surgery population.

  8. Health status, renal function, and quality of life after multiorgan failure and acute kidney injury requiring renal replacement therapy

    Directory of Open Access Journals (Sweden)

    Faulhaber-Walter R

    2016-05-01

    Full Text Available Robert Faulhaber-Walter,1,2 Sebastian Scholz,1,3 Herrmann Haller,1 Jan T Kielstein,1,* Carsten Hafer1,4,* 1Department of Renal and Hypertensive Disease, Medical School Hannover, Hannover, Germany; 2Facharztzentrum Aarberg, Waldshut-Tiengen, Germany; 3Sanitaetsversorgungszentrum Wunstorf, Wunstorf, Germany; 4HELIOS Klinikum Erfurt, Erfurt, Germany *These authors contributed equally to this work Background: Critically ill patients with acute kidney injury (AKI in need of renal replacement therapy (RRT may have a protracted and often incomplete rehabilitation. Their long-term outcome has rarely been investigated. Study design: Survivors of the HANnover Dialysis OUTcome (HANDOUT study were evaluated after 5 years for survival, health status, renal function, and quality of life (QoL. The HANDOUT study had examinded mortality and renal recovery of patients with AKI receiving either standard extendend or intensified dialysis after multi organ failure. Results: One hundred fifty-six former HANDOUT participants were analyzed. In-hospital mortality was 56.4%. Five-year survival after AKI/RRT was 40.1% (86.5% if discharged from hospital. Main causes of death were cardiovascular complications and sepsis. A total of 19 survivors presented to the outpatient department of our clinic and had good renal recovery (mean estimated glomerular filtration rate 72.5±30 mL/min/1.73 m2; mean proteinuria 89±84 mg/d. One person required maintenance dialysis. Seventy-nine percent of the patients had a pathological kidney sonomorphology. The Charlson comorbidity score was 2.2±1.4 and adjusted for age 3.3±2.1 years. Numbers of comorbid conditions averaged 2.38±1.72 per patient (heart failure [52%] > chronic kidney disease/myocardial infarction [each 29%]. Median 36-item short form health survey (SF-36™ index was 0.657 (0.69 physical health/0.66 mental health. Quality-adjusted life-years after 5 years were 3.365. Conclusion: Mortality after severe AKI is higher than

  9. A Modified method for reducing renal injury in zoledronic acid treatment of hypercalcemia and adverse skeletal events

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2013-01-01

    Full Text Available Aims: In this paper, we have reported a previously undescribed risk factor of deterioration of renal function in zoledronic acid treatment of skeletal metastasis - high serum calcium level. Based on this consideration, a modified method of treatment of hypercalcemia (HCM with zoledronic acid is suggested in this paper. Material and Methods: Bone scan findings of 1090 cancer patients were analyzed, of which 26 had intense renal parenchymal uptake as a result of HCM or bone metastases. Subsequently, a total of 56 bone metastases patients with zoledronic acid treatment were divided into three groups: HCM group who were pre-treated to normal serum calcium level (13 patients, HCM group (19 patients, and normal serum calcium group (24 patients. Results: More patients with intense renal parenchymal uptake were hyperglycemic, statistically significantly (18/26 versus 19/1064, P = 2.1, E-78. No more patients with intense renal parenchymal uptake were associated with bone metastases (14/26 versus 438/1064, P = 0.20. Subsequently, more HCM patients receiving zoledronic acid treatment showed renal injury compared to patients with normal serum calcium level (5/15 versus 2/24, P < 0.05 and HCM patients with pre-treatment to normal serum calcium level (5/15 versus 1/17, P < 0.05. Conclusions: Intense renal parenchymal uptake of bisphosphonates is closely related to HCM rather than to bone metastases in cancer patients. The serum calcium should be measured and reduced to normal level before zoledronic acid is used in managements of adverse skeletal events in order to decrease the risk of renal injury.

  10. Impaired EphA4 signaling leads to congenital hydronephrosis, renal injury, and hypertension

    DEFF Research Database (Denmark)

    Sällström, Johan; Peuckert, Christiane; Gao, Xiang

    2013-01-01

    Experimental hydronephrosis induced by partial ureteral obstruction at 3 wk of age causes hypertension and renal impairment in adult rats and mice. Signaling by Ephrin receptors (Eph) and their ligands (ephrins) importantly regulates embryonic development. Genetically modified mice, where...... the cytoplasmic domain of the EphA4 receptor has been substituted by enhanced green fluorescent protein (EphA4(gf/gf)), develop spontaneous hydronephrosis and provide a model for further studies of the disorder. The present study aimed to determine if animals with congenital hydronephrosis develop hypertension...... and renal injuries, similar to that of experimental hydronephrosis. Ultrasound and Doppler techniques were used to visualize renal impairment in the adult mice. Telemetric blood pressure measurements were performed in EphA4(gf/gf) mice and littermate controls (EphA4(+/+)) during normal (0.7% NaCl)- and high...

  11. Effect of complete hilar versus only renal artery clamping on renal histomorphology following ischemia/reperfusion injury in an experimental model.

    Science.gov (United States)

    Umul, M; Cal, A C; Turna, B; Oktem, G; Aydın, H H

    2016-01-01

    To evaluate the effect of temporary complete hilar versus only renal artery clamping with different duration of warm ischemia on renal functions, and possibly identify a "safe" clamping type and duration of renal ischemia. Fifty male rabbits have been incorporated to study. Rabbits were subjected to ischemia/reperfusion injury by temporary vascular clamping. Reagents were randomized to 3 experimental groups (only renal artery clamping, complete hilar clamping, sham surgery) and sub-groups were determined according to different clamping times (30 and 60 minutes). Median laparotomy and left renal hilus dissection were performed to sham group. Only artery or complete hilar clamping was performed for 30 or 60 minutes by microvascular bulldog clamps to other reagents. Rabbits were sacrificed 10 days after primary surgery and left nephrectomy performed. Nephrectomy materials were evaluated for the level of nitric-oxide synthase (NOS) immunoreactivity, malondialdehyde (MDA) level and superoxide dismutase (SOD) activity and an electron microscopic examination was performed. NOS immunoreactivity was correlated with the temporary clamping time. We also observed that complete hilar vascular clamping entails an increase on NOS immunoreactivity. MDA levels were similar for all experimental surgery groups (p = 0.42). The SOD activity was decreased among all subgroups compared with sham surgery. But the significant decrease occurred in 30 minutes only artery and 30 minutes complete hilar clamping groups in proportion to sham surgery (p = 0.026 and p = 0.019, respectively). This current study suggested that only renal artery clamping under 30 minutes is more appropriate during renal surgical procedures requiring temporary vascular clamping.

  12. Quantification of deep medullary veins at 7 T brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kuijf, Hugo J.; Viergever, Max A.; Vincken, Koen L. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Bouvy, Willem H.; Razoux Schultz, Tom B.; Biessels, Geert Jan [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Zwanenburg, Jaco J.M. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-10-15

    Deep medullary veins support the venous drainage of the brain and may display abnormalities in the context of different cerebrovascular diseases. We present and evaluate a method to automatically detect and quantify deep medullary veins at 7 T. Five participants were scanned twice, to assess the robustness and reproducibility of manual and automated vein detection. Additionally, the method was evaluated on 24 participants to demonstrate its application. Deep medullary veins were assessed within an automatically created region-of-interest around the lateral ventricles, defined such that all veins must intersect it. A combination of vesselness, tubular tracking, and hysteresis thresholding located individual veins, which were quantified by counting and computing (3-D) density maps. Visual assessment was time-consuming (2 h/scan), with an intra-/inter-observer agreement on absolute vein count of ICC = 0.76 and 0.60, respectively. The automated vein detection showed excellent inter-scan reproducibility before (ICC = 0.79) and after (ICC = 0.88) visually censoring false positives. It had a positive predictive value of 71.6 %. Imaging at 7 T allows visualization and quantification of deep medullary veins. The presented method offers fast and reliable automated assessment of deep medullary veins. (orig.)

  13. Comparison of mammographic and sonographic findings in typical and atypical medullary carcinomas of the breast

    International Nuclear Information System (INIS)

    Yilmaz, E.; Lebe, B.; Balci, P.; Sal, S.; Canda, T.

    2002-01-01

    AIM: The aim of this study was to describe the contribution of mammographic and sonographic findings to the discrimination of typical and atypical histopathologic groups of medullary carcinomas of the breast. MATERIALS AND METHODS: Imaging findings were retrospectively assessed in 33 women with medullary carcinomas (15 typical medullary carcinomas and 18 atypical medullary carcinomas) identified during pre-operative mammography. Twenty-nine of these women also had ultrasound and these findings were reviewed. RESULTS: Mammography showed a well circumscribed mass in 10 of the 15 (67%) typical medullary carcinomas and in four of the 17 (24%) atypical medullary carcinomas (P < 0.02). One small tumour in a woman with atypical medullary carcinoma was missed on mammography and was shown only on sonography. Sonographically, an irregular margin surrounding the whole mass or part of it was seen in three out of 14 (21%) patients with typical medullary carcinoma and in nine out of 15 (60%) patients with atypical medullary carcinomas (P < 0.05). Posterior acoustic shadowing was more often observed in the typical medullary carcinoma group than in atypical medullary carcinoma and the difference was found to be statistically significant (P < 0.05). None of the other mammographic and sonographic findings were sufficiently characteristic to allow for a differentiation between two groups. CONCLUSION: When typical medullary carcinomas were compared with atypical medullary carcinomas according to imaging features, they tended to be well circumscribed masses on both mammography and sonography, and a posterior acoustic shadow was not found on sonography. However, the imaging findings in these two subgroups often resembled each other and histopathology will always be required to confirm the diagnosis. Yilmaz, E. et al. (2002)

  14. Comparison of mammographic and sonographic findings in typical and atypical medullary carcinomas of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, E.; Lebe, B.; Balci, P.; Sal, S.; Canda, T

    2002-07-01

    AIM: The aim of this study was to describe the contribution of mammographic and sonographic findings to the discrimination of typical and atypical histopathologic groups of medullary carcinomas of the breast. MATERIALS AND METHODS: Imaging findings were retrospectively assessed in 33 women with medullary carcinomas (15 typical medullary carcinomas and 18 atypical medullary carcinomas) identified during pre-operative mammography. Twenty-nine of these women also had ultrasound and these findings were reviewed. RESULTS: Mammography showed a well circumscribed mass in 10 of the 15 (67%) typical medullary carcinomas and in four of the 17 (24%) atypical medullary carcinomas (P < 0.02). One small tumour in a woman with atypical medullary carcinoma was missed on mammography and was shown only on sonography. Sonographically, an irregular margin surrounding the whole mass or part of it was seen in three out of 14 (21%) patients with typical medullary carcinoma and in nine out of 15 (60%) patients with atypical medullary carcinomas (P < 0.05). Posterior acoustic shadowing was more often observed in the typical medullary carcinoma group than in atypical medullary carcinoma and the difference was found to be statistically significant (P < 0.05). None of the other mammographic and sonographic findings were sufficiently characteristic to allow for a differentiation between two groups. CONCLUSION: When typical medullary carcinomas were compared with atypical medullary carcinomas according to imaging features, they tended to be well circumscribed masses on both mammography and sonography, and a posterior acoustic shadow was not found on sonography. However, the imaging findings in these two subgroups often resembled each other and histopathology will always be required to confirm the diagnosis. Yilmaz, E. et al. (2002)

  15. Clinical study of 12 cases of medullary carcinoma of the breast

    International Nuclear Information System (INIS)

    Shibuya, Hitoshi; Sasaki, Kenichi; Yamamoto, Masaaki; Higaki, Nagato; Nakamura, Yukio

    2006-01-01

    Medullary carcinoma of the breast is a rare type breast cancer, and shows peculiar clinical features. In a series of 460 cases of breast cancer operated on at the hospital from 1975 to 2004, twelve (2.6%) cases were diagnosed as medullary carcinoma of the breast by postoperative pathological study. When the specimens from the twelve tumors were reevaluated according to the Ridolfi's subtype classification, six tumors were classified into typical medullary carcinoma (TMC) and the remaining six tumors into atypical medullary carcinoma (AMC). On mammography these tumors were visualized as homogeneously enhancing oval masses without calcification and the boundary was comparatively well-defined. US demonstrated well-defied masses with a heterogeneous, hypoechoic texture and with reinforcement of posterior echoes. The rate of lymph node metastasis was 33.3% in medullary carcinomas which was not significantly different from that of infiltrative ductal carcinomas experienced during the same period. The rate of a positivity of a hormone receptor was 8.3% in medullary carcinomas which was low in predominance in comparison with that of infiltrative ductal carcinomas. The positive rate for a HER2/neu (above2+) by the IHC method was 58%. An average observation period is 11 years, and all patients are alive. (author)

  16. Introduction to European comments on "Medullary Thyroid Cancer

    DEFF Research Database (Denmark)

    Jarzab, Barbara; Feldt-Rasmussen, Ulla

    2013-01-01

    Guest Editors of Thyroid Research supplement devoted to medullary thyroid cancer present the history on how the discussion about "Medullary Thyroid Cancer: management guidelines of the American Thyroid Association" was initiated and subsequently widely commented before and during European Thyroid...... Association - Cancer Research Network Meeting in Lisbon. It is explained why it has been decided to publish the manuscripts within the supplement - to document voices from the discussion and popularize them....

  17. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

    NARCIS (Netherlands)

    Li, Shenyang; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megysi, J.; Olivecrona, G.; Chugh, S.S.; Kersten, A.H.; Portilla, D.

    2012-01-01

    Peroxisome proliferator-activated receptor-a (PPARa) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARa and CP

  18. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    DEFF Research Database (Denmark)

    Reed, Galen D; von Morze, Cornelius; Verkman, Alan S

    2016-01-01

    of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long...

  19. The effect of Aqueous Purslane (Portulaca Oleracea Extract on Renal Ischemia/Reperfusion Injury in Rat

    Directory of Open Access Journals (Sweden)

    syead Reza Fatemi Tabatabaei

    2015-07-01

    Full Text Available Background: According to the previous studies Portulaca oleracea (PO has antioxidative effects and several factors such as oxidative stress is involved in the renal injury caused by ischemia - reperfusion (I/R. Therefore, the goal of present study is to evaluate the renal I/R injury in rats received aqueous extracts of PO (AEPO. Material and Methods: First, the right nephrectomy was performed in adult male Wistar rats and after 20 days they were divided into 5 groups (6=n. Sham operated+vehicle (sham, sham operated+ AEPO300mg/kg (AEPO group, I/R, AEPO150+I/R and AEPO300+I/R. Each group was treated orally for 5 consecutive days by 150 or 300 mg/kg of either AEPO or saline. On the fifth day of treatment, I/R (45 min ischemia/24 hours reperfusion or sham operation was performed on the left kidney and amounts of urea and creatinine in serum and malondialdehyde (MDA, superoxide dismutase (SOD, glutathione (GSH and total antioxidant activity (TAA in the kidney tissue were measured. Comparisons between groups were analyzed by ANOVA and LSD test. P values of 0.05 or less were considered statistically significant. Results: Induction of I/R increased urea and creatinine levels. AEPO had no effect on serum urea and creatinine, of non-ischemic animals, but increased the levels of urea and creatinine in I/R and treatment groups. SOD activity was significantly higher in all groups (except AEPO300 group compared to the sham group. However the levels of MDA, GSH and TAA of I/R and treatment groups did not show any significant differences in comparison to sham group. Conclusion: According to the results of this study, the PO aqueous extract did not ameliorate the I/R injury and even possibly some ingredients in the extract aggravate the renal I/R injury.

  20. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  1. New non-renal congenital disorders associated with medullary sponge kidney (MSK) support the pathogenic role of GDNF and point to the diagnosis of MSK in recurrent stone formers.

    Science.gov (United States)

    Ria, Paolo; Fabris, Antonia; Dalla Gassa, Alessandra; Zaza, Gianluigi; Lupo, Antonio; Gambaro, Giovanni

    2017-08-01

    Medullary sponge kidney (MSK) is a congenital renal disorder. Its association with several developmental abnormalities in other organs hints at the likelihood of some shared step(s) in the embryogenesis of the kidney and other organs. It has been suggested that the REarranged during Transfection (RET) proto-oncogene and the Glial cell line-Derived Neurotrophic Factor (GDNF) gene are defective in patients with MSK, and both RET and GDNF are known to have a role in the development of the central nervous system, heart, and craniofacial skeleton. Among a cohort of 143 MSK patients being followed up for nephrolithiasis and chronic kidney disease at our institution, we found six with one or more associated non-renal anomalies: one patient probably has congenital hemihyperplasia and hypertrophic cardiomyopathy with adipose metaplasia and mitral valve prolapse; one has Marfan syndrome; and the other four have novel associations between MSK and nerve and skeleton abnormalities described here for the first time. The discovery of disorders involving the central nervous system, cardiovascular system and craniofacial skeleton in MSK patients supports the hypothesis of a genetic alteration on the RET-GDNF axis having a pivotal role in the pathogenesis of MSK, in a subset of patients at least. MSK seems more and more to be a systemic disease, and the identification of extrarenal developmental defects could be important in arousing the suspicion of MSK in recurrent stone formers.

  2. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    Science.gov (United States)

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats. © 2014 American Heart Association, Inc.

  3. 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury.

    Science.gov (United States)

    Tian, Haibin; Lu, Yan; Shah, Shraddha P; Wang, Quansheng; Hong, Song

    2012-05-01

    Bone marrow mesenchymal stem cells (MSCs) have shown potential to improve treatment of renal failure. The prohealing functions of MSCs have been found to be enhanced by treatment with the lipid mediator, 14S,21R-dihydroxy-docosa4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA). In this article, using a murine model of renal ischemia/reperfusion (I/R) injury, we found that treatment with 14S,21R-diHDHA enhanced MSC amelioration of renal I/R injury. Treated MSCs more efficiently inhibited I/R-induced elevation of serum creatinine levels, reduced renal tubular cell death, and inhibited infiltration of neutrophils, macrophages, and dendritic cells in kidneys. Conditioned medium from treated MSCs reduced the generation of tumor necrosis factor-α and reactive oxygen species by macrophages under I/R conditions. Infusion of treated MSCs more efficiently reduced I/R-damage to renal histological structures compared with untreated MSCs (injury score: 7.9±0.4 vs. 10.5±0.5). Treated MSCs were resistant to apoptosis in vivo when transplanted under capsules of I/R-injured kidneys (active caspase-3+ MSCs: 4.2%±2.8% vs. 11.7%±2.4% of control) and in vitro when cultured under I/R conditions. Treatment with 14S,21R-diHDHA promoted viability of MSCs through a mechanism involving activation of the phosphoinositide 3-kinase -Akt signaling pathway. Additionally, treatment of MSCs with 14S,21R-diHDHA promoted secretion of renotrophic hepatocyte growth factor and insulin growth factor-1. Similar results were obtained when 14S,21RdiHDHA was used to inhibit apoptosis of human MSCs (hMSCs) and to increase the generation of renotrophic cytokines from hMSCs. These findings provide a lead for new strategies in the treatment of acute kidney injury with MSCs.

  4. Mining the human urine proteome for monitoring renal transplant injury

    Energy Technology Data Exchange (ETDEWEB)

    Sigdel, Tara K.; Gao, Yuqian; He, Jintang; Wang, Anyou; Nicora, Carrie D.; Fillmore, Thomas L.; Shi, Tujin; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Qian, Wei-Jun; Salvatierra, Oscar; Camp, David G.; Sarwal, Minnie M.

    2016-06-01

    The human urinary proteome reflects systemic and inherent renal injury perturbations and can be analyzed to harness specific biomarkers for different kidney transplant injury states. 396 unique urine samples were collected contemporaneously with an allograft biopsy from 396 unique kidney transplant recipients. Centralized, blinded histology on the graft was used to classify matched urine samples into categories of acute rejection (AR), chronic allograft nephropathy (CAN), BK virus nephritis (BKVN), and stable graft (STA). Liquid chromatography–mass spectrometry (LC-MS) based proteomics using iTRAQ based discovery (n=108) and global label-free LC-MS analyses of individual samples (n=137) for quantitative proteome assessment were used in the discovery step. Selected reaction monitoring (SRM) was applied to identify and validate minimal urine protein/peptide biomarkers to accurately segregate organ injury causation and pathology on unique urine samples (n=151). A total of 958 proteins were initially quantified by iTRAQ, 87% of which were also identified among 1574 urine proteins detected in LC-MS validation. 103 urine proteins were significantly (p<0.05) perturbed in injury and enriched for humoral immunity, complement activation, and lymphocyte trafficking. A set of 131 peptides corresponding to 78 proteins were assessed by SRM for their significance in an independent sample cohort. A minimal set of 35 peptides mapping to 33 proteins, were modeled to segregate different injury groups (AUC =93% for AR, 99% for CAN, 83% for BKVN). Urinary proteome discovery and targeted validation identified urine protein fingerprints for non-invasive differentiation of kidney transplant injuries, thus opening the door for personalized immune risk assessment and therapy.

  5. Lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy.

    Science.gov (United States)

    Li, Xiaodi; Wang, Yuzhou

    2014-04-01

    Here, we present a rare case of a lateral medullary infarction with ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy. In this case, we proved Opalski's hypothesis by diffusion tensor tractography that ipsilateral hemiparesis in a medullary infarction is due to the involvement of the decussated corticospinal tract. We found that the clinical triad of ipsilateral hemiparesis, lemniscal sensation loss and hypoglossal nerve palsy, which had been regarded as a variant of medial medullary syndrome, turned out to be caused by lateral lower medullary infarction. Therefore, this clinical triad does not imply the involvement of the anteromedial part of medulla oblongata, when it is hard to distinguish a massive lateral medullary infarction from a hemimedullary infarction merely from MR images. At last, we suggest that hyperreflexia and Babinski's sign may not be indispensable to the diagnosis of Opalski's syndrome and we propose that "hemimedullary infarction with ipsilateral hemiparesis" is intrinsically a variant of lateral medullary infarction.

  6. Medullary carcinoma of the thyroid - an unusual case of hyalinizing ...

    African Journals Online (AJOL)

    Medullary thyroid carcinoma is a neoplasm occurring in sporadic and familial patterns. A rare variant of medullary thyroid carcinoma shows microscopic features similar to hyalinizing trabecular adenoma of thyroid. Detection of this variant requires a high index of suspicion and immunohistochemical confirmation by ...

  7. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Poppelaars, Felix; van Werkhoven, Maaike B; Kotimaa, Juha; Veldhuis, Zwanida J; Ausema, Albertina; Broeren, Stefan G M; Damman, Jeffrey; Hempel, Julia C.; Leuvenink, Henri G D; Daha, Mohamed R; van Son, Willem J; van Kooten, Cees; van Os, Ronald P; Hillebrands, Jan-Luuk; Seelen, Marc A

    The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR

  8. Protective Effect of CXCR3+CD4+CD25+Foxp3+ Regulatory T Cells in Renal Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Cao Jun

    2015-01-01

    Full Text Available Regulatory T cells (Tregs suppress excessive immune responses and are potential therapeutic targets in autoimmune disease and organ transplantation rejection. However, their role in renal ischemia-reperfusion injury (IRI is unclear. Levels of Tregs and expression of CXCR3 in Tregs were analyzed to investigate their function in the early phase of renal IRI. Mice were randomly divided into Sham, IRI, and anti-CD25 (PC61 + IRI groups. The PC61 + IRI group was established by i.p. injection of PC61 monoclonal antibody (mAb to deplete Tregs before renal ischemia. CD4+CD25+Foxp3+ Tregs and CXCR3 on Tregs were analyzed by flow cytometry. Blood urea nitrogen (BUN, serum creatinine (Scr levels, and tubular necrosis scores, all measures of kidney injury, were greater in the IRI group than in the Sham group. Numbers of Tregs were increased at 72 h after reperfusion in kidney. PC61 mAb preconditioning decreased the numbers of Tregs and aggravated kidney injury. There was no expression of CXCR3 on Tregs in normal kidney, while it expanded at 72 h after reperfusion and inversely correlated with BUN, Scr, and kidney histology score. This indicated that recruitment of Tregs into the kidney was related to the recovery of renal function after IRI and CXCR3 might be involved in the migration of Tregs.

  9. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury.

    Science.gov (United States)

    Damman, Jeffrey; Daha, Mohamed R; van Son, Willem J; Leuvenink, Henri G; Ploeg, Rutger J; Seelen, Marc A

    2011-04-01

    Two central pathways of innate immunity, complement and Toll-like receptors (TLRs), play an important role in the pathogenesis of renal injury inherent to kidney transplantation. Recent findings indicate close crosstalk between complement and TLR signaling pathways. It is suggested that mitogen activated protein kinases (MAPKs) might be the key molecules linking both the complement and TLR pathways together. Complement and TLRs are important mediators of renal ischemia-reperfusion injury (IRI). Besides IRI, complement C3 can also be upregulated and activated in the kidney before transplantation as a direct result of brain death (BD) in the donor. This local upregulation and activation of complement in the donor kidney has been proven to be detrimental for renal allograft outcome. Also TLR4 and several of its major ligands are upregulated by donor BD compared to living donors. Important and in line with the observations above, kidney transplant recipients have a benefit when receiving a kidney from a TLR4 Asp299Gly/Thr399Ile genotypic donor. The role of complement and TLRs and crosstalk between these two innate immune systems in relation to renal injury during donor BD and ischemia-reperfusion are focus of this review. Future strategies to target complement and TLR activation in kidney transplantation are considered. ©2011 The Authors Journal compilation©2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat.

    Science.gov (United States)

    Aydin, Mehmet Salih; Caliskan, Ahmet; Kocarslan, Aydemir; Kocarslan, Sezen; Yildiz, Ali; Günay, Samil; Savik, Emin; Hazar, Abdussemet; Yalcin, Funda

    2014-01-01

    Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p model. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Medullary breast carcinoma: anatomo-radiological correlation

    International Nuclear Information System (INIS)

    Matheus, Valeria Soares; Canella, Ellyete de Oliveira; Djahjah, Maria Celia Resende; Koch, Hilton Augusto; Kestelman, Fabiola Procaci

    2008-01-01

    To evaluate radiological findings in patients submitted to surgical treatment for medullary breast cancer at Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ, Brazil, correlating them with histological results. A retrospective descriptive study was developed with patients submitted to surgery at INCa, in the period from January 1997 to December 2006, for identifying the presence of medullary breast carcinoma and analyzing radiological findings. Among 21,287 patients diagnosed with carcinoma, 76 (0.357%) had typical medullary breast carcinoma. The age range of these patients was 32-81 years (mean = 59.1 years). Mammography demonstrated lesions in 19 of these patients, 17 (89.5%) of them with masses, and 2 with focal asymmetry. Among the patients with masses, 15 (88.1%) presented with high density and 2 (11.9%) with isodensity. Twelve patients presented sonographic findings, 11 (91.6%) of them with hypoechoic masses, and one with an anechoic mass with areas of cystic degeneration. Nodular mass was the predominant radiological finding (89.5%), 88.1% of them corresponding to masses with high density and circumscribed margins. Despite the radiological characteristics of benignity, a solid, fast growing, highly dense mass with circumscribed margins should be further investigated to confirm the diagnosis. (author)

  12. Medullary breast carcinoma: anatomo-radiological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Matheus, Valeria Soares; Canella, Ellyete de Oliveira; Djahjah, Maria Celia Resende; Koch, Hilton Augusto [Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil); Kestelman, Fabiola Procaci [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil)]. E-mail: msavaleria@yahoo.com

    2008-11-15

    To evaluate radiological findings in patients submitted to surgical treatment for medullary breast cancer at Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ, Brazil, correlating them with histological results. A retrospective descriptive study was developed with patients submitted to surgery at INCa, in the period from January 1997 to December 2006, for identifying the presence of medullary breast carcinoma and analyzing radiological findings. Among 21,287 patients diagnosed with carcinoma, 76 (0.357%) had typical medullary breast carcinoma. The age range of these patients was 32-81 years (mean = 59.1 years). Mammography demonstrated lesions in 19 of these patients, 17 (89.5%) of them with masses, and 2 with focal asymmetry. Among the patients with masses, 15 (88.1%) presented with high density and 2 (11.9%) with isodensity. Twelve patients presented sonographic findings, 11 (91.6%) of them with hypoechoic masses, and one with an anechoic mass with areas of cystic degeneration. Nodular mass was the predominant radiological finding (89.5%), 88.1% of them corresponding to masses with high density and circumscribed margins. Despite the radiological characteristics of benignity, a solid, fast growing, highly dense mass with circumscribed margins should be further investigated to confirm the diagnosis. (author)

  13. Mesenchymal stem cells in renal function recovery after acute kidney injury: use of a differentiating agent in a rat model.

    Science.gov (United States)

    La Manna, Gaetano; Bianchi, Francesca; Cappuccilli, Maria; Cenacchi, Giovanna; Tarantino, Lucia; Pasquinelli, Gianandrea; Valente, Sabrina; Della Bella, Elena; Cantoni, Silvia; Claudia, Cavallini; Neri, Flavia; Tsivian, Matvey; Nardo, Bruno; Ventura, Carlo; Stefoni, Sergio

    2011-01-01

    Acute kidney injury (AKI) is a major health care condition with limited current treatment options. Within this context, stem cells may provide a clinical approach for AKI. Moreover, a synthetic compound previously developed, hyaluronan monoesters with butyric acid (HB), able to induce metanephric differentiation, formation of capillary-like structures, and secretion of angiogenic cytokines, was tested in vitro. Thereafter, we investigated the effects of human mesenchymal stem cells from fetal membranes (FMhMSCs), both treated and untreated with HB, after induction of ischemic AKI in a rat model. At reperfusion following 45-min clamping of renal pedicles, each rat was randomly assigned to one of four groups: CTR, PBS, MSC, and MSC-HB. Renal function at 1, 3, 5, and 7 days was assessed. Histological samples were analyzed by light and electron microscopy and renal injury was graded. Cytokine analysis on serum samples was performed. FMhMSCs induced an accelerated renal functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys. HB-treated rats showed a minor degree of inflammation, both at cytokine and TEM analyses. Better functional and morphological recovery were not associated to stem cells' regenerative processes, but possibly suggest paracrine effects on microenvironment that induce retrieval of renal damaged tissues. These results suggest that FMhMSCs could be useful in the treatment of AKI and the utilization of synthetic compounds could enhance the recovery induction ability of cells.

  14. A simple football injury leading to a grade 4 renal trauma.

    Science.gov (United States)

    Fanning, Deirdre Mary; Forde, James C; Mohan, Ponnusamy

    2012-03-08

    This case highlights the need for cautious management and serial regular examination of trauma patients. A 22-year-old Caucasian male presented to the emergency department 4 h following an injury sustained during football training. He complained of the immediate onset of severe left upper quadrant and left flank pain. He subsequently developed frank haematuria. On initial review, he was haemodynamically stable. CT of the abdomen and pelvis showed a grade 4 renal trauma. Over the following 36 h, he remained haemodynamically stable. On serial abdominal examinations however, he developed a rigid abdomen and was noted to have a haemoglobin drop. Interval CT scan showed a progression of his injury and the presence of a haemoperitoneum. An emergency laparotomy was performed resulting in a left nephrectomy. He made an uneventful recovery.

  15. A simple football injury leading to a grade 4 renal trauma.

    LENUS (Irish Health Repository)

    Fanning, Deirdre Mary

    2012-01-01

    This case highlights the need for cautious management and serial regular examination of trauma patients. A 22-year-old Caucasian male presented to the emergency department 4 h following an injury sustained during football training. He complained of the immediate onset of severe left upper quadrant and left flank pain. He subsequently developed frank haematuria. On initial review, he was haemodynamically stable. CT of the abdomen and pelvis showed a grade 4 renal trauma. Over the following 36 h, he remained haemodynamically stable. On serial abdominal examinations however, he developed a rigid abdomen and was noted to have a haemoglobin drop. Interval CT scan showed a progression of his injury and the presence of a haemoperitoneum. An emergency laparotomy was performed resulting in a left nephrectomy. He made an uneventful recovery.

  16. Renal vasculitis presenting with acute kidney injury.

    Science.gov (United States)

    Villacorta, Javier; Diaz-Crespo, Francisco; Acevedo, Mercedes; Cavero, Teresa; Guerrero, Carmen; Praga, Manuel; Fernandez-Juarez, Gema

    2017-06-01

    Renal failure secondary to ANCA-associated vasculitis represents a clinical and therapeutic challenge. In this study, we aimed to assess the treatment response rates and long-term outcomes of vasculitis patients presenting with renal failure. This retrospective study included 151 patients with renal vasculitis from three hospitals who underwent a renal biopsy between 1997 and 2014. Patients with renal failure which required dialysis at the onset were compared to those presenting with more preserved renal function. The primary end point was treatment response and patient surivival. Patients with severe renal involvement had a lower response to treatment compared to those having preserved renal function (26.6 versus 93.4%; p renal recovery (41.6 versus 12.5%; p = 0.05). A higher incidence of severe infections was observed among patients with severe renal involvement (38.4 versus 18.1%, p = 0.01). The mortality rate was significantly higher among vasculitis patients presenting with renal failure (53.8 versus 22.2%, p = 0.001). Global survival at 1 and 5 years was 60 and 47% in patients requiring dialysis compared with 90 and 80% among those with more preserved renal function (p renal dysfunction represents an independent risk factor for patient survival in renal vasculitis. Patients requiring dialysis associate a lower response rate to immunosuppressive therapy and a higher incidence of severe infections.

  17. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    OpenAIRE

    Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin...

  18. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    Science.gov (United States)

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  19. Effect of olive leaf alcoholic extract on renal ischemia/reperfusion injury in adult male rats

    Directory of Open Access Journals (Sweden)

    mohammadreza nasirzade

    2014-05-01

    Full Text Available Ischemia-reperfusion (I/R is present at various degrees in kidney transplants. Several studies suggest that renal ischemia reperfusion (RIR can induce acute kidney injury.  Liver diseases and neurological disorders related to kidney injury is a common clinical problem. Olive leaf is a significant source of bioactive phenolic compounds. They have better antioxidant capacity, anti-inflammatory and radical scavenging. In this study 50 male rats were allocated randomly into 5 groups: control (intact animals, group-1(I/R 60min+olive leaf extract, group-2 (I/R 60min, group-3(I/R 120min+olive leaf extractand group-4(I/R 120min.The animals  received 100 mg/kg olive leaf extract in0.5 ml drinking water using gavage for 28 days. Other animals received 0.5 ml normal saline by gavages. At the end of the treatment, the level of antioxidant enzymes including TAC, MDA, SOD and GPX were determined in renal tissue. Administration of olive leaf extract can significantly increase activity of TAC, GPX and SOD in group1and 3compared with group2and4. Also, MDA level in renal tissue of treated groups was significantly lower than ischemia-reperfusion groups (p

  20. Measurement of arterial transit time and renal blood flow using pseudocontinuous ASL MRI with multiple post-labeling delays: Feasibility, reproducibility, and variation.

    Science.gov (United States)

    Kim, Dong Won; Shim, Woo Hyun; Yoon, Seong Kuk; Oh, Jong Yeong; Kim, Jeong Kon; Jung, Hoesu; Matsuda, Tsuyoshi; Kim, Dongeun

    2017-09-01

    To evaluate the feasibility, reproducibility, and variation of renal perfusion and arterial transit time (ATT) using pseudocontinuous arterial spin labeling magnetic resonance imaging (PCASL MRI) in healthy volunteers. PCASL MRI at 3T was performed in 25 healthy volunteers on two different occasions. The ATT and ATT-corrected renal blood flow (ATT-cRBF) were calculated at four different post-labeling delay points (0.5, 1.0, 1.5, and 2.0 s) and evaluated for each kidney and subject. The intraclass correlation (ICC) and Bland-Altman plot were used to assess the reproducibility of the PCASL MRI technique. The within-subject coefficient of variance was determined. Results were obtained for 46 kidneys of 23 subjects with a mean age of 38.6 ± 9.8 years and estimated glomerular filtration rate (eGFR) of 89.1 ± 21.2 ml/min/1.73 m 2 . Two subjects failed in the ASL MRI examination. The mean cortical and medullary ATT-cRBF for the subjects were 215 ± 65 and 81 ± 21 ml/min/100 g, respectively, and the mean cortical and medullary ATT were 1141 ± 262 and 1123 ± 245 msec, correspondingly. The ICC for the cortical ATT-cRBF was 0.927 and the within-subject coefficient of variance was 14.4%. The ICCs for the medullary ATT-cRBF and the cortical and medullary ATT were poor. The Bland-Altman plot for cortical RBF showed good agreement between the two measurements. PCASL MRI is a feasible and reproducible method for measuring renal cortical perfusion. In contrast, ATT for the renal cortex and medulla has poor reproducibility and high variation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:813-819. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Reduction of proteinuria in adriamycin-induced nephropathy is associated with reduction of renal kidney injury molecule (Kim-1) over time

    NARCIS (Netherlands)

    Kramer, Andrea B.; van Timmeren, Mirjan M.; Schuurs, Theo A.; Vaidya, Vishal S.; Bonventre, Joseph V.; van Goor, Harry; Navis, Gerjan

    Kramer AB, van Timmeren MM, Schuurs TA, Vaidya VS, Bonventre JV, van Goor H, Navis G. Reduction of proteinuria in adriamycin-induced nephropathy is associated with reduction of renal kidney injury molecule (Kim-1) over time. Am J Physiol Renal Physiol 296: F1136-F1145, 2009. First published February

  2. T-cells contribute to hypertension but not to renal injury in mice with subtotal nephrectomy

    NARCIS (Netherlands)

    Oosterhuis, Nynke R.; Papazova, Diana A.; Gremmels, Hendrik; Joles, Jaap A.; Verhaar, Marianne C.

    2017-01-01

    Background: The pathological condition of chronic kidney disease may not be adequately recapitulated in immunocompromised mice due to the lack of T-cells, which are important for the development of hypertension and renal injury. We studied the role of the immune system in relation to salt-sensitive

  3. Mixed organic solvents induce renal injury in rats.

    Science.gov (United States)

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  4. Mixed organic solvents induce renal injury in rats.

    Directory of Open Access Journals (Sweden)

    Weisong Qin

    Full Text Available To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16 and 25% (4/16, respectively. Urinary N-Acetyl-β-(D-Glucosaminidase (NAG activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM. Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  5. Experimental research on local renal injury of dog with microwave ablation guided by DSA

    International Nuclear Information System (INIS)

    Lin Jianping; Xian Zhengyuan; Shi Rongshu; Zhang Gaofeng; Li Xianlang

    2008-01-01

    Objective: To explore the efficiency, complications and probability of preserving part renal function by local renal microwave ablation. Methods: The fresh pig renal pelvis full filled with 30% diatrizoate meglumine and the dogs kidney taken arterial pyelography were both ablated with microwave. Dogs were divided into three groups: measuring temperature after ablation group, single point ablation both on the two kidneys group and double points ablation on unilateral kidney group. In measuring temperature after ablation group, DSA and pathology were performed immediately after ablation. In the other groups, DSA with blood and urine samplings were taken for routine tests including renal function right after the ablation and 10 days later. Results: Experiment in vitro showed conspicuous renal pelvic contraction and convolution. The group under power rate of 70, 3 min produced urine leak easily. Preliminary test in vivo with DSA showed the disappearance of local kidney blood supply. The residual renal function was related to areas of necrosis. Acute stage pathology revealed acute renal cortex medulla and pelvic cells injury. DSA of chronic stage showed no change in size of the area of ablation. The blood supply of necrotic areas was not restored. The residual kidney possessed the excretion contrast medium with no urine leaks. Upper pole of right kidney adhered with adjacent tissue, together with thickened covering. Pathology revealed fibrous proliferation around the coagulative necrosis. Conclusion: Microwave ablation can inactivate the local renal tissue, and, effectively preserve the big blood vessels and function of residual kidney. No urine leaks occurred in chronic stage but easily to produce adhesions with adjacent tissue. (authors)

  6. A new electromagnetic shock-wave generator "SLX-F2" with user-selectable dual focus size: ex vivo evaluation of renal injury.

    Science.gov (United States)

    Leistner, Rasmus; Wendt-Nordahl, Gunnar; Grobholz, Rainer; Michel, Maurice Stephan; Marlinghaus, Ernst; Köhrmann, Kai Uwe; Alken, Peter; Häcker, Axel

    2007-08-01

    Storz Medical AG (Kreutzlingen/Switzerland) has developed a new electromagnetic shockwave (SW) generator, the "SLX-F2", which allows the user to choose between a small-focus, high-pressure treatment regime or a wide-focus, low-pressure option. The aim of this study was to investigate, under standardized conditions, the impact of these two different treatment regimes on SW-induced renal injury. SW-induced renal injury was investigated by using the standardized model of the perfused ex vivo kidney. SWs were applied under ultrasound control in the parenchyma of a kidney pole. Different SW numbers (20, 50, 125, 250, 500, 1,000) were applied in three groups: group A was treated with a wider focus (80 MPa), groups B (60 MPa) and C (120 MPa) with a smaller focus (each parameter setting was repeated ten-fold). Disintegration capacity (measured by crater volume in cubes of plaster of Paris) was the same in groups A and C. After SW exposure, barium sulphate suspension was perfused through the renal artery. The maximum diameter (mm) of the extravasation in the cortex, representing the extent of vascular injury, was measured on X-ray mammography films. H&E staining was performed. In all three groups (A, B, C) a higher number of SWs caused the diameter of the extravasate to increase, with statistical significance appearing at 1,000 shots versus 20 shots (p generator at the same peak positive pressure and disintegration power. This confirms the in vivo findings that show renal injury caused by SW as being related to the number of SWs administered. Clinical studies are needed to investigate whether there is any advantage to offering both treatment regimes in one SW machine-for example, by using the "wide-focus, low-pressure" option for kidney stones and the "small-focus, high-pressure" regimen for stones in the ureter. The renal injury caused by either regime remains comparable.

  7. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats.

    Science.gov (United States)

    Yang, Ming; Liu, Changjin; Jiang, Jian; Zuo, Guowei; Lin, Xuemei; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-05-27

    The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1. The present results

  8. Renal endothelial function and blood flow predict the individual susceptibility to adriamycin-induced renal damage

    NARCIS (Netherlands)

    Ochodnicky, Peter; Henning, Robert H.; Buikema, Hendrik; Kluppel, Alex C. A.; van Wattum, Marjolein; de Zeeuw, Dick; van Dokkum, Richard P. E.

    2009-01-01

    Susceptibility to renal injury varies among individuals. Previously, we found that individual endothelial function of healthy renal arteries in vitro predicted severity of renal damage after 5/6 nephrectomy. Here we hypothesized that individual differences in endothelial function in vitro and renal

  9. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes.

    Science.gov (United States)

    Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis

  10. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Bai

    Full Text Available In view of increased vascular endothelial growth factor-A (VEGF-A expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM. In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II, angiotensin type II receptor 1 (ATR1 were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR, Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the

  11. Renal Tissue Oxygenation in Essential Hypertension and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Menno Pruijm

    2013-01-01

    Full Text Available Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI, detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD. In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.

  12. Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells.

    Science.gov (United States)

    Xu, Yong; Hu, Ning; Jiang, Wei; Yuan, Hong-Fang; Zheng, Dong-Hui

    2016-12-27

    Renal ischemia-reperfusion injury (IRI) is a major complication in clinical practice. However, despite its frequency, effective preventive/treatment strategies for this condition are scarce. Curcumin possesses antioxidant properties and is a promising potential protective agent against renal IRI, but its poor water solubility restricts its application. In this study, we constructed curcumin-carrying distearoylphosphatidylethanolamine-polyethylene glycol nanoparticles (Cur-NPs), and their effect on HK-2 cells exposed to IRI was examined in vitro. Curcumin encapsulated in NPs demonstrated improved water solubility and slowed release. Compared with the IRI and Curcumin groups, Cur-NP groups displayed significantly improved cell viability, downregulated protein expression levels of caspase-3 and Bax, upregulated expression of Bcl-2 protein, increased antioxidant superoxide dismutase level, and reduced apoptotic rate, reactive oxygen species level, and malondialdehyde content. Results clearly showed that Cur-NPs demonstrated good water solubility and slow release, as well as exerted protective effects against oxidative stress in cultured HK-2 cells exposed to IRI.

  13. Mannitol increases renal blood flow and maintains filtration fraction and oxygenation in postoperative acute kidney injury: a prospective interventional study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2012-08-17

    Acute kidney injury (AKI), which is a major complication after cardiovascular surgery, is associated with significant morbidity and mortality. Diuretic agents are frequently used to improve urine output and to facilitate fluid management in these patients. Mannitol, an osmotic diuretic, is used in the perioperative setting in the belief that it exerts reno-protective properties. In a recent study on uncomplicated postcardiac-surgery patients with normal renal function, mannitol increased glomerular filtration rate (GFR), possibly by a deswelling effect on tubular cells. Furthermore, experimental studies have previously shown that renal ischemia causes an endothelial cell injury and dysfunction followed by endothelial cell edema. We studied the effects of mannitol on renal blood flow (RBF), glomerular filtration rate (GFR), renal oxygen consumption (RVO2), and extraction (RO2Ex) in early, ischemic AKI after cardiac surgery. Eleven patients with AKI were studied during propofol sedation and mechanical ventilation 2 to 6 days after complicated cardiac surgery. All patients had severe heart failure treated with one (100%) or two (73%) inotropic agents and intraaortic balloon pump (36%). Systemic hemodynamics were measured with a pulmonary artery catheter. RBF and renal filtration fraction (FF) were measured by the renal vein thermo-dilution technique and by renal extraction of chromium-51-ethylenediaminetetraacetic acid (51Cr-EDTA), respectively. GFR was calculated as the product of FF and renal plasma flow RBF × (1-hematocrit). RVO2 and RO2Ex were calculated from arterial and renal vein blood samples according to standard formulae. After control measurements, a bolus dose of mannitol, 225 mg/kg, was given, followed by an infusion at a rate of 75 mg/kg/h for two 30-minute periods. Mannitol did not affect cardiac index or cardiac filling pressures. Mannitol increased urine flow by 61% (P renal vascular resistance (P renal FF. Mannitol treatment of postoperative AKI

  14. The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension

    Directory of Open Access Journals (Sweden)

    Sean Shaw

    2009-12-01

    Full Text Available Soluble epoxide hydrolase inhibitors (sEHIs are demonstrating promise as potential pharmaceutical agents for the treatment of cardiovascular disease, diabetes, inflammation, and kidney disease. The present study determined the ability of a first-inclass sEHI, AR9281, to decrease blood pressure, improve vascular function, and decrease renal inflammation and injury in angiotensin hypertension. Rats were infused with angiotensin and AR9281 was given orally during the 14-day infusion period. Systolic blood pressure averaged 180 ± 5 mmHg in vehicle treated and AR9281 treatment significantly lowered blood pressure to 142 ± 7 mmHg in angiotensin hypertension. Histological analysis demonstrated decreased injury to the juxtamedullary glomeruli. Renal expression of inflammatory genes was increased in angiotensin hypertension and two weeks of AR9281 treatment decreased this index of renal inflammation. Vascular function in angiotensin hypertension was also improved by AR9281 treatment. Decreased afferent arteriolar and mesenteric resistance endothelial dependent dilator responses were ameliorated by AR9281 treatment of angiotensin hypertensive rats. These data demonstrate that the first-in-class sEHI, AR9281, lowers blood pressure, improves vascular function and reduces renal damage in angiotensin hypertension.

  15. Are diuretics harmful in the management of acute kidney injury?

    Science.gov (United States)

    Ejaz, A Ahsan; Mohandas, Rajesh

    2014-03-01

    To assess the role of diuretics in acute kidney injury (AKI) and their effectiveness in preventing AKI, achieving fluid balance, and decreasing progression to chronic kidney disease (CKD). Diuretics are associated with increased risk for AKI. The theoretical advantage of diuretic-induced preservation of renal medullary oxygenation to prevent AKI has not been proven. A higher cumulative diuretic dose during the dialysis period can cause hypotension and increase mortality in a dose-dependent manner. Data on the use of forced euvolemic diuresis to prevent AKI remains controversial. Positive fluid balance has emerged as an independent predictor of adverse outcomes. Post-AKI furosemide dose had a favorable effect on mortality due in part to the reduction of positive fluid balance. There are exciting experimental data suggesting that spironolactone may prevent AKI once an ischemic insult has occurred and thus prevent the progression to CKD. Diuretics are ineffective and even detrimental in the prevention and treatment of AKI, and neither shorten the duration of AKI, nor reduce the need for renal replacement therapy. Diuretics have an important role in volume management in AKI, but they are not recommended for the prevention of AKI. There is increased emphasis on the prevention of progression of AKI to CKD.

  16. Salubrious effect of C-phycocyanin against oxalate-mediated renal cell injury.

    Science.gov (United States)

    Farooq, Shukkur Muhammed; Asokan, Devarajan; Sakthivel, Ramasamy; Kalaiselvi, Periandavan; Varalakshmi, Palaninathan

    2004-10-01

    C-phycocyanin, a biliprotein pigment found in some blue green algae (Spirulina platensis) with nutritional and medicinal properties, was investigated for its efficacy on sodium oxalate-induced nephrotoxicity in experimentally induced urolithic rats. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg), and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given to one of these groups by 1 h prior to sodium oxalate infusion challenges. The study also encompasses an untreated control group and a phycocyanin-alone treated drug control group. The extent of lipid peroxidation (LPO) was evaluated in terms of renal concentrations of MDA, conjugated diene and hydroperoxides. The following assay was performed in the renal tissue (a) antioxidant enzymes such as superoxide dismutase (SOD) and catalase, (b) glutathione metabolizing enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and glucose 6-phosphate dehydrogenase (G6PD), (c) the low molecular weight antioxidants (GSH, vitamins E and C) and protein carbonyl content. The increased concentrations of MDA, conjugated diene and hydroperoxide (index of the lipid peroxidation) were controlled (P antioxidants were appreciably increased (P antioxidants. It was noticed that the activities of antioxidant enzymes and glutathione metabolizing enzymes were considerably stabilized in rats pretreated with phycocyanin. We suggest that phycocyanin protects the integrity of the renal cell by stabilizing the free radical mediated LPO and protein carbonyl, as well as low molecular weight antioxidants and antioxidant enzymes in renal cells. Thus, the present analysis reveals that the antioxidant nature of C-phycocyanin protects the renal cell against oxalate-induced injury and may be a nephroprotective agent.

  17. Endothelin-like action of Pausinystalia yohimbe aqueous extract on vascular and renal regional hemodynamics in Sprague Dawley rats.

    Science.gov (United States)

    Ajayi, A A; Newaz, M; Hercule, H; Saleh, M; Bode, C O; Oyekan, A O

    2003-12-01

    The bark of the African tree Pausinystalia yohimbe has been used as a food additive with aphrodisiac and penile erection enhancing properties. The effect of an aqueous extract of P. yohimbe (CCD-X) on renal circulation was assessed in order to test the hypothesis that it possesses additional effects on nitric oxide production and/or endothelin-1 (ET-1)-like actions. In vivo studies with CCD-X in Sprague Dawley rats demonstrated a dose-dependent (1-1000 ng/kg) increase in mean blood pressure (p < 0.001) and an increase in medullary blood flow (MBF) (p < 0.001). Both the pressor action and renal medullary vasodilation were blocked by endothelinA (ETA) receptor antagonist BMS182874 and endothelinB (ETB) receptor antagonist BQ788 in combination. L-Nomega-nitro-l-arginine methyl ester (L-NAME; 10 mg/kg) also inhibited the increase in MBF induced by CCD-X. In vitro studies in isolated perfused kidney and in pressurized renal microvessels confirmed the dose-dependent vasoconstrictor action of this extract. ETA receptor antagonist BQ610 and ETB receptor antagonist BQ788 separately and significantly attenuated the renal vasoconstrictor actions of the extract (p < 0.001 ANOVA). These preliminary observations indicate that, in addition to the alpha-adrenergic antagonist actions that characterize yohimbine, CCD-X possesses endothelin-like actions and affects nitric oxide (NO) production in renal circulation. These findings suggest a strong possibility of post-receptor cross-talk between alpha2-adrenoceptors and endothelin, as well as a direct effect of alpha2-adrenoceptors on renal NO production. (c) 2003 Prous Science

  18. [Low grade renal trauma (Part II): diagnostic validity of ultrasonography].

    Science.gov (United States)

    Grill, R; Báca, V; Otcenásek, M; Zátura, F

    2010-04-01

    The aim of the study was to verify whether ultrasonography can be considered a reliable method for the diagnosis of low-grade renal trauma. The group investigated included patients with grade I or grade II blunt renal trauma, as classified by the AAST grading system, in whom ultrasonography alone or in conjunction with computed tomography was used as a primary diagnostic method. B-mode ultrasound with a transabdominal probe working at frequencies of 2.5 to 5.0 MHz was used. Every finding of post-traumatic changes in the renal tissues, i.e., post-contusion hypotonic infiltration of the renal parenchyma or subcapsular haematoma, was included. The results were statistically evaluated by the Chi-square test with the level of significance set at 5%, using Epi Info Version 6 CZ software. The group comprised 112 patients (43 women, 69 men) aged between 17 and 82 years (average, 38 years). It was possible to diagnose grade I or grade II renal injury by ultrasonography in only 60 (54%) of them. The statistical significance of ultrasonography as the only imaging method for the diagnosis of low-grade renal injury was not confirmed (p=0.543) Low-grade renal trauma is a problem from the diagnostic point of view. It usually does not require revision surgery and, if found during repeat surgery for more serious injury of another organ, it usually does not receive attention. Therefore, the macroscopic presentation of grade I and grade II renal injury is poorly understood, nor are their microscopic findings known, because during revision surgery these the traumatised kidneys are not usually removed and their injuries at autopsy on the patients who died of multiple trauma are not recorded either. The results of this study demonstrated that the validity of ultrasonography for the diagnosis of low-grade renal injury is not significant, because this examination can reveal only some of the renal injuries such as perirenal haematoma. An injury to the renal parenchyma is also indicated by

  19. The optimal timing of continuous renal replacement therapy for patients with sepsis-induced acute kidney injury.

    Science.gov (United States)

    Tian, Huanhuan; Sun, Ting; Hao, Dong; Wang, Tao; Li, Zhi; Han, Shasha; Qi, Zhijiang; Dong, Zhaoju; Lv, Changjun; Wang, Xiaozhi

    2014-10-01

    High mortality in the intensive care unit (ICU) is probably associated with sepsis-induced acute kidney injury (AKI). The aim of this study is to explore which stage of AKI may be the optimal timing for continuous renal replacement therapy (CRRT). A retrospective analysis of 160 critically ill patients with septic AKI, treated with or without CRRT was performed in Binzhou medical college affiliated hospital ICU. The parameters including 28-days mortality rate, renal recovery, ventilation time and ICU stay between CRRT group and control group were assessed. Renal recovery, defined as independence from dialysis at discharge, was documented for 64/76 (84.2 %) of the surviving patients (48.1 % of total subjects included in the study). The mortality rate increased proportionally with acute kidney injury Network stages in CRRT subgroups (P = 0.001) and control groups (P = 0.029). CRRT initiation at stage 2 of AKI significantly reduced the 28-day mortality (P = 0.048) and increased the 28-day survival rate (P = 0.036) compared with those in control group. In addition, the ICU stay and ventilation time were shorter in CRRT group than that of control group in stage 2 of AKI. The stage 2 AKI might be the optimal timing for performing CRRT.

  20. Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice

    Science.gov (United States)

    Khalifa, Hesham A.; Al-Quraishy, Saleh A.

    2017-01-01

    The current study was designed to investigate the beneficial role of diosmin, a biologically active flavonoid, against methotrexate- (MTX-) induced hepatic, renal, and cardiac injuries in mice. Male Swiss albino mice received a single intraperitoneal injection of MTX (at 20 mg/kg, body weight) either alone or in combination with oral diosmin (at 50 or 100 mg/kg body weight, for 10 days). Serum was used to evaluate tissue injury markers, while hepatic, renal, and cardiac tissue samples were obtained for determination of antioxidant activity as well as histopathological examination. Diosmin treatment ameliorated the MTX-induced elevation of serum alkaline phosphatase, aminotransferases, urea, creatinine, lactate dehydrogenase, and creatine kinases as well as plasma proinflammatory cytokines (interleukin-1-beta, interleukin-6, and tumor necrosis factor-alpha). Additionally, both diosmin doses significantly reduced tissue levels of malondialdehyde and nitric oxide and increased those of glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase, compared to the MTX-intoxicated group. Histopathological examination showed that diosmin significantly minimized the MTX-induced histological alterations and nearly restored the normal architecture of hepatic, renal, and cardiac tissues. Based on these findings, diosmin may be a promising agent for protection against MTX-induced cytotoxicity in patients with cancer and autoimmune diseases. PMID:28819543

  1. Perioperative acute renal failure.

    LENUS (Irish Health Repository)

    Mahon, Padraig

    2012-02-03

    PURPOSE OF REVIEW: Recent biochemical evidence increasingly implicates inflammatory mechanisms as precipitants of acute renal failure. In this review, we detail some of these pathways together with potential new therapeutic targets. RECENT FINDINGS: Neutrophil gelatinase-associated lipocalin appears to be a sensitive, specific and reliable biomarker of renal injury, which may be predictive of renal outcome in the perioperative setting. For estimation of glomerular filtration rate, cystatin C is superior to creatinine. No drug is definitively effective at preventing postoperative renal failure. Clinical trials of fenoldopam and atrial natriuretic peptide are, at best, equivocal. As with pharmacological preconditioning of the heart, volatile anaesthetic agents appear to offer a protective effect to the subsequently ischaemic kidney. SUMMARY: Although a greatly improved understanding of the pathophysiology of acute renal failure has offered even more therapeutic targets, the maintenance of intravascular euvolaemia and perfusion pressure is most effective at preventing new postoperative acute renal failure. In the future, strategies targeting renal regeneration after injury will use bone marrow-derived stem cells and growth factors such as insulin-like growth factor-1.

  2. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice.

    Science.gov (United States)

    Gwon, Do Hyeong; Hwang, Tae Woong; Ro, Ju-Ye; Kang, Yoon-Joong; Jeong, Jin Young; Kim, Do-Kyung; Lim, Kyu; Kim, Dong Woon; Choi, Dae Eun; Kim, Jwa-Jin

    2017-09-30

    Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt) were divided into four groups: wt sham ( n = 10), fat-1 sham ( n = 10), wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15), and fat-1 IRI ( n = 15). Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK) activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR). Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  3. Effects of sirolimus alone or in combination with cyclosporine A on renal ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    B.J. Pereira

    2010-08-01

    Full Text Available Calcineurin inhibitors exacerbate ischemic injury in transplanted kidneys, but it is not known if sirolimus protects or exacerbates the transplanted kidney from ischemic injury. We determined the effects of sirolimus alone or in combination with cyclosporin A (CsA on oxygenated and hypoxic/reoxygenated rat proximal tubules in the following in vitro groups containing 6-9 rats per group: sirolimus (10, 50, 100, 250, 500, and 1000 ηg/mL; CsA (100 µg/mL; sirolimus (50 and 250 ηg/mL + CsA (100 µg/mL; control; vehicle (20% ethanol. For in vivo studies, 3-week-old Wistar rats (150-250 g were submitted to left nephrectomy and 30-min renal artery clamping. Renal function and histological evaluation were performed 24 h and 7 days after ischemia (I in five groups: sham, I, I + SRL (3 mg·kg-1·day-1, po, I + CsA (3 mg·kg-1·day-1, sc, I + SRL + CsA. Sirolimus did not injure oxygenated or hypoxic/reoxygenated proximal tubules and did not potentiate the tubular toxic effects of CsA. Neither drug affected the glomerular filtration rate (GFR at 24 h. GFR was reduced in CsA-treated rats on day 7 (0.5 ± 0.1 mL/min but not in rats receiving sirolimus + CsA (0.8 ± 0.1 mL/min despite the reduction in renal blood flow (3.9 ± 0.5 mL/min. Acute tubular necrosis regeneration was similar for all groups. Sirolimus alone was not toxic and did not enhance hypoxia/reoxygenation injury or CsA toxicity to proximal tubules. Despite its hemodynamic effects, sirolimus protected post-ischemic kidneys against CsA toxicity.

  4. The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats.

    Science.gov (United States)

    Vogelaar, Pieter C; Roorda, Maurits; de Vrij, Edwin L; Houwertjes, Martin C; Goris, Maaike; Bouma, Hjalmar; van der Graaf, Adrianus C; Krenning, Guido; Henning, Robert H

    2018-04-11

    Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols

  5. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Goris, Maaike; Landheer, Sjoerd W.; Buikema, Hendrik; van Dokkum, Richard P. E.

    Introduction:Intact myogenic constriction plays a role in renal blood flow autoregulation and protection against pressure-related (renal) injury. However, to what extent alterations in renal artery myogenic constriction are involved in development of renal damage during aging is unknown. Therefore,

  6. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    Science.gov (United States)

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  7. Renal endothelial function and blood flow predict the individual susceptibility to adriamycin-induced renal damage

    NARCIS (Netherlands)

    Ochodnicky, Peter; Henning, Robert H.; Buikema, Hendrik; Kluppel, Alex C. A.; van Wattum, Marjolein; de Zeeuw, Dick; van Dokkum, Richard P. E.

    Background. Susceptibility to renal injury varies among individuals. Previously, we found that individual endothelial function of healthy renal arteries in vitro predicted severity of renal damage after 5/6 nephrectomy. Here we hypothesized that individual differences in endothelial function in

  8. Renal cortical volume measured using automatic contouring software for computed tomography and its relationship with BMI, age and renal function

    International Nuclear Information System (INIS)

    Muto, Natalia Sayuri; Kamishima, Tamotsu; Harris, Ardene A.; Kato, Fumi; Onodera, Yuya; Terae, Satoshi; Shirato, Hiroki

    2011-01-01

    Purpose: To evaluate the relationship between renal cortical volume, measured by an automatic contouring software, with body mass index (BMI), age and renal function. Materials and methods: The study was performed in accordance to the institutional guidelines at our hospital. Sixty-four patients (34 men, 30 women), aged 19 to 79 years had their CT scans for diagnosis or follow-up of hepatocellular carcinoma retrospectively examined by a computer workstation using a software that automatically contours the renal cortex and the renal parenchyma. Body mass index and estimated glomerular filtration rate (eGFR) were calculated based on data collected. Statistical analysis was done using the Student t-test, multiple regression analysis, and intraclass correlation coefficient (ICC). Results: The ICC for total renal and renal cortical volumes were 0.98 and 0.99, respectively. Renal volume measurements yielded a mean cortical volume of 105.8 cm 3 ± 28.4 SD, mean total volume of 153 cm 3 ± 39 SD and mean medullary volume of 47.8 cm 3 ± 19.5 SD. The correlation between body weight/height/BMI and both total renal and cortical volumes presented r = 0.6, 0.6 and 0.4, respectively, p < 0.05, while the correlation between renal cortex and age was r = -0.3, p < 0.05. eGFR showed correlation with renal cortical volume r = 0.6, p < 0.05. Conclusion: This study demonstrated that renal cortical volume had a moderate positive relationship with BMI, moderate negative relationship with age, and a strong positive relationship with the renal function, and provided a new method to routinely produce volumetric assessment of the kidney.

  9. Recurrent intramedullary epidermoid cyst of conus medullaris.

    LENUS (Irish Health Repository)

    Fleming, Christina

    2011-01-01

    Spinal intramedullary epidermoid cyst is a rare condition. Recurrent epidermoid cyst in the spine cord is known to occur. The authors describe a case of recurrent conus medullaris epidermoid cyst in a 24-year-old female. She initially presented at 7 years of age with bladder disturbance in the form of diurnal enuresis and recurrent urinary tract infection. MRI lumbar spine revealed a 4 cm conus medullaris epidermoid cyst. Since the initial presentation, the cyst had recurred seven times in the same location and she underwent surgical intervention in the form of exploration and debulking. This benign condition, owing to its anatomical location, has posed a surgical and overall management challenge. This occurrence is better managed in a tertiary-care centre requiring multi-disciplinary treatment approach.

  10. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference.

    Science.gov (United States)

    Vafapour, Marzieh; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Talebi, Nahid; Shirdavani, Soheyla

    2015-01-01

    The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P GABA decreased these parameters in female significantly (P GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.

  11. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications; Blood Oxygenation Level Dependent (BOLD). Bildgebung der Nieren. Konzepte und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J. [Heidelberg Univ. Medizinische Fakultaet Mannheim (Germany). Inst. fuer Klinische Radiologie und Nuklearmedizin; Mie, Moritz B.; Zoellner, Frank G. [Heidelberg Univ. Medizinische Fakultaet Mannheim (DE). Inst. fuer Computerunterstuetzte Klinische Medizin (CKM)

    2010-07-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2{sup *}-weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  12. Juxtarenal Aortic Pseudoaneurysm – Right Renal Vein Fistula with Circumaortic Renal Collar-Delayed Manifestation of a Gunshot Injury – an Uncommon Entity Diagnosed with CT Angiography

    International Nuclear Information System (INIS)

    Garg, Lalit; Jain, Neeraj; Agrawal, Sachin; Chauhan, Udit; Goel, Vandana; Puri, Sunil Kumar

    2016-01-01

    Delayed presentation of post-traumatic aortic pseudoaneurysm and its fistulous communication with the right renal vein is a very rare entity. Most of the cases described in literature are due to abdominal aortic aneurysm (AAA) rupture into the left renal vein. To the best of our knowledge, communication with the right renal vein has not been described in published literature. Our patient also had a circumaortic renal collar, which is a rare renal vein anomaly. Aortic pseudoaneurysm, its fistulous communication with the right renal vein and circumaortic renal collar in a single patient is of extremely rare occurrence. A 29-year-old male presented to the cardiology department with complaints of breathlessness, abdominal pain and hematuria for the last 6 months. On clinical examination there was evidence of audible bruit over the abdomen. He had a past history of a gunshot injury around two years back. CT angiography revealed a large partially calcified pseudoaneurysm arising from the right lateral wall of the abdominal aorta with the neck of the pseudoaneurysm at juxtarenal location with a fistula between the anterior wall of the pseudoaneurysm and the posterior wall of the right renal vein. There was an associated incidental finding of circumaortic left renal vein with gross aneurysmal dilatation of both pre- and retro-aortic part of the renal vein. Delayed presentation of aortic pseudoaneurysm with its fistulous communication with the right renal vein is a rare entity. CT angiography is a non-invasive modality for diagnosis of the exact site of communication, length of aneurysm, proximal and distal extent of the affected segment and its relationship with surrounding structures

  13. Neural control of adrenal medullary and cortical blood flow during hemorrhage

    International Nuclear Information System (INIS)

    Breslow, M.J.; Jordan, D.A.; Thellman, S.T.; Traystman, R.J.

    1987-01-01

    Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, the authors compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Carbonized microspheres labeled with 153 Gd, 114 In, 113 Sn, 103 Ru, 95 Nb or 46 Se were used. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. They conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension

  14. Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury

    NARCIS (Netherlands)

    Bagshaw, Sean M.; Uchino, Shigehiko; Bellomo, Rinaldo; Morimatsu, Hiroshi; Morgera, Stanislao; Schetz, Miet; Tan, Ian; Bouman, Catherine; Macedo, Ettiene; Gibney, Noel; Tolwani, Ashita; Oudemans-van Straaten, Heleen M.; Ronco, Claudio; Kellum, John A.; French, Craig; Mulder, John; Pinder, Mary; Roberts, Brigit; Botha, John; Mudholkar, Pradeen; Holt, Andrew; Hunt, Tamara; Honoré, Patrick Maurice; Clerbaux, Gaetan; Schetz, Miet Maria; Wilmer, Alexander; Yu, Luis; Macedo, Ettiene V.; Laranja, Sandra Maria; Rodrigues, Cassio José; Suassuna, José Hermógenes Rocco; Ruzany, Frederico; Campos, Bruno; Leblanc, Martine; Senécal, Lynne; Gibney, R. T. Noel; Johnston, Curtis; Brindley, Peter; Tan, Ian K. S.; Chen, Hui De; Wan, Li; Rokyta, Richard; Krouzecky, Ales; Neumayer, Hans-Helmut; Detlef, Kindgen-Milles; Mueller, Eckhard; Tsiora, Vicky; Sombolos, Kostas; Mustafa, Iqbal; Suranadi, Iwayan; Bar-Lavie, Yaron; Nakhoul, Farid; Ceriani, Roberto; Bortone, Franco; Zamperetti, Nereo; Pappalardo, Federico; Marino, Giovanni; Calabrese, Prospero; Monaco, Francesco; Liverani, Chiara; Clementi, Stefano; Coltrinari, Rosanna; Marini, Benedetto; Fuke, Nobuo; Miyazawa, Masaaki; Katayama, Hiroshi; Kurasako, Toshiaki; Hirasaw, Hiroyuki; Oda, Shigeto; Tanigawa, Koichi; Tanaka, Keiichi; Oudemans-van Straaten, Helena Maria; de Pont, Anne-Cornelie J. M.; Bugge, Jan Frederik; Riddervold, Fridtjov; Nilsen, Paul Age; Julsrud, Joar; Teixeira e Costa, Fernando; Marcelino, Paulo; Serra, Isabel Maria; Yaroustovsky, Mike; Grigoriyanc, Rachik; Lee, Kang Hoe; Loo, Shi; Singh, Kulgit; Barrachina, Ferran; Llorens, Julio; Sanchez-Izquierdo-Riera, Jose Angel; Toral-Vazquez, Darío; Wizelius, Ivar; Hermansson, Dan; Gaspert, Tomislav; Maggiorini, Marco; Davenport, Andrew; Lombardi, Raúl; Llopart, Teresita; Venkataraman, Ramesh; Kellum, John; Murray, Patrick; Trevino, Sharon; Benjamin, Ernest; Hufanda, Jerry; Paganini, Emil; Warnock, David; Guirguis, Nabil

    2009-01-01

    The aim of this study is to evaluate the relationship between timing of renal replacement therapy (RRT) in severe acute kidney injury and clinical outcomes. This was a prospective multicenter observational study conducted at 54 intensive care units (ICUs) in 23 countries enrolling 1238 patients.

  15. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    Science.gov (United States)

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  16. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice

    Directory of Open Access Journals (Sweden)

    Do Hyeong Gwon

    2017-09-01

    Full Text Available Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI. Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs from ω6-Polyunsaturated fatty acids (ω6-PUFAs without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt were divided into four groups: wt sham (n = 10, fat-1 sham (n = 10, wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15, and fat-1 IRI (n = 15. Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR. Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  17. Cardiac-surgery associated acute kidney injury requiring renal replacement therapy. A Spanish retrospective case-cohort study

    Directory of Open Access Journals (Sweden)

    Garcia-Fernandez Nuria

    2009-09-01

    Full Text Available Abstract Background Acute kidney injury is among the most serious complications after cardiac surgery and is associated with an impaired outcome. Multiple factors may concur in the development of this disease. Moreover, severe renal failure requiring renal replacement therapy (RRT presents a high mortality rate. Consequently, we studied a Spanish cohort of patients to assess the risk factors for RRT in cardiac surgery-associated acute kidney injury (CSA-AKI. Methods A retrospective case-cohort study in 24 Spanish hospitals. All cases of RRT after cardiac surgery in 2007 were matched in a crude ratio of 1:4 consecutive patients based on age, sex, treated in the same year, at the same hospital and by the same group of surgeons. Results We analyzed the data from 864 patients enrolled in 2007. In multivariate analysis, severe acute kidney injury requiring postoperative RRT was significantly associated with the following variables: lower glomerular filtration rates, less basal haemoglobin, lower left ventricular ejection fraction, diabetes, prior diuretic treatment, urgent surgery, longer aortic cross clamp times, intraoperative administration of aprotinin, and increased number of packed red blood cells (PRBC transfused. When we conducted a propensity analysis using best-matched of 137 available pairs of patients, prior diuretic treatment, longer aortic cross clamp times and number of PRBC transfused were significantly associated with CSA-AKI. Patients requiring RRT needed longer hospital stays, and suffered higher mortality rates. Conclusion Cardiac-surgery associated acute kidney injury requiring RRT is associated with worse outcomes. For this reason, modifiable risk factors should be optimised and higher risk patients for acute kidney injury should be identified before undertaking cardiac surgery.

  18. Clinical value of renal injury biomarkers in diagnosis of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Cheng-lu ZHANG

    2011-12-01

    Full Text Available Objective To investigate the levels of renal injury biomarkers in patients with chronic kidney disease(CKD and evaluate their clinical significances in diagnosis of CKD.Methods A total of 66 subjects(37 patients with CKD and 29 healthy individuals were involved in this study.Serum blood urea nitrogen(SBUN was determined by Glutamate dehydrogenase method;serum creatinine(SCr and urinary creatinine(UCr were detected by sarcosine oxidase method;serum uric acid(SUA was measured by uricase colorimetry;serum cystatin C(Cys C and urinary microalbumin(UmAlbwere analyzed by immunological transmission turbidimetry;urinary protein(U-PROwas measured by Coomassies Brilliant Blue(CBB assay.The UmAlb and U-PRO levels were expressed in units of mg/mmolUCr.Results The results of independent samples t test indicated that significant differences were found in SBUN,SCr,SUA,Cys C,UmAlb and U-PRO(P < 0.05 between patient group and healthy control group.The evaluation of diagnostic effects showed that the areas under the curve at ROC plot for SBUN,SCr,SUA,Cys C,UmAlb and U-PRO were 0.907,0.912,0.742,0.982,0.984 and 0.991,respectively.Conclusions U-PRO,UmAlb and Cys C are ideal biomarkers,SCr and SBUN come next,SUA is the weakest when the above biomarkers are applied to evaluate the renal injury and its severity of the patients with CKD.

  19. PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes.

    Science.gov (United States)

    Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L

    2016-06-01

    The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.

  20. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging

    International Nuclear Information System (INIS)

    Pedersen, Michael; Aarhus Univ.; Univ. Victor Segalen Bordeaux 2; Laustsen, Christoffer; Perot, Vincent; Grenier, Nicolas; Basseau, Fabrice; Moonen, Chrit

    2010-01-01

    Mild or severe renal arterial occlusion is a phenomenon occasionally observed in daily clinical practice, potentially leading to renal ischemia and a general impairment of renal function. Secondly, closing the blood flow to the kidneys can also occur during kidney transplantation procedures. However, the exact physiological effects of these conditions on renal blood perfusion as well as the renal oxygen handling are poorly understood. The objectives of this study were therefore to measure the lateral changes of renal blood perfusion in rats subjected to transient unilateral arterial occlusion (RAS), and in addition, to measure the consequences on the intrarenal oxygenation. Experimental studies were performed using sixteen adolescent rats. The left renal artery was exposed through a flank incision and acute RAS for 45 min was achieved by placing a ligature around the renal artery. MRI was performed 3 days after the surgical procedure, where a blood oxygenation sensitive sequence (BOLD MRI) was performed, followed by a perfusion-weighted imaging sequence using a single bolus of the iron-oxide nanoparticle Sinerem. The renal oxygenation of blood was indirectly measured by the BOLD-parameter R2 * , and perfusion measures include relative renal blood flow, relative renal blood volume and mean transit time. Histopathologic changes through the outer stripe of the outer medulla showing typical histopathologic findings of ischemia. This study demonstrated that rats with transient renal arterial stenosis (for 45 min) showed a reduction in intrarenal oxygenation and intrarenal blood flow three days after the surgical procedure. A decreased R2 * was measured within the ipsilateral medulla in parallel with a decreased medullary blood flow, is probably related to a lower reabsorption load within the ipsilateral kidney. MRI may therefore be a promising tool in long-term evaluation of RAS. (orig.)

  1. Renal hemodynamics and oxygenation in transient renal artery occluded rats evaluated with iron-oxide particles and oxygenation-sensitive imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Michael [Aarhus Univ. Hospital (Denmark). MR Research Centre; Aarhus Univ. (Denmark). Inst. of Experimental Clinical Medicine; Univ. Victor Segalen Bordeaux 2 (France). Lab. Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231; Laustsen, Christoffer [Aarhus Univ. Hospital (Denmark). MR Research Centre; Perot, Vincent; Grenier, Nicolas [Hopital Pellegrin, CHU Bordeaux (France). Service d' Imagerie Diagnostique et Therapeutique de l' Adulte; Basseau, Fabrice; Moonen, Chrit [Univ. Victor Segalen Bordeaux 2 (France). Lab. Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231

    2010-07-01

    Mild or severe renal arterial occlusion is a phenomenon occasionally observed in daily clinical practice, potentially leading to renal ischemia and a general impairment of renal function. Secondly, closing the blood flow to the kidneys can also occur during kidney transplantation procedures. However, the exact physiological effects of these conditions on renal blood perfusion as well as the renal oxygen handling are poorly understood. The objectives of this study were therefore to measure the lateral changes of renal blood perfusion in rats subjected to transient unilateral arterial occlusion (RAS), and in addition, to measure the consequences on the intrarenal oxygenation. Experimental studies were performed using sixteen adolescent rats. The left renal artery was exposed through a flank incision and acute RAS for 45 min was achieved by placing a ligature around the renal artery. MRI was performed 3 days after the surgical procedure, where a blood oxygenation sensitive sequence (BOLD MRI) was performed, followed by a perfusion-weighted imaging sequence using a single bolus of the iron-oxide nanoparticle Sinerem. The renal oxygenation of blood was indirectly measured by the BOLD-parameter R2{sup *}, and perfusion measures include relative renal blood flow, relative renal blood volume and mean transit time. Histopathologic changes through the outer stripe of the outer medulla showing typical histopathologic findings of ischemia. This study demonstrated that rats with transient renal arterial stenosis (for 45 min) showed a reduction in intrarenal oxygenation and intrarenal blood flow three days after the surgical procedure. A decreased R2{sup *} was measured within the ipsilateral medulla in parallel with a decreased medullary blood flow, is probably related to a lower reabsorption load within the ipsilateral kidney. MRI may therefore be a promising tool in long-term evaluation of RAS. (orig.)

  2. Traumatic renal infarction

    International Nuclear Information System (INIS)

    Yashiro, Naobumi; Ohtomo, Kuni; Kokubo, Takashi; Itai, Yuji; Iio, Masahiro

    1986-01-01

    Four cases of traumatic renal artery occlusion were described and illustrated. In two cases, direct blows to the abdomen compressed the renal artery against the vertebral column. Clinically, they were severely injured with macroscopic hematuria. Aortograms showed abrupt truncation of renal arteries. In the other two, rapid deceleration caused sudden displacement of the kidney producing an intimal tear with resultant thrombosis. Although they showed little injury without macrohematuria, aortograms revealed tapered occlusion of renal arteries. One of them developed hypertension. ''Rim sign'' of post-contrast CT and hypertension resulted from traumatic renal artery occlusion were reviewed. (author)

  3. N-octanoyl dopamine treatment exerts renoprotective properties in acute kidney injury but not in renal allograft recipients

    NARCIS (Netherlands)

    Klotz, Sarah; Pallavi, Prama; Tsagogiorgas, Charalambos; Zimmer, Fabian; Zoellner, Frank G.; Binzen, Uta; Greffrath, Wolfgang; Treede, Rolf-Detlef; Walter, Jakob; Harmsen, Martin C.; Kraemer, Bernhard K.; Hafner, Mathias; Yard, Benito A.; Hoeger, Simone

    N-octanoyl dopamine (NOD) treatment improves renal function when applied to brain dead donors and in the setting of warm ischaemia-induced acute kidney injury (AKI). Because it also activates transient receptor potential vanilloid type 1 (TRPV1) channels, we first assessed if NOD conveys its

  4. Early outcome in renal transplantation from large donors to small and size-matched recipients - a porcine experimental model

    DEFF Research Database (Denmark)

    Ravlo, Kristian; Chhoden, Tashi; Søndergaard, Peter

    2012-01-01

    in small recipients within 60 min after reperfusion. Interestingly, this was associated with a significant reduction in medullary RPP, while there was no significant change in the size-matched recipients. No difference was observed in urinary NGAL excretion between the groups. A significant higher level......Kidney transplantation from a large donor to a small recipient, as in pediatric transplantation, is associated with an increased risk of thrombosis and DGF. We established a porcine model for renal transplantation from an adult donor to a small or size-matched recipient with a high risk of DGF...... and studied GFR, RPP using MRI, and markers of kidney injury within 10 h after transplantation. After induction of BD, kidneys were removed from ∼63-kg donors and kept in cold storage for ∼22 h until transplanted into small (∼15 kg, n = 8) or size-matched (n = 8) recipients. A reduction in GFR was observed...

  5. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  6. Relationship between red cell distribution width and early renal injury in patients with gestational diabetes mellitus.

    Science.gov (United States)

    Cheng, Dong; Zhao, Jiangtao; Jian, Liguo; Ding, Tongbin; Liu, Shichao

    2016-09-01

    Previous studies found that red cell distribution width was related to adverse cardiovascular events. However, few studies reported the relationship between red cell distribution width and early-stage renal injury in pregnant women with gestational diabetes mellitus. Using a cross-sectional design, 334 pregnant women with gestational diabetes mellitus were enrolled according to the criterion of inclusion and exclusion. Demographic and clinical examination data were collected. Depended on the urine albumin, study population were divided into case group (n = 118) and control group (n = 216). Compared with control group, the case group tend to be higher red cell distribution width level (13.6 ± 0.9 vs.12.5 ± 0.6, p gestational diabetes mellitus patients. The elevated red cell distribution width level might be a predictor of early-stage renal injury in pregnant women with gestational diabetes mellitus. As an easy and routine examination index, red cell distribution width may provide better clinical guidance when combined with other important indices.

  7. [The effect of portal blood stasis on lung and renal injury induced by hepatic ischemia reperfusion in a rabbit model].

    Science.gov (United States)

    Wang, Ye; Yang, Jia-mei; Hou, Yuan-kai; Li, Dian-qi; Hu, Ming-hua; Liu, Peng

    2008-04-15

    To investigate the effect and mechanism of portal blood stasis on lung and renal injury induced by hepatic ischemia reperfusion. A rabbit hepatic ischemia reperfusion injury model was established by hepatic portal occlusion and in situ hypothermic irrigation for 30 min. Twenty-four New Zealand white rabbits were employed and randomly divided into 3 groups equally by different dosage of portal blood stasis removal: group A5 (5 ml blood removal), group A10 (10 ml blood removal),and group B (no blood removal). Eight rabbits were served as controls with no hepatic portal occlusion and hypothermic irrigation. After reperfusion 4 h serum endotoxin content, tumor necrosis factor-alpha (TNF-alpha), urea nitrogen (BUN), and creatinine (Cr) were examined respectively, meantime lung and kidney tissues were sampled to determine the content of malondialdehyde (MDA), superoxide dismutase (SOD), the pathology, and wet to dry weight ratio, broncho-alveolar lavage fluid protein content in lung tissues. Removing portal blood stasis ameliorated lung and renal injury as shown by decreasing the level of serum endotoxin, TNF-alpha, BUN, Cr, wet to dry weight ratio, broncho-alveolar lavage fluid protein content, MDA, SOD. TNF-alpha, Cr, broncho-alveolar lavage fluid protein content in lung tissues and MDA in kidney tissue in group A5 were significantly reduced compared with those in group B (P portal blood stasis before the resume of splanchnic circulation may ameliorate the lung and renal injury induced by hepatic ischemia reperfusion. The possible mechanism may be that portal blood stasis removal reduces endotoxin absorption, and further decreases production of serum TNF-alpha.

  8. Dapagliflozin Aggravates Renal Injury via Promoting Gluconeogenesis in db/db Mice.

    Science.gov (United States)

    Jia, Yingli; He, Jinzhao; Wang, Liang; Su, Limin; Lei, Lei; Huang, Wei; Geng, Xiaoqiang; Zhang, Shun; Meng, Xiaolu; Zhou, Hong; Yang, Baoxue

    2018-01-01

    A sodium-glucose co-transporter-2 inhibitor dapagliflozin is widely used for lowering blood glucose and its usage is limited in type 2 diabetes mellitus patients with moderate renal impairment. As its effect on kidney function is discrepant and complicated, the aim of this study is to determine the effect of dapagliflozin on the progression of diabetic nephropathy and related mechanisms. Twelve-week-old male C57BL/6 wild-type and db/db mice were treated with vehicle or 1 mg/kg dapagliflozin for 12 weeks. Body weight, blood glucose, insulin tolerance, glucose tolerance, pyruvate tolerance and 24-hour urine were measured every 4 weeks. At 24 weeks of age, renal function was evaluated by blood urea nitrogen level, creatinine clearance, urine output, urinary albumin excretion, Periodic Acid-Schiff staining, Masson's trichrome staining and electron microscopy. Changes in insulin signaling and gluconeogenic key regulatory enzymes were detected using Western blot analysis. Dapagliflozin did not alleviate but instead aggravated diabetic nephropathy manifesting as increased levels of microalbuminuria, blood urea nitrogen, and glomerular and tubular damage in db/db mice. Despite adequate glycemic control by dapagliflozin, urinary glucose excretion increased after administration before 24 weeks of age and was likely associated with renal impairment. Increased urinary glucose excretion was mainly derived from the disturbance of glucose homeostasis with elevated hepatic and renal gluconeogenesis induced by dapagliflozin. Although it had no effect on insulin sensitivity and glucose tolerance, dapagliflozin further induced the expression of gluconeogenic key rate-limiting enzymes through increasing the expression levels of FoxO1 in the kidney and liver. These experimental results indicate that dapagliflozin aggravates diabetes mellitus-induced kidney injury, mostly through increasing gluconeogenesis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Vink, E.E.; Boer, A.; Blankestijn, P.J. [University Medical Center Utrecht, Department of Nephrology, P.O. Box 85500, GA, Utrecht (Netherlands); Verloop, W.L.; Voskuil, M. [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Spiering, W.; Leiner, T. [University Medical Center Utrecht, Department of Vascular Medicine, Utrecht (Netherlands); Vonken, E.; Hoogduin, J.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Bots, M.L. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2015-07-15

    Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m{sup 2}; p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. (orig.)

  10. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

    Science.gov (United States)

    Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.

    1999-01-01

    We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

  11. Dynamic magnetic resonance imaging in the assessment of chronic medical nephropathies with impaired renal function

    International Nuclear Information System (INIS)

    Dalla-Palma, L.; Pozzi-Mucelli, R.S.; Cova, M.; Meduri, S.; Panzetta, G.; Galli, G.

    2000-01-01

    We examined the value of dynamic magnetic resonance imaging (MRI) in chronic renal disease with renal insufficiency. In 33 consecutive patients (21 vascular nephropathy, 12 glomerular nephropathy) MRI was performed using a 1.5-T unit and a body coil, with SE T1-weighted (TR/TE = 600/19 ms) and dynamic TFFE T1-weighted sequences (TR/TE = 12/5 ms, flip angle = 25 ) after manual bolus injection (via a cubital vein) of 0.1 mmol/kg Gd-DTPA-BMA. Morphological evaluation was performed in unblinded fashion by three radiologists, evaluating renal size, cortical thickness, and corticomedullary differentiation. Functional analysis was performed by one reviewer. Time-signal intensity curves, peak intensity value (P), time to peak intensity (T), and the P/T ratio were obtained at the cortex, medulla, and pyelocaliceal system of each kidney. The relationship of these parameters to serum creatinine and with creatinine clearance was investigated. A good correlation between morphological features of the kidneys and serum creatinine values was found. Morphological findings could not distinguish between vascular and glomerular nephropathies. A statistically significant correlation (P <0.01) between cortical P, cortical P/T, medullary P, and serum creatinine and creatinine clearance was found. A significant correlation (P <0.01) was also found between cortical T, medullary P/T, T of the excretory system, and creatinine clearance. The cortical T value was significantly higher (P <0.01) in vascular nephropathy than in glomerular nephropathy. Thus in patients with chronic renal failure dynamic MRI shows both morphological and functional changes. Morphological changes are correlated with the degree of renal insufficiency and not with the type of nephropathy; the functional changes seem to differ in vascular from glomerular nephropathies. (orig.)

  12. Novel genes in renal aging

    OpenAIRE

    Noordmans, Gerda Anke

    2015-01-01

    Renal aging is characterized by structural changes and functional decline. These changes make the elderly more vulnerable to chronic kidney disease, hypertension, and cardiovascular disease. Furthermore, they also make it more difficult to cope with stress factors, such as dehydration, toxicity, and obstruction. These stress factors can lead to acute kidney injury and reduced recovery from acute kidney injury and may result in chronic kidney disease or even end-stage renal disease. The rate o...

  13. A Nitric Oxide-Donor Furoxan Moiety Improves the Efficacy of Edaravone against Early Renal Dysfunction and Injury Evoked by Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Fausto Chiazza

    2015-01-01

    Full Text Available Edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, EDV is a free-radical scavenger reduces organ ischemic injury. Here we investigated whether the protective effects of EDV in renal ischemia/reperfusion (I/R injury may be enhanced by an EDV derivative bearing a nitric oxide- (NO- donor furoxan moiety (NO-EDV. Male Wistar rats were subjected to renal ischemia (45 minutes, followed by reperfusion (6 hours. Administration of either EDV (1.2–6–30 µmol/kg, i.v. or NO-EDV (0.3–1.2–6 µmol/kg, i.v. dose-dependently attenuated markers of renal dysfunction (serum urea and creatinine, creatinine clearance, urine flow, urinary N-acetyl-β-D-glucosaminidase, and neutrophil gelatinase-associated lipocalin/lipocalin-2. NO-EDV exerted protective effects in the dose-range 1.2–6 µmol/kg, while a higher dose (30 µmol/kg was needed to obtain protection by EDV. Both EDV and NO-EDV modulated tissue markers of oxidative stress and lipid peroxidation. NO-EDV, but not EDV, activated endothelial NO synthase (NOS and blunted I/R-induced upregulation of inducible NOS, secondary to modulation of Akt and NF-κB activation, respectively. Besides NO-EDV administration inhibited I/R-induced IL-1β, IL-18, IL-6, and TNF-α overproduction. Overall, these findings demonstrate that the NO-donor moiety contributes to the protection against early renal I/R injury and suggest that NO-donor EDV codrugs are worthy of additional study as innovative pharmacological tools.

  14. Renal venous thrombosis in an infant with predisposing thrombotic factors: color Doppler ultrasound and MR evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I.; Papadopoulou, Frederica; Nikolopoulos, Pangiotis [Department of Radiology, Medical School, University of Ioannina, 45110, Ioannina (Greece); Giapros, Vassilios I.; Drougia, Aikaterini A.; Andronikou, Styliani [Neonatology Clinic, Medical School, University of Ioannina, 45110, Ioannina (Greece); Vartholomatos, Georgios A. [Department of Haematology, Medical School, University of Ioannina, 45110, Ioannina (Greece)

    2003-08-01

    We report a case of a neonate with hereditary thrombophilia presenting with renal venous thrombosis (RVT). Early color Doppler findings of RVT were lacking venous flow, and the arterial diastolic flow was reversed. This very high-resistance arterial flow is for the first time described in neonatal RVT. Magnetic resonance imaging showed low signal intensity of the renal pyramids on T1- and T2-weighted images, suggesting acute hemorrhage. After intravenous contrast injection, persistent cortical enhancement was observed along with lack of medullary enhancement. Despite the progressive reestablishment of some venous drainage, the kidney showed atrophy and loss of function. (orig.)

  15. Renal venous thrombosis in an infant with predisposing thrombotic factors: color Doppler ultrasound and MR evaluation

    International Nuclear Information System (INIS)

    Argyropoulou, Maria I.; Papadopoulou, Frederica; Nikolopoulos, Pangiotis; Giapros, Vassilios I.; Drougia, Aikaterini A.; Andronikou, Styliani; Vartholomatos, Georgios A.

    2003-01-01

    We report a case of a neonate with hereditary thrombophilia presenting with renal venous thrombosis (RVT). Early color Doppler findings of RVT were lacking venous flow, and the arterial diastolic flow was reversed. This very high-resistance arterial flow is for the first time described in neonatal RVT. Magnetic resonance imaging showed low signal intensity of the renal pyramids on T1- and T2-weighted images, suggesting acute hemorrhage. After intravenous contrast injection, persistent cortical enhancement was observed along with lack of medullary enhancement. Despite the progressive reestablishment of some venous drainage, the kidney showed atrophy and loss of function. (orig.)

  16. CD147/basigin reflects renal dysfunction in patients with acute kidney injury.

    Science.gov (United States)

    Nagaya, Hiroshi; Kosugi, Tomoki; Maeda-Hori, Mayuko; Maeda, Kayaho; Sato, Yuka; Kojima, Hiroshi; Hayashi, Hiroki; Kato, Noritoshi; Ishimoto, Takuji; Sato, Waichi; Yuzawa, Yukio; Matsuo, Seiichi; Kadomatsu, Kenji; Maruyama, Shoichi

    2014-10-01

    Acute tubular necrosis (ATN) describes a form of intrinsic acute kidney injury (AKI) that results from persistent hypoperfusion and subsequent activation of the immune system. A glycosylated transmembrane protein, CD147/basigin, is involved in the pathogenesis of renal ischemia and fibrosis. The present study investigated whether CD147 can reflect pathological features and renal dysfunction in patients with AKI. Plasma and spot urine samples were collected from 24 patients (12 controls and 12 with ATN) who underwent renal biopsy between 2008 and 2012. In another study, patients undergoing open surgery to treat abdominal aortic aneurysms (AAAs) were enrolled in 2004. We collected urine and plasma samples from seven patients with AKI and 33 patients without AKI, respectively. In these experiments, plasma and urinary CD147, and urinary L-fatty acid-binding protein (L-FABP) levels were measured, and the former expression in kidneys was examined by immunostaining. In biopsy tissues of ATN with severe histological features, CD147 induction was strikingly present in inflammatory cells such as macrophages and lymphocytes in the injured interstitium, but not in damaged tubules representing atrophy. Both plasma and urinary CD147 levels were strikingly increased in ATN patients; both values showed greater correlations with renal dysfunction compared to urinary L-FABP. In patients who had undergone open AAA surgery, urinary and plasma CD147 values in AKI patients were significantly higher than in non-AKI patients at post-operative day 1, similar to the profile of urinary L-FABP. CD147 was prominent in its ability to detect AKI and may allow the start of preemptive medication.

  17. Renal cortical and medullary blood flow responses to altered NO-availability in humans

    DEFF Research Database (Denmark)

    Damkjaer, Mads; Vafaee, Manoucher; Møller, Michael Lehd

    2010-01-01

    The objective was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned and regional renal blood flow determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed...... of one voxel were eliminated stepwise from the external surface of the VOI ('voxel peeling'), and the blood flow subsequently determined in each new, reduced VOI. Blood flow in the shrinking volumes of interest (VOIs) decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood...... flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ±0.17 ml·(g·min)(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ±0.18 ml·(g·min)(-1) (p...

  18. Retrospective Review of Pediatric Blunt Renal Trauma: A Single Institution's Five Year Experience.

    Science.gov (United States)

    Richards, Carly R; Clark, Margaret E; Sutherland, Ronald S; Woo, Russell K

    2017-05-01

    Children are at higher risk of renal injury from blunt trauma than adults due to a variety of anatomic factors such as decreased perirenal fat, weaker abdominal muscles, and a less ossified thoracic cage. Non-operative management is gaining in popularity for even major injuries, although there are no universally accepted guidelines. We present a retrospective review of pediatric major blunt renal injuries (grade 3 or higher) at a children's hospital in Hawai'i over a 5-year period. Medical records were examined between January 2009 and September 2014 from Kapi'olani Medical Center for Women and Children in Honolulu, Hawai'i. Inclusion criteria were a diagnosis of renal trauma, or the diagnosis of blunt abdominal trauma with hematuria. Exclusion criteria were grade I or II renal injury or death due to an additional traumatic injury. Mechanism of injury, clinical characteristics on admission, blood product requirements, surgical interventions performed, and hospital length of stay were retrospectively analyzed. Eleven total patient records were examined, nine of which fit inclusion criteria. Uniquely, 33% of patients sustained their renal injury while surfing. No patients required laparotomy or nephrectomy, though 22% of patients received a blood transfusion and 44% of patients underwent ureteral stent placement. Non-operative management of major renal injuries in children is feasible and allows for preservation of renal tissue. A novel mechanism of surfing as a cause of major renal trauma is seen in the state of Hawai'i.

  19. Retrospective Review of Pediatric Blunt Renal Trauma: A Single Institution's Five Year Experience

    Science.gov (United States)

    Clark, Margaret E; Sutherland, Ronald S; Woo, Russell K

    2017-01-01

    Children are at higher risk of renal injury from blunt trauma than adults due to a variety of anatomic factors such as decreased perirenal fat, weaker abdominal muscles, and a less ossified thoracic cage. Non-operative management is gaining in popularity for even major injuries, although there are no universally accepted guidelines. We present a retrospective review of pediatric major blunt renal injuries (grade 3 or higher) at a children's hospital in Hawai‘i over a 5-year period. Medical records were examined between January 2009 and September 2014 from Kapi‘olani Medical Center for Women and Children in Honolulu, Hawai‘i. Inclusion criteria were a diagnosis of renal trauma, or the diagnosis of blunt abdominal trauma with hematuria. Exclusion criteria were grade I or II renal injury or death due to an additional traumatic injury. Mechanism of injury, clinical characteristics on admission, blood product requirements, surgical interventions performed, and hospital length of stay were retrospectively analyzed. Eleven total patient records were examined, nine of which fit inclusion criteria. Uniquely, 33% of patients sustained their renal injury while surfing. No patients required laparotomy or nephrectomy, though 22% of patients received a blood transfusion and 44% of patients underwent ureteral stent placement. Non-operative management of major renal injuries in children is feasible and allows for preservation of renal tissue. A novel mechanism of surfing as a cause of major renal trauma is seen in the state of Hawai‘i. PMID:28484665

  20. Intra-Abdominal Cooling System Limits Ischemia-Reperfusion Injury During Robot-Assisted Renal Transplantation.

    Science.gov (United States)

    Meier, R P H; Piller, V; Hagen, M E; Joliat, C; Buchs, J-B; Nastasi, A; Ruttimann, R; Buchs, N C; Moll, S; Vallée, J-P; Lazeyras, F; Morel, P; Bühler, L

    2018-01-01

    Robot-assisted kidney transplantation is feasible; however, concerns have been raised about possible increases in warm ischemia times. We describe a novel intra-abdominal cooling system to continuously cool the kidney during the procedure. Porcine kidneys were procured by standard open technique. Groups were as follows: Robotic renal transplantation with (n = 11) and without (n = 6) continuous intra-abdominal cooling and conventional open technique with intermittent 4°C saline cooling (n = 6). Renal cortex temperature, magnetic resonance imaging, and histology were analyzed. Robotic renal transplantation required a longer anastomosis time, either with or without the cooling system, compared to the open approach (70.4 ± 17.7 min and 74.0 ± 21.5 min vs. 48.7 ± 11.2 min, p-values system compared to the open approach group (6.5 ± 3.1°C vs. 22.5 ± 6.5°C; p = 0.001) or compared to the robotic group without the cooling system (28.7 ± 3.3°C; p system that suppresses the noncontrolled rewarming of donor kidneys during the transplant procedure and prevents ischemia-reperfusion injuries. © 2017 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  1. The diagnostic value of both troponin T and creatinine kinase isoenzyme (CK-MB in detecting combined renal and myocardial injuries in asphyxiated infants.

    Directory of Open Access Journals (Sweden)

    Wilson E Sadoh

    Full Text Available Troponin T (cTnT and Creatinine Kinase Isoenzyme (CK-MB are both markers of myocardial injuries. However, CK-MB is also elevated in acute kidney injury.The diagnostic value of both cTnT and cardiac CK-MB in combined myocardial and acute kidney injuries (AKI in asphyxiated neonates was evaluated.40 asphyxiated infants and 40 non-asphyxiated controls were consecutively recruited. Serum levels of cTnT, CK-MB and creatinine were measured. Myocardial injury and AKI were defined as cTnT >95th percentile of the control and serum creatinine >1.0 mg/dl respectively.Of the 40 subjects, 9 (22.50%, 8 (20.00% and 4 (10.00% had myocardial injury, AKI and combined AKI and myocardial injuries respectively. The mean cTnT and CK-MB values were highest in infants with combined AKI and myocardial injuries. The Mean cTnT in infants with AKI, myocardial injury and combined AKI and myocardial injuries were 0.010±0.0007 ng/ml, 0.067±0.040 ng/ml and 0.084±0.067 ng/ml respectively, p = 0.006. The mean CK-MB in infants with AKI, myocardial injury and combined AKI and myocardial injuries were 2.78±0.22 ng/ml, 1.28±0.11 ng/ml and 4.58±0.52 ng/ml respectively, p = <0.0001.In severe perinatal asphyxia, renal and myocardial injuries could co-exist. Elevated cTnT signifies the presence of myocardial injury. Elevated CK-MB indicates either myocardial injury, AKI or both. Therefore renal injury should be excluded in asphyxiated infants with elevated CK-MB.

  2. Neurobrucellosis presenting as an intra-medullary spinal cord abscess

    Directory of Open Access Journals (Sweden)

    Patil Chidanand S

    2005-09-01

    Full Text Available Abstract Background Of the diverse presentation of neurobrucellosis, intra-medullary spinal cord abscess is extremely rare. Only four other cases have been reported so far. We present a case of spinal cord intra-medullary abscess due to Brucella melitensis. Case presentation A forty-year-old female presented with progressive weakness of both lower limb with urinary incontinence of 6 months duration. She was febrile. Neurological examination revealed flaccid areflexic paraplegia with T10 below sensory impairment including perianal region. An intramedullary mass was diagnosed on Magnetic Resonance Image (MRI scan extending from T12 to L2. At surgery, a large abscess was encountered at the conus medullaris, from which Brucella melitensis was grown on culture. She was started on streptomycin and doxycycline for 1 month, followed by rifampicin and doxycycline for 1 month. At 2-year follow-up, she had recovered only partially and continued to have impaired bladder function. Conclusion Neurobrucellosis, if not treated early, can result in severe neurological morbidity and sequale, which may be irreversible. Hence it is important to consider the possibility of neurobrucellosis in endemic region and treat aggressively.

  3. Resveratrol plays important role in protective mechanisms in renal disease - mini-review

    Directory of Open Access Journals (Sweden)

    Guilherme Albertoni

    2015-03-01

    Full Text Available Resveratrol (RESV is a polyphenolic compound found in various plants, including grapes, berries and peanuts, and its processed foods as red wine. RESV possesses a variety of bioactivities, including antioxidant, anti-inflammatory, cardioprotective, antidiabetic, anticancer, chemopreventive, neuroprotective, renal lipotoxicity preventative, and renal protective effects. Numerous studies have demonstrated that polyphenols promote cardiovascular health. Furthermore, RESV can ameliorate several types of renal injury in animal models, including diabetic nephropathy, hyperuricemic, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and endothelial dysfunction. In addition, RESV can prevent the increase in vasoconstrictors, such as angiotensin II (AII and endothelin-1 (ET-1, as well as intracellular calcium, in mesangial cells. Together, these findings suggest a potential role for RESV as a supplemental therapy for the prevention of renal injury.

  4. Renal sarcoidosis presenting as acute kidney injury with granulomatous interstitial nephritis and vasculitis.

    Science.gov (United States)

    Agrawal, Varun; Crisi, Giovanna M; D'Agati, Vivette D; Freda, Benjamin J

    2012-02-01

    Among the various renal manifestations of sarcoidosis, granulomatous inflammation confined to the tubulointerstitial compartment is the most commonly reported finding. We present the case of a 66-year-old man with acute kidney injury, hypercalcemia, mild restrictive pulmonary disease, and neurologic signs of parietal lobe dysfunction. Kidney biopsy showed diffuse interstitial inflammation with noncaseating granulomas that exhibited the unusual feature of infiltrating the walls of small arteries with destruction of the elastic lamina, consistent with granulomatous vasculitis. The findings of granulomatous interstitial nephritis on kidney biopsy, hypercalcemia, and possible cerebral and pulmonary involvement in the absence of other infectious, drug-induced, or autoimmune causes of granulomatous disease established the diagnosis of sarcoidosis. Pulse methylprednisolone followed by maintenance prednisone therapy led to improvement in kidney function, hypercalcemia, and neurologic symptoms. Vasculocentric granulomatous interstitial nephritis with granulomatous vasculitis is a rare and under-recognized manifestation of renal sarcoidosis. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Somatostatin Receptor Scintigraphy in Medullary Thyroid Cancer

    NARCIS (Netherlands)

    van der Horst-Schrivers, Anouk N. A.; Brouwers, Adrienne; Links, Thera; Hubalewska‐Dydejczyk, Alicja; Signore, Alberto; de Jong, Marion; Dierckx, Rudi A.; Buscombe, John; Van de Wiele, Christophe

    2015-01-01

    Medullary thyroid cancer (MTC) is a neuroendocrine tumor originating from the calcitonin‐secreting C cells. Surgery, consisting of a total thyroidectomy and an extensive lymph node dissection, is the only effective treatment in MTC; however, metastases are frequently found in the regional cervical

  6. A 9 years boy with MEN-2B variant of medullary thyroid carcinoma.

    Science.gov (United States)

    Sattar, M A; Hadi, H I; Ekramuddoula, F M; Hasanuzzaman, S M

    2013-04-01

    To highlight a rare disease like multiple endocrine neoplasia (MEN)-2B variant of medullary thyroid carcinoma and to optimize the management option in such cases, we present a nine year old boy with thyroid swelling, cervical lymphadenopathy and thick lips. His calcitonin level was raised. Investigation's results of the boy were as following fine needle aspiration cytology (FNAC) was medullary carcinoma of thyroid, preoperative calcitonin was >2000pg/ml, post operative histopathological report was medullary carcinoma. Total thyroidectomy with aggressive initial neck surgery may reduce the recurrence and increase better prognosis and survival rate. Calcitonin is used as diagnostic and follow-up marker.

  7. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction.

    Directory of Open Access Journals (Sweden)

    Shushimita Shushimita

    Full Text Available Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI in mice. We recently showed that Mannan-binding lectin (MBL, the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.

  8. Radionuclide bone scanning of medullary chondrosarcoma

    International Nuclear Information System (INIS)

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-01-01

    Technetium-99m methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan intake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the ''extended pattern of uptake'' beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogenous uptake on the scan

  9. Radionuclide bone scanning of medullary chondrosarcoma

    International Nuclear Information System (INIS)

    Hudson, T.M.; Chew, F.S.; Manaster, B.J.

    1982-01-01

    /sup 99m/Tc methylene diphosphonate bone scans of 18 medullary chondrosarcomas of bone were correlated with pathologic macrosections of the resected tumors. There was increased scan uptake by all 18 tumors, and the uptake in 15 scans corresponded accurately to the anatomic extent of the tumors. Only three scans displayed increased uptake beyond the true tumor margins; thus, the extended pattern of uptake beyond the true tumor extent is much less common in medullary chondrosarcomas than in many other primary bone tumors. Therefore, increased uptake beyond the apparent radiographic margin of the tumor suggests possible occult tumor spread. Pathologically, there was intense reactive new bone formation and hyperemia around the periphery of all 18 tumors, and there were foci of enchondral ossification, hyperemia, or calcification within the tumor itself in nearly every tumor. Three scans displayed less uptake in the center of the tumors than around their peripheries. One of these tumors was necrotic in the center, but the other two were pathologically no different from tumors that displayed homogeneous uptake on the scan

  10. Schwannosis induced medullary compression in VACTERL syndrome.

    LENUS (Irish Health Repository)

    Treacy, A

    2011-10-21

    A 7-year-old boy with a history of VACTERL syndrome was found collapsed in bed. MRI had shown basilar invagination of the skull base and narrowing of the foramen magnum. Angulation, swelling and abnormal high signal at the cervicomedullary junction were felt to be secondary to compression of the medulla. Neuropathologic examination showed bilateral replacement of the medullary tegmentum by an irregularly circumscribed cellular lesion which was composed of elongated GFAP\\/S 100-positive cells with spindled nuclei and minimal atypia. The pathologic findings were interpreted as intramedullary schwannosis with mass effect. Schwannosis, is observed in traumatized spinal cords where its presence may represent attempted, albeit aberrant, repair by inwardly migrating Schwann cells ofperipheral origin. In our view the compressive effect of the basilar invagination on this boy\\'s medulla was of sufficient magnitude to have caused tumoral medullary schwannosis with resultant intermittent respiratory compromise leading to reflex anoxic seizures.

  11. Crosstalk between Complement and Toll-like Receptor Activation in Relation to Donor Brain Death and Renal Ischemia-Reperfusion Injury

    NARCIS (Netherlands)

    Damman, Jeffrey; Daha, Mohamed R.; van Son, Willem J.; Leuvenink, Henri G.; Ploeg, Rutger J.; Seelen, Marc A.

    Two central pathways of innate immunity, complement and Toll-like receptors (TLRs), play an important role in the pathogenesis of renal injury inherent to kidney transplantation. Recent findings indicate close crosstalk between complement and TLR signaling pathways. It is suggested that mitogen

  12. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review

    Science.gov (United States)

    2014-01-01

    Rhabdomyolysis, a clinical syndrome caused by damage to skeletal muscle and release of its breakdown products into the circulation, can be followed by acute kidney injury (AKI) as a severe complication. The belief that the AKI is triggered by myoglobin as the toxin responsible appears to be oversimplified. Better knowledge of the pathophysiology of rhabdomyolysis and following AKI could widen treatment options, leading to preservation of the kidney: the decision to initiate renal replacement therapy in clinical practice should not be made on the basis of the myoglobin or creatine phosphokinase serum concentrations. PMID:25043142

  13. Is thyroidectomy necessary in RET mutations carriers of the familial medullary thyroid carcinoma syndrome?

    DEFF Research Database (Denmark)

    Hansen, H S; Torring, H; Godballe, C

    2000-01-01

    BACKGROUND: The results and consequences of genetic testing in a family with familial medullary thyroid carcinoma (FMTC) are described. METHODS: In the screening of relatives, serum calcitonin is replaced by RET mutation analysis that was performed in families suspected of hereditary medullary th...

  14. Extracellular vesicles from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase 1 and inhibiting necroptosis.

    Science.gov (United States)

    Yuan, Xiaodong; Li, Dawei; Chen, Xiaosong; Han, Conghui; Xu, Longmei; Huang, Tao; Dong, Zhen; Zhang, Ming

    2017-12-11

    Renal ischemia-reperfusion is a main cause of acute kidney injury (AKI), which is associated with high mortality. Here we show that extracellular vesicles (EVs) secreted from hiPSC-MSCs play a critical role in protection against renal I/R injury. hiPSC-MSCs-EVs can fuse with renal cells and deliver SP1 into target cells, subsequently active SK1 expression and increase S1P formation. Chromatin immunoprecipitation (ChIP) analyses and luciferase assay were used to confirm SP1 binds directly to the SK1 promoter region and promote promoter activity. Moreover, SP1 inhibition (MIT) or SK1 inhibition (SKI-II) completely abolished the renal protective effect of hiPSC-MSCs-EVs in rat I/R injury mode. However, pre-treatment of necroptosis inhibitor Nec-1 showed no difference with the administration of hiPSC-MSCs-EVs only. We then generated an SP1 knockout hiPSC-MSC cell line by CRISPR/Cas9 system and found that SP1 knockout failed to show the protective effect of hiPSC-MSCs-EVs unless restoring the level of SP1 by Ad-SP1 in vitro and in vivo. In conclusion, this study describes an anti-necroptosis effect of hiPSC-MSCs-EVs against renal I/R injury via delivering SP1 into target renal cells and intracellular activating the expression of SK1 and the generation of S1P. These findings suggest a novel mechanism for renal protection against I/R injury, and indicate a potential therapeutic approach for a variety of renal diseases and renal transplantation.

  15. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake

    DEFF Research Database (Denmark)

    Jensen, B L; Kurtz, A

    1997-01-01

    RNA correlated directly with salt intake. We conclude that dietary salt intake influences renal cyclooxygenase mRNAs zone-specifically with opposite responses between cortex and medulla. Cortical COX II-mediated prostaglandin formation is probably important in low salt states whereas medullary COX I......Experiments were done to investigate the influence of dietary salt intake on renal cyclooxygenase (COX) I and II mRNA levels. To this end rats were fed either a low NaCl diet (LS; 0.02% NaCl wt/wt) or a high NaCl diet (HS diet; 4% NaCl wt/wt) for 5, 10 and 20 days. After 10 days Na excretion...... differed 760-fold, plasma renin activity and renin mRNA were increased eight- and threefold in LS compared to HS animals. Total renal COX I mRNA decreased 50% following the LS diet and did not change after the HS diet. Conversely, COX II mRNA declined after HS intake and transiently increased after salt...

  16. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury

    DEFF Research Database (Denmark)

    Karvellas, Constantine J; Farhat, Maha R; Sajjad, Imran

    2011-01-01

    Introduction: Our aim was to investigate the impact of early versus late initiation of renal replacement therapy (RRT) on clinical outcomes in critically ill patients with acute kidney injury (AKI). Methods: Systematic review and meta-analysis were used in this study. PUBMED, EMBASE, SCOPUS, Web ...

  17. Investigations on renal organic and inorganic solutes, in vivo

    International Nuclear Information System (INIS)

    Wolff, S.D.

    1989-01-01

    A basic question in renal physiology is how do the cells of the renal medulla survive the high concentrations of sodium chloride and urea which occur with antidiuresis. The problem is two-fold: (1) urea, being highly permeable to cell membranes, should enter the cell and adversely affect protein function; and (2) inorganic ions, being in much higher concentration extracellularly than intracellularly should dehydrate the cell. If these organic solutes exist in response to high concentrations of sodium chloride and urea, then their content should vary with diuretic state. Two protocols were developed to test the validity of this hypothesis. The first protocol used 31 P-NMR in vivo to monitor GPC content before, during, and after acute diuresis in an exteriorized rabbit kidney model. Changes in sodium distribution and tissue structure were monitored dynamically with 23 Na- and 1 H-NMR imaging, respectively. The second protocol used HPLC to quantitate each of the four organic solutes in renal inner medullary homogenates. Here, the effect of diuretic state and acute diuresis on organic solute content was assessed

  18. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction.

    Directory of Open Access Journals (Sweden)

    Wilco P Pulskens

    Full Text Available Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (-/- mice to unilateral ureter obstruction (UUO. Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3-/- mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3-/- mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3-/- mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation. Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.

  19. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice.

    Science.gov (United States)

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2016-02-01

    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Successful intraosseous infusion in the critically ill patient does not require a medullary cavity.

    LENUS (Irish Health Repository)

    McCarthy, Gerard

    2012-02-03

    OBJECTIVES: To demonstrate that successful intraosseous infusion in critically ill patients does not require bone that contains a medullary cavity. DESIGN: Infusion of methyl green dye via standard intraosseous needles into bones without medullary cavity-in this case calcaneus and radial styloid-in cadaveric specimens. SETTING: University department of anatomy. PARTICIPANTS: Two adult cadaveric specimens. MAIN OUTCOME MEASURES: Observation of methyl green dye in peripheral veins of the limb in which the intraosseous infusion was performed. RESULTS: Methyl green dye was observed in peripheral veins of the chosen limb in five out of eight intraosseous infusions into bones without medullary cavity-calcaneus and radial styloid. CONCLUSIONS: Successful intraosseous infusion does not always require injection into a bone with a medullary cavity. Practitioners attempting intraosseous access on critically ill patients in the emergency department or prehospital setting need not restrict themselves to such bones. Calcaneus and radial styloid are both an acceptable alternative to traditional recommended sites.

  1. Thrombin inhibition with melagatran does not attenuate renal ischaemia-reperfusion injury in rats

    DEFF Research Database (Denmark)

    Nitescu, Nicoletta; Grimberg, Elisabeth; Ricksten, Sven-Erik

    2007-01-01

    characterized by tubular necrosis and atrophy, tubular cast formation and interstitial inflammation. In addition, there was significant vascular congestion in the inner stripe of the outer medullary zone. Melagatran treatment had no significant effects on any of the abnormalities in kidney morphology...

  2. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    Directory of Open Access Journals (Sweden)

    Rita Delgado Marques

    2013-10-01

    Full Text Available Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb. In the medullary thick ascending limb (mTAL, basolateral P2X receptors markedly (~25% inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (35 days male mice. Using microelectrodes, we determined the transepithelial voltage (Vte and the transepithelial resistance (Rte and thus, transepithelial NaCl absorption (equivalent short circuit current, I’sc.We find that mTALs from adult wild type (WT mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rte values in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vte values compared to the juvenile. No difference in absolute I´sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes.These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in

  3. Emergency management of renal and genitourinary trauma: best practices update [digest].

    Science.gov (United States)

    Bryant, Whitney K; Shewakramani, Sanjay; Zaurova, Milana

    2017-08-22

    In up to 10% of patients who experience abdominal trauma, renal and urogenital systems will be involved. In polytrauma patients with other potentially life-threatening injuries, renal and genitourinary trauma may be overlooked initially, but a delayed or missed diagnosis of these injuries may result in preventable complications. This review provides a best-practice approach to the diagnosis and management of renal and genitourinary injuries, with an emphasis on the systematic approach needed to identify subtle injuries and avoid long-term urinary sequelae such as hypertension, incontinence, erectile dysfunction, chronic kidney disease, and nephrectomy. [Points & Pearls is a digest of Emergency Medicine Practice.].

  4. A Rare Cause of Acute Kidney Injury in a Female Patient with Breast Cancer Presenting as Renal Colic

    Directory of Open Access Journals (Sweden)

    Roxana Jurubita

    2016-01-01

    Full Text Available Renal infarction is a rare cause of acute kidney injury which could lead to permanent loss of renal function. A prompt diagnosis is necessary in order to achieve a successful revascularization of the occluded artery. Given the rarity of the disease and the paucity of the reported cases in the previous literature a high index of suspicion must be maintained not only in the classical cardiac sources of systemic emboli (atrial fibrillation, dilated cardiomyopathy, or endocarditis, but also in the situations when a hypercoagulable state is presumed. The unspecific presenting symptoms often mask the true etiology of the patient’s complaints. We present here a rare case of renal infarction that occurred in the setting of a hypercoagulable state, in a female patient with a history of breast cancer and documented hepatic metastases.

  5. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li

    2015-01-01

    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  6. The cholinergic pathway alleviates acute oxygen and glucose deprivation induced renal tubular cell injury by reducing the secretion of inflammatory medium of macrophages

    Directory of Open Access Journals (Sweden)

    Ming WU

    2017-10-01

    Full Text Available Objective To investigate the effects of cholinergic pathway on acute renal tubular cell injury induced by acute oxygen and glucose deprivation. Methods Rat kidney macrophages were isolated and cultured for constructing macrophages and renal epithelial cells co-cultivating model of oxygen-glucose deprivation (OGD, and the model cells were divided into three groups: OGD alone group, acetylcholine (ACh 100μmol/L+OGD group and ACh + galantamine (Gal 10μmol/L+OGD group. The cells underwent OGD treatment for 1 hour, and normally cultured for 24 hours. The expressions of TNF alpha, IL-1 beta, and IL-10 in supernatant fluid were detected by ELISA, the renal tubular cell viability was determined by MTT assay, the expression of acetylcholine esterase (AChE mRNA and protein were determined by RT-qPCR and Western blotting. The activity of AChE was determined by colorimetric method. Results The expressions of TNF alpha (pg/ml in OGD, Ach+OGD group, Ach+Gal+OGD groups were 140.2±44.81, 119.46±4.42 and 103.31±1.62 respectively (P0.05; The values of renal tubular cell proliferation were 55.02%±6.28%, 66.65%±6.47%, and 79.75%±4.22% respectively (P0.05; those of AchE protein were 0.66±0.07, 0.74±0.04 and 0.67±0.06 respectively (P>0.05; The activity of AChE (kU/L was 0.51±0.02, 0.35±0.05 and 0.32±0.04 respectively (P=0.001, 0.001 and 0.368. Conclusions ACh and Gal could inhibit the secretion of inflammatory mediators and cholinesterase activity and can reduce the acute hypoxic renal tubular cell injury. The modulation of the cholinergic pathway in macrophages may be the important treatment method for acute renal injury in the future. DOI: 10.11855/j.issn.0577-7402.2017.08.01

  7. Predictors of Renal Replacement Therapy in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Michael J. Koziolek

    2012-09-01

    Full Text Available Backgrounds: Criteria that may guide early renal replacement therapy (RRT initiation in patients with acute kidney injury (AKI currently do not exist. Methods: In 120 consecutive patients with AKI, clinical and laboratory data were analyzed on admittance. The prognostic power of those parameters which were significantly different between the two groups was analyzed by receiver operator characteristic curves and by leave-1-out cross validation. Results: Six parameters (urine albumin, plasma creatinine, blood urea nitrogen, daily urine output, fluid balance and plasma sodium were combined in a logistic regression model that estimates the probability that a particular patient will need RRT. Additionally, a second model without daily urine output was established. Both models yielded a higher accuracy (89 and 88% correct classification rate, respectively than the best single parameter, cystatin C (correct classification rate 74%. Conclusions: The combined models may help to better predict the necessity of RRT using clinical and routine laboratory data in patients with AKI.

  8. [Value of fractional flow reserve measurement in endovascular therapy for patients with Stanford B type aortic dissection complicated with renal blood flow injury].

    Science.gov (United States)

    Guo, Xi; Li, Peng; Liu, Guangrui; Huang, Xiaoyong; Yong, Qiang; Wang, Guoqin; Huang, Lianjun

    2015-10-01

    To analyze the value of fractional flow reserve (FFR) measurement on endovascular therapy for patients with renal artery stenosis. Clinical data of 12 patients with Stanford B type aortic dissection complicated with renal blood flow injury in Anzhen hospital hospitalized from May 2013 to February 2014 were retrospectively analyzed. Renal artery angiography was performed and fractional flow reserve (FFR) was measured before Thoracic endovascular aortic repair. After operation, renal artery FFR was measured again, and renal artery stenting was performed in patients with FFR ≤ 0.90 or average pressure difference between proximal and distal of renal artery > 20 mmHg (1 mmHg = 0.133 kPa) and not applied for patients with FFR > 0.90.The patients were then subsequently followed up clinically. Kidney function were measured after 1 month, and contrast-enhanced ultrasonography data were obtained at 1 and 3 months later, respectively. The FFR of 1 patient was 0.90, while the FFR of other patients were less than 0.90 before thoracic endovascular aortic repair. After the procedure,the angiography showed that the blood flow of renal artery in 8 patients were fluency, and the FFR index was over 0.90. There were 4 patients with FFR less than 0.90. After renal artery stenting, the FFR of these 4 patients were all above 0.90. Compared with pre-procedure, blood urea nitrogen ((8.84 ± 3.99) mmol/L vs. (5.18 ± 1.69) mmol/L, P = 0.011) and uric acid ((359.3 ± 77.3) µmol/L vs. (276.9 ± 108.3) µmol/L, P = 0.008) decreased significantly after 1 month, and there was no significant difference in serum creatinine (P = 0.760). Contrast-enhanced ultrasonography results showed that blood flow of renal artery were fluency after 1 month and 3 months. In patients with aortic dissection complicating renal blood flow injury, the FFR measurement is meaningful in evaluating the blood flow status of target organs and guide the endovascular revascularization.

  9. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice.

    Science.gov (United States)

    Abdo, Shaaban; Shi, Yixuan; Otoukesh, Abouzar; Ghosh, Anindya; Lo, Chao-Sheng; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao Ling; Chan, John S D

    2014-10-01

    This study investigated the impact of catalase (Cat) overexpression in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene expression and the development of hypertension and renal injury in diabetic Akita transgenic mice. Additionally, adult male mice were treated with the Nrf2 activator oltipraz with or without the inhibitor trigonelline. Rat RPTCs, stably transfected with plasmid containing either rat Agt or Nrf2 gene promoter, were also studied. Cat overexpression normalized systolic BP, attenuated renal injury, and inhibited RPTC Nrf2, Agt, and heme oxygenase-1 (HO-1) gene expression in Akita Cat transgenic mice compared with Akita mice. In vitro, high glucose level, hydrogen peroxide, and oltipraz stimulated Nrf2 and Agt gene expression; these changes were blocked by trigonelline, small interfering RNAs of Nrf2, antioxidants, or pharmacological inhibitors of nuclear factor-κB and p38 mitogen-activated protein kinase. The deletion of Nrf2-responsive elements in the rat Agt gene promoter abolished the stimulatory effect of oltipraz. Oltipraz administration also augmented Agt, HO-1, and Nrf2 gene expression in mouse RPTCs and was reversed by trigonelline. These data identify a novel mechanism, Nrf2-mediated stimulation of intrarenal Agt gene expression and activation of the renin-angiotensin system, by which hyperglycemia induces hypertension and renal injury in diabetic mice. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Jason A., E-mail: funkj@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  11. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  12. Interaction of cis-diamminedichloroplatinum and renal irradiation on renal function in the young and adult rat

    International Nuclear Information System (INIS)

    Jongejan, H.T.M.; Provoost, A.P.; Molenaar, J.C.

    1987-01-01

    In the present study the age-dependence has been investigated of renal injury following the combined administration of c-DDP and irradiation. Single doses of c-DDP and radiation, causing a limited renal function decline on their own, were applied in combination. Following treatment, renal function and systolic blood pressure (SBP) were measured for 6 months. 25 refs.; 3 figs.; 2 tabs

  13. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats.

    Science.gov (United States)

    Trovato, Ada; Taviano, Maria F; Pergolizzi, Simona; Campolo, Loredana; De Pasquale, Rita; Miceli, Natalizia

    2010-04-01

    The present study was designed to evaluate the protective effect of treatment with Citrus bergamia juice (1 mL/day, for 30 days) against hypercholesterolemic diet-induced renal injury in rat.C. bergamia juice provoked a significant reduction in the plasma levels of cholesterol, triglycerides and LDL, and an increase in HDL levels, versus hyperlipidemic controls (p juice administration significantly decreased MDA levels elevations compared with hyperlipidemic controls (4.10 +/- 0.10 nmol/mg protein and 4.78 +/- 0.15 nmol/mg protein, respectively).Histological observations of the kidney supported the biochemical data and indicated a protective effect of C. bergamia juice on the development of renal damage in hypercholesterolemic rats.The antioxidant potential of C. bergamia juice was examined in two in vitro systems: in the DPPH test the juice showed a noticeable effect on scavenging free radicals (IC(50) = 25.01 +/- 0.70 +/-L); in the reducing power assay it showed a strong activity, too (1.44 +/- 0.01 ASE/mL).These findings suggest that C. bergamia juice has a protective role in hypercholesterolemic diet-induced renal damage, which may be attributed to its antioxidant properties. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. Lesão renal aguda em crianças: incidência e fatores prognósticos em pacientes gravemente enfermos Acute kidney injury in children: incidence and prognostic factors in critical ill patients

    Directory of Open Access Journals (Sweden)

    Kenia Machado Souza Freire

    2010-06-01

    Full Text Available OBJETIVOS: Lesão renal aguda caracteriza-se pela redução súbita e, em geral, reversível da função renal com perda da capacidade de manutenção da homeostase do organismo. Em pediatria, as principais causas de lesão renal aguda são sepse, uso de drogas nefrotóxicas e isquemia renal nos pacientes criticamente enfermos. Nesses pacientes, a incidência de lesão renal aguda varia de 20 a 30%, resultando em aumento da taxa de morbi-mortalidade de 40 a 90%. Este estudo tem como objetivo avaliar a incidência de lesão renal aguda nos pacientes internados em unidade de terapia intensiva, classificar a gravidade da lesão renal aguda de acordo com o Pediatric Risk, Injury, Failure, Loss, End-Stage (pRIFLE, analisar a relação entre lesão renal aguda e a gravidade através do Pediatric Index of Mortality (PIM e estudar os fatores prognósticos associados. MÉTODOS: Realizou-se um estudo prospectivo entre julho de 2008 a janeiro de 2009 dos pacientes internados na unidade de terapia intensiva pediátrica do Hospital Infantil Joana de Gusmão - Florianópolis (SC - Brasil. Todos os pacientes foram analisados diariamente através do débito urinário e creatinina sérica e classificados de acordo com pRIFLE. RESULTADOS: No período de acompanhamento foram internadas 235 crianças. A incidência de lesão renal aguda foi de 30,6%, sendo que o pRIFLE máximo durante a internação foi de 12,1% para R, 12,1% para I e 6,4% para F. A taxa de mortalidade foi de 12,3%. Os pacientes que evoluíram com lesão renal aguda apresentaram risco dez vezes maior de óbito em relação aos não expostos. CONCLUSÃO: Lesão renal aguda é uma entidade comum nos pacientes críticos. O diagnóstico precoce a e instituição imediata de medidas terapêuticas adequadas a cada situação clínica podem alterar o curso e a gravidade do envolvimento renal reduzindo a morbi-mortalidade do paciente.OBJECTIVES: Acute kidney injury is characterized by sudden and generally

  15. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  16. Preclinical Evidence for the Efficacy of Ischemic Postconditioning against Renal Ischemia-Reperfusion Injury, a Systematic Review and Meta-Analysis

    Science.gov (United States)

    Jonker, Simone J.; Menting, Theo P.; Warlé, Michiel C.; Ritskes-Hoitinga, Merel; Wever, Kimberley E.

    2016-01-01

    Background Renal ischemia-reperfusion injury (IRI) is a major cause of kidney damage after e.g. renal surgery and transplantation. Ischemic postconditioning (IPoC) is a promising treatment strategy for renal IRI, but early clinical trials have not yet replicated the promising results found in animal studies. Method We present a systematic review, quality assessment and meta-analysis of the preclinical evidence for renal IPoC, and identify factors which modify its efficacy. Results We identified 39 publications studying >250 control animals undergoing renal IRI only and >290 animals undergoing renal IRI and IPoC. Healthy, male rats undergoing warm ischemia were used in the vast majority of studies. Four studies applied remote IPoC, all others used local IPoC. Meta-analysis showed that both local and remote IPoC ameliorated renal damage after IRI for the outcome measures serum creatinine, blood urea nitrogen and renal histology. Subgroup analysis indicated that IPoC efficacy increased with the duration of index ischemia. Measures to reduce bias were insufficiently reported. Conclusion High efficacy of IPoC is observed in animal models, but factors pertaining to the internal and external validity of these studies may hamper the translation of IPoC to the clinical setting. The external validity of future animal studies should be increased by including females, comorbid animals, and transplantation models, in order to better inform clinical trial design. The severity of renal damage should be taken into account in the design and analysis of future clinical trials. PMID:26963819

  17. Evaluation of renal function with dynamic MRI-T2-weighted gradient echo technique

    International Nuclear Information System (INIS)

    Kato, Katsuya

    1995-01-01

    To evaluate the usefulness of dynamic MRI of kidneys in healthy volunteers and patients with different 24-hour creatinine clearance (Ccr) levels, a dynamic study that employed the T2 weighted gradient echo technique (FLASH: TR/TE=34/25 msec, flip angle= 20 degrees) with single images during breathhold was performed on 10 healthy volunteers and 35 patients, all examined for the Ccr and suspected of having renal parenchymal disease after a phantom study. T1-weighted and dynamic MR imagings were obtained with a 1.5T imager. I analyzed the time-intensity curve of renal cortex and medulla, and defined a cortex decreased ratio (CDR) and medulla decreased ratio (MDR) in comparison with the Ccr. The cortico-medullary difference ratio (CMDR) of T1WI was also compared with the Ccr. The parameters of the T2 dynamic MRI study (CDR, MDR) better correlated with the Ccr than CMDR. Renal function can be quantitatively evaluated with the T2 dynamic MRI and there is a possibility that we can qualitatively evaluate the renal dysfunction and estimate its cause. (author)

  18. Effect of a combined treatment with erythropoietin and melatonin on renal ischemia reperfusion injury in male rats.

    Science.gov (United States)

    Ahmadiasl, Nasser; Banaei, Shokofeh; Alihemati, Alireza; Baradaran, Behzad; Azimian, Ehsan

    2014-12-01

    Renal ischemia reperfusion (IR) is an important cause of renal dysfunction. It contributes to the development of acute renal failure. Oxidative damage from reactive oxygen species is considered to be the principal component involved in the pathophysiological tissue alterations observed during IR. The purpose of this study was to evaluate the effect of a combined treatment with erythropoietin (EPO) plus melatonin (MEL), which are known anti-inflammatory and antioxidant agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h of reperfusion. MEL (10 mg/kg, i.p) and EPO (5000 U/kg, i.p) were administered prior to ischemia. After 24 h of reperfusion, blood samples were collected for the determination of superoxide dismutase (SOD), glutathione peroxidase (GPx), plasma levels of total antioxidant capacity (TAC), and malondialdehyde (MDA) and serum urea level. Also, renal samples were taken for histological evaluation. Ischemia reperfusion significantly increased urea, blood SOD, and GPx levels. Histological findings of the IR group indicated that there was increase in tubular and glomerular hyaline cast, thickening of Bowman capsule basement membrane, and renal impairment in the glomerular epithelium. Treatment with EPO and MEL significantly decreased blood SOD, GPx, and urea levels and increased TAC level. In the EPO + MEL group, while the histopathological changes were lower than those in EPO group, they were the same as MEL group. EPO and MEL combination treatment exerted more nephroprotective effects than EPO treatment and nearly had protective effects similar to MEL treatment.

  19. Contemporary evaluation and management of renal trauma.

    Science.gov (United States)

    Chouhan, Jyoti D; Winer, Andrew G; Johnson, Christina; Weiss, Jeffrey P; Hyacinthe, Llewellyn M

    2016-04-01

    Renal trauma occurs in approximately 1%-5% of all trauma cases. Improvements in imaging and management over the last two decades have caused a shift in the treatment of this clinical condition. A systematic search of PubMed was performed to identify relevant and contemporary articles that referred to the management and evaluation of renal trauma. Computed tomography remains a mainstay of radiological evaluation in hemodynamically stable patients. There is a growing body of literature showing that conservative, non-operative management of renal trauma is safe, even for Grade IV-V renal injuries. If surgical exploration is planned due to other injuries, a conservative approach to the kidney can often be utilized. Follow up imaging may be warranted in certain circumstances. Urinoma, delayed bleeding, and hypertension are complications that require follow up. Appropriate imaging and conservative approaches are a mainstay of current renal trauma management.

  20. Renal morphology of Bradypus torquatus

    Directory of Open Access Journals (Sweden)

    Pedro Kastein Faria da Cunha Bianchi

    2012-11-01

    Full Text Available Among the Xenarthras, sloths present a hydric ingestion restricted to water from leaves, fruits, and vegetables. As a first approach to verify whether these animals have some morphophysiological difference which could justify or compensate this low hydric ingestion, the renal anatomy of these animals was investigated, particularly that of maned sloth (Bradypus torquatus. Kidneys from these animals were macroscopically analyzed, through light microscopy and scanning electron microscopy. The Bradypus torquatus kidneys are bean-shaped paired organs, located dorso-cranially to the pelvic girdle, between the peritoneum and the posterior abdominal wall. The use of histological techniques allowed us to identify, in the cortical region, the renal corpuscles and tubules, and, in the medullary region, a significant amount of interstitial tissue with a collecting duct. The results of this study showed that, although Bradypus torquatus doesn’t drink water directly, its kidneys doesn’t differ from that of most mammals, presenting the same anatomical structure, suggesting that these animals fully reach their hydric needs, basically by consuming leaves, fruits, and sprouts. Nevertheless, in order to confirm this hypothesis, studies on the effectiveness of water reabsorption, such as the renin-angiotensin-aldosterone system, must be carried out.

  1. The role of renal aquaporin 2 in the alleviation of dehydration associated with diabetic polyuria in KKAy mice.

    Science.gov (United States)

    Satake, Masako; Ikarashi, Nobutomo; Ichikawa, Yuhei; Maniwa, Ayaka; Toda, Takahiro; Ito, Kiyomi; Ochiai, Wataru; Sugiyama, Kiyoshi

    2010-10-09

    Polyuria is a symptom that appears in association with diabetes mellitus. Because sustained polyuria causes serious dehydration, it is believed that the body has a compensating mechanism to alleviate dehydration. In the present study, the role of renal aquaporin 2 (AQP2) in the compensating mechanism was investigated in KKAy mice, a type 2 diabetes model. The renal AQP2 expression levels in KKAy mice aged between 5 and 24 weeks were determined using Western blotting. The hypothalamic vasopressin mRNA expression levels also were measured by real-time RT-PCR. Insulin was subcutaneously administered to 11-week-old KKAy mice twice a day for 7 days. After insulin treatment, the renal AQP2 protein expression and the hypothalamic vasopressin mRNA expression were measured. The urinary volumes of 5- and 12-week-old KKAy mice were 1.5 ± 0.3 mL and 9.5 ± 1.2 mL, respectively. The inner medullary AQP2 protein expression of 12-week-old KKAy mice was approximately 2.5-fold higher than that of 5-week-old KKAy mice. The hypothalamic vasopressin mRNA expression of 12-week-old KKAy mice was approximately twice that of 5-week-old KKAy mice. Insulin treatment in KKAy mice resulted in a significant reduction in the plasma glucose level, urinary volume, and inner medullary AQP2 protein and hypothalamic vasopressin mRNA expression. The present study demonstrated that AQP2 is a renal functional molecule of vasopressin that controls urinary volume and that AQP2 in the kidney increases to alleviate dehydration due to type 2 diabetes with polyuria. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Comparison of the Efficacy of Serum Creatinine and Microalbuminuria in Early Diagnosis of Renal Injury in Asphyxiated Infants in Calabar, Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Sunny Oteikwu Ochigbo

    2017-06-01

    Full Text Available Background: Microalbuminuria and serum creatinine are the specific markers of acute renal injury. Perinatal asphyxia is responsible for 50% of all neonatal deaths and nonoliguric acute renal injuryis one of its complications. This study was undertaken to determine the efficacy of serum creatinine and microalbuminuria for early diagnosis of renal injury in severely asphyxiated neonates in Calabar, Nigeria.Methods: This prospective cross-sectional study was performed among severely asphyxiated newborns admitted into the neonatal wards of the University of Calabar Teaching Hospital (UCTH. Standard methods for the determination of blood urea and electrolyte were executed. Micral-test strips have been applied using urine dipstick and the result of the test was negative only for albumin. The developed colors have been compared five minutes after the first test.Results: Fifty full-term newborns were enrolled and their serum electrolytes, creatinine and the creatinine clearance were essentially normal. Six neonates demonstrated positive results in the microalbominuria assessment, while the rest were negative in this regard. The test has 0% sensitivity and 100% specificity, while the positive and negative predictive values were 0% and 88%, respectively.Conclusion: Microalbuminuria is not a useful marker for early diagnosis of acute renal failure in the newborns with severe prenatal asphyxia, but further studies are recommended.

  3. Renal trauma imaging: Diagnosis and management. A pictorial review

    International Nuclear Information System (INIS)

    Szmigielski, Wojciech; Kumar, Rajendra; Al Hilli, Shatha; Ismail, Mostafa

    2013-01-01

    The purpose of this review is to illustrate and discuss the spectrum of imaging findings, particularly computed tomography (CT), of blunt and penetrating renal trauma, based on our own materials, according to the American Association for Surgery of Trauma (AAST) renal injury grading scale. The article also indicates the conditions in which interventional radiology procedures can be applied for the management of renal trauma. Cases for this pictorial review were selected from the imaging material collected at the Radiology Department of Hamad Medical Corporation during a 14-year period from 1999 to 2012. The material includes 176 cases (164 males and 12 females) with confirmed blunt or penetrating renal trauma. Following abdominal trauma, all patients had a CT examination performed on admission to the hospital and/or during hospitalization. The most representative and illustrative cases of renal trauma were reviewed according to CT findings and were categorized according to the AAST grading system. The review describes a spectrum of imaging presentations with special emphasis on the 5 grades of renal injury on a CT according to the AAST scale. The most representative cases were illustrated and discussed with indications of possible interventional radiology treatment. Two groups of patients not included in the AAST grading system were presented separately: those with preexisting renal abnormalities and those with sustained iatrogenic renal injury. Proper application of renal trauma grading scale is essential for selecting the patients for conservative treatment, surgery or interventional radiology procedure

  4. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury.

    Science.gov (United States)

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Ban, Tae Hyun; Jang, In-Ae; Yoon, Hye Eun; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2018-01-11

    Two important issues in the aging kidney are mitochondrial dysfunction and oxidative stress. An Nrf2 activator, resveratrol, is known to have various effects. Resveratrol may prevent inflammation and oxidative stress by activating Nrf2 and SIRT1 signaling. We examined whether resveratrol could potentially ameliorate the cellular condition, such as renal injury due to cellular oxidative stress and mitochondrial dysfunction caused by aging. Male 18-month-old C57BL/6 mice were used. Resveratrol (40 mg/kg) was administered to aged mice for 6 months. We compared histological changes, oxidative stress, and aging-related protein expression in the kidney between the resveratrol-treated group (RSV) and the control group (cont). We performed experiments using small-interfering RNAs (siRNAs) for Nrf2 and SIRT1 in cultured HK2 cells. Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice. Also, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group. Transfection with Nrf2 and SIRT1 siRNA prevented resveratrol-induced anti-oxidative effect in HK2 cells in media treated with H 2 O 2 . Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney.

  5. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K. [Heidelberg Univ., Mannheim (Germany). Dept. of Medicine V

    2017-05-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  6. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    International Nuclear Information System (INIS)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G.; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K.

    2017-01-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  7. Architecture of interstitial nodal spaces in the rodent renal inner medulla.

    Science.gov (United States)

    Gilbert, Rebecca L; Pannabecker, Thomas L

    2013-09-01

    Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.

  8. Venovenous Bypass Is Associated With a Lower Incidence of Acute Kidney Injury After Liver Transplantation in Patients With Compromised Pretransplant Renal Function.

    Science.gov (United States)

    Sun, Kai; Hong, Fu; Wang, Yun; Agopian, Vatche G; Yan, Min; Busuttil, Ronald W; Steadman, Randolph H; Xia, Victor W

    2017-11-01

    Although the hemodynamic benefits of venovenous bypass (VVB) during liver transplantation (LT) are well appreciated, the impact of VVB on posttransplant renal function is uncertain. The aim of this study was to determine if VVB was associated with a lower incidence of posttransplant acute kidney injury (AKI). Medical records of adult (≥18 years) patients who underwent primary LT between 2004 and 2014 at a tertiary hospital were reviewed. Patients who required pretransplant renal replacement therapy and intraoperative piggyback technique were excluded. Patients were divided into 2 groups, VVB and non-VVB. AKI, determined by the Acute Kidney Injury Network criteria, was compared between the 2 groups. Propensity match was used to control selection bias that occurred before VVB and multivariable logistic regression was used to control confounding factors during and after VVB. Of 1037 adult patients who met the study inclusion criteria, 247 (23.8%) received VVB. A total of 442 patients (221 patients in each group) were matched. Aftermatch patients were further divided according to a predicted probability AKI model using preoperative creatinine (Cr), VVB, and intraoperative variables into 2 subgroups: normal and compromised pretransplant renal functions. In patients with compromised pretransplant renal function (Cr ≥1.2 mg/dL), the incidence of AKI was significantly lower in the VVB group compared with the non-VVB group (37.2% vs 50.8%; P = .033). VVB was an independent risk factor negatively associated with AKI (odds ratio, 0.1; 95% confidence interval, 0.1-0.4; P = .001). Renal replacement in 30 days and 1-year recipient mortality were not significantly different between the 2 groups. The incidence of posttransplant AKI was not significantly different between the 2 groups in patients with normal pretransplant renal function (Cr the role of intraoperative VVB in posttransplant AKI are warranted.

  9. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys.

    Science.gov (United States)

    Cui, Jing; Shi, Suozhu; Sun, Xuefeng; Cai, Guangyan; Cui, Shaoyuan; Hong, Quan; Chen, Xiangmei; Bai, Xue-Yuan

    2013-01-01

    A high-calorie (HC) diet induces renal injury and promotes aging, and calorie restriction (CR) may ameliorate these responses. However, the effects of long-term HC and CR on renal damage and aging have been not fully determined. Autophagy plays a crucial role in removing protein aggregates and damaged organelles to maintain intracellular homeostasis and function. The role of autophagy in HC-induced renal damage is unknown. We evaluated the expression of LC3/Atg8 as a marker of the autophagosome; p62/SQSTM1; polyubiquitin aggregates as markers of autophagy flux; Ambra1, PINK1, Parkin and Bnip3 as markers of mitophagy; 8-hydroxydeoxyguanosine (8-OHdG) as a marker of DNA oxidative damage; and p16 as a marker of organ aging by western blot and immunohistochemical staining in the kidneys of 24-month-old Fischer 344 rats. We also observed mitochondrial structure and autolysosomes by transmission electron microscopy. Expression of the autophagosome formation marker LC3/Atg8 and markers of mitochondrial autophagy (mitophagy) were markedly decreased in the kidneys of the HC group, and markedly increased in CR kidneys. p62/SQSTM1 and polyubiquitin aggregates increased in HC kidneys, and decreased in CR kidneys. Transmission electron microscopy demonstrated that HC kidneys showed severe abnormal mitochondrial morphology with fewer autolysosomes, while CR kidneys exhibited normal mitochondrial morphology with numerous autolysosomes. The level of 8-hydroxydeoxyguanosine was increased in HC kidneys and decreased in CR kidneys. Markers of aging, such as p16 and senescence-associated-galactosidase, were increased significantly in the HC group and decreased significantly in the CR group. The study firstly suggests that HC diet inhibits renal autophagy and aggravates renal oxidative damage and aging, while CR enhances renal autophagy and ameliorates oxidative damage and aging in the kidneys.

  10. Social Determinants of Health Are Associated with Markers of Renal Injury in Adolescents with Type 1 Diabetes.

    Science.gov (United States)

    Cummings, Laura A M; Clarke, Antoine; Sochett, Etienne; Daneman, Denis; Cherney, David Z; Reich, Heather N; Scholey, James W; Dunger, David B; Mahmud, Farid H

    2018-05-08

    To examine the relationship between the social determinants of health and markers of early renal injury in adolescent patients with type 1 diabetes (T1D). Renal outcomes included estimated glomerular filtration rate (eGFR) and albumin-creatinine excretion ratio (ACR). Differences in urinary and serum inflammatory markers also were assessed in relation to social determinants of health. Regression analysis was used to evaluate the association between the Ontario Marginalization Index (ON-Marg) as a measure of the social determinants of health, patient characteristics, ACR, eGFR, and renal filtration status (hyperfiltration vs normofiltration). Participants with T1D (n = 199) with a mean age of 14.4 ± 1.7 years and diabetes duration of 7.2 ± 3.1 years were studied. Mean eGFR was 122.0 ± 19.4 mL/min/1.73 m 2 . Increasing marginalization was positively associated with eGFR (P social and biological determinants of health in adolescents with T1D. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The effect of zinc on healing of renal damage in rats.

    Science.gov (United States)

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-07-01

    Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Overall, Zinc can contribute to better healing of the rat's kidneys after a traumatic injury.

  12. An analysis of 99mTc-DTPA renal dynamic imaging in patients with diabetes mellitus

    International Nuclear Information System (INIS)

    Cao Guoxiang; Zhang Yongxue

    2000-01-01

    To investigate the regularity of renal dynamic imaging in the various courses of diabetes mellitus, and then to provide the important evidence variety for diagnosis and treatment. The data of renal dynamic imaging was analyzed on 276 kidneys of 40 normal and 98 diabetic patients, and according to course of disease, the diabetic patients was divided into three groups: ≤1 year, 1-5 year and ≥5 year respectively. Based upon was grouped 99m Tc-DTPA renal dynamic imaging and others, the renal functions into normal, approximately normal, I, II and III injury respectively, and the statistics and analysis of these data were carried out. The extent of renal function injury was related to the course of disease significantly, and it showed that the longer the course, the heavier the damage of renal function, and there was a significant difference between them (P 99m Tc-DTPA renal dynamic imaging can effectively evaluate the extent of renal functions injury and was also valuable for the clinical. Also, the study indicated that in diabetic patients susceptible to urinary tract infection could aggravate the injury of renal function

  13. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    International Nuclear Information System (INIS)

    Fang, Qilu; Zhao, Leping; Wang, Yi; Zhang, Yali; Li, Zhaoyu; Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao; Li, Dan; Liang, Guang

    2015-01-01

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment

  14. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zhao, Leping [Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Zhaoyu [Department of International High School, Shanghai Jiaotong University Nanyang Affiliated (Kunshan) School, Minhang District, Shanghai (China); Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Dan, E-mail: yqyyld@163.com [Department of Nephrology, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  15. Renal Vein Reconstruction for Harvesting Injury in Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Birkan Bozkurt

    2014-03-01

    Full Text Available Kidney transplantation is the best treatment choice in the end-stage renal disease. In the renal transplantation, renal vein damage or shortness which occurs during cadaveric or living donor nephrectomy causes technical difficulties for surgeons. The lack of the donors already especially cadaveric, the acquirement of the graft, gets very much importance. In this report, it is aimed to share the clinical experiment by which it seen, how anastomosis can become appropriate by using the renal vein which is damaged in the way that anastomosis cannot be done anyway by using cadaveric vena cava graft. The renal vein brought to length for anostomosis which is repaired by using cadaveric vena cava graft, is anastomosed successfully by becoming an end-to-side of the external iliac vein of the recipient. Vascular anastomoses are applied easily in technique. The time of the warm ischemia was under 2 hours and the kidney was functional in the post-operative period. Renal vein trombosis was not observed. The renal vein damage occured during cadaveric or living donor nephrectomy, can be repaired by some methods. In the kidneys in which vein requirement is done, the success rates are rather high although acute tubular necrosis and delayed function can be seen more.

  16. Pre-operative renal volume predicts peak creatinine after congenital heart surgery in neonates.

    Science.gov (United States)

    Carmody, J Bryan; Seckeler, Michael D; Ballengee, Cortney R; Conaway, Mark; Jayakumar, K Anitha; Charlton, Jennifer R

    2014-10-01

    Acute kidney injury is common in neonates following surgery for congenital heart disease. We conducted a retrospective analysis to determine whether neonates with smaller pre-operative renal volume were more likely to develop post-operative acute kidney injury. We conducted a retrospective review of 72 neonates who underwent congenital heart surgery for any lesion other than patent ductus arteriosus at our institution from January 2007 to December 2011. Renal volume was calculated by ultrasound using the prolate ellipsoid formula. The presence and severity of post-operative acute kidney injury was determined both by measuring the peak serum creatinine in the first 7 days post-operatively and by using the Acute Kidney Injury Network scoring system. Using a linear change point model, a threshold renal volume of 17 cm³ was identified. Below this threshold, there was an inverse linear relationship between renal volume and peak post-operative creatinine for all patients (p = 0.036) and the subgroup with a single morphologic right ventricle (p = 0.046). There was a non-significant trend towards more acute kidney injury using Acute Kidney Injury Network criteria in all neonates with renal volume ≤17 cm³ (p = 0.11) and in the subgroup with a single morphologic right ventricle (p = 0.17). Pre-operative renal volume ≤17 cm³ is associated with a higher peak post-operative creatinine and potentially greater risk for post-operative acute kidney injury for neonates undergoing congenital heart surgery. Neonates with a single right ventricle may be at higher risk.

  17. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... on vascular diameter in the afferent arteriole. We conclude that voltage-dependent L- and T-type calcium channels are expressed and of functional significance in renal cortical preglomerular vessels, in juxtamedullary efferent arterioles, and in outer medullary vasa recta, but not in cortical efferent...

  18. Rhabdomyolysis and acute kidney injury in patients with traumatic spinal cord injury

    Science.gov (United States)

    Galeiras, Rita; Mourelo, Mónica; Pértega, Sonia; Lista, Amanda; Ferreiro, Mª Elena; Salvador, Sebastián; Montoto, Antonio; Rodríguez, Antonio

    2016-01-01

    Background: Patients with acute traumatic spinal cord injuries (SCIs) exhibit factors that, in other populations, have been associated with rhabdomyolysis. Purpose: The aim of the study is to determine the incidence of rhabdomyolysis in patients with acute traumatic SCI admitted to the Intensive Care Unit (ICU), as well as the development of secondary acute kidney injury and associated factors. Study Design and Setting: This was an observational, retrospective study. Patient Sample: All adult patients admitted to the ICU with acute traumatic SCI who presented rhabdomyolysis, diagnosed through creatine phosphokinase (CPK) levels >500 IU/L. Outcome Measures: Incidence of rhabdomyolysis and subsequent renal dysfunction was calculated. Materials and Methods: Data about demographic variables, comorbidity, rhabdomyolysis risk factors, and variables involving SCI, severity scores, and laboratory parameters were obtained from clinical records. Multivariate logistic regression was used to identify renal injury risk factors. Results: In 2006–2014, 200 patients with acute SCI were admitted to ICU. Of these, 103 had rhabdomyolysis (incidence = 51.5%; 95% confidence interval [CI]: 44.3%–58.7%). The most typical American Spinal Injury Association classification was A (70.3%). The injury severity score was 30.3 ± 12.1 and sequential organ failure assessment (SOFA) score was 5.6 ± 3.3 points. During their stay, 57 patients (55.3%; 95% CI: 45.2%–65.4%) presented renal dysfunction (creatinine ≥1.2 mg/dL). In the multivariate analysis, variables associated with renal dysfunction were creatinine at admission (odds ratio [OR] = 9.20; P = 0.006) and hemodynamic SOFA score the day following admission (OR = 1.33; P = 0.024). Creatinine was a better predictor of renal dysfunction than the peak CPK value during the rhabdomyolysis (area under the receiver operating characteristic curve: 0.91 vs. 0.63, respectively). Conclusions: Rhabdomyolysis is a frequent condition in patients

  19. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice

    International Nuclear Information System (INIS)

    Kimura, Akihiko; Ishida, Yuko; Wada, Takashi; Yokoyama, Hitoshi; Mukaida, Naofumi; Kondo, Toshikazu

    2005-01-01

    To clarify the pathophysiological mechanism underlying acute renal injury caused by acute exposure to arsenic, we subcutaneously injected both BALB/c and C57BL/6 mice with sodium arsenite (NaAs; 13.5 mg/kg). BALB/c mice exhibited exaggerated elevation of serum blood urea nitrogen (BUN) and creatinine (CRE) levels, compared with C57BL/6 mice. Moreover, half of BALB/c mice died by 24 h, whereas all C57BL/6 mice survived. Histopathological examination on kidney revealed severe hemorrhages, acute tubular necrosis, neutrophil infiltration, cast formation, and disappearance of PAS-positive brush borders in BALB/c mice, later than 10 h. These pathological changes were remarkably attenuated in C57BL/6 mice, accompanied with lower intrarenal arsenic concentrations, compared with BALB/c mice. Among heavy metal inducible proteins including multidrug resistance-associated protein (MRP)-1, multidrug resistance gene (MDR)-1, metallothionein (MT)-1, and arsenite inducible, cysteine- and histidine-rich RNA-associated protein (AIRAP), intrarenal MDR-1, MT-1, and AIRAP gene expression was enhanced to a similar extent in both strains, whereas NaAs challenge augmented intrarenal MRP-1 mRNA and protein expression levels in C57BL/6 but not BALB/c mice. Moreover, the administration of a specific inhibitor of MRP-1, MK-571, significantly exaggerated acute renal injury in C57BL/6 mice. Thus, MRP-1 is crucially involved in arsenic efflux and eventually prevention of acute renal injury upon acute exposure to NaAs

  20. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  1. Renal complications of anaesthesia.

    Science.gov (United States)

    McKinlay, J; Tyson, E; Forni, L G

    2018-01-01

    Peri-operative acute kidney injury is common, accounting for 30-40% of all in-hospital cases of acute kidney injury. It is associated with clinically significant morbidity and mortality even with what was hitherto regarded as relatively trivial increases in serum creatinine, and carries over a 12-fold relative risk of death following major abdominal surgery. Comorbid conditions such as diabetes, hypertension, liver disease and particularly pre-existing chronic kidney disease, as well as the type and urgency of surgery, are major risk factors for the development of postoperative acute kidney injury. As yet, there are no specific treatment options for the injured kidney, although there are several modifiable risk factors of which the anaesthetist should be aware. As well as the avoidance of potential nephrotoxins and appropriate volume balance, optimal anaesthetic management should aim to reduce the risk of postoperative renal complications. This may include careful ventilatory management and blood pressure control, as well as appropriate analgesic strategies. The choice of anaesthetic agent may also influence renal outcomes. Rather than concentrate on the classical management of acute kidney injury, this review focuses on the potential development of acute kidney injury peri-operatively, and the means by which this may be ameliorated. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  2. Wallenberg's lateral medullary syndrome: diffusion-weighted imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, O.; Calli, C.; Yunten, N.; Kocaman, A.; Sirin, H. [Ege Univ., Izmir (Turkey). Dept. of Radiology

    2004-02-01

    To investigate the efficacy of diffusion-weighted imaging in patients with Wallenberg's lateral medullary syndrome. Thirteen patients with Wallenberg's lateral medullary syndrome were examined with conventional and echoplanar diffusion-weighted magnetic resonance (MR) imaging in a 1.5 T magnetic resonance unit. MR examinations were obtained in the acute or subacute stage of clinical syndrome, and diffusion-weighted imaging (DWI) was considered to be positive for infarction when an increase in signal was seen on b = 1000 s/mm2 images in the posterolateral medullary localization. DWIs were positive in 12 patients in the acute or subacute stages of this clinical syndrome. A false-negative result was obtained in only one patient examined within the first day, 10 h after onset of the symptoms. In the visual evaluation of the DWI, the contrast between normal and infarcted brainstem area was better in the high b-value images than in the apparent diffusion coefficient map images. DWI is a valuable technique for examining patients presenting with the signs and symptoms of Wallenberg's syndrome and high b-value images can provide complementary data to T2-weighted images. However, because most of our case group were in either the acute or subacute stage, true sensitivity of the method in the hyperacute stage of the syndrome remains unclear.

  3. Medullary thyroid cancer: RET testing of an archival material

    DEFF Research Database (Denmark)

    Godballe, Christian; Jørgensen, Gita; Gerdes, Anne-Marie Axø

    2010-01-01

    Medullary thyroid carcinoma (MTC) might be sporadic (75%) or hereditary (25%). Until the mid nineties the diagnosis of hereditary MTC was based on family history, clinical evaluation, histological detection of C-cell hyperplasia and tumor multifocality. Patients and families with hereditary MTC...

  4. Medullary thyroid cancer: RET testing of an archival material

    DEFF Research Database (Denmark)

    Godballe, Christian; Jørgensen, Gita; Gerdes, Anne-Marie

    2009-01-01

    Medullary thyroid carcinoma (MTC) might be sporadic (75%) or hereditary (25%). Until the mid nineties the diagnosis of hereditary MTC was based on family history, clinical evaluation, histological detection of C-cell hyperplasia and tumor multifocality. Patients and families with hereditary MTC...

  5. Inhibition of WISE preserves renal allograft function.

    Science.gov (United States)

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  6. The Urine Proteome as a Biomarker of Radiation Injury: Submitted to Proteomics- Clinical Applications Special Issue: "Renal and Urinary Proteomics (Thongboonkerd)"

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2008-06-18

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury.

  7. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    Science.gov (United States)

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  8. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  9. Sporotrichosis in Renal Transplant Patients

    Directory of Open Access Journals (Sweden)

    Paulo Gewehr

    2013-01-01

    Full Text Available The current report describes two renal transplant recipients who presented with sporotrichosis. In addition, the authors review the general aspects of sporotrichosis in renal transplant recipients reported in the literature. Sporotrichosis is a rare fungal infection in transplant patients and has been reported primarily in renal transplant recipients not treated with antifungal prophylaxis. Extracutaneous forms of sporotrichosis without skin manifestations and no previous history of traumatic injuries have been described in such patients and are difficult to diagnose. Renal transplant recipients with sporotrichosis described in the present report were successfully treated with antifungal therapy including amphotericin B deoxycholate, lipid amphotericin B formulations, fluconazole and itraconazole.

  10. Clinical and radiological observations in the kidney injury

    International Nuclear Information System (INIS)

    Lee, H. K.; Chung, I. T.; Choi, D. L.; Chung, W. K.; Kim, K. J.

    1981-01-01

    Renal injury resulting from external trauma continue to be common because of the speed and violence of modern transportation. The authors analysis 28 blunt abdominal trauma patients who suspected renal injury from January 1975 to December 1979. The results are based on clinical, physical and radiological examinations especially intravenous urography. The brief results are as follows: 1)Among all 28 patients, 23 cases were male and 5 cases were females. 10 patients were under 15 years old. 2) IVP findings are 8 cases were normal and 20 cases were abnormal. Among abnormal findings, extrarenal hematoma were 11, delayed or incomplete visualization were 4, parenchymal hematoma was 1, and extravasation was 1. 3) In most cases, conservative therapy was done without any significant complication. 4) Intravenous urography is very useful and universal method for diagnosis of renal injury. 5) Also a case reported, uriniferous pseudocyst following operation of renal injury

  11. Comparison of the effects of dexmedetomidine administered at two different times on renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Edip Gonullu

    2014-05-01

    Full Text Available Background and objectives: We investigated the effect of dexmedetomidine on ischemic renal failure in rats. Methods: In the present study, 26 male adult Wistar albino rats weighting 230–300 g were randomly separated into four groups: sham-operated (n = 5, ischemia reperfusion (IR (IR group, n = 7, IR/reperfusion treatment with dexmedetomidine (Dex. R group, n = 7 and IR/pre-ischemic treatment with dexmedetomidine (Dex. I group, n = 7. In the first group, sham operation was achieved and renal clamps were not applied. For the IR group, renal ischemia was induced by occlusion of the bilateral renal arteries and veins for 60 min followed by reperfusion for 24 h. For the Dex. R and Dex. I groups, the same surgical procedure as in the IR group was performed, and dexmedetomidine (100 mcg/kg intraperitoneal was administrated at the 5th min after reperfusion and before ischemia. At the end of reperfusion, blood samples were drawn, the rats were sacrificed, and the left kidney was processed for histopathology. Results: The blood urea nitrogen (BUN levels in groups Dex. R and Dex. I were significantly lower than in the IR group (p = 0.015, p = 0.043, although urine flow was significantly higher in group Dex. R (p = 0.003. The renal histopathological score in the IR group was significantly higher than in the other groups. There was no significant difference between the Dex. R and Dex. I groups. Conclusions: The results were shown that administration of dexmedetomidine reduced the renal IR injury histomorphologically. Administration of dexmedetomidine in the reperfusion period was considered as more effective due to increase in urinary output and decrease in BUN levels. Keywords: Kidney, Ischemia/reperfusion, Dexmedetomidine, Acute renal failure

  12. Lateral medullary infarction with cardiovascular autonomic dysfunction: an unusual presentation with review of the literature.

    Science.gov (United States)

    Huynh, Tridu R; Decker, Barbara; Fries, Timothy J; Tunguturi, Ajay

    2018-01-24

    We report an unusual case of lateral medullary infarction presenting with orthostatic hypotension with pre-syncope without vertigo or Horner's syndrome. Case report with review of the literature. A 67-year-old man presented with pre-syncope and ataxia without vertigo. Initial brain CT and MRI were normal. Neurological evaluation revealed right-beating nystagmus with left gaze, vertical binocular diplopia, right upper-extremity dysmetria, truncal ataxia with right axial lateropulsion, and right-facial and lower extremity hypoesthesia. Bedside blood pressure measurements disclosed orthostatic hypotension. He had normal sinus rhythm on telemetry and normal ejection fraction on echocardiogram. A repeat brain MRI disclosed an acute right dorsolateral medullary infarct. Autonomic testing showed reduced heart rate variability during paced deep breathing, attenuated late phase II and phase IV overshoot on Valsalva maneuver, and a fall of 25 mmHg of blood pressure at the end of a 10-min head-up tilt with no significant change in heart rate. These results were consistent with impaired sympathetic and parasympathetic cardiovascular reflexes. He was discharged to acute rehabilitation a week later with residual right dysmetria and ataxia. Lateral medullary infarctions are usually reported as partial presentations of classical lateral medullary syndrome with accompanying unusual symptoms ranging from trigeminal neuralgias to hiccups. Pre-syncope from orthostatic hypotension is a rare presentation. In the first 3-4 days, absence of early DWI MRI findings is possible in small, dorsolateral medullary infarcts with sensory disturbances. Physicians should be aware of this presentation, as early diagnosis and optimal therapy are associated with good prognosis.

  13. Protective effects of regular aerobic exercise on renal tissue injury following creatine monohydrate supplementation in rats

    Directory of Open Access Journals (Sweden)

    Davoud Rahimi

    2017-01-01

    Full Text Available Creatine is one of the most common supplements for improvement of athletic performance which is used by athletes. The most important debate about creatine consumption is its adverse effect on kidneys due to increased protein load. This study was performed to evaluate the protective effects of aerobic exercise on renal tissue injury following consumption of creatine monohydrate in the rat. For this purpose, 30 male Wistar rats were randomly divided into 3 groups of 10 animals each. Group 1, as control, received only standard food. Group 2 received 5 g/kg b.w. creatine monohydrate supplement daily for 8 weeks through gavage and group 3 received creatine monohydrate supplementation in the same manner30 minutes before aerobic exercise. Aerobic exercise was performed 5 times per week on treadmill at speed of 10-25m/min for 10-30 minutes with the slope of 5 degrees. At the end of 8 weeks, water intake and urinary excretion of rats were measured and blood samples were collected for measurement of serum renal function biomarkers including urea, uric acid and creatinine. Finally, the rats were euthanized for renal histopathology. In group 3, by doing regular aerobic exercise, water intake and urinary excretion rates were significantly (p

  14. Ascending uretero-pyelography in renal failure.

    Science.gov (United States)

    Kingston, R D; Shah, K J; Dawson-Edwards, P

    1977-09-01

    Ascending uretero-pyelography has been carried out over a period of 13 years in 97 consecutive patients with undiagnosed renal failure. Sixty-nine were in a non-obstructive uropathy group while 26 had ureteric obstructions. There were two failures. Over 60% of examinations were performed under local anaesthesia, each examination taking an average of 20 min. There has been no mortality and two anaesthetic complications have been the only significant morbidity. Ureteric injury, urinary infection and renal function have all been investigated and recorded. Five per cent of patients developed urinary infection following AUP but without any major consequences. No significant ureteric injury occurred and no late sequelae were noted. Neither any reaction to contrast medium nor any further deterioration in renal function was observed; AUP was diagnostic in 46% of patients. In the remainder it ruled out obstructive uropathy and gave useful information about the kidneys, ureters and bladder. In experienced hands and with proper facilities AUP is safe and can be helpful in the diagnosis and management of patients in renal failure.

  15. Angiographic Findings and Embolotherapy in Renal Arterial Trauma

    International Nuclear Information System (INIS)

    Sofocleous, Constantinos T.; Hinrichs, Clay; Hubbi, Basil; Brountzos, Elias; Kaul, Sanjeev; Kannarkat, George; Bahramipour, Philip; Barone, Alison; Contractor, Daniel G.; Shah, Tanmaya

    2005-01-01

    Purpose To evaluate the angiographic findings and embolotherapy in the management of traumatic renal arterial injury Methods This is a retrospective review of 22 patients with renal trauma who underwent arteriography and percutaneous embolization from December 1995 to January 2002. Medical records, imaging studies and procedural reports were reviewed to assess the type of injury, arteriographic findings and immediate embolization results. Long-term clinical outcome was obtained by communication with the trauma physicians and by clinical chart review.Results Arteriography was performed in 125 patients admitted to a State Trauma Center with suspected internal bleeding. Renal arterial injury was documented in 22 and was the result of a motor-vehicle accident (10), auto-pedestrian accident (1), gunshot (4) or stab wounds (6) and a fall (1). Percutaneous renal arterial embolization was undertaken in 22 of 125 (18%) patients to treat extravasation (11), arterial pedicle rupture (5), abnormal arteriovenous (3) or arteriocalyceal (2) communication and pseudoaneurysm (3). One of the pseudoaneurysms and one of the arteriovenous fistulae were found in addition to extravasation. All 22 patients (16 men, 6 women) were hemodynamically stable, or controlled during arteriography and embolotherapy. Selective and/or superselective embolization of the abnormal vessels was performed using coils in 9 patients, microcoils in 9 patients and Gelfoam pledgets in 3 patients. In one patient Gelfoam pledgets mixed with polyvinyl alcohol (PVA) particles were used for embolization. Immediate angiographic evidence of hemostasis was demonstrated in all cases. Two initial technical failures were treated with repeat arteriography and embolization. There was no procedure-related death. There was no non-target embolization. One episode of renal abscess after embolization was treated by nephrectomy and 3 patients underwent elective post-embolization nephrectomy to prevent infection. Follow-up ranged

  16. Comparison of the effects of dexmedetomidine administered at two different times on renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Edip Gonullu

    2014-06-01

    Full Text Available Background and objectives: We investigated the effect of dexmedetomidine on ischemic renal failure in rats. Methods: In the present study, 26 male adult Wistar albino rats weighting 230-300 g were randomly separated into four groups: sham-operated (n = 5, ischemia reperfusion (IR (IR group, n = 7, IR/reperfusion treatment with dexmedetomidine (Dex. R group, n = 7 and IR/pre-ischemic treatment with dexmedetomidine (Dex. I group, n = 7. In the first group, sham operation was achieved and renal clamps were not applied. For the IR group, renal ischemia was induced by occlusion of the bilateral renal arteries and veins for 60 min followed by reperfusion for 24 h. For the Dex. R and Dex. I groups, the same surgical procedure as in the IR group was performed, and dexmedetomidine (100 mcg/kg intraperitoneal was administrated at the 5th min after reperfusion and before ischemia. At the end of reperfusion, blood samples were drawn, the rats were sacrificed, and the left kidney was processed for histopathology. Results: The blood urea nitrogen (BUN levels in groups Dex. R and Dex. I were significantly lower than in the IR group (p = 0.015, p = 0.043, although urine flow was significantly higher in group Dex. R (p = 0.003. The renal histopathological score in the IR group was significantly higher than in the other groups. There was no significant difference between the Dex. R and Dex. I groups. Conclusions: The results were shown that administration of dexmedetomidine reduced the renal IR injury histomorphologically. Administration of dexmedetomidine in the reperfusion period was considered as more effective due to increase in urinary output and decrease in BUN levels.

  17. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mathematical Model of Ammonia Handling in the Rat Renal Medulla

    Science.gov (United States)

    Noiret, Lorette; Baigent, Stephen; Jalan, Rajiv; Thomas, S. Randall

    2015-01-01

    The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein release are not fully understood. We developed a mathematical model that reflects current thinking about renal ammonia handling in order to investigate the role of each tubular segment and identify some of the components which might control this balance. The model treats the movements of water, sodium chloride, urea, NH3 and NH4+, and non-reabsorbable solute in an idealized renal medulla of the rat at steady state. A parameter study was performed to identify the transport parameters and microenvironmental conditions that most affect the rate of urinary ammonia excretion. Our results suggest that urinary ammonia excretion is mainly determined by those parameters that affect ammonia recycling in the loops of Henle. In particular, our results suggest a critical role for interstitial pH in the outer medulla and for luminal pH along the inner medullary collecting ducts. PMID:26280830

  19. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Renal injury in neonates: use of "omics" for developing precision medicine in neonatology.

    Science.gov (United States)

    Joshi, Mandar S; Montgomery, Kelsey A; Giannone, Peter J; Bauer, John A; Hanna, Mina H

    2017-01-01

    Preterm birth is associated with increased risks of morbidity and mortality along with increased healthcare costs. Advances in medicine have enhanced survival for preterm infants but the overall incidence of major morbidities has changed very little. Abnormal renal development is an important consequence of premature birth. Acute kidney injury (AKI) in the neonatal period is multifactorial and may increase lifetime risk of chronic kidney disease.Traditional biomarkers in newborns suffer from considerable confounders, limiting their use for early identification of AKI. There is a need to develop novel biomarkers that can identify, in real time, the evolution of renal dysfunction in an early diagnostic, monitoring and prognostic fashion. Use of "omics", particularly metabolomics, may provide valuable information regarding functional pathways underlying AKI and prediction of clinical outcomes.The emerging knowledge generated by the application of "omics" (genomics, proteomics, metabolomics) in neonatology provides new insights that can help to identify markers of early diagnosis, disease progression, and identify new therapeutic targets. Additionally, omics will have major implications in the field of personalized healthcare in the future. Here, we will review the current knowledge of different omics technologies in neonatal-perinatal medicine including biomarker discovery, defining as yet unrecognized biologic therapeutic targets, and linking of omics to relevant standard indices and long-term outcomes.

  1. Frequency of Cushing's syndrome due to ACTH-secreting adrenal medullary lesions: a retrospective study over 10 years from a single center.

    Science.gov (United States)

    Falhammar, Henrik; Calissendorff, Jan; Höybye, Charlotte

    2017-01-01

    Cushing's syndrome due to ectopic adrenocorticotropic hormone production from adrenal medullary lesions has occasionally been described. We retrospectively reviewed all 164 cases of Cushing's syndrome and 77 cases of pheochromocytomas during 10 years. Of all cases with Cushing's syndrome, only two cases (1.2 %) were due to ectopic adrenocorticotropic hormone production from adrenal medullary lesions (one case of pheochromocytoma and one case of adrenal medullary hyperplasia). Of all pheochromocytomas only the above-mentioned case (1.3 %) also gave rise to an ectopic adrenocorticotropic hormone syndrome. The clinical presentation of adrenocorticotropic hormone-secreting pheochromocytoma and adrenal medullary hyperplasia can be anything from mild to dramatic. These are rare conditions important to bear in mind in the workup of a patient with Cushing's syndrome or with pheochromocytoma. The identification of ectopic adrenocorticotropic hormone secretion from adrenal medullary lesions can be life-saving.

  2. Recovery of Dysphagia in Lateral Medullary Stroke

    OpenAIRE

    Gupta, Hitesh; Banerjee, Alakananda

    2014-01-01

    Lateral medullary stroke is typically associated with increased likelihood of occurrence of dysphagia and exhibits the most severe and persistent form. Worldwide little research exists on dysphagia in brainstem stroke. An estimated 15% of all patients admitted to stroke rehabilitation units experience a brainstem stroke out of which about 47% suffer from dysphagia. In India, a study showed that 22.3% of posterior circulation stroke patients develop dysphagia. Dearth of literature on dysphagia...

  3. The potential value of somatostatin receptor scintigraphy in medullary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, U.; Bihl, H. (Katharinenhospital, Stuttgart (Germany). Dept. of Nuclear Medicine); Frank-Raue, K.; Raue, F. (Heidelberg Univ. (Germany). Dept. of Internal Medicine); Sautter-Bihl, M.L.; Buhr, H.J. (Staedt. Klinikum, Karlsruhe (Germany). Dept. of Radiooncology and Nuclear Medicine); Guzman, G. (Katherinenhospital, Stuttgart (Germany). Dept. of Nuclear Medicine Inst. de Neurocirugia, Investigationes Cerebrales ' Dr Asenjo' Santiago (Chile). Dept. de Medicina Nuclear)

    1993-06-01

    In a prospective study, ten patients with recurrent medullary thyroid carcinoma (markedly elevated calcitonin levels) were investigated by means of somatostatin receptor scintigraphy (SRS) with [sup 111]In-pentetreotide. Scintigraphically, 30 sites of pathological uptake were found, mostly located in the neck and upper mediastinum. So far, 18 suspected tumour sites underwent histological examination and 14 of them could be verified as metastases of medullary thyroid carcinoma (MTC). The remaining four putative tumour lesions turned out to be false positive scintigraphic findings caused by chronic inflammation and somatostatin receptor positive tumours other than MTC. We conclude that SRS is a promising imaging modality for localization of MTC recurrence and may thus make a contribution to better management of this patient group. (Author).

  4. The potential value of somatostatin receptor scintigraphy in medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Doerr, U.; Bihl, H.; Frank-Raue, K.; Raue, F.; Sautter-Bihl, M.L.; Buhr, H.J.; Guzman, G.; Inst. de Neurocirugia, Investigationes Cerebrales 'Dr Asenjo' Santiago

    1993-01-01

    In a prospective study, ten patients with recurrent medullary thyroid carcinoma (markedly elevated calcitonin levels) were investigated by means of somatostatin receptor scintigraphy (SRS) with 111 In-pentetreotide. Scintigraphically, 30 sites of pathological uptake were found, mostly located in the neck and upper mediastinum. So far, 18 suspected tumour sites underwent histological examination and 14 of them could be verified as metastases of medullary thyroid carcinoma (MTC). The remaining four putative tumour lesions turned out to be false positive scintigraphic findings caused by chronic inflammation and somatostatin receptor positive tumours other than MTC. We conclude that SRS is a promising imaging modality for localization of MTC recurrence and may thus make a contribution to better management of this patient group. (Author)

  5. Urinary acidification and urinary excretion of calcium and citrate in women with bilateral medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Mathiasen, Helle; Hansen, A B

    1994-01-01

    Urinary acidification ability, acid-base status and urinary excretion of calcium and citrate were evaluated in 10 women with bilateral medullary sponge kidney (MSK) and in 10 healthy women. Patients with MSK had higher fasting urine pH compared to normal controls (p ... in the mechanism of hypercalciuria and hypocitraturia in patients with medullary sponge kidney.(ABSTRACT TRUNCATED AT 250 WORDS)...

  6. ADAMTS-7 Expression Increases in the Early Stage of Angiotensin II-Induced Renal Injury in Elderly Mice

    Directory of Open Access Journals (Sweden)

    Yan-Xiang Gao

    2014-03-01

    Full Text Available Background/Aims: We investigated the recently described family of proteinases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs, and matrix metalloproteinases (MMPs as inflammatory mediators in inflammatory kidney damage by studying ADAMTS-1, -4, and -7 and MMP-9 expression in elderly mouse kidneys after angiotensin II (Ang II administration. Methods: Ang II (2.5 µg/kg/min or norepinephrine (8.3 µg/kg/min was subcutaneously infused in old mice. Renal injury was assessed by hematoxylin-eosin staining, 24-h albuminuria, and immunohistochemistry to evaluate inflammatory cell markers. The mRNA and protein expression of ADAMTS-1, -4, and -7 and MMP-9 were determined using real-time PCR, Western blot, and immunohistochemistry 3 days after Ang II or norepinephrine administration. Results: Elderly mice in the Ang II group developed hypertension and pathological kidney damage. The mRNA and protein levels of ADAMTS-7 in the Ang II group were 3.3 ± 1.1 (P = 0.019 and 1.6 ± 0.1 (P = 0.047 vs. 1.0 ± 0.1 and 1.0 ± 0.1 in the control group on day 3. In contrast, treatment with the hypertensive agent norepinephrine did not lead to obvious renal damage or an increase in renal ADAMTS-7 expression. Conclusions: Renal ADAMTS-7 expression was induced by Ang II in elderly mice. The overexpression of ADATMTS-7 might contribute to early inflammatory kidney damage associated with aging.

  7. Biochemical markers in the follow-up of medullary thyroid cancer

    NARCIS (Netherlands)

    de Groot, Jan Willem B.; Kema, Ido P.; Breukelman, Henk; van der Veer, Eveline; Wiggers, Theo; Plukker, John T. M.; Wolffenbuttel, Bruce H. R.; Links, Thera P.

    2006-01-01

    Medullary thyroid cancer (MTC) shares biochemical features with other neuroendocrine tumors but the particular characteristics are largely unexplored. We investigated the biochemical neuroendocrine profile of MTC and whether specific markers could be useful in follow-up. In addition to the standard

  8. Effects of compound Shenhua tablet on renal tubular Na+-K+-ATPase in rats with acute ischemic reperfusion injury.

    Science.gov (United States)

    Yang, Yue; Wei, Ri-bao; Zheng, Xiao-yong; Qiu, Qiang; Cui, Shao-yuan; Yin, Zhong; Shi, Suo-zhu; Chen, Xiang-mei

    2014-03-01

    To observe the effect of Compound Shenhua Tablet (, SHT) on the sodium-potassium- exchanging adenosinetriphosphatase (Na(+)-K(+)-ATPase) in the renal tubular epithelial cells of rats with acute ischemic reperfusion and to investigate the mechanisms underlying the effects of SHT on renal ischemic reperfusion injury (RIRI). Fifty male Wistar rats were randomly divided into the sham surgery group, model group, astragaloside group [150 mg/(kg·d)], SHT low-dose group [1.5 g/(kg·d)] and SHT high-dose group [3.0 g/(kg·d)], with 10 rats in each group. After 1 week of continuous intragastric drug administration, surgery was performed to establish the model. At either 24 or 72 h after the surgery, 5 rats in each group were sacrificed, blood biochemistry, renal pathology, immunoblot and immunohistochemical examinations were performed, and double immunofluorescence staining was observed under a laser confocal microscope. Compared with the sham surgery group, the serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased, Na(+)-K(+)-ATPase protein level was decreased, and kidney injury molecule-1 (KIM-1) protein level was increased in the model group after the surgery (P<0.01 or P<0.05). Compared with the model group, the SCr, BUN, pathological scores, Na(+)-K(+)-ATPase, and the KIM-1 protein level of the three treatment groups were significantly improved at 72 h after the surgery (P<0.05 or P<0.01). And the SCr, BUN of the SHT low- and high-dose groups, and the pathological scores of the SHT high-dose group were significantly lower than those of the astragaloside group (P<0.05). The localizations of Na(+)-K(+)-ATPase and megalin of the model group were disrupted, with the distribution areas overlapping with each other and alternately arranged. The severity of the disruption was slightly milder in three treatment groups compared with that of the model group. The results of immunofluorescence staining showed that the SHT high-dose group had a

  9. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension.

    Science.gov (United States)

    Drummond, Heather A

    2012-01-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na(+) Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.

  10. Thoracoscopic repair of renal ectopia associated with congenital ...

    African Journals Online (AJOL)

    R.S. Kamble

    2015-12-04

    Dec 4, 2015 ... During plication of the diaphragm, care must be taken to avoid renal injury. Following, we present two rare variants of CDH with concomitant renal ectopia managed thoracoscopically. Post- operative recovery was uneventful. Doppler ultrasound study performed one month after surgery confirmed.

  11. Microsatellite instability in medullary carcinoma of the colon

    Directory of Open Access Journals (Sweden)

    Mario Martinotti

    2017-03-01

    Full Text Available Medullary carcinoma (MC of the large intestine is a relatively new histological type of adenocarcinoma characterized by poor glandular differentiation and an intraepithelial lymphocytic infiltrate. MC can be associated to a defective mechanism for DNA mismatch repair, caused by the so-called microsatellite instability (MSI. We present the case of a 44 years old Caucasian woman, who referred to the Emergency Room with symptoms mimicking an acute appendicitis. Computed tomography and colonoscopy demonstrated an ulcerated and stenotic lesion of the caecum without signs of metastasis and peritoneal carcinosis. Patient underwent a laparoscopic right colectomy. The final pathologic findings provided the diagnosis of medullary carcinoma with MSI. Patient then underwent adjuvant chemotherapy according to the FOLFOX- 4 protocol (association of 5-Fluorouracil, Leucovorin, and Oxaliplatin for twelve cycles. At two-years follow-up, patient is disease free. MC in association with MSI is a non-frequent tumor of the colon characterized by a better prognosis compared to other types of poorly differentiated adenocarcinoma. In the observed case, 24 months after the surgical operation, the patient is in good health and there is no evidence of metastasis or relapse.

  12. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  13. Identification of genomic biomarkers for concurrent diagnosis of drug-induced renal tubular injury using a large-scale toxicogenomics database

    International Nuclear Information System (INIS)

    Kondo, Chiaki; Minowa, Yohsuke; Uehara, Takeki; Okuno, Yasushi; Nakatsu, Noriyuki; Ono, Atsushi; Maruyama, Toshiyuki; Kato, Ikuo; Yamate, Jyoji; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2009-01-01

    Drug-induced renal tubular injury is one of the major concerns in preclinical safety evaluations. Toxicogenomics is becoming a generally accepted approach for identifying chemicals with potential safety problems. In the present study, we analyzed 33 nephrotoxicants and 8 non-nephrotoxic hepatotoxicants to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. The compounds were administered orally or intravenously once daily to male Sprague-Dawley rats. The animals were exposed to four different doses of the compounds, and kidney tissues were collected on days 4, 8, 15, and 29. Gene expression profiles were generated from kidney RNA by using Affymetrix GeneChips and analyzed in conjunction with the histopathological changes. We used the filter-type gene selection algorithm based on t-statistics conjugated with the SVM classifier, and achieved a sensitivity of 90% with a selectivity of 90%. Then, 92 genes were extracted as the genomic biomarker candidates that were used to construct the classifier. The gene list contains well-known biomarkers, such as Kidney injury molecule 1, Ceruloplasmin, Clusterin, Tissue inhibitor of metallopeptidase 1, and also novel biomarker candidates. Most of the genes involved in tissue remodeling, the immune/inflammatory response, cell adhesion/proliferation/migration, and metabolism were predominantly up-regulated. Down-regulated genes participated in cell adhesion/proliferation/migration, membrane transport, and signal transduction. Our classifier has better prediction accuracy than any of the well-known biomarkers. Therefore, the toxicogenomics approach would be useful for concurrent diagnosis of renal tubular injury.

  14. [Current role of color Doppler ultrasound in acute renal failure].

    Science.gov (United States)

    Bertolotto, M; Quaia, E; Rimondini, A; Lubin, E; Pozzi Mucelli, R

    2001-01-01

    Acute Renal Failure (ARF) is characterized by a rapid decline of the glomerular filtration rate, due to hypotension (prerenal ARF), obstruction of the urinary tract (post-renal ARF) or renal parenchymal disease (renal ARF). The differential diagnosis among different causes of ARF is based on anamnesis, clinical symptoms and laboratory data. Usually ultrasound (US) is the only imaging examination performed in these patients, because it is safe and readily available. In patients with ARF gray scale US is usually performed to rule out obstruction since it is highly sensitive to recognize hydronephrosis. Patients with renal ARF have no specific changes in renal morphology. The size of the kidneys is usually normal or increased, with smooth margins. Detection of small kidneys suggests underlying chronic renal pathology and worse prognosis. Echogenicity and parenchymal thickness are usually normal, but in some cases there are hyperechogenic kidneys, increased parenchymal thickness and increased cortico-medullary differentiation. Evaluation of renal vasculature with pulsed Doppler US is useful in the differential diagnosis between prerenal ARF and acute tubular necrosis (ATN), and in the diagnosis of renal obstruction. Latest generation US apparatus allow color Doppler and power Doppler evaluation of renal vasculature up to the interlobular vessels. A significant, but non specific, reduction in renal perfusion is usually appreciable in the patients with ARF. There are renal pathologic conditions presenting with ARF in which color Doppler US provides more specific morphologic and functional information. In particular, color Doppler US often provides direct or indirect signs which can lead to the right diagnosis in old patients with chronic renal insufficiency complicated with ARF, in patients with acute pyelonephritis, hepatic disease, vasculitis, thrombotic microangiopathies, and in patients with acute thrombosis of the renal artery and vein. Contrast enhanced US is

  15. Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury.

    Science.gov (United States)

    Sawhney, Simon; Marks, Angharad; Fluck, Nick; Levin, Adeera; McLernon, David; Prescott, Gordon; Black, Corri

    2017-08-01

    The extent to which renal progression after acute kidney injury (AKI) arises from an initial step drop in kidney function (incomplete recovery), or from a long-term trajectory of subsequent decline, is unclear. This makes it challenging to plan or time post-discharge follow-up. This study of 14651 hospital survivors in 2003 (1966 with AKI, 12685 no AKI) separates incomplete recovery from subsequent renal decline by using the post-discharge estimated glomerular filtration rate (eGFR) rather than the pre-admission as a new reference point for determining subsequent renal outcomes. Outcomes were sustained 30% renal decline and de novo CKD stage 4, followed from 2003-2013. Death was a competing risk. Overall, death was more common than subsequent renal decline (37.5% vs 11.3%) and CKD stage 4 (4.5%). Overall, 25.7% of AKI patients had non-recovery. Subsequent renal decline was greater after AKI (vs no AKI) (14.8% vs 10.8%). Renal decline after AKI (vs no AKI) was greatest among those with higher post-discharge eGFRs with multivariable hazard ratios of 2.29 (1.88-2.78); 1.50 (1.13-2.00); 0.94 (0.68-1.32) and 0.95 (0.64-1.41) at eGFRs of 60 or more; 45-59; 30-44 and under 30, respectively. The excess risk after AKI persisted over ten years of study, irrespective of AKI severity, or post-episode proteinuria. Thus, even if post-discharge kidney function returns to normal, hospital admission with AKI is associated with increased renal progression that persists for up to ten years. Follow-up plans should avoid false reassurance when eGFR after AKI returns to normal. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Hemolytic Uremic Syndrome: Late Renal Injury and Changing Incidence—A Single Centre Experience in Canada

    Directory of Open Access Journals (Sweden)

    Pierre Robitaille

    2012-01-01

    Full Text Available Aims. To assess trends in the incidence of pediatric diarrhea-associated hemolytic uremic syndrome (D+ HUS and document long-term renal sequelae. Methods. We conducted a retrospective cohort study of children with D+ HUS admitted to a tertiary care pediatric hospital in Montreal, Canada, from 1976 to 2010. In 2010, we recontacted patients admitted before 2000. Results. Of 337 cases, median age at presentation was 3.01 years (range 0.4–14. Yearly incidence peaked in 1988 and 1994-95, returning to near-1977 levels since 2003. Twelve patients (3.6% died and 19 (5.6% experienced long-term renal failure. Almost half (47% The patients required dialysis. Need for dialysis was the best predictor of renal sequelae, accounting for 100% of severe complications. Of children followed ≥1 year (, mean follow-up years, 19 had severe and 18 mild-to-moderate kidney injury, a total sequelae rate, of 18.6%. Ten years or more after-HUS (, mean follow-up years, 8 (9.4% patients demonstrated serious complications and 22 (25.9% mild-to-moderate, including 14 (16% microalbuminuria: total sequelae, 35.3%. Conclusions. Patients with D+ HUS should be monitored at least 5 years, including microalbuminuria testing, especially if dialysis was required. The cause of the declining incidence of D+HUS is elusive. However, conceivably, improved public health education may have played an important role in the prevention of food-borne disease.

  17. High maternal sodium intake alters sex-specific renal renin-angiotensin system components in newborn Wistar offspring.

    Science.gov (United States)

    Maia, D R R; Lopes, K L; Heimann, J C; Furukawa, L N S

    2016-01-28

    This study aimed to evaluate the systemic and renal renin-angiotensin-aldosterone system (RAAS) at birth in male and female offspring and in mothers fed a high sodium diet (HSD) before and during gestation. Female Wistar rats were fed a HSD (8.0% NaCl) or a normal sodium diet (1.3% NaCl) from 8 weeks of age until delivery of their first litter. Maternal body weight, tail blood pressure, and food and water intake were evaluated. The litter sizes were assessed, and the body and kidney weights of the offspring were measured. Both mothers and offspring were euthanized immediately following the birth of the pups to evaluate plasma renin activity (PRA), renal renin content (RRC), renal angiotensin-converting enzyme (ACE) activity, renal angiotensin (Ang) II content, serum aldosterone (ALDO) levels, and renal cortical and medullary renin messenger RNA expression. In mothers in the HSD group, water intake and kidney mass were higher, whereas renal ACE activity, Ang II, PRA, ALDO and RRC were decreased. In the offspring of HSD-fed dams, the body and kidney mass were lower in both genders, renal ACE activity was lower in females and renal Ang II was lower in males. PRA, RRC, renin gene expression and ALDO levels did not differ between the groups of offspring. The data presented herein showed that a maternal HSD during pregnancy induces low birth weight and a sex-specific response in the RAAS in offspring.

  18. Biomarkers-a potential route for improved diagnosis and management of ongoing renal damage.

    Science.gov (United States)

    Oberbauer, R

    2008-12-01

    Currently, the identification and validation of biomarkers of kidney injury is among the top priorities of many diagnostic biotechnology companies as well as academic research institutes. Specifically, in renal transplantation, validated biomarkers of tissue injury with good discriminatory power between the various renal compartments and the underlying pathophysiology are desired, because sequential allograft biopsies are limited in number and cannot be used as a screening tool. Given the high demands on these markers, it is not surprising that none of those currently under evaluation has been thoroughly validated for a specific entity. Published biomarker candidates for early tubular damage include neutrophil gelatinase-associated lipocalin (NGAL), interleukin (IL)-18, soluble CD30, perforin, and granzyme B. Recently, C4d flow panel reactive antibodies were evaluated as biomarkers for humoral alloimmune responses. Additional biomarkers such as FOXP3 and kidney injury molecule 1 have been studied in the maintenance phase of renal transplantation. Given the complex prerequisites, it is not surprising that no biomarker panel has been sufficiently validated for clinical use. However, in the near future a biomarker for use as an indicator of renal tubule cell injury will be available. Troponin T or transaminase of the kidney may then at least be used to differentiate between functional renal failure (equivalent to a rise in creatinine) and intrinsic kidney injury.

  19. Aging-associated renal disease in mice is fructokinase dependent.

    Science.gov (United States)

    Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Milagres, Tamara; Hernando, Ana Andres; Jensen, Thomas; Miyazaki, Makoto; Doke, Tomohito; Hayasaki, Takahiro; Nakagawa, Takahiko; Marumaya, Shoichi; Long, David A; Garcia, Gabriela E; Kuwabara, Masanari; Sánchez-Lozada, Laura G; Kang, Duk-Hee; Johnson, Richard J

    2016-10-01

    Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.

  20. Ondine's Curse in a Patient with Unilateral Medullary and Bilateral Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Hui-Tzu Ho

    2005-11-01

    Full Text Available Central sleep apnea (CSA, also known as Ondine's curse (OC, is a phenomenon characterized by episodes of repeated apnea during sleep due to disorders of the central nervous system. We report a patient with CSA/OC due to right dorsolateral medullary and bilateral cerebellar infarctions that occurred in the clinical setting of right vertebral artery stenosis. Polysomnography (PSG showed repeated episodes of absence of nasal cannula flow accompanying cessation of thoracic and abdominal respiratory movements and a decline in blood oxygen saturation. The duration of apnea was as long as 12 seconds. Brain magnetic resonance (MR images showed acute infarctions involving the right dorsolateral medulla, bilateral cerebellar vermis and paramedian cerebellar hemispheres. MR angiography showed nonvisualization of the right vertebral artery. Transcranial Doppler sonography showed a high resistance flow profile in the right vertebral artery and normal flow patterns in the basilar artery and left vertebral artery. These findings suggest that the medullary and bilateral cerebellar infarcts were caused by stenosis/pseudo-occlusion of the right vertebral artery. Reduced respiratory afferent inputs to the dorsal respiratory group of medullary neurons, the nucleus tractus solitarius and reduced “automatic” components of the respiratory drive may play a role in the development of CSA/OC.

  1. Dialysis dose in acute kidney injury: no time for therapeutic nihilism--a critical appraisal of the Acute Renal Failure Trial Network study.

    Science.gov (United States)

    Ronco, Claudio; Cruz, Dinna; Oudemans van Straaten, Helen; Honore, Patrick; House, Andrew; Bin, Du; Gibney, Noel

    2008-01-01

    The optimal dialysis dose for acute kidney injury is a matter of great controversy. Clinical trials, predominantly single-center studies, have shown conflicting results. The Acute Renal Failure Trial Network (ATN) Study was designed to compare clinical outcomes between patients allocated to an intensive dose versus a less-intensive dose of renal replacement therapy. Recently, the results of this large randomized controlled multicenter study were published. The present article will discuss certain aspects of this trial: the overall design, the baseline patient characteristics, and comparison of the results with earlier studies. Finally, the article will address the implications of the ATN Study results for clinical practice.

  2. MR imaging of medullary compression due to vertebral metastases

    International Nuclear Information System (INIS)

    Dooms, G.C.; Mathurin, P.; Maldague, B.; Cornelis, G.; Malghem, J.; Demeure, R.

    1987-01-01

    A prospective study was performed to assess the value of MR imaging for demonstrating medullary compression due to vertebral metastases in cancer patients clinically suspected of presenting with that complication. Twenty-five consecutive unselected patients were studied, and the MR imaging findings were confirmed by myelography, CT, and/or surgical and autopsy findings for each patient. The MR examinations were performed with a superconducting magnet (Philips Gyroscan S15) operating at 0.5-T. MR imaging demonstrated the metastases (single or multiple) mainly on T1- weighted images (TR = 0.45 sec and TE = 20 msec). Soft-tissue tumoral mass and/or deformity of a vertebral body secondary to metastasis, compressing the spinal cord, was equally demonstrated on T1- and heavily T2-weighted images (TR = 1.65 sec and TE = 100 msec). In the sagittal plane, MR imaging demonstrated the exact level of the compression (one or multiple levels) and its full extent. In conclusion, MR is the first imaging modality for studying cancer patients with clinically suspected medullary compression and obviates the need for more invasive procedures

  3. Hydronephrosis and renal failure following inadequate management of neuropathic bladder in a patient with spinal cord injury: Case report of a preventable complication

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Subramanian

    2012-09-01

    Full Text Available Abstract Background Condom catheters are indicated in spinal cord injury patients in whom intravesical pressures during storage and voiding are safe. Unmonitored use of penile sheath drainage can lead to serious complications. Case report A 32-year old, male person, sustained complete paraplegia at T-11 level in 1985. He had been using condom catheter. Eleven years after sustaining spinal injury, intravenous urography showed no radio-opaque calculus, normal appearances of kidneys, ureters and bladder. Blood urea and Creatinine were within reference range. A year later, urodynamics revealed detrusor pressure of 100 cm water when detrusor contraction was initiated by suprapubic tapping. This patient was advised intermittent catheterisation and take anti-cholinergic drug orally; but, he wished to continue penile sheath drainage. Nine years later, this patient developed bilateral hydronephrosis and renal failure. Indwelling urethral catheter drainage was established. Five months later, ultrasound examination of urinary tract revealed normal kidneys with no evidence of hydronephrosis. Conclusion Spinal cord injury patients with high intravesical pressure should not have penile sheath drainage as these patients are at risk for developing hydronephrosis and renal failure. Intermittent catheterisation along with antimuscarinic drug should be the preferred option for managing neuropathic bladder.

  4. Lateral medullary syndrome after a scorpion sting

    Directory of Open Access Journals (Sweden)

    Vineeth Varghese Thomas

    2017-01-01

    Full Text Available Scorpion bites are a common problem in Southern parts of India. The sting of Mesobuthus tamulus belonging to the Buthidae family is known for being fatal. The toxidrome of scorpion sting is known for its effect on the cardiovascular system, and there have been rare reports of cerebrovascular accidents as well. We describe a case of lateral medullary syndrome secondary to scorpion sting. As per the knowledge of the authors, this is the first case report of the same.

  5. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system.

    Science.gov (United States)

    Rukavina Mikusic, N L; Kravetz, M C; Kouyoumdzian, N M; Della Penna, S L; Rosón, M I; Fernández, B E; Choi, M R

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.

  6. Epidermoid cyst of the conus medullaris: atypical MRI and angiographic features

    International Nuclear Information System (INIS)

    Debray, M.P.; Gaston, A.

    1996-01-01

    We report a 50-year-old man with an epidermoid cyst of the conus medullaris which showed a nodular gadolinium enhancement on MRI and a blush on angiography. These radiological features are compared with pathological examination. (orig.)

  7. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat / high-cholesterol diet and low-dose streptozotocin.

    Science.gov (United States)

    He, Liang; Hao, Lili; Fu, Xin; Huang, Mingshu; Li, Rui

    2015-04-11

    Hyperlipidemia is thought to be a major risk factor for the progression of renal diseases in diabetes. Recent studies have shown that lipid profiles are commonly abnormal early on type 2 diabetes mellitus (T2DM) with diabetic nephropathy. However, the early effects of triglyceride and cholesterol abnormalities on renal injury in type 1 diabetes mellitus (T1DM) are not fully understood and require reliable animal models for exploration of the underlying mechanisms. Hamster models are important tools for studying lipid metabolism because of their similarity to humans in terms of lipid utilization and high susceptibility to dietary cholesterol and fat. Twenty-four male Golden Syrian hamsters (100-110 g) were rendered diabetes by intraperitoneal injections of streptozotocin (STZ) on consecutive 3 days at dose of 30 mg/kg, Ten days after STZ injections, hamsters with a plasma Glu concentration more than 12 mmol/L were selected as insulin deficient ones and divided into four groups (D-C, D-HF, D-HC, and D-HFHC), and fed with commercially available standard rodent chow, high-fat diet, high-cholesterol diet, high-fat and cholesterol diet respectively, for a period of four weeks. After an induction phase, a stable model of renal injury was established with the aspects of early T1DM kidney disease, These aspects were severe hypertriglyceridemia, hypercholesterolemia, proteinuria with mesangial matrix accumulation, upgraded creatinine clearance, significant cholesterol and triglyceride deposition, and increasing glomerular surface area, thickness of basement membrane and mesangial expansion. The mRNA levels of sterol regulatory element binding protein-1c, transforming growth factors-β, plasminogen activator inhibitor-1, tumor necrosis factor-α and interleukin-6 in the D-HFHC group were significantly up-regulated compared with control groups. This study presents a novel, non-transgenic, non-surgical method for induction of renal injury in hamsters, which is an important

  8. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Experimental study on irradiation injury of the kidneys. II. Cardiovascular changes following renal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, S; Fuzikawa, K; Nishimori, I; Tsuda, N; Miyagawa, N [Nagasaki Univ. (Japan). School of Medicine

    1976-09-01

    In order to investigate irradiation injury of the kidney and effect of injured kidney on the whole body, especially cardiovascular changes, a single kidney was extracted from Wistar female rats and only the remaining kidney was irradiated with a great amount of radiation in 4000 R dose experimentally. After seven weeks of irradiation, atrophy and involution of the highest region of the kidney were found. Histologically, fibrous proliferation of interstice accompanied with atrophy of the renal tubule, and slightly increased nuclei and lobulation of the glomerulus were recognized. After 15 weeks of irradiation, atrophy and involution of the whole kidney were found. Histologically, fibrous proliferation of interstice in the kidney accompanied with a high degree of atrophy of the renal tubule, marked increase and lobulation of mesangium ground substance of the glomerulus and mild hypertrophy of arteriole were recognized. Mild degeneration of myocardium was recognized. In the long-term cases passing 29 and 34 weeks after irradiation, blood pressure just before slaughter rose to 250 mmHg. The kidney showed malignant nephrosclerosis-like lesion, and panarteritis was found in the mesentery and peri-pancreatic artery. In the heart, hypertonic myocardosis was recognized. A rise of blood pressure which was observed in this experiment occurred in circulation degenerations resulted from the secondary hypertrophy of the blood vessels accompanied with fibrous proliferation of the interstice which appeared after degeneration of renal tubule. It was thought that panarteritis of cardiovascular system of the whole body, especially mesentery and peri-pancreatic artery, and fibrinoid degeneration of arteriole of the kidney were due to hypertension and angiopathic factors (non-vasopressor extracts from the injured kidney).

  10. Cysticercosis of conus medullaris: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Saurabh K Verma

    2014-01-01

    Full Text Available "Neurocysticercosis" - involvement of the central nervous system (CNS by taenia solium, is one of the most common parasitic diseases of the CNS. However, spinal involvement by neurocysticercosis is uncommon. Spinal intramedullary cysticercosis involving the conus medullaris is an uncommon clinical condition, which may mimic an intramedullary tumor and can lead to irreversible neurological deficits if untreated. Here, we report a 31-year-old male patient with cysticercosis in the conus medullaris of the spinal cord. Magnetic resonance imaging revealed a well-defined round intramedullary lesion at D12-L1 vertebral levels, which was homogeneously hypointense on T1WI and hyperintense on T2WI with peripheral edema. Since the patient had progressive neurological deficits, surgery was performed to decompress the spinal cord. Histopathology examination of the removed lesion proved it to be cysticercosis. In this report, we also discuss the principles of diagnosis and treatment of intramedullary cysticercosis in combination with literature review.

  11. Kidney Involvement in Systemic Calcitonin Amyloidosis Associated With Medullary Thyroid Carcinoma

    NARCIS (Netherlands)

    Koopman, Timco; Niedlich-den Herder, Cindy; Stegeman, Coen A.; Links, Thera P.; Bijzet, Johan; Hazenberg, Bouke P. C.; Diepstra, Arjan

    A 52-year-old woman with widely disseminated medullary thyroid carcinoma developed nephrotic syndrome and slowly decreasing kidney function. A kidney biopsy was performed to differentiate between malignancy-associated membranous glomerulopathy and tyrosine kinase inhibitor-induced focal segmental

  12. Monitoring of renal ischemia reperfusion injury in rabbits by ultrasonic contrast and its relationship with expression of VEGF in renal tissue.

    Science.gov (United States)

    Hao, Peng

    2016-02-01

    To evaluate the renal ischemia reperfusion injury (IRI) in rabbits using the ultrasonic contrast technique and discuss the clinical value of ultrasonic contrast technique in the diagnosis of renal IRI by comparing the time-intensity curve of renal cortex and the expression of vascular endothelial growth factor (VEGF) of renal tissue. Twenty 3-month-old New Zealand rabbits were randomly divided into 4 groups, namely Ctrl group, IRI-12 h, IRI-24 h and IRI-48 h groups. The two dimensional gray-scale ultrasonography was employed to determine and mark the position of rabbit kidney. Rabbits were given the intraperitoneal anesthesia with 20% urethane with the dosage of 5 mL/kg. The aseptic operation was performed after the local skin disinfection in the area of both kidneys. The right kidney of animals in the control group was excised without any treatment for the left kidney. After excising the right kidney of animals in groups of IRI-12 h, IRI-24 h and IRI-48 h, the aneurysm clip was used to clip the renal pedicle vessel of left kidney, in order to simulate the ischemia. Because of the tissue ischemia, it could be seen that the color of kidney was changed from bright red to dark red, which indicated the successful modeling of ischemia. The aneurysm clip was released after one hour of maintaining the ischemia. Then the kidney turned out to be bright red from dark red, which indicated that the reperfusion was completed. Taking this moment as the time of ischemia reperfusion, the wound was stitched up. A total of 12, 24 and 36 h after the operation, the two-dimensional and color Doppler flow imaging and ultrasonic contrast were employed for the examination. The dynamic changes of ultrasonic contrast were recorded. The quantitative analysis software (QontraXt) was adopted to analyze the time-intensity curve of echo at different positions of renal cortex. After the ultrasonic contrast testing, rabbits were put to death. The renal cortex tissue was isolated and the

  13. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  14. Inhibition of IκB Kinase at 24 Hours After Acute Kidney Injury Improves Recovery of Renal Function and Attenuates Fibrosis.

    Science.gov (United States)

    Johnson, Florence L; Patel, Nimesh S A; Purvis, Gareth S D; Chiazza, Fausto; Chen, Jianmin; Sordi, Regina; Hache, Guillaume; Merezhko, Viktoria V; Collino, Massimo; Yaqoob, Muhammed M; Thiemermann, Christoph

    2017-07-03

    Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease. Nuclear factor-κB is a nuclear transcription factor activated post-ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor-κB in the renal fibrosis post-AKI is unknown. We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor-κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor-β expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK16. To confirm the efficacy of IKK16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK16. Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. De Novo Collapsing Glomerulopathy in a Renal Allograft Recipient

    Directory of Open Access Journals (Sweden)

    Kanodia K

    2008-01-01

    Full Text Available Collapsing glomerulopathy (CG, characterized histologically by segmental/global glomerular capillary collapse, podocyte hypertrophy and hypercellularity and tubulo-interstitial injury; is characterized clinically by massive proteinuria and rapid progressive renal failure. CG is known to recur in renal allograft and rarely de novo. We report de novo CG 3 years post-transplant in a patient who received renal allograft from haplo-identical type donor.

  16. Case report: Thoracoscopic repair of renal ectopia associated with ...

    African Journals Online (AJOL)

    During plication of the diaphragm, care must be taken to avoid renal injury. Following, we present two rare variants of CDH with concomitant renal ectopia managed thoracoscopically. Postoperative recovery was uneventful. Doppler ultrasound study performed one month after surgery confirmed normal vascularity of the ...

  17. Pazopanib-Induced Hypertension in Patients With Renal Cell Carcinoma Is Associated With Low Urine Excretion of NO Metabolites

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Bengtsen, Camilla; Jensen, Niels Viggo

    2018-01-01

    -NAME or by impaired endothelin-1 leads to hypertension. The present study was designed to test the hypothesis that VEGF receptor inhibitor treatment leads to hypertension through decreased renal medullary formation of NO and endothelin-1. With a single-center prospective observational design, patients with metastatic...... increased, whereas heart rate decreased significantly; urine protein/creatinine ratio increased significantly, whereas estimated glomerular filtration rate was unchanged. Urine nitrite/nitrate (NOx) and cGMP/creatinine ratios decreased significantly, whereas urine endothelin-1/creatinine ratio and FENa...

  18. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Pressly, Jeffrey D; Mustafa, Suni M; Adibi, Ammaar H; Alghamdi, Sahar; Pandey, Pankaj; Roy, Kuldeep K; Doerksen, Robert J; Moore, Bob M; Park, Frank

    2018-02-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), which is an increasing problem in the clinic and has been associated with elevated rates of mortality. Therapies to treat AKI are currently not available, so identification of new targets that can be modulated to ameliorate renal damage upon diagnosis of AKI is essential. In this study, a novel cannabinoid receptor 2 (CB2) agonist, SMM-295 [3'-methyl-4-(2-(thiophen-2-yl)propan-2-yl)biphenyl-2,6-diol], was designed, synthesized, and tested in vitro and in silico. Molecular docking of SMM-295 into a CB2 active-state homology model showed that SMM-295 interacts well with key amino acids to stabilize the active state. In human embryonic kidney 293 cells, SMM-295 was capable of reducing cAMP production with 66-fold selectivity for CB2 versus cannabinoid receptor 1 and dose-dependently increased mitogen-activated protein kinase and Akt phosphorylation. In vivo testing of the CB2 agonist was performed using a mouse model of bilateral IRI, which is a common model to mimic human AKI, where SMM-295 was immediately administered upon reperfusion of the kidneys after the ischemia episode. Histologic damage assessment 48 hours after reperfusion demonstrated reduced tubular damage in the presence of SMM-295. This was consistent with reduced plasma markers of renal dysfunction (i.e., creatinine and neutrophil gelatinase-associated lipocalin) in SMM-295-treated mice. Mechanistically, kidneys treated with SMM-295 were shown to have elevated activation of Akt with reduced terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling (TUNEL)-positive cells compared with vehicle-treated kidneys after IRI. These data suggest that selective CB2 receptor activation could be a potential therapeutic target in the treatment of AKI. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Nodular Graves' disease with medullary thyroid cancer.

    Science.gov (United States)

    Khan, Shoukat Hussain; Rather, Tanveer Ahmed; Makhdoomi, Rumana; Malik, Dharmender

    2015-01-01

    Co-existence of thyroid nodules with Graves' disease has been reported in various studies. 10-15% of such nodules harbor thyroid cancer with papillary thyroid cancer being the commonest. Medullary thyroid cancer (MTC) in nodules associated with Graves' disease is rare. On literature survey, we came across 11 such cases reported so far. We report a 62-year-old female with Graves' disease who also had a thyroid nodule that on fine-needle aspiration cytology and the subsequent postthyroidectomy histopathological examination was reported to be MTC.

  20. Inflammation in renal atherosclerotic disease.

    Science.gov (United States)

    Udani, Suneel M; Dieter, Robert S

    2008-07-01

    The study of renal atherosclerotic disease has conventionally focused on the diagnosis and management of renal artery stenosis. With the increased understanding of atherosclerosis as a systemic inflammatory process, there has been increased interest in vascular biology at the microvasculature level. While different organ beds share some features, the inflammation and injury in the microvasculature of the kidney has unique elements as well. Understanding of the pathogenesis yields a better understanding of the clinical manifestations of renal atherosclerotic disease, which can be very subtle. Furthermore, identifying the molecular mechanisms responsible for the progression of kidney damage can also direct clinicians and scientists toward targeted therapies. Existing therapies used to treat atherosclerotic disease in other vascular beds may also play a role in the treatment of renal atherosclerotic disease.

  1. A bioartificial renal tubule device embedding human renal stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Giovanna Sciancalepore

    Full Text Available We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na(+K(+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5% and (13±5%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative "lab-on-a-chip" platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.

  2. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice

    OpenAIRE

    Al-Attar, Atef M.

    2010-01-01

    Toxic heavy metals in water, air and soil are global problems that are a growing threat to humanity. Heavy metals are widely distributed in the environment and some of them occur in food, water, air and tissues even in the absence of occupational exposure. The antioxidant and protective influences of vitamin E on a mixture of some heavy metals (Pb, Hg, Cd and Cu)-induced oxidative stress and renal and testicular injuries were evaluated in male mice. Exposure of mice to these heavy metals in d...

  3. Acute kidney injury due to star fruit ingestion: A case report

    Directory of Open Access Journals (Sweden)

    Mehruba Alam Ananna

    2016-08-01

    Full Text Available Star fruit (Avarrhoa carambola is a fruit from oxalidace family. lt is found in many countries of the world including Bangladesh. But its ingestion or drinking star fruit juice may lead to intoxication especially in patients with chronic kidney disease and manifestations might be neurological or nephrological. lt may also cause acute kidney injury in patients with previously normal renal function. Here we are presenting a case who presented with acute kidney injury after star fruit ingestion with previously unknown renal function impairment. The etiology was confirmed by histopathological exami­nation after doing renal biopsy. This renal function impairment is mainly due to oxalate crystal induce nephropathy which is richly abundant in star fruit. His renal function was improved ·with conservative management. Physicians should be alert to consider the ingestion of star fruit as a cause of acute kidney injury in a patient even in the absence of previous renal function impairment.

  4. Nonoperative management of penetrating kidney injuries: a prospective audit.

    Science.gov (United States)

    Moolman, C; Navsaria, P H; Lazarus, J; Pontin, A; Nicol, A J

    2012-07-01

    The role of nonoperative management for penetrating kidney injuries is unknown. Therefore, we review the management and outcome of penetrating kidney injuries at a center with a high incidence of penetrating trauma. Data from all patients presenting with hematuria and/or kidney injury discovered on imaging or at surgery admitted to the trauma center at Groote Schuur Hospital in Cape Town, South Africa during a 19-month period (January 2007 to July 2008) were prospectively collected and reviewed. These data were analyzed for demographics, injury mechanism, perioperative management, nephrectomy rate and nonoperative success. Patients presenting with hematuria and with an acute abdomen underwent a single shot excretory urogram. Those presenting with hematuria without an indication for laparotomy underwent computerized tomography with contrast material. A total of 92 patients presented with hematuria following penetrating abdominal trauma. There were 75 (80.4%) proven renal injuries. Of the patients 84 were men and the median age was 26 years (range 14 to 51). There were 50 stab wounds and 42 gunshot renal injuries. Imaging modalities included computerized tomography in 60 cases and single shot excretory urography in 18. There were 9 patients brought directly to the operating room without further imaging. A total of 47 patients with 49 proven renal injuries were treated nonoperatively. In this group 4 patients presented with delayed hematuria, of whom 1 had a normal angiogram and 3 underwent successful angioembolization of arteriovenous fistula (2) and false aneurysm (1). All nonoperatively managed renal injuries were successfully treated without surgery. There were 18 nephrectomies performed for uncontrollable bleeding (11), hilar injuries (2) and shattered kidney (3). Post-nephrectomy complications included 1 infected renal bed hematoma requiring percutaneous drainage. Of the injuries found at laparotomy 12 were not explored, 2 were drained and 5 were treated with

  5. Management of renal dysfunction following term perinatal hypoxia-ischaemia.

    LENUS (Irish Health Repository)

    Sweetman, Deirdre U

    2013-03-01

    Acute kidney injury frequently develops following the term perinatal hypoxia-ischaemia. Quantifying the degree of acute kidney injury is difficult, however, as the methods currently in use are suboptimal. Acute kidney injury management is largely supportive with little evidence basis for many interventions. This review discusses management strategies and novel biomarkers that may improve diagnosis and management of renal injury following perinatal hypoxia-ischaemia.

  6. Urological injuries following trauma

    International Nuclear Information System (INIS)

    Bent, C.; Iyngkaran, T.; Power, N.; Matson, M.; Hajdinjak, T.; Buchholz, N.; Fotheringham, T.

    2008-01-01

    Blunt renal trauma is the third most common injury in abdominal trauma following splenic and hepatic injuries, respectively. In the majority, such injuries are associated with other abdominal organ injuries. As urological injuries are not usually life-threatening, and clinical signs and symptoms are non-specific, diagnosis is often delayed. We present a practical approach to the diagnosis and management of these injuries based on our experience in a busy inner city trauma hospital with a review of the current evidence-based practice. Diagnostic imaging signs are illustrated

  7. Urological injuries following trauma

    Energy Technology Data Exchange (ETDEWEB)

    Bent, C. [Department of Diagnostic Imaging, Barts and The London NHS Trust, London (United Kingdom)], E-mail: clare.bent@bartsandthelondon.nhs.uk; Iyngkaran, T.; Power, N.; Matson, M. [Department of Diagnostic Imaging, Barts and The London NHS Trust, London (United Kingdom); Hajdinjak, T.; Buchholz, N. [Department of Urology, Barts and The London NHS Trust, London (United Kingdom); Fotheringham, T. [Department of Diagnostic Imaging, Barts and The London NHS Trust, London (United Kingdom)

    2008-12-15

    Blunt renal trauma is the third most common injury in abdominal trauma following splenic and hepatic injuries, respectively. In the majority, such injuries are associated with other abdominal organ injuries. As urological injuries are not usually life-threatening, and clinical signs and symptoms are non-specific, diagnosis is often delayed. We present a practical approach to the diagnosis and management of these injuries based on our experience in a busy inner city trauma hospital with a review of the current evidence-based practice. Diagnostic imaging signs are illustrated.

  8. Urological injuries following trauma.

    Science.gov (United States)

    Bent, C; Iyngkaran, T; Power, N; Matson, M; Hajdinjak, T; Buchholz, N; Fotheringham, T

    2008-12-01

    Blunt renal trauma is the third most common injury in abdominal trauma following splenic and hepatic injuries, respectively. In the majority, such injuries are associated with other abdominal organ injuries. As urological injuries are not usually life-threatening, and clinical signs and symptoms are non-specific, diagnosis is often delayed. We present a practical approach to the diagnosis and management of these injuries based on our experience in a busy inner city trauma hospital with a review of the current evidence-based practice. Diagnostic imaging signs are illustrated.

  9. High cut-off membranes in acute kidney injury and continuous renal replacement therapy.

    Science.gov (United States)

    Ricci, Zaccaria; Romagnoli, Stefano; Ronco, Claudio

    2017-11-24

    Innovation in continuous renal replacement therapies (CRRT) utilized to treat acute kidney injury (AKI) and sepsis, has brought new machines and techniques. Part of these new advances are due to the availability of innovative biomaterials and the construction of membranes with larger pores and wide distribution of pore sizes. This includes the creation of a new generation of high cut-off membranes whose utilization in clinical practice is promising for the wide spectrum of solutes that are removed during extracorporeal therapies.However, the enlargement of pore diameters brings some loss of albumin during treatment and this effect is still under evaluation, since there is a possibility that this is detrimental for the patient. A thorough review of the available clinical literature is reported in this paper with a reappraisal of the potential application of these new technologies.

  10. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    Directory of Open Access Journals (Sweden)

    Frances E. Jones

    2016-02-01

    Full Text Available Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  11. Dialysis dose in acute kidney injury: no time for therapeutic nihilism – a critical appraisal of the Acute Renal Failure Trial Network study

    Science.gov (United States)

    Ronco, Claudio; Cruz, Dinna; van Straaten, Helen Oudemans; Honore, Patrick; House, Andrew; Bin, Du; Gibney, Noel

    2008-01-01

    The optimal dialysis dose for acute kidney injury is a matter of great controversy. Clinical trials, predominantly single-center studies, have shown conflicting results. The Acute Renal Failure Trial Network (ATN) Study was designed to compare clinical outcomes between patients allocated to an intensive dose versus a less-intensive dose of renal replacement therapy. Recently, the results of this large randomized controlled multicenter study were published. The present article will discuss certain aspects of this trial: the overall design, the baseline patient characteristics, and comparison of the results with earlier studies. Finally, the article will address the implications of the ATN Study results for clinical practice. PMID:18983695

  12. Apical P2XR contribute to [Ca2+]i signaling and Isc in mouse renal MCD.

    Science.gov (United States)

    Li, Liuzhe; Lynch, I Jeanette; Zheng, Wencui; Cash, Melanie N; Teng, Xueling; Wingo, Charles S; Verlander, Jill W; Xia, Shen-Ling

    2007-08-03

    We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.

  13. The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats.

    Science.gov (United States)

    Peake, Jonathan M; Gobe, Glenda C; Fassett, Robert G; Coombes, Jeff S

    2011-03-01

    We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Three groups of Sprague-Dawley rats (n=16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n=4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-β expression, apoptosis, and tissue levels of arachidonic acid, MIP-1α, IL-1β, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion: imaging findings in 21 patients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao; Zhou, Hao; Duan, Na; Liu, Yongkang; Wang, Zhongqiu [Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Radiology, Nanjing (China); Zhu, Qingqiang [Medical School of Yangzhou University, Department of Medical Imaging, Subei People' s Hospital, Yangzhou (China); Li, Baoxin [Gulou Hospital, Department of Radiology, Nanjing (China); Cui, Wenjing [Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Radiology, Nanjing (China); Nanjing University Medical School, Department of Radiology, Jinling Hospital, Nanjing (China); Kundra, Vikas [The University of Texas, M.D. Anderson Cancer Center, Department of Radiology, Houston, TX (United States)

    2017-02-15

    To characterize imaging features of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE gene fusion. Twenty-one patients with Xp11.2/TFE RCC were retrospectively evaluated. Tumour location, size, density, cystic or solid appearance, calcification, capsule sign, enhancement pattern and metastases were assessed. Fourteen women and seven men were identified with 12 being 25 years old or younger. Tumours were solitary and cystic-solid (76.2 %) masses with a capsule (76.2 %); 90.5 % were located in the medulla. Calcifications and lymph node metastases were each observed in 24 %. On unenhanced CT, tumour attenuation was greater than in normal renal parenchyma (85.7 %). Tumour enhancement was less than in normal renal cortex on all enhanced phases, greater than in normal renal medulla on cortical and medullary phases, but less than in normal renal medulla on delayed phase. On MR, the tumours were isointense on T1WI, heterogeneously hypointense on T2WI and slightly hyperintense on diffusion-weighted imaging. Xp11.2/TFE RCC usually occurs in young women. It is a cystic-solid, hyperdense mass with a capsule. It arises from the renal medulla with enhancement less than in the cortex but greater than in the medulla in all phases except the delayed phase, when it is lower than in the medulla. (orig.)

  15. [Crossed renal ectopia in a patient with a complicated sigma neoplasia].

    Science.gov (United States)

    Pérez-Sánchez, Luis Eduardo; Burneo-Esteves, Mauricio; Rosat-Rodrigo, Adriá; Baz-Figueroa, Caleb; Pérez-Álvarez, Antonio Dámaso; Barrera-Gómez, Manuel Ángel

    2017-12-01

    Crossed renal ectopia is a rare pathology that is often asymptomatic. Intraoperative detection with a sigma complicated neoplasia is more infrequent and requires correct management to avoid a renal ureteral injury. To present a case report of a patient with a sigma complicated neoplasia and a crossed renal ectopia detected incidentally. We present the case of a 62-year-old man that was submitted for emergency surgery for a sigma perforated neoplasm, and who presented with a previously undiagnosed left-side CRE. During surgery there was a need to insert 2-double-J stents as a guide to both ureters and to avoid any injury to them. Crossed renal ectopia is a rare, often asymptomatic entity, the diagnosis of which is usually incidental. In our case, the detection of a concomitant complicated neoplasm, required identification of both ureters due the anatomic doubt of its localization and to avoid them being injured. In conclusion, upon finding a casual crossed renal ectopia during an emergency surgery of sigma, we recommend the identification of the ureters to facilitate its location and to avoid any injury to the ureters. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  16. Disc pathology after whiplash injury. A prospective magnetic resonance imaging and clinical investigation.

    Science.gov (United States)

    Pettersson, K; Hildingsson, C; Toolanen, G; Fagerlund, M; Björnebrink, J

    1997-02-01

    This study was used to evaluate the relationship between magnetic resonance imaging findings and clinical findings after whiplash injury. To identify initial soft-tissue damage after whiplash injury, the development of disc pathology, and the relationship of disc pathology to clinical findings. Although a few studies have reported pathological magnetic resonance imaging findings after whiplash injuries, there is no prospective study published to our knowledge. Thirty-nine patients, 20 women and 19 men with a mean age of 32 years, were treated for whiplash injury. Magnetic resonance imaging and clinical examination were performed in a blinded manner at a mean of 11 days after trauma. The procedure was repeated at a 2-year follow-up visit. Two patients could not be examined with the second magnetic resonance imaging because of claustrophobia and pregnancy, respectively. The authors found 13 patients (33%) with disc herniations with medullary (six cases) or dura (seven cases) impingement over the 2-year follow-up period. At the follow-up examination all patients with medullary impingement had persistent or increased symptoms, and three of 27 patients (11%) with no or slight changes on magnetic resonance imaging had persistent symptoms. No ligament injuries were diagnosed. Although disc pathology seems to be one contributing factor in the development of chronic symptoms after whiplash injury, it may be unnecessary to examine these patients in the acute phase with magnetic resonance imaging; correlating initial symptoms and signs to magnetic resonance imaging findings is difficult because of the relatively high proportion of false-positive results. Magnetic resonance imaging is indicated later in the course of treatment in patients with persistent arm pain, neurologic deficits or clinical signs of nerve root compression to diagnose disc herniations requiring surgery.

  17. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings.

    Science.gov (United States)

    Shamseldeen, Asmaa Mohammed; Ali Eshra, Mohammed; Ahmed Rashed, Laila; Fathy Amer, Marwa; Elham Fares, Amal; Samir Kamar, Samaa

    2018-05-09

    Maternal diet composition could influence fetal organogenesis. We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.

  18. Acute renal failure in rats

    International Nuclear Information System (INIS)

    Cederholm, C.; Almen, T.; Bergquist, D.; Golman, K.; Takolander, R.; Malmoe Allmaenna Sjukhus

    1989-01-01

    It was demonstrated in rats that renal injury which follows transient renal hypoxia is potentiated by the contrast media metrizoate, ioxaglate, iopamidol and iohexol. Intravenous injection of 1 g I/kg of all four media alone to 82 rats caused no significant increase in serum urea 1, 3 and 7 days later. The percentage increase of serum urea is given in median values and interquartile range (in parentheses). Bilateral renal arterial occlusion alone for 40 minutes in 42 rats increased serum urea one day later by 40% (20-130). Intravenous injection of the media followed in one hour by bilateral renal arterial occlusion for 40 minutes in 104 rats caused serum urea to increase one day later by 130% (70-350) after metrizoate, by 220% (50-380) after ioxaglate, by 290 % (60-420) after iopamidol and by 160% (50-330) after iohexol. There were no significant differences between the potentiating effects of the various media on ischemic renal failure. (orig.)

  19. Camel Milk Ameliorates 5-Fluorouracil-Induced Renal Injury in Rats: Targeting MAPKs, NF-κB and PI3K/Akt/eNOS Pathways

    Directory of Open Access Journals (Sweden)

    Hany H. Arab

    2018-04-01

    Full Text Available Background/Aims: The clinical utility of 5-fluorouracil (5-FU is limited by its nephrotoxicity. Camel milk (CM has previously displayed beneficial effects in toxicant-induced nephropathies. The current study aimed to investigate the potential of CM to attenuate 5-FU-induced nephrotoxicity in rats. Methods: Renal tissues were studied in terms of oxidative stress, inflammation and apoptosis. The levels of renal injury markers, inflammatory cytokines along with NOX-1, Nrf-2 and HO-1 were assessed by ELISA. The expression of MMP-2, MMP-9, NF-κBp65, p53, Bax and PCNA were detected by Immunohistochemistry. To gain an insight into the molecular signaling mechanisms, we determined the effect of CM on MAPKs, NF-κB and PI3K/Akt/eNOS pathways by Western blotting. Results: CM lowered 5-FU-triggered increase of creatinine, BUN, Kim-1 and NGAL renal injury biomarkers and attenuated the histopathological aberrations. It suppressed oxidative stress and augmented renal antioxidant armory (GSH, SOD, GPx, TAC with restoration of NOX-1, Nrf-2 and HO-1 levels. CM also suppressed renal inflammation as indicated by inhibition of MPO, TNF-α, IL-1β, IL-18 and MCP-1 proinflammatory mediators and downregulation of MMP-2 and MMP-9 expression with boosting of IL-10. Regarding MAPKs signaling, CM suppressed the phosphorylation of p38 MAPK, JNK1/2 and ERK1/2 and inhibited NF-κB activation. For apoptosis, CM downregulated p53, Bax, CytC and caspase-3 proapoptotic signals with enhancement of Bcl-2 and PCNA. It also enhanced PI3K p110α, phospho-Akt and phospho-eNOS levels with augmentation of renal NO, favoring cell survival. Equally important, CM preconditioning enhanced 5-FU cytotoxicity in MCF-7, HepG-2, HCT-116 and PC-3 cells, thus, justifying their concomitant use. Conclusion: The current findings pinpoint, for the first time, the marked renoprotective effects of CM that were mediated via ROS scavenging, suppression of MAPKs and NF-κB along with activation of PI3K

  20. Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators.

    Directory of Open Access Journals (Sweden)

    Vance Holt

    Full Text Available Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.

  1. Optimal timing of renal replacement therapy initiation in acute kidney injury: the elephant felt by the blindmen?

    Science.gov (United States)

    Shiao, Chih-Chung; Huang, Tao-Min; Spapen, Herbert D; Honore, Patrick M; Wu, Vin-Cent

    2017-06-20

    Renal replacement therapy (RRT) is a key component in the management of severe acute kidney injury (AKI) in critically ill patients. Many cohort studies, meta-analyses, and two recent large randomized prospective trials which evaluated the relationship between the timing of RRT initiation and patient outcome remain inconclusive due to substantial differences in study design, patient population, AKI definition, and RRT indication. A cause-specific diagnosis of AKI based on current staging criteria plus a sensitive biomarker (panel) that allows creating a homogeneous study population is definitely needed to assess the impact of early versus late initiation of RRT on patient outcome.

  2. Renal pyramid echogenicity in ureteropelvic junction obstruction: correlation between altered echogenicity and differential renal function

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind; Daneman, Alan; Lim, Ruth; Traubici, Jeffrey [University of Toronto, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Langlois, Valerie [University of Toronto, Division of Nephrology, Department of Pediatrics, Hospital for Sick Children, Toronto (Canada)

    2008-10-15

    Improvement in resolution and use of high-frequency transducers in US has enabled visualization of previously unreported changes in medullary pyramid echogenicity in children with obstructive hydronephrosis. To determine whether these unreported changes in echogenicity and morphology of the renal pyramids in ureteropelvic junction (UPJ) obstruction correlate with differential renal function (DRF) of the kidney as determined by technetium-99m mercaptoacetyltriglycine ({sup 99m}Tc-MAG3) scan. Renal sonograms in 60 children with UPJ obstruction were retrospectively reviewed. Children were divided into three groups based on the echogenicity of the pyramids: (1) normal echogenicity of the pyramids, (2) increased echogenicity of the pyramids with maintained corticomedullary differentiation (CMD), and (3) loss of CMD. DRF, as determined by {sup 99m}Tc-MAG3 scan, of the obstructed kidney of {>=}45% was considered normal and of {<=}44% was considered abnormal based on a published study correlating histological changes with DRF. Fisher's exact test was performed for assessing the association between DRF and altered echogenicity of the pyramids. In group 1, which consisted of 13 patients with normal pyramids on US, DRF was normal in 11 and abnormal in two. In group 2, which consisted of 33 patients with echogenic pyramids and preserved CMD, DRF was normal in 15 and abnormal in 18. In group 3, which consisted of 14 patients with complete loss of CMD, DRF was normal in 2 and abnormal in 12. There was a strong correlation between abnormal pyramids and DRF (P=0.0009). The risk ratio (RR) of DRF becoming abnormal for those kidneys with abnormal echogenicity of the pyramids with preserved CMD (group 2) compared to normal pyramid echogenicity (group 1) was 1.56 (95% CI 1.088-2.236). The RR of DRF becoming abnormal for those kidneys with loss of CMD (group 3) compared to normal pyramid echogenicity (group 1) was 5.571 (95% CI 1.530-20.294). We observed that in obstructed kidneys

  3. Urinary NGAL Ratio Is Not a Sensitive Biomarker for Monitoring Acute Tubular Injury in Kidney Transplant Patients: NGAL and ATI in Renal Transplant Patients

    Directory of Open Access Journals (Sweden)

    Jessica K. Kaufeld

    2012-01-01

    Full Text Available Urinary neutrophil gelatinase-associated lipocalin (uNGAL is known to predict the prolonged delayed graft function after kidney transplantation. We examined the relation of uNGAL with histological findings of acute tubular injury (ATI. Analyses were made in biopsies taken at 6 weeks, 3 months, and 6 months after kidney transplantation. uNGAL was measured in the spot urines, normalized to urinary creatinine excretion, and correlated to biopsy findings and clinical, laboratory, and demographic variables. Controls included healthy individuals, individuals after kidney donation and ICU patients with acute kidney failure. Renal transplant recipients without ATI did not display elevated uNGAL levels compared to the healthy controls. Transplant patients with ATI had a higher uNGAL excretion at 6 weeks than patients without ATI (27,435 versus 13,605 ng/g; P=0.031. This increase in uNGAL was minor compared to ICU patients with acute renal failure (2.05×106 ng/g. Patients with repeated findings of ATI or severe ATI did not have higher urinary NGAL levels compared to those with only one ATI finding or moderate ATI. Female recipient gender and urinary tract infection were identified as potential confounders. uNGAL has a relation with histological signs of acute tubular injury. The usability of this biomarker in renal allograft recipients is limited because of the low sensitivity.

  4. Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Edrees, Fahad; Li, Tingting; Vijayan, Anitha

    2016-05-01

    Prolonged intermittent renal replacement therapy (PIRRT) is becoming an increasingly popular alternative to continuous renal replacement therapy in critically ill patients with acute kidney injury. There are significant practice variations in the provision of PIRRT across institutions, with respect to prescription, technology, and delivery of therapy. Clinical trials have generally demonstrated that PIRRT is non-inferior to continuous renal replacement therapy regarding patient outcomes. PIRRT offers cost-effective renal replacement therapy along with other advantages such as early patient mobilization and decreased nursing time. However, due to lack of standardization of the procedure, PIRRT still poses significant challenges, especially pertaining to appropriate drug dosing. Future guidelines and clinical trials should work toward developing consensus definitions for PIRRT and ensure optimal delivery of therapy. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats.

    Science.gov (United States)

    Ohno, Kouhei; Kuno, Atsushi; Murase, Hiromichi; Muratsubaki, Shingo; Miki, Takayuki; Tanno, Masaya; Yano, Toshiyuki; Ishikawa, Satoko; Yamashita, Tomohisa; Miura, Tetsuji

    2017-12-01

    Acute kidney injury (AKI) after acute myocardial infarction (MI) worsens the prognosis of MI patients. Although type 2 diabetes mellitus (DM) is a major risk factor of AKI after MI, the underlying mechanism remains unclear. Here, we examined the roles of renal Toll-like receptors (TLRs) in the impact of DM on AKI after MI. MI was induced by coronary artery ligation in Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a rat DM model, and Long-Evans-Tokushima-Otsuka (LETO) rats, nondiabetic controls. Sham-operated rats served as no-MI controls. Renal mRNA levels of TLR2 and myeloid differentiation factor 88 (MyD88) were significantly higher in sham-operated OLETF rats than in sham-operated LETO rats, although levels of TLR1, TLR3, and TLR4 were similar. At 12 h after MI, protein levels of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney were elevated by 5.3- and 4.0-fold, respectively, and their mRNA levels were increased in OLETF but not LETO rats. The increased KIM-1 and NGAL expression levels after MI in the OLETF kidney were associated with upregulated expression of TLR1, TLR2, TLR4, MyD88, IL-6, TNF-α, chemokine (C-C motif) ligand 2, and transforming growth factor-β 1 and also with activation of p38 MAPK, JNK, and NF-κB. Cu-CPT22, a TLR1/TLR2 antagonist, administered before MI significantly suppressed MI-induced upregulation of KIM-1, TLR2, TLR4, MyD88, and chemokine (C-C motif) ligand 2 levels and activation of NF-κB, whereas NGAL levels and IL-6 and TNF-α expression levels were unchanged. The results suggest that DM increases the susceptibility to AKI after acute MI by augmented activation of renal TLRs and that TLR1/TLR2-mediated signaling mediates KIM-1 upregulation after MI. NEW & NOTEWORTHY This is the first report to demonstrate the involvement of Toll-like recpetors (TLRs) in diabetes-induced susceptibility to acute kidney injury after acute myocardial infarction. We propose that the TLR1/TLR2

  6. Reciprocal Changes of Renal Neuronal Nitric Oxide Synthase-α and -β Associated With Renal Progression in a Neonatal 5/6 Nephrectomized Rat Model

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2011-04-01

    Conclusion: The neonatal kidney is very susceptible to 5/6 NX-induced injury, and, as in adults, reciprocal changes in the nNOSα and nNOSβ in renal cortex occur during progression of chronic kidney disease and may contribute to the injury.

  7. How Kidney Cell Death Induces Renal Necroinflammation.

    Science.gov (United States)

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Laparoscopic Colectomy for a Patient with Congenital Renal Agenesis

    African Journals Online (AJOL)

    The right colon was mobilized by lateral‑to‑medial extension of a retroperitoneal dissection between the fusion fascia and the anterior renal fascia. The right testicular vessels were preserved without injury to the anterior renal fascia; however, the right ureter could not be detected. The operation was performed safely. Thus ...

  9. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: a randomized placebo-controlled study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2013-10-01

    Acute kidney injury develops in a large proportion of patients after cardiac surgery because of the low cardiac output syndrome. The inodilator levosimendan increases cardiac output after cardiac surgery with cardiopulmonary bypass, but a detailed analysis of its effects on renal perfusion, glomerular filtration, and renal oxygenation in this group of patients is lacking. We therefore evaluated the effects of levosimendan on renal blood flow, glomerular filtration rate, renal oxygen consumption, and renal oxygen demand/supply relationship, i.e., renal oxygen extraction, early after cardiac surgery with cardiopulmonary bypass. Prospective, placebo-controlled, and randomized trial. Cardiothoracic ICU of a tertiary center. Postcardiac surgery patients (n=30). The patients were randomized to receive levosimendan, 0.1 µg/kg/min after a loading dose of 12 µg/kg (n=15), or placebo (n=15). The experimental procedure started 4-6 hours after surgery in the ICU during propofol sedation and mechanical ventilation. Systemic hemodynamic were evaluated by a pulmonary artery thermodilution catheter. Renal blood flow and glomerular filtration rate were measured by the renal vein retrograde thermodilution technique and by renal extraction of Cr-EDTA, respectively. Central venous pressure was kept constant by colloid/crystalloid infusion. Compared to placebo, levosimendan increased cardiac index (22%), stroke volume index (15%), and heart rate (7%) and decreased systemic vascular resistance index (21%), whereas mean arterial pressure was not affected. Levosimendan induced significant increases in renal blood flow (12%, prenal vascular resistance (18%, prenal oxygen consumption, or renal oxygen extraction, compared to placebo. After cardiac surgery with cardiopulmonary bypass, levosimendan induces a vasodilation, preferentially of preglomerular resistance vessels, increasing both renal blood flow and glomerular filtration rate without jeopardizing renal oxygenation. Due to its

  10. Medullary carcinoma of the thyroid

    International Nuclear Information System (INIS)

    Samuel, A.M.; Pradhan, S.A.; D'Cruz, A.; Shah, D.H.

    1999-01-01

    Medullary thyroid carcinoma is a biologically distinct form of thyroid cancer and accounts for 5-10% of all thyroid neoplasms. Twenty percent of MTC can occur in a familial setting either by itself or as part of the multiple endocrine neoplasm syndromes. A disciplined approach is necessary in the work-up of these patients to rule out coexistent endocrine tumors (pheochromocytomas and parathyroid). Cacitonin is a sensitive tumor marker secreted by MTC that is of prognostic value and important in the follow-up of patients. Surgery is the mainstay of treatment with a total thyroidectomy and centre compartment clearance being the minimum for patients without cervical adenopathy. Radiotherapy has a limited role and is only indicated as a palliative measure in patients with advanced/metastatic disease not amenable to surgery

  11. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach.

    Science.gov (United States)

    Chade, Alejandro R; Kelsen, Silvia

    2012-05-15

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  12. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury.

    Science.gov (United States)

    Penno, G; Garofolo, M; Del Prato, S

    2016-05-01

    Type 2 diabetes mellitus (T2DM) is associated with a high risk of chronic kidney disease (CKD). About 20% of patients with T2DM have CKD of stage ≥ 3; up to 40% have some degree of CKD. Beyond targeting all renal risk factors together, renin-angiotensin-aldosterone system blockers are to date the only effective mainstay for the treatment of diabetic kidney disease (DKD). Indeed, several potentially nephroprotective agents have been in use, which have been unsuccessful. Some glucose-lowering agents, including dipeptidyl peptidase-4 inhibitors (DPP-4i), have shown promising results. Here, we discuss the evidence that glucose lowering with DPP-4i may be an option for protecting against diabetes-related renal injury. A comprehensive search was performed of the literature using the terms "alogliptin," "linagliptin," "saxagliptin," "sitagliptin," and "vildagliptin" for original articles and reviews addressing this topic. DPP-4i are an effective, well-tolerated treatment option for T2DM with any degree of renal impairment. Preclinical observations and clinical studies suggest that DPP-4i might also be a promising strategy for the treatment of DKD. The available data are in favor of saxagliptin and linagliptin, but the consistency of results points to the possible nephroprotective effect of DPP-4i. This property appears to be independent of glucose lowering and can potentially complement other therapies that preserve renal function. Larger prospective clinical trials are ongoing, which might strengthen these hypothesis-generating findings. The improvement in albuminuria associated with DPP-4i suggests that these agents may provide renal benefits beyond their glucose-lowering effects, thus offering direct protection from DKD. These promising results must be interpreted with caution and need to be confirmed in forthcoming studies. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human

  13. Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats.

    Science.gov (United States)

    Ahmeda, Ahmad F; Rae, Mark G; Al Otaibi, Mohammed F; Anweigi, Lamyia M; Johns, Edward J

    2017-05-01

    Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.

  14. Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls.

    Science.gov (United States)

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2014-11-01

    Determine the reproducibility of renal artery blood flow (RABF) and blood-oxygenation level dependent (R2 *) in patients with chronic kidney disease (CKD) and healthy controls. RABF and R2 * were measured in 11 CKD patients and 9 controls twice with 1- to 2-week interval. R2 * in the cortex and medulla were determined after breathing atmospheric air and 100% oxygen. Reproducibility was evaluated by coefficients of variation (CV), limits of agreements and intra-class coefficient calculated by variance components by maximum likelihood modeling. Single-kidney RABF (mL/min) for patients was: 170 ± 130 and 186 ± 137, and for controls: 365 ± 119 and 361 ± 107 (P Renal cortical R2 * was: 13.6 ± 0.9 and 13.5 ± 1.2 in patients (CV = 8.0%), and 13.8 ± 1.6 and 14.0 ± 1.5 in controls (CV = 5.6%), while medullary R2 *(s(-1) ) was: 26.9 ± 2.0 and 27.0 ± 4.0 (CV = 8.0%) in patients, and 26.0 ± 2.4 and 26.1 ± 2.1 (CV = 3.6%) in controls, for first and second scans, respectively. In both groups R2 * in medulla decreased after breathing 100% oxygen. The reproducibility was high for both RABF and R2 * in patients and controls, particularly in the cortex. Inhalation of 100% oxygen reduced medullary R2 *. © 2013 Wiley Periodicals, Inc.

  15. Screening for sporadic or familial medullary thyroid carcinoma. Scintiscan s and radio-immunotherapy

    International Nuclear Information System (INIS)

    Rhmer, V.; Murat, A.

    2000-01-01

    The screening for sporadic medullary thyroid carcinoma relies upon calcitoninemia level, basal or during pentagastrine stimulation test. MEN2 are associated with nearly the third of medullary thyroid carcinoma. In these cases, prognosis of thyroid carcinoma is mainly driven by the tumor status at the time of surgery. Up to date, diagnosis relies upon the genetic screening. Prophylactic thyroidectomy indication may take account of calcitoninemia. Most of the molecules that have been suggested for scintiscan lack of accuracy and large use cannot be recommended. Promising results have been obtained with monoclonal antibodies anti-CEA, particularly with dual targeting antiCEA antiDTPA. This last technique may also be used for radio-guided surgery. Its use for radio-immunotherapy is under investigation. (authors)

  16. Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-κB activation

    International Nuclear Information System (INIS)

    Kim, Dae-Seok; Kim, Bora; Tahk, Hongmin; Kim, Dong-Hyun; Ahn, Eu-Ree; Choi, Changsun; Jeon, Yoon; Park, Seo Young; Lee, Ho; Oh, Seung Hyun; Kim, Soo-Youl

    2010-01-01

    Research highlights: → No acute renal tubular necrotic lesions were found in TGase2 -/- mice with ischemic kidney injury. → NF-κB activation is reduced in TGase2 -/- mice with ischemic kidney injury. → Hypoxic stress did not increase NF-κB activity in MEFs from TGase2 -/- mice. → COX-2 induction is suppressed in TGase2 -/- mice with ischemic kidney injury. -- Abstract: Transglutaminase 2 knockout (TGase2 -/- ) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-κB (NF-κB) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-κB activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-κB activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-κB activity in mouse embryogenic fibroblasts (MEFs) from TGase2 -/- mice remained at the control level while the NF-κB activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-κB activity remained at the control level in TGase2 -/- mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-κB activation in ischemic injury.

  17. End-Stage Renal Disease From Cast Nephropathy in a Teenager With Neuroendocrine Carcinoma.

    Science.gov (United States)

    Butani, Lavjay; Ducore, Jonathan

    2016-07-01

    Cast nephropathy is the most common manifestation of renal injury in patients with multiple myeloma but is rarely reported in other conditions. We are reporting our experience in caring for a teenager with a metastatic neuroendocrine carcinoma who developed rapidly progressive kidney injury that advanced to end-stage renal disease. On renal biopsy extensive tubular necrosis and intratubular eosinophilic casts were noted. This previously unreported finding should prompt oncologists to closely monitor for such a complication in patients with secretory tumors. Whether early plasmapheresis could be of benefit, as has been tried in multiple myeloma, remains to be determined.

  18. Renal function and acute heart failure outcome.

    Science.gov (United States)

    Llauger, Lluís; Jacob, Javier; Miró, Òscar

    2018-06-05

    The interaction between acute heart failure (AHF) and renal dysfunction is complex. Several studies have evaluated the prognostic value of this syndrome. The aim of this systematic review, which includes non-selected samples, was to investigate the impact of different renal function variables on the AHF prognosis. The categories included in the studies reviewed included: creatinine, blood urea nitrogen (BUN), the BUN/creatinine quotient, chronic kidney disease, the formula to estimate the glomerular filtration rate, criteria of acute renal injury and new biomarkers of renal damage such as neutrophil gelatinase-associated lipocalin (NGAL and cystatin c). The basal alterations of the renal function, as well as the acute alterations, transient or not, are related to a worse prognosis in AHF, it is therefore necessary to always have baseline, acute and evolutive renal function parameters. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  19. Continuous renal replacement therapy for critically ill infants and children

    DEFF Research Database (Denmark)

    Pedersen, Ole; Jepsen, Søren Bruun; Toft, Palle

    2012-01-01

    Continuous renal replacement therapy (CRRT) is an important treatment in critically ill children with acute kidney injury (AKI). Over the past decade, CRRT has been the preferred method of renal replacement therapy. We compared children with CRRT-treated adults with AKI in terms of return of kidney...

  20. Loxosceles gaucho venom-induced acute kidney injury--in vivo and in vitro studies.

    Directory of Open Access Journals (Sweden)

    Rui V Lucato

    Full Text Available BACKGROUND: Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI. There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In order to test Loxosceles gaucho venom (LV nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control. LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats. CONCLUSIONS/SIGNIFICANCE: Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.

  1. Vandetanib in advanced medullary thyroid cancer: review of adverse event management strategies

    DEFF Research Database (Denmark)

    Grande, Enrique; Kreissl, Michael C; Filetti, Sebastiano

    2013-01-01

    Vandetanib has recently demonstrated clinically meaningful benefits in patients with unresectable, locally advanced or metastatic medullary thyroid cancer (MTC). Given the potential for long-term vandetanib therapy in this setting, in addition to treatment for disease-related symptoms, effective...

  2. Bromide supplementation exacerbated the renal dysfunction, injury and fibrosis in a mouse model of Alport syndrome.

    Science.gov (United States)

    Yokota, Tsubasa; Omachi, Kohei; Suico, Mary Ann; Kojima, Haruka; Kamura, Misato; Teramoto, Keisuke; Kaseda, Shota; Kuwazuru, Jun; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-01-01

    A seminal study recently demonstrated that bromide (Br-) has a critical function in the assembly of type IV collagen in basement membrane (BM), and suggested that Br- supplementation has therapeutic potential for BM diseases. Because salts of bromide (KBr and NaBr) have been used as antiepileptic drugs for several decades, repositioning of Br- for BM diseases is probable. However, the effects of Br- on glomerular basement membrane (GBM) disease such as Alport syndrome (AS) and its impact on the kidney are still unknown. In this study, we administered daily for 16 weeks 75 mg/kg or 250 mg/kg (within clinical dosage) NaBr or NaCl (control) via drinking water to 6-week-old AS mice (mouse model of X-linked AS). Treatment with 75 mg/kg NaBr had no effect on AS progression. Surprisingly, compared with 250 mg/kg NaCl, 250 mg/kg NaBr exacerbated the progressive proteinuria and increased the serum creatinine and blood urea nitrogen in AS mice. Histological analysis revealed that glomerular injury, renal inflammation and fibrosis were exacerbated in mice treated with 250 mg/kg NaBr compared with NaCl. The expressions of renal injury markers (Lcn2, Lysozyme), matrix metalloproteinase (Mmp-12), pro-inflammatory cytokines (Il-6, Il-8, Tnf-α, Il-1β) and pro-fibrotic genes (Tgf-β, Col1a1, α-Sma) were also exacerbated by 250 mg/kg NaBr treatment. Notably, the exacerbating effects of Br- were not observed in wild-type mice. These findings suggest that Br- supplementation needs to be carefully evaluated for real positive health benefits and for the absence of adverse side effects especially in GBM diseases such as AS.

  3. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney.

    Science.gov (United States)

    De Miguel, Carmen; Hamrick, William C; Hobbs, Janet L; Pollock, David M; Carmines, Pamela K; Pollock, Jennifer S

    2017-02-23

    Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ET B deficient (ET B def) or transgenic control (TG-con) rats were used in the presence or absence of ET A receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ET B def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ET A blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ET B def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ET A receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ET B receptor has protective effects. These results highlight targeting the ET A receptor as a therapeutic approach against ER stress-induced kidney injury.

  4. Medullary and papillary carcinoma of the thyroid gland occurring as a collision tumor with lymph node metastasis: A case report

    Directory of Open Access Journals (Sweden)

    Sadat Alavi Mehr

    2011-12-01

    Full Text Available Abstract Introduction Papillary thyroid carcinoma and medullary thyroid carcinoma are two different thyroid neoplasia. The simultaneous occurrence of medullary thyroid carcinoma and papillary thyroid carcinoma as a collison tumor with metastases from both lesions in the regional lymph nodes is a rare phenomenon. Case presentation A 32-year-old Iranian man presented with a fixed anterior neck mass. Ultrasonography revealed two separate thyroid nodules as well as a suspicious neck mass that appeared to be a metastatic lesion. The results of thyroid function tests were normal, but the preoperative calcitonin serum value was elevated. Our patient underwent a total thyroidectomy with neck exploration. Two separate and ill-defined solid lesions grossly in the right lobe were noticed. Histological and immunohistochemical studies of these lesions suggested the presence of medullary thyroid carcinoma and papillary thyroid carcinoma. The lymph nodes isolated from a neck dissection specimen showed metastases from both lesions. Conclusions The concomitant occurrence of papillary thyroid carcinoma and medullary thyroid carcinoma and the exact diagnosis of this uncommon event are important. The treatment strategy should be reconsidered in such cases, and genetic screening to exclude multiple endocrine neoplasia 2 syndromes should be performed. For papillary thyroid carcinoma, radioiodine therapy and thyroid-stimulating hormone suppressive therapy are performed. However, the treatment of medullary thyroid carcinoma is mostly radical surgery with no effective adjuvant therapy.

  5. Histopathological study on the effects of turmeric (Curcuma longa linn. powdwer on renal ischemia-reperfusion injuryin rats

    Directory of Open Access Journals (Sweden)

    D Mohajeri

    2012-05-01

    Full Text Available Renal ischemia/reperfusion (I/R injury is a major cause of acute renal failure (ARF, which is faced in many clinical situations. This study was designed to investigate the effect of pre-treatment with turmeric (Curcuma longa linn powder on kidney histopathology and function markers in renal ischemia / reperfusion (IR induced injury in the rats. A total of 80 male Wistar rats were randomly divided into 4 groups: sham, IR model and two I/R+TREE (2%and4% - treated groups (n=20 per group. I/R groups’ kidneys were subjected to 60 min of global ischemia at 37oc followed by 30min of reperfusion. After 24h of reperfusion period, the rats were sacrificed. Kidney function tests and histopathological examination were also performed. Results were compared with a group of rats with sham operation. High serum creatinine, blood urea nitrogen and uric acid were observed in I/R rats compared to the sham rats. Pre-treatment of turmeric powder for 30 days prior to IR operation improved renal function reduced IR induced renal inflammatory and oxidative injury. The results of this study showed that turmeric powder significantly prevented renal I/R-induced functional and histological injuries.

  6. The Protective Effect of γ-aminobutyric Acid on Kidney Injury Induced by Renal Ischemia-reperfusion in Ovariectomized Estradiol-treated Rats.

    Science.gov (United States)

    Talebi, Nahid; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Vafapour, Marzieh

    2016-01-01

    Renal ischemia-reperfusion injury (IRI) is one of the most important causes of kidney injury, which is possibly gender-related. This study was designed to investigate the role of γ-aminobutyric acid (GABA) against IRI in ovariectomized estradiol-treated rats. Thirty-five ovariectomized Wistar rats were used in six experimental groups. The first three groups did not subject to estradiol treatment and assigned as sham-operated, control, and GABA-treated groups. GABA (50 μmol/kg) and saline were injected in the treated and control groups 30 min before the surgery, respectively. The second three groups received the same treatments but received estradiol valerate (500 μg/kg, intramuscularly) 3 days prior to the surgery. The IRI was induced in the control and treated groups by clamping the renal artery for 45 min and then 24 h of reperfusion. All animals were sacrificed for the measurements. The serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score significantly increased in the IRI rats (P GABA significantly decreased the aforementioned parameters (P levels of nitrite (nitric oxide metabolite) did not alter significantly. Serum level of malondialdehyde increased significantly in the ovariectomized rats exposed to IRI (P GABA improved IRI in ovariectomized rats. Estradiol was also nephroprotective against IRI. However, co-administration of estradiol and GABA could not protect the kidney against IRI.

  7. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation.

    Science.gov (United States)

    Herrler, Tanja; Tischer, Anne; Meyer, Andreas; Feiler, Sergej; Guba, Markus; Nowak, Sebastian; Rentsch, Markus; Bartenstein, Peter; Hacker, Marcus; Jauch, Karl-Walter

    2010-01-15

    Inflammatory edema after ischemia-reperfusion may impair renal allograft function after kidney transplantation. This study examines the effect of edema-related pressure elevation on renal function and describes a simple method to relieve pressure within the renal compartment. Subcapsular pressure at 6, 12, 24, 48 hr, and 18 days after a 45 min warm ischemia was determined in a murine model of renal ischemia-reperfusion injury. Renal function was measured by Tc-MAG3 scintigraphy and laser Doppler perfusion. Structural damage was assessed by histologic analysis. As a therapeutic approach, parenchymal pressure was relieved by a standardized circular 0.3 mm incision at the lower pole of the kidney capsule. Compared with baseline (0.9+/-0.3 mm Hg), prolonged ischemia was associated with a sevenfold increase in subcapsular pressure 6 hr after ischemia (7.0+/-1.0 mm Hg; P<0.001). Pressure levels remained significantly elevated for 24 hr. Without therapy, a significant decrease in functional parameters was found with considerably reduced tubular excretion rate (33+/-3.5%, P<0.001) and renal perfusion (64.5+/-6.8%, P<0.005). Histologically, severe tissue damage was found. Surgical pressure relief was able to significantly prevent loss of tubular excretion rate (62.5+/-6.8%, P<0.05) and renal blood flow (96.2+/-4.8%; P<0.05) and preserved the integrity of renal structures. Our data support the hypothesis of the existence of a renal compartment syndrome as a consequence of ischemia-reperfusion injury. Surgical pressure relief effectively prevented functional and structural renal impairment, and we speculate that this approach might be of value for improving graft function after renal transplantation.

  8. Unusual metastasis of medullary thyroid carcinoma to the breast: A cytological and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Parul Tanwar

    2018-01-01

    Full Text Available Breast metastases are a relatively rare condition and account for approximately 0.5–2% of all breast tumors. Recognition of metastatic tumors in the breast is important because it would prevent unnecessary mutilating surgery and would lead to appropriate treatment of the primary tumor. Breast metastases from medullary thyroid cancer (MTC are very rare with only 21 reported cases in the literature. Some MTCs mimic primary invasive lobular carcinoma of the breast histopathologically and radiologically, making the distinction between the two diagnostically challenging. We present the case of a 45-year-old female presenting with a lump breast, which was later found out to be metastasis from medullary carcinoma thyroid.

  9. Correlation of urinary monocyte chemo-attractant protein-1 with other parameters of renal injury in type-II diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ibrahim Salwa

    2008-01-01

    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease in the western world. Increased number of interstitial macrophages has been observed in biopsies from patients with DN. Monocyte chemo-attractant protein-1 (MCP-1 is the strongest known chemo-tactic factor for monocytes and is upregulated in DN. We examined urinary levels of MCP-1 in patients with type-2 diabetes mellitus (DM to assess its possible correlation with other para-meters of renal injury. The urinary MCP-1 level was assessed in 75 patients with type-2 DM (25 patients each with no microalbuminuria, with macroalbuminuria and, with renal impairment and compared them with matched healthy control subjects. The HbA1c and estimated glomerular fil-tration rate (eGFR derived from the abbreviated Modification of Diet in Renal Disease (MDRD equation were examined in the study groups in relation to the urinary MCP-1. The urinary MCP-1 level was significantly higher in patients with micro and macroalbuminuria (167.41 ± 50.23 and 630.87 ± 318.10 ng/gm creatinine respectively as compared with normoalbuminuric patients and healthy controls (63.85 ± 21.15 and 61.50 ± 24.81 ng/gm creatinine, p< 0.001. MCP-1 correlated positively with urine albumin/creatinine ratio (ACR (r= 0.75, p< 0.001, HbA1c (r= 0.55, p< 0.001 and inversely with eGFR (r=-0.60, p< 0.001. Our findings suggest that hyperglycemia is associated with increased urinary levels of MCP-1 that is closely linked to renal damage as reflected by proteinuria and eGFR levels. Collectively, these findings suggest that MCP-1 is in-volved in the pathogenesis of diabetic nephropathy through its various stages.

  10. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue

  11. The impact of coagulopathy on traumatic splenic injuries.

    Science.gov (United States)

    Smalls, Norma; Obirieze, Augustine; Ehanire, Imudia

    2015-10-01

    Patients with pre-injury coagulopathy have worse outcomes than those without coagulopathy. This article investigated the risk-adjusted effect of pre-injury coagulopathy on outcomes after splenic injuries. Review of the National Trauma Data Bank from 2007 to 2010 comparing mortality and complications between splenic injury patients with and without a pre-injury bleeding disorder. Of 58,896 patients, 2% had a bleeding disorder. Coagulopathic patients had higher odds of mortality (odds ratio, 1.3), sepsis (odds ratio, 2.0), acute respiratory distress syndrome (odds ratio, 2.6), acute renal failure (odds ratio, 1.5), cardiac arrest (odds ratio, 1.5), and overall complications (odds ratio, 2.4). The higher odds of myocardial infarction did not achieve statistical significance (odds ratio, 1.6). Pre-injury coagulopathy in patients with splenic injury has a negative impact on cardiac arrest, sepsis, acute respiratory distress syndrome, acute renal failure, and mortality. The higher likelihood of myocardial infarction did not reach statistical significance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Renal Dysfunction after Off-Pump Coronary Artery Bypass Surgery- Risk Factors and Preventive Strategies

    Directory of Open Access Journals (Sweden)

    Gaurab Maitra

    2009-01-01

    Full Text Available Postoperative renal dysfunction is a relatively common and one of the serious complications of cardiac surgery. Though off-pump coronary artery bypass surgery technique avoids cardiopulmonary bypass circuit induced adverse effects on renal function, multiple other factors cause postoperative renal dysfunction in these groups of patients. Acute kidney injury is generally defined as an abrupt and sustained decrease in kidney function. There is no consen-sus on the amount of dysfunction that defines acute kidney injury, with more than 30 definitions in use in the literature today. Although serum creatinine is widely used as a marker for changes in glomerular filtration rate, the criteria used to define renal dysfunction and acute renal failure is highly variable. The variety of definitions used in clinical studies may be partly responsible for the large variations in the reported incidence. Indeed, the lack of a uniform definition for acute kidney injury is believed to be a major impediment to research in the field. To establish a uniform definition for acute kidney injury, the Acute Dialysis Quality Initiative formulated the Risk, Injury, Failure, Loss, and End-stage Kidney (RIFLE classification. RIFLE , defines three grades of increasing severity of acute kidney injury -risk (class R, injury (class I and failure (class F - and two outcome classes (loss and end-stage kidney disease. Various perioperative risk factors for postoperative renal dysfunction and failure have been identified. Among the important preoperative factors are advanced age, reduced left ventricular function, emergency surgery, preoperative use of intraaortic balloon pump, elevated preoperative serum glucose and creatinine. Most important intraoperative risk factor is the intraoperative haemodynamic instability and all the causes of postoperative low output syndrome com-prise the postoperative risk factors. The most important preventive strategies are the identification of the

  13. [Plasma cell dyscrasias and renal damage].

    Science.gov (United States)

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  14. [Progressive renal insufficiency in a 55-year-old man with psoriasis].

    Science.gov (United States)

    Herfurth, K; Busch, M; Gröne, H J; Wolf, G

    2018-06-05

    Treatment with tumor necrosis factor alpha (TNF-α) inhibitors is a well-established therapeutic strategy for various autoimmune diseases. However, little is known about renal complications and possible causality of renal injury due to this treatment. The following case of a patient with psoriasis demonstrates the difficulties in classifying renal complications of anti-TNF-α therapy versus kidney involvement caused by the underlying disease.

  15. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion.

    Science.gov (United States)

    Wei, Qingqing; Xiao, Xiao; Fogle, Paul; Dong, Zheng

    2014-01-01

    Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.

  16. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension

    NARCIS (Netherlands)

    Papazova, Diana A.; Friederich-Persson, Malou; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (PO2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney

  17. Insulin-like growth factor-1 sustains stem cell mediated renal repair.

    NARCIS (Netherlands)

    Imberti, B.; Morigi, M.; Tomasoni, S.; Rota, C.; Corna, D.; Longaretti, L.; Rottoli, D.; Valsecchi, F.; Benigni, A.; Wang, J.; Abbate, M.; Zoja, C.; Remuzzi, G.

    2007-01-01

    In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments

  18. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution

    NARCIS (Netherlands)

    Stokman, Geurt; Leemans, Jaklien C.; Claessen, Nike; Weening, Jan J.; Florquin, Sandrine

    2005-01-01

    Acute renal failure and tubular cell loss as a result of ischemia constitute major challenges in renal pathophysiology. Increasing evidence suggests important roles for bone marrow stem cells in the regeneration of renal tissue after injury. This study investigated whether the enhanced availability

  19. Renal Tubule Repair: Is Wnt/β-Catenin a Friend or Foe?

    Science.gov (United States)

    Gewin, Leslie S

    2018-01-24

    Wnt/β-catenin signaling is extremely important for proper kidney development. This pathway is also upregulated in injured renal tubular epithelia, both in acute kidney injury and chronic kidney disease. The renal tubular epithelium is an important target of kidney injury, and its response (repair versus persistent injury) is critical for determining whether tubulointerstitial fibrosis, the hallmark of chronic kidney disease, develops. This review discusses how Wnt/β-catenin signaling in the injured tubular epithelia promotes either repair or fibrosis after kidney injury. There is data suggesting that epithelial Wnt/β-catenin signaling is beneficial in acute kidney injury and important in tubular progenitors responsible for epithelial repair. The role of Wnt/β-catenin signaling in chronically injured epithelia is less clear. There is convincing data that Wnt/β-catenin signaling in interstitial fibroblasts and pericytes contributes to the extracellular matrix accumulation that defines fibrosis. However, some recent studies question whether Wnt/β-catenin signaling in chronically injured epithelia actually promotes fibrosis or repair.

  20. Arctigenin suppresses renal interstitial fibrosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    Li, Ao; Zhang, Xiaoxun; Shu, Mao; Wu, Mingjun; Wang, Jun; Zhang, Jingyao; Wang, Rui; Li, Peng; Wang, Yitao

    2017-07-01

    Renal tubulointerstitial fibrosis (TIF) is commonly the final result of a variety of progressive injuries and leads to end-stage renal disease. There are few therapeutic agents currently available for retarding the development of renal TIF. The aim of the present study is to evaluate the role of arctigenin (ATG), a lignan component derived from dried burdock (Arctium lappa L.) fruits, in protecting the kidney against injury by unilateral ureteral obstruction (UUO) in rats. Rats were subjected to UUO and then administered with vehicle, ATG (1 and 3mg/kg/d), or losartan (20mg/kg/d) for 11 consecutive days. The renoprotective effects of ATG were evaluated by histological examination and multiple biochemical assays. Our results suggest that ATG significantly protected the kidney from injury by reducing tubular dilatation, epithelial atrophy, collagen deposition, and tubulointerstitial compartment expansion. ATG administration dramatically decreased macrophage (CD68-positive cell) infiltration. Meanwhile, ATG down-regulated the mRNA levels of pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ), in the obstructed kidneys. This was associated with decreased activation of nuclear factor κB (NF-κB). ATG attenuated UUO-induced oxidative stress by increasing the activity of renal manganese superoxide dismutase (SOD2), leading to reduced levels of lipid peroxidation. Furthermore, ATG inhibited the epithelial-mesenchymal transition (EMT) of renal tubules by reducing the abundance of transforming growth factor-β1 (TGF-β1) and its type I receptor, suppressing Smad2/3 phosphorylation and nuclear translocation, and up-regulating Smad7 expression. Notably, the efficacy of ATG in renal protection was comparable or even superior to losartan. ATG could protect the kidney from UUO-induced injury and fibrogenesis by suppressing inflammation, oxidative

  1. Nocturnal and Circadian Rhythm of Blood Pressure Is Associated with Renal Structure Damage and Function in Patients with IgAN.

    Science.gov (United States)

    Lin, Lirong; Zhang, Huhai; Yang, Jurong; Zhang, Jianguo; Li, Kailong; Huo, Bengang; Dai, Huanzi; Zhang, Weiwei; Yang, Jie; Tan, Wei; He, Yani

    2016-01-01

    Abnormal circadian rhythm of blood pressure (BP) is closely related to target organ damage in hypertension. However, the association between abnormal circadian rhythm of BP and renal injury is not clear. We investigated whether renal injury is associated with nocturnal BP and circadian rhythm of BP in Chinese IgAN patients. Clinic and 24 h ambulatory BP monitoring data were obtained from 330 Chinese IgAN patients with mean 24 h BP circadian BP, and 27% had nocturnal hypertension with a nondipping pattern. Compared with nocturnal normotensive patients, patients with nocturnal hypertension had significantly higher levels of blood cystatin C, blood uric acid, and lower estimated glomerular filtration rate (eGFR), and significantly a higher mean renal tissue injury score. The nondipping hypertensive group had significantly higher nocturnal diastolic and systolic BP, blood uric acid, and glomerulosclerosis rates, whereas eGFR was lower. In nondipping hypertensive patients, urinary sodium excretion and renal tissue injury scores were significantly higher than dipping patients. Nocturnal hypertension and abnormal circadian BP correlated with renal tissue injury, renal interstitial fibrosis, and aortic arch atherosclerosis. Abnormal circadian rhythm of BP and nocturnal hypertension are common clinical manifestations in Chinese IgAN patients with normal mean 24 h BP. Abnormal circadian BP and nocturnal hypertension may accelerate IgAN progression by inducing renal dysfunction and histopathological damage. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  2. Risk factors and early outcomes of acute renal injury after thoracic aortic endograft repair for type B aortic dissection

    Directory of Open Access Journals (Sweden)

    Luo S

    2017-08-01

    Full Text Available Songyuan Luo,* Huanyu Ding,* Jianfang Luo, Wei Li, Bing Ning, Yuan Liu, Wenhui Huang, Ling Xue, Ruixin Fan, Jiyan Chen Cardiology Department, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China *These authors contributed equally to this work Background: Thoracic endovascular aortic repair (TEVAR has become an emerging treatment modality for acute type B aortic dissection (TBAD patients in recent years. The risk factors and impacts of acute kidney injury (AKI after percutaneous TEVAR, however, have not been widely established.Methods: We retrospectively studied the clinical records of 305 consecutive patients who admitted to our institution and had TEVAR for TBAD between December 2009 and June 2013. The patients were routinely monitored for their renal functions preoperatively until 7 days after TEVAR. The Kidney Disease Improving Global Guidelines (KDIGO criteria were used for AKI.Results: Of the total 305 consecutive patients, 84 (27.5% developed AKI after TEVAR, comprising 66 (21.6% patients in KDIGO stage 1, 6 (2.0% patients in stage 2 and 12 (3.9% patients in stage 3. From the logistic regression analysis, systolic blood pressure (SBP on admission >140 mmHg (odds ratio [OR], 2.288; 95% CI, 1.319–3.969 and supra-aortic branches graft bypass hybrid surgery (OR, 3.228; 95% CI, 1.526–6.831 were independent risk factors for AKI after TEVAR. Local anesthesia tended to be a protective factor (OR, 0.563; 95% CI, 0.316–1.001. The preoperative renal function, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker or statin administration, volume of contrast agent, range of TBAD and false lumen involving renal artery were not associated with post-operation AKI. The in-hospital mortality and major adverse events were markedly increased with the occurrence of AKI (7.1% vs 0.9%, P=0

  3. Role of ESAT-6 in renal injury by regulating microRNA-155 expression via TLR4/MyD88 signaling pathway in mice with Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Zhou, Zhong-Qi; Wang, Zhi-Kui; Zhang, Lei; Ren, Yue-Qin; Ma, Zhong-Wei; Zhao, Nan; Sun, Fu-Yun

    2017-08-31

    The study aims to investigate the underlying mechanism involved in the early secretory antigenic target-6 (ESAT-6) in renal injury through regulation of the expression of miR-155 through the oll-like receptor (TLR)-4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway in Mycobacterium tuberculosis (MTB)-infected mice. Sixty C57BL/6 mice with MTB-induced renal injury were randomly assigned into control, MTB, mimic, inhibitor, inhibitor + ESAT6, and inhibitor + ESAT6 + TAK242 groups. Body weight, the ratio of kidney weight to body weight (Kw/Bw), blood urea nitrogen (BUN), and serum creatinine (Scr) of mice were measured. Flow cytometry was used to detect renal activation in mice. Expressions of miR-155 and ESAT6 were detected by quantitative real-time PCR (qRT-PCR), and Western blotting was used to examine the expressions of ESAT6, TLR4, and MyD88. Expressions of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), and interferon-γ (IFN-γ) were measured by qRT-PCR and ELISA. Compared with the control group, the BUN and Scr levels as well as the expression levels of miR-155 , TLR4, MyD88, TNF-α, IL-17, and IFN-γ increased, while Kw/Bw decreased in the MTB and mimic groups. In comparison with the MTB group, the above indexes except Kw/Bw were elevated in the mimic group, but were reduced in the inhibitor group, while the Kw/Bw dropped in the mimic group but increased in the inhibitor group. Compared with the inhibitor group, the Kw/Bw decreased while the rest of the indexes increased in the inhibitor + ESAT6 group. ESAT6 may induce renal injury by promoting miR-155 expression through the TLR-4/MyD88 signaling pathway in MTB-infected mice. © 2017 The Author(s).

  4. Renal embolic protection devices improve blood flow after stenting for atherosclerotic renal artery stenosis.

    Science.gov (United States)

    Paul, Timir K; Lee, John H; White, Christopher J

    2012-11-15

    We sought to measure angiographic renal frame counts (RFC), as a quantitative angiographic assessment of renal blood flow, to evaluate microvascular compromise due to atheroembolism associated with RAS. Atheroembolism associated with renal artery stenting (RAS) has been implicated as a cause for worsening renal function following successful intervention. Use of a distal embolic protection device (EPD) during RAS has been shown to be safe with debris capture in a high percentage of cases. However, objective benefit for renal function with EPD has been difficult to demonstrate. A control group of 30 consecutive patients (33 kidneys) who underwent RAS without EPD were compared with 33 consecutive patients (33 kidneys) who underwent RAS with EPD using RFC measurement. The prestent and poststent mean RFC for the control group was 30.4 ± 12.1 vs. 23.7 ± 9.9 (P = 0.002) and for the EPD group it was 42.6 ± 12.6 vs. 28.3 ± 9.2 (P renal blood flow, manifested by a greater reduction of the RFC (Δ RFC) 14.2 ± 15.2 vs. 6.7 ± 11.7 (P = 0.03) compared with the control group. The use of an EPD was associated with a much larger improvement in renal blood flow (lower RFC) following RAS. This suggests that EPD's may be effective in preventing renal atheroembolic injury and that a controlled trial measuring the impact of EPD's on renal blood flow following RAS should be performed. Copyright © 2012 Wiley Periodicals, Inc.

  5. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    Science.gov (United States)

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  6. Utility of Iron Staining in Identifying the Cause of Renal Allograft Dysfunction in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Yingchun Wang

    2015-01-01

    Full Text Available Sickle cell nephropathy (SCN is associated with iron/heme deposition in proximal renal tubules and related acute tubular injury (ATI. Here we report the utility of iron staining in differentiating causes of renal allograft dysfunction in patients with a history of sickle cell disease. Case 1: the patient developed acute allograft dysfunction two years after renal transplant. Her renal biopsy showed ATI, supported by patchy loss of brush border and positive staining of kidney injury molecule-1 in proximal tubular epithelial cells, where diffuse increase in iron staining (2+ was present. This indicated that ATI likely resulted from iron/heme toxicity to proximal tubules. Electron microscope confirmed aggregated sickle RBCs in glomeruli, indicating a recurrent SCN. Case 2: four years after renal transplant, the patient developed acute allograft dysfunction and became positive for serum donor-specific antibody. His renal biopsy revealed thrombotic microangiopathy (TMA and diffuse positive C4d stain in peritubular capillaries. Iron staining was negative in the renal tubules, implying that TMA was likely associated with acute antibody-mediated rejection (AAMR, type 2 rather than recurrent SCN. These case reports imply that iron staining is an inexpensive but effective method in distinguishing SCN-associated renal injury in allograft kidney from other etiologies.

  7. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2015-08-01

    Full Text Available Glycogen synthase kinase-3β (GSK3β is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.

  8. Contemporary management of high-grade renal trauma: Results from the American Association for the Surgery of Trauma Genitourinary Trauma study.

    Science.gov (United States)

    Keihani, Sorena; Xu, Yizhe; Presson, Angela P; Hotaling, James M; Nirula, Raminder; Piotrowski, Joshua; Dodgion, Christopher M; Black, Cullen M; Mukherjee, Kaushik; Morris, Bradley J; Majercik, Sarah; Smith, Brian P; Schwartz, Ian; Elliott, Sean P; DeSoucy, Erik S; Zakaluzny, Scott; Thomsen, Peter B; Erickson, Bradley A; Baradaran, Nima; Breyer, Benjamin N; Miller, Brandi; Santucci, Richard A; Carrick, Matthew M; Hewitt, Timothy; Burks, Frank N; Kocik, Jurek F; Askari, Reza; Myers, Jeremy B

    2018-03-01

    The rarity of renal trauma limits its study and the strength of evidence-based guidelines. Although management of renal injuries has shifted toward a nonoperative approach, nephrectomy remains the most common intervention for high-grade renal trauma (HGRT). We aimed to describe the contemporary management of HGRT in the United States and also evaluate clinical factors associated with nephrectomy after HGRT. From 2014 to 2017, data on HGRT (American Association for the Surgery of Trauma grades III-V) were collected from 14 participating Level-1 trauma centers. Data were gathered on demographics, injury characteristics, management, and short-term outcomes. Management was classified into three groups-expectant, conservative/minimally invasive, and open operative. Descriptive statistics were used to report management of renal trauma. Univariate and multivariate logistic mixed effect models with clustering by facility were used to look at associations between proposed risk factors and nephrectomy. A total of 431 adult HGRT were recorded; 79% were male, and mechanism of injury was blunt in 71%. Injuries were graded as III, IV, and V in 236 (55%), 142 (33%), and 53 (12%), respectively. Laparotomy was performed in 169 (39%) patients. Overall, 300 (70%) patients were managed expectantly and 47 (11%) underwent conservative/minimally invasive management. Eighty-four (19%) underwent renal-related open operative management with 55 (67%) of them undergoing nephrectomy. Nephrectomy rates were 15% and 62% for grades IV and V, respectively. Penetrating injuries had significantly higher American Association for the Surgery of Trauma grades and higher rates of nephrectomy. In multivariable analysis, only renal injury grade and penetrating mechanism of injury were significantly associated with undergoing nephrectomy. Expectant and conservative management is currently utilized in 80% of HGRT; however, the rate of nephrectomy remains high. Clinical factors, such as surrogates of

  9. Bilateral impacted femoral neck fracture in a renal disease patient ...

    African Journals Online (AJOL)

    Spontaneous bilateral femoral neck facture in a renal disease patient is not common. We report a case of 47-year-old female patient with chronic renal failure and on regular hemodialysis for the past 5 years who sustained bilateral impacted femoral neck fracture without history of trauma and injury and refused any surgical ...

  10. Persistent hypertension and progressive renal injury induced by salt overload after short term nitric oxide inhibition Hipertensão persistente e lesão renal progressiva induzidas por sobrecarga de sal após inibição temporária do óxido nítrico

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Mattar

    2007-01-01

    Full Text Available INTRODUCTION: Administration of the NO inhibitor Nwð-nitro-L-arginine methyl ester (NAME and a high-salt diet (HS promotes severe albuminuria and renal injury, which regresses upon discontinuation of treatments. OBJECTIVE: We investigated whether these changes reappear after reinstitution of HS, and whether they are prevented by treatment with the antilymphocyte agent mycophenolate mofetil (MMF or the AT-1 receptor blocker losartan (L. Adult male Munich-Wistar rats received NAME and HS. A control Group (C received only HS. After 20 days, rats receiving HS and NAME exhibited severe hypertension and albuminuria. After a 30-day recovery period, hypertension was attenuated and albuminuria had virtually disappeared. MATERIAL AND METHODS: Rats were then distributed among the following groups: HS, receiving HS; NS, receiving a normal salt (NS diet; HS-MMF, receiving HS and MMF; HS-LOS, receiving HS and L; HS-HDZ, receiving HS and hydralazine (HDZ. Sixty days later, NS rats showed only slight albuminuria and renal damage or inflammation. In contrast, HS rats developed severe hypertension, marked glomerulosclerosis with interstitial expansion and renal infiltration by macrophages and angiotensin II-positive cells. The group treated with losartan had lowered blood pressure and a lack of albuminuria or renal injury. MMF provided similar protection without altering blood pressure, suggesting a nonhemodynamic effect, a hypothesis reinforced by the finding that HDZ lowered blood pressure without preventing renal injury. RESULTS: These results indicate that treatment with HS and NAME predisposes to the development of hypertension and renal injury upon salt overload, characterizing a new model of chronic nephropathy. CONCLUSION: The response to MMF or L, but not HDZ, suggests a key role for inflammatory rather than hemodynamic factors.INTRODUÇÃO: A administração de Nômega-nitro-L-arginina metiléster (NAME, um inibidor da produção de NO, com dieta rica

  11. Cortico-medullary continuity in bizarre parosteal osteochondromatous proliferation mimicking osteochondroma on imaging

    International Nuclear Information System (INIS)

    Rybak, Leon D.; Abramovici, Luigia; Steiner, German C.; Kenan, Samuel; Posner, Martin A.; Bonar, Fiona

    2007-01-01

    Bizarre parosteal osteochondromatous proliferation (BPOP), or Nora's lesion, is an unusual surface-based lesion of bone found most commonly in the hands and feet. In the original description of the lesion and in all publications that followed, one of the key imaging characteristics used to define this entity was the lack of cortico-medullary continuity with the underlying bone. The authors present 4 unique cases of pathologically proven BPOP in which cortico-medullary continuity with the underlying bone was demonstrated on imaging. It is believed that florid reactive periostitis, BPOP and turret osteochondroma may reflect points along the same continuum with trauma the likely inciting event. The authors suggest that, given this continuum, it may be possible to have BPOP lesions demonstrating overlapping imaging features with osteochondroma. If this is the case, strict adherence to the standard imaging criterion of lack of continuity between the lesion and the underlying bone may lead to misdiagnosis of these unusual cases of BPOP as osteochondromas. (orig.)

  12. Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice.

    Science.gov (United States)

    Liu, Peng; Peng, Liang; Zhang, Haojun; Tang, Patrick Ming-Kuen; Zhao, Tingting; Yan, Meihua; Zhao, Hailing; Huang, Xiaoru; Lan, Huiyao; Li, Ping

    2018-01-01

    The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro . In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.

  13. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation.

    Science.gov (United States)

    Askenazi, David J; Ambalavanan, Namasivayam; Hamilton, Kiya; Cutter, Gary; Laney, Debbie; Kaslow, Richard; Georgeson, Keith; Barnhart, Douglas C; Dimmitt, Reed A

    2011-01-01

    To determine the independent impact of acute kidney injury (AKI) and renal replacement therapy (RRT) in infants and children who receive extracorporeal membrane oxygenation. Despite continued expertise/technological advancement, patients who receive extracorporeal membrane oxygenation have high mortality. AKI and RRT portend poor outcomes independent of comorbidities and illness severity in several critically ill populations. Retrospective cohort study. The primary variables explored are AKI (categorical complication code for serum creatinine > 1.5 mg/dL or International Statistical Classification of Diseases and Related Health Problems, Revision 9 for acute renal failure), and RRT (complication/Current Procedural Terminology code for dialysis or hemofiltration). Multiple variables previously associated with mortality in this population were controlled, using logistic stepwise regression. Decision tree modeling was performed to determine optimal variables and cut points to predict mortality. Critically ill neonates (0-30 days old) and children (> 30 days but optimizing the timing/delivery of RRT may positively impact survival.

  14. Evaluation of the process of recycling and renal parenchymal injury after eswl with metabolites excreted in the urine.

    Science.gov (United States)

    Ceylan, Cavit; Dogan, Serkan; Saydam, Gulsevim; Kocak, Mehmet Zait; Doluoglu, Omer Gokhan

    2013-01-01

    To show renal parenchymal injury depending on extracorporeal shock wave lithotripsy (ESWL). The patients with one renal stone and in whom ESWL is planned among the patients in whom renal stone was determined. Their 24-h urine samples were collected just before and after the ESWL treatment. Cit (citrate), UrA (uric acid), RBP (retinol-binding protein), NAG (N-acetyl-β-Đ-glucosaminidase), Cr (creatinine), Na (sodium), K (potassium), P (phosphor), Ca (calcium), and Cl (chlorine) metabolites excreted in urine were evaluated after urine samples were taken on the study day. Changes in the metabolites excreted; the number, frequency, and duration of ESWL shock wave; the energy; and the body mass index were recorded. The results for p ESWL were applied to a total of 20 patients. When metabolites excreted in the urine before (B1E) and after (A1E) the first session of ESWL, and before (B2E) and after (A2E) the second session of ESWL, were evaluated, no statistically significant result for Ca and Cl excretion was noted. For NAG and Cr, a significant difference was observed in terms of metabolite excretion between B1E and B2E. For other metabolites, we saw that there is no difference between B1E and B2E. While a significant metabolite change was observed for RBP, NAG, Cr, and Na as long as A1E and A2E ESWL session number increases, other metabolites were not significant. Shock waves induce significant damage to the renal and adjacent tissues as indicated by a significant increase in cell-escaped enzymes and electrolytes and the extent of damage depends on the energy and the number of shock wave exposure.

  15. The unique organization of filamentous actin in the medullary canal of the medulla oblongata.

    Science.gov (United States)

    Tan, Bai-Hong; Guo, Chun-Yan; Xiong, Tian-Qing; Chen, Ling-Meng; Li, Yan-Chao

    2017-04-01

    In the central canal, F-actin is predominantly localized in the apical region, forming a ring-like structure around the circumference of the lumen. However, an exception is found in the medulla oblongata, where the apical F-actin becomes interrupted in the ventral aspect of the canal. To clarify the precise localization of F-actin, the fluorescence signals for F-actin were converted to the peroxidase/DAB reaction products in this study by a phalloidin-based ultrastructural technique, which demonstrated that F-actin is located mainly in the microvilli and terminal webs in the ependymocytes. It is because the ventrally oriented ependymocytes do not possess well-developed microvilli or terminal web that led to a discontinuous labeling of F-actin in the medullary canal. Since spinal motions can change the shape and size of the central canal, we next examined the cytoskeletons in the medullary canal in both rats and monkeys, because these two kinds of animals show different kinematics at the atlanto-occipital articulation. Our results first demonstrated that the apical F-actin in the medullary canal is differently organized in the animals with different head-neck kinemics, which suggests that the mechanic stretching of spinal motions is capable of inducing F-actin reorganization and the subsequent cell-shape changes in the central canal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rhabdomyolysis-Induced Acute Kidney Injury Under Hypoxia and Deprivation of Food and Water

    Directory of Open Access Journals (Sweden)

    Jingwen Wang

    2013-10-01

    Full Text Available Background: To investigate the renal pathophysiologyin rhabdomyolysis-induced acute kidney injury (AKI in rats under hypoxia and deprivation of food and water (HDFW, thus broadening the knowledge about rhabdomyolysis-induced AKI in massive earthquake. Methods: Male Wistar rats weighing 200-230g were randomized into control, rhabdomyolysis (R, HDFW and rhabdomyolysis in combination with HDFW (R/HDFW group. Experimental rhabdomyolysis rat model was established through clamping hind limb muscles, HDFW model rats were kept in 10% hypoxic chamber unavailable to food and water. At 1, 3, 5, 7, 9, 11d after treatment, serum creatinine (Scr level, renal index, renal structural changes and cell apoptosis were analyzed. Results: After R, HDFW, R/HDFW treatment, the animals showed significantly higher Scr levels than the control group. Renal index in R and R/HDFW groups elevated remarkably compared with that in control and HDFW group. The results of histopathology, ultra-structure and apoptosis assay suggested that rhabdomyolysis caused renal tubular injury, HDFW treatment resulted in renal vascular dilation, tissue congestion and tubular cell damage. In addition, more severe renal lesion appeared in R/HDFW. Conclusions: We conclude that the association of experimental rhabdomyolysis with HDFW results in a different functional and histological pattern. The rhabdomyolysis-HDFW combination causes more severe renal injury.

  17. Suprarenal fixation barbs can induce renal artery occlusion in endovascular aortic aneurysm repair.

    Science.gov (United States)

    Subedi, Shree K; Lee, Andy M; Landis, Gregg S

    2010-01-01

    Renal artery occlusion following endovascular abdominal aortic aneurysm repair with suprarenal fixation is uncommon. We report one patient who was found to develop renal artery occlusion and parenchymal infarction 6 months after repair using an endovascular graft with suprarenal fixation. Our patient underwent emergent endovascular repair of a symptomatic 6 cm abdominal aortic aneurysm. The covered portion of the endograft was inadvertently deployed well below the renal artery orifices. At the completion of the procedure both renal arteries were confirmed to be patent. One month postoperatively, a computed tomographic (CT) scan showed exclusion of the aortic sac and normal enhancement of both kidneys. At 6 months, the patient was found to have elevated serum creatinine levels despite having no clinical symptoms. CT scanning revealed a nonenhancing left kidney, and angiography demonstrated an occlusion of the left renal artery. A barb welded to the bare metal stent appeared to be impinging on the renal artery. We believe that renal artery occlusion after endovascular repair can occur due to repetitive injury to the renal artery orifice from barbs welded to the bare metal stent. To our knowledge, this is the first reported case of renal artery occlusion caused by repetitive injury from transrenal fixation systems. Copyright 2010 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  18. Spinal Cord Injury: Facts and Figures at a Glance

    Science.gov (United States)

    ... The proportion of injuries that are due to sports has decreased over time while the proportion of injuries due to falls ... renal failure. Today, however, significant advances in urologic management ... injury. During that time, the causes of death that appear to have ...

  19. A review of dietary supplement-induced renal dysfunction.

    Science.gov (United States)

    Gabardi, Steven; Munz, Kristin; Ulbricht, Catherine

    2007-07-01

    Complementary and alternative medicine (CAM) is a multibillion-dollar industry. Almost half of the American population uses some form of CAM, with many using them in addition to prescription medications. Most patients fail to inform their health care providers of their CAM use, and physicians rarely inquire. Annually, thousands of dietary supplement-induced adverse events are reported to Poison Control Centers nationwide. CAM manufacturers are not responsible for proving safety and efficacy, because the Food and Drug Administration does not regulate them. However, concern exists surrounding the safety of CAM. A literature search using MEDLINE and EMBASE was undertaken to explore the impact of CAM on renal function. English-language studies and case reports were selected for inclusion but were limited to those that consisted of human subjects, both adult and pediatric. This review provides details on dietary supplements that have been associated with renal dysfunction and focuses on 17 dietary supplements that have been associated with direct renal injury, CAM-induced immune-mediated nephrotoxicity, nephrolithiasis, rhabdomyolysis with acute renal injury, and hepatorenal syndrome. It is concluded that it is imperative that use of dietary supplements be monitored closely in all patients. Health care practitioners must take an active role in identifying patients who are using CAM and provide appropriate patient education.

  20. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    Science.gov (United States)

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the