WorldWideScience

Sample records for removable barrier applications

  1. Removing bridge barriers stimulates suicides: an unfortunate natural experiment.

    Science.gov (United States)

    Beautrais, Annette L; Gibb, Sheree J; Fergusson, David M; Horwood, L John; Larkin, Gregory Luke

    2009-06-01

    Safety barriers to prevent suicide by jumping were removed from Grafton Bridge in Auckland, New Zealand, in 1996 after having been in place for 60 years. This study compared the number of suicides due to jumping from the bridge after the reinstallation of safety barriers in 2003. National mortality data for suicide deaths were compared for three time periods: 1991-1995 (old barrier in place); 1997-2002 (no barriers in place); 2003-2006 (after barriers were reinstated). Removal of barriers was followed by a fivefold increase in the number and rate of suicides from the bridge. These increases led to a decision to reinstall safety barriers. Since the reinstallation of barriers, of an improved design, in 2003, there have been no suicides from the bridge. This natural experiment, using a powerful a-b-a (reversal) design, shows that safety barriers are effective in preventing suicide: their removal increases suicides; their reinstatement prevents suicides.

  2. 28 CFR 36.304 - Removal of barriers.

    Science.gov (United States)

    2010-07-01

    ..., vending machines, display racks, and other furniture; (5) Repositioning telephones; (6) Adding raised.... These measures include, for example, removal of obstructing furniture or vending machines, widening of...) General. A public accommodation shall remove architectural barriers in existing facilities, including...

  3. Removal of ammonia from gas streams with dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Xia Lanyan; Huang Li; Shu Xiaohong; Zhang Renxi; Dong Wenbo; Hou Huiqi

    2008-01-01

    We reported on the experimental study of gas-phase removal of ammonia (NH 3 ) via dielectric barrier discharge (DBD) at atmospheric pressure, in which we mainly concentrated on three aspects-influence of initial NH 3 concentration, peak voltage, and gas residence time on NH 3 removal efficiency. Effectiveness, e.g. the removal efficiency, specific energy density, absolute removal amount and energy yield, of the self-made DBD reactor had also been studied. Basic analysis on DBD physical parameters and its performance was made in comparison with previous investigation. Moreover, products were detected via ion exchange chromatography (IEC). Experimental results demonstrated the application potential of DBD as an alternative technology for odor-causing gases elimination from gas streams

  4. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  5. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    Science.gov (United States)

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  6. A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms

    International Nuclear Information System (INIS)

    Dixon, Mike B.; Richard, Yann; Ho, Lionel; Chow, Christopher W.K.; O'Neill, Brian K.; Newcombe, Gayle

    2011-01-01

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition.

  7. Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils.

    Science.gov (United States)

    Vieira Dos Santos, E; Sáez, C; Cañizares, P; Martínez-Huitle, C A; Rodrigo, M A

    2017-01-15

    This study demonstrates the application of reversible electrokinetic adsorption barrier (REKAB) technology to soils spiked with low-solubility pollutants. A permeable reactive barrier (PRB) of granular activated carbon (GAC) was placed between the anode and cathode of an electrokinetic (EK) soil remediation bench-scale setup with the aim of enhancing the removal of two low-solubility herbicides (atrazine and oxyfluorfen) using a surfactant solution (sodium dodecyl sulfate) as the flushing fluid. This innovative study focused on evaluating the interaction between the EK system and the GAC-PRB, attempting to obtain insights into the primary mechanisms involved. The obtained results highlighted the successful treatment of atrazine and oxyfluorfen in contaminated soils. The results obtained from the tests after 15days of treatment were compared with those obtained using the more conventional electrokinetic soil flushing (EKSF) technology, and very important differences were observed. Although both technologies are efficient for removing the herbicides from soils, REKAB outperforms EKSF. After the 15-day treatment tests, only approximately 10% of atrazine and oxyfluorfen remained in the soil, and adsorption onto the GAC bed was an important removal mechanism (15-17% of herbicide retained). The evaporation loses in REKAB were lower than those obtained in EKSF (45-50% compared to 60-65%). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    Science.gov (United States)

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Removing cost barriers — lessons from West Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-10

    Jun 10, 2016 ... Removing cost barriers — lessons from West Africa ... les dynamiques sociales et le développement local (LASDEL) analyzed ... How the fee exemptions were introduced created new demands on already weak health systems. ... Less is more: Improving yields for Sahelian women with tiny dozes of fertilizer.

  10. Removal of chromate in a permeable reactive barrier using zero-valent iron

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Locht, T

    2002-01-01

    Chromate is a commonly found groundwater contaminant. Permeable reactive barriers containing zero-valent iron as iron filings are able to remove the chromate by a combined reduction/precipitation reaction. However, due to the passivation of the reduction capability of the iron surfaces by the pre......). Mixing in sand had no significant enhancing effect on the removal capacity, in contrast to a pH adjustment of the groundwater to pH 4, which significantly increased the removal capacity....

  11. Field applications of a radon barrier to reduce indoor airborne progeny

    International Nuclear Information System (INIS)

    Culot, M.V.J.; Olson, H.G.; Schiager, K.J.

    1978-01-01

    The use of uranium mill tailings in the foundations of dwellings has resulted in indoor radon progeny concentrations and gamma exposures in excess of levels presently allowed for the general public. An account is given of the applications of an epoxy coating on the indoor faces of the concrete foundations of three buildings in Grand Junction, Colorado. Epoxy barriers were shown to be effective for preventing radon influx into structures. Gamma exposure rates must be analyzed to ensure that buildup behind the barrier will not introduce an unacceptable gamma exposure level. The use of a sealant is especially economical in situations where structural integrity may be jeopardized by physical removal of uranium mill tailings. (author)

  12. The Analysis of The Effect Of Removing Barriers On The Creativity Students' Mathematical Learning

    Directory of Open Access Journals (Sweden)

    Seyedeh Edna Khalilinezhad

    2017-02-01

    Full Text Available Nowadays, flowering of student creativity is one of the most important purposes of education. But in our country, due to the fact that creativity is effected by environmental conditions and factors, it is barely investigated, reviewed, and accurately programmed. For these reasons, the aim of the present study was to identify and removal the four group of the creativity barriers, and investigate their effect on students' learning and creativity growth in math. This research is of an applied type with a sample consisting of 40 eighths grade girl students from Reyhane-Nabi school in Ahvaz City. The sample was divided into two homogenous groups: control and experimental. In order to train the experimental group, creativity barriers were removed and its effect on learning, creativity, and students' interest in math was analyzed. Then the information obtained by descriptive and inferential Statistics was analyzed. Results of T-test for independent and paired samples showed that removing creativity barriers would have a positive effect on students' learning and creativity, in math.

  13. Experimental investigation on NOx removal using pulsed dielectric barrier discharges in combination with catalysts

    NARCIS (Netherlands)

    Chirumamilla, V.R.; Hoeben, W.F.L.M.; Beckers, F.J.C.M.; Huiskamp, T.; Pemen, A.J.M.

    2015-01-01

    In this study, an experimental investigation of the removal of NOx has been carried out with a dielectric barrier discharge reactor filled with different catalytic materials. NOx removal efficiency and by-products formation were studied as a function of energy density using plasma catalytic

  14. Learning Mentors Eight Years on: Still Removing Barriers to Learning?

    Science.gov (United States)

    Bishop, Jo

    2011-01-01

    The Learning Mentor role has been seen as one of the success stories of education policy introduced under New Labour, establishing itself as a key figure in the explosion of new non-teaching roles in the schools workforce. But have they stuck to their original, somewhat narrow brief of "removing barriers to learning" with the primary aim…

  15. Setting plug & abandonment barriers with minimum removal of tubulars

    OpenAIRE

    Nessa, Jon Olav

    2012-01-01

    Master's thesis in Petroleum engineering The useful life of an offshore well is determined by the reserves which it contacts, the pressure support within the reservoir and the continued integrity of the wellbore. When a well has reached the end of its lifetime, plugging operations have to be conducted before permanent abandonment. Conventional Plug and Abandonment (P&A) operations will often require removing a section of the casing in order to create cross sectional barriers for well aband...

  16. [Removal of nitrate from groundwater using permeable reactive barrier].

    Science.gov (United States)

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  17. Removal of caffeine from water by combining dielectric barrier discharge (DBD plasma with goethite

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-07-01

    Full Text Available In this research, dielectric barrier discharge plasma was developed to cooperate with goethite for removing caffeine in aqueous solution. Goethite was characterized by X-ray diffraction and scanning electron microscopy. The effects of input power, initial concentration and catalysts concentration on the removal efficiency of caffeine were evaluated. Furthermore, the degradation pathways of caffeine were also discussed preliminarily. In the case of caffeine concentration at 50 mg L−1, the degradation efficiency of caffeine was improved from 41% to 94% after 24 min on the conditions of input power of 75 W by combining goethite catalysts (2.5 g L−1, while the energy efficiency could be enhanced 1.6–2.3 times compared to the single DBD reactor. The reaction mechanism experiments demonstrated that attack by hydroxyl radical and ozone was the main degradation process of caffeine in aqueous solution. These studies also provided a theoretical and practical basis for the application of DBD-goethite in treatment of caffeine from water.

  18. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  19. Application of DBD and DBCD in SO2 removal

    International Nuclear Information System (INIS)

    Sun Yanzhou; Henan Polytechnic Univ., Jiaozuo; Qiu Yuchang; Yuan Xingcheng; Yu Fashan

    2004-01-01

    The dielectric barrier corona discharge (DBCD) in a wire-cylinder configuration and the dielectric barrier discharge (DBD) in a coaxial cylinder configuration are studied. The discharge current in DBD has a higher pulse amplitude than in DBCD. The dissipated power and the gas-gap voltage are calculated by analyzing the measured Lissajous figure. With the increasing applied voltage, the energy utilization factor for SO 2 removal increases in DBCD but decreases in DBD because of the difference in their electric field distribution. Experiments of SO 2 removal show that in the absence of NH 3 the energy utilization factor can reach 31 g/k Wh in DBCD and 39 g/kWh in DBD. (authors)

  20. Qualitative risk assessment of subsurface barriers in applications supporting retrieval of SST waste

    International Nuclear Information System (INIS)

    Treat, R.L.

    1994-04-01

    This report provides a brief, qualitative assessment of risks associated with the potential use of impermeable surface barriers installed around and beneath Hanford Site single-shell tanks (SSTs) to support the retrieval of wastes from those tanks. These risks are compared to qualitative assessment of costs and risks associated with a case in which barriers are not used. A quantitative assessment of costs and risks associated with these two cases will be prepared and documented in a companion report. The companion report will compare quantitatively the costs and risks of several retrieval options with varying parameters, such as effectiveness of retrieval, effectiveness of subsurface barriers, and the use of surface barriers. For ease of comparison of qualitative risks, a case in which impermeable subsurface barriers are used in conjunction with another technology to remove tank waste is referred, to in this report as the Barrier Case. A case in which waste removal technologies are used without employing a subsurface barrier is referred to as the No Barrier Case. The technologies associated with each case are described in the following sections

  1. Influence of gel/LED-laser application on cervical microleakage of two barrier materials used for endodontically treated teeth whitening

    Science.gov (United States)

    Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.

    2007-02-01

    This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.

  2. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Vanraes, Patrick, E-mail: patrick.vanraes@ugent.be [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Willems, Gert; Nikiforov, Anton [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Surmont, Pieter; Lynen, Frederic [Separation Science Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000 Gent (Belgium); Vandamme, Jeroen; Van Durme, Jim [Research Group Molecular Odor Chemistry, Department of Microbial and Molecular Systems (M2S), KU Leuven, Technology Campus, Gebroeders De Smetstraat 1, 9000 Gent (Belgium); Verheust, Yannick P.; Van Hulle, Stijn W.H.; Dumoulin, Ann [Department of Industrial Biological Sciences, Ghent University, Graaf Karel de Goedelaan 5, 8500 Kortrijk (Belgium); Leys, Christophe [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium)

    2015-12-15

    Highlights: • Increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. • Chlorine containing oxidation by-products of first and later generations are detected with HPLC–MS analysis, in agreement with literature. • Desorption analysis shows lower atrazine concentration and higher by-product concentration on activated carbon textile after plasma treatment. • Comparison with plasma reactors described in literature for atrazine decomposition confirms relatively high energy efficiency of our reactor. - Abstract: Efficiency of modern wastewater treatment plants to remove or decompose persistent contaminants in low concentration is often insufficient to meet the demands imposed by governmental laws. Novel, efficient and cheap methods are required to address this global issue. We developed a new type of plasma reactor, in which atrazine decomposition by atmospheric dielectric barrier discharge (DBD) in dry air is combined with micropollutant adsorption on activated carbon textile and with extra bubbling of generated ozone. Investigation of reaction kinetics and by-product analysis shows that increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. By-products of first and later generations are detected with HPLC–MS analysis in water and adsorbed on the activated carbon textile. Our reactor is compared in energy efficiency with reactors described in literature, showing that combination of plasma discharge with pollutant adsorption and ozone recycling is attractive for future applications of water treatment.

  3. Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge

    International Nuclear Information System (INIS)

    Vanraes, Patrick; Willems, Gert; Nikiforov, Anton; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Verheust, Yannick P.; Van Hulle, Stijn W.H.; Dumoulin, Ann; Leys, Christophe

    2015-01-01

    Highlights: • Increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. • Chlorine containing oxidation by-products of first and later generations are detected with HPLC–MS analysis, in agreement with literature. • Desorption analysis shows lower atrazine concentration and higher by-product concentration on activated carbon textile after plasma treatment. • Comparison with plasma reactors described in literature for atrazine decomposition confirms relatively high energy efficiency of our reactor. - Abstract: Efficiency of modern wastewater treatment plants to remove or decompose persistent contaminants in low concentration is often insufficient to meet the demands imposed by governmental laws. Novel, efficient and cheap methods are required to address this global issue. We developed a new type of plasma reactor, in which atrazine decomposition by atmospheric dielectric barrier discharge (DBD) in dry air is combined with micropollutant adsorption on activated carbon textile and with extra bubbling of generated ozone. Investigation of reaction kinetics and by-product analysis shows that increasing input power with a factor 3.5 leads to deeper atrazine oxidation without significantly changing energy yield of atrazine removal. By-products of first and later generations are detected with HPLC–MS analysis in water and adsorbed on the activated carbon textile. Our reactor is compared in energy efficiency with reactors described in literature, showing that combination of plasma discharge with pollutant adsorption and ozone recycling is attractive for future applications of water treatment.

  4. Application of dielectric surface barrier discharge for food storage

    Directory of Open Access Journals (Sweden)

    Yassine BELLEBNA

    2015-12-01

    Full Text Available Ozone (O3 is a powerful oxidizer and has much higher disinfection potential than chlorine and other disinfectants. Ozone finds its application mainly in water treatment and air purification Dielectric barrier discharge (DBD method has proved to be the best method to produce ozone. Dried air or oxygen is forced to pass through a 1-2 mm gap. The aim of this study was to show that disinfection system using ozone generated by dielectric barrier discharge (DBD is an effective alternative to be used in food industry and ensures a safe quality of air for optimum preservation of fruits and vegetables. The DBDs are specific kind of discharges because one (or sometimes both electrodes is covered by a dielectric material, thereby preventing the discharge to move towards electrical breakdown. A succession of microdischarges occurs rapidly; their "lifetime" is in the range of a few nanoseconds. One of their most important applications is the production of ozone for air treatment, used mainly in the area of food industry, for extending the storage life of foods. After the achievement of a surface DBD reactor of cylindrical shape and its electrical characterization, it was then used as an ozone generator for air disinfection. Obtained results have shown that this reactor used as an ozone generator is effective for disinfection of air by removing viruses, bacteria and pathogens, causing the slowdown of the ripening process of fruits and vegetables.

  5. Metal-semiconductor Schottky barrier junctions and their applications

    CERN Document Server

    1984-01-01

    The present-day semiconductor technology would be inconceivable without extensive use of Schottky barrier junctions. In spite of an excellent book by Professor E.H. Rhoderick (1978) dealing with the basic principles of metal­ semiconductor contacts and a few recent review articles, the need for a monograph on "Metal-Semiconductor Schottky Barrier Junctions and Their Applications" has long been felt by students, researchers, and technologists. It was in this context that the idea of publishing such a monograph by Mr. Ellis H. Rosenberg, Senior Editor, Plenum Publishing Corporation, was considered very timely. Due to the numerous and varied applications of Schottky barrier junctions, the task of bringing it out, however, looked difficult in the beginning. After discussions at various levels, it was deemed appropriate to include only those typical applications which were extremely rich in R&D and still posed many challenges so that it could be brought out in the stipulated time frame. Keeping in view the la...

  6. Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption.

    Science.gov (United States)

    Denda, Mitsuhiro

    2011-11-01

    Previous studies have suggested that hexose molecules influence the stability of phospholipid bilayers. Therefore, the effects of topical application of all 12 stereoisomers of dextro-hexose on the epidermal barrier recovery rate after barrier disruption were evaluated. Immediately after tape stripping, 0.1 m aqueous solution of each hexose was applied on hairless mouse skin. Among the eight dextro-aldohexoses, topical application of altose, idose, mannose and talose accelerated the barrier recovery, while allose, galactose, glucose and gulose had no effect. Among the four dextro-ketohexoses, psicose, fructose, sorbose and tagatose all accelerated the barrier recovery. As the effects of hexoses on the barrier recovery rate appeared within 1 h, the mechanism is unlikely to be genomic. Instead, these hexoses may influence phase transition of the lipid bilayers of lamellar bodies and cell membrane, a crucial step in epidermal permeability barrier homeostasis. © 2011 John Wiley & Sons A/S.

  7. Agricultural Trade Barriers 10 years later Uruguay Round Trade Agreement Signature

    OpenAIRE

    Mahia, R.; Arce, Rafael de; Escribano, Gonzalo

    2005-01-01

    In this paper, an analysis of current state of agricultural trade barriers is carried out alter ten years of Uruguay Round Agricultural Trade Agreement Signature The descriptive analysis showed that small advances in trade barriers removing have been taken out. About the heterogeneity in tariff applications, tariff progresivity and peak tariffs, the same situation is pointed out.

  8. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study

    International Nuclear Information System (INIS)

    Shabalala, Ayanda N.; Ekolu, Stephen O.; Diop, Souleymane; Solomon, Fitsum

    2017-01-01

    Highlights: • Pervious concrete raises the low pH of acid mine drainage up to 12; heavy metals precipitate. • Pervious concrete successfully removed greater than 99% of inorganic contaminants. • Ca(OH)_2 in pervious concrete reacts with SO_4"2"− in acid mine drainage to form expansive gypsum. • Incorporating fly ash into pervious concrete mitigates damage caused by gypsum. • Pervious concrete reactive barrier offers a promising alternative method for treatment of acid mine drainage. - Abstract: This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber’s salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  9. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study

    Energy Technology Data Exchange (ETDEWEB)

    Shabalala, Ayanda N., E-mail: Ayanda.Shabalala@ump.ac.za [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Ekolu, Stephen O. [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Diop, Souleymane [Council for Geoscience, Private bag x112, Pretoria, 0001 (South Africa); Solomon, Fitsum [University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa)

    2017-02-05

    Highlights: • Pervious concrete raises the low pH of acid mine drainage up to 12; heavy metals precipitate. • Pervious concrete successfully removed greater than 99% of inorganic contaminants. • Ca(OH){sub 2} in pervious concrete reacts with SO{sub 4}{sup 2−} in acid mine drainage to form expansive gypsum. • Incorporating fly ash into pervious concrete mitigates damage caused by gypsum. • Pervious concrete reactive barrier offers a promising alternative method for treatment of acid mine drainage. - Abstract: This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber’s salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water.

  10. The Analysis of The Effect Of Removing Barriers On The Creativity Students' Mathematical Learning

    OpenAIRE

    Seyedeh Edna Khalilinezhad; Ahmad Shahvarani; Mohamadreza Mardanbeigi

    2017-01-01

    Nowadays, flowering of student creativity is one of the most important purposes of education. But in our country, due to the fact that creativity is effected by environmental conditions and factors, it is barely investigated, reviewed, and accurately programmed. For these reasons, the aim of the present study was to identify and removal the four group of the creativity barriers, and investigate their effect on students' learning and creativity growth in math. This research is of an applied ty...

  11. A Fully Customized Baseline Removal Framework for Spectroscopic Applications.

    Science.gov (United States)

    Giguere, Stephen; Boucher, Thomas; Carey, C J; Mahadevan, Sridhar; Dyar, M Darby

    2017-07-01

    The task of proper baseline or continuum removal is common to nearly all types of spectroscopy. Its goal is to remove any portion of a signal that is irrelevant to features of interest while preserving any predictive information. Despite the importance of baseline removal, median or guessed default parameters are commonly employed, often using commercially available software supplied with instruments. Several published baseline removal algorithms have been shown to be useful for particular spectroscopic applications but their generalizability is ambiguous. The new Custom Baseline Removal (Custom BLR) method presented here generalizes the problem of baseline removal by combining operations from previously proposed methods to synthesize new correction algorithms. It creates novel methods for each technique, application, and training set, discovering new algorithms that maximize the predictive accuracy of the resulting spectroscopic models. In most cases, these learned methods either match or improve on the performance of the best alternative. Examples of these advantages are shown for three different scenarios: quantification of components in near-infrared spectra of corn and laser-induced breakdown spectroscopy data of rocks, and classification/matching of minerals using Raman spectroscopy. Software to implement this optimization is available from the authors. By removing subjectivity from this commonly encountered task, Custom BLR is a significant step toward completely automatic and general baseline removal in spectroscopic and other applications.

  12. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Yang Xuefeng; Li Cuihong; Xu Yong

    2005-01-01

    Formaldehyde is a major indoor air pollutant and can cause serious health disorders in residents. This work reports the removal of formaldehyde from gas streams via alumina-pellet-filled dielectric barrier discharge plasmas at atmospheric pressure and 70 deg. C. With a feed gas mixture of 140 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼92% of formaldehyde can be effectively destructed at GHSV (gas flow volume per hour per discharge volume) of 16 500 h -1 and E in = 108 J l -1 . An increase in the specific surface area of the alumina pellets enhances the HCHO removal, and this indicates that the adsorbed HCHO species may have a lower C-H bond breakage energy. Based on an examination of the influence of gas composition on the removal efficiency, the primary destruction pathways, besides the reactions initiated by discharge-generated radicals, such as O, H, OH and HO 2 , may include the consecutive dissociations of HCHO molecules and HCO radicals through their collisions with vibrationally- and electronically-excited metastable N 2 species. The increase of O 2 content in the inlet gas stream is able to diminish the CO production and to promote the formation of CO 2 via O-atom or HO 2 -radical involved reactions

  13. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits.

    Directory of Open Access Journals (Sweden)

    Brad H McRae

    Full Text Available Landscape connectivity is crucial for many ecological processes, including dispersal, gene flow, demographic rescue, and movement in response to climate change. As a result, governmental and non-governmental organizations are focusing efforts to map and conserve areas that facilitate movement to maintain population connectivity and promote climate adaptation. In contrast, little focus has been placed on identifying barriers-landscape features which impede movement between ecologically important areas-where restoration could most improve connectivity. Yet knowing where barriers most strongly reduce connectivity can complement traditional analyses aimed at mapping best movement routes. We introduce a novel method to detect important barriers and provide example applications. Our method uses GIS neighborhood analyses in conjunction with effective distance analyses to detect barriers that, if removed, would significantly improve connectivity. Applicable in least-cost, circuit-theoretic, and simulation modeling frameworks, the method detects both complete (impermeable barriers and those that impede but do not completely block movement. Barrier mapping complements corridor mapping by broadening the range of connectivity conservation alternatives available to practitioners. The method can help practitioners move beyond maintaining currently important areas to restoring and enhancing connectivity through active barrier removal. It can inform decisions on trade-offs between restoration and protection; for example, purchasing an intact corridor may be substantially more costly than restoring a barrier that blocks an alternative corridor. And it extends the concept of centrality to barriers, highlighting areas that most diminish connectivity across broad networks. Identifying which modeled barriers have the greatest impact can also help prioritize error checking of land cover data and collection of field data to improve connectivity maps. Barrier detection

  14. High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode

    Science.gov (United States)

    Dan, ZHAO; Feng, YU; Amin, ZHOU; Cunhua, MA; Bin, DAI

    2018-01-01

    With the rapid increase in the number of cars and the development of industry, nitrogen oxide (NOx) emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOx removal at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO2, ZrO2, or Fe2O3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency (28.8%) than that obtained using quartz tube (14.1%) at a frequency of 8 kHz with an input voltage of 6.8 kV. Furthermore, under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.

  15. Engineering Surfaces for Enhanced Nucleation and Droplet Removal During Dropwise Condensation

    Science.gov (United States)

    Dutta, Sanmitra; Khan, Sameera; Anand, Sushant

    2017-11-01

    Condensation plays critical role in numerous industrial applications, such as condensers, HVAC,etc In the most applications, fast formation (i.e. high nucleation) and subsequent removal of water droplets is critical for enhancing the efficiencies of their associated systems. Significant focus has been placed on the aspect of droplet removal from surfaces. This has led to, development of superhydrophobic surfaces with special textures on which droplets are self-removed after coalescence. However,because of their inherent low surface energy, nucleation energy barriers are also high on such surfaces. In contrast to conventional superhydrophobic surfaces, here we show that surfaces can be engineered such that the simultaneous benefits of high nucleation rates and fast droplet removal can be obtained during the condensation process.These benefits are obtained by impregnating a superhydrophobic surface with an oil that despite its defect-free interface provides low nucleation energy barrier during condensation. At the same time, the oil facilitates high droplet shedding rates by providing a lubricating layer below the droplets due to which droplets have negligible contact angle hysteresis. We provide a guide to choose oils that lead to enhanced nucleation, and provide experimental evidence supporting the proposed guide. We discuss the importance of different oil properties in affecting the droplet growth and subsequent removal of water droplets.

  16. Mobile Application Removes Societal Barriers to P4 Medicine.

    Science.gov (United States)

    Michel, J-P

    2017-01-01

    The overlap between one innovative paradigm (P4 medicine: predictive, personalized, participatory and preventive) and another (a new definition of "Healthy ageing") is fertile ground for new technologies; a new mobile application (app) that could broaden our scientific knowledge of the ageing process and help us to better analyse the impact of possible interventions in slowing the ageing decline. A novel mobile application is here presented as a game including questions and tests will allow in 10 minutes the assessment of the following domains: robustness, flexibility (lower muscle strength), balance, mental and memory complaints, semantic memory and visual retention. This game is completed by specific measurements, which could allow establishing precise information on functional and cognitive abilities. A global evaluation precedes advice and different types of exercises. The repetition of the tests and measures will allow a long follow up of the individual performances which could be shared (on specific request) with family members and general practitioners.

  17. Applicability of the dielectric barrier discharge for helium ash measurements in the divertor region

    Directory of Open Access Journals (Sweden)

    Książek Ireneusz

    2016-06-01

    Full Text Available Controlled fusion based on the magnetic confinement of the plasma is one of the main aims of the Euro-fusion programme. In the fusion device, the hydrogen isotopes, in nuclear reactions, will produce helium nuclei. The products, as the ash, will be removed from the plasma in the region of the so-called divertor. Controlling the helium to hydrogen ratio in this ‘exhaust gas’ will provide information about the efficiency of the fusion process as well as of the efficiency of the helium removal system. One of the methods to perform this task is to study the properties of the discharge conducted in such exhaust gas. In this paper, the applicability of the dielectric barrier discharge (DBD is studied. This preliminary experiment shows a great potential in applicability of this kind of discharge. The optical as well as pulse-height spectra were studied, both revealing very promising properties. In the optical spectrum, one can observe well separated hydrogen and helium spectral lines, with intensities of the same order of magnitude. Moreover, in the registered spectral region, the molecular spectra are negligible. The pulse-height spectra reveal very distinct shape in helium and hydrogen. Checking of this spectrum could provide parallel (redundant information about the partial pressure of helium in the magnetic confinement fusion (MCF device exhaust gas.

  18. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    Science.gov (United States)

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  19. Study on characteristics of high frequency dielectric barrier discharge for the removal of organic pollutant adsorbed on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, G.Z.; Li, G.F. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Li, J.; Lu, N.; Wu, Y.; Li, D. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Key Lab of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian (China)

    2010-07-01

    Advanced oxidation technologies such as photocatalysis, electrochemical degradation, Fenton oxidation, hydrogen peroxide oxidation, and plasma oxidation are increasingly being used to degrade refractory biodegradable organic contaminants. The plasma oxidation method has the advantage of direct in situ production of multiple types of high-reactive chemical species, including molecules and radicals that facilitate the degradation reaction. In addition, plasma oxidation does not produce any secondary pollution. Compared to other plasma technologies, the dielectric barrier discharge (DBD) plasma has been considered as a promising technology for removing toxic compounds because of its stability and its treatability property of biologically recalcitrant compounds in wastewater. However, the energy efficiency of DBD requires improvement for economic reasons. This paper reported on an experimental study that investigated the electrical characteristics of a parallel plate DBD reactor using a high frequency power supply for the removal of pentachlorophenol (PCP) adsorbed on activated carbon (AC). This study examined the effects of AC with different mass on discharge characteristics and compared the voltage and current waveforms, and discharge images of DBD reactors with different dielectric configurations. When the DBD reactor filled with AC, the applied voltage of discharge decreased regardless of the DBD reactor configuration in terms of having a single barrier or two barriers. The discharge characteristics had no significant change with AC mass increasing. The discharge images and current waveforms showed that DBD reactor configuration consisting of two dielectrics is more homogeneous and stable than the one consisting of a single dielectric. Under the same electric field condition, the degradation efficiency of PCP in two barriers reactor is higher than that in single barrier reactor. It was concluded that the findings from this study may be instrumental in treating

  20. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...... diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model...

  1. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    Science.gov (United States)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  2. Application of flexi-wall in noise barriers renewal

    Directory of Open Access Journals (Sweden)

    B. Daee

    2015-12-01

    Full Text Available This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF and polyurea. This wall system (flexi-wall is intended to be employed as a vertical extension to existing noise barriers (sound walls in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The results of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound wall application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound wall applications was also developed.

  3. Aluminium oxide barrier films on polymeric web and their conversion for packaging applications

    OpenAIRE

    Struller, CF; Kelly, PJ; Copeland, NJ; Tobin, V; Assender, HE; Holliday, CW; Read, SJ

    2013-01-01

    In recent years, inorganic transparent barrier layers such as aluminium oxide or silicon oxide deposited onto polymer films have emerged as an attractive alternative to polymer based transparent barrier layers for flexible food packaging materials. For this application, barrier properties against water vapour and oxygen are critical. Aluminium oxide coatings can provide good barrier levels at thicknesses in the nanometre range, compared to several micrometres for polymer-based barrier layers....

  4. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2010-10-01

    For water reuse applications, " tight" nanofiltration (NF) membranes (of polyamide) as an alternative to reverse osmosis (RO) can be an effective barrier against pharmaceuticals, pesticides, endocrine disruptors and other organic contaminants. The use of RO in existing water reuse facilities is addressed and questioned, taking into consideration that tight NF can be a more cost-effective and efficient technology to target the problem of organic contaminants. It was concluded that tight NF is an acceptable barrier for organic contaminants because its removal performance approaches that of RO, and because of reduced operation and maintenance (O&M) costs in long-term project implementation. Average removal of neutral compounds (including 1,4-dioxane) was about 82% and 85% for NF and RO, respectively, and average removal of ionic compounds was about 97% and 99% for NF and RO, respectively. In addition, " loose" NF after aquifer recharge and recovery (ARR) can be an effective barrier against micropollutants with removals over 90%. When there is the presence of difficult to remove organic contaminants such as NDMA and 1,4-dioxane; for 1,4-dioxane, source control or implementation of treatment processes in wastewater treatment plants will be an option; for NDMA, a good strategy is to limit its formation during wastewater treatment, but there is evidence that biodegradation of NDMA can be achieved during ARR. © 2010 Elsevier B.V.

  5. Laboratory and field scale demonstration of reactive barrier systems

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy's Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems

  6. Impact of removing mucosal barrier injury laboratory-confirmed bloodstream infections from central line-associated bloodstream infection rates in the National Healthcare Safety Network, 2014.

    Science.gov (United States)

    See, Isaac; Soe, Minn M; Epstein, Lauren; Edwards, Jonathan R; Magill, Shelley S; Thompson, Nicola D

    2017-03-01

    Central line-associated bloodstream infection (CLABSI) event data reported to the National Healthcare Safety Network from 2014, the first year of required use of the mucosal barrier injury laboratory-confirmed bloodstream infection (MBI-LCBI) definition, were analyzed to assess the impact of removing MBI-LCBI events from CLABSI rates. CLABSI rates decreased significantly in some location types after removing MBI-LCBI events, and MBI-LCBI events will be removed from publicly reported CLABSI rates. Published by Elsevier Inc.

  7. Facebook Applications' Installation and Removal: A Temporal Analysis

    OpenAIRE

    Kagan, Dima; Fire, Michael; Elyashar, Aviad; Elovici, Yuval

    2013-01-01

    Facebook applications are one of the reasons for Facebook attractiveness. Unfortunately, numerous users are not aware of the fact that many malicious Facebook applications exist. To educate users, to raise users' awareness and to improve Facebook users' security and privacy, we developed a Firefox add-on that alerts users to the number of installed applications on their Facebook profiles. In this study, we present the temporal analysis of the Facebook applications' installation and removal da...

  8. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  9. The theory of discrete barriers and its applications to linear boundary-value problems of the 'Dirichlet type'; Theorie des barrieres discretes et applications a des problemes lineaires elliptiques du ''type de dirichlet''

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report gives a general presentation of barrier theory for finite difference operators, with its applications to some boundary value problems. (author) [French] Ce rapport est un expose synthetique de la theorie des barrieres pour les operateurs aux differences finies et ses applications a certaines classes de problemes lineaires elliptiques du 'type de Dirichlet'. (auteur)

  10. Linking field and laboratory studies to investigate nitrate removal using permeable reactive barrier technology during managed recharge

    Science.gov (United States)

    Gorski, G.; Beganskas, S.; Weir, W. B.; Redford, K.; Saltikov, C.; Fisher, A. T.

    2017-12-01

    We present data from a series of field and laboratory studies investigating mechanisms for the enhanced removal of nitrate during infiltration as a part of managed recharge. These studies combine physical, geochemical, and microbiological data collected during controlled infiltration experiments at both a plot and a laboratory scale using permeable reactive barrier (PRB) technology. The presence of a PRB, made of wood chips or biochar, enhances nitrate removal by stimulating the growth and productivity of native soil microbes to process nitrate via denitrification. Earlier work has shown that unamended soil can remove up to 50% of nitrate during infiltration at rates microbiological data show significant population changes below the PRB where most of the cycling occurs. Coupled with isotopic analyses, these results suggest that a PRB expands the range of infiltration rates at which significant nitrate can be removed by microbial activity. Further, nitrate removal occurs at different depths below the biochar and redwood chips, suggesting different mechanisms of nitrate removal in the presence of different PRB materials. In laboratory studies we flowed artificial groundwater through intact sediment cores collected at the same field site where we also ran infiltration tests. These experiments show that the fluid flow rate and the presence of a PRB exhibit primary control on nitrate removal during infiltration, and that the relationship between flow rate and nitrate removal is fundamentally different in the presence of a PRB. These data from multiple scales and flow regimes are combined to offer a deeper understanding how the use of PRB technology during infiltration can help address a significant non-point source issue at the surface-subsurface interface.

  11. Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: removal of SO2 and NOx

    International Nuclear Information System (INIS)

    Khacef, A; Cormier, J M

    2006-01-01

    Experiments were carried out to investigate the removal of SO 2 and NOx from simulated glass manufacturing industry flue gas containing O 2 , N 2 , NO, NO 2 , CO 2 , SO 2 and H 2 O using a sub-microsecond pulsed dielectric barrier discharge (DBD) at atmospheric pressure. Removal efficiencies of SO 2 and NOx (NO+NO 2 ) were achieved as a function of gas temperature for two specific energies and two initial NO, NO 2 and SO 2 concentrations. The higher SO 2 and NOx removal efficiencies were achieved in a gas stream containing 163 ppm of SO 2 , 523 ppm of NO, 49 ppm of NO 2 , 14% of CO 2 , 8% of O 2 , 16% of H 2 O and N 2 as balance. The experimental results were evaluated using the energy cost or W-value (eV/molecule removed). About 100% of SO 2 and 36% of NOx were removed at a gas temperature of 100 deg. C with an energy cost of about 45 eV/molecule removed and 36 eV/molecule removed, respectively. These results indicate that DBD plasmas have the potential to remove SO 2 and NOx from gas streams without additives

  12. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  13. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  14. ICTs for rural development: potential applications and barriers involved

    Directory of Open Access Journals (Sweden)

    Anastasia Stratigea

    2013-03-01

    Full Text Available Rural policy nowadays is at the heart of the policy discussion in many countries all over the world, in the effort to address and effectively support the specific needs and opportunities of rural places and their population in the new era. Along these lines, the focus of the present paper is twofold: on the one hand it attempts to shed light on the role of ICTs and their applications as enabling tools empowering rural development; while on the other hand it explores the barriers appearing towards the adoption and use of ICTs in rural regions. In such a context, it firstly places emphasis on the evolving new rural development paradigm. Then, the range and potential of ICTs applications is explored, that can serve the implementation of the new policy paradigm in rural regions. It follows a discussion on the steps that are needed in order to develop value-added ICTs applications in rural regions and the barriers appearing in the adoption and use of ICTs in these regions. Finally, are presented some issues of policy concern in respect to the adoption and use of ICTs in a rural development perspective.

  15. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  16. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  17. Application of KWU antimony removal process at Gentilly-2

    International Nuclear Information System (INIS)

    Dundar, Y.; Odar, S.; Streit, K.; Allsop, H.; Guzonas, D.

    1996-09-01

    This paper describes the work performed to adapt the KWU PWR antimony removal process to CANDU plant conditions, and the application of the process at the Hydro Quebec unit, Gentilly-2. The results of the application will be presented and the 'lessons learned' will be discussed in detail. (author)

  18. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    International Nuclear Information System (INIS)

    Rong Mingzhe; Liu Dingxin; Wang Xiaohua; Wang Junhua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO 2 removal from indoor air is investigated. In order to improve the removal efficiency, two novel methods are combined in this paper, namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field. For SO 2 removal efficiency, different matches of electric field and magnetic field are discussed. And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared. It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted, and electrical field and magnetic field should be applied in an appropriate match

  19. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  20. Safety barriers and safety functions a comparison of different applications

    International Nuclear Information System (INIS)

    Harms-Ringdahl, L.

    1998-01-01

    A study is being made with the focus on different theories and applications concerning 'safety barriers' and 'safety functions'. One aim is to compare the characteristics of different kinds of safely functions, which can be purpose, efficiency, reliability, weak points etc. A further aim is to summarize how the combination of different barriers are described and evaluated. Of special interest are applications from nuclear and chemical process safety. The study is based on a literature review, interviews and discussions. Some preliminary conclusions are made. For example, it appears to exist a need for better tools to support the design and evaluation of procedures. There are a great number of theoretical models describing safety functions. However, it still appears to be an interest in further development of models, which might give the basis for improved practical tools. (author)

  1. A reactive barrier to enhance the removal of emerging organic compounds during artificial recharge of aquifers through infiltration basins

    OpenAIRE

    Valhondo, Cristina

    2017-01-01

    Artificial recharge of aquifers through infiltration basins (AR) improves water quality and in- creases groundwater resources, which make of it an appropriate technique for the renaturalization of waters affected directly or indirectly by wastewater effluents. Emerging organic compounds (EOCs), typically present in such waters, are mainly reduced during AR by sorption and biotrans- formation. We installed a reactive barrier in an infiltration basin (5000 m2) to enhance the removal of EOCs ...

  2. Use of vegetable oil in a pilot-scale denitrifying barrier

    Science.gov (United States)

    Hunter, William J.

    2001-12-01

    Nitrate in drinking water is a hazard to both humans and animals. Contaminated water can cause methemoglobinemia and may pose a cancer risk. Permeable barriers containing innocuous oils, which stimulate denitrification, can remove nitrate from flowing groundwater. For this study, a sand tank (1.1×2.0×0.085 m in size) containing sand was used as a one-dimensional open-top scale model of an aquifer. A meter-long area near the center of the tank contained sand coated with soybean oil. This region served as a permeable denitrifying barrier. Water containing 20 mg l -1 nitrate-N was pumped through the barrier at a high flow rate, 1112 l week -1, for 30 weeks. During the 30-week study, the barrier removed 39% of the total nitrate-N present in the water. The barrier was most efficient during the first 10 weeks of the study when almost all of the nitrate and nitrogen was removed. Efficiency declined with time so that by week 30 almost no nitrate was removed by the system. Nitrite levels in the effluent water remained low throughout the study. Barriers could be used to protect groundwater from nitrate contamination or for the in situ treatment of contaminated water. At the low flow rates that exist in most aquifers, such barriers should be effective at removing nitrate from groundwater for a much longer period of time.

  3. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE)

  4. Air barrier systems: Construction applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, J.C

    1989-01-01

    An examination is presented of how ordinary building materials can be used in an innovative manner to design, detail, and construct effective air barrier systems for common types of walls. For residential construction, the air drywall approach uses the interior gypsum board as the main component of the wall air barrier system. Joints between the gypsum board and adjacent materials or assemblies are sealed by gaskets. In commercial construction, two different techniques are employed for using gypsum board as air barrier material: the accessible drywall and non-accessible drywall approaches. The former is similar to the air drywall approach except that high performance sealants are used instead of gaskets. In the latter approach, exterior drywall sheathing is the main component of the air barrier system; joints between boards are taped and joints between boards and other components are sealed using elastomeric membrane strips. For various types of commercial and institutional buildings, metal air barrier systems are widely used and include pre-engineered curtain walls or sheet metal walls. Masonry wall systems are regarded as still the most durable, fireproof, and soundproof wall type available but an effective air barrier system has typically been difficult to implement. Factory-made elastomeric membranes offer the potential to provide airtightness to masonry walls. These membranes are applied on the entire masonry wall surface and are used to make airtight connections with other building components. Two types of product are available: thermofusible and peel-and-stick membranes. 5 figs.

  5. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  6. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    International Nuclear Information System (INIS)

    Pacheco, M; Valdivia, R; Pacheco, J; Rivera, C; Alva, E; Santana, A; Huertas, J; Lefort, B; Estrada, N

    2012-01-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  7. Using natural Chinese zeolite to remove ammonium from rainfall runoff following urea fertilization of a paddy rice field.

    Science.gov (United States)

    Wang, Xiao-Ling; Qiao, Bin; Li, Song-Min; Li, Jian-Sheng

    2016-03-01

    The potential of natural Chinese zeolite to remove ammonium from rainfall runoff following urea applications to a paddy rice field is assessed in this study. Laboratory batch kinetic and isotherm experiments were carried out first to investigate the ammonium adsorption capacity of the natural zeolite. Field experiments using zeolite adsorption barriers installed at drain outlets in a paddy rice field were also carried out during natural rainfall events to evaluate the barrier's dynamic removal capacity of ammonium. The results demonstrate that the adsorption kinetics are accurately described by the Elovich model, with a coefficient of determination (R (2)) ranging from 0.9705 to 0.9709, whereas the adsorption isotherm results indicate that the Langmuir-Freundlich model provides the best fit (R (2) = 0.992) for the equilibrium data. The field experiments show that both the flow rate and the barrier volume are important controls on ammonium removal from rainfall runoff. A low flow rate leads to a higher ammonium removal efficiency at the beginning of the tests, while a high flow rate leads to a higher quantity of ammonium adsorbed over the entire runoff process.

  8. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment

    KAUST Repository

    Sudhakaran, Sairam

    2013-07-01

    In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. © 2013 Elsevier Ltd.

  9. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    Science.gov (United States)

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Developing reliable safeguards seals for application verification and removal by State operators

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Once a geological repository has begun operations, the encapsulation and disposal of spent fuel will be performed as a continuous, industrial-scale series of processes, during which time safeguards seals will be applied to transportation casks before shipment from an encapsulation plant, and then verified and removed following receipt at the repository. These operations will occur approximately daily during several decades of Sweden's repository operation; however, requiring safeguards inspectors to perform the application, verification, and removal of every seal would be an onerous burden on International Atomic Energy Agency's (IAEA's) resources. Current IAEA practice includes allowing operators to either apply seals or remove them, but not both, so the daily task of either applying or verifying and removing would still require continuous presence of IAEA inspectors at one site at least. Of special importance is the inability to re-verify cask or canisters from which seals have been removed and the canisters emplaced underground. Successfully designing seals that can be applied, verified and removed by an operator with IAEA approval could impact more than repository shipments, but other applications as well, potentially reducing inspector burdens for a wide range of such duties.

  11. Water removal from a dry barrier cover system

    International Nuclear Information System (INIS)

    Stormont, J.C.; Ankeny, M.D.; Tansey, M.K.

    1994-01-01

    The results of the numerical simulations reveal that horizontal air flow through the coarse with reasonable pressure gradients can remove large quantities of water from the cover system. Initially, the water removal from the cover system is dominated by the evaporation and advection of water vapor out of the coarse layer. Once the coarse layer is dry, removal of water by evaporation near the fine/coarse layer interface reduces the local water content and water potential, and water moves toward the fine-coarse layer interface and becomes available for evaporation. This result is important in that it suggests the fine layer water content may be moderated by air flow in the coarse layer. Incorporating diffusion of water vapor from the fine layer into the coarse layer substantially increases the water movement out of the fine layer

  12. The role of ritualistic ceremonial in removing barriers between subcultures in the National Health Service.

    Science.gov (United States)

    Brooks, Ian; Brown, Reva Berman

    2002-05-01

    The role of ritualistic ceremonial in removing barriers between subcultures in the National Health Service Background. One of the ways in which it is possible to achieve successful organizational change is through the elimination of those ceremonies that reinforce or preserve the negative aspects of professional and work group autonomy, thus maintaining the barriers between subcultures. Conversely, the encouraging of ceremonies which reinforce positive aspects is likely to achieve more flexible, team-orientated changes. Aim. The paper considers those ceremonies, which perpetuate barriers in a National Health Service (NHS) Trust, and explores new ceremonies which may question, weaken or eliminate current dysfunctional practices. Design. Our research approach was mainly phenomenological, as we wished to elicit the symbolic significance of organizational routines. The primary source of data was spoken language. The findings are based on purposive sampling of informants by means of semi-structured interview and observation. Other types of information were also collected, including business plans, reports and brochures. Informants included the Chief Executive and four Board members, three consultants, the director of nursing and midwifery, 10 middle managers and eight junior, nonmedical and nonmanagerial employees. Findings. Two broad bands of ceremonies have been identified - those which preserve the existing norms and autonomy of professional and worker groups, which we have named Ceremonies of Preservation, and those which encourage change, which we have called Ceremonies of Change. Considerable data are provided to help to 'tell the story'. Conclusion. The paper argues that attention to ceremonial in the wider change process may facilitate the desired, specific change or changes in practice. It suggests that changes which confront unnecessary demarcation, but which do not undermine professional integrity, can create real benefits for NHS hospitals.

  13. Circularly polarized antennas for active holographic imaging through barriers

    Science.gov (United States)

    McMakin, Douglas L [Richland, WA; Severtsen, Ronald H [Richland, WA; Lechelt, Wayne M [West Richland, WA; Prince, James M [Kennewick, WA

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  14. Frozen Soil Barrier. Subsurface Contaminants Focus Area. OST Reference No. 51

    International Nuclear Information System (INIS)

    1999-01-01

    Problem: Hazardous and radioactive materials have historically been disposed of at the surface during operations at Department of Energy facilities. These contaminants have entered the subsurface, contaminating soils and groundwater resources. Remediation of these groundwater plumes using the baseline technology of pump and treat is expensive and takes a long time to complete. Containment of these groundwater plumes can be alternative or an addition to the remediation activities. Standard containment technologies include slurry walls, sheet piling, and grouting. These are permanent structures that once installed are difficult to remove. How It Works: Frozen Soil Barrier technology provides a containment alternative, with the key difference being that the barrier can be easily removed after a period of time, such as after the remediation or removal of the source is completed. Frozen Soil Barrier technology can be used to isolate and control the migration of underground radioactive or other hazardous contaminants subject to transport by groundwater flow. Frozen Soil Barrier technology consists of a series of subsurface heat transfer devices, known as thermoprobes, which are installed around a contaminant source and function to freeze the soil pore water. The barrier can easily be maintained in place until remediation or removal of the contaminants is complete, at which time the barrier is allowed to thaw.

  15. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    Science.gov (United States)

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  16. Water Distribution and Removal Model

    International Nuclear Information System (INIS)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-01-01

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD and R) Model; (2) EBS Physical and Chemical Environment (P and CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD and R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment

  17. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  18. Application of three pollination techniques and of hormone treatments for overcoming interspecific crossing barriers in Tulipa

    NARCIS (Netherlands)

    Creij, van M.G.M.; Kerckhoffs, D.M.F.J.; Tuyl, van J.M.

    1997-01-01

    In tulip, interspecific crossing is restricted by both pre-fertilization and post-fertilization barriers. In order to introduce traits from wild species into the cultivar assortment these barriers must be bypassed. By application of embryo rescue techniques, unique hybrids have been obtained of

  19. Barriers and strategies for innovations entering BoP markets

    NARCIS (Netherlands)

    Kamp, L.M.; Ortt, J.R.; Harahap, B.

    2015-01-01

    Companies that bring a new product to the market or enter a new market with an existing product, come across a number of barriers that prevent large?scale diffusion. In order to circumvent or remove these barriers, they can adopt alternative strategies. This paper looks into these barriers and

  20. Optimizing The Efficiency of a Dielectric Barrier Discharge Reactor for Removal of Nitric Oxides in Gas Phase

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Wong, C.S.; Abas, M.R.

    2016-01-01

    A dielectric barrier discharge (DBD) reactor was built and used to remove nitric oxides in gas phase. In the preliminary work, it was found that the DBD reactor can used for direct processing of contaminated air stream. It was observed that if the applied energy is sufficiently high, reduction can overcome the oxidation process. The other characteristics that can affect the efficiency of the reactor are the processing flow rate, number of DBD tubes used and how the tubes are connected. The composition of the feed gas also plays important role. To improve the efficiency, more tubes were added and configured in combination of serial and parallel connections to achieve the best result. The reactor was found to be most efficient when using 6 tubes configured to have 2 sets of 3 tubes in series connected in parallel. The maximum flow rate that can be treated is 5 scfh. When operated with the optimum input voltage of 32 kV, the reactor can remove up to 80 % nitric oxide in the reduction mode. This means that the energy is sufficiently high to sustain the reduction mode and prevent further oxidation. (author)

  1. Concepts for the removal of legal barriers to climate protection in Germany's buildings sector; Konzepte fuer die Beseitigung rechtlicher Hemmnisse des Klimaschutzes im Gebaeudebereich

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, Veit; Hermann, Andreas; Keimeyer, Friedhelm; Brunn, Christoph; Haus, David; Menge, Joanna [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Berlin (Germany); Klinski, Stefan [Hochschule fuer Wirtschaft und Recht Berlin (Germany)

    2013-07-15

    This study examines ways to remove legal barriers to climate protection in the buildings sector with a special focus on the energy refurbishment of existing buildings. Part A is concerned with legal concepts for financing measures geared to the energy rehabilita-tion of buildings. In a first step possible regulatory instruments - both those being discussed by experts in specialist contexts and further feasible options - are identified, with which effective incentives for the implementation of ambitious energy refurbishments can be generated. The incentives should function as independently as possible from the incalculabilities of public budgets. The different options are then systematically analysed for their compatibility with the overarching requirements of Germany's national law and EU law as well as for their feasibility. Following an expert assessment of the functionality of those options categorised as legally positive, the report develops a well-coordinated set of different instruments which are partly based on public charges and partly on the commitments of private actors and allow for the introduction of a legal entitlement of building owners to support. Part B discusses the removal of (non-economic) legal barriers to the energy refurbishment of buildings. First of all an overview is provided of such barriers in different areas of the law (like tenancy law, residential property law, building law, among others). Then the focus is placed on specific legal barriers in the law on architectural and engineering fees as well as in public pro-curement law for construction contracts. Continuing along the same lines, concrete suggestions are developed for legal improvements.

  2. An analytical solution for percutaneous drug absorption: application and removal of the vehicle.

    Science.gov (United States)

    Simon, L; Loney, N W

    2005-10-01

    The methods of Laplace transform were used to solve a mathematical model developed for percutaneous drug absorption. This model includes application and removal of the vehicle from the skin. A system of two linear partial differential equations was solved for the application period. The concentration of the medicinal agent in the skin at the end of the application period was used as the initial condition to determine the distribution of the drug in the skin following instantaneous removal of the vehicle. The influences of the diffusion and partition coefficients, clearance factor and vehicle layer thickness on the amount of drug in the vehicle and the skin were discussed.

  3. New Way to Break Down Barriers to Higher Education: Build "Financial Capabilities"

    Science.gov (United States)

    Savage, Sarah; Graves, Erin M.

    2015-01-01

    Community colleges have traditionally responded to the financial needs of their students by removing or minimizing financial barriers to attending. Efforts to make community college tuition free fit with this philosophy, but where efforts to minimize or remove financial barriers to attending community college fall short is in empowering students…

  4. Barriers to Adult Learning: Bridging the Gap

    Science.gov (United States)

    Falasca, Marina

    2011-01-01

    A fundamental aspect of adult education is engaging adults in becoming lifelong learners. More often than not, this requires removing barriers to learning, especially those relating to the actual organisational or institutional learning process. This article explores some of the main barriers to adult learning discussed in the literature and…

  5. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications.

    Science.gov (United States)

    Chauhan, Divya; Dwivedi, Jaya; Sankararamakrishnan, Nalini

    2014-01-01

    Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0±10.0 mg g(-1) of As(V) and 142.9±7.2 mg g(-1) of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.

  6. Barriers to Application of E-Learning in Training Activities of SMEs

    Science.gov (United States)

    Anderson, Randy J.; Wielicki, Tomasz; Anderson, Lydia E.

    2010-01-01

    This paper reports on the on-going study of Small and Mid-Size Enterprises (SMEs) in the Central California concerning their use of Information and Communication Technology (ICT). This research project analyzed data from a sample of 161 SMEs. Specifically, this part of the study is investigating the major barriers to applications of e-learning…

  7. Controlling the hydration of the skin though the application of occluding barrier creams.

    Science.gov (United States)

    Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard

    2013-03-06

    The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration.

  8. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  9. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  10. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Human Behaviour Analysis of Barrier Deviations Using a Benefit-Cost-Deficit Model

    Directory of Open Access Journals (Sweden)

    Philippe Polet

    2009-01-01

    Full Text Available A Benefit-Cost-Deficit (BCD model is proposed for analyzing such intentional human errors as barrier removal, the deliberate nonrespect of the rules and instructions governing use of a given system. The proposed BCD model attempts to explain and predict barrier removal in terms of the benefits, costs, and potential deficits associated with this human behaviour. The results of an experimental study conducted on a railway simulator (TRANSPAL are used to illustrate the advantages of the BCD model. In this study, human operators were faced with barriers that they could choose to deactivate, or not. Their decisions were analyzed in an attempt to explain and predict their choices. The analysis highlights that operators make their decisions using a balance between several criteria. Though barriers are safety-related elements, the decision to remove them is not guided only by the safety criterion; it is also motivated by such criteria as productivity, workload, and quality. Results of prediction supported by the BCD demonstrate the predictability of barrier violation

  12. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    Science.gov (United States)

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  13. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hijosa-Valsero, María, E-mail: mhijv@unileon.es [Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), CID, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona (Spain); Molina, Ricardo, E-mail: ricardo.molina@cid.csic.es [Instituto de Química Avanzada de Cataluña (IQAC), CID, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona (Spain); Schikora, Hendrik, E-mail: hendrik.schikora@igb.fraunhofer.de [Fraunhofer IGB, Nobelstraße 12, 70569 Stuttgart (Germany); Müller, Michael, E-mail: michael.mueller@igb.fraunhofer.de [Fraunhofer IGB, Nobelstraße 12, 70569 Stuttgart (Germany); Bayona, Josep M., E-mail: josep.bayona@cid.csic.es [Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), CID, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona (Spain)

    2013-11-15

    Highlights: • DBD plasma reactors were used to remove pollutants from aqueous solutions. • Atrazine, chlorfenvinfos, 2,4-dibromophenol and lindane were studied. • First-order degradation kinetics were observed for all the compounds. • Degradation by-products were identified by GC–MS. • Treatment efficiencies were lower in industrial wastewater than in pure water. -- Abstract: Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1–5 mg L{sup −1}) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments. The kinetic constants (k) were slightly faster in R1 (0.534 min{sup −1} for atrazine; 0.567 min{sup −1} for chlorfenvinfos; 0.802 min{sup −1} for 2,4-dibromophenol; 0.389 min{sup −1} for lindane) than in R2 (0.104 min{sup −1} for atrazine; 0.523 min{sup −1} for chlorfenvinfos; 0.273 min{sup −1} for 2,4-dibromophenol; 0.294 min{sup −1} for lindane). However, energy efficiencies were about one order of magnitude higher in R2 (89 mg kW{sup −1} h{sup −1} for atrazine; 447 mg kW{sup −1} h{sup −1} for chlorfenvinfos; 47 mg kW{sup −1} h{sup −1} for 2,4-dibromophenol; 50 mg kW{sup −1} h{sup −1} for lindane) than in R1. Degradation by-products of all four compounds were identified in R1. As expected, when the plasma treatment (R1) was applied to industrial wastewater spiked with atrazine or lindane, micropollutant removal was also achieved, although at a lower rate than with aqueous solutions (k = 0.117 min{sup −1} for atrazine; k = 0.061 min{sup −1} for lindane)

  14. Migration of polycyclic aromatic hydrocarbons (PAHs) in urban treatment sludge to the air during PAH removal applications.

    Science.gov (United States)

    Karaca, Gizem; Cindoruk, S Siddik; Tasdemir, Yücel

    2014-05-01

    In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography-mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 degrees C. It was determined that 40% decrease was ensured in sigma12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of sigma12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.

  15. Development and application of high performance resins for crud removal

    International Nuclear Information System (INIS)

    Deguchi, Tatsuya; Izumi, Takeshi; Hagiwara, Masahiro

    1998-01-01

    The development of crud removal technology has started with the finding of the resin aging effect that an old ion exchange resin, aged by long year of use in the condensate demineralizer, had an enhanced crud removal capability. It was confirmed that some physical properties such as specific surface area and water retention capacity were increased due to degradation caused by long year of contact with active oxygens in the condensate water. So, it was speculated that those degradation in the resin matrix enhanced the adsorption of crud particulate onto the resin surface, hence the crud removal capability. Based on this, crud removal resin with greater surface area was first developed. This resin has shown an excellent crud removal efficiency in an actual power plant, and the crud iron concentration in the condensate effluent was drastically reduced by this application. However, the cross-linkage of the cation resin had to be lowered in a delicate manner for that specific purpose, and this has caused higher organic leachables from the resin, and the sulfate level in the reactor was raised accordingly. Our major goals, therefore, has been to develop a crud resin of as little organic leachables as possible with keeping the original crud removal efficiency. It was revealed through the evaluation of the first generation crud resin and its improved version installed in the actual condensate demineralizers that there was a good correlation between crud removal efficiency and organic leaching rate. The bast one among a number of developmental resins has shown the organic leaching rate of 1/10 of that of the original crud resin (ETR-C), and the crud removal efficiency of 90%. So far as we understand, the resin was considered to have the best overall balance between crud removal and leaching characteristics. The result of six month evaluation of this developmental resin, ETR-C3, in one vessel of condensate demineralizer of a power plant will be presented. (J.P.N.)

  16. Planar InP-based Schottky barrier diodes for terahertz applications

    International Nuclear Information System (INIS)

    Zhou Jingtao; Yang Chengyue; Ge Ji; Jin Zhi

    2013-01-01

    Based on characteristics such as low barrier and high electron mobility of lattice matched In 0.53 Ga 0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω; and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits. (semiconductor devices)

  17. Signal Propagation Delay as a Barrier to Control Applications in WAN

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Patel, A.; Pedersen, Jens Myrup

    With the advent in WAN of delay sensitive technical applications, such as remote control, signal propagation delay becomes a major problem. The extent of the problem is analysed by lower bounding the delay in relation to different transmission media. Requirements for reliability and bandwidth are...... are considered. The consequences of this bounding for communication network planning and provisioning are discussed in relation to mitigating the effects of signal propagation delay as a barrier to the penetration of control applications into WAN......With the advent in WAN of delay sensitive technical applications, such as remote control, signal propagation delay becomes a major problem. The extent of the problem is analysed by lower bounding the delay in relation to different transmission media. Requirements for reliability and bandwidth...

  18. Microscopic approach of molecular dynamics. Applications to reactions near the barrier; Approches microscopiques de la dynamique nucleaire. Applications aux reactions autour de la barriere

    Energy Technology Data Exchange (ETDEWEB)

    Simenel, C.; Avez, B. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); Lacroix, D. [GANIL, 14 - Caen (France)

    2007-07-01

    This lecture introduces several microscopic approaches to nuclear dynamics. Our goal is to provide a good description of low energy heavy ions collisions. We study both the formalism and the practical application of the time-dependent Hartree-Fock (TDHF) theory. The TDHF approach gives a mean field dynamics of the system under the assumption of independent particles. As an example, we study the fusion of both spherical and deformed nuclei with TDHF. We also show that nucleon transfer may occur between nuclei below the barrier. These studies allow us to specify the field of applications of TDHF in one hand, and, in the other hand, its intrinsic limitations, as for instance the fact that there is no fusion by tunnel effect with TDHF. It is then important to get rid of the independent particle assumption. We finally present some approaches to go beyond TDHF, including for instance pairing and/or collision term between nucleons, though only few realistic applications have been performed so far. (authors)

  19. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  20. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  1. Application of alum and chickpea (cicer arietinum) in removing color from leachate

    Science.gov (United States)

    Zin, N. S. M.; Awang, N. H.; Akbar, N. A.

    2018-04-01

    Dual coagulant has the potential to improve the coagulation process. In leachate treatment coagulation/flocculation can be used as a main treatment method or as a polishing/tertiary treatment step. Application of natural coagulant as coagulant aids able to increase the formation of floc and the removal ability of the coagulation process. This study was focusing on the ability of dual coagulants made from chemical coagulant (Alum) and natural coagulant (Cicer Arietinum (CA)) in removing colour from leachate. Jar test was carried out to investigate the effect of dose and pH on the removal ability of the dual coagulant. The optimum pH and dose for dual coagulant were obtained at pH 6.0 with dose of Alum at 4 g/L and dose of CA at 0.6 g/L with 94% removal of colour. While the optimum removal of colour for single Alum (4 g/L) and single CA (1.4 g/L) were recorded as 88% and 22%, respectively. The removals obtained using single natural and chemical coagulants were not as good as those obtained by dual coagulant. Thus, addition of CA as a coagulant aid for alum, able to increase the removal of color from leachate and has the potential to be applied as a treatment method for leachate.

  2. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Autolysis: mechanisms of action in the removal of devitalised tissue.

    Science.gov (United States)

    Atkin, Leanne; Rippon, Mark

    2016-11-10

    Chronic wounds affect millions of people worldwide. In the UK alone, the cost of their treatment is estimated to be between £4.5bn and £5.1bn. The implementation of wound-bed preparation strategies remove the barriers to healing and wound debridement is a key component in preparing the wound bed for wound progression. This article aims to review one of the several debridement methods available to clinicians: autolytic debridement. Autolysis (i.e. autolytic debridement) uses the body's own enzymatic mechanisms to remove devitalised tissue in order to remove the barriers to healing. This review aims to provide clinicians working in wound care with a better understanding of the mechanisms and implications of autolytic debridement.

  4. Removal of geosmin and 2-methylisoborneol during managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu

    2012-06-01

    Managed aquifer recharge is a robust barrier in the multi-barrier approach to supply safe drinking water. The removal performance of gesomin and 2-methylisoborneol through managed aquifer recharge was investigated using batch and column experiments. Batch experiments were carried out to investigate the removal of geosmin and 2-methylisoborneol (MIB) in the presence of different types of biodegradable organic matter using different types of water. Five different types of water spiked with 70-293 ng/L of geosmin and MIB were used in batch reactors, and complete removal of geosmin and MIB (down to the detection limit) was achieved in all cases. Soil column studies showed that biodegradation contributed to the removal of geosmin and MIB by 23 and 31%, respectively (empty bed contact time: 17 hours). The removal of geosmin and MIB appeared to be influenced more by microbial activity than the initial concentrations of geosmin and MIB. Adsorption was found to be the dominant mechanism (major role) followed by biodegradation (minor role) for geosmin and MIB removals during soil passage. Managed aquifer charge can therefore be used as a robust barrier to remove taste and odor (T&O) causing compounds.© IWA Publishing 2012.

  5. Near real-time shadow detection and removal in aerial motion imagery application

    Science.gov (United States)

    Silva, Guilherme F.; Carneiro, Grace B.; Doth, Ricardo; Amaral, Leonardo A.; Azevedo, Dario F. G. de

    2018-06-01

    This work presents a method to automatically detect and remove shadows in urban aerial images and its application in an aerospace remote monitoring system requiring near real-time processing. Our detection method generates shadow masks and is accelerated by GPU programming. To obtain the shadow masks, we converted images from RGB to CIELCh model, calculated a modified Specthem ratio, and applied multilevel thresholding. Morphological operations were used to reduce shadow mask noise. The shadow masks are used in the process of removing shadows from the original images using the illumination ratio of the shadow/non-shadow regions. We obtained shadow detection accuracy of around 93% and shadow removal results comparable to the state-of-the-art while maintaining execution time under real-time constraints.

  6. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  7. Development of dry barriers for containment and remediation at waste sites

    International Nuclear Information System (INIS)

    Thomson, B.M.; Morris, C.E.; Ankeny, M.D.

    1994-01-01

    This paper describes a concept in which dry air is injected into an unsaturated formation to reduce the soil moisture content, referred to here as a dry (or sometimes tensiometric) barrier. The objective is to reduce the hydraulic conductivity of the unsaturated media to the point where liquid phase transport becomes negligible, thereby achieving containment. The concept could be applied in subsurface formations to provide containment from a leaking facility, or it could be incorporated into a cover design to provide redundancy for a capillary barrier. The air injection process could in principle be coupled with a vacuum extraction system to recover soil vapors, which would then provide a remediation process that would be appropriate if volatile organic compounds were present. Work to date has consisted of a combined theoretical, laboratory, and field research investigation. The objective of this research was to demonstrate the technical feasibility of the dry barrier concept by identifying the parameters which determine its effectiveness. Based on the results obtained for the experimental and theoretical studies, feasibility analyses were prepared for as a modification for a landfill cover design to prevent infiltration from atmospheric precipitation and for potential application of dry barriers to achieve subsurface containment and removal of volatile constituents. These analyses considered the technical as well as the economic aspects of the dry barrier concept

  8. Schottky barrier enhancement on n-InP solar cell applications

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1994-01-01

    It is demonstrated that the Schottky barrier height on n-type InP can be enhanced to values close to the energy bandgap (1.35 eV) by employing a AuZnCr metallization. The process is simple and requires only mild and fast annealing sequences with temperatures not exceeding 500°C. Also, no critical...... epitaxial growth step of junctions is needed, making the process fairly cheap. Thus, prospects for an efficient and simple solar cell device structure for space application purposes based on highly radiant-resistant InP are greatly improved...

  9. Application of X-ray scanning and tomography to evaluate the filtercake removal efficiency

    International Nuclear Information System (INIS)

    Lopes, R.T.; Oliveira, L.F. de; Miranda, C.R.; Leite, J.C.

    2004-01-01

    The removal of the filtercake formed during the drilling operation is essential for a successful cementing job. Nowadays, the use of synthetic base fluids brings the necessity of proceeding new evaluations of the efficiency of the washes in removing the filtercake and to guarantee the wettability inversion of the formation from oil to waterwet. It is presented here the application of X-ray tomographic scanning to evaluate the filtercake removal efficiency performed by different washes. This technique uses a natural core with a perforation, where a filtercake is formed by circulating a drilling fluid. The wash is circulated through this perforation and the filtercake removal efficiency is measured precisely by computer tomography scanning. This procedure enables the filtercake removal visualization during the wash circulation through the formation and from the data obtained from the X-ray tomography it is possible to select the most appropriate wash for a given drilling fluid, as well as to predict the necessary contact time between the wash and the formation to achieve an appropriate filtercake removal

  10. 24 CFR 570.614 - Architectural Barriers Act and the Americans with Disabilities Act.

    Science.gov (United States)

    2010-04-01

    ... with disabilities. Further, the ADA requires the removal of architectural barriers and communication... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Architectural Barriers Act and the... GRANTS Other Program Requirements § 570.614 Architectural Barriers Act and the Americans with...

  11. Innovative probabilistic risk assessment applications: barrier impairments and fracture toughness. Panel Discussion

    International Nuclear Information System (INIS)

    Osterman, Michael; Root, Steven; Li, F.; Modarres, Mohammad; Reinhart, F. Mark; Bradley, Biff; Calhoun, David J.

    2001-01-01

    Full text of publication follows: New probabilistic risk assessment (PRA) applications promise to improve the overall safety and efficiency of nuclear plant operations. This discussion will explore the use of PRA in evaluating barrier integrity with respect to the consequences of natural phenomena such as tornadoes, floods, and harsh environments. Additionally, the session will explore proposals to improve fracture toughness techniques using PRA. (authors)

  12. Experimental and computational study of dielectric barrier discharges for environmental applications

    Science.gov (United States)

    Aerts, Robby

    Air pollution has become a major global concern which affects all inhabitants of our precious earth. Nowadays it is fact that our climate is changing and the sea level is rising. Moreover, we are facing an energy crisis because all our fossil fuel resources will sooner or later be running empty. It is clear that drastic measures are needed to keep our planet as it is today for generations to come. One of these measures is the 20-20-20 targets imposed by the European Commission, which stimulates the research for environmental energy applications. In this PhD dissertation two environmental applications of plasma technology are investigated. The first one is the abatement of flue gases, and more specifically the destruction of volatile organic compounds (VOCs). The second one is the conversion of CO2 into valuable chemicals. Both of these applications suffer from a large energy cost under classical (thermodynamic) conditions, due to the chemical stability of these molecules. Plasma technology is quite promising to overcome these thermodynamic barriers. Plasmas allow reactions at different time-scales with different species, such as electrons, ions, radicals, molecules and excited species, creating new chemical pathways. Indeed, in a plasma the applied electrical energy is directly transferred to the electrons, which activate the gas by ionization, excitation and dissociation, hence creating reactive species (ions, excited species, radicals), that can further easily undergo other chemical reactions. Especially gas discharges, which are low temperature plasmas, show promising results in the destruction of pollutants at mild conditions. A common type of gas discharge is the dielectric barrier discharge (DBD) which has been successfully scaled up for industrial ozone generation and is widely investigated in the field of environmental applications. The complexity of DBDs creates difficulties for experimental diagnostics and therefore numerical studies can help to improve

  13. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  14. Application of kinetic models to the design of a calcite permeable reactive barrier (PRB) for fluoride remediation.

    Science.gov (United States)

    Cai, Qianqian; Turner, Brett D; Sheng, Daichao; Sloan, Scott

    2018-03-01

    The kinetics of fluoride sorption by calcite in the presence of metal ions (Co, Mn, Cd and Ba) have been investigated and modelled using the intra-particle diffusion (IPD), pseudo-second order (PSO), and the Hill 4 and Hill 5 kinetic models. Model comparison using the Akaike Information Criterion (AIC), the Schwarz Bayseian Information Criterion (BIC) and the Bayes Factor allows direct comparison of model results irrespective of the number of model parameters. Information Criterion results indicate "very strong" evidence that the Hill 5 model was the best fitting model for all observed data due to its ability to fit sigmoidal data, with confidence contour analysis showing the model parameters were well constrained by the data. Kinetic results were used to determine the thickness of a calcite permeable reactive barrier required to achieve up to 99.9% fluoride removal at a groundwater flow of 0.1 m.day -1 . Fluoride removal half-life (t 0.5 ) values were found to increase in the order Ba ≈ stonedust (a 99% pure natural calcite) barrier width of 0.97 ± 0.02 m was found to be required for the fluoride/calcite (stonedust) only system when using no factor of safety, whilst in the presence of Mn and Co, the width increased to 2.76 ± 0.28 and 19.83 ± 0.37 m respectively. In comparison, the PSO model predicted a required barrier thickness of ∼46.0, 62.6 & 50.3 m respectively for the fluoride/calcite, Mn and Co systems under the same conditions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Health beliefs of blue collar workers. Increasing self efficacy and removing barriers.

    Science.gov (United States)

    Wilson, S; Sisk, R J; Baldwin, K A

    1997-05-01

    The study compared the health beliefs of participants and non-participants in a blood pressure and cholesterol screening held at the worksite. A cross sectional, ex-post facto design was used. Questionnaires measuring health beliefs related to cardiac screening and prevention of cardiac problems were distributed to a convenience sample of 200 blue-collar workers in a large manufacturing plant in the Midwest. One hundred fifty-one (75.5%) completed questionnaires were returned, of which 45 had participated in cardiac worksite screening in the past month. A multivariate analysis of variance was used to analyze data. Participants perceived significantly fewer barriers to cardiac screening and scored significantly higher on self efficacy than non-participants. These findings concur with other studies identifying barriers and self efficacy as important predictors of health behavior. Occupational health nurses' efforts are warranted to reduce barriers and improve self efficacy by advertising screenings, scheduling them at convenient times and locations, assuring privacy, and keeping time inconvenience to a minimum.

  16. Applicability of MIEX(®)DOC process for organics removal from NOM laden water.

    Science.gov (United States)

    Karpinska, Anna M; Boaventura, Rui A R; Vilar, Vítor J P; Bilyk, Andrzej; Molczan, Marek

    2013-06-01

    The aim of this study was to evaluate applicability of ion exchange process for organics removal from Douro River surface water at the intake of Lever water treatment plant using magnetized ion exchange resin MIEX®. Qualitative analysis of the natural organic matter present in the surface water and prediction of its amenability to removal in conventional coagulation process were assessed. Results obtained in MIEX®DOC process kinetic batch experiments allowed determination of ion exchange efficiency in dissolved organic carbon (DOC), UV absorbing organics, and true color removal. The data were compared with the efficiencies of the conventional unit processes for organics removal at Lever WTP. MIEX®DOC process revealed to be more efficient in DOC removal than conventional treatment achieving the efficiencies in the range of 61-91 %, lowering disinfection by-products formation potential of the water. DOC removal efficiency at Lever WTP depends largely on the raw water quality and ranges from 28 % for water of moderated quality to 89 % of significantly deteriorated quality. In this work, MIEX®DOC process was also used as a reference method for the determination of contribution of anionic fraction to dissolved organic matter and selectivity of the unit processes at Lever WTP for its removal.

  17. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  18. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available Application of zero-valent iron nanoparticles (nZVI for Zn²⁺ removal and its mechanism were discussed. It demonstrated that the uptake of Zn²⁺ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn²⁺ could be removed within 2 h. The pH value and dissolved oxygen (DO were the important factors of Zn²⁺ removal by nZVI. The DO enhanced the removal efficiency of Zn²⁺. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxyhydroxide, which could show high adsorption affinity. The removal efficiency of Zn²⁺ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn²⁺ by nZVI because the existing H⁺ inhibited the formation of iron (oxyhydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn²⁺ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn²⁺ were higher than Cd²⁺. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn²⁺.

  19. Regulatory analysis for the use of underground barriers at the Hanford Site tank farms

    International Nuclear Information System (INIS)

    Hampsten, K.L.

    1994-01-01

    Sixty-seven of the single-shell tanks at the Hanford Site, Richland, Washington, are assumed to have leaked in the past. Some of the waste retrieval options being considered, such as past-practice sluicing (a process that uses hot water to dislodge waste for subsequent removal by pumping), have the potential for increasing releases of dangerous waste from these tanks. Underground barrier systems are being evaluated as a method to mitigate releases of tank waste to the soil and groundwater that may occur during retrieval activities. The following underground barrier system options are among those being evaluated to determine whether their construction at the Single-Shell Tank Farms is viable. (1) A desiccant barrier would be created by circulating air through the subsurface soil to lower and then maintain the water saturation below the levels required for liquids to flow. (2) An injected materials barrier would be created by injecting materials such as grout or silica into the subsurface soils to form a barrier around and under a given tank or tank farm. (3) A cryogenic barrier would be created by freezing subsurface soils in the vicinity of a tank or tank farm. An analysis is provided of the major regulatory requirements that may impact full scale construction and operation of an underground barrier system and a discussion of factors that should be considered throughout the barrier selection process, irrespective of the type of underground barrier system being considered. However, specific barrier systems will be identified when a given regulation will have significant impact on a particular type of barrier technology. Appendix A provides a matrix of requirements applicable to construction and operation of an underground barrier system

  20. Application of two-stage biofilter system for the removal of odorous compounds.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee; Lee, Gwang-Yeon; Cha, Jin-Myeong

    2006-01-01

    Biofiltration is a biological process which is considered to be one of the more successful examples of biotechnological applications to environmental engineering, and is most commonly used in the removal of odoriferous compounds. In this study, we have attempted to assess the efficiency with which both single and complex odoriferous compounds could be removed, using one- or two-stage biofiltration systems. The tested single odor gases, limonene, alpha-pinene, and iso-butyl alcohol, were separately evaluated in the biofilters. Both limonene and alpha-pinene were removed by 90% or more EC (elimination capacity), 364 g/m3/h and 321 g/m3/h, respectively, at an input concentration of 50 ppm and a retention time of 30 s. The iso-butyl alcohol was maintained with an effective removal yield of more than 90% (EC 375 g/m3/h) at an input concentration of 100 ppm. The complex gas removal scheme was applied with a 200 ppm inlet concentration of ethanol, 70 ppm of acetaldehyde, and 70 ppm of toluene with residence time of 45 s in a one- or two-stage biofiltration system. The removal yield of toluene was determined to be lower than that of the other gases in the one-stage biofilter. Otherwise, the complex gases were sufficiently eliminated by the two-stage biofiltration system.

  1. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  2. Application of polycrystalline diffusion barriers

    International Nuclear Information System (INIS)

    Tsymbal, V.A.; Kolupaev, I.N.

    2010-01-01

    Degradation of contacts of the electronic equipment at the raised temperatures is connected with active diffusion redistribution of components contact - metalized systems (CMS) and phase production on interphase borders. One of systems diffusion barriers (DB) are polycrystalline silicide a film, in particular silicides of the titan. Reception disilicide the titan (TiSi 2 ) which on the parameters is demanded for conditions of microelectronics from known silicides of system Ti-Si, is possible as a result of direct reaction of a film of the titan and a substrate of silicon, and at sedimentation of layer Ti-Si demanded stoichiometric structure. Simultaneously there is specific problem polycrystalline diffusion a barrier (PDB): the polycrystalline provides structural balance and metastability film disilicide, but leaves in it borders of grains - easy local ways of diffusion. In clause the analysis diffusion permeability polycrystalline and polyphase DB is made and recommendations for practical methods of increase of blocking properties PDB are made.

  3. Growth of quaternary InAlGaN barrier with ultrathin thickness for HEMT application

    Science.gov (United States)

    Li, Zhonghui; Li, Chuanhao; Peng, Daqing; Zhang, Dongguo; Dong, Xun; Pan, Lei; Luo, Weike; Li, Liang; Yang, Qiankun

    2018-06-01

    Quaternary InAlGaN barriers with thickness of 7 nm for HEMT application were grown on 3-inch semi-insulating 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD). Focused on growth mechanism of the InAlGaN barrier, the surface morphology and characteristics of InAlGaN/AlN/GaN heterostructures were studied with different growth parameters, including the temperature, Al/Ga ratio and chamber pressure. Among the as-grown samples, high electron mobility is consistent with smooth surface morphology, while high crystalline quality of the quaternary barrier is confirmed by measurements of Photoluminescence (PL) and Mercury-probe Capacity-Voltage (C-V). The recommended heterostructures without SiN passivation is characterized by mobility of 1720 cm2/(V·s), 2DEG density of 1.71*1013 cm-2, sheet resistance of about 210 Ω/□ with a smooth surface morphology and moderate tensile state, specially applied for microwave devices.

  4. Barriers to investment in emerging power markets

    Energy Technology Data Exchange (ETDEWEB)

    Beardsworth, Jr, J J [Hunton and Williams, Richmond, VA (United States)

    1994-12-31

    Investing in private power projects in developing countries is a very different issue from investment in the US or the UK. There are many investment barriers not present in developed nations. Firstly investment barriers need to be identified. Trouble may be encountered with legal authorization; the regulatory framework; government guarantees; fuel supply security; lender protection; labour laws and local commercial restrictions such as profits repatriation, currency convertibility, and taxes. Political barriers may also be encountered in the form of: government commitments and support; funding sources; political unrest; religion; and relationships with other countries. Investment barriers may be minimised by persuading the government to remove any legal barriers; the contract has then to be agreed. Factors in a successful contract include: power purchase agreements; fuel agreements; and implementation agreements. It is vital to have a source of information on local rules and customs, by working with local companies and employing local attorneys.

  5. Development of high performance Schottky barrier diode and its application to plasma diagnostics

    International Nuclear Information System (INIS)

    Fujita, Junji; Kawahata, Kazuo; Okajima, Shigeki

    1993-10-01

    At the conclusion of the Supporting Collaboration Research on 'Development of High Performance Detectors in the Far Infrared Range' carried out from FY1990 to FY1992, the results of developing Schottky barrier diode and its application to plasma diagnostics are summarized. Some remarks as well as technical know-how for the correct use of diodes are also described. (author)

  6. Development of tensiometric barriers for containment and remediation at waste sites

    International Nuclear Information System (INIS)

    Thomson, B.M.; Stormont, J.C.; Morris, C.E.

    1996-01-01

    This report describes a concept in which dry air is injected into an unsaturated formation to reduce the soil moisture content, referred to here as a tensiometric (or sometimes dry) barrier. The objective is to reduce the hydraulic conductivity of the unsaturated media to the point where liquid phase transport becomes negligible, thereby achieving containment. The concept could be applied in subsurface formations to provide containment from a leaking facility, or it could be incorporated into a cover design to provide redundancy for a capillary barrier. The air injection process could in principle be coupled with a vacuum extraction system to recover soil vapors, which would then provide a remediation process that would be appropriate if volatile organic compounds were present. Work to date has consisted of a combined theoretical, laboratory, and field research investigation. The objective of this research was to demonstrate the technical feasibility of the tensiometric barrier concept by identifying the parameters which determine its effectiveness. Based on the results obtained for the experimental and theoretical studies, feasibility analyses were prepared as a modification for a landfill cover design to prevent infiltration from atmospheric precipitation and for potential application of tensiometric barriers to achieve subsurface containment of mobile pollutants and removal of volatile constituents. These analyses considered the technical as well as the economic aspects of the tensiometric barrier concept, and found that a properly designed and operated tensiometric barrier is competitive with conventional containment methods. In addition, they benefit from being able to recover from failure by circulating additional dry air through the formation to re-establish the barrier phenomena. (author) 10 figs., 4 tabs., 17 refs

  7. Application of diffusion barriers to high modulus fibers

    Science.gov (United States)

    Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.

    1977-01-01

    Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.

  8. Medical application of laser hair removal

    International Nuclear Information System (INIS)

    Fadlalla, Alwalled Hussein Ataalmannan

    2015-12-01

    The use of laser in medical treatment has become of paramount importance proportional to what has high therapeutic privileges such as speed and accuracy in penetrating tissues and high quality especially when used in hair removal which is the subject of our study, this laser operates cards may cause some change in the color of the skin when used in a manner that is correct ratio of the thermal impact force in the laser hair removal process, or if it is exposed directly to his eye. This study is a comparison between the physical properties of laser of lasers used in hair removal, according to previous studies to be the basis for the benefit of doctors who use lasers for hair removal. The aim of this study was to study the effect of laser hair removal using the Nd: YAG laser with a wavelength 1064 nm as well as the risks airing from the assessment. The aim of this study was to identify the appropriate laser energy that absorbed in the hair follicle with a dark color and the appropriate thermal effect occurs to vaporize the follicle cell, a 40 J/cm"2 is to be significant without side effects for healthy tissue. In this study doses for a few laser beam is considered when compared to previous studies. Laser danger to the patient during the operation increases with increasing laser energy emitted during treatment. Laser hair removal by the user and energy emitted by wavelength of the laser device also depends on the hair color and roughness as well as skin color. (Author)

  9. Application of carbon nanotube technology for removal of contaminants in drinking water: A review

    International Nuclear Information System (INIS)

    Upadhyayula, Venkata K.K.; Deng, Shuguang; Mitchell, Martha C.; Smith, Geoffrey B.

    2009-01-01

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  10. Estimating the Economic Effects of Reducing Non-Tariff Barriers in the EEU

    OpenAIRE

    Vinokurov, Evgeny; Demidenko, Mikhail; Pelipas, Igor; Tochitskaya, Irina; Shymanovich, Gleb; Lipin, Andrey; Movchan, Veronika

    2015-01-01

    The report provides the first comprehensive assessment of the effects of non-tariff barriers on mutual trade in the EEU and gives recommendations as to how to remove them. It is based on a poll of 530 Russian, Kazakh and Belarusian exporters. In the research non-tariff barriers are divided into two groups. The first group includes non-tariff barriers such as sanitary and phytosanitary measures, technical barriers to trade, quotas, prohibitions, and quantitative controls. The second group comp...

  11. Applicability of Zeolite Based Systems for Ammonia Removal and Recovery From Wastewater.

    Science.gov (United States)

    Das, Pallabi; Prasad, Bably; Singh, Krishna Kant Kumar

    2017-09-01

      Ammonia discharged in industrial effluents bears deleterious effects and necessitates remediation. Integrated systems devoted to recovery of ammonia in a useful form and remediation of the same addresses the challenges of waste management and its utilization. A comparative performance evaluation study was undertaken to access the suitability of different zeolite based systems (commercial zeolites and zeolites synthesized from fly ash) for removal of ammonia followed by its subsequent release. Four main parameters which were studied to evaluate the applicability of such systems for large scale usage are cost-effectiveness, ammonia removal efficiency, performance on regeneration, and ammonia release percentage. The results indicated that synthetic zeolites outperformed zeolites synthesized from fly ash, although the later proved to be more efficient in terms of total cost incurred. Process technology development in this direction will be a trade-of between cost and ammonia removal and release efficiencies.

  12. Barriers to evidence-based medicine: a systematic review.

    Science.gov (United States)

    Sadeghi-Bazargani, Homayoun; Tabrizi, Jafar Sadegh; Azami-Aghdash, Saber

    2014-12-01

    Evidence-based medicine (EBM) has emerged as an effective strategy to improve health care quality. The aim of this study was to systematically review and carry out an analysis on the barriers to EBM. Different database searching methods and also manual search were employed in this study using the search words ('evidence-based' or 'evidence-based medicine' or 'evidence-based practice' or 'evidence-based guidelines' or 'research utilization') and (barrier* or challenge or hinder) in the following databases: PubMed, Scopus, Web of Knowledge, Cochrane library, Pro Quest, Magiran, SID. Out of 2592 articles, 106 articles were finally identified for study. Research barriers, lack of resources, lack of time, inadequate skills, and inadequate access, lack of knowledge and financial barriers were found to be the most common barriers to EBM. Examples of these barriers were found in primary care, hospital/specialist care, rehabilitation care, medical education, management and decision making. The most common barriers to research utilization were research barriers, cooperation barriers and changing barriers. Lack of resources was the most common barrier to implementation of guidelines. The result of this study shows that there are many barriers to the implementation and use of EBM. Identifying barriers is just the first step to removing barriers to the use of EBM. Extra resources will be needed if these barriers are to be tackled. © 2014 John Wiley & Sons, Ltd.

  13. Fission barrier theory and its application to the calculation of actinide neutron cross-sections

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1980-01-01

    The lectures discuss the possibilities and realisations of applying nuclear fission theory to the calculation of unknown nuclear data required for applications, principally in the nuclear power field. A brief description of the fundamentals of fission theory, the nature of the potential energy surface in the deformation plane, and of the inertial tensor, is given, and the accuracy of the theoretical calculations is discussed. It is concluded that it is impracticable to obtain required quantities such as neutron cross-sections from such fundamental calculations at present. On the other hand the fundamental theory reveals a wealth of phenomenological aspects of the fission process which can be incorporated into nuclear reaction theory. It is then shown how reaction theory thus extended to take correct account of the structured (''double-humped'') fission barrier can be used to parametrise the barrier by analysis of experimental data, and subsequently to calculate new data. Descriptions of computer programmes and illustrations of the application of the methods to actual physical examples are included in this account. (author)

  14. Regulatory issues and assumptions associated with polymers for subsurface barriers surrounding buried waste

    International Nuclear Information System (INIS)

    Heiser, J.; Siskind, B.

    1993-01-01

    One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier that consists of a wall of low permeability material. Subsurface barriers will improve remediation performance by removing pathways for contaminant transport due to groundwater movement, meteorological water infiltration, vapor- and gas-phase transport, transpiration, etc. Subsurface barriers may be used to open-quotes directclose quotes contaminant movement to collection sumps/lysimeters in cases of unexpected remediation failures or transport mechanisms, to contain leakage from underground storage tanks, and to restrict in-situ soil cleanup operation and chemicals. Brookhaven National Laboratory is currently investigating advanced polymer materials for subsurface barriers. This report addresses the regulatory aspects of using of non-traditional polymer materials as well as soil-bentonite or cement-bentonite mixtures for such barriers. The regulatory issues fall into two categories. The first category consists of issues associated with the acceptability of subsurface barriers to the Environmental Protection Agency (EPA) as a method for achieving waste site performance improvement. The second category encompasses those regulatory issues concerning health, safety and the environment which must be addressed regarding barrier installation and performance, especially if non-traditional materials are to be used. Since many of EPA's concerns regarding subsurface barriers focus on the chemicals used during installation of these barriers the authors discuss the results of a search of the Federal Register and the Code of Federal Regulations for references in Titles 29 and 40 pertaining to key chemicals likely to be utilized in installing non-traditional barrier materials. The use of polymeric materials in the construction industry has been accomplished with full compliance with the applicable health, safety, and environmental regulations

  15. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Science.gov (United States)

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  16. Practical Application of Sheet Lead for Sound Barriers.

    Science.gov (United States)

    Lead Industries Association, New York, NY.

    Techniques for improving sound barriers through the use of lead sheeting are described. To achieve an ideal sound barrier a material should consist of the following properties--(1) high density, (2) freedom from stiffness, (3) good damping capacity, and (4) integrity as a non-permeable membrane. Lead combines these desired properties to a greater…

  17. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    Science.gov (United States)

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  19. Implementation status and barriers of good manufacturing practice ...

    African Journals Online (AJOL)

    Removal of implementation barriers could be considered, including strengthening personnel competence, improving the quality management system and enhancing the international communication with advanced GMP regulators. Keywords: good manufacturing practice, GMP, Chinese patent medicine, traditional Chinese ...

  20. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    Science.gov (United States)

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  1. 77 FR 76861 - Removal of Job Training Partnership Act Implementing Regulations

    Science.gov (United States)

    2012-12-31

    ..., 633, 634, 636, 637, and 638 RIN 1205-AB68 Removal of Job Training Partnership Act Implementing...=FR . SUPPLEMENTARY INFORMATION: I. Direct Final Rule Procedure Since removal of the Job Training... barriers to employment for participation in the labor force by providing job training and other services...

  2. Cross-cultural barriers to health care.

    Science.gov (United States)

    Vidaeff, Alex C; Kerrigan, Anthony J; Monga, Manju

    2015-01-01

    Culturally sensitive health care represents a real ethical and practical need in a Western healthcare system increasingly serving a multiethnic society. This review focuses on cross-cultural barriers to health care and incongruent aspects from a cultural perspective in the provision of health care. To overcome difficulties in culturally dissimilar interactions and eventually remove cross-cultural barriers to health care, a culturally sensitive physician considers his or her own identity, values, and beliefs; recognizes the similarities and differences among cultures; understands what those similarities and differences mean; and is able to bridge the differences to accomplish clear and effective communication.

  3. Implementation of renewable energy technology - Opportunities and barriers. Summary of country studies

    Energy Technology Data Exchange (ETDEWEB)

    Painuly, J.P.; Fenhann, J.V.

    2002-07-01

    The project was launched to identify barriers to the implementation of renewable energy technologies (RETs) and explore measures to overcome the identified barriers. National institutions in Egypt, Ghana and Zimbabwe carried out the country studies based on the basic methodological framework provided by the UNEP Centre. The objectives of the project included strengthening institutional capacity for analysis and implementation of RET projects in the participating countries and bring out experiences on RETs barriers and removal measures for dissemination so that others can benefit from the knowledge so gained. An important highlight of the studies was involvement of stake holders in the process of identification of barriers and measures to remove them. A preliminary identification of relevant RETs for their countries was done by the country teams in the initial stage of the project. After that, national workshops involving various stake holders were held between July and September 1999 to discuss the RETs and barriers to their implementation. Based on the discussions, a few important RETs were identified for more detailed study. PV systems for rural electrification, solar water heating systems and large-scale biogas system were identified and analysed for barriers in the Egypt country study. Economic, information and policy barriers were identified as major barriers for these technologies. Solar water pumps, biogas and small hydro were the focus of study in Ghana. In this case also, economic, information and policy barriers were found to be the important barriers for the selected technologies. In the case of Zimbabwe, focus was on identification of primary and secondary barriers to RETs dissemination. The primary barriers included lack of capacity to develop proposals, lack of information for policy making and framework for information dissemination. The study concluded that the secondary barriers as seen and experienced by the stake holders are due to primary

  4. Effect of saline iontophoresis on skin barrier function and cutaneous irritation in four ethnic groups.

    Science.gov (United States)

    Singh, J; Gross, M; Sage, B; Davis, H T; Maibach, H I

    2000-08-01

    The effect of saline iontophoresis on skin barrier function and irritation was investigated in four ethnic groups (Caucasians, Hispanics, Blacks and Asians). Forty healthy human volunteers were recruited according to specific entry criteria. Ten subjects, five males and five females, were assigned to each ethnic group. Skin barrier function was examined after 4 hours of saline iontophoresis at a current density of 0.2 mA/cm(2) on a 6.5 cm(2) area in terms of the measured responses: transepidermal water loss (TEWL), skin capacitance, skin temperature and visual scores. There were significant differences in TEWL among the ethnic groups prior to patch application. TEWL at baseline in ethnic groups was in the rank order: Caucasian>Asian>Hispanic>Black. Iontophoresis was generally well tolerated, and skin barrier function was not irreversibly affected by iontophoresis in any group. There was no significant skin temperature change, compared to baseline, in any ethnic groups at any observation point. Edema was not observed. At patch removal, the erythema score was elevated in comparison to baseline in all ethnic groups; erythema resolved within 24 hours. Thus, saline iontophoresis produced reversible changes in skin barrier function and irritation in healthy human subjects.

  5. Framework for assessment of organic Micropollutant removals during managed Aquifer recharge and recovery

    KAUST Repository

    Maeng, Sungkyu

    2010-11-04

    Managed aquifer recharge and recovery (MAR) is a reliable and proven process, in which water quality can be improved by different physical, biological, and chemical reactions during soil passage. MAR can potentially be included in a multi-barrier treatment system for organic micropollutant (OMP) removal in drinking water treatment and wastewater reuse schemes. However, there is a need to develop assessment tools to help implement MAR as an effective barrier in attenuating different OMPs including pharmaceuticals and endocrine disruptors. In this study, guidelines were developed for different classes of organic micropollutants, in which removal efficiencies of these compounds are determined as a function of travel times and distances. Moreover, a quantitative structure activity relationship (QSAR) based model was proposed to predict the removals of organic micropollutants by MAR. The QSAR approach is especially useful for compounds with little information about their fate during soil passage. Such an assessment framework for organic micropollutant removal is useful for adapting MAR as a multi-objective (-contaminant) barrier and understanding different classes of compounds during soil passage and the determination of post treatment requirements for MAR. © Springer Science+Business Media B.V. 2011.

  6. Removal of geosmin and 2-methylisoborneol during managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu; Abel, Chol D T; Sharma, Saroj K.; Park, Nosuk; Amy, Gary L.

    2012-01-01

    Managed aquifer recharge is a robust barrier in the multi-barrier approach to supply safe drinking water. The removal performance of gesomin and 2-methylisoborneol through managed aquifer recharge was investigated using batch and column experiments

  7. Contaminant fluxes through site containment barriers: Performance assessment and illustrative results

    International Nuclear Information System (INIS)

    Vita, C.L.

    1994-01-01

    Contaminant mass flux by advective and diffusive transport is predicted for five containment barriers that use one or more clay liners, flexible membrane liners (FMLs), or liquid collection and removal systems (LCRS)s. Barriers are engineered systems intended to contain and isolate site contaminants from the environment. Barriers include liners, caps, and cutoff walls. Barriers may be used in contaminated-site cleanups (including CERCLA and RCRA), RCRA landfills, or other RCRA TSDFs. Concepts are provided for barrier performance assessment, including analysis and optimization, for meeting performance requirements and controlling risk at minimum cost. Concepts and results can help in planning, designing, or evaluating and communicating, the use or effectiveness of proposed or existing barriers for site cleanups or waste containment. 15 refs., 6 figs., 5 tabs

  8. Behavior of nine selected emerging trace organic contaminants in an artificial recharge system supplemented with a reactive barrier.

    Science.gov (United States)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Barbieri, Manuela; Nödler, Karsten; Licha, Tobias; Huerta, Maria

    2014-10-01

    Artificial recharge improves several water quality parameters, but has only minor effects on recalcitrant pollutants. To improve the removal of these pollutants, we added a reactive barrier at the bottom of an infiltration basin. This barrier contained aquifer sand, vegetable compost, and clay and was covered with iron oxide dust. The goal of the compost was to sorb neutral compounds and release dissolved organic carbon. The release of dissolved organic carbon should generate a broad range of redox conditions to promote the transformation of emerging trace organic contaminants (EOCs). Iron oxides and clay increase the range of sorption site types. In the present study, we examined the effectiveness of this barrier by analyzing the fate of nine EOCs. Water quality was monitored before and after constructing the reactive barrier. Installation of the reactive barrier led to nitrate-, iron-, and manganese-reducing conditions in the unsaturated zone below the basin and within the first few meters of the saturated zone. Thus, the behavior of most EOCs changed after installing the reactive barrier. The reactive barrier enhanced the removal of some EOCs, either markedly (sulfamethoxazole, caffeine, benzoylecgonine) or slightly (trimethoprim) and decreased the removal rates of compounds that are easily degradable under aerobic conditions (ibuprofen, paracetamol). The barrier had no remarkable effect on 1H-benzotriazole and tolyltriazole.

  9. Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations

    Science.gov (United States)

    Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M.

    2018-04-01

    A non-thermal plasma source based on a surface dielectric barrier discharge (DBD) is developed for purification of recirculating air in operating theatres in hospitals. This is a challenging application due to high flow rates, short treatment times and the low threshold for ozone in the ventilated air. Therefore, the surface DBD was enhanced in order to generate an ionic wind, which can deflect and thus, filter out airborne microorganisms. Electrical and gas diagnostics as well as microbiological experiments were performed in a downscaled plasma source under variation of various electrical parameters, but application-oriented airflow velocity and humidity. The dependence of electrical power and ozone concentration as well as charged particles in the plasma treated air on frequency, voltage and relative humidity is presented and discussed. The presence of humidity causes a more conductive dielectric surface and thus a weaker plasma formation, especially at low frequency. The airborne test bacteria, Escherichia coli, showed significant effect to plasma treatment (up to 20% reduction) and to plasma with ionic wind (up to 90% removal); especially a configuration with 70% removal and an accompanying ozone concentration of only 360 ppb is promising for future application.

  10. Application of titanium dioxide in arsenic removal from water: A review.

    Science.gov (United States)

    Guan, Xiaohong; Du, Juanshan; Meng, Xiaoguang; Sun, Yuankui; Sun, Bo; Hu, Qinghai

    2012-05-15

    Natural arsenic pollution is a global phenomenon and various technologies have been developed to remove arsenic from drinking water. The application of TiO(2) and TiO(2)-based materials in removing inorganic and organic arsenic was summarized. TiO(2)-based arsenic removal methods developed to date have been focused on the photocatalytic oxidation (PCO) of arsenite/organic arsenic to arsenate and adsorption of inorganic and organic arsenic. Many efforts have been taken to improve the performance of TiO(2) by either combing TiO(2) with adsorbents with good adsorption property in one system or developing bifunctional adsorbents with both great photocatalytic ability and high adsorption capacity. Attempts have also been made to immobilize fine TiO(2) particles on supporting materials like chitosan beads or granulate it to facilitate its separation from water. Among the anions commonly exist in groundwater, humic acid and bicarbonate have significant influence on TiO(2) photocatalyzed oxidation of As(III)/organic arsenic while phosphate, silicate, fluoride, and humic acid affect arsenic adsorption by TiO(2)-based materials. There has been a controversy over the TiO(2) PCO mechanisms of arsenite for the past 10 years but the adsorption mechanisms of inorganic and organic arsenic onto TiO(2)-based materials are relatively well established. Future needs in TiO(2)-based arsenic removal technology are proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Collective phenomena in volume and surface barrier discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  12. Removal of a synthetic organic chemical by PAC-UF systems. II: Model application.

    Science.gov (United States)

    Matsui, Y; Colas, F; Yuasa, A

    2001-02-01

    This paper describes several application potentials with a recently developed model for predicting the synthetic organic chemical (SOC) removal by powdered activated carbon (PAC) adsorption during ultrafiltration (UF) and discusses the removal mechanism. The model was successfully applied, without any modification, to dead-end mode operation as well as to cross-flow mode operation, validating the assumption of the internal diffusion control mechanism and the continuously-stirred-tank-reactor (CSTR) concept. Even when UF was operated in a cross-flow mode, PAC added was re-circulating in suspension for only a short time. Then, solute uptake took place mostly by PAC immobilized in membrane tubes not only for dead-end operation but also for cross-flow operation. Therefore, cross-flow operation did not have any advantage regarding the SOC mass transfer on PAC in UF loop over dead-end operation. The model simulation implied that pulse PAC addition at the beginning of filtration cycle resulted better SOC removal than continuous PAC addition. However, for the pulse PAC addition mode, the model predicted somewhat lower effluent SOC concentration than the observed values, and the benefit of pulse PAC application in terms of reducing SOC over its continuous dosage was not confirmed. Longer detention time of PAC dosed in a pulse than continuously dosed PAC could possibly further decrease internal diffusivity.

  13. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    Science.gov (United States)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  14. Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications

    Science.gov (United States)

    Smathers, D. B.; Aimone, P. R.

    2017-12-01

    Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.

  15. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    International Nuclear Information System (INIS)

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-01-01

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma

  16. Mixed Matrix Composite Membranes Containing POSS Molecules for Carbon Dioxide Removal Application

    KAUST Repository

    Rini, Eki Listya

    2011-05-10

    CO2 removal by membrane processes is considerably potential for several applications such as natural gas and synthesis gas purification, enhanced oil recovery application, and carbon dioxide capture in combat against global warming. Dense polymeric membranes are commonly utilized for these type of gas separation applications. Nevertheless, the intrinsic properties of dense polymeric membranes, which commonly characterize by the low gas permeability versus high gas selectivity trade–off or vice versa, is less desirable. In order to meet the increased demand of CO2 removal, a strategy to improve the gas separation performance of a polymeric membrane is investigated in this study. With this regard, mixed matrix membranes in which inorganic non porous fillers are incorporated into a polymeric matrix were prepared to achieve the aforementioned objective. The mixed matrix membranes were prepared from Pebax® block copolymers and PEG POSS® molecules. These hybrid membranes were formed as both dense and multilayer composite membranes. The dense transparent membranes with well–dispersed fillers could be obtained by variation of the solvent mixture. The DSC analyses showed that incorporation of PEG POSS® into Pebax® matrix altered the thermal properties of the matrix. The multilayer composite membranes were then prepared from a PTMSP gutter layer deposited on a PAN porous support and an adjacent hybrid Pebax®/PEG POSS® as the top layer. These hybrid multilayer composite membranes exhibited an enhanced CO2 selectiv4 ity by a factor of two relative to the pure Pebax®. In these hybrid systems, the CO2 separation was presumably enhanced by the high ether oxides content from PEG POSS® that has high affinities for CO2. For particular composition of Pebax® and PEG POSS® concentrations, the PTMSP gutter layer harnessed the CO2 selectivity without losing the CO2 permeation rate. At the same time, these membrane, however, suffered severe adhesion between the gutter layer

  17. Dielectric barrier discharge processing of aerospace materials

    International Nuclear Information System (INIS)

    Scott, S J; Figgures, C C; Dixon, D G

    2004-01-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin

  18. The Most Common Smartphone Applications Used By Medical Students and Barriers of Using Them.

    Science.gov (United States)

    Jebraeily, Mohamad; Fazlollahi, Zahra Zare; Rahimi, Bahlol

    2017-12-01

    Medical knowledge is rapidly expanding and updating. It is very important that students can timely access to information and the latest scientific evidence without any time and place limitation. The smartphone is one of ICT tools that adopted greatly by healthcare professionals. Today, the most medical sciences universities have provided smartphone as an educational aid tool and acquisition licenses for medical apps resources in training of their students. This research was conducted to determine common smartphone applications among medical students of Urmia University of medical sciences and to identify barriers in using them. This research was a descriptive type of study carried out in 2016. Population of the study included 530 medical students completing the clinical course in Urmia University of Medical Sciences. Data were collected using researcher-developed questionnaire. The validity of it determined based on the view of experts and the reliability of it obtained by calculating the value of Cronbach's alpha (α = 0.82). 82.3% of the students had smartphone, which in terms of operating system the highest was related Andriod (53%) and iPhone (32%). The most common applications used often by medical students included Up to date, PubSearch, Calculate by QxMD, Epocrates and OMnio. Lack of accreditation of medical apps by valid health institutions (4.63), lack of support and update of applications by their developers (4.44), lack of adequate skill to use applications (4.25) are the most important barriers in using these applications among students. To assurance quality of medical apps, it seems very important that academic and healthcare organizations should be involved to develop and update the apps and also provided guidelines for accreditation of apps. It is recommended that for promotion of knowledge and skill of students provide essential educations.

  19. Physics and applications of micro-plasmas in dielectric barrier and hollow cathode configurations

    International Nuclear Information System (INIS)

    Boeuf, J. P.; Pitchford, L. C.

    2005-01-01

    Non-equilibrium or non-thermal plasmas operate at low gas temperatures and this property make these plasmas very attractive in a number of applications, from etching and deposition in the microelectronics industry to plasma displays and pollution control. However, although it is quite easy to generate a large volume non-equilibrium plasma at pressure on the order or below 100 Pa, this is more of a challenge around atmospheric pressure. Large area plasma sources operating at atmospheric pressure represent a very cost-effective solution for material processing, light sources and other applications, and a large research effort has been devoted to the development of such sources in the last ten years. Dielectric Barrier Discharges (DBDs), where one or both electrodes are covered with a dielectric layer are good candidates for atmospheric non-equilibrium plasma generation because of their ability to limit the current and power deposition. It is also much easier to control an atmospheric discharge in a small volume. Therefore an atmospheric plasma source often consists of a number of micro-discharges arranged in a way that depends on the application. Even in DBDs with large electrode areas, the plasma is generally not uniform and consists in a large number of micro-discharges or filaments. In this lecture we present a discussion of the physical properties of non-equilibrium plasmas generated in different configurations and operating at atmospheric pressure. This discussion is based on results from numerical models and simulations of Dielectric Barrier Discharges to Micro-Hollow Cathode Discharges. We then focus on specific applications such as surface DBDs for flow control. These discharges (which have some similarities with the surface micro-discharges used in Plasma Display Panels) are being studied for their ability to modify the properties of the boundary layer along airfoils and hence to control the transition between laminar and turbulent regimes. We will show how

  20. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Markers for blood-brain barrier integrity

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain......, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well...... known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction...

  2. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  3. Groundwater protection from cadmium contamination by permeable reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Di Natale, F. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy)], E-mail: fdinatal@unina.it; Di Natale, M.; Greco, R. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy); Lancia, A. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy); Laudante, C.; Musmarra, D. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy)

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  4. Barriers to student success in engineering education

    Science.gov (United States)

    Boles, Wageeh; Whelan, Karen

    2017-07-01

    In the UK, the USA and Australia, there have been calls for an increase in the number of engineering graduates to meet the needs of current global challenges. Universities around the world have been grappling with how to both attract more engineering students and to then retain them. Attrition from engineering programmes is disturbingly high. This paper reports on an element of research undertaken through an Australian Learning and Teaching Council-funded Fellowship that investigated the factors leading to student attrition in engineering programmes, by identifying barriers to student success. Here, we contrast a review of the literature related to student barriers and success with student perceptions, gathered through a series of focus groups and interviews at three Australian universities. We also present recommendations for action to try to remove barriers to student success.

  5. High-efficiency plasma catalytic removal of dilute benzene from air

    International Nuclear Information System (INIS)

    Fan, Hong-Yu; Shi, Chuan; Li, Xiao-Song; Zhao, De-Zhi; Xu, Yong; Zhu, Ai-Min

    2009-01-01

    Achieving complete oxidation, good humidity tolerance and low energy cost is the key issue that needs to be addressed in plasma catalytic volatile organic compounds removal from air. For this purpose, Ag/HZSM-5 catalyst-packed dielectric barrier discharge using a cycled system composed of a storage stage and a discharge stage was studied. For dilute benzene removal from simulated air, Ag/HZSM-5 catalysts exhibit not only preferential adsorption of benzene in humid air at the storage stage but also almost complete oxidation of adsorbed benzene at the discharge stage. Five 'storage-discharge' cycles were examined, which suggests that Ag/HZSM-5 catalysts are very stable during the cycled 'storage-discharge' (CSD) plasma catalytic process. High oxidation rate of absorbed benzene as well as low energy cost can be achieved at a moderate discharge power. In an example of the CSD plasma catalytic remedy of simulated air containing 4.7 ppm benzene with 50% RH and 600 ml min -1 flow rate, the energy cost was as low as 3.7 x 10 -3 kWh m -3 air. This extremely low energy cost to remove low-concentration pollutants from air undoubtedly makes the environmental applications of the plasma catalytic technique practical.

  6. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  7. Applications of the models of Archer and TBC in the determination of thickness of barriers for radiological rooms

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Salvador, F.C.; Nersissian, D.Y.; Caldas, L.V.E.

    2005-01-01

    TBC models for simulation of X-ray spectra and Archer for the determination of attenuation properties of materials have been applied according to the methodology set out in the publication NCRP 147 for obtaining radiological rooms protective barriers. The methodology used information from a survey of actual workload distributions of radiological rooms of the city of Sao Paulo, SP, Brazil as well as a similar survey conducted in the United States. The results of the application of the methodology demonstrate the possibility of reduction of barriers necessary for the protection of radiological rooms when compared to the direct application of the NCRP 147. The method developed serves both for estimation of shielding requirements in radiological rooms using up-to-date methodologies, as well as for training of professionals for design of shields

  8. A cross-cultural investigation into the dimensional structure and stability of the Barriers to Research and Utilization Scale (BARRIERS Scale).

    Science.gov (United States)

    Williams, Brett; Brown, Ted; Costello, Shane

    2015-10-24

    It is important that scales exhibit strong measurement properties including those related to the investigation of issues that impact evidence-based practice. The validity of the Barriers to Research Utilization Scale (BARRIERS Scale) has recently been questioned in a systematic review. This study investigated the dimensional structure and stability of the 28 item BARRIERS Scale when completed by three groups of participants from three different cross-cultural environments. Data from the BARRIERS Scale completed by 696 occupational therapists from Australia (n = 137), Taiwan (n = 413), and the United Kingdom (n = 144) were analysed using principal components analysis, followed by Procrustes Transformation. Poorly fitting items were identified by low communalities, cross-loading, and theoretically inconsistent primary loadings, and were systematically removed until good fit was achieved. The cross-cultural stability of the component structure of the BARRIERS Scale was examined. A four component, 19 item version of the BARRIERS Scale emerged that demonstrated an improved dimensional fit and stability across the three participant groups. The resulting four components were consistent with the BARRIERS Scale as originally conceptualised. Findings from the study suggest that the four component, 19 item version of the BARRIERS Scale is a robust and valid measure for identifying barriers to research utilization for occupational therapists in paediatric health care settings across Australia, United Kingdom, and Taiwan. The four component 19 item version of the BARRIERS Scale exhibited good dimensional structure, internal consistency, and stability.

  9. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  10. Application of general methods for the study of porous materials to the determination of the characteristics of barriers; Application des methodes generales d'etudes des corps poreux a la determination des caracteristiques des barrieres

    Energy Technology Data Exchange (ETDEWEB)

    Plurien, P; Charpin, J; Mommejac, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Barriers foreseen for the separation of uranium isotopes by gaseous diffusion must posses pores of about 100 Angstrom radius and as high an output as possible. They should thus be of small but uniform thickness. In view of these conditions it is necessary to adapt the normal methods available for studying porous materials in order to check the characteristics of the prototypes examined. It has been found that only by cross-comparison of data from various methods can progress in the development of different prototypes be followed. The following account consists of two parts: 1) A review of the main experimental methods we have used: a) various absorption methods, b) electron microscopy, c) X-ray studies, d) mercury porosimetry, e) liquid permeability, f) gas permeability, g) measurement of separation efficiency. 2) Comparison of the results obtained using these various methods and their application with a view to acquiring as complete a knowledge as possible of the structure of the barrier. (author) [French] Les barrieres susceptibles d'etre utilisees pour la separation des isotopes de l'uranium, par diffusion gazeuse, doivent presenter des pores de rayon de l'ordre de 100 Angstrom et un debit aussi grand que possible. Elles doivent donc avoir une epaisseur faible et constante. Ces conditions necessitent une adaptation des methodes usuelles d'etude des corps poreux pour controler les caracteristiques des prototypes etudies. Il est apparu que seul le recoupement entre diverses methodes permet de suivre les progres dans la realisation de differents prototypes. L'expose qui va suivre comprend deux parties: 1) Une revue des principales methodes experimentales que nous utilisons: a) differentes methodes d'absorption, b) microscopie electronique, c) rayons X, d) porosimetrie a mercure, e) permeabilite aux liquides, f) permeabilite aux gaz, g) mesure de l'efficacite de separation. 2) Comparaison des differents resultats obtenus par ces diverses methodes et leur application

  11. Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water

    KAUST Repository

    Tang, Samuel C N; Wang, Peng; Yin, Ke; Lo., Irene Man Chi

    2010-01-01

    Many magnetic adsorbents reported in the literature, such as iron oxides, for Cr(VI) removal have been found effective only in low pH environments. Moreover, the application of polymeric hydrogels on heavy metal removal has been hindered by difficulties in separation by filtration. In this study, a magnetic cationic hydrogel was synthesized for Cr(VI) removal from contaminated water, making use of the advantages of magnetic adsorbents and polymeric hydrogels. The magnetic hydrogel was produced by imbedding 10-nm γ-Fe2O 3 nanoparticles into the polymeric matrix via radical polymerization. Characterization of the hydrogel was undertaken with Fourier transform infrared and vibrating sample magnetometer; swelling properties were tested and anionic adsorption capacity was evaluated. The magnetic hydrogel showed a superior Cr(VI) removal capacity compared to commercial products such as MIEX®. Cr(VI) removal was independent of solution pH. Results show that Cr(VI) removal kinetics was improved drastically by grinding the bulk hydrogel into powder form. At relevant concentrations, common water anions (e.g., Cl-, SO4 2-, PO4 3-) and natural organic matter did not exhibit significant inhibition of Cr(VI) adsorption onto the hydrogel. Results of vibrating sample magnetometer indicate that the magnetic hydrogel can be easily separated from treatment systems. Regeneration of the magnetic hydrogel can be easily achieved by washing the Cr(VI)-loaded hydrogel with 0.5 M NaCl solution, with a recovery rate of about 90% of Cr(VI). © Copyright 2010, Mary Ann Liebert, Inc. 2010.

  12. Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water

    KAUST Repository

    Tang, Samuel C N

    2010-11-01

    Many magnetic adsorbents reported in the literature, such as iron oxides, for Cr(VI) removal have been found effective only in low pH environments. Moreover, the application of polymeric hydrogels on heavy metal removal has been hindered by difficulties in separation by filtration. In this study, a magnetic cationic hydrogel was synthesized for Cr(VI) removal from contaminated water, making use of the advantages of magnetic adsorbents and polymeric hydrogels. The magnetic hydrogel was produced by imbedding 10-nm γ-Fe2O 3 nanoparticles into the polymeric matrix via radical polymerization. Characterization of the hydrogel was undertaken with Fourier transform infrared and vibrating sample magnetometer; swelling properties were tested and anionic adsorption capacity was evaluated. The magnetic hydrogel showed a superior Cr(VI) removal capacity compared to commercial products such as MIEX®. Cr(VI) removal was independent of solution pH. Results show that Cr(VI) removal kinetics was improved drastically by grinding the bulk hydrogel into powder form. At relevant concentrations, common water anions (e.g., Cl-, SO4 2-, PO4 3-) and natural organic matter did not exhibit significant inhibition of Cr(VI) adsorption onto the hydrogel. Results of vibrating sample magnetometer indicate that the magnetic hydrogel can be easily separated from treatment systems. Regeneration of the magnetic hydrogel can be easily achieved by washing the Cr(VI)-loaded hydrogel with 0.5 M NaCl solution, with a recovery rate of about 90% of Cr(VI). © Copyright 2010, Mary Ann Liebert, Inc. 2010.

  13. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry

    International Nuclear Information System (INIS)

    Bruggen, Bart van der; Vandecasteele, Carlo

    2003-01-01

    The nanofiltration system has many potential uses in removing chemical and biological contaminants from water. - During the last decade, nanofiltration (NF) made a breakthrough in drinking water production for the removal of pollutants. The combination of new standards for drinking water quality and the steady improvement of the nanofiltration process have led to new insights, possible applications and new projects on lab-scale, pilot scale and industrial scale. This paper offers an overview of the applications in the drinking water industry that have already been realised or that are suggested on the basis of lab-scale research. Applications can be found in the treatment of surface water as well as groundwater. The possibility of using NF for the removal of hardness, natural organic material (NOM), micropollutants such as pesticides and VOCs, viruses and bacteria, salinity, nitrates, and arsenic will be discussed. Some of these applications have proven to be reliable and can be considered as known techniques; other applications are still studied on laboratory scale. Modelling is difficult due to effects of fouling and interaction between different components. The current insight in the separation mechanisms will be briefly discussed

  14. To compare the gingival melanin repigmentation after diode laser application and surgical removal.

    Science.gov (United States)

    Mahajan, Gaurav; Kaur, Harjit; Jain, Sanjeev; Kaur, Navnit; Sehgal, Navneet Kaur; Gautam, Aditi

    2017-01-01

    The aim of the present study is to compare the gingival melanin repigmentation after diode laser application and surgical removal done by scraping with Kirkland knife. This study was a randomized split-mouth study where 10 patients presenting with unattractive, diffuse, dark brown to black gingival discoloration on the facial aspect of the maxillary gingiva were treated by diode laser application and surgical removal and followed up for 3-, 6-, and 9-month intervals. The results showed a statistically significant difference in repigmentation between the groups at the interval of 3 months ( P = 0.040), but the difference was statistically not significant at 6 months ( P = 0.118) and 9 months ( P = 0.146). On surgically treated sites, all cases showed repigmentation of the gingiva, but in laser treated, there were two individuals which did not show repigmentation of the gingiva even at the end of 9-month observation time. The incidence of repigmentation was slightly less in laser-treated sites as compared to surgical depigmentation although the difference was statistically significant only up to 3 months.

  15. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors.

    Science.gov (United States)

    Duncan, Timothy V

    2011-11-01

    In this article, several applications of nanomaterials in food packaging and food safety are reviewed, including: polymer/clay nanocomposites as high barrier packaging materials, silver nanoparticles as potent antimicrobial agents, and nanosensors and nanomaterial-based assays for the detection of food-relevant analytes (gasses, small organic molecules and food-borne pathogens). In addition to covering the technical aspects of these topics, the current commercial status and understanding of health implications of these technologies are also discussed. These applications were chosen because they do not involve direct addition of nanoparticles to consumed foods, and thus are more likely to be marketed to the public in the short term. Published by Elsevier Inc.

  16. Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon

    International Nuclear Information System (INIS)

    Ji Puhui; Qu Guangzhou; Li Jie

    2013-01-01

    The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N 2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatography mass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N 2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC

  17. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  18. Bidentate organophosphorus extractants: purification, properties and applications to removal of actinides from acidic waste solutions

    International Nuclear Information System (INIS)

    Schulz, W.W.; McIsaac, L.D.

    1977-05-01

    At both Hanford and Idaho, DHDECMP (dihexyl-N, N-diethylcarbamylmethylene phosphonate) continuous counter-current solvent extraction processes are being developed for removal of americium, plutonium, and, in some cases, other actinides from acidic wastes generated at these locations. Bench and, eventually, pilot and plant-scale testing and application of these processes have been substantially enhanced by the discovery of suitable chemical and physical methods of removing deleterious impurities from technical-grade DHDECMP. Flowsheet details, as well as various properties of purified DHDECMP extractants, are enumerated

  19. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  20. Collective Phenomena In Volume And Surface Barrier Discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  1. Educating Health Professionals about the Electronic Health Record (EHR: Removing the Barriers to Adoption

    Directory of Open Access Journals (Sweden)

    Paule Bellwood

    2011-03-01

    Full Text Available In the healthcare industry we have had a significant rise in the use of electronic health records (EHRs in health care settings (e.g. hospital, clinic, physician office and home. There are three main barriers that have arisen to the adoption of these technologies: (1 a shortage of health professional faculty who are familiar with EHRs and related technologies, (2 a shortage of health informatics specialists who can implement these technologies, and (3 poor access to differing types of EHR software. In this paper we outline a novel solution to these barriers: the development of a web portal that provides facility and health professional students with access to multiple differing types of EHRs over the WWW. The authors describe how the EHR is currently being used in educational curricula and how it has overcome many of these barriers. The authors also briefly describe the strengths and limitations of the approach.

  2. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  3. Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2018-05-01

    Full Text Available The application of nanofibrillated cellulose (NC films in packaging industry has been hindered by its lack of heat-sealing ability. Incorporation of NC films with the biaxially oriented polypropylene/low density polyethylene (BOPP/LDPE laminates can take advantage of each material and endow the films with novel functions for food packaging applications. In this study, a coating that consists of NC and nisin was applied onto a cold plasma treated BOPP/LDPE film to fabricate a novel active packaging with an improved oxygen barrier performance and an added antimicrobial effect. The results showed that cold plasma treatment improved the surface hydrophilicity of BOPP/LDPE films for better attachment of the coatings. NC coatings significantly enhanced oxygen barrier property of the BOPP/LDPE film, with an oxygen transmission rate as low as 24.02 cc/m2·day as compared to that of the non-coated one (67.03 cc/m2·day. The addition of nisin in the coating at a concentration of 5 mg/g caused no significant change in barrier properties but imparted the film excellent antimicrobial properties, with a growth inhibition of L. monocytogenes by 94%. All films exhibit satisfying mechanical properties and transparency, and this new film has the potential to be used as antimicrobial and oxygen barrier packaging.

  4. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    Science.gov (United States)

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-04-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  5. Removing barriers to women entrepreneurs’ engagement in decentralized sustainable energy solutions for the poor

    Directory of Open Access Journals (Sweden)

    Yannick Glemarec

    2016-01-01

    Full Text Available  Rapidly falling renewable technology costs and new business models mean that decentralized energy solutions hold great promise to accelerate universal sustainable energy access. Across developing countries, women are typically the primary household energy managers. Close to their customers, women entrepreneurs have the potential to lower customer acquisition and servicing costs and drive these new decentralized solutions. However, they remain under-represented in the industry. This paper attempts to understand the root causes of this gender gap. It formulates the research hypothesis that market transformation policies intended to reduce investment risks to accelerate energy access may not benefit men and women entrepreneurs equally because of the existing structural barriers that women face. To test this hypothesis, the paper conducts a gender sensitive investment barrier and risk analysis, overlaid onto an existing gender neutral taxonomy of investment barriers and risks for decentralized sustainable energy solutions. A key finding is that for women entrepreneurs, existing structural impediments to gender equality translate into additional investment barriers as well as increased likelihood of occurrence and severity of the financial impact of generic investment risks. The paper offers an illustrative theory of change to facilitate a dialogue on the specific interventions needed to address these gender differentiated risks locally. It concludes that market transformation efforts for universal sustainable energy access must include targeted policy measures to ensure equal benefits to men and women entrepreneurs, and optimize the use of public resources to catalyze private investment and reduce poverty.

  6. Overcoming technical and market barriers for distributed wind applications : reaching the mainstream

    International Nuclear Information System (INIS)

    Rhoads-Weaver, H.; Forsyth, T.

    2006-01-01

    Technical and market barriers for distributed wind applications were reviewed. A renewable energy survey has recently suggested that while less than 10 per cent of survey respondents had installed wind turbines, 40 per cent indicated that they plan to use wind energy on-site in the future. It is estimated that global annual sales of wind systems have the potential to reach $110 million by 2010 under ideal conditions. Distributed wind market growth areas include residential grid-connected sites, schools, public facilities and farms, business and industry. Grid-connected wind projects are expected to grow from less than 5 per cent of the total small wind market to over 20 per cent by 2020. However, without a federal investment tax credit, more modest growth is anticipated. Drivers of the distributed wind market were identified as financial incentives and programs; favorable policies and regulations; and increasing retail electricity rates and loads. Challenges and barriers to distributed wind market growth included economics; lack of performance standards and ratings; difficult interconnection processes; prohibitive zoning rules; low manufacturing volumes; and low consumer awareness. While there has been a 5-fold increase in photovoltaics (PV) sales in the United States since 2000, small wind turbines sales have only grown by approximately 70 per cent over the same period. Market increases in distributed wind systems are anticipated with the introduction of hybrid wind/PV systems. Improved designs for small and mid-sized turbines, rotors and towers may help to overcome barriers to wind energy growth. Technology developments in remote-monitored controllers and improved computer tools for analyzing project economics may also help to overcome market barriers. However, significant cost reductions are needed to stimulate widespread market acceptance of distributed wind. It was concluded that distributed wind is well-positioned to play an important role in supplying clean

  7. Study on the application of permeable reactive barriers for remediation of uranium mine pit water

    International Nuclear Information System (INIS)

    Li Na'na; Zhu Yucheng

    2012-01-01

    Permeable reactive barrier (PRB) is economical and convenient on in suit remediation of polluted groundwater. In this paper, according to characteristics of uranium mine pit water, laboratory-scale PRB reactors were designed with the mixture of valent iron, active carbon, hydrated lime and quartz sands as reaction media. The feasibility and effectiveness of treating uranium mine pit water by PRB were tested under 3 different proportions of contaminants through dynamic simulation tests, which came out the optimal proportion of contaminants. The result indicated that the remediation effect of reactor B was the best, whose average removal rate to U was up to 99%. The quality of effluent attained the relevant standards, which indicated that the PRB technology is a feasible method for the treatment of uranium mine pit water. (authors)

  8. Legal, administrative and psychological barriers against industrial application of food irradiation and the trade in irradiated food

    International Nuclear Information System (INIS)

    Cornelis, J.C.

    1977-11-01

    In the author's view, the legal and administrative barrier against industrial application of food irradiation and trading can be described as follows: even if public health authorities in each country concerned, are convinced by the scientific evidence that the food irradiation process is acceptable, they will only be willing to accept irradiated food exported from another country if they are assured that irradiation has been performed in an approved and acceptable manner. The psychological barrier which is more complex consists of three interconnected factors: attitude of the public towards irradiated food, confidence of national authorities in the capability of food processors, the lack of cooperation between government Agencies. (NEA) [fr

  9. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.

    Science.gov (United States)

    Choudhary, Bharat; Paul, Debajyoti; Singh, Abhas; Gupta, Tarun

    2017-07-01

    Chromium pollution of soil and water is a serious environmental concern due to potential carcinogenicity of hexavalent chromium [Cr(VI)] when ingested. Eucalyptus bark biochar (EBB), a carbonaceous black porous material obtained by pyrolysis of biomass at 500 °C under oxygen-free atmosphere, was used to investigate the removal of aqueous Cr(VI) upon interaction with the EBB, the dominant Cr(VI) removal mechanism(s), and the applicability to treat Cr(VI)-contaminated wastewater. Batch experiments showed complete removal of aqueous Cr(VI) at pH 1-2; sorption was negligible at pH 1, but ~55% of total Cr was sorbed onto the EBB surface at pH 2. Detailed investigations on unreacted and reacted EBB through Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry (XPS) indicate that the carboxylic groups in biochar played a dominant role in Cr(VI) sorption, whereas the phenolic groups were responsible for Cr(VI) reduction. The predominance of sorption-reduction mechanism was confirmed by XPS studies that indicated ~82% as Cr(III) and ~18% as Cr(VI) sorbed on the EBB surface. Significantly, Cr(VI) reduction was also facilitated by dissolved organic matter (DOM) extracted from biochar. This reduction was enhanced by the presence of biochar. Overall, the removal of Cr(VI) in the presence of biochar was affected by sorption due to electrostatic attraction, sorption-reduction mediated by surface organic complexes, and aqueous reduction by DOM. Relative dominance of the aqueous reduction mechanism depended on a critical biochar dosage for a given electrolyte pH and initial Cr(VI) concentration. The low-cost EBB developed here successfully removed all Cr(VI) in chrome tanning acidic wastewater and Cr(VI)-contaminated groundwater after pH adjustment, highlighting its potential applicability in effective Cr(VI) remediation.

  10. Implementation of renewable energy technologies - Opportunities and barriers. Egypt country study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The project used case studies of renewable energy implementation projects to analyse the reasons for success or failure of specific projects or technologies. In particular the study aimed to identify possibilities for 'removing' the main barriers and thus 'promoting' increased implementation of (RETs), and to 'generalise' the experiences from the case studies and produce results that can be disseminated and utilized further in a planned second phase. The specific objectives for Egypt Country Study were: 1) To determine, on the basis of analysis of the past experience, the barriers against implementation of RETs in Egypt, and to identify the favourable conditions and actions required for such implementation. 2) To apply the knowledge gained and results of the analysis of past projects for a detailed analysis of barriers to a chosen set of potential RETs implementation projects with view to success. 3) To identify specific RET projects for implementation including necessary actions to overcome identified barriers. The case study revealed that; for Domestic Solar Water Heating (DSWH) the main barriers are; the economic barriers followed by the awareness / information barriers, then the Technical and Institution barriers. For the PV rural electrification, the most important barriers are; the economic and financial barriers, the awareness and information barriers then the technical barriers. For the large-scale biogas systems, the main barriers are the institution and capacity, economic, policy and awareness / information respectively. According to the project results the main actions that could be taken to overcome the barriers and make use of the available opportunities are: Economic / Financial: 1) Creation of new financial schemes for the RETs applications components and systems. 2) Reducing the taxes and duties for the components and / or materials needed for Renewable Energy (RE) systems. 3) More government-supported market incentives to encourage further

  11. Implementation of renewable energy technologies - Opportunities and barriers. Egypt country study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The project used case studies of renewable energy implementation projects to analyse the reasons for success or failure of specific projects or technologies. In particular the study aimed to identify possibilities for 'removing' the main barriers and thus 'promoting' increased implementation of (RETs), and to 'generalise' the experiences from the case studies and produce results that can be disseminated and utilized further in a planned second phase. The specific objectives for Egypt Country Study were: 1) To determine, on the basis of analysis of the past experience, the barriers against implementation of RETs in Egypt, and to identify the favourable conditions and actions required for such implementation. 2) To apply the knowledge gained and results of the analysis of past projects for a detailed analysis of barriers to a chosen set of potential RETs implementation projects with view to success. 3) To identify specific RET projects for implementation including necessary actions to overcome identified barriers. The case study revealed that; for Domestic Solar Water Heating (DSWH) the main barriers are; the economic barriers followed by the awareness / information barriers, then the Technical and Institution barriers. For the PV rural electrification, the most important barriers are; the economic and financial barriers, the awareness and information barriers then the technical barriers. For the large-scale biogas systems, the main barriers are the institution and capacity, economic, policy and awareness / information respectively. According to the project results the main actions that could be taken to overcome the barriers and make use of the available opportunities are: Economic / Financial: 1) Creation of new financial schemes for the RETs applications components and systems. 2) Reducing the taxes and duties for the components and / or materials needed for Renewable Energy (RE) systems. 3) More government-supported market incentives

  12. Application study of the heat pipe to the passive decay heat removal system of the modular HTR

    International Nuclear Information System (INIS)

    Ohashi, K.; Okamoto, F.; Hayakawa, H.; Hayashi, T.

    2001-01-01

    To investigate the applicability of the heat pipe to the decay hat removal (DHR) system of the modular HTRs, preliminary study of the Heat Pipe DHR System was performed. The results show that the Heat Pipe DHR System is applicable to the modular HTRs and its heat removal capability is sufficient. Especially by applying the variable conductance heat pipe, the possibility of a fully passive DHR system with lower heat loss during normal operation is suggested. The experiments to obtain the fundamental characteristics data of the variable conductance heat pipe were carried out. The experimental results show very clear features of self-control characteristics. The experimental results and the experimental analysis results are also shown. (author)

  13. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1993-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers

  14. Electron transmission through a periodically driven graphene magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, R., E-mail: rbiswas.pkc@gmail.com [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Maiti, S. [Ajodhya Hills G.S.A.T High School, Ajodhya, Purulia, West Bengal – 723152 (India); Mukhopadhyay, S. [Purulia Zilla School, Dulmi Nadiha, Purulia, West Bengal – 723102 (India); Sinha, C. [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur – 700032 (India)

    2017-05-10

    Electronic transport through graphene magnetic barriers is studied theoretically in presence of an external time harmonic scalar potential in the framework of non-perturbative Landau–Floquet Formalism. The oscillating field mostly suppresses the transmission for rectangular magnetic barrier structure and exhibits the Fano resonance for multiphoton processes due to the presence of bound state inside the barrier. While, for a pair of delta function barriers of larger separation, the oscillating potential suppresses the usual Fabry–Perot oscillations in the transmission and a new type of asymmetric Fano resonance is noted for smaller separation, occurring due to extended states between the barriers. - Highlights: • Tunnelling of the Dirac Fermions through oscillating pure magnetic barriers is reported for the first time. • The high energy transmission through a graphene magnetic barrier is suppressed by the application of time periodic modulation. • Suppression of the Fabry Perot transmission is noted due to the application of an external time harmonic potential. • Two kinds of the Fano resonances are noted in transmission through a pair of modulated δ-function magnetic barriers.

  15. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant...

  16. To compare the gingival melanin repigmentation after diode laser application and surgical removal

    Directory of Open Access Journals (Sweden)

    Gaurav Mahajan

    2017-01-01

    Full Text Available Aim: The aim of the present study is to compare the gingival melanin repigmentation after diode laser application and surgical removal done by scraping with Kirkland knife. Materials and Methods: This study was a randomized split-mouth study where 10 patients presenting with unattractive, diffuse, dark brown to black gingival discoloration on the facial aspect of the maxillary gingiva were treated by diode laser application and surgical removal and followed up for 3-, 6-, and 9-month intervals. Results: The results showed a statistically significant difference in repigmentation between the groups at the interval of 3 months (P = 0.040, but the difference was statistically not significant at 6 months (P = 0.118 and 9 months (P = 0.146. On surgically treated sites, all cases showed repigmentation of the gingiva, but in laser treated, there were two individuals which did not show repigmentation of the gingiva even at the end of 9-month observation time. Conclusion: The incidence of repigmentation was slightly less in laser-treated sites as compared to surgical depigmentation although the difference was statistically significant only up to 3 months.

  17. Hanford Site protective isolation surface barrier: Taking research and development to engineered application

    International Nuclear Information System (INIS)

    Myers, D.R.; Wing, N.R.

    1994-01-01

    The development of the Protective Isolation Surface Barrier has been an ongoing program since 1985. This development effort has focused on several technical areas. These technical areas include water infiltration, biointrusion, human intrusion, erosion/deposition, physical stability, barrier materials, computer modeling, long-term climate effects, natural analogs, and barrier design. This paper briefly reviews the results of the research and development in the technical areas and then explains how the results of this work have influenced the design features of the prototype barrier. A good example of this is to explain how the type and depth of the soil layer used in the barrier is related to water infiltration, biointrusion, modeling, climate, analogs, and barrier materials. Another good example is to explain the relationship of the barrier sideslopes (basalt riprap and native soil) with human intrusion, biointrusion, barrier materials, and barrier design. In general, the design features of the prototype barrier will be explained in terms of the results of the testing and development program. After the basis for prototype barrier design has been established, the paper will close by reviewing the construction of the prototype barrier, sharing the lessons learned during construction, and explaining the ongoing testing and monitoring program which will determine the success or failure of this barrier concept and the need for additional design modifications

  18. Synergistic effect of catalyst for oxidation removal of toluene

    International Nuclear Information System (INIS)

    Zhu Tao; Li Jian; Liang Wenjun; Jin Yuquan

    2009-01-01

    A series of experiments was performed for toluene removal from a gaseous influent at the normal temperature and atmospheric pressure by decomposition due to dielectric barrier discharge generated non-thermal plasma, by using MnO 2 /γ-Al 2 O 3 as catalyst. The removal efficiency of toluene was significantly increased by combining MnO 2 /γ-Al 2 O 3 with NTP. At the same time, the goal of improving energy efficiency and decreasing O 3 from exhaust gas treatment was accomplished.

  19. Synergistic effect of catalyst for oxidation removal of toluene.

    Science.gov (United States)

    Zhu, Tao; Li, Jian; Liang, Wenjun; Jin, Yuquan

    2009-06-15

    A series of experiments was performed for toluene removal from a gaseous influent at the normal temperature and atmospheric pressure by decomposition due to dielectric barrier discharge generated non-thermal plasma, by using MnO(2)/gamma-Al(2)O(3) as catalyst. The removal efficiency of toluene was significantly increased by combining MnO(2)/gamma-Al(2)O(3) with NTP. At the same time, the goal of improving energy efficiency and decreasing O(3) from exhaust gas treatment was accomplished.

  20. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaolin, E-mail: lishaolin@tongji.edu.cn; Wang, Wei; Liang, Feipeng; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • nZVI is able to perform fast and simultaneous removal of different heavy metal ions. • Fast separation and seeding effect of nZVI facilities its application in wastewater. • A novel process of E{sub h}-controlled reactor, nZVI separator and reuse is proposed. • E{sub h}-controlled system and nZVI recirculation increase material efficiency of nZVI. • The process produces stable effluent and is effective in wastewater treatment. - Abstract: Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E{sub h}, enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E{sub h}-controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E{sub h}-controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245 mg As + 226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment.

  1. Barriers and Facilitation Measures Related to People With Mental Disorders When Using the Web: A Systematic Review.

    Science.gov (United States)

    Bernard, Renaldo; Sabariego, Carla; Cieza, Alarcos

    2016-06-09

    interpreted by a wide range of user applications. People with mental disorders encounter barriers on the Web, and attempts have been made to remove or reduce these barriers. As forewarned by experts in the area, only a few studies investigating this issue were found. More rigorous research is needed to be exhaustive and to have a larger impact on improving the Web for people with mental disorders.

  2. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  3. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    Science.gov (United States)

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  4. Information barriers for the protection of sensitive information

    International Nuclear Information System (INIS)

    Dougan, A.D.; Dunn, J.; Seager, K.; Smith, M.; Beach, D.; Clinton, J.; Vanier, P.

    2013-01-01

    An Information Barrier is a combination of technology and procedures that prevent the release of a host country's sensitive information to a monitoring party during an inspection of a sensitive item, while enabling assurance of an accurate assessment of host country declarations regarding the item. Information barriers, as a concept, arose from the need to balance two competing requirements - specifically, certification of information protection by a host country and authentication of measurement and information accuracy by a monitoring party. The U.S. Department of Energy's National Nuclear Security Administration, in conjunction with several U.S. National Laboratories, has explored information barrier development in detail, and has continued the evolution of essential work done by the U.S. Information Barrier Working Group beginning in the late 1990's, and other international efforts, including the U.S.-Russia-IAEA Trilateral Initiative. This paper explains the rationale for information barriers, and explores the development and application of information barrier concepts for potential future arms control initiatives, including recent work and advances in capabilities. It also considers applications of information barrier concepts applied in other fields.The paper is followed by the slides of the presentation. (authors)

  5. Nano Hydroxyapatite gel for removal of Nickel ions for environmental applications

    International Nuclear Information System (INIS)

    Abdelfattah, W.I.; Fayed, M.SH.; Gouda, SH.R.; Awwad, S.A.

    2006-01-01

    Hydroxyapatite (HAp) has been investigated for the removal of heavy metals in environmental application. However, little is known about the influences of surface modifications of the HAp. In the present study, nano HAp - polyvinyl alcohol gel was synthesized under ph control and the formed gel was used for removing nickel ions. The influence of nickel ions on the surface of HAp was studied. Reaction mechanisms were followed by ICP-MS and discussed via continuous variations method (CVM), mole ratio method (MRM) and slope ratio method (SRM). The formed gel with nickel ions was studied by various methods including UV, FTIR, XRD and SEM. The ICP-MS was used to analyze the supernatant solution to confirm the presence of Ca and / or Ni ions. The nickel ions were found to reduce the degree of crystallinity of the synthesized HAp phase. The present results indicated that nickel ions were completely adsorbed on the HAp structure with its anion. The validation of the nature of HAp gel as chelating agent or complex formation as well as physical sorption were discussed

  6. The Application of Low-Cost Adsorbent for Reactive Blue 19 Dye Removal from Aqueous Solution: Lemna Minor

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-10-01

    Full Text Available Background & Aims of the Study: Due to widespread use and adverse effect of dyes, the removal of dyes from effluents is necessary. This study was aimed to remove the reactive blue 19 dye removal from aqueous solution by dried Lemna minor. Materials and Methods:  The effect of various parameters including contact time, solution pH, adsorbent dosage and dye concentration was investigated in this experimental-lab study, Also, the isotherm and kinetic studies was performed for RB19 dye adsorption process. Results: The results indicated that RB19 dye removal efficiency increases by increasing of contact time and adsorbent dosage. The equilibrium time was 75 min ad the maximum dye removal efficiency was obtained in pH=3. Also, the dye removal efficiency decreases by increasing of pH and initial concentration. It was found that the equilibrium data was best follow by Langmuier isotherm. Also, the pseudo-second-kinetic model was best applicable for RB 19 dye adsorption. Conclusion: It can be concluded that the dried Lemna minor can be considered as an effective adsorbent to remove the RB19 dye.

  7. Richards Barrier LA Reference Design Feature Evaluation

    International Nuclear Information System (INIS)

    N.E. Kramer

    1999-01-01

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and

  8. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe.

    Science.gov (United States)

    Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B

    2016-02-01

    Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Optimalisation of magnesium ammonium phosphate precipitation and its applicability to the removal of ammonium.

    Science.gov (United States)

    Demeestere, K; Smet, E; Van Langenhove, H; Galbacs, Z

    2001-12-01

    Among the physico-chemical abatement technologies, mainly acid scrubbers have been used to control NH3-emission. The disadvantage of this technique is that it yields waste water, highly concentrated in ammonia. In this report, the applicability of the magnesium ammonium phosphate (MAP) process to regenerate the liquid phase, produced by scrubbing NH3-loaded waste gases, was investigated. In the MAP process, ammonium is precipitated as magnesium ammonium phosphate, which can be used as a slow release fertilizer. The influence of a number of parameters, e.g. pH, kinetics, molar ratio NH(+)4/Mg2+/PO(3-)4 on the efficiency of the formation of MAP and on the ammonium removal efficiency was investigated. In this way, optimal conditions were determined for the precipitation reaction. Next to this, interference caused by other precipitation reactions was studied. At aqueous NH(+)4-concentrations of about 600 mg l(-1), ammonium removal efficiencies of 97% could be obtained at a molar ratio NH(+)4/Mg2+/PO(3-)4 of 1/1.5/1.5. To obtain this result, the pH was continuously adjusted to a value of 9 during the reaction. According to this study, it is obvious that the MAP-precipitation technology offers opportunities for ammonium removal from scrubbing liquids. The practical applicability of the MAP-process in waste gas treatment systems, however, should be the subject for further investigations.

  10. Filamentary and diffuse barrier discharges

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    2001-01-01

    Barrier discharges, sometimes also referred to as dielectric-barrier discharges or silent discharges, are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. The main advantage of this type of electrical discharge is, that non-equilibrium plasma conditions in atmospheric-pressure gases can be established in an economic and reliable way. This has led to a number of important applications including industrial ozone generation, surface modification of polymers, plasma chemical vapor deposition, excitation of CO 2 lasers, excimer lamps and, most recently, large-area flat plasma display panels. Depending on the application, the width of the discharge gap can range from less than 0.1 mm to about 100 mm and the applied frequency from below line frequency to several gigahertz. Typical materials used for the insulating layer (dielectric barrier) are glass, quartz, ceramics but also thin enamel or polymer layers

  11. [Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials

    International Nuclear Information System (INIS)

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program

  12. Piezotronically modified double Schottky barriers in ZnO varistors.

    Science.gov (United States)

    Raidl, Nadine; Supancic, Peter; Danzer, Robert; Hofstätter, Michael

    2015-03-25

    Double Schottky barriers in ZnO are modified piezotronically by the application of mechanical stresses. New effects such as the enhancement of the potential barrier height and the increase or decrease of the natural barrier asymmetry are presented. Also, an extended model for the piezotronic modification of double Schottky barriers is given. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A scanning electron microscopy study of root surface smear layer removal after topical application of EDTA plus a detergent

    OpenAIRE

    Sampaio, José Eduardo Cezar; Campos, Flávia Pavan; Pilatti, Gibson Luiz; Theodoro, Letícia Helena; Leite, Fábio Renato Manzolli

    2005-01-01

    The aim of the present study was to compare root surface smear layer removal following topical application of EDTA and EDTA-T (Texapon). Extracted human teeth had their cementum removed and were mechanically scaled. A total of 220 root specimens were obtained and were randomly assigned to the following groups: I-saline solution(control), II-EDTA; III-EDTAT. Groups II and III specimens were assigned to different EDTA gel concentrations: 5%, 10%, 15%, 20% and 24%. Smear layer removal score was ...

  14. A scanning electron microscopy study of root surface smear layer removal after topical application of EDTA plus a detergent

    OpenAIRE

    Sampaio,José Eduardo Cezar; Campos,Flávia Pavan; Pilatti,Gibson Luiz; Theodoro,Letícia Helena; Leite,Fábio Renato Manzolli

    2005-01-01

    The aim of the present study was to compare root surface smear layer removal following topical application of EDTA and EDTA-T (Texapon). Extracted human teeth had their cementum removed and were mechanically scaled. A total of 220 root specimens were obtained and were randomly assigned to the following groups: I-saline solution (control), II-EDTA; III-EDTA-T. Groups II and III specimens were assigned to different EDTA gel concentrations: 5%, 10%, 15%, 20% and 24%. Smear layer removal score wa...

  15. Moving Out of the Office: Removing Barriers to Access to Psychiatrists

    OpenAIRE

    Paris, Joel; Goldbloom, David; Kurdyak, Paul

    2015-01-01

    Our paper offers a perspective on barriers to access to psychiatric care. Research shows that access depends not simply on the total number of trained specialists but also on their kind of practice. In some large cities, some practitioners follow a small number of patients in long-term psychotherapy, a practice supported by government insurance, which places no limits on the number of sessions or treatment duration. The problem is that long-term psychotherapy, despite a rich tradition in psyc...

  16. Mechanical and Barrier Properties of Semi Refined Kappa Carrageenan-based Composite Edible Film and Its Application on Minimally Processed Chicken Breast Fillet

    Science.gov (United States)

    Praseptiangga, D.; Maimuni, B. H.; Manuhara, G. J.; Muhammad, D. R. A.

    2018-03-01

    Kappa-carrageenan (KC) is one of the most interesting biopolymers that is composed of a linear chain of sulfated galactans and extracted from red seaweed, Kappaphycus alvarezii. It shows good potential for development as a source of biodegradable or edible films. However, KC films do not have good water vapor barrier properties, as they are intrinsically hydrophilic. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined kappa-carrageenan (SRKC) edible films in order to improve water vapor barrier properties. In this study, composite films based on SRKC incorporating PA were prepared and their applications on minimally processed chicken breast fillet were evaluated. Composite SRKC-based films with varying concentrations of PA (5%, 10%, and 15% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused an increase in thickness, but decrease in water vapor transmission rate (WVTR) as the concentration of PA increased (from 5% to 15% w/w). Composite SRKC-based edible film incorporating 15% w/w of PA presented better water vapor barrier properties as compared to other films with 5% and 10% w/w PA incorporation. Thus, formulation containing 15% w/w PA was used as a wrapping material for film application on minimally processed chicken breast fillet. The application results showed that the incorporation of PA in film caused an effect (p 0.05) change the color of minimally processed chicken breast fillet.

  17. Enershield : energy saving air barriers

    Energy Technology Data Exchange (ETDEWEB)

    Hallihan, D. [Enershield Industries Ltd., Edmonton, AB (Canada)

    2008-07-01

    Enershield Industries is a leader in air barrier technology and provides solution for the Canadian climate. This presentation described the advantages of air barriers and the impact of rising energy costs. An air barrier is used to separate areas of differing environments and makes existing building systems more efficient. This presentation discussed how an air barrier works. It also identified how Enershield Industries calculates energy savings. It described air barrier applications and those who use barrier technology. These include the commercial and industrial sector as well as the personnel and retail sector. Barrier technology can be used for cold storage; vehicle and equipment washes; food processing; and environmental separation. Features and benefits such as the ability to create seal, acoustic insulation, and long term durability were also discussed. Last, the presentation addressed model selection and design criteria issues. Design criteria that were presented included a discussion of acoustic installation, articulating nozzles, scroll cased fans, and structural frame. Other design criteria presented were galvanized frames, telescopic sliders, and off the shelf parts. It was concluded that the ability to reduce energy consumption and enhance employee/client comfort is beneficial to the employer as well as to the employee. figs.

  18. Economic alternatives for containment barriers

    International Nuclear Information System (INIS)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J.

    1997-01-01

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control

  19. Development of a new plasma reactor for propene removal

    Science.gov (United States)

    Oukacine, Linda; Tatibouët, Jean-Michel

    2008-10-01

    The purpose of the study is to develop a new plasma reactor being applied to gas phase pollution abatement, involving a surface dielectric barrier discharge (SDBD) at atmospheric pressure. Propene was chosen as a model pollutant. The system can associate a SDBD with a volume dielectric barrier discharge (VDBD). A specific catalyst can be placed in post-plasma site in order to destroy the residual ozone after use it as a strong oxidant for total oxidation of propene and by-products formed by the plasma reactor. A comparative study has been established between the propene removal efficiency of these two plasma geometries. The results demonstrate that SDBD is a promising system for gas cleaning. The experiments show that ozone production depends on plasma system configuration and indicate the effectiveness of combining SDBD and VDBD. The NOx formation remains very low, whereas ozone formation is the highest for the SDBD. The influence of some materials on the propene removal and the ozone production were studied.

  20. Copper and zinc removal from roof runoff: from research to full-scale adsorber systems.

    Science.gov (United States)

    Steiner, M; Boller, M

    2006-01-01

    Large, uncoated copper and zinc roofs cause environmental problems if their runoff is infiltrated into the underground or discharged into receiving waters. Since source control is not always feasible, barrier systems for efficient copper and zinc removal are recommended in Switzerland. During the last few years, research carried out in order to test the performance of GIH-calcite adsorber filters as a barrier system. Adsorption and mass transport processes were assessed and described in a mathematical model. However, this model is not suitable for practical design, because it does not give explicit access to design parameters such as adsorber diameter and adsorber bed depth. Therefore, for e.g. engineers, an easy to use design guideline for GIH-calcite adsorber systems was developed, mainly based on the mathematical model. The core of this guideline is the design of the depth of the GIH-calcite adsorber layer. The depth is calculated by adding up the GIH depth for sorption equilibrium and the depth for the mass transfer zone (MTZ). Additionally, the arrangement of other adsorber system components such as particle separation and retention volume was considered in the guideline. Investigations of a full-scale adsorber confirm the successful application of this newly developed design guideline for the application of GIH-calcite adsorber systems in practice.

  1. Performance of a sequential reactive barrier for bioremediation of coal tar contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Gibert; Andrew S. Ferguson; Robert M. Kalin; Rory Doherty; Keith W. Dickson; Karen L. McGeough; Jamie Robinson; Russell Thomas [Queen' s University Belfast (United Kingdom). EERC, School of Planning Architecture and Civil Engineering

    2007-10-01

    Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, xylene (BTEX) compounds was installed at a former manufactured gas pPlant (FMGP) site currently used for gas storage and distribution within the UK. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant granular activated carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal ({gt}93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal ({gt}80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals {gt}95%). 22 refs., 4 figs., 1 tab.

  2. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  3. Transition to distributed energy generation in Finland: Prospects and barriers

    International Nuclear Information System (INIS)

    Ruggiero, Salvatore; Varho, Vilja; Rikkonen, Pasi

    2015-01-01

    Small-scale distributed energy generation is expected to play an important role in helping Finland increase its energy self-sufficiency. However, the overall strategy to date for promoting distributed energy remains unclear. It is not yet well understood which factors promote the growth of the distributed energy sector and what barriers need to be removed. In this article we present the results of a questionnaire directed at a panel of 26 experts from the distributed energy value chain and 15 semi-structured interviews with industry and non-industry representatives. We investigated, from a sociotechnical transition perspective, the possibilities and challenges of the transition to distributed energy in Finland through 2025. The results show that a shift to a prosperous future for distributed energy is possible if permit procedures, ease of grid connection, and taxation laws are improved in the electricity sector and new business concepts are introduced in the heat sector. In contrast to other European countries, the transition in Finland is expected to take place through a market-based approach favoring investment-focused measures. We conclude that incentive-based schemes alone, whatever they may be, will be insufficient to create significant growth in Finland without institutional change, removal of barriers, and the engagement of key actors. - Highlights: • We examine the possibilities and challenges of the transition to DE in Finland. • Technological niches are emerging both in the heat and electricity sector. • Business model innovation is evident only in the electricity sector. • Removing barriers and developing new business models will accelerate the transition.

  4. Application of Response Surface Methodology to Optimize Malachite Green Removal by Cl-nZVI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani

    2017-09-01

    Full Text Available Disposal of effluents containing dyes into natural ecosystems pose serious threats to both the environment and its aquatic life. Malachite green (MG is a basic dye that has extensive industrial applications, especially in aquaculture, throughout the world. This study reports on the application of the central composite design (CCD under the response surface methodology (RSM for the optimization of MG adsorption from aqueous solutions using the clinoptilolite nano-zerovalence iron (Cl-nZVI nanocomposites. The sorbent structures produced are characterized by means of scanning electron micrograph (SEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometer (VSM. The effects of different parameters including pH, initial MG concentration, and sorbent dosage on the removal efficiency (R of MG were studied to find the optimum operating conditions. For this purpose, a total of 20 sets of experiments were designed by the Design Expert.7.0 software and the values of removal efficiency were used as input response to the software. The optimum pH, initial MG concentration, and sorbent dosage were found to be 5.6, 49.21 mg.L-1, and 1.43 g.L-1, respectively. A high MG removal efficiency (57.90% was obtained with optimal process parameters. Moreover, a desirability value of 0.963 was obtained for the optimization process.

  5. Barrier performance researches for the safety evaluation

    International Nuclear Information System (INIS)

    Niibori, Yuichi

    2004-01-01

    So far, many researches were conducted to propose a scientific evidence (a safety case) for the realization of geological disposal in Japan. In order to regulate the geological disposal system of radioactive wastes, on the other hand, we need also a holistic approach to integrate various data related for the performance evaluations of the engineered barrier system and the natural barrier system. However, the scientific bases are not sufficient to establish the safety regulation for such a natural system. For example, we often apply the specific probability density function (PDF) to the uncertainty of barrier system due to the essential heterogeneity. However, the applicability is not clear in the regulation point of view. A viewpoint to understand such an applicability of PDFs has been presented. (author)

  6. Studying Executive Barriers on Rationalizing the Size of Iranian Government

    Directory of Open Access Journals (Sweden)

    Mohammad Hussein Rahmati

    2012-01-01

    Full Text Available To rationalize the size of government, Act on adjusting a part of government‟s financial rules is approved and the government is obliged to assign a part of its activities through (1 services by nonpublic sector, (2 partnership with nonpublic sector, and (3 assigning the management to nonpublic sector. There are many barriers in executing this law. The present study derived from a field study tries to provide a report on the performance of various organs in Qom province on executing this law and identifies the executive barriers and provides practical proposals to remove them.Overall, seventeen organs in Qom are subjected to this law of which five organs are selected as our sample. In this respect, different documents were studied, ten interviews were conducted and one hundred and four executive barriers and forty seven operational proposals including twenty three barriers and eleven proposals in organization and structure area, sixteen barriers and five proposals in administrative technology and working processes area, thirty two barriers and twelve proposals in human resources area, twenty one barriers and eight proposals in laws and regulations area and twelve barriers and eleven proposals in management area have been analyzed and summarized regarding their contents.

  7. Alternative geochemical barrier materials

    International Nuclear Information System (INIS)

    1991-07-01

    Previous investigations of the effects of neutralization and reduction on uranium mill tailings pore fluids by the Technical Support Contractor indicated that arsenic, selenium, and molybdenum continue to remain in solution in all but reducing conditions. These hazardous constituents are present in groundwaters as oxyanions and, therefore, are not expected to be removed by adsorption into clays and most other soil constituents. It was decided to investigate the attenuation capacity of two commonly available crystalline iron oxides, taconite and scoria, and a zeolite, a network aluminosilicate with a cage structure. Columns of the candidate materials were exposed to solutions of individual constituents, including arsenic, molybdenum, selenium, and, uranium, and to the spiked tailings pore fluid from the Bodo Canyon disposal cell near Durango, Colorado. In addition to the single material columns, a homogeneous blend of the three materials and layers of the materials were exposed to spiked tailings pore fluids. The results of these experiments indicate that with the exception of molybdenum, the constituents of concern are attenuated by the taconite; however, they are not sufficiently attenuated to meet the groundwater protection standards applicable to the UMTRA Project. Therefore, the candidate barrier materials did not prove to be useful to the UMTRA Project for the cleanup of groundwaters

  8. Infection control in digital intraoral radiography: evaluation of microbiological contamination of photostimulable phosphor plates in barrier envelopes.

    Science.gov (United States)

    MacDonald, David S; Waterfield, J Douglas

    2011-01-01

    The detectors (both solid-state sensors and photostimulable phosphor [PSP] plates) used for digital intraoral radiography cannot be autoclaved, and barriers are typically used to prevent the spread of infection. The aim of this study was to determine the effectiveness of a barrier envelope system for PSP plates. Disinfected PSP plates were aseptically inserted into barrier envelopes and placed in a periapical location. One PSP plate was placed in each of 28 patients, and 12 plates in each of 2 volunteers (D.S.M., J.D.W.). After retrieval, each PSP plate was removed from its barrier envelope, immersed in trypticase soy broth and aliquots were plated on trypticase soy agar. Bacterial colonies were counted 2 days later. Fifty-two PSP plates in barrier envelopes were evaluated for contamination. Quality assurance of the PSP plates before clinical placement revealed defects in the integrity of 4 barrier envelopes, caused by forceps-related damage or failure to achieve a uniform seal. These defects allowed substantial contamination. Contamination also occurred as a result of failure to extract the PSP plate from the barrier envelope cleanly. Of the 44 barriers with no obvious defects that were placed by either final-year dental students or a radiologist, only 3 allowed bacterial contamination of the PSP plate. Detectors contained in barrier envelopes remain a potential source of contamination. PSP plates must be disinfected between removal from a contaminated barrier envelope and placement in a new barrier envelope. In addition, placement into the barrier envelope should ideally be carried out under aseptic conditions. Finally, the integrity of each sealed barrier envelope must be verified visually before release to the clinic.

  9. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-01-01

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q

  10. PARTNERSHIP FOR THE DEVELOPMENT OF NEXT GENERATION SIMULATION TOOLS TO EVALUATE CEMENTITIOUS BARRIERS AND MATERIALS USED IN NUCLEAR APPLICATION - 8388

    International Nuclear Information System (INIS)

    Langton, C; Richard Dimenna, R

    2008-01-01

    The US DOE has initiated a multidisciplinary cross cutting project to develop a reasonable and credible set of tools to predict the structural, hydraulic and chemical performance of cement barriers used in nuclear applications over extended time frames (e.g., > 100 years for operating facilities and > 1000 years for waste management). A partnership that combines DOE, NRC, academia, private sector, and international expertise has been formed to accomplish the project objectives by integrating existing information and realizing advancements where necessary. The set of simulation tools and data developed under this project will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments and environmental remediation, including decontamination and decommissioning (D and D) activities. The simulation tools will also support analysis of structural concrete components of nuclear facilities (spent fuel pools, dry spent fuel storage units, and recycling facilities, e.g., fuel fabrication, separations processes). Simulation parameters will be obtained from prior literature and will be experimentally measured under this project, as necessary, to demonstrate application of the simulation tools for three prototype applications (waste form in concrete vault, high level waste tank grouting, and spent fuel pool). Test methods and data needs to support use of the simulation tools for future applications will be defined. This is a national issue that affects all waste disposal sites that use cementitious waste forms and structures, decontamination and decommissioning activities, service life determination of existing structures, and design of future public and private nuclear facilities. The problem is difficult because it requires projecting conditions and responses over extremely long times. Current performance assessment analyses show that engineered barriers

  11. Barriers and post-closure monitoring (AL121125)

    International Nuclear Information System (INIS)

    Bostick, K.V.; Janecky, D.

    1995-01-01

    This project focuses on the rapid implementation of near-surface barriers, biotreatment, and post-closure monitoring technology. It uses water-permeable and biologic barriers that chemically capture and/or degrade contaminants without significantly altering the natural water flow regime. Barrier approaches are being tested for two different applications. The first is the use of barriers for confinement of chemical contaminants for in-trench treatments with leach systems or an in-place bioreactor. The second is an enhancement of the current practice of emplacing grout or clay slurry walls into direct horizontal surface and subsurface water flows around a contaminated area by integrating permeable reactive barriers and petroleum reservoir gel/foam/polymer technology

  12. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  13. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  14. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  15. Optimizing the application of magnetic nanoparticles in Cr(VI) removal

    Science.gov (United States)

    Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos

    2013-04-01

    nanoparticles to reduce Cr(VI) concentration below the regulation limit. The removal capacity is maximized for Fe3O4 nanoparticles due to the high reducing potential of the Fe2+ cations. Furthermore, their applicability was tested in a pilot-scale magnetic separator for the continuous flow removal of nanoparticles after water treatment that takes advantage of the magnetic properties. Acknowledgment This work was implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.

  16. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  17. Development of the SEAtrace{trademark} barrier verification and validation technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, S.D.; Lowry, W.; Walsh, R.; Rao, D.V. [Science and Engineering Associates, Santa Fe, NM (United States); Williams, C. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.

    1998-08-01

    In-situ barrier emplacement techniques and materials for the containment of high-risk contaminants in soils are currently being developed by the Department of Energy (DOE). Because of their relatively high cost, the barriers are intended to be used in cases where the risk is too great to remove the contaminants, the contaminants are too difficult to remove with current technologies, or the potential movement of the contaminants to the water table is so high that immediate action needs to be taken to reduce health risks. Assessing the integrity of the barrier once it is emplaced, and during its anticipated life, is a very difficult but necessary requirement. Science and Engineering Associates, Inc., (SEA) and Sandia National Laboratories (SNL) have developed a quantitative subsurface barrier assessment system using gaseous tracers in support of the Subsurface Contaminants Focus Area barrier technology program. Called SEAtrace{trademark}, this system integrates an autonomous, multi-point soil vapor sampling and analysis system with a global optimization modeling methodology to locate and size barrier breaches in real time. The methodology for the global optimization code was completed and a prototype code written using simplifying assumptions. Preliminary modeling work to validate the code assumptions were performed using the T2VOC numerical code. A multi-point field sampling system was built to take soil gas samples and analyze for tracer gas concentration. The tracer concentration histories were used in the global optimization code to locate and size barrier breaches. SEAtrace{trademark} was consistently able to detect and locate leaks, even under very adverse conditions. The system was able to locate the leak to within 0.75 m of the actual value, and was able to determine the size of the leak to within 0.15 m.

  18. Development of the SEAtrace trademark barrier verification and validation technology. Final report

    International Nuclear Information System (INIS)

    Dunn, S.D.; Lowry, W.; Walsh, R.; Rao, D.V.; Williams, C.

    1998-08-01

    In-situ barrier emplacement techniques and materials for the containment of high-risk contaminants in soils are currently being developed by the Department of Energy (DOE). Because of their relatively high cost, the barriers are intended to be used in cases where the risk is too great to remove the contaminants, the contaminants are too difficult to remove with current technologies, or the potential movement of the contaminants to the water table is so high that immediate action needs to be taken to reduce health risks. Assessing the integrity of the barrier once it is emplaced, and during its anticipated life, is a very difficult but necessary requirement. Science and Engineering Associates, Inc., (SEA) and Sandia National Laboratories (SNL) have developed a quantitative subsurface barrier assessment system using gaseous tracers in support of the Subsurface Contaminants Focus Area barrier technology program. Called SEAtrace trademark, this system integrates an autonomous, multi-point soil vapor sampling and analysis system with a global optimization modeling methodology to locate and size barrier breaches in real time. The methodology for the global optimization code was completed and a prototype code written using simplifying assumptions. Preliminary modeling work to validate the code assumptions were performed using the T2VOC numerical code. A multi-point field sampling system was built to take soil gas samples and analyze for tracer gas concentration. The tracer concentration histories were used in the global optimization code to locate and size barrier breaches. SEAtrace trademark was consistently able to detect and locate leaks, even under very adverse conditions. The system was able to locate the leak to within 0.75 m of the actual value, and was able to determine the size of the leak to within 0.15 m

  19. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.

    Science.gov (United States)

    van der Laan, H; van Halem, D; Smeets, P W M H; Soppe, A I A; Kroesbergen, J; Wubbels, G; Nederstigt, J; Gensburger, I; Heijman, S G J

    2014-03-15

    In 2012 more than 4 million people used a ceramic pot filter (CPF) as household water treatment system for their daily drinking water needs. In the normal production protocol most low cost filters are impregnated with a silver solution to enhance the microbial removal efficiency. The aim of this study was to determine the role of silver during the filtration and subsequent storage. Twenty-two CPFs with three different silver applications (non, only outside and both sides) were compared in a long-term loading experiment with Escherichia coli (K12 and WR1) and MS2 bacteriophages in natural challenge water under highly controlled laboratory circumstances. No significant difference in Log Removal Values were found between the filters with different silver applications. The results show that the storage time in the receptacle is the dominant parameter to reach E. coli inactivation by silver, and not the contact time during the filtration phase. The hypothesis that the absence of silver would enhance the virus removal, due to biofilm formation on the ceramic filter element, could not be confirmed. The removal effectiveness for viruses is still of major concern for the CPF. This study suggests that the ceramic pot filter characteristics, such as burnt material content, do not determine E. coli removal efficacies, but rather the contact time with silver during storage is the dominant parameter to reach E. coli inactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Energy management action plan: Developing a strategy for overcoming institutional barriers to municipal energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Energy offices working to improve efficiency of local government facilities face not only technical tasks, but institutional barriers, such as budget structures that do not reward efficiency, a low awareness of energy issues, and purchasing procedures based only on minimizing initial cost. The bureau, in working to remove such barriers in San Francisco, has identified 37 institutional barriers in areas such as operations & maintenance, purchasing, and facility design; these barriers were then reorganized into three groupings-- policy & attitudes, budget & incentives, and awareness & information-- and mapped. This map shows that the barriers mutually reinforce each other, and that a holistic approach is required for permanent change. The city`s recreation & parks department was used as a model department, and information about facility energy use was compiled into a departmental energy review. Staff interviews showed how barriers affect conservation. The bureau then generated ideas for projects to remove specific barriers and rated them according to potential impact and the resources required to implement them. Four of the six projects selected focused on maintenance staff: a cost- sharing lighting retrofit program, a boiler efficiency program, a departmental energy tracking system, and a budgetary incentive program for conservation. The other two projects are city-wide: promotion of a new term contract supplying energy-efficient light materials, and publication/distribution of ENERGY NEWS newsletter. A general methodology, the EMAP Strategy Guide, has been created to assist other energy offices in developing EMAPs.

  1. Application of acoustic agglomeration for removing sulfuric acid mist from air stream

    Directory of Open Access Journals (Sweden)

    Asghar Sadighzadeh

    2018-01-01

    Full Text Available The application of acoustic fields at high sound pressure levels (SPLs for removing sulfuric acid mists from the air stream was studied. An acoustic agglomeration chamber was used to conduct the experiments. The studied SPLs ranged from 115 to 165 decibel (dB, with three inlet concentrations of acid mist at 5–10, 15–20, and 25–30 ppm. The air flow rates for conducting experiments were 20, 30, and 40 L min−1. The concentration of sulfuric acid mist was measured using US Environmental Protection Agency Method 8 at inlet and outlet of the chamber. The resonance frequencies for experiments were found to be 852, 1410, and 3530 Hz. The maximum acoustic agglomeration efficiency of 86% was obtained at optimum frequency of 852 Hz. The analysis of variance test revealed significant differences between agglomeration efficiency at three resonance frequencies (p-value < 0.001. The maximum acoustic agglomeration efficiency was obtained at SPL level of 165 dB. High initial concentrations of acid mists and lower air flow rates enhance the acoustic agglomeration of mists. High removal efficiency of acid mists from air stream could be achieved by the application of acoustic agglomeration method with appropriate range of frequencies and SPLs. Keywords: Sulfuric acid, Mist, Acoustic agglomeration, SPL

  2. Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigate the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.

  3. Implementation of renewable energy technologies - Opportunities and barriers. Ghana country study

    Energy Technology Data Exchange (ETDEWEB)

    Edjekumhene, I.; Atakora, S.B.; Atta-Konadu, R.; Brew-Hammond, A. [Kumasi Inst. og Technology and Environment (Ghana)

    2001-07-01

    This report presents the experience of Ghana in the development, utilisation and promotion of Renewable Energy Technologies (RETs). The report gives a general overview of the state of RETs, describes past/existing institutional, regulatory and policy framework, identifies key barriers to and opportunities for RETs, and recommends directional changes needed to remove barriers and promote wide-scale adoption of RETs in Ghana. A total of eight RETs - biomass-fired dryers, sawdust stoves, sawdust briquette, biogas, solar crop dryer, solar water heater, solar water pump and small hydro power - are covered in the report. Analyses of barriers to the eight RETs are carried out using a framework approach that categorises barriers into socio-technical, economic and crosscutting barriers. Financial analyses, as opposed to economic analyses, have been carried out for all the selected RETs. The report also incorporates stake holders' perspectives and views on barriers and how they can be removed. Ghana is endowed with several renewable energy resources like solar radiation, small hydro, biomass, and wind. Exploitation of Ghana's renewable energy resources has been carried out under two main policy regimes - PND Law 62 (1983) and the Energy Sector Development Programme (ESDP). Several measures and instruments have been employed in the implementation of renewable energy policies. The main measures used are research and development, information and eduction, and some normative measures (like the passing of PNDC Law 62 and the Energy Commission Law). Some economic instruments, such as subsidies, taxes, pricing, financing and duty waiver/reduction, have been used as well but only to a limited extent. The effective development, implementation and dissemination of all the RETs studied are hampered by several barriers, which can be grouped into three main categories - Socio-technical barriers, economic barriers and crosscutting barriers. Socio-technical barriers refer to

  4. Implementation of renewable energy technologies - Opportunities and barriers. Ghana country study

    Energy Technology Data Exchange (ETDEWEB)

    Edjekumhene, I; Atakora, S B; Atta-Konadu, R; Brew-Hammond, A [Kumasi Inst. og Technology and Environment (Ghana)

    2001-07-01

    This report presents the experience of Ghana in the development, utilisation and promotion of Renewable Energy Technologies (RETs). The report gives a general overview of the state of RETs, describes past/existing institutional, regulatory and policy framework, identifies key barriers to and opportunities for RETs, and recommends directional changes needed to remove barriers and promote wide-scale adoption of RETs in Ghana. A total of eight RETs - biomass-fired dryers, sawdust stoves, sawdust briquette, biogas, solar crop dryer, solar water heater, solar water pump and small hydro power - are covered in the report. Analyses of barriers to the eight RETs are carried out using a framework approach that categorises barriers into socio-technical, economic and crosscutting barriers. Financial analyses, as opposed to economic analyses, have been carried out for all the selected RETs. The report also incorporates stake holders' perspectives and views on barriers and how they can be removed. Ghana is endowed with several renewable energy resources like solar radiation, small hydro, biomass, and wind. Exploitation of Ghana's renewable energy resources has been carried out under two main policy regimes - PND Law 62 (1983) and the Energy Sector Development Programme (ESDP). Several measures and instruments have been employed in the implementation of renewable energy policies. The main measures used are research and development, information and eduction, and some normative measures (like the passing of PNDC Law 62 and the Energy Commission Law). Some economic instruments, such as subsidies, taxes, pricing, financing and duty waiver/reduction, have been used as well but only to a limited extent. The effective development, implementation and dissemination of all the RETs studied are hampered by several barriers, which can be grouped into three main categories - Socio-technical barriers, economic barriers and crosscutting barriers. Socio-technical barriers refer to resource

  5. Interaction of basal foliage removal and late season fungicide applications in management of Hop powdery mildew

    Science.gov (United States)

    Experiments were conducted over three years to evaluate whether fungicide applications could be ceased after the most susceptible stages of cone development (late July) without unduly affecting crop yield and quality when disease pressure was moderated with varying levels of basal foliage removal. I...

  6. Application of bipolar electrodialysis to E.coli fermentation for simultaneous acetate removal and pH control

    DEFF Research Database (Denmark)

    Wong, M.; Woodley, John; Lye, G.J.

    2010-01-01

    The application of bipolar electrodialysis (BPED) for the simultaneous removal of inhibitory acetate and pH control during E. coli fermentation was investigated. A two cell pair electrodialysis module, consisting of cation exchange, anion exchange and bipolar membranes with working area of 100 cm2...

  7. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  8. Impact of vertical barriers on performance of pump-and-treat systems

    International Nuclear Information System (INIS)

    Russell, K.; Rabideau, A.

    1997-01-01

    Although aquifer remediation by Pump-and-treat (PAT) is widely practiced, it is generally implemented as an effective means of plume containment, rather than as an efficient means of contaminant mass removal. The use of slurry cutoff walls has been recognized as a means of improving the performance of PAT with respect to hydraulic control. As part of a study on the use of decision analysis in the design of aquifer remediation systems, the economic tradeoffs between capital costs and risk reduction were compared for several alternative PAT strategies. This work included an evaluation of the use of vertical barriers as components of PAT systems, using numerical experiments to examine the impacts of vertical barriers on PAT reliability. The results indicated that the use of vertical barriers in conjunction with PAT can significantly improve the simulated system performance, but that the magnitude of the predicted enhancement and cost-effectiveness of the barrier system are dependent on site characteristics, barrier placement, and modeling assumptions

  9. [Applications of platelets in studies on traditional Chinese medicines promoting blood circulation to remove blood stasis].

    Science.gov (United States)

    Wang, Feng-Qin; Chen, Cen; Xia, Zhi-Ning; Yang, Feng-Qing

    2014-08-01

    Thrombotic diseases in different forms become a great threat to human health. Such anti-platelet aggregation drugs as aspirin and clopidogrel are common drugs in clinic. However, along with the appearance of resistance and side effects of western anti-platelet aggregation drugs, anti-platelet aggregation traditional Chinese medicines promoting blood circulation to remove blood stasis have gradually become an important study orientation. Platelet is one of major participant in thrombosis, and plays an important role as a bioactive material in studies on traditional Chinese medicines promoting blood circulation to remove blood stasis, mainly involving two aspects--the evaluation for the anti-platelet aggregation activity of traditional Chinese medicines and the screening of their active components. This paper summarized the applications of platelets in studies on traditional Chinese medicines promoting blood circulation to remove blood stasis, so as to provide basis for further studies.

  10. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-04-01

    Full Text Available Abstract Background and purpose:The main objectives of this research were to evaluating the application of electrocoagulation process for 198 dye from the aqueous phase and determining the optimum operating conditions to the dye removal using aluminum and iron electrodes. Materials and Methods:The present study was conducted in bench-scale. The spectrophotometer DR 5000 was used to determine the dye concentration. The effects of pH, retention time, voltage, dye concentration on the efficiency of electrocoagulation process were investigated. Data were analyzed in SPSS for Windows 16.0 using Pearson’scorrelation coefficient to analyze the relationship between these parameters. Results:The results showed that the optimal conditions for reactive red 198 (RR-198 dye removal from the aqueous solution are pH of 11, the voltage of 32 V, the initial dye concentration of 10 ppm, and the reaction time of 40 min. Pearson correlation analysis showed that there is a significant relationship between voltage and the reaction time with the removal efficiencies (P< 0.01. Conclusion:It was revealed that the removal efficiency of dye was directly proportional to the voltage and reaction time, but inversely proportional to the initial dye concentration. In conclusion, electrocoagulation process using two-fold iron and aluminum electrodes is an appropriate method for reducing the RR-198 dye in the aqueous phase.

  11. Barriers to investments in energy saving technologies. Case study for the industry

    NARCIS (Netherlands)

    Masselink, Dirk Jan

    2007-01-01

    To realise future energy saving targets, the government needs to increase energy reduction rates. One option to increase energy savings is found in removing barriers to investments in cost-effective energy saving technologies. Many technologies save energ

  12. Sodium removal by alcohol process: Basic tests and its application

    International Nuclear Information System (INIS)

    Nakai, S.; Yamamoto, S.; Akai, M.; Yatabe, T.

    1997-01-01

    We have various methods for sodium removal; an alcohol cleaning process, a steam cleaning process and a direct burning process. Sodium removal by the alcohol process has a lot of advantages, such as causing no alkali corrosion to steel, short processing time and easy operation. Therefore the alcohol process was selected for the 1MWt double wall tube straight type steam generator. We have already had some experiences of the alcohol process, while still needed to confirm the sodium removal rate in the crevice and to develop an on-line sodium concentration monitoring method in alcohol during sodium removal. We have conducted the small scale sodium removal test with flowing alcohol where the sodium removal rate in the crevice and the alcohol conductivity were measured as functions of sodium concentration in alcohol and alcohol temperature. The sodium removal of the DWTSG was conducted by the devised alcohol process safely and efficiently. The process hour was about 1 day. Visual inspection during dismantling of the DWTSG showed no evidence of any un-reacted sodium. (author)

  13. Removal of silver nanoparticles by coagulation processes

    International Nuclear Information System (INIS)

    Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

    2013-01-01

    Highlights: • This study investigated the removal of AgNP suspensions by four regular coagulants. • The optimal removal efficiencies for the four coagulants were achieved at pH 7.5. • The removal efficiency of AgNPs was affected by the natural water characteristics. • TEM and XRD showed that AgNPs or silver-containing NPs were adsorbed onto the flocs. -- Abstract: Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca 2+ and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions

  14. Implementation of renewable technologies - Opportunities and barriers. Zimbabwe country study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Renewable Energy Technologies (RETS) have over the years become an integral part of the energy supply chain in most developed countries. Recent projections show that 13.5% of the world's primary energy supply comes from renewable and this figure has an aggregated annual growth rate of 16%. Wind has the highest annual growth rate of 22% while the least annual growth rate of 2% is for hydropower. The main push for renewable like wind in the OECD countries are environmental concerns and the business aspect in power generation. The situation is however completely different in Africa, where the thrust for RETs is developmental based. Although the continent has abundant renewable energy resources like solar, biomass, wind and hydro potential, they have remained largely unexploited. Several efforts have been made to help African countries like Zimbabwe to exploit such resources. The main objectives of this country study included review of Zimbabwe's development of past RETs, establish barriers related lessons learnt from such projects and currently running RETs projects, identify barriers experienced by other projects and then select a few barrier removal projects and then develop them with the help of all stake holders in the country. The methodology of this study involved a review of past RETs projects to establish barriers faced and barriers related lessons learnt. An examination of the policy instruments related to RETs was done to establish how they promote the dissemination of the technologies as well as their adequacy. A survey of all possible RETs projects in the country was carried out and in this survey the end-users were visited and interviewed by the research team. An initial workshop, which was attended by all stake holders, was held in November 1999. An Advisory committee on RETs in Zimbabwe was then set up comprising of various stake holders from government, the private sector, research institutions, interviewed end-users and the NGO community

  15. Implementing clinical governance in Isfahan hospitals: Barriers and solutions, 2014.

    Science.gov (United States)

    Ferdosi, Masoud; Ziyari, Farhad Bahman; Ollahi, Mehran Nemat; Salmani, Amaneh Rahim; Niknam, Noureddin

    2016-01-01

    In the new approach, all health care providers have been obligated to maintain and improve the quality and have been accountable for it. One of the ways is the implementation of clinical governance (CG). More accurate understanding of its challenges can help to improve its performance. In this study, barriers of CG implementation are investigated from the perspective of the hospitals involved. Besides, some solutions are suggested based on stakeholders' opinions. This study used combined method (qualitative content analysis and questionnaire) in hospitals affiliated to Isfahan University of Medical Sciences in 2014. First, experts, and stakeholders talked about CG implementation obstacles in a semi-structured interview. Interviews were confirmed by the interviewee (double check). After analyzing the interviews using reduction coding the questionnaire was drawn up. The questionnaire "validity was confirmed by Cronbach's alpha (0/891)" and its reliability was obtained using experts confirmation. Data analyzing was performed using SPSS (18) software. According to results staffing and management factors were the main obstacles. After them, were factors related to organizational culture, infrastructure elements, information, sociocultural and then process factors. The learning barriers were in final rank. Thirty-four solutions was proposed by experts and divided into subset of eight major barriers. Most solutions were offered on modifying processes and minimal solutions about modifying of organizational culture, sociocultural, and educational factors. Removing the obstacles, especially management and human resource factors can be effective by facilitating and accelerating CG. Furthermore, use of experts and stakeholders opinions can help to remove CG barriers.

  16. Metal biosorption-flotation. Application to cadmium removal.

    Science.gov (United States)

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  17. Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: An Indian perspective

    Directory of Open Access Journals (Sweden)

    Sunil Luthra

    2011-07-01

    Full Text Available Purpose: Green Supply Chain Management (GSCM has received growing attention in the last few years. Most of the automobile industries are setting up their own manufacturing plants in competitive Indian market. Due to public awareness, economic, environmental or legislative reasons, the requirement of GSCM has increased.  In this context, this study aims to develop a structural model of the barriers to implement GSCM in Indian automobile industry.Design/methodology/approach: We have identified various barriers and contextual relationships among the identified barriers. Classification of barriers has been carried out based upon dependence and driving power with the help of MICMAC analysis. In addition to this, a structural model of barriers to implement GSCM in Indian automobile industry has also been put forward using Interpretive Structural Modeling (ISM technique. Findings: Eleven numbers of relevant barriers have been identified from literature and subsequent discussions with experts from academia and industry. Out of which, five numbers of barriers have been identified as dependent variables; three number of barriers have been identified as the driver variables and three number of barriers have been identified as the linkage variables. No barrier has been identified as autonomous variable. Four barriers have been identified as top level barriers and one bottom level barrier. Removal of these barriers has also been discussed.Research limitations/implications: A hypothetical model of these barriers has been developed based upon experts’ opinions. The conclusions so drawn may be further modified to apply in real situation problem. Practical implications: Clear understanding of these barriers will help organizations to prioritize better and manage their resources in an efficient and effective way.Originality/value: Through this paper we contribute to identify the barriers to implement GSCM in Indian automobile industry and to prioritize them

  18. Experimental research on electric field jump in low magnetic fields: Detection of damage in new ex-situ MgB{sub 2} barriers in MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Gajda, D., E-mail: dangajda@op.pl [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wroclaw (Poland); Morawski, A. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa (Poland); Zaleski, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw (Poland); Hossain, M.S.A. [Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, North Wollongong, NSW 2519 (Australia); Rindfleisch, M. [Hyper Tech Research, Inc, 1275 Kinnear Road, Columbus, OH 43212 (United States); Cetner, T. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warszawa (Poland)

    2015-10-25

    We explored the incorporation of field sweep (constant current and rapidly increasing magnetic field) into the four-probe method as a new technique to detect defects in barrier layers in superconducting MgB{sub 2} wires. This method allows us to observe jumps in the electric field in low magnetic fields. The scanning electron microscopy results indicate that such a jump originates from cracks in Nb barriers and ex-situ MgB{sub 2} barriers. Our research indicates that the field sweep allows us to detect damage to barriers that are made of superconducting materials. This method can be the basis for an industrial method for detecting damages in MgB{sub 2} wires. These defects reduce the critical current of MgB{sub 2} wire. Detection and removal of these defects will allow us to produce MgB{sub 2} wires with ex-situ MgB{sub 2} and Nb barriers that will have improved critical current density. Manufacturing of MgB{sub 2} wires with new ex-situ MgB{sub 2} barriers is a new technological concept. This type of barrier is cheaper and easier to manufacture, leading to cheaper MgB{sub 2} wires. Moreover, we show that critical current can be measured by two methods: current sweep (constant magnetic field and quickly increasing current) and field sweep. - Graphical abstract: Our results indicate that the jump electric field low magnetic fields. This jump indicates damage in Nb and ex situ MgB{sub 2} barrier. Detection and removal of defects will increase J{sub c} in MgB{sub 2} wires and will increase the applicability of MgB{sub 2} wire. - Highlights: • Jump electric field in the 1 T indicates damage to the Nb barrier. • Jump resistance at 9 K indicates damage to the Nb barrier. • Jump electric field in low magnetic field indicates damage to ex situ MgB{sub 2} barrier. • Damage Nb and ex situ MgB{sub 2} barrier significantly reduces the critical current density in the MgB{sub 2} wire.

  19. Biological intrusion barriers for large-volume waste-disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Cline, J.F.; Rickard, W.H.

    1982-01-01

    intrusion of plants and animals into shallow land burial sites with subsequent mobilization of toxic and radiotoxic materials has occured. Based on recent pathway modeling studies, such intrusions can contribute to the dose received by man. This paper describes past work on developing biological intrusion barrier systems for application to large volume waste site stabilization. State-of-the-art concepts employing rock and chemical barriers are discussed relative to long term serviceability and cost of application. The interaction of bio-intrusion barrier systems with other processes affecting trench cover stability are discussed to ensure that trench cover designs minimize the potential dose to man. 3 figures, 6 tables

  20. Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier.

    Science.gov (United States)

    Vieira, Bruno C; Butts, Thomas R; Rodrigues, Andre O; Golus, Jeffrey A; Schroeder, Kasey; Kruger, Greg R

    2018-04-24

    Herbicide particle drift reduces application efficacy and can cause severe impacts on nearby vegetation depending on the herbicide mode-of-action, exposure level, and tolerance to the herbicide. A particle drift mitigation effort placing windbreaks or barriers on the field boundaries to reduce off-target movement of spray particles has been utilized in the past. The objective of this research was to evaluate the effectiveness of field corn (Zea mays L.) at different heights as a particle drift barrier. Applications with a non-air inclusion flat fan nozzle (ER11004) resulted in greater particle drift when compared to an air inclusion nozzle (TTI11004). Eight rows of corn were used as barriers (0.91, 1.22, and 1.98 m height) which reduced the particle drift for both nozzles, especially at shorter downwind distances. Applications with the ER11004 nozzle without corn barriers had 1% of the applied rate (D 99 ) predicted to deposit at 14.8 m downwind, whereas this distance was reduced (up to 7-fold) when applications were performed with corn barriers. The combination of corn drift barriers and nozzle selection (TTI11004) provided satisfactory particle drift reduction when the D 99 estimates were compared to applications with the ER11004 nozzle without corn barriers (up to 10-fold difference). The corn drift barriers were effective in reducing particle drift from applications with the ER11004 and the TTI11004 nozzles (Fine and Ultra Coarse spray classifications, respectively). The corn drift barrier had appropriate porosity and width as the airborne spray was captured within its canopy instead of deflecting up and over it. This article is protected by copyright. All rights reserved.

  1. Healthcare professionals' organisational barriers to health information technologies-a literature review.

    Science.gov (United States)

    Lluch, Maria

    2011-12-01

    This literature review identifies and categorises, from an organisational management perspective, barriers to the use of HIT or ICT for health. Based on the review, it offers policy interventions. This systematic literature review was carried out during December 2009 and January 2010. Additional on-going reviews of updates through automated system alerts took place up until this paper was submitted. A total of thirty-one sources were searched including nine software platforms/databases, fifteen specialised websites/targeted databases, Google Scholar, ISI Science Citation Index and five journals hand-searched. The study covers seventy-nine articles on organisational barriers to ICT adoption by healthcare professionals. These are categorised under five main headings - (I) Structure of healthcare organisations; (II) Tasks; (III) People policies; (IV) Incentives; and (V) Information and decision processes. A total of ten subcategories are also identified. By adopting an organisational management approach, some recommendations to remove organisational management barriers are made. Despite their apparent promise, health information technologies (HIT) have proved difficult to implement. This systematic review reveals the implementation barriers associated to organisational management and their interrelations. Several important future directions in the field are also suggested: (1) there is a need for further research providing evidence of HIT cost-effectiveness as well as the development of optimal HIT applications; (2) more information is needed regarding organisational change, incentives, liability issues, end-users HIT competences and skills, structure and work process issues involved in realising the benefits from HIT. Future policy interventions should consider the five dimensions identified when addressing the impact of HIT in healthcare organisational systems, and how the impact of an intervention aimed at a particular dimension would interrelate with others. 2011

  2. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  5. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  6. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  7. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert [Adam Mickiewicz University in Poznan, Poznan (Poland)

    2014-02-15

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration.

  8. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    International Nuclear Information System (INIS)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert

    2014-01-01

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration

  9. Environmental Impacts of Stover Removal in the Corn Belt

    Energy Technology Data Exchange (ETDEWEB)

    Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David Muth

    2012-08-01

    When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into simple profit maximization model to show these tradeoffs.

  10. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  11. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Heiser, J.; Stewart, W.

    1996-01-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification

  12. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  13. Electrically enhanced MBR system for total nutrient removal in remote northern applications.

    Science.gov (United States)

    Wei, V; Elektorowicz, M; Oleszkiewicz, J A

    2012-01-01

    phosphorus removal was further demonstrated at an operating temperature of 10 °C when fed with real sewage. The EMBR system has the potential for highly automated control and minimal maintenance, which is particularly suitable for remote northern applications.

  14. Electron tunneling across a tunable potential barrier

    International Nuclear Information System (INIS)

    Mangin, A; Anthore, A; Rocca, M L Della; Boulat, E; Lafarge, P

    2009-01-01

    We present an experiment where the elementary quantum electron tunneling process should be affected by an independent gate voltage parameter. We have realized nanotransistors where the source and drain electrodes are created by electromigration inducing a nanometer sized gap acting as a tunnel barrier. The barrier potential shape is in first approximation considered trapezoidal. The application of a voltage to the gate electrode close to the barrier region can in principle affect the barrier shape. Simulations of the source drain tunnel current as a function of the gate voltage predict modulations as large as one hundred percent. The difficulty of observing the predicted behaviour in our samples might be due to the peculiar geometry of the realized tunnel junction.

  15. Causes and Recommendations for Unanticipated Ink Retention Following Tattoo Removal Treatment

    Science.gov (United States)

    Chen, Cynthia L.; Desai, Alpesh; Desai, Tejas

    2013-01-01

    While placement of ink into the skin is a long-standing tradition, patients are now seeking tattoo removal on a more frequent basis. Once considered acceptable removal options, tattoo ink removal via physical destruction included dermabrasion, chemical destruction, salabrasion, thermal destruction, and cryotherapy. Now these options are used extremely infrequently. These modalities provided unpredictable results and often required prolonged healing times and left patients with skin discoloration, pain, scarring, and ink retention. Even the widely adopted use of lasers, now considered the gold standard method, offers some level of unpredictability surrounding the natural progression of ink resolution. Multiple factors need to be taken into consideration when successfully removing tattoo pigment including the modalities used, number and frequency of treatments, proper device technique, and physiological barriers to tattoo removal. This paper serves to elucidate the common causes of ink retention following tattoo removal treatment with recommendations on how best to address this relatively common occurrence. PMID:23882312

  16. Identifying and overcoming barriers to technology implementation

    International Nuclear Information System (INIS)

    Bailey, M.; Warren, S.; McCune, M.

    1996-01-01

    In a recent General Accounting Office report, the Department of Energy's (DOE) Office of Environmental Management was found to be ineffective in integrating their environmental technology development efforts with the cleanup actions. As a result of these findings, a study of remediation documents was performed by the Technology Applications Team within DOE's Office of Environmental Restoration (EM-40) to validate this finding and to understand why it was occurring. A second initiative built on the foundation of the remediation document study and evaluated solutions to the ineffective implementation of improved technologies. The Technology Applications Team examined over 50 remediation documents (17 projects) which included nearly 600 proposed remediation technologies. It was determined that very few technologies are reaching the Records of Decision documents. In fact, most are eliminated in the early stages of consideration. These observations stem from regulators' and stakeholders' uncertainties in cost and performance of the technology and the inability of the technology to meet site specific conditions. The Technology Applications Team also set out to identify and evaluate solutions to barriers to implementing innovative technology into the DOE's environmental management activities. Through the combined efforts of DOE and the Hazardous Waste Action Coalition (HWAC), a full day workshop was conducted at the annual HWAC meeting in June 1995 to solve barriers to innovative technology implementation. Three barriers were identified as widespread throughout the DOE complex and industry. Identified barriers included a lack of verified or certified cost and performance data for innovative technologies; risk of failure to reach cleanup goals using innovative technologies; and communication barriers that are present at virtually every stage of the characterization/remediation process from development through implementation

  17. [Do organizational barriers to pneumococcal and influenza vaccine access exist?].

    Science.gov (United States)

    Rousseau, Louise; Guay, Maryse; Archambault, Denis; El m'ala, Zahra; Abdelaziz, Nadia

    2007-01-01

    Despite the implementation of a Quebec immunization program against influenza and pneumococcal disease (PQIIP), vaccine coverage has remained low. There have been many studies on personal barriers to vaccination, but few have explored other kinds of barriers. To explore the presence of barriers in relation to the organization of the health care system and to propose recommendations for increasing vaccine coverage. Within a mixed protocol, a phone survey of 996 people in the target population and a case study implicating the follow-up of the PQIIP with all the site and actor categories via 43 semistructured interviews and 4 focus groups were realized. Survey data underwent a descriptive statistical analysis. Qualitative analysis followed the Miles and Huberman approach. The results indicate the presence of barriers with regard to information accessibility. These include access to: the physicians' recommendation, knowledge of the efficacy or the security of vaccines, and admissibility of clients to the PQIIP. Organizational barriers were also found to limit access to vaccination, especially in terms of restricted choices of time and location. Coordination and incentives mechanisms are not optimal. Removal of organizational barriers depends more on strategic rather than structural factors. Addressing organizational barriers should be an important component of strategies aimed at improving vaccine coverage. Public health authorities should focus on strategic management of the information and inter-organizational environment.

  18. Considering the use of polyethylene vapour barriers in temperate climates

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, M.D. [Morrison Hershfield Ltd., Vancouver, BC (Canada); Brown, W.C. [Morrison Hershfield Ltd., Ottawa, ON (Canada)

    2003-07-01

    Most building envelope assemblies in Canada must include a vapour barrier in order to comply with Canadian building codes. The installation of sheet polyethylene between the studs and the interior sheathing has been the most common method because it provides more diffusion resistance than necessary to control condensation within a building envelope assembly. It has been suggested that the presence of a polyethylene vapour barrier on the warm-in-winter side of the insulation may actually cause moisture problems because a very low permeance material increases average moisture levels. This paper examined the theory that a vapour barrier at this location restricts drying of moisture that enters the building from outside. Pacific coastal regions of Canada and the United States were presented as examples. Other ways that a polyethylene vapour barrier affects wall performance were also presented. The advanced hygrothermal model HygIRC, developed by Canada's National Research Council, was used to simulate the performance of a wall assembly. Results indicate that eliminating the low permeance polyethylene vapour barrier does not necessarily reduce the risk of moisture problems. Removal of the vapour barrier may have some negative effects, such as increased risk of periodic moisture accumulation and mold growth on paper-faced gypsum board. 7 refs., 2 tabs., 7 figs.

  19. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  20. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  1. NOx removal enhancement by a Jerks - and - Jumps type electrode in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Mercado-Cabrera, A; Villar, E L del; Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Pena-Eguiluz, R; Munozoz-Castro, A; Jaramillo-Sierra, B; Piedad-Beneitez, A de la

    2008-01-01

    In this study, the electrode surface of a NOx removal treatment reactor has been modified in order to reduce its electric potential level and, at the same time, to increase its removal capacity by generating a cold plasma using a non-homogenous electric field on the electrode surface. This electric field has been achieved by means of a jerks and jumps-like electrode profile. The other electrode conserves the original flat form. Then, experiments on the removal of NOx were carried out in this 22.4 cm 3 reactor. Concentrations of 30-80 μmol/mol of NOx in nitrogen were used with 1 SLPM flows. The exhaust gases were analysed as well as characterised by gas chromatography and mass spectrometry. Additional experiments were also carried out in a second reactor of the same reaction volume but where two conventional flat and parallel electrodes were used, in order to compare the results. The NO removal efficiency in the two flat electrode case approached 87% while ∼98% in the jerks and jumps reactor

  2. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Heiser, J.; Dwyer, B.

    1995-01-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper will discuss the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration will take place at a cold site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington

  3. The Use of Reactive Materials in Septic Systems for Pathogens and Nitrate Removal

    Science.gov (United States)

    Suhogusoff, A. V.; Hirata, R.; Aravena, R.; Stimson, J.; Robertson, W.

    2009-05-01

    The developing countries have an urgent need for cheap and efficient techniques for the improvement of sanitary conditions in areas without public water supply and sewerage system, especially in suburban regions or irregular occupation areas, where there is a great lack of social assistance. In this type of situations, the inhabitants use dug wells for water use and cesspits for disposal of sewage, which usually contaminates the groundwater with nitrate and microorganisms. As part of a study aiming to develop new sewage treatment systems in an irregular occupation area located at the District of Barragem, south region of the municipality of São Paulo (Brazil), a conventional cesspit (named as "Control") and an alternative septic system were constructed and monitored for a year. The design of the alternative septic system included a 1m thickness reactive barrier constituted by BOF (Budget Oxygen Furnace - a byproduct of the steel-making industry) for pathogens removal, then 1m sand package where the wastewater is oxidized and at the bottom the wastewater is in contact with a 0,5m thickness reactive barrier constituted by sawdust (carbon source), where redox conditions are very reducing and denitrification and even methanogenesis can take place. The chemical and biological data collected in the alternative septic system showed complete removal of the pathogens in the BOF barrier, then nitrification occurred between the BOF and the bottom of sand package. However denitrification in the sawdust barrier was incomplete because of the high pH caused by the BOF materials, which can reduced the number of denitrifiers bacteria present in the sawdust barrier. Isotope analyses that are been carried out in the residual nitrate will provided more information about the extent of the denitrification reaction in the alternative septic system. In case of the control cesspit, it was observed the occurrence of high concentration of ammonium, dissolved organic carbon, CO2, CH4 and low

  4. Impedance-based cell monitoring: barrier properties and beyond

    Directory of Open Access Journals (Sweden)

    Benson Kathrin

    2013-01-01

    for barrier forming cells. Another impedance-based approach requires cells to be grown directly on solid, micro-structured electrodes. Here, we will discuss the physical background of the different techniques; advantages, disadvantages, and applications will be scrutinized. The aim is to give the reader a comprehensive understanding concerning the range and limits of the application, mainly focusing on endothelial cells.

  5. Application of banana peels waste as adsorbents for the removal of CO2, NO, NOx, and SO2 gases from motorcycle emissions

    Science.gov (United States)

    Viena, V.; Elvitriana; Wardani, S.

    2018-03-01

    The aims of the study were to investigate the application of banana peels as adsorbent for the removal of CO, NO, NOx and SO2 gases from motorcycles emissions. The effect of differents thermal activation on the characteristics of banana peels adsorbent (BPA) such as moisture content, ash content, volatile matter and fixed carbon has been studied using proximate analysis. The study of Iodine adsorption capacity of BPA was obtained at 952 mg/g adsorbent. Structure and morphology of BPA were characterized by Fourier transform infrared (FTIR) and field emission scanning electron microscopy (SEM). The results showed that BPA could significantly adsorbed the CO and SO2 gases emissions from motorcycles, but not applicable for NO, NOx gases. After 10 minutes of flue gas analysis at idle mode using BPA adsorption tube, CO gas could be totally removed, from initial 19618 ppm to 0 ppm, while SO2 gas could also be totally removed from 24523 ppm to 0 ppm. SEM test showed that temperature of activation had significant effect on the size of pores of BPA formed. BPA was suitable for application in removing CO and SO2 gases emissions from motorcycles and it helps to reduce the green house gas effects of fossil fuel to the environment.

  6. The biofiltration permeable reactive barrier: Practical experience from Synthesia

    Energy Technology Data Exchange (ETDEWEB)

    Vesela, L.; Nemecek, J.; Siglova, M.; Kubal, M. [DEKONTA, Prague (Czech Republic)

    2006-10-15

    The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants (benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)). Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 10{sup 5} CFU mL{sup -1}.

  7. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  8. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  9. Model assessment of protective barriers: Part 4, Status of FY 1992 work

    International Nuclear Information System (INIS)

    Fayer, M.J.

    1993-03-01

    Protective barriers are being considered for use at the Hanford Site to enhance the isolation of radioactive wastes from water, plant, and animal intrusion. This study is part of an ongoing effort to assess the effectiveness of protective barriers for isolation of wastes from water. Part I of this study was the original modeling assessment by Pacific Northwest Laboratory of various protective barrier designs (e.g., soil type, vegetation). In Part 11 of this study, additional barrier designs were reviewed and several barrier modeling assumptions were tested. A test plan was then produced that detailed the requirement for hydrologic modeling of protective barriers. Part III of this study summarized the status of work in FY 1990 dealing with two-dimensional flow beneath the barrier and with validation testing using lysimeter data. This report (Part IV) addresses the application of a calibrated model to a much longer data set, the application of the calibrated model to a lysimeter that received a different treatment, and the effect of hysteresis on the behavior of water in the protective barrier

  10. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.J.; Nyqvist, R.G.; De Bruijn, F.A.; Stobbe, E.R. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2006-02-15

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC)) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20 ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG.

  11. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, P.J.; Nyqvist, R.G.; de Bruijn, F.A.; Stobbe, E.R. [Energy Research Centre of The Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2006-09-22

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG. (author)

  12. Geochemical barriers formed during in-situ leaching in ore-bearing horizons of hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Solodov, E.N.

    1994-01-01

    The behaviour of major metallogenetic element and associated elements on the boundary of the leaching solution transiting to the unchanged natural water in a layered uranium deposit of infiltration origin is studied. Neutralization geochemical barrier and their relevant secondary barriers-degassing barrier and neutralization barrier are defined, and recent accumulation of uranium, rare earth elements and a series of other elements at these barriers are in progress. The action of underground microorganism during this process is pointed out; the neutralization capacity of the ore-hosting terrigenous rocks is determined and the dimension of the matter removal, migration and reprecipitation in the studied system is evaluated. The principal conclusion is that the studied geological media have sufficient protective nature to resist direct and strong leaching action of the solution

  13. Application of agricultural fibers in pollution removal from aqueous solution

    International Nuclear Information System (INIS)

    Mahvi, A. H.

    2008-01-01

    Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage, Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as bio sorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed

  14. Considerations in the development of subsurface containment barrier performance standards

    International Nuclear Information System (INIS)

    Dunstan, S.; Zdinak, A.P.; Lodman, D.

    1997-01-01

    The U.S. Department of Energy (DOE) is supporting subsurface barriers as an alternative remedial option for management of contamination problems at their facilities. Past cleanup initiatives have sometimes proven ineffective or extremely expensive. Economic considerations coupled with changing public and regulatory philosophies regarding remediation techniques makes subsurface barriers a promising technology for future cleanup efforts. As part of the initiative to develop subsurface containment barriers as an alternative remedial option, DOE funded MSE Technology Applications, Inc. (MSE) to conduct a comprehensive review to identify performance considerations for the acceptability of subsurface barrier technologies as a containment method. Findings from this evaluation were intended to provide a basis for selection and application of containment technologies to address waste problems at DOE sites. Based on this study, the development of performance standards should consider: (1) sustainable low hydraulic conductivity; (2) capability to meet applicable regulations; (3) compatibility with subsurface environmental conditions; (4) durability and long-term stability; (5) repairability; and (6) verification and monitoring. This paper describes the approach for determining considerations for performance standards

  15. Reverse osmosis integrity monitoring in water reuse: The challenge to verify virus removal - A review.

    Science.gov (United States)

    Pype, Marie-Laure; Lawrence, Michael G; Keller, Jurg; Gernjak, Wolfgang

    2016-07-01

    A reverse osmosis (RO) process is often included in the treatment train to produce high quality reuse water from treated effluent for potable purposes because of its high removal efficiency for salinity and many inorganic and organic contaminants, and importantly, it also provides an excellent barrier for pathogens. In order to ensure the continued protection of public health from pathogen contamination, monitoring RO process integrity is necessary. Due to their small sizes, viruses are the most difficult class of pathogens to be removed in physical separation processes and therefore often considered the most challenging pathogen to monitor. To-date, there is a gap between the current log credit assigned to this process (determined by integrity testing approved by regulators) and its actual log removal capability as proven in a variety of laboratory and pilot studies. Hence, there is a challenge to establish a methodology that more closely links to the theoretical performance. In this review, after introducing the notion of risk management in water reuse, we provide an overview of existing and potentially new RO integrity monitoring techniques, highlight their strengths and drawbacks, and debate their applicability to full-scale treatment plants, which open to future research opportunities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fundamentals of the double-humped fission barrier

    International Nuclear Information System (INIS)

    Brack, M.

    1980-01-01

    We review the development of the theory of the fission barrier over the past forty years. Special emphasis is put on the shell-correction method of Strutinsky and its foundation and numerical verification from microscopical Hartree-Fock calculations. The different practical realisations of the method and its applications to the calculation of deformation energy surfaces are reviewed. The influence of the different shape degrees of freedom of the nucleus on the form of the fission barrier is discussed. Finally, we summarize some more recent developments concerning both experimental and theoretical aspects of the double-humped fission barrier. (author)

  17. Application of Metal Oxide Heterostructures in Arsenic Removal from Contaminated Water

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available It has become one of the major environmental problems for people worldwide to be exposed to high arsenic concentrations through contaminated drinking water, and even the long-term intake of small doses of arsenic has a carcinogenic effect. As an efficient and economic approach for the purification of arsenic-containing water, the adsorbents in adsorption processes have been widely studied. Among a variety of adsorbents reported, the metal oxide heterostructures with high surface area and specific affinity for arsenic adsorption from aqueous systems have demonstrated a promising performance in practical applications. This review paper aims to summarize briefly the metal oxide heterostructures in arsenic removal from contaminated water, so as to provide efficient, economic, and robust solutions for water purification.

  18. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    Science.gov (United States)

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  19. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  20. Moving Out of the Office: Removing Barriers to Access to Psychiatrists.

    Science.gov (United States)

    Paris, Joel; Goldbloom, David; Kurdyak, Paul

    2015-09-01

    Our paper offers a perspective on barriers to access to psychiatric care. Research shows that access depends not simply on the total number of trained specialists but also on their kind of practice. In some large cities, some practitioners follow a small number of patients in long-term psychotherapy, a practice supported by government insurance, which places no limits on the number of sessions or treatment duration. The problem is that long-term psychotherapy, despite a rich tradition in psychiatry, is not an evidence-based treatment. This review recommends a model in which psychiatrists spend more time in consultation with primary care professionals, in acute care for patients with severe mental illness, and in briefer, more cost-effective forms of psychotherapy.

  1. PRELIMINARY RESULTS FROM APPLICATION PHOSLOCK® TO REMOVE PHOSPHORUS COMPOUNDS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Magdalena Hanna Gajewska

    2017-07-01

    Full Text Available The aim of the study is to assess the removal effectiveness of phosphorus compounds by using lanthanum-modified bentonite. This material was produced by the Australian company Phoslock® Water Solutions Pty Ltd. According to the company, Phoslock® has substantial capacity to bound phosphate anions. The investigation was carried out in steady conditions in laboratory model with beakers. The results of the study are related to the determination of hydraulic load, time of mixing and time of sedimentation. Research with synthetic wastewater was conducted in 4 beakers which were mixing by 5, 10, 20 and 30 minutes respectively. Samples for analyzing were taken from each beaker after 30 minutes, 1, 2, 3, 4 and 24 hours of sedimentation. Studies were conducted to determine the optimal dose of Phoslock® with a known concentration of phosphate anions PO43- in artificial wastewater, time of mixing and time of sedimentation. All samples were taken before and after the treatment with Phoslock® and they were analyzed with following parameters: pH, total suspended solids, conductivity, turbidity, color and phosphate concentration. The carried out investigations confirmed high efficiency of phosphate anions PO43- removal (over 95%, and the final concentration as average was 0.1 mg/dm3. The application of Phoslock® for phosphate anions PO43- did not change the pH of final effluent

  2. ADSORPTIVE REMOVAL OF FLUORIDE FROM WATER USING ...

    African Journals Online (AJOL)

    Preferred Customer

    Currently available treatment methods for removal of excess fluoride from water are broadly divided into three ... the application of nanoparticles as sorbents for fluoride removal. Sundaram [26] studied the ... Characterization of adsorbent.

  3. Removing Barriers for Effective Deployment of Intermittent Renewable Generation

    Science.gov (United States)

    Arabali, Amirsaman

    The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation

  4. Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water

    Science.gov (United States)

    Nthumbi, Richard M.; Catherine Ngila, J.; Moodley, Brenda; Kindness, Andrew; Petrik, Leslie

    samples and environmental water samples. It was observed that both chromium(VI) and phosphate adsorption followed pseudo-second-order kinetics. During the regeneration process, it was established that Cr(VI) was reduced to Cr(III) at the surface of the sorbent. This reaction offers the advantage of reducing the toxicity of chromium(VI) in water. The results of this work have potential applications in the removal of these anions in contaminated drinking water thus improving its quality for human consumption.

  5. Barriers to Banking - Towards an Inclusive Banking Environment in South Africa.

    Science.gov (United States)

    Martinson, Estelle; Martinson, Johannes

    2016-01-01

    A recent study in South Africa on the barriers to banking which involved customers in three disability groups namely mobility, hearing and vision has highlighted that currently banking in South Africa is not accessible. Customers with a disability are unable to independently use banking services across a wide range of channels. Exclusion from something as fundamental as managing their own financial affairs raise serious human rights concerns and requires committed action from decision-makers to address this. The fact that solutions to all of the identified barriers have been successfully implemented in banks in other parts of the world for many years emphasize that this is not a technical challenge. While some solutions require complex or expensive changes such as removing physical access barriers and ensuring that digital channels meet internationally accepted standards of accessibility, there are many simple and low-cost solutions which can be implemented immediately and would make a world of difference to these customers and their experience of banking. One key barrier which emerged in all the focus groups and surveys is attitudinal barriers - staff who are unwilling to assist, impatient, interact with the customer's assistant instead of directly with them and lack basic skills on how to interact with someone who has a disability. A comprehensive framework of banking was used to identify a wide range of barriers. The barriers were classified as attitudinal, barriers to physical access, digital access barriers, barriers to information, communication barriers and some generic concerns such as safe evacuation during emergencies and alternative authentication. Both the barriers and the solutions where ranked by participants. From a theoretical perspective, the benefit of a customer-centric approach to understanding these barriers and the innovation potential of a Universal Design approach is affirmed by this study.

  6. Research on the application of active sound barriers for the transformer noise abatement

    Directory of Open Access Journals (Sweden)

    Hu Sheng

    2016-01-01

    Full Text Available Sound barriers are a type of measure most commonly used in the noise abatement of transformers. In the noise abatement project of substations, the design of sound barriers is restrained by the portal frames which are used to hold up outgoing lines from the main transformers, which impacts the noise reduction effect. If active sound barriers are utilized in these places, the noise diffraction of sound barriers can be effectively reduced. At a 110kV Substation, an experiment using a 15-channel active sound barrier has been carried out. The result of the experiment shows that the mean noise reduction value (MNRV of the noise measuring points at the substation boundary are 1.5 dB (A. The effect of the active noise control system is impacted by the layout of the active noise control system, the acoustic environment on site and the spectral characteristic of the target area.

  7. New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

    Science.gov (United States)

    Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.

    2018-01-01

    The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.

  8. Stochastic transport of particles across single barriers

    International Nuclear Information System (INIS)

    Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur

    2012-01-01

    Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.

  9. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system

  10. Mercury removal from solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-01-01

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I 2 leaching processes to determine the applicability of this process to mercury containing solid mixed waste

  11. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    International Nuclear Information System (INIS)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future

  12. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

  13. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  14. Constructing bottom barriers with met grouting

    International Nuclear Information System (INIS)

    Shibazaki, M.; Yoshida, H.

    1997-01-01

    Installing a bottom barrier using conventional high pressure jetting technology and ensuring barrier continuity is challenging. This paper describes technology that has been developed and demonstrated for the emplacement of bottom barriers using pressures and flow rates above the conventional high pressure jetting parameters. The innovation capable of creating an improved body exceeding 5 meters in diameter has resulted in the satisfying connection and adherence between the treated columns. Besides, the interfaces among the improved bodies obtain the same strength and permeability lower than 1 x 10 -7 cm/sec as body itself. A wide variety of the thickness and the diameter of the improved mass optimizes the application, and the method is nearing completion. The paper explains an aspect and briefs case histories

  15. Field study plan for alternate barriers

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.; Relyea, J.F.

    1989-05-01

    Pacific Northwest Laboratory (PNL) is providing technical assistance in selecting, designing, evaluating, and demonstrating protective barriers. As part of this technical assistance effort, asphalt, clay, and chemical grout will be evaluated for use as alternate barriers. The purpose of the subsurface layer is to reduce the likelihood that extreme events (i.e., 100-year maximum storms, etc.) will cause significant drainage through the barrier. The tests on alternate barriers will include laboratory and field analysis of the subsurface layer performance. This field test plan outlines the activities required to test and design subsurface moisture barriers. The test plan covers activities completed in FY 1988 and planned through FY 1992 and includes a field-scale test of one or more of the alternate barriers to demonstrate full-scale application techniques and to provide performance data on a larger scale. Tests on asphalt, clay, and chemical grout were initiated in FY 1988 in small (30.5 cm diameter) tube-layer lysimeters. The parameters used for testing the materials were different for each one. The tests had to take into account the differences in material characteristics and response to change in conditions, as well as information provided by previous studies. 33 refs., 8 figs., 1 tab

  16. Application of Nanoparticle Iron Oxide in Cigarette for Simultaneous CO and NO Removal in the Mainstream Smoke

    Directory of Open Access Journals (Sweden)

    Li P

    2014-12-01

    Full Text Available Based on the unique temperature and oxygen profiles in a burning cigarette, a novel approach is proposed in this paper to use a single oxidant/catalyst in the cigarette filler for simultaneous removal of carbon monoxide (CO and nitric oxide (NO in mainstream smoke. A nanoparticle iron oxide is identified as a very active material for this application due to its multiple functions as a CO catalyst, as a CO oxidant, and in its reduced forms as a NO catalyst. The multiple functions of the nanoparticle iron oxide are characterized in a flow tube reactor and the working mechanisms of these multiple functions for CO and NO removal in a burning cigarette are explained. The effect of smoke condensate on the catalyst are examined and discussed. The advantage of in situ generation of the catalyst during the cigarette burning process is illustrated. The test results of nanoparticle iron oxide for CO and NO removal in cigarettes are presented.

  17. Selection and identification of fungi isolated from sugarcane bagasse and their application for phenanthrene removal from soil.

    Science.gov (United States)

    Cortés-Espinosa, D V; Fernández-Perrino, F J; Arana-Cuenca, A; Esparza-García, F; Loera, O; Rodríguez-Vázquez, R

    2006-01-01

    This work investigated the identification and selection of fungi isolated from sugarcane bagasse and their application for phenanthrene (Phe) removal from soil. Fungi were identified by PCR amplification of ITS regions as Aspergillus terrus, Aspergillus fumigatus and Aspergillus niger, Penicillium glabrum and Cladosporium cladosporioides. A primary selection of fungi was accomplished in plate, considering Phe tolerance of every strain in two different media: potato dextrose agar (PDA) and mineral medium (MM). The radial extension rate (r(r)) in PDA exhibited significant differences (p<0.05) at 200 and 400 ppm of Phe. A secondary selection of A. niger, C. cladosporoides, and P. glabrum sp. was achieved based on their tolerance to 200, 400, 600 and 800 ppm of Phe, in solid culture at a sugarcane bagasse/contaminated soil ratio of 95:5, in Toyamas, Czapeck and Wunder media. Under these conditions, a maximum (70%) Phe removal by A. niger was obtained. In addition C. cladosporioides and A. niger were able to remove high (800 ppm) Phe concentrations.

  18. Application of natural citric acid sources and their role on arsenic removal from drinking water: a green chemistry approach.

    Science.gov (United States)

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Islam, Sk Mijanul; Bundschuh, Jochen; Chatterjee, Debashis; Hidalgo, Manuela

    2013-11-15

    Solar Oxidation and Removal of Arsenic (SORAS) is a low-cost non-hazardous technique for the removal of arsenic (As) from groundwater. In this study, we tested the efficiency of natural citric acid sources extracted from tomato, lemon and lime to promote SORAS for As removal at the household level. The experiment was conducted in the laboratory using both synthetic solutions and natural groundwater samples collected from As-polluted areas in West Bengal. The role of As/Fe molar ratios and citrate doses on As removal efficiency were checked in synthetic samples. The results demonstrate that tomato juice (as citric acid) was more efficient to remove As from both synthetic (percentage of removal: 78-98%) and natural groundwater (90-97%) samples compared to lemon (61-83% and 79-85%, respectively) and lime (39-69% and 63-70%, respectively) juices. The As/Fe molar ratio and the citrate dose showed an 'optimized central tendency' on As removal. Anti-oxidants, e.g. 'hydroxycinnamates', found in tomato, were shown to have a higher capacity to catalyze SORAS photochemical reactions compared to 'flavanones' found in lemon or lime. The application of this method has several advantages, such as eco- and user- friendliness and affordability at the household level compared to other low-cost techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Evaluation of Macronet polymeric adsorbents for removal of PAHs from contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Lao, C.; Farran, A.; Cortina, J.L.

    2005-01-01

    problem is the use of improved polymeric adsorbents as Hypersol Macronet resins that could be chemically regenerated. Hypersol Macronet resins present a hyper-reticulated structure that provides to the solid macro-porosity and micro-porosity at the same time. This means to have a control on the size pores and relatively high surface areas (1000-2000 m 2 /g). Then sorption barriers have been used as containment technology for PAHs. Groundwater velocity, barrier reactivity, and contaminant concentration among other factors affect the required size of the barrier. The reactivity of the barrier media should be determined from laboratory tests The present work describes the sorption properties (loading capacity and kinetic parameters) of Macronet polymeric adsorbent MN200. Batch experiments were performed to determine both equilibrium and kinetic parameters on the removal of different PAHs (Naphthalene, Acenaphthene Pyrene, Anthracene, Fluoranthene and Fluorene). Sorption parameters have been use to determine design parameters on the application of MN200 as reactive material in extractable PRBs. It is recognised that a fixed bed sorption process is operationally simple, however in order to be able and economically competitive, the adsorbent must exhibit high selectivity toward the target contaminant, be amenable to efficient regeneration and durable. MN200 has shown to be an excellent sorption material for PAH removal. The sorption process could be achieved with high values of loading capacities (35-220 mg/g). The experimental data was adjusted to adsorption isotherm models (Langmuir, Freundlich and Redlich-Peterson). Langmuir isotherm showed good fitting for adsorption on activated carbon, meanwhile Redlich-Peterson describe better adsorption on Macronet resin MN200. The sorption process could be described by a first order kinetic model as has been obtained in previous studies when studying the sorption of PAH using activated carbon. The possibility of efficient chemical

  20. Porcine Circovirus (PCV) Removal by Q Sepharose Fast Flow Chromatography

    Science.gov (United States)

    Yang, Bin; Wang, Hua; Ho, Cintia; Lester, Philip; Chen, Qi; Neske, Florian; Baylis, Sally A; Blümel, Johannes

    2013-01-01

    The recently discovered contamination of oral rotavirus vaccines led to exposure of millions of infants to porcine circovirus (PCV). PCV was not detected by conventional virus screening tests. Regulatory agencies expect exclusion of adventitious viruses from biological products. Therefore, methods for inactivation/removal of viruses have to be implemented as an additional safety barrier whenever feasible. However, inactivation or removal of PCV is difficult. PCV is highly resistant to widely used physicochemical inactivation procedures. Circoviruses such as PCV are the smallest viruses known and are not expected to be effectively removed by currently-used virus filters due to the small size of the circovirus particles. Anion exchange chromatography such as Q Sepharose® Fast Flow (QSFF) has been shown to effectively remove a range of viruses including parvoviruses. In this study, we investigated PCV1 removal by virus filtration and by QSFF chromatography. As expected, PCV1 could not be effectively removed by virus filtration. However, PCV1 could be effectively removed by QSFF as used during the purification of monoclonal antibodies (mAbs) and a log10 reduction value (LRV) of 4.12 was obtained. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1464–1471, 2013 PMID:24039195

  1. Tattoo removal with ingenol mebutate.

    Science.gov (United States)

    Cozzi, Sarah-Jane; Le, Thuy T; Ogbourne, Steven M; James, Cini; Suhrbier, Andreas

    2017-01-01

    An increasing number of people are getting tattoos; however, many regret the decision and seek their removal. Lasers are currently the most commonly used method for tattoo removal; however, treatment can be lengthy, costly, and sometimes ineffective, especially for certain colors. Ingenol mebutate is a licensed topical treatment for actinic keratoses. Here, we demonstrate that two applications of 0.1% ingenol mebutate can efficiently and consistently remove 2-week-old tattoos from SKH/hr hairless mice. Treatment was associated with relocation of tattoo microspheres from the dermis into the posttreatment eschar. The skin lesion resolved about 20 days after treatment initiation, with some cicatrix formation evident. The implications for using ingenol mebutate for tattoo removal in humans are discussed.

  2. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin

    2012-10-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days\\' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  3. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin; Chekol, E. T.; Maeng, Sungkyu; Ghebremichael, Kebreab A.; Houtman, Corine J.; Verliefde, Arne R. D.; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  4. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    Science.gov (United States)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  5. Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application

    DEFF Research Database (Denmark)

    Meriçer, Çağlar; Minelli, Matteo; Angelis, Maria G De

    2016-01-01

    Fully bio-based and biodegradable materials, such as polylactic acid (PLA) and microfibrillated cellulose (MFC), are considered in order to produce a completely renewable packaging solution for oxygen barrier applications, even at medium-high relative humidity (R.H.). Thin layers of MFC were coated...... on different PLA substrates by activating film surface with an atmospheric plasma treatment, leading to the fabrication of robust and transparent multilayer composite films, which were then characterized by different experimental techniques. UV transmission measurements confirmed the transparency of multilayer...... films (60% of UV transmission rate), while SEM micrographs showed the presence of a continuous, dense and defect free layer of MFC on PLA surface. Concerning the mechanical behavior of the samples, tensile tests revealed that the multilayer films significantly improved the stress at break value of neat...

  6. CORRIDOR-TYPE BAFFLED MIXING BASIN WITH CROSS POROUS BARRIERS

    Directory of Open Access Journals (Sweden)

    S. M. Epoyan

    2018-02-01

    corridors. Practical value. The location of removable porous barriers in the corridors of the baffled mixing basin makes it possible to increase the efficiency of its operation and improve the quality of the treated water.

  7. Timing of 15N fertiliser application, partitioning to reproductive and vegetative tissue, and nutrient removal by field-grown low-chill peaches in the subtropics

    International Nuclear Information System (INIS)

    Huett, D.O.; Stewart, G. R.

    1990-01-01

    The effect of timing of nitrogen (N) application as 15 N-enriched ammonium sulfate (50 kg N/ha) on the growth response and N uptake by vegetative and reproductive tissues was investigated in the low-chill peach cv. Flordagem growing on a krasnozem soil at Alstonville. Nitrogen was applied in late August, late September, late October, mid February, and early May. Tree parts were sampled for 15 N at 4 and 8 weeks after application and after fruit harvest in December the following season. After fruit yield was measured, trees were excavated and divided into parts for dry weight and nutrient concentration determinations, and fertiliser N recovery and to estimate tree nutrient removal. Nitrogen enrichment was detected in all plant parts within 4 weeks of N application, irrespective of timing, and was greatest in rapidly growing tissues such as laterals, leaves, and fruit. The most rapid (P 15 N enrichment in vegetative tissues resulted from September, October, and February N applications and for fruit from a September application. The level of enrichment 4 weeks after fertiliser N application was similar for vegetative and reproductive tissues. The timing of N application in the first season had no effect on fruit yield and vegetative growth the following season. At tree removal, the recovery of fertiliser N in most tree parts increased (P < 0.05) as fertiliser N application was delayed from October to May the previous season. Maximum contribution of absorbed N to whole tree N was 10-11% for laterals, leaf, and fruit. Data from this study indicate that vegetative and reproductive growth have similar demand for absorbed N, and that uptake of fertiliser N is most rapid when an application precedes a period of rapid growth. Over 2 seasons, recovery of applied fertiliser N was 14.9-18.0% in the tree, confirming that stored N and the soil N pool are the dominant sources of tree N. The recovery of fertiliser N from the May application was 18% even though uptake in all tree

  8. Market and policy barriers for demand response providing ancillary services in U.S. markets

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); MacDonald, Jason [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-03-01

    This study provides an examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority. The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators. In order to help illustrate the differences in barriers among various wholesale market designs and their constituent retail environments, four regions were chosen to use as case studies: Colorado, Texas, Wisconsin, and New Jersey.

  9. Application of a new adsorbent for fluoride removal from aqueous solutions

    International Nuclear Information System (INIS)

    Srivastav, Arun Lal; Singh, Prabhat K.; Srivastava, Varsha; Sharma, Yogesh C.

    2013-01-01

    Highlights: • A new adsorbent has been prepared. • The adsorbent is non-toxic and easy to synthesize. • HBO 1 has displayed best capacity for the removal of fluoride. • Unlike most adsorbents, HBO 1 is suitable for the removal of fluoride from water. • The process of removal has been optimized. -- Abstract: Hydrous bismuth oxides (HBOs) have been investigated as a possible adsorbent for fluoride removal from water. Apart from bismuth trioxide (Bi 2 O 3 ) compound, three additional HBOs, named as HBO 1 , HBO 2 , and HBO 3 were synthesized in the laboratory and examined for their relative potentials for fluoride removal from aqueous solutions. HBO 1 was observed to have highest fluoride removal at 10 mg/L initial concentration in aqueous environment. Among competitive anions, sulfate and chloride affect the fluoride removal by HBO 1 more adversely than bicarbonate. Characterization of HBOs using X-ray diffraction (XRD) pattern analyses indicated crystalline structures, and the broad chemical composition of materials showed successive increase of Bi(OH) 3 from HBO 1 to HBO 3 , with decrease of BiOCl in the same order. Fourier Transform Infrared (FTIR) spectroscopy analyses indicated presence of Bi-O bond and successively increasing number of peaks corresponding to OH ion from HBO 1 to HBO 3 . Scanning Electron Microscopic (SEM) images of HBOs show rough and porous structure of the materials. Presence of higher proportion of chloride compound in HBO 1 with respect to others appears to be the factor responsible for its better performance in fluoride removal from aqueous solutions

  10. Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MacDonald, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-03-01

    In this study, we attempt to provide a comprehensive examination of various market and policy barriers to demand response providing ancillary services in both ISO/RTO and non-ISO/RTO regions, especially at the program provider level. It is useful to classify barriers in order to create a holistic understanding and identify parties that could be responsible for their removal. This study develops a typology of barriers focusing on smaller customers that must rely on a program provider (i.e., electric investor owned utility or IOU, ARC) to create an aggregated DR resource in order to bring ancillary services to the balancing authority.ii The barriers were identified through examinations of regulatory structures, market environments, and product offerings; and discussions with industry stakeholders and regulators. In order to help illustrate the differences in barriers among various wholesale market designs and their constituent retail environments, four regions were chosen to use as case studies: Colorado, Texas, Wisconsin, and New Jersey. We highlight the experience in each area as it relates to the identified barriers.

  11. Oxygen–induced barrier height changes in aluminium – amorphous ...

    African Journals Online (AJOL)

    The results show that the application of voltage causes charge exchange between the surface states and the semiconductor leading to a change in the height of the potential barrier for electrons passing from aluminium into the a-Se films. The empirically determined values of barrier height of Al/a-Se diodes with thin and ...

  12. Preparation and application of potassium and sodium titanate for removal of plutonium from basic solution

    International Nuclear Information System (INIS)

    Patil, Prashant; Pathak, Sachin S.; Pius, I.C.; Mukerjee, S.K.

    2014-01-01

    In PUREX process, after extraction and stripping of uranium and plutonium, the extractant, tributyl phosphate is usually washed with sodium carbonate solution before reuse for the removal of radiolytic/hydrolytic degradation products of TBP and small amounts of HNO 3 , uranium and plutonium goes into aqueous phase during carbonate washings. Partial neutralization of carbonate by the acid converts it to bicarbonate. Removal of plutonium from such sodium carbonate/bicarbonate streams facilitates their disposal. In the present work, studies were carried out to prepare inorganic ion-exchangers such as potassium and sodium titanates for their application as ion-exchange material. It is essential to prepare these materials in granular form to obtain good liquid flow property for ion exchange column operations, however, it is also important that the final product is having good surface area and porosity so that they may exhibit good ion exchange capacity

  13. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad A.; Ullah, Aman, E-mail: amanullah@ualberta.ca

    2014-08-15

    Graphical abstract: - Highlights: • In-situ chemical modification of keratin based material was carried out. • Characterization techniques such as SEM, FTIR, XRD, and DSC were employed. • TGA data was elaborated for its complete thermal and kinetic study. • Sorption of As(III) using modified material was experimentally studied. • Thermodynamics and Isotherm study was made for elucidation of adsorption data. - Abstract: Chemical modification of chicken feathers (CF) and their subsequent role in arsenic removal from water is presented in this paper. The ground CF were chemically treated with four selective dopants such as poly (ethylene glycol) (PEG) diglycidyl ether, poly (N-isopropylacrylamide) (PNIPAM), allyl alcohol (AA) and TrisilanolCyclohexyl POSS. After modification, the solubilized keratin was regenerated by precipitation at acidic pH. The structural changes and properties of modified biopolymer were compared with untreated CF and confirmed by different characterization techniques such as SEM, FTIR, XRD, and DSC. The TGA data was used to discuss thermal decomposition and kinetic behavior of modified biopolymer exhaustively. The modified biopolymers were further investigated as biosorbents for their application in As(III) removal from water. The AA and POSS supported biosorbents executed high removal capacity for As(III) up to 11.5 × 10{sup −2}and 11.0 × 10{sup −2} mg/g from 100 ml arsenic polluted water solution respectively. Thermodynamic parameters such as ΔG{sup 0}, ΔH{sup 0}, ΔS{sup 0} were also evaluated with the finding that overall sorption process was endothermic and spontaneous in nature. Based on linear and non-linear regression analysis, Freundlich Isotherm model showed good fit for obtained sorption data apart from high linear regression values supporting Langmuir isotherm model in sorption of As(III)

  14. Tritium permeation barriers for fusion technology

    International Nuclear Information System (INIS)

    Perujo, A.; Forcey, K.

    1994-01-01

    An important issue concerning the safety, feasibility and fueling (i.e., tritium breeding ratio and recovery from the breeding blanket) of a fusion reactor is the possible tritium leakages through the structural materials and in particular through those operating at high temperatures. The control of tritium permeation could be a critical factor in determining the viability of a future fusion power reactor. The formation of tritium permeation barriers to prevent the loss of tritium to the coolant by diffusion though the structural material seems to be the most practical method to minimize such losses. Many authors have discussed the formation of permeation barriers to reduce the leakage of hydrogen isotopes through proposed first wall and structural materials. In general, there are two routes for the formation of such a barrier, namely: the growth of oxide layers (e.g., Cr 2 O 3 , Al 2 O 3 , etc.) or the application of surface coatings. Non-metals are the most promising materials from the point of view of the formation of permeation barriers. Oxides such as Al 2 O 3 or Cr 2 O 3 or carbides such as SiC or TiC have been proposed. Amongst the metals only tungsten or gold are sufficiently less permeable than steel to warrant investigation as candidate materials for permeation barriers. It is of course possible to grow oxide layers on steel directly by heating in the atmosphere or under a variety of conditions (first route above). The direct oxidizing is normally done in an environment of open-quotes wet hydrogenclose quotes to promote the growth of chromia on, for example, nickel steels or ternary oxides on 316L to prevent corrosion. The application of surface layers (second route above), offers a greater range of materials for the formation of permeation barriers. In addition to reducing permeation, such layers should be adhesive, resistant to attack by corrosive breeder materials and should not crack during thermal cycling

  15. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  16. New concepts for drift pumping a thermal barrier with rf

    International Nuclear Information System (INIS)

    Barter, J.D.; Baldwin, D.; Chen, Y.; Poulsen, P.

    1985-01-01

    Pump neutral beams, which are directed into the loss cone of the TMX-U plugs, are normally used to pump ions from the thermal barriers. Because these neutral beams introduce cold gas that reduces pumping efficiency, and require a straight line entrance and exit from the plug, alternate methods are being investigated to provide barrier pumping. To maintain the thermal barrier, either of two classes of particles can be pumped. First, the collisionally trapped ions can be pumped directly. In this case, the most promising selection criterion is the azimuthal drift frequency. Second, the excess sloshing-ion density can be removed, allowing the use of increased sloshing-beam density to pump the trapped ions. The selection mechanism in this case is the Doppler-shifted ion-cyclotron resonance of the high-energy sloshing-ions (3 keV less than or equal to U/sub parallel/ less than or equal to 10 keV)

  17. Valuing the subsurface pathogen treatment barrier in water recycling via aquifers for drinking supplies

    CSIR Research Space (South Africa)

    Page, D

    2010-03-01

    Full Text Available , using the same risk-based approach that is used for public water supplies. For each of the sites, the aquifer treatment barrier was assessed for its log10 removal capacity much like for other water treatment technologies. This information...

  18. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Zuolian Cheng

    2012-01-01

    Full Text Available This study investigated the applicability of maghemite (γ-Fe2O3 nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDX. Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ ions, solution pH, and salinity on the amount of Pb2+ removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+ reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.

  19. Tattoo removal with ingenol mebutate

    Science.gov (United States)

    Cozzi, Sarah-Jane; Le, Thuy T; Ogbourne, Steven M; James, Cini; Suhrbier, Andreas

    2017-01-01

    An increasing number of people are getting tattoos; however, many regret the decision and seek their removal. Lasers are currently the most commonly used method for tattoo removal; however, treatment can be lengthy, costly, and sometimes ineffective, especially for certain colors. Ingenol mebutate is a licensed topical treatment for actinic keratoses. Here, we demonstrate that two applications of 0.1% ingenol mebutate can efficiently and consistently remove 2-week-old tattoos from SKH/hr hairless mice. Treatment was associated with relocation of tattoo microspheres from the dermis into the posttreatment eschar. The skin lesion resolved about 20 days after treatment initiation, with some cicatrix formation evident. The implications for using ingenol mebutate for tattoo removal in humans are discussed. PMID:28579816

  20. 200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    International Nuclear Information System (INIS)

    Ward, Anderson L.; Link, Steven O.; Draper, Kathryn E.; Clayton, Ray E.

    2009-01-01

    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. The total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the

  1. 200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Link, Steven O.; Draper, Kathryn E.; Clayton, Ray E.

    2009-09-01

    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. The total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the

  2. The Application of a Three-Dimensional Printed Product to Fill the Space After Organ Removal.

    Science.gov (United States)

    Weng, Jui-Yu; Wang, Che-Chuna; Chen, Pei-Jar; Lim, Sher-Wei; Kuo, Jinn-Rung

    2017-11-01

    Maintaining body integrity, especially in Asian societies, is an independent predictor of organ donation. Herein, we report the case of an 18-year-old man who suffered a traumatic brain injury with ensuing brain death caused by a car accident. According to the family's wishes, we used a 3-dimensional printer to create simulated heart, kidneys, and liver to fill the spaces after the patient's organs were removed. This is the first case report to introduce this new clinical application of 3-dimensional printed products during transplantation surgery. This new clinical application may have supportive psychological effects on the family and caregivers; however, given the varied responses to our procedure, this ethical issue is worth discussing. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Direct access tariffs and barriers to choice

    International Nuclear Information System (INIS)

    Levson, D.

    1999-01-01

    The current situation of the power market in Alberta was reviewed. Based on this review is was concluded that the province is a long way from being a competitive, liquid power market. Further, it was predicted that unless large power purchasers get actively involved in managing their options, identify realistic and competitive supply options and actively campaign for the removal of barriers to choice, they will experience significant cost increases in the year 2001 and beyond, due in large measure to the market power exercised by the four major utilities (TAU, EPCOR, APL and Powerex). Barriers to new supply such as the high cost of standby, uncertainties about transmission and natural gas prices, the delays to cogeneration caused by low oil prices, and the design of direct access tariffs by utilities, were also explored. The cumulative contribution of these factors to uncertainties in pool price, fixed price and transmission and distribution costs were outlined

  4. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  5. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems.

    Science.gov (United States)

    Ahn, Joo Sung; Chon, Chul-Min; Moon, Hi-Soo; Kim, Kyoung-Woong

    2003-05-01

    Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes. Among these materials, evaporation cooler dust (ECD), oxygen gas sludge (OGS), basic oxygen furnace slag (BOFS) and to a lesser degree, electrostatic precipitator dust (EPD) effectively removed both As(V) and As(III) during batch experiments. ECD, OGS and BOFS reduced As concentrations to <0.5mg/l from 25mg/l As(V) or As(III) solution in 72 h, exhibiting higher removal capacities than zero-valent iron. High Ca concentrations and alkaline conditions (pH ca. 12) provided by the dissolution of Ca hydroxides may promote the formation of stable, sparingly soluble Ca-As compounds. When initial pH conditions were adjusted to 4, As reduction was enhanced, probably by adsorption onto iron oxides. The elution rate of retained As from OGS and ECD decreased with treatment time, and increasing the residence time in a permeable barrier strategy would be beneficial for the immobilization of As. When applied to real tailing leachate, ECD was found to be the most efficient barrier material to increase pH and to remove As and dissolved metals.

  6. Characterization and Application of a Planar Radio - Inductively-Coupled Plasma Source for the Production of Barrier Coatings.

    Science.gov (United States)

    Mahoney, Leonard Joseph

    A planar radio-frequency (rf) inductively-coupled plasma (ICP) source is used to produce fluorocarbon discharges (CF_4/Ar) to fluorinate the surface of high-density polyethylene (HDPE). Using this system, concurrent studies of discharge characteristics, permeation properties of treated polymers and polymer surface characteristics are conducted to advance the use of plasma-fluorinated polymer surfaces as a barrier layer for automotive applications. Langmuir probes are used to determine spatial distribution of charged-particle and space-potential characteristics in Ar and CF_4/Ar discharges and to show the influence of the spatial distribution of the heating regions and the reactor boundaries on the discharge uniformity. Langmuir probes are also used to identify rf anisotropic drift motion of electrons in the heating regions of the source and transient high-energy electron features in pulsed discharges. These latter features allow pulsed ICP sources to be operated at low time-averaged powers that are necessary to treat thermally sensitive polymers. Fourier Transform Infrared (FITR) spectroscopy is used to measure the dissociation of fluorocarbon gases and to explore differences between pulsed- and continuous -power operation. Dissociation levels of CF_4 (50-85%) using pulsed-power operation are as high as that for continuous operation, even though the net time -averaged power is far less with pulsed operation. The result suggests that pulsed fluorocarbon discharges possess high concentrations of chemically-active species needed for rapid surface fluorination. A gravimetric permeation cup method is used to measure the permeation rate of test fuels through HDPE membranes, and electron spectroscopy for chemical analysis (ESCA) studies are performed to determine the stoichiometry and thickness of the barrier layer. From these studies we find that a 50-70 A thick, polar, fluoro-hydrocarbon over layer reduces the permeation of isooctane/toluene/methanol mixtures by a

  7. Information barriers

    International Nuclear Information System (INIS)

    Fuller, J.L.; Wolford, J.

    2001-01-01

    policy and security reviews. These elements are: Supplier of Integrated Measurement System and Information Barrier; Central Processing Units (CPUs); Non-CPU Equipment; Procedures; Electronic Emanations; Location of Barriers(s); Software, Firmware, CPU Operating Systems; Storage, Authentication, and Disposition of Data and Data Media; Inputs and Outputs. Technical specialists from cooperating parties must be able to prove to their respective policy makers that it is not overly difficult to make measurements of sensitive objects without revealing classified information. Without technical measures to inspect classified nuclear items and materials, it will be extremely difficult to reduce stockpiles in a manner that does not impact the security of Russia and the United States. The importance of successfully developing and implementing effective information barrier methods and procedures can not be overstated. A cooperative program is a good investment in U.S., Russian, and international security and threat reduction. The utility of radiation detection systems to characterize known and unknown quantities of nuclear material is without dispute. Such systems offer a powerful technological tool for warhead dismantlement transparency, and bilateral and international safeguards. There are many examples of their use in the international community today. The problem is the application of such systems with a host country's sensitive nuclear material. If it is one objective of any bilateral or trilateral arrangement to prevent the release of classified nuclear data to the inspecting party when inspecting sensitive materials, then some form of information barrier must be integrated into the measurement system. Through a set of well-defined principles as described above, the protection of such information is not a difficult problem to solve. Perhaps the more difficult problem is providing an inspecting party with confidence, for the case where the host supplies and/or certifies the

  8. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  9. Electron grafted barrier coatings for packaging film modification

    International Nuclear Information System (INIS)

    Rangwalla, I.J.; Nablo, S.V.

    1993-01-01

    The O 2 barrier performance of organosilane films, coated, dried and electron beam grafted to polyolefin film has been studied. Excellent anti-scalping properties based upon limonene (dipentene) transmission measurements have also been observed. Results are also reported on O 2 permeability reduction when the process is applied to common barrier polymers such as EVOH and acrylonitrile. Experience with its in-line application on LDPE is discussed. (author)

  10. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes

    Directory of Open Access Journals (Sweden)

    Semih Gorduk

    2017-01-01

    Full Text Available New metal-free and metallophthalocyanine compounds (Zn, Co, Ni, and Cu were synthesized using 2-hydroxymethyl-1,4-benzodioxan and 4-nitrophthalonitrile compounds. All newly synthesized compounds were characterized by elemental analysis, FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, and GC-MS techniques. The applications of synthesized compounds in Schottky barrier diodes were investigated. Ag/Pc/p–Si structures were fabricated and charge transport mechanism in these devices was investigated using dc technique. It was observed from the analysis of the experimental results that the charge transport can be described by Ohmic conduction at low values of the reverse bias. On the other hand, the voltage dependence of the measured current for high values of the applied reverse bias indicated that space charge limited conduction is the dominant mechanism responsible for dc conduction. From the observed voltage dependence of the current density under forward bias conditions, it has been concluded that the charge transport is dominated by Poole-Frenkel emission.

  11. Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.

    1996-01-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site.

  12. Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1996-01-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site

  13. Compliance with removable orthodontic appliances.

    Science.gov (United States)

    Shah, Nirmal

    2017-12-22

    Data sourcesMedline via OVID, PubMed, Cochrane Central Register of Controlled Trials, Web of Science Core Collection, LILACS and BBO databases. Unpublished clinical trials accessed using ClinicalTrials.gov, National Research Register, ProQuest Dissertation and Thesis database.Study selectionTwo authors searched studies from inception until May 2016 without language restrictions. Quantitative and qualitative studies incorporating objective data on compliance with removable appliances, barriers to appliance wear compliance, and interventions to improve compliance were included.Data extraction and synthesisQuality of research was assessed using the Cochrane Collaboration's risk of bias tool, the risk of bias in non-randomised studies of interventions (ROBINS-I), and the mixed methods appraisal tool. Statistical heterogeneity was investigated by examining a graphic display of the estimated compliance levels in conjunction with 95% confidence intervals and quantified using the I-squared statistic. A weighted estimate of objective compliance levels for different appliances in relation to stipulated wear and self-reported levels was also calculated. Risk of publication bias was assessed using funnel plots. Meta-regression was undertaken to assess the relative effects of appliance type on compliance levels.ResultsTwenty-four studies met the inclusion criteria. Of these, 11 were included in the quantitative synthesis. The mean duration of objectively measured wear was considerably lower than stipulated wear time amongst all appliances. Headgear had the greatest discrepancy (5.81 hours, 95% confidence interval, 4.98, 6.64). Self-reported wear time was consistently higher than objectively measured wear time amongst all appliances. Headgear had the greatest discrepancy (5.02 hours, 95% confidence interval, 3.64, 6.40). Two studies found an increase in compliance with headgear and Hawley retainers when patients were aware of monitoring. Five studies found younger age groups to

  14. Polylactide/Montmorillonite Hybrid Latex as a Barrier Coating for Paper Applications

    Directory of Open Access Journals (Sweden)

    Davide Bandera

    2016-03-01

    Full Text Available We developed a paper coating for the potential application in food packaging based on polylactide and montmorillonite. It is applied to the paper in the form of a stable, water-based latex with a solid content of 25–28 wt %. The latex is prepared from a commercially available polylactide, surfactants, montmorillonite, a plasticizer, chloroform (to be removed later and water by an emulsion/solvent evaporation procedure. This coating formulation is applied to the paper substrate by bar-coating, followed by hot-pressing at 150 °C. The coated papers achieved up to an 85% improvement in water vapor transmission rates when compared to the pristine papers. The coating latex is prepared from inexpensive materials and can be used for a solvent-free coating process. In addition, the ingredients of the latex are non-toxic; thus, the coated papers can be safely used for food packaging.

  15. Application of aragonite shells for the removal of aqueous metals in polluted soils and wastewaters.

    Science.gov (United States)

    Bucca, M.; Köhler, S. J.; Dietzel, M.

    2009-04-01

    In the present study the use of coupled precipitation/dissolution processes for metal (Me) removal from polluted soils and waters by biogenic carbonate (CaCO3) shell surfaces is proposed, according to the following overall reaction: CaCO3 + Me2+ = MeCO3 + Ca2+ This reaction has been investigated at fixed experimental conditions using synthetic model systems consisting in columns, batch, and reactors (e.g. lead, zinc, and cadmium artificial solutions mixed with aragonite shells) that allowed quantifying the kinetics of the process of metal carbonate formation. The above mentioned process has the potential of being used in three different areas of water treatment: a) use of shells as a cheap and effective geologic barrier for contaminated ground or surface waters, b) use as a material in filter beds or fluidized bed for selective cleaning of waste water with the potential of partial metal recovery and c) use as seed crystals during the elimination of metals through precipitation with soda (Na2CO3). Acidic wastewaters containing several pollutants, including heavy and trace metals, are created during production of pesticides, paper, lubricating oil, batteries, acid/alkali, or in ship repair manufacturing, mines drainage systems, metalworking and metal plating industries. Biogenic shells are a waste product in many coastal countries and may thus be more favorable than other solid phases such as clays or zeolithes from an economic viewpoint. Our metal elimination study aims at setting up a low-cost effective elimination system for various types of metal rich waste waters. A number of experimental techniques such as batch, column and flow through reactors were used to optimize the metal removal efficiency in both synthetic and waste waters from the metal finishing industry. Solid liquid ratio, initial and final pH, metal concentration and combination of metals have been varied. Measurements of pH, metal concentration, conductivity and alkalinity were recorded over the

  16. An ISM approach for the barrier analysis in implementing green supply chain management

    DEFF Research Database (Denmark)

    Mathiyazhagan, K.; Govindan, Kannan; NoorulHaq, A.

    2013-01-01

    As customers are becoming more environmental conscious and governments are making stricter environmental regulations, the industries need to reduce the environmental impact of their supply chain. Indian auto component manufacturing industries especially SMEs (Small and Medium Enterprises......) are focused to cleaner production by implementing Green Supply Chain Management (GSCM) in their industries. But they are struggling to implement GSCM concept. The present research analyzes the barriers for the implementation of GSCM concept which has been divided into two phases such as identification...... dominant one for the adoption of green supply chain management and this result is helpful for industries to make easier the adoption of green concept in their supply chain by removing the dominant barrier. It indicates that different Indian auto component manufacturing industries have differing barriers...

  17. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment.

    Science.gov (United States)

    Westrick, Judy A; Szlag, David C; Southwell, Benjamin J; Sinclair, James

    2010-07-01

    This review focuses on the efficiency of different water treatment processes for the removal of cyanotoxins from potable water. Although several investigators have studied full-scale drinking water processes to determine the efficiency of cyanotoxin inactivation, many of the studies were based on ancillary practice. In this context, "ancillary practice" refers to the removal or inactivation of cyanotoxins by standard daily operational procedures and without a contingency operational plan utilizing specific treatment barriers. In this review, "auxiliary practice" refers to the implementation of inactivation/removal treatment barriers or operational changes explicitly designed to minimize risk from toxin-forming algae and their toxins to make potable water. Furthermore, the best drinking water treatment practices are based on extension of the multibarrier approach to remove cyanotoxins from water. Cyanotoxins are considered natural contaminants that occur worldwide and specific classes of cyanotoxins have shown regional prevalence. For example, freshwaters in the Americas often show high concentrations of microcystin, anatoxin-a, and cylindrospermopsin, whereas Australian water sources often show high concentrations of microcystin, cylindrospermopsin, and saxitoxins. Other less frequently reported cyanotoxins include lyngbyatoxin A, debromoaplysiatoxin, and beta-N-methylamino-L-alanine. This review focuses on the commonly used unit processes and treatment trains to reduce the toxicity of four classes of cyanotoxins: the microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins. The goal of this review is to inform the reader of how each unit process participates in a treatment train and how an auxiliary multibarrier approach to water treatment can provide safer water for the consumer.

  18. Barrier functions for Pucci-Heisenberg operators and applications

    OpenAIRE

    Cutri , Alessandra; Tchou , Nicoletta

    2007-01-01

    International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...

  19. Sprache als Barriere (Language as a Barrier)

    Science.gov (United States)

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  20. 40 CFR 194.46 - Removal of waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Removal of waste. 194.46 Section 194... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S... Assurance Requirements § 194.46 Removal of waste. Any compliance application shall include documentation...

  1. The application of polyelectrolytes to improve liquid radwaste treatment system radionuclide removal efficiency

    International Nuclear Information System (INIS)

    Homyk, W.A.; Spall, M.J.; Vance, J.N.

    1990-01-01

    At nuclear plants, miscellaneous waste water treated in the liquid radwaste processing system contains a significant fraction of suspended particulate materials ranging in size from a few microns down to the submicron region. The fewer particles that typically exist as colloids are generally negatively charged by virtue of inorganic and organic anions absorbed onto the particle surfaces. Because many of the radionuclides exist as colloids and resist agglomeration and settling they are not easily removed by mechanical filtration or ion exchange processes. The colloidal materials will easily pass through most filters with conventional pore size ratings and through most ion exchange media. This leads to poor decontamination Factors (dFs) and higher radionuclide releases to the environment. A laboratory-scale testing program was conducted at Indian Point Unit No. 2 to determine the effectiveness of the use of organic polyelectrolytes to destabilize colloidal suspensions in liquid radwaste. Destabilizing colloidal suspensions will improve the removal efficiencies of the suspended material by typical filtration and ion exchange processes. The increased removal efficiencies will provide increased dFs in the liquid radwaste treatment system. The testing focused on identifying the specific organic polyelectrolytes and the associated dosages which would be effective in destabilizing the colloidal suspensions on actual waste water samples. The testing also examined the filtration characteristics of the water source to determine filter parameters such as: body feed material, body feed dosages, specific flow rates, etc., which would provide the basis for the design of filtration systems for these applications. The testing effort and the major conclusions from this investigation are given. 4 refs., 8 figs., 2 tabs

  2. Kinesio® Tape Barrier Does Not Inhibit Intramuscular Cooling During Cryotherapy.

    Science.gov (United States)

    Lyman, Katie J; McCrone, Michael; Hanson, Thomas A; Mellinger, Christopher D; Gange, Kara

    2018-05-29

    Allied health care professionals commonly apply cryotherapy as treatment for acute musculoskeletal trauma and the associated symptoms. Understanding the impact of a tape barrier on intramuscular temperature can assist in determining treatment duration for effective cryotherapy. To determine whether Kinesio® Tape acts as a barrier that affects intramuscular temperature during cryotherapy application. A repeated-measures, counterbalanced design in which the independent variable was tape application and the dependent variable was muscle temperature as measured by thermocouples placed 1 cm beneath the adipose layer. Additional covariates for robustness were BMI and adipose thickness. University research laboratory. 19 male college students with no contraindications to cryotherapy, no known sensitivity to Kinesio® Tape, and no reported quadriceps injury within the past six months. Topical cryotherapy: crushed-ice bags of 1 kg and 0.5 kg. Intramuscular temperature. The tape barrier had no statistically significant effect on muscle temperature. The pattern of temperature change was indistinguishable between participants with and without tape application. Findings suggest health care professionals can combine cryotherapy with a Kinesio® Tape application without any need for adjustments to cryotherapy duration.

  3. Fundamental processes of fuel removal by cyclotron frequency range plasmas and integral scenario for fusion application studied with carbon co-deposits

    Energy Technology Data Exchange (ETDEWEB)

    Möller, S., E-mail: s.moeller@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Wauters, T. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Petersson, P.; Carrasco, A.G. [Fusion Plasma Physics, KTH Royal Institute of Technology, Teknikringen 31, 10044 Stockholm (Sweden)

    2015-08-15

    Plasma impact removal using radio frequency heated plasmas is a candidate method to control the co-deposit related tritium inventory in fusion devices. Plasma parameters evolve according to the balance of input power to losses (transport, radiation, collisions). Material is sputtered by the ion fluxes with impact energies defined by the plasma sheath. H{sub 2}, D{sub 2} and {sup 18}O{sub 2} plasmas are produced in the carbon limiter tokamak TEXTOR. Pre-characterised a-C:D layers are exposed to study local removal rates. The D{sub 2} plasma exhibits the highest surface release rate of 5.7 ± 0.9 ∗ 10{sup 19} D/m{sup 2}s. Compared to this the rate of the O{sub 2} plasma is 3-fold smaller due to its 11-fold lower ion flux density. Re-deposition of removed carbon is observed, indicating that pumping and ionisation are limiting the removal in TEXTOR. Presented models can explain the observations and allow tailoring removal discharges. An integral application scenario using ICWC and thermo-chemical removal is presented, allowing to remove 700 g T from a-C:DT co-deposits in 20 h with fusion compatible wall conditions using technical specifications similar to ITER.

  4. Application of engineered sorbent barriers Summary of Laboratory Data for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.

    1989-09-01

    Laboratory studies were conducted in FY 1988 Pacific Northwest Laboratory to determine the effect of contact time, pH, solution to solid ratio, and particle size on the performance of a number of materials in adsorbing radioactive cobalt, strontium, and cesium. The laboratory studies were conducted to provide background information useful in designing an engineered sorbent barrier, which restricts the migration of radionuclides from low-level waste sites. Understanding how the variables affect the adsorption of ions on the sorbent materials is the key to estimating the performance of sorbent barriers under a variety of conditions. The scope of the studies was limited to three radionuclides and four sorbent materials, but the general approach can be used to evaluate other radionuclides and conditions. The sorbent materials evaluated in this study included clinoptilolite, activated carbon, bentonite clay, and Savannah River soil. The clinoptilolite and activated carbon were identified in previous studies as the most cost-effective materials for sorption of the three radionuclides under consideration. The bentonite clay was evaluated as a component of the barrier that could be used to modify the permeability of the barrier system. The Savannah River soil was used to represent soil from a humid site. 3 refs., 14 figs., 1 tab.

  5. Demand and Financial Constraints in Eliminating Architectural and Technical Barriers for People with Disabilities in Poland

    Directory of Open Access Journals (Sweden)

    Maria Hełdak

    2018-01-01

    Full Text Available The purpose of the study is to analyse the availability of financial resources for people with disabilities and to assess the needs satisfaction level of the disabled in order to eliminate architectural and technical barriers in Poland. The research conducted among the disabled affected by physical disability indicates that mobility barriers and obstacles remain among the most important problems encountered by people with disabilities. The research has shown that the problem of barriers increases with age. The elimination of architectural barriers requires, each time, higher financial expenditure, whereas the elimination of technical barriers improves the life quality of people with disabilities at low financial outlays. The average funding in Poland amounted to PLN 827.53 in 2016, including the funding of EUR 1453.60 for the elimination of architectural barriers and approx. EUR 582 for the removal of technical barriers. The financial resources allocated for this purpose do not cover the actual needs of the people with disabilities. The analysis revealed that the demand for investment in the elimination of barriers is increasing with age, whereas the expenditure of the Polish state is decreasing.

  6. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  7. Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers

    International Nuclear Information System (INIS)

    Pinson, Paul Arthur

    1998-01-01

    Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled ''TRU Waste Characterization Gloveboxes'', presented by Mr. David Duncan of ANL-W, describes these boxes

  8. An Efficient and Robust Moving Shadow Removal Algorithm and Its Applications in ITS

    Directory of Open Access Journals (Sweden)

    Shou Yu-Wen

    2010-01-01

    Full Text Available We propose an efficient algorithm for removing shadows of moving vehicles caused by non-uniform distributions of light reflections in the daytime. This paper presents a brand-new and complete structure in feature combination as well as analysis for orientating and labeling moving shadows so as to extract the defined objects in foregrounds more easily in each snapshot of the original files of videos which are acquired in the real traffic situations. Moreover, we make use of Gaussian Mixture Model (GMM for background removal and detection of moving shadows in our tested images, and define two indices for characterizing non-shadowed regions where one indicates the characteristics of lines and the other index can be characterized by the information in gray scales of images which helps us to build a newly defined set of darkening ratios (modified darkening factors based on Gaussian models. To prove the effectiveness of our moving shadow algorithm, we carry it out with a practical application of traffic flow detection in ITS (Intelligent Transportation System—vehicle counting. Our algorithm shows the faster processing speed, 13.84 ms/frame, and can improve the accuracy rate in 4%~10% for our three tested videos in the experimental results of vehicle counting.

  9. Application of electromagnetic fields to improve the removal rate of radioactive corrosion products

    International Nuclear Information System (INIS)

    Kong, Tae Young; Lee, Kun Jai; Song, Min Chul

    2004-01-01

    To comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plants. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of Axial Offset Anomaly (AOA). Hence, there is a great deal of ongoing research on water chemistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion particles. Experiments using permanent magnets to filter the corrosion products demonstrated a removal efficiency of over 90% for particles above 5 μm. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5 μm in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products

  10. Trunnion Collar Removal Machine - Gap Analysis Table

    International Nuclear Information System (INIS)

    Johnson, M.

    2005-01-01

    The purpose of this document is to review the existing the trunnion collar removal machine against the ''Nuclear Safety Design Bases for License Application'' (NSDB) [Ref. 10] requirements and to identify codes and standards and supplemental requirements to meet these requirements. If these codes and standards can not fully meet these requirements then a ''gap'' is identified. These gaps will be identified here and addressed using the ''Trunnion Collar Removal Machine Design Development Plan'' [Ref. 15]. The codes and standards, supplemental requirements, and design development requirements for the trunnion collar removal machine are provided in the gap analysis table (Appendix A, Table 1). Because the trunnion collar removal machine is credited with performing functions important to safety (ITS) in the NSDB [Ref. 10], design basis requirements are applicable to ensure equipment is available and performs required safety functions when needed. The gap analysis table is used to identify design objectives and provide a means to satisfy safety requirements. To ensure that the trunnion collar removal machine performs required safety functions and meets performance criteria, this portion of the gap analysis tables supplies codes and standards sections and the supplemental requirements and identifies design development requirements, if needed

  11. Experimental evaluation of optimization method for developing ultraviolet barrier coatings

    Science.gov (United States)

    Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.

  12. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  13. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    OpenAIRE

    Joel Donna; Brant G Miller

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much t...

  14. Barriers in green lean six sigma product development process

    DEFF Research Database (Denmark)

    Kumar, Sanjay; Luthra, Sunil; Govindan, Kannan

    2016-01-01

    In today’s competitive globalised business environment, production cost cutting is a primary issue before operation managers. As a research area, green lean six sigma (GLS) is proposed to have strategic importance in product development towards cutting costs, contributing to optimisation...... experts’ opinions towards developing a hierarchical model structuring these barriers. Twenty-one barriers have been identified and sorted from the review of literature and were then validated through discussions with experts. Relationships (contextual in nature) among these barriers have been realised...... during a brainstorming session. An interpretive structural modelling (ISM) technique has been utilised for developing a hierarchical model of barriers in implementing the GLSPD process in the automobile sector of India. A nine-level structural model has been deduced after application of the ISM technique...

  15. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils.

    Science.gov (United States)

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-12-27

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  16. Hanford prototype-barrier status report FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O`Neil, T.K.

    1996-11-01

    A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing.

  17. Hanford prototype-barrier status report FY 1996

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O'Neil, T.K.

    1996-11-01

    A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing

  18. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  19. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  20. Management of barriers to lean production implementation: a study in the automotive sector

    Directory of Open Access Journals (Sweden)

    Filipe de Almeida Copetti

    2016-03-01

    Full Text Available During the process of lean production (LP implementation it is common to arise barriers depending on the context in which the application occurs. This study aims to perfect a method of management the barriers to the implementation of LP developed in a previous study. The improvements were developed by applying the method in the assembly area of bumpers in a car manufacturer. Data collection involved thirteen interviews, participant observation for six months and analysis of LP-related documents. Among the main improvements over the original version of the method, it can be highlighted the addition of thirteen barriers in the list of barriers already identified in the literature, and also the identification of contextual characteristics that can facilitate or hinder the application of the method.

  1. Exploring the communication barriers in private commercial banks of Bangladesh

    OpenAIRE

    Sultana, Nahneen; Abdullah, Abu Md.; Tabassum, Ayesha

    2013-01-01

    In Bangladesh, lots of private commercial banks are contributing for economic growth. The performance of the banks depends on a well-structured communication system. So by maintaining an effective communication system, the banks can gain competitive advantage. Thus the study aims to investigate the communication barriers that should be removed for effective communication in the private commercial banks of Bangladesh. A structured questionnaire survey based on 5-point Likert-scale was conducte...

  2. Application of chemical oxidation for removal of pharmaceuticals in wastewater effluents

    DEFF Research Database (Denmark)

    Hey, G.; Ledin, A.; la Cour Jansen, J.

    2012-01-01

    treatment dose is comparable to ClO2. Nevertheless, ozonation significantly enhanced the removal of most APIs including carbamazepine, metoprolol, flutamide, bupropion and beclomethasone. In addition, ozonation allows removal of ibuprofen at higher oxidant dose. APIs that possess the reactive electron...

  3. Use of deep soil mixing as an alternate verticle barrier to slurry walls

    International Nuclear Information System (INIS)

    Miller, A.D.

    1997-01-01

    Slurry walls have become an accepted subsurface remediation technique to contain contaminated zones. However, situations develop where conventional slurry wall excavation techniques are not suitable. The use of conventional containment wall construction methods may involve removal and disposal of contaminated soils, stability concerns and the risk of open excavations. For these reasons, other installation techniques have received further consideration. Deep Soil Mixing (DSM) has emerged as a viable alternative to conventional slurry wall techniques. In situations dictating limited soil removal for contamination or stability concerns, or where space is a limitation, DSM can be used for installation of the barrier. Proper installation of a DSM wall requires sufficient monitoring and sampling to evaluate the continuity, mixing effectiveness, permeability and key into the confining layer. This paper describes a case study where DSM was used to cross major highways to avoid open excavation, and along slopes to reduce stability concerns. The DSM barrier was tied to an existing conventional slurry wall that had been installed in more stable areas without highway traffic

  4. National Survey Report of Photovoltaic Power Applications in France 2016

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Mehl, Celine; Carrere, Tristan

    2017-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual 'Trends in photovoltaic applications' report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is France National Survey Report for the year 2016. Information from this document will be used as input to IEA's annual Trends in photovoltaic applications report

  5. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications.

    Science.gov (United States)

    Zhao, Qinglin; Hu, Bin; Shi, Yujun; Li, Yang; Moore, Philip; Sun, Minghou; Peng, Hong

    2014-06-01

    Electroencephalogram (EEG) signals have a long history of use as a noninvasive approach to measure brain function. An essential component in EEG-based applications is the removal of Ocular Artifacts (OA) from the EEG signals. In this paper we propose a hybrid de-noising method combining Discrete Wavelet Transformation (DWT) and an Adaptive Predictor Filter (APF). A particularly novel feature of the proposed method is the use of the APF based on an adaptive autoregressive model for prediction of the waveform of signals in the ocular artifact zones. In our test, based on simulated data, the accuracy of noise removal in the proposed model was significantly increased when compared to existing methods including: Wavelet Packet Transform (WPT) and Independent Component Analysis (ICA), Discrete Wavelet Transform (DWT) and Adaptive Noise Cancellation (ANC). The results demonstrate that the proposed method achieved a lower mean square error and higher correlation between the original and corrected EEG. The proposed method has also been evaluated using data from calibration trials for the Online Predictive Tools for Intervention in Mental Illness (OPTIMI) project. The results of this evaluation indicate an improvement in performance in terms of the recovery of true EEG signals with EEG tracking and computational speed in the analysis. The proposed method is well suited to applications in portable environments where the constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices.

  6. Barriers to women's participation in inter-conceptional care: a cross-sectional analysis

    Directory of Open Access Journals (Sweden)

    Hogan Vijaya K

    2012-02-01

    Full Text Available Abstract Background We describe participation rates in a special interconceptional care program that addressed all commonly known barriers to care, and identify predictors of the observed levels of participation in this preventive care service. Methods A secondary analysis of data from women in the intervention arm of an interconceptional care clinical trial in Philadelphia (n = 442. Gelberg-Andersen Behavioral Model for Vulnerable Populations to Health Services (herein called Andersen model was used as a theoretical base. We used a multinomial logit model to analyze the factors influencing women's level of participation in this enhanced interconceptional care program. Results Although common barriers were addressed, there was variable participation in the interconceptional interventions. The Andersen model did not explain the variation in interconceptional care participation (Wald ch sq = 49, p = 0.45. Enabling factors (p = 0.058, older maternal age (p = 0.03 and smoking (p = were independently associated with participation. Conclusions Actively removing common barriers to care does not guarantee the long-term and consistent participation of vulnerable women in preventive care. There are unknown factors beyond known barriers that affect participation in interconceptional care. New paradigms are needed to identify the additional factors that serve as barriers to participation in preventive care for vulnerable women.

  7. Analysis of interactions among barriers in project risk management

    Science.gov (United States)

    Dandage, Rahul V.; Mantha, Shankar S.; Rane, Santosh B.; Bhoola, Vanita

    2018-03-01

    In the context of the scope, time, cost, and quality constraints, failure is not uncommon in project management. While small projects have 70% chances of success, large projects virtually have no chance of meeting the quadruple constraints. While there is no dearth of research on project risk management, the manifestation of barriers to project risk management is a less dwelt topic. The success of project management is oftentimes based on the understanding of barriers to effective risk management, application of appropriate risk management methodology, proactive leadership to avoid barriers, workers' attitude, adequate resources, organizational culture, and involvement of top management. This paper represents various risk categories and barriers to risk management in domestic and international projects through literature survey and feedback from project professionals. After analysing the various modelling methods used in project risk management literature, interpretive structural modelling (ISM) and MICMAC analysis have been used to analyse interactions among the barriers and prioritize them. The analysis indicates that lack of top management support, lack of formal training, and lack of addressing cultural differences are the high priority barriers, among many others.

  8. Technology assessment guide for application of engineered sorbent barriers to low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Jones, E.O.; Depner, J.P.

    1989-06-01

    An engineered sorbent barrier (ESB) uses sorbent materials (such as activated carbon or natural zeolites) to restrict migration of radionuclides from low-level waste sites. The permeability of the ESB allows moisture to pass while the sorbent material traps or absorbs contaminants. In contrast, waste sites with impermeable barriers could fill with water, especially those waste sites in humid climates. A sorbent barrier can be a simple, effective, and inexpensive method for restricting radionuclide migration. This report provides information and references to be used in assessing the sorbent barrier technology for low-level waste disposal. The ESB assessment is based on sorbent material and soil properties, site conditions, and waste properties and inventories. These data are used to estimate the thickness of the barrier needed to meet all performance requirements for the waste site. This document addresses the following areas: (1) site information required to assess the need and overall performance of a sorbent barrier; (2) selection and testing of sorbent materials and underlying soils; (3) use of radionuclide transport models to estimate the required barrier thickness and long-term performance under a variety of site conditions; (4) general considerations for construction and quality assurance; and (5) cost estimates for applying the barrier. 37 refs., 6 figs., 2 tabs.

  9. Is the metaphor of 'barriers to change' useful in understanding implementation? Evidence from general medical practice.

    Science.gov (United States)

    Checkland, Kath; Harrison, Stephen; Marshall, Martin

    2007-04-01

    To investigate how general medical practices in the UK react to bureaucratic initiatives, such as National Health Service (NHS) National Service Frameworks (NSFs), and to explore the value of the metaphor of 'barriers to change' for understanding this. Interviews, non-participant observation and documentary analysis within case studies of four practices in northern England. The practices had not actively implemented NSFs. At interview, various 'barriers' that had prevented implementation were listed, including the complexity of the documents and lack of time. Observation suggested that these barriers were constructions used by the participants to make sense of the situation in which they found themselves. The metaphor of 'removing barriers to change' was of limited use in a context where non-implementation of policy was an emergent property of underlying organizational realities, likely to be modifiable only if these realities were addressed.

  10. Environmental nanotechnology application: magnetic biosorbent for uranium removal

    International Nuclear Information System (INIS)

    Yamamura, Amanda Pongeluppe Gualberto

    2009-01-01

    Sugarcane bagasse is a residue from the sugarcane agroindustry. It is a biodegradable material, with low cost and presents affinity for organic compounds and toxic metals. In this work, the sugar cane bagasse combined with nanoparticles of magnetite was prepared and called magnetic biosorbent. The magnetite was synthesized by simultaneous precipitation by addition a solution of NaOH to the aqueous solution containing Fe 2+ and Fe 3+ . The material was characterized by scanning electron microscopy, Fourier Transformer Infrared Spectroscopy, thermogravimetric analysis, X-ray diffractometry and measurements of magnetization. The magnetic bio sorbent showed a high magnetization of saturation without hysteresis, behavior attributed to superparamagnetic materials. Variables of adsorption process of uranyl ions by magnetic bio sorbent in nitric solutions were investigated. The study of the equilibrium time indicated an increase in the adsorption in function of time. Smaller biosorbent particle sizes resulted in greater removals. The maximum removal occurred at pH 5. The increase of stirring speed of the solute plus biosorbent system favored the adsorption, reaching the equilibrium at 300 r.p.m. The increase of the bio sorbent dosage increased the removal, which became constant for doses above of 10 g.L -1 . The equilibrium isotherm was verified according to the Langmuir and Freundlich adsorption isotherm models. The results correlated better to the Langmuir isotherm model, being found a value of maximum capacity of adsorption of 17 mg of U per g biosorbent. The same studies of adsorption were performed with the bagasse biosorbent in order to compare the results. (author)

  11. How, not just if, condoms are used: the timing of condom application and removal during vaginal sex among young people in England.

    Science.gov (United States)

    Hatherall, B; Ingham, R; Stone, N; McEachran, J

    2007-02-01

    To assess the prevalence of, and factors associated with, vaginal penetration before condom application and following condom removal among young people in education in England. A large cross sectional survey (n = 1373) was conducted in educational establishments in England and sexual event diaries were completed by a subsample of young people over a 6 month period. Of the 375 survey respondents who reported having used a condom on the most recent occasion of vaginal sex, 6% had applied the condom after penetration and 6% had continued penetration after condom removal. Of the 74 diary respondents, 31% applied a condom late and 9% removed a condom early at least once over a 6 month period. The odds of "imperfect" condom use were found to decrease with overall consistency of condom use, confidence in correct condom use, positive reported relationship with mother, non-use of other contraception, and desire to use a condom. Given that late application and early removal of condoms fail to maximise their effectiveness as a method of STI prevention, it is important to address "imperfect" condom use and the factors associated with such use in public health policies and programmes. It is essential that young people understand the importance of using condoms consistently and correctly, and are also equipped with the skills and knowledge to do so.

  12. Removal of carbofuran is not affected by co-application of chlorpyrifos in a coconut fiber/compost based biomixture after aging or pre-exposure.

    Science.gov (United States)

    Chin-Pampillo, Juan Salvador; Masís-Mora, Mario; Ruiz-Hidalgo, Karla; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2016-08-01

    Biomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures. The co-application of CLP did not affect CFN removal, which suggests that CLP does not inhibit microbial populations in charge of CFN transformation. Contrary to the removal behavior, mineralization of radiolabeled (14)C-pesticides showed higher mineralization rates of CFN in aged biomixtures (with respect to freshly prepared or pre-exposed biomixtures). In the case of CLP, mineralization was favored in freshly prepared biomixtures, which could be ascribed to high sorption during aging and microbial inhibition by CFN in pre-exposure. Regardless of removal and mineralization results, toxicological assays revealed a steep decrease in the acute toxicity of the matrix on the microcrustacean Daphnia magna (over 97%) after 8days of treatment of individual pesticides or the mixture CFN/CLP. Results suggest that FCS biomixtures are suitable to be used in BPS for the treatment of wastewater in fields where both pesticides are employed. Copyright © 2016. Published by Elsevier B.V.

  13. Pharmacogenetics in Europe: barriers and opportunities.

    Science.gov (United States)

    Gurwitz, D; Zika, E; Hopkins, M M; Gaisser, S; Ibarreta, D

    2009-01-01

    This paper reviews the current situation in the field of pharmacogenetics/pharmacogenomics (PGx) in Europe. High expectations surrounding the clinical application of PGx remain largely unmet, as only a limited number of such applications have actually reached the market and clinical practice. Thus, the potential impact of PGx-based diagnostics on healthcare and its socio-economic implications are still unclear. With the aim of shedding some light on these uncertainties, the Institute for Prospective Technological Studies (IPTS) of the European Commission's Joint Research Centre (JRC) has conducted a review of the 'state of the art' and a further analysis on the use of pharmacogenetics diagnostics for preventing toxic drug reactions and improving drug efficacy in Europe. The paper presents highlights from the JRC-IPTS studies and discusses possibilities for improving translation of PGx research in Europe by comparing some experiences in the USA. We also illustrate the related barriers for the clinical uptake of PGx in Europe with specific case-studies. Most of the barriers identified extend beyond the European context. This reflects the global problems of scarcity of data demonstrating proven clinical validity or utility and favorable cost-effectiveness studies to support the clinical application of PGx diagnostic tests in the clinical setting. Another key barrier is the lack of incentives for the private sector to invest in the development and licensing of PGx diagnostic tests for improving the safety and efficacy of out-of-patent drugs. It therefore seems that one key aspect where policy can affect the clinical uptake of PGx is via sustaining large-scale industry-academia collaborations for developing and proving the utility of PGx diagnostics. Copyright 2009 S. Karger AG, Basel.

  14. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants

    Directory of Open Access Journals (Sweden)

    Seung-Han Hong

    2017-02-01

    Full Text Available This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM and volatile organic compounds (VOCs. PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.

  15. 3 CFR 13505 - Executive Order 13505 of March 9, 2009. Removing Barriers to Responsible Scientific Research...

    Science.gov (United States)

    2010-01-01

    ... Barriers to Responsible Scientific Research Involving Human Stem Cells 13505 Order 13505 Presidential... Scientific Research Involving Human Stem Cells By the authority vested in me as President by the Constitution.... Research involving human embryonic stem cells and human non-embryonic stem cells has the potential to lead...

  16. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials

    Directory of Open Access Journals (Sweden)

    Shivatharsiny Rasalingam

    2014-01-01

    Full Text Available The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application of TiO2-SiO2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.

  17. Metal monitoring for process control of laser-based coating removal

    Science.gov (United States)

    Fraser, Mark E.; Hunter, Amy J.; Panagiotou, Thomai; Davis, Steven J.; Freiwald, David A.

    1999-12-01

    Cost-effective and environmentally-sound means of paint and coatings removal is a problem spanning many government, commercial, industrial and municipal applications. For example, the Department of Energy is currently engaged in removing paint and other coatings from concrete and structural steel as part of decommissioning former nuclear processing facilities. Laser-based coatings removal is an attractive new technology for these applications as it promises to reduce the waste volume by up to 75 percent. To function more efficiently, however, the laser-based systems require some form of process control.

  18. Multi-particle assembled porous nanostructured MgO: its application in fluoride removal

    International Nuclear Information System (INIS)

    Gangaiah, Vijayakumar; Chandrappa, Gujjarahalli Thimanna; Siddaramanna, Ashoka

    2014-01-01

    In this article, a simple and economical route based on ethylene glycol mediated process was developed to synthesize one-dimensional (1D) multiparticle assembled nanostructured MgO using magnesium acetate and urea as reactants. Porous multiparticle chain-like MgO has been synthesized by the calcination of a solvothermally derived single nanostructured precursor. The prepared products were characterized by an x-ray diffraction (XRD) pattern, thermogravimetry, scanning/transmission electron microscopy (SEM/TEM) and N 2 adsorption (BET). As a proof of concept, the porous multiparticle chain-like MgO has been applied in a water treatment for isolated and rural communities, and it has exhibited an excellent adsorption capability to remove fluoride in waste water. In addition, this method could be generalized to prepare other 1D nanostructures with great potential for various attractive applications. (paper)

  19. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed.

    Science.gov (United States)

    Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong

    2012-09-01

    Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

  20. Evaluation of articulation of Turkish phonemes after removable partial denture application

    Directory of Open Access Journals (Sweden)

    Özbeki Murat

    2003-01-01

    Full Text Available In this study, the adaptation of patients to removable partial dentures was evaluated related to articulation of Turkish phonemes. Articulation of /t,d,n,l,r/, /g,k/, /b,p,m/ and /s,z,Õ,v,f,y,j,h,c/ phonemes were evaluated by three speech pathologists, on records taken from 15 patients before the insertion of a removable partial denture, just after insertion, and one week later. The test consisted of evaluation of phoneme articulation of independent syllables in terms of distortion, omission, substitution, mass effect, hypernasality and hyponasality. Data were evaluated with Cochrane Q, McNemar and Kruskal-Wallis tests. The results showed that for some phonemes, problems in articulation occurred after the insertion of a removable partial denture while for others a significant amelioration was observed after the insertion of a removable partial denture. In general, problems in articulation of evaluated phonemes were resolved after one week of use.

  1. Geographically weighted regression as a generalized Wombling to detect barriers to gene flow.

    Science.gov (United States)

    Diniz-Filho, José Alexandre Felizola; Soares, Thannya Nascimento; de Campos Telles, Mariana Pires

    2016-08-01

    Barriers to gene flow play an important role in structuring populations, especially in human-modified landscapes, and several methods have been proposed to detect such barriers. However, most applications of these methods require a relative large number of individuals or populations distributed in space, connected by vertices from Delaunay or Gabriel networks. Here we show, using both simulated and empirical data, a new application of geographically weighted regression (GWR) to detect such barriers, modeling the genetic variation as a "local" linear function of geographic coordinates (latitude and longitude). In the GWR, standard regression statistics, such as R(2) and slopes, are estimated for each sampling unit and thus are mapped. Peaks in these local statistics are then expected close to the barriers if genetic discontinuities exist, capturing a higher rate of population differentiation among neighboring populations. Isolation-by-Distance simulations on a longitudinally warped lattice revealed that higher local slopes from GWR coincide with the barrier detected with Monmonier algorithm. Even with a relatively small effect of the barrier, the power of local GWR in detecting the east-west barriers was higher than 95 %. We also analyzed empirical data of genetic differentiation among tree populations of Dipteryx alata and Eugenia dysenterica Brazilian Cerrado. GWR was applied to the principal coordinate of the pairwise FST matrix based on microsatellite loci. In both simulated and empirical data, the GWR results were consistent with discontinuities detected by Monmonier algorithm, as well as with previous explanations for the spatial patterns of genetic differentiation for the two species. Our analyses reveal how this new application of GWR can viewed as a generalized Wombling in a continuous space and be a useful approach to detect barriers and discontinuities to gene flow.

  2. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    International Nuclear Information System (INIS)

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian

    2014-01-01

    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials

  3. Selective Redundancy Removal: A Framework for Data Hiding

    Directory of Open Access Journals (Sweden)

    Ugo Fiore

    2010-02-01

    Full Text Available Data hiding techniques have so far concentrated on adding or modifying irrelevant information in order to hide a message. However, files in widespread use, such as HTML documents, usually exhibit high redundancy levels, caused by code-generation programs. Such redundancy may be removed by means of optimization software. Redundancy removal, if applied selectively, enables information hiding. This work introduces Selective Redundancy Removal (SRR as a framework for hiding data. An example application of the framework is given in terms of hiding information in HTML documents. Non-uniformity across documents may raise alarms. Nevertheless, selective application of optimization techniques might be due to the legitimate use of optimization software not supporting all the optimization methods, or configured to not use all of them.

  4. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils

    Directory of Open Access Journals (Sweden)

    Tzu-Kai Lin

    2017-12-01

    Full Text Available Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter. Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  5. Application of the "Behind the Barriers" resilience conceptual model to a flooded rail transport system

    Science.gov (United States)

    Gonzva, Michael; Barroca, Bruno

    2017-04-01

    The vulnerability of guided transport systems facing natural hazards is a burning issue for the urban risks management. Experience feedbacks on guided transport systems show they are particularly vulnerable to natural risks, especially flood risks. Besides, the resilience concept is used as a systemic approach for making an accurate analysis of the effect of these natural risks on rail guided transport systems. In this context, several conceptual models of resilience are elaborated for presenting the various possible resilience strategies applied to urban technical systems. One of this resilience conceptual model is the so-called "Behind The Barriers" model based on the identification of four complementary types of resilience: (i) cognitive resilience, linked to knowledge of the risk and the potential failures; (ii) functional resilience, representing the capacity of a system to protect itself from damage while continuing to provide services; (iii) correlative resilience, that characterises the relationship between service demand and the capacity of the system to respond; (iv) organisational resilience, expressing the capacity to mobilise an area much wider than the one affected. In addition to the work already published during the 7th Resilience Engineering Symposium, the purpose of this paper is to offer an application of a resilience conceptual model, the "Behind the Barriers" model, relating to a specific urban technical system, the public guided transport system, and facing a particular risk, a flood hazard. To do that, the paper is focused on a past incident on a French Intercity railway line as a studied case. Indeed, on June 18th and 19th 2013, the rise of the level of the "Gave de Pau" river, located in the municipality of Coarraze, caused many disorders on the intercity line serving the cities of Tarbes, Pau and Lourdes . Among the disorders caused by the flooding, about 100 meters of railway embankments were collapsed. With a constraint to reopen the

  6. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    International Nuclear Information System (INIS)

    Zhang, Yan-hong; Liu, Fu-qiang; Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng; Wang, Feng-he; Ling, Chen; Li, Ai-min

    2017-01-01

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H_2PO_4"− could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H_2PO_4"− from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H_2PO_4"− were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H_2PO_4"− accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H_2PO_4"−. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  7. Bioemulsifier production byMicrobacterium SP. strains isolated from mangrove and their application to remove cadmiun and zinc from hazardous industrial residue

    Science.gov (United States)

    Aniszewski, Erick; Peixoto, Raquel Silva; Mota, Fábio Faria; Leite, Selma Gomes Ferreira; Rosado, Alexandre Soares

    2010-01-01

    The contamination of ecosystems with heavy metals is an important issue in current world and remediation technologies should be in according to environmental sustainability concept. Bioemulsifier are promising agents to be used in metal removal and could be effective to many applications in environmental industries. The aims of this work was screening the potential production of bioemulsifier by microorganisms isolated from an oil contaminated mangrove, and evaluate cadmium and zinc removal potential of those strains from a hazardous industrial residue. From that, bioemulsifier-producing bacteria were isolated from urban mangrove sediments. Four isolates were identified as Microbacterium sp by 16S rRNA analysis and were able to reduce up to 53.3% of culture medium surface tension (TS) when using glucose as carbon and energy source and 20.2% when sucrose was used. Suspensions containing bioemulsifier produced by Microbacterium sp. strains show to be able to remove cadmium and zinc from contaminated industrial residue, and its ability varied according carbon source. Significant differences in metal removal were observed by all strains depending on the carbon source. When glucose was used, Cd and Zn removal varied from 17 to 41%, and 14 to 68%, respectively. However, when sucrose was used it was observed only 4 to a maximum of 15% of Cd removal, and 4 to 17% of Zn removal. When the same tests were performed after ethanol precipitation, the results were different: the percentages of removal of Zn (7–27%) and Cd (14–32%) were higher from sucrose cultures. This is the first report of heavy metals removal by bioemulsifier from Microbacterium sp. PMID:24031486

  8. Progress in forming bottom barriers under waste sites

    International Nuclear Information System (INIS)

    Carter, E.E.

    1997-01-01

    The paper describes an new method for the construction, verification, and maintenance of underground vaults to isolate and contain radioactive burial sites without excavation or drilling in contaminated areas. The paper begins with a discussion of previous full-scale field tests of horizontal barrier tools which utilized high pressure jetting technology. This is followed by a discussion of the TECT process, which cuts with an abrasive cable instead of high pressure jets. The new method is potentially applicable to more soil types than previous methods and can form very thick barriers. Both processes are performed from the perimeter of a site and require no penetration or disturbance of the active waste area. The paper also describes long-term verification methods to monitor barrier integrity passively

  9. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  10. Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications

    OpenAIRE

    Herrera, M. A. (Martha A.); Mathew, A. P. (Aji P.); Oksman, K. (Kristiina)

    2017-01-01

    Abstract Barrier, mechanical and thermal properties of porous paper substrates dip-coated with nanocellulose (NC) were studied. Sorbitol plasticizer was used to improve the toughness, and citric acid cross-linker to improve the moisture stability of the coatings. In general, the addition of sorbitol increased the barrier properties, maximum strength and toughness as well as the thermal stability of the samples when compared to the non-modified NC coatings. The barrier properties significan...

  11. The Status of Industrial Ecology in Australia: Barriers and Enablers

    Directory of Open Access Journals (Sweden)

    Glen D. Corder

    2014-03-01

    Full Text Available Drawing on current international industrial ecology thinking and experiences with Australian initiatives, this article critically overviews the current status of industrial ecology in Australia and examines the barriers and potential strategies to realise greater uptake and application of the concept. The analysis is conducted across three categories: heavy industrial areas (including Kwinana and Gladstone, mixed industrial parks (Wagga Wagga and Port Melbourne, and waste exchange networks, and identifies the past and future significance of seven different types of barriers—regulation, information, community, economic, technical, cooperation and trust, commitment to sustainable development—for each of the three categories. The outcomes from this analysis highlight that regulation, information, and economic barriers for heavy industrial area and mixed industrial parks, and economic and technical barriers for waste exchange networks are the current and future focus for industrial ecology applications in Australia. These findings appear to be consistent with recently published frameworks and learnings. The authors propose key questions that could enhance greater adoption of industrial ecology applications in Australia and acknowledge that international research and experiences, while partly providing answers to these questions, need to be adapted and refined for the Australian context.

  12. Improved Metallography Of Thermal-Barrier Coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1991-01-01

    New technique for preparation of metallographic samples makes interpretation of images of pores and microcracks more reliable. Involves use of vacuum epoxy infiltration and interference-film coating to reduce uncertainty. Developed for inspection of plasma-sprayed ceramic thermal-barrier coatings on metals but applicable to other porous, translucent materials, including many important ceramics.

  13. Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-05-01

    We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  14. A qualitative case study to identify possible barriers that limit effective elementary science education

    Science.gov (United States)

    Foster, Donald Carey

    The purpose of this case study was to identify barriers that limit the effectiveness of elementary teachers in the teaching of science. It is of the utmost urgency that barriers be first identified, so that possible solutions can be explored to bring about the improvement of elementary science education. This urgency has been imposed by the scheduled national testing of students in science by 2007, as mandated by the No Child Left Behind Act of 2001. Using qualitative case study methods, the researcher conducted interviews with 8 elementary teachers from two schools within one school district who taught 3rd, 4th, and 5th grade. These interviews were designed to gain insight into barriers these elementary teachers perceived as factors limiting their effectiveness in teaching science and preparing students for high-stakes testing. Barriers in the areas of teacher background, typical teaching day, curriculum, inservices, and legislative influences were explored. This study concluded that the barriers explored do have a substantial negative affect on the teaching and learning of science in the elementary grades. Specifically, the barriers revealed in this study include the limited science background of elementary teachers, inadequate class time devoted to science, non-comprehensive curriculum, ineffective or lack of inservice training, and pressures from legislated mandates. But it is also clear that these barriers are so intertwined that one cannot remove these barriers one at a time. It will take a collective effort from all involved, including legislators, administrators, teachers, parents, and students, to alleviate these barriers and discover effective solutions to improve elementary science education.

  15. Poro-elasto-plastic behaviour of dry compacted Fo-Ca clay: experiment and modelling. Application to the re-saturation of an engineered clay barrier

    International Nuclear Information System (INIS)

    Lassabatere, Th.; Imbert, Ch.; Etile, M.A.

    1999-01-01

    Many projects of underground repositories for high level radioactive waste involve an engineered clay barrier, placed between the waste canister and the surrounding rock. When hydrated, this barrier seals the gap and provides a good watertightness. The natural clay powder, dried and compacted, exhibits hydro-mechanical couplings during the hydration. Such a coupled behaviour, interesting for the industrial application, has been clearly demonstrated by many studies and laboratory experiments. But the modelling of this behaviour, in order to predict the hydration of the clay barrier, is difficult. A coupled modelling, based, at a macroscopic scale, on the thermodynamics of unsaturated porous media, is proposed. This thermodynamical model founds a general framework for non linear poro-elastic and poro-elasto-plastic coupled behaviours. The symmetries of this coupling, induced by this thermodynamical framework, let us take into account the often neglected influence of the mechanical state on the hydraulic problem of the re-saturation of the clay. The complete resolution of the flow problem, coupled with the mechanical behaviour, leads us to study the influence of the rheological behaviour chosen for the clay (elastic - linear or no linear -, or elastoplastic) on the evaluation of the duration of the re-saturation of the clay barrier). (authors)

  16. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  17. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  18. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    International Nuclear Information System (INIS)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    2016-01-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  19. Photoresist removal using gaseous sulfur trioxide cleaning technology

    Science.gov (United States)

    Del Puppo, Helene; Bocian, Paul B.; Waleh, Ahmad

    1999-06-01

    A novel cleaning method for removing photoresists and organic polymers from semiconductor wafers is described. This non-plasma method uses anhydrous sulfur trioxide gas in a two-step process, during which, the substrate is first exposed to SO3 vapor at relatively low temperatures and then is rinsed with de-ionized water. The process is radically different from conventional plasma-ashing methods in that the photoresist is not etched or removed during the exposure to SO3. Rather, the removal of the modified photoresist takes place during the subsequent DI-water rinse step. The SO3 process completely removes photoresist and polymer residues in many post-etch applications. Additional advantages of the process are absence of halogen gases and elimination of the need for other solvents and wet chemicals. The process also enjoys a very low cost of ownership and has minimal environmental impact. The SEM and SIMS surface analysis results are presented to show the effectiveness of gaseous SO3 process after polysilicon, metal an oxide etch applications. The effects of both chlorine- and fluorine-based plasma chemistries on resist removal are described.

  20. Dielectric barrier discharges applied for optical spectrometry

    Czech Academy of Sciences Publication Activity Database

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.241, year: 2016

  1. Dielectric barrier discharges applied for optical spectrometry

    Czech Academy of Sciences Publication Activity Database

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, Jan; Franzke, J.

    2016-01-01

    Roč. 123, SEP (2016), s. 6-32 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * analytical spectroscopy * applications Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.241, year: 2016

  2. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  3. Knowledge Management Barriers Identification for the Four Kinds of Business Processes

    Directory of Open Access Journals (Sweden)

    Mina Ranjbar Fard

    2013-03-01

    Full Text Available This paper presents an appropriate categorization of business processes in order to study the different aspects of knowledge management for each kind of business processes. In this categorization, business processes are classified into the four categories including work-flow oriented, decision oriented, information oriented and motivation oriented. Then, the special attributes and knowledge management barriers for each kind of business processes are discussed. Findings from the literature led to some hypotheses about the most important knowledge management barriers in the four different kinds of business processes. Tentative theory has improved through two case studies for a work-flow oriented business process and a decision oriented business process. Research findings help managers to have process perspective in implementing KM initiatives and remove the most important barriers of KM regarding the type of the considered business processes. Improving the hypotheses related to the information oriented and collaborate oriented business processes through case study in their instance processes and also testing the introduced hypotheses are good start points for further research in the future.

  4. Application of Laser Irradiation for Restorative Treatments.

    Science.gov (United States)

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes.

  5. Properties and application of magnetite-bearing leaching residuum in metals ions removal process

    International Nuclear Information System (INIS)

    Hredzak, S.; Vaclavikova, M.; Jakabsky, S.; Lovas, M.; Macasek, F.; Kufcakova, J.; Rajec, P.; Kopunec, R.

    2003-01-01

    The utility of magnetic sorbents is their potential application in heterogeneous systems like suspensions and body liquids, where they can be specifically removed in a magnetic field. Last not least, also the residues of leached iron-nickel laterite ores at the former Sered (Slovakia) hydrometallurgical plant were found to be a suitable magnetic sorbent for the removal of radionuclides and toxic elements from suspensions. Thus, the promising field of utilising of a stock of six million tons, which represents a local environmental problem because of the resulting spread of the so called black dusts, and the chromium contamination of underground waters, is the application in the decontamination of soils. The properties of the Sered residuum (further: SOR) are introduced. SOR, the raw and mechano-chemically activated by the grinding in potassium ferrocyanide solution in vibrating, ball or attrition mills, were used as a semi-natural magnetic sorbent. The parameters of raw and activated SOR are presented. The vibrating mill activation appears as the most efficient in respect of its activation, though the biggest increase of specific surface was achieved by attrition grinding. The soil in vicinity of nuclear facilities is generally contaminated by caesium-137, cobalt-60 and strontium-90 and should be decontaminated down the level of radiocaesium of about 1 kBq/kg. For this reason the sorption properties for Cs + , Sr 2+ , Pb 2+ and Eu 3+ ions were evaluated. The Toth sorption isotherm was used. Speciation by the Tessier and BCR standard leaching procedures indicates differences between the ions. Raw and activated SOR have convenient sorption properties for caesium, strontium, lead and partially also for trivalent lanthanides. That, together with SOR magnetic properties makes them promising for treatment of radioactive contaminated soils and sediments. Sorption of anions was demonstrated by TcO 4- sorption as a result of secondary ion-exchange mechanism. The results of

  6. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    Science.gov (United States)

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Rigorous analysis of image force barrier lowering in bounded geometries: application to semiconducting nanowires

    International Nuclear Information System (INIS)

    Calahorra, Yonatan; Mendels, Dan; Epstein, Ariel

    2014-01-01

    Bounded geometries introduce a fundamental problem in calculating the image force barrier lowering of metal-wrapped semiconductor systems. In bounded geometries, the derivation of the barrier lowering requires calculating the reference energy of the system, when the charge is at the geometry center. In the following, we formulate and rigorously solve this problem; this allows combining the image force electrostatic potential with the band diagram of the bounded geometry. The suggested approach is applied to spheres as well as cylinders. Furthermore, although the expressions governing cylindrical systems are complex and can only be evaluated numerically, we present analytical approximations for the solution, which allow easy implementation in calculated band diagrams. The results are further used to calculate the image force barrier lowering of metal-wrapped cylindrical nanowires; calculations show that although the image force potential is stronger than that of planar systems, taking the complete band-structure into account results in a weaker effect of barrier lowering. Moreover, when considering small diameter nanowires, we find that the electrostatic effects of the image force exceed the barrier region, and influence the electronic properties of the nanowire core. This study is of interest to the nanowire community, and in particular for the analysis of nanowire I−V measurements where wrapped or omega-shaped metallic contacts are used. (paper)

  8. Application of CO II laser for removal of oral mucocele

    Science.gov (United States)

    Kato, J.; Moriya, K.; Hirai, Y.

    2006-02-01

    Mucocele is an oral soft tissue cyst caused by the disturbance of saliva flow. Mucocele is widely observed in child patients and recurrence is high. The objective of this study was to clarify the effect of CO II laser irradiation in the case of mucocele. A CO II laser was used on 45 subjects, aged between 0 to 15 years, having mucocele on lip, lingual, or buccal mucosa. Our procedure in using CO II laser was not to vaporize the mucocele but to remove the whole mucocele mass. The border of mucocele was firstly incised by laser following defocusly ablating the root or body of mucocele separating from sorrounding tissue. As a result, mucocele was easily and completely removed without breaking the wall of mucocele. None of the cases required suturing. The results were as follows. 1. The mucocele of lip or lingual mucosa with a rich blood supply, was efficiently removed, without bleeding, giving a clear operative field during the operation. 2. The surgery itself was simple and less time-consuming. 3. After two or three weeks the wound was completely healed without almost any discomfort in all patients 4. Wound contraction and scarring were decreased or eliminated. 5. The reoccurrence of mucocele was not seen, except only in one case of lingual mucocele. In conclusion the use of CO II laser proved to be a very safe and effective mode for the removal of mucocele, especially in small children.

  9. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  10. Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

    Science.gov (United States)

    Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi

    2018-04-01

    A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.

  11. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  12. Communication barriers to applying federal research in support of land management in the United States

    Science.gov (United States)

    Vita Wright

    2007-01-01

    Barriers to effective communication between researchers and managers can ultimately result in barriers to the application of scientific knowledge and technology for land management. Both individual and organizational barriers are important in terms of how they affect the first three stages of the innovation-decision process: 1) knowledge, where an individual is exposed...

  13. Defective plastic infection-control barriers and faulty technique may cause PSP plate contamination used in digital intraoral radiography.

    Science.gov (United States)

    Kuperstein, Arthur S

    2012-09-01

    Fifty-two disinfected photostimulable phosphor (PSP) plates in plastic barrier envelopes were evaluated for contamination following placement in 30 study participants. Forty-four plates were acceptable for use in the study. The risk factor was the abundant oropharyngeal microbial flora and its ability to breach infection-control barrier sheaths. The presence of bacterial colonies on an agar plate was used to determine bacterial contamination and the presence of any growth indicated failure of the barrier envelope. Before clinical placement of the plates, quality review of the PSP plates revealed defects in the integrity of 4 barrier envelopes most likely caused by forceps-related damage or failure to achieve a uniform seal during manufacturing. These defects allowed substantial contamination. Contamination also occurred as a result of failure to extract the PSP plate from the barrier envelope cleanly. Of the 44 barriers with no obvious signs of a defect, 3 produced bacterial growth following culture. The authors concluded that digital sensor sheathed in barrier envelopes remain a potential source of contamination. PSP plates must be disinfected between removal from a contaminated barrier envelope (used in a patient) and placement in a new barrier envelope. In addition, placement into the barrier envelope should ideally be carried out under aseptic conditions. Finally, the integrity of each sealed barrier envelope must be verified visually. Copyright © 2012. Published by Mosby, Inc. All rights reserved.

  14. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  15. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  16. Implementation of a Non-Metallic Barrier in an Electric Motor

    Science.gov (United States)

    M?Sadoques, George; Carra, Michael; Beringer, Woody

    2012-01-01

    Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.

  17. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  18. Application of banana peels nanosorbent for the removal of radioactive minerals from real mine water.

    Science.gov (United States)

    Oyewo, Opeyemi A; Onyango, Maurice S; Wolkersdorfer, Christian

    2016-11-01

    Transformation of agricultural waste such as banana peels into a valuable sorbent material has been proven effective and efficient in wastewater treatment. Further, transformation into nanosorbent to enhance the removal capacity of actinides (uranium and thorium) from synthetic and real mine water is extensively investigated in this study. The nanosorbent samples before and after adsorption were characterised by X-ray diffraction (XRD), Fourier transform infra-red (FTIR), zetasizer nanoseries and scanning electron microscopy (SEM) while the amount of radioactive substances adsorbed was determined by inductively coupled plasma optical emission spectroscopy. Results revealed that there was a crystallite size and particle size reduction from 108 to 12 nm and banana peels capability to coordinate and remove metal ions were identified at absorption bands of 1730 cm -1 (carboxylic groups) and 889 cm -1 (amine groups) via FTIR analysis. Equilibrium isotherm results demonstrated that the adsorption process was endothermic for both uranium and thorium. The Langmuir maximum adsorption capacity was 27.1 mg g -1 , 34.13 mg g -1 for uranium and 45.5 mg g -1 , 10.10 mg g -1 for thorium in synthetic and real mine water, respectively. The results obtained indicate that nanostructured banana peels is a potential adsorbent for the removal of radioactive substances from aqueous solution and also from real mine water. However, the choice of this sorbent material for any application depends on the composition of the effluent to be treated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Overcoming Barriers to Open Innovation at Apple, Nintendo and Nokia

    OpenAIRE

    Erik Pontiskoski; Kazuhiro Asakawa

    2009-01-01

    This is a conceptual paper on the application of open innovation in three case examples of Apple, Nintendo, and Nokia. Utilizing key concepts from research into managerial and organizational cognition, we describe how each company overcame barriers to utilizing open innovation strategy in R&D and commercialization projects. We identify three levels of barriers: cognitive, behavioral, and institutional, and describe the companies balanced between internal and external reso...

  20. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-01-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  1. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  2. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron

    DEFF Research Database (Denmark)

    Astrup, Thomas; Stipp, S. L. S.; Christensen, Thomas Højlund

    2000-01-01

    The purpose of this investigation was (i) to test the effectiveness of a barrier engineered to remove Cr(VI) from leachates of higher pH and salinity typical of coal burning ashes and (ii) to determine which geochemical processes control Cr immobilization. Laboratory column and batch desorption e...

  3. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  4. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    Science.gov (United States)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the

  5. Plan for metal barrier selection and testing for NNWSI

    International Nuclear Information System (INIS)

    Halsey, W.G.; McCright, R.D.

    1987-12-01

    The Department of Energy's Nevada Nuclear Waste Storage Investigations (NNWSI) Project is evaluating a site at Yucca Mountain in Nevada as a geological repository for the storage of high-level nuclear waste. The Nuclear Waste Management Projects (NWMP) at Lawrence Livermore National Laboratory (LLNL) has the responsibility for design, testing, and performance analysis of the NNWSI waste packages. One portion of this work is the selection and testing of the material for container construction. The anticipated container design is for this material to be a corrosion resistant metal called the metal barrier. This document is the publication version of the Scientific Investigation Plan (SIP) for the Metal Barrier Selection and Testing Task. The SIP serves as a formal planning document for the investigation and is used to assign quality assurance levels to the activities of the task. This document is an informal version for information distribution and has the sections on ''Schedule and Milestones'' and the ''Quality Assurance Level Assignment Sheets'' removed

  6. Application of Azolla for 2-Chlorophenol and 4-Chrorophenol Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2013-09-01

    Full Text Available Background and purpose: The 2-chlorophenol (2-CP and 4-chlorophenol (4-CP are phenolic compounds which may have adverse effects on human and environment. Therefore, removing these compounds from water and wastewater is necessary. This study aims to analyze 2-CP and 4-CP removal by using Azolla filiculoides biomass. Materials & Methods: Azolla biomass was sun dried, crushed and sieved to particle sizes ranging 1-2 mm. Then it was treated with 0.1M HCl for 5h followed by washing with distilled water and it was used as adsorbent. The residues concentration of 2-CP and 4-CP was measured by spectrophotometer in λmax of 274 and 280 nm, respectively. Results: The solute removed increases as contact time rises. The equilibrium time for 2-CP and 4-CP is 90 and 75, respectively. The removal efficiency of 4-CP is more than 2-CP. An increase in initial concentration of both compounds can lead to decrease of their removal efficiency. The optimum pH to remove both compounds is 5. The equilibrium data matched best on Freundlich isotherm and the adsorption kinetic model follows pseudo-second model. Conclusion: The results indicated that Azolla is an effective adsorbent for removing 2-CP and 4-CP from water and wastewater.

  7. Cost effectiveness of methods for removing radium and thorium in uranium mining

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1981-01-01

    The potential health impact from uranium milling operations is mainly associated with long-term releases of radioactive contaminants from the mill tailings. The major mechanisms for mitigating these potential releases focus on increasing the tailings containment with the addition of migration barriers such as thick earthern covers and clay liners. Some limited investigation has also focused on reducing the radionuclide source terms. This alternative approach has some desirable features, but stringent cost requirements are placed upon source removal methods in order for them to be economically favorable. A cost effectiveness evaluation is presented herein, in which costs for containment methods are used to establish maximum cost guidelines for the source removal methods

  8. Passing through the renal clearance barrier: toward ultrasmall sizes with stable ligands for potential clinical applications

    Directory of Open Access Journals (Sweden)

    Zhang XD

    2014-04-01

    Full Text Available Xiao-Dong Zhang,1 Jiang Yang,2 Sha-Sha Song,1 Wei Long,1 Jie Chen,1 Xiu Shen,1 Hao Wang,1 Yuan-Ming Sun,1 Pei-Xun Liu,1 Saijun Fan11Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USAAbstract: The use of nanoparticles holds promise for medical applications, such as X-ray imaging, photothermal therapy and radiotherapy. However, the in vivo toxicity of inorganic nanoparticles raises some concern regarding undesirable side effects which prevent their further medical application. Ultrasmall sub-5.5 nm particles can pass through the barrier for renal clearance, minimizing their toxicity. In this letter we address some recent interesting work regarding in vivo toxicity and renal clearance, and discuss the possible strategy of utilizing ultrasmall nanomaterials. We propose that small hydrodynamic sized nanoclusters can achieve both nontoxic and therapeutic clinical features.Keywords: in vivo clearance, gold nanoparticles, small size

  9. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-hong [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Liu, Fu-qiang, E-mail: jogia@163.com [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Wang, Feng-he [School of Environment, Nanjing Normal University, Nanjing, 210023 (China); Ling, Chen; Li, Ai-min [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China)

    2017-05-05

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H{sub 2}PO{sub 4}{sup −} were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H{sub 2}PO{sub 4}{sup −} accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H{sub 2}PO{sub 4}{sup −}. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  10. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    Science.gov (United States)

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  11. Pegasus International, Inc. coating removal systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Pegasus Coating Removal System (PCRS) was demonstrated at Florida International University (FIU) where it was being evaluated for efficiency and cost. In conjunction with the FIU testing demonstration, a human factors assessment was conducted to assess the hazards and associated safety and health issues of concern for workers utilizing this technology. The PCRS is a chemical paste that is applied to the surface using a brush, roller, or airless sprayer. After the type of PCRS, thickness, and dwell time have been determined, a laminated backed material is placed on top of the chemical paste to slow down the drying process and to provide a mechanism to strip-off the chemical. After the dwell time is reached, the chemical substrate can be removed. Scrapers may be used to break-loose the layers as necessary or to break-loose the layers that are not removed when the laminated paper is picked up. Residue may also be cleaned off of the surface with a damp sponge with an agitating motion, absorbent sponges, or a vacuum, as needed. The paint and removal agent is then placed in drums for disposal at a later time. During the assessment sampling was conducted for organic vapors and general observational techniques were conducted for ergonomics. Recommendations for improved worker safety and health during application and removal of the PCRS include: (1) work practices that reflect avoidance of exposure or reducing the risk of exposure; (2) assuring all PPE and equipment are compatible with the chemicals being used; (3) work practices that reduce the worker`s need to walk on the slippery surface caused by the chemical or the use of special anti-slip soles; (4) careful control of overspray (if a spray application is used); and (5) the use of ergonomically designed long-handled tools to apply and remove the chemical (to alleviate some of the ergonomic concerns).

  12. Applications of porous electrodes to metal-ion removal and the design of battery systems

    International Nuclear Information System (INIS)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected

  13. Applications of porous electrodes to metal-ion removal and the design of battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  14. CRASH TEST AND EVALUATION OF RESTRAINED SAFETY-SHAPE CONCRETE BARRIERS ON CONCRETE BRIDGE DECK

    Science.gov (United States)

    2018-01-01

    This research designed and tested a new portable concrete barrier that meets the performance of MASH TL-4 and can be used in temporary and permanent applications on bridge decks. Additionally, this new barrier system will minimize deflection, allowin...

  15. Efficient option valuation of single and double barrier options

    Science.gov (United States)

    Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin

    2017-12-01

    In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.

  16. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-01-01

    positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking

  17. Achieving sub-50 nm controlled diameter of aperiodic Si nanowire arrays by ultrasonic catalyst removal for photonic applications

    Science.gov (United States)

    Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2018-05-01

    We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.

  18. Statistical Removal of Shadow for Applications to Gait Recognition

    National Research Council Canada - National Science Library

    Hockersmith, Brian

    2008-01-01

    .... The thesis begins with the analysis of videos of solid colored backgrounds. A formulation of the effect of shadow on specified colors will aid in the derivation of a hypothesis test to remove an individual's shadow...

  19. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  20. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  1. Impedance model for quantum-mechanical barrier problems

    International Nuclear Information System (INIS)

    Nelin, Evgenii A

    2007-01-01

    Application of the impedance model to typical quantum-mechanical barrier problems, including those for structures with resonant electron tunneling, is discussed. The efficiency of the approach is illustrated. The physical transparency and compactness of the model and its potential as a teaching and learning tool are discussed. (methodological notes)

  2. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review

    Directory of Open Access Journals (Sweden)

    Lidia Bandura

    2017-03-01

    Full Text Available Environmental pollution with petroleum products has become a major problem worldwide, and is a consequence of industrial growth. The development of sustainable methods for the removal of petroleum substances and their derivatives from aquatic and terrestrial environments and from air has therefore become extremely important today. Advanced technologies and materials dedicated to this purpose are relatively expensive; sorption methods involving mineral sorbents are therefore popular and are widely described in the scientific literature. Mineral materials are easily available, low-cost, universal adsorbents and have a number of properties that make them suitable for the removal of petroleum substances. This review describes recent works on the use of natural, synthetic and modified mineral adsorbents for the removal of petroleum substances and their derivatives from roads, water and air.

  3. A removable optical sealing system for application to international safeguards

    International Nuclear Information System (INIS)

    Martin, R.E.

    1985-06-01

    A removable, optically verifiable sealing system for CANDU spent fuel storage facilities has been developed. The seal is based on the use of unique crystal patterns formed in a pure metal identity/integrity element and has been designed for easy installation and removal using simple tooling. Since the seal is optically verified, a wide range of commercial instruments, including those in use by the IAEA, can be used to verify it. Futhermore, optical verification allows the level of scrutiny to be matched with the degree of confidence required to be confident that spent fuel has not been diverted

  4. Effect of skin barrier disruption on immune responses to topically applied cross-reacting material, CRM(197), of diphtheria toxin.

    Science.gov (United States)

    Godefroy, S; Peyre, M; Garcia, N; Muller, S; Sesardic, D; Partidos, C D

    2005-08-01

    The high accessibility of the skin and the presence of immunocompetent cells in the epidermis makes this surface an attractive route for needle-free administration of vaccines. However, the lining of the skin by the stratum corneum is a major obstacle to vaccine delivery. In this study we examined the effect of skin barrier disruption on the immune responses to the cross-reacting material CRM(197), a nontoxic mutant of diphtheria toxin (DTx) that is considered as a vaccine candidate. Application of CRM(197), together with cholera toxin (CT), onto the tape-stripped skin of mice elicited antibody responses that had anti-DTx neutralizing activity. Vaccine delivery onto mildly ablated skin or intact skin did not elicit any detectable anti-CRM(197) antibodies. Mice immunized with CRM(197) alone onto the tape-stripped skin mounted a vigorous antigen-specific proliferative response. In contrast, the induction of cellular immunity after CRM(197) deposition onto mildly ablated or intact skin was adjuvant dependent. Furthermore, epidermal cells were activated and underwent apoptosis that was more pronounced when the stratum corneum was removed by tape stripping. Overall, these findings highlight the potential for transcutaneous delivery of CRM(197) and establish a correlation between the degree of barrier disruption and levels of antigen-specific immune responses. Moreover, these results provide the first evidence that the development of a transcutaneous immunization strategy for diphtheria, based on simple and practical methods to disrupt the skin barrier, is feasible.

  5. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  6. Use of ozone-biofiltration for bulk organic removal and disinfection byproduct mitigation in potable reuse applications.

    Science.gov (United States)

    Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel

    2018-07-01

    The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities In Assessing The Degradation Of Cementitious Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. III [Savannah River Site (SRS), Aiken, SC (United States); Brown, K. G. [Vanderbilt University, Nashville, TN (United States); Kosson, D. S. [Vanderbilt University, Nashville, TN (United States); Garrabrants, A. C. [Vanderbilt University, Nashville, TN (United States); Sarkar, S. [Vanderbilt University, Nashville, TN (United States); van der Sloot, H. [Hans van der Sloot Consultancy (The Netherlands); Meeussen, J. C.L. [Nuclear Research and Consultancy Group, Petten (The Netherlands); Samson, E. [SIMCO Technologies Inc. , 1400, boul. du Parc - Technologique , Suite 203, Quebec (Canada); Mallick, P. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Esh, D. W. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Fuhrmann, M. J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Philip, J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States)

    2013-01-11

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software

  8. Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water

    Science.gov (United States)

    2016-03-01

    coefficient, and sediment clogging coefficients. Also, the flexible reactive barrier system permitted overtopping and filter socks would be arranged in a...FINAL REPORT Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water ESTCP Project ER-201213 MARCH 2016...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME

  9. 29 CFR 1915.33 - Chemical paint and preservative removers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Chemical paint and preservative removers. 1915.33 Section... Preparation and Preservation § 1915.33 Chemical paint and preservative removers. (a) Employees shall be protected against skin contact during the handling and application of chemical paint and preservative...

  10. Reactive barriers for 137Cs retention

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Brady, Patrick V.; Anderson, Howard L.

    2000-01-01

    137 Cs was dispersed globally by cold war activities and, more recently, by the Chernobyl accident. Engineered extraction of 137 Cs from soils and groundwaters is exceedingly difficult. Because the half life of 137 Cs is only 30.2 years, remediation might be more effective (and less costly) if 137 Cs bioavailability could be demonstrably limited for even a few decades by use of a reactive barrier. Essentially permanent isolation must be demonstrated in those few settings where high nuclear level wastes contaminated the environment with 135 Cs (half life 2.3x10 6 years) in addition to 137 Cs. Clays are potentially a low-cost barrier to Cs movement, though their long-term effectiveness remains untested. To identify optimal clays for Cs retention Cs resorption was measured for five common clays: Wyoming Montmorillonite (SWy-1), Georgia Kaolinites (KGa-1 and KGa-2), Fithian Illite (F-Ill), and K-Metabentonite (K-Mbt). Exchange sites were pre-saturated with 0.16 M CsCl for 14 days and readily exchangeable Cs was removed by a series of LiNO 3 and LiCl washes. Washed clay were then placed into dialysis bags and the Cs release to the deionized water outside the bags measured. Release rates from 75 to 139 days for SWy-1, K-Mbt and F- 111 were similar; 0.017 to 0.021% sorbed Cs released per day. Both kaolinites released Cs more rapidly (0.12 to 0.05% of the sorbed Cs per day). In a second set of experiments, clays were doped for 110 days and subjected to an extreme and prolonged rinsing process. All the clays exhibited some capacity for irreversible Cs uptake so most soils have some limited ability to act as a natural barrier to Cs migration. However, the residual loading was greatest on K-Mbt (∼ 0.33 wt% Cs). Thus, this clay would be the optimal material for constructing artificial reactive barriers

  11. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Ralf; Cramer, Sandra; Huewel, Sabine [Department of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, D-48149 Muenster (Germany); Galla, Hans-Joachim, E-mail: gallah@uni-muenster.de [Department of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, D-48149 Muenster (Germany)

    2011-03-04

    Research highlights: {yields} Poly(n-butylcyano-acrylate) (PBCA) nanoparticles may be promising drug carriers. {yields} Influence of PBCA nanoparticles on the integrity of the blood-brain barrier in vitro. {yields} PBCA nanoparticles lead to a reversible disruption of the BBB in vitro after 4 h. {yields} Potential application as time-dependent and specific opener of the BBB. -- Abstract: In previous studies it was shown that polysorbate 80(PS80)-coated poly(n-butylcyano-acrylate) nanoparticles (PBCA-NP) are able to cross the blood-brain barrier (BBB) in vitro and in vivo. In order to explore and extend the potential applications of PBCA-NP as drug carriers, it is important to ascertain their effect on the BBB. The objective of the present study was to determine the effect of PS80-coated PBCA-NP on the BBB integrity of a porcine in vitro model. This has been investigated by monitoring the development of the transendothelial electrical resistance (TEER) after the addition of PBCA-NP employing impedance spectroscopy. Additionally, the integrity of the BBB in vitro was verified by measuring the passage of the reference substances {sup 14}C-sucrose and FITC-BSA after addition of PBCA-NP. In this study we will show that the application of PS80-coated PBCA-NP leads to a reversible disruption of the barrier after 4 h. The observed disruption of the barrier could also be confirmed by {sup 14}C-sucrose and FITC-BSA permeability studies. Comparing the TEER and permeability studies the lowest resistances and maximal values for permeabilities were both observed after 4 h. These results indicate that PS80-coated PBCA-NP might be suitable for the use as drug carriers. The reversible disruption also offers the possibility to use these particles as specific opener of the BBB. Instead of incorporating the therapeutic agents into the NP, the drugs may cross the BBB after being applied simultaneously with the PBCA-NP.

  12. Verification of the integrity of barriers using gas diffusion

    International Nuclear Information System (INIS)

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier's integrity after emplacement, and monitoring of the barrier's performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF 6 ) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF 6 diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF 6 through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days

  13. Soil strength and maize yield after topsoil removal and application of nutrient amendments on a gravelly Alfisol toposequence

    International Nuclear Information System (INIS)

    Salako, F.K.; Dada, P.O.; Adejuyigbe, C.O.; Adedire, M.O.; Martins, O.; Akwuebu, C.A.; Williams, O.E.

    2006-04-01

    Vast areas of degraded soils exist in southwestern Nigeria due to topsoil removal by soil erosion and gravel/stone mining operators. The restoration of such soils has become imperative to sustain food production in most rural communities. Therefore, a factorial field experiment was designed in 2003 and 2004 with the factors being slope positions (upper and lower slopes), topsoil removal (0, 15 and 25 cm depths) and nutrient amendments (0, 10 t ha -1 poultry manure and 60:30:30 N: P 2 O 5 : K 2 O as NPK + urea). This was complemented with a laboratory study to determine the effects of soil water, gravel concentration and gravel size on soil strength. Maize was planted. Soil strength was measured with a self-recoding penetrometer at soil depth interval of 2.5 cm up to 50 cm depth. Soil bulk density, water content, maize root and shoot biomass and grain yield were measured. In the laboratory, soil strength decreased from 483-314 kPa as water content increased from 0.05-0.62 cm 3 cm - 3 while it increased from 294-469 kPa as gravel concentration increased from 100-500 g kg -1 . Soil strength was affected more by water content and gravel concentration than gravel size. Under various moist conditions in the field, soil strength increased with soil depth from 1177-5000 kPa at the upper slope and from 526-5000 kPa at the lower slope. Thus, the lower slope had significantly lower soil strength than the upper slope. Soil strength increased with increasing soil depth removal and was significantly reduced by poultry manure. For the 2 years of study, high grain yields were sustained with poultry manure/no topsoil removal (1784-3571 kg ha -1 ) and NPK + urea/no topsoil removal (2371-2600 kPa) at the lower slope. However, soil at the upper slope was more resistant to degradation as 16-67% loss in yield was observed compared to 65-75% for lower slope when no nutrients were applied. Nonetheless, both the upper and lower slope positions were productive with the application of

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  15. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  16. Research progress of siloxane removal from biogas

    Directory of Open Access Journals (Sweden)

    Gao Ruiling

    2017-01-01

    Full Text Available Siloxanes in biogas are detrimental to engine, turbine, fuel cell, etc., thus it is necessary to remove siloxanes from biogas before biogas high-value utilization. At present, there are few domestic researches and related reports in view of siloxanes removal from biogas. This paper introduces the property of siloxanes as well as sampling and analysis method, and then presents the research progress of siloxanes removal from biogas. Three commercial technologies overseas are adsorption, absorption and cryogenic condensation. Among them, adsorption on activated carbon is the most widely used method. Other technologies, such as biological removal, catalytic processes, membranes, source controlling, etc. are under exploration and development. At last, this paper summarizes the advantages and disadvantages of siloxanes removal technologies as well as the applicability and analyzes the future research trend and emphasis. This paper could provide a reference in the field of biogas high-value utilization.

  17. Removing user fees in the health sector: a review of policy processes in six sub-Saharan African countries.

    Science.gov (United States)

    Meessen, Bruno; Hercot, David; Noirhomme, Mathieu; Ridde, Valéry; Tibouti, Abdelmajid; Tashobya, Christine Kirunga; Gilson, Lucy

    2011-11-01

    In recent years, governments of several low-income countries have taken decisive action by removing fully or partially user fees in the health sector. In this study, we review recent reforms in six sub-Saharan African countries: Burkina Faso, Burundi, Ghana, Liberia, Senegal and Uganda. The review describes the processes and strategies through which user fee removal reforms have been implemented and tries to assess them by referring to a good practice hypotheses framework. The analysis shows that African leaders are willing to take strong action to remove financial barriers met by vulnerable groups, especially pregnant women and children. However, due to a lack of consultation and the often unexpected timing of the decision taken by the political authorities, there was insufficient preparation for user fee removal in several countries. This lack of preparation resulted in poor design of the reform and weaknesses in the processes of policy formulation and implementation. Our assessment is that there is now a window of opportunity in many African countries for policy action to address barriers to accessing health care. Mobilizing sufficient financial resources and obtaining long-term commitment are obviously crucial requirements, but design details, the formulation process and implementation plan also need careful thought. We contend that national policy-makers and international agencies could better collaborate in this respect.

  18. Barriers to healthcare: Instrument development and comparison between autistic adults and adults with and without other disabilities.

    Science.gov (United States)

    Raymaker, Dora M; McDonald, Katherine E; Ashkenazy, Elesia; Gerrity, Martha; Baggs, Amelia M; Kripke, Clarissa; Hourston, Sarah; Nicolaidis, Christina

    2017-11-01

    Our objective was to use a community-based participatory research approach to identify and compare barriers to healthcare experienced by autistic adults and adults with and without other disabilities. To do so, we developed a Long- and Short-Form instrument to assess barriers in clinical and research settings. Using the Barriers to Healthcare Checklist-Long Form, we surveyed 437 participants (209 autistic, 55 non-autistic with disabilities, and 173 non-autistic without disabilities). Autistic participants selected different and greater barriers to healthcare, particularly in areas related to emotional regulation, patient-provider communication, sensory sensitivity, and healthcare navigation. Top barriers were fear or anxiety (35% (n = 74)), not being able to process information fast enough to participate in real-time discussions about healthcare (32% (n = 67)), concern about cost (30% (n = 62)), facilities causing sensory issues 30% ((n = 62)), and difficulty communicating with providers (29% (n = 61)). The Long Form instrument exhibited good content and construct validity. The items combined to create the Short Form had predominantly high levels of correlation (range 0.2-0.8, p barriers, and urge more intervention research to explore means for removing them.

  19. Barriers to renewable energy penetration. A framework for analysis

    DEFF Research Database (Denmark)

    Painuly, Jyoti P.

    2001-01-01

    Renewable energy has the potential to play an important role in providing energy with sustainability to the vast populations in developing countries who as yet have no access to clean energy. Although economically viable fur several applications, renewable energy has not been able to realise its...... potential due to several barriers to its penetration. A framework has been developed in this paper to identify the barriers to renewable energy penetration acid to suggest measures to overcome them. (C) 2001 Elsevier Science Ltd. All rights reserved....

  20. Tattoo removal with ingenol mebutate

    Directory of Open Access Journals (Sweden)

    Cozzi SJ

    2017-05-01

    Full Text Available Sarah-Jane Cozzi,1 Thuy T Le,1 Steven M Ogbourne,2 Cini James,1 Andreas Suhrbier1 1Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 2Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC, QLD, Australia Abstract: An increasing number of people are getting tattoos; however, many regret the decision and seek their removal. Lasers are currently the most commonly used method for tattoo removal; however, treatment can be lengthy, costly, and sometimes ineffective, especially for certain colors. Ingenol mebutate is a licensed topical treatment for actinic keratoses. Here, we demonstrate that two applications of 0.1% ingenol mebutate can efficiently and consistently remove 2-week-old tattoos from SKH/hr hairless mice. Treatment was associated with relocation of tattoo microspheres from the dermis into the posttreatment eschar. The skin lesion resolved about 20 days after treatment initiation, with some cicatrix formation evident. The implications for using ingenol mebutate for tattoo removal in humans are discussed. Keywords: tattoo, ingenol mebutate, mouse 

  1. Radiant Barriers Save Energy in Buildings

    Science.gov (United States)

    2014-01-01

    Langley Research Center needed to coat the Echo 1 satellite with a fine mist of vaporized metal, and collaborated with industry to create "radiant barrier technology." In 2010, Ryan Garrett learned about a new version of the technology resistant to oxidation and founded RadiaSource in Ogden, Utah, to provide the NASA-derived technology for applications in homes, warehouses, gymnasiums, and agricultural settings.

  2. Nuclear dynamics around the barrier: from fusion to evaporation

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2003-01-01

    This work is devoted to aspects of nuclear dynamics around the barrier. It is shown that for fusion reactions, the Coulomb field couples relative motion of nuclei to rotation of a deformed projectile independently of the energy and the charge of the nuclei. An experimental study of the reaction 6 He + 190 Os via gamma spectroscopy of product nuclei has shown that the break up of the 6 He is coupled to the relative motion too, a strong hindrance resulting in the fusion around and above the fusion barrier. The path to fusion after overcoming the barrier, especially the charge equilibration, have been studied in the framework of the TDHF theory via the preequilibrium GDR excited in N/Z asymmetric reactions. An application to formation of the super-heavy elements has been proposed. Finally, couplings between protons and neutrons have been shown up in mean field calculations. Their main expected effect is an emission of protons under the Coulomb barrier. (author)

  3. Barriers to green supply chain management in the automotive industry

    Directory of Open Access Journals (Sweden)

    Flávia Cristina da Silva

    2018-04-01

    Full Text Available This study identified the barriers to and analyzed their degree of influence on Green Supply Chain Management (GSCM from the perspective of a first tier supplier in the Brazilian automotive industry. There are 43 barriers in the literature of which 13 were validated: support and involvement (five, operational performance (three, economic performance (two, environmental performance (two, and knowledge and information (one. The validation occurred through the perception of technical and academic specialists familiar with environmental management and supply chains in several sectors. The hierarchy of barriers priorities was obtained through the application of the Analytic Hierarchy Process (AHP, with decision makers representing an industry in the automotive sector. The research showed that the cost implications represent the most influential barrier to GCSV, from the perspective of a first tier supplier in the sector.

  4. Solving k-Barrier Coverage Problem Using Modified Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Yanhua Zhang

    2017-01-01

    Full Text Available Coverage problem is a critical issue in wireless sensor networks for security applications. The k-barrier coverage is an effective measure to ensure robustness. In this paper, we formulate the k-barrier coverage problem as a constrained optimization problem and introduce the energy constraint of sensor node to prolong the lifetime of the k-barrier coverage. A novel hybrid particle swarm optimization and gravitational search algorithm (PGSA is proposed to solve this problem. The proposed PGSA adopts a k-barrier coverage generation strategy based on probability and integrates the exploitation ability in particle swarm optimization to update the velocity and enhance the global search capability and introduce the boundary mutation strategy of an agent to increase the population diversity and search accuracy. Extensive simulations are conducted to demonstrate the effectiveness of our proposed algorithm.

  5. Active barrier films of PET for solar cell application: Processing and characterization

    International Nuclear Information System (INIS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2014-01-01

    A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain

  6. A new alternative in vertical barrier wall construction

    International Nuclear Information System (INIS)

    Rawl, G.F.

    1997-01-01

    A new proprietary vertical barrier wall system has been developed to revolutionize the construction process by eliminating many of the concerns of conventional installation method's with respect to performance, installation constraints and costs. Vertical barrier walls have been used in the environmental and construction industries for a variety of purposes, usually for cut-off or containment. The typical scenario involves a groundwater contamination problem, in which a vertical barrier wall is utilized to contain or confine the spread of contaminants below the ground surface. Conventional construction techniques have been adequate in many applications, but often fall short of their intended purposes due to physical constraints. In many instances, the economics of these conventional methods have limited the utilization of physical barrier walls. Polywall, the trade name for this new barrier wall technology, was subsequently developed to meet these needs and offer a number of distinct advantages in a variety of scenarios by maximizing confinement and minimizing installation costs. Polywall is constructed from chemically resistant high density polyethylene (HDPE) plastic. It has proven in a half-dozen projects to date to be the most cost-effective and technically sound approach to many containment situations. This paper will cover the development of the technology and will provide a brief synopsis of several installations

  7. Barriers to activity and participation for stroke survivors in rural China.

    Science.gov (United States)

    Zhang, Lifang; Yan, Tiebin; You, Liming; Li, Kun

    2015-07-01

    To investigate environmental barriers reported by stroke survivors in the rural areas of China and to determine the impact of environmental barriers on activity and participation relative to demographic characteristics and body functioning. Cross-sectional survey. Structured interviews in the participants' homes. Community-dwelling stroke survivors in the rural areas of China (N=639). Not applicable. Activity and participation (Chinese version of the World Health Organization Disability Assessment Schedule 2.0), environmental barriers (Craig Hospital Inventory of Environmental Factors), neurological function (Canadian Neurological Scale), cognitive function (Abbreviated Mental Test), and depression (6-item Hamilton Rating Scale for Depression). Physical/structural barriers are the major impediment to activity and participation for these participants (odds ratio, 1.86 and 1.99 for activity and participation, respectively; Penvironmental barriers to be decreased and eliminated first. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Revival of cloaking effect in a driven bilayer graphene vector barrier

    Science.gov (United States)

    Maiti, S.; Panigrahi, A.; Biswas, R.; Sinha, C.

    2018-05-01

    Transmission profiles in bilayer graphene are studied theoretically through a rectangular vector potential (magnetic) barrier with and without the presence of an oscillatory potential. Unlike the electrostatic barrier, the Fano resonances (FR) are noted in the transmission spectra both for normal and glancing incidences due to non-conservation of chirality for a static vector barrier. The results for normal incidence indicate that the cloaking effect is a manifestation of the chirality conservation in charge transport through bilayer graphene scalar barriers. It is also noted that the aforesaid FR for a static vector barrier might disappear (photon induced electronic cloaking effect) due to the predominant photon exchange processes in presence of an external oscillating potential. The study of Fano resonances in transmission spectrum is in high demand in respect of localization of charge carriers in graphene nano structures for its potential applications in digital device fabrications.

  9. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  10. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs

  11. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. (ed.)

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs.

  12. De-extinction and Barriers to the Application of New Conservation Tools.

    Science.gov (United States)

    Seddon, Philip J

    2017-07-01

    Decades of globally coordinated work in conservation have failed to slow the loss of biodiversity. To do better-even if that means nothing more than failing less spectacularly-bolder thinking is necessary. One of the first possible conservation applications of synthetic biology to be debated is the use of genetic tools to resurrect once-extinct species. Since the currency of conservation is biodiversity and the discipline of conservation biology was formed around the prevention of species extinctions, the prospect of reversing extinctions might have been expected to generate unreserved enthusiasm. But it was not universal acclaim that greeted the coming-out party for "de-extinction" that was the TEDx conference and accompanying National Geographic feature in 2013. Why the concern, the skepticism, even the hostility among many conservationists about the idea of restoring lost species? And how does this professional concern relate to public perception and support for conservation? This essay explores the barriers to the acceptance of risky new genomic-based conservation tools by considering five key areas and associated questions that could be addressed in relation to any new conservation tool. I illustrate these using the specific example of de-extinction, and in doing so, I consider whether de-extinction would necessarily be the best first point of engagement between conservation biology and synthetic biology. © 2017 The Hastings Center.

  13. Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected

    Science.gov (United States)

    Donnelly, Ryan F.; Mooney, Karen; McCrudden, Maelíosa T.C.; Vicente-Pérez, Eva M.; Belaid, Luc; González-Vázquez, Patricia; McElnay, James C.; Woolfson, A. David

    2014-01-01

    We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle arrays (MN) and skin barrier recovery in human volunteers. Such MN, prepared from aqueous blends of hydrolysed poly(methylvinylether/maleicanhydride) (15% w/w) and the crosslinker poly(ethyleneglycol) 10,000 daltons (7.5% w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 hours in skin. Importantly, however, skin barrier function recovered within 24 hours post microneedle removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required, since transepidermal water loss measurements suggested micropore closure, while optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 hours after MN had been removed. There were no complaints of skin reactions, adverse events or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 hours and no adverse events were present on follow-up. PMID:24633895

  14. A multicentre, randomised, controlled trial to assess the safety, ease of use, and reliability of hyaluronic acid/carboxymethylcellulose powder adhesion barrier versus no barrier in colorectal laparoscopic surgery.

    Science.gov (United States)

    Berdah, Stéphane V; Mariette, Christophe; Denet, Christine; Panis, Yves; Laurent, Christophe; Cotte, Eddy; Huten, Nöel; Le Peillet Feuillet, Eliane; Duron, Jean-Jacques

    2014-10-27

    Intra-peritoneal adhesions are frequent following abdominal surgery and are the most common cause of small bowel obstructions. A hyaluronic acid/carboxymethylcellulose (HA/CMC) film adhesion barrier has been shown to reduce adhesion formation in abdominal surgery. An HA/CMC powder formulation was developed for application during laparoscopic procedures. This was an exploratory, prospective, randomised, single-blind, parallel-group, Phase IIIb, multicentre study conducted at 15 hospitals in France to assess the safety of HA/CMC powder versus no adhesion barrier following laparoscopic colorectal surgery. Subjects ≥18 years of age who were scheduled for colorectal laparoscopy (Mangram contamination class I‒III) within 8 weeks of selection were eligible, regardless of aetiology. Participants were randomised 1:1 to the HA/CMC powder or no adhesion barrier group using a centralised randomisation list. Patients assigned to HA/CMC powder received a single application of 1 to 10 g on adhesion-prone areas. In the no adhesion barrier group, no adhesion barrier or placebo was applied. The primary safety assessments were the incidence of adverse events, serious adverse events, and surgical site infections (SSIs) for 30 days following surgery. Between-group comparisons were made using Fisher's exact test. Of those randomised to the HA/CMC powder (n = 105) or no adhesion barrier (n = 104) groups, one patient in each group discontinued prior to the study end (one death in each group). Adverse events were more frequent in the HA/CMC powder group versus the no adhesion barrier group (63% vs. 39%; P barrier group in SSIs (21% vs. 14%; P = 0.216) and serious SSIs (12% vs. 9%; P = 0.38), or in the most frequent serious SSIs of pelvic abscess (5% and 2%; significance not tested), anastomotic fistula (3% and 4%), and peritonitis (2% and 3%). This exploratory study found significantly higher rates of adverse events and serious adverse events in the HA/CMC powder group compared with

  15. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    International Nuclear Information System (INIS)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.

    2009-01-01

    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  16. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.

    2009-07-01

    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  17. Removing financial barriers to access reproductive, maternal and newborn health services: the challenges and policy implications for human resources for health.

    Science.gov (United States)

    McPake, Barbara; Witter, Sophie; Ensor, Tim; Fustukian, Suzanne; Newlands, David; Martineau, Tim; Chirwa, Yotamu

    2013-09-22

    The last decade has seen widespread retreat from user fees with the intention to reduce financial constraints to users in accessing health care and in particular improving access to reproductive, maternal and newborn health services. This has had important benefits in reducing financial barriers to access in a number of settings. If the policies work as intended, service utilization rates increase. However this increases workloads for health staff and at the same time, the loss of user fee revenues can imply that health workers lose bonuses or allowances, or that it becomes more difficult to ensure uninterrupted supplies of health care inputs.This research aimed to assess how policies reducing demand-side barriers to access to health care have affected service delivery with a particular focus on human resources for health. We undertook case studies in five countries (Ghana, Nepal, Sierra Leone, Zambia and Zimbabwe). In each we reviewed financing and HRH policies, considered the impact financing policy change had made on health service utilization rates, analysed the distribution of health staff and their actual and potential workloads, and compared remuneration terms in the public sectors. We question a number of common assumptions about the financing and human resource inter-relationships. The impact of fee removal on utilization levels is mostly not sustained or supported by all the evidence. Shortages of human resources for health at the national level are not universal; maldistribution within countries is the greater problem. Low salaries are not universal; most of the countries pay health workers well by national benchmarks. The interconnectedness between user fee policy and HRH situations proves difficult to assess. Many policies have been changing over the relevant period, some clearly and others possibly in response to problems identified associated with financing policy change. Other relevant variables have also changed.However, as is now well

  18. Vulnerability of multiple-barrier systems

    International Nuclear Information System (INIS)

    Lind, N.C.

    1996-01-01

    'Vulnerability' is defined as the ratio of the probability of failure of a damaged system to the probability of failure of the undamaged system. This definition applies to all engineered systems and can be specialized to particular system types. Some disastrous failures (e.g., Chernobyl) have shown that systems can be highly vulnerable. open-quotes Defense in depthclose quotes is a powerful design principle, reducing vulnerability when the consequences of failure can be catastrophic. In the nuclear industry, defense in depth is widely used in radiation protection, reactor control, and shutdown systems. A multiple-barrier system is a simple example of a system that has defense in depth. The idea is that the system is not vulnerable. It cannot fail if one barrier fails because there is another to take its place. This idea is untenable in waste management, but a quantified vulnerability of a system can help owners, designers, and regulators decide how much defense in depth is desirable or enough. Many multiple-barrier systems can be modeled as systems of components physically in a series, each individually able to prevent failure. Components typically have bimodal distributions of the service time to failure, as illustrated by an example of application to a hypothetical nuclear fuel waste repository

  19. Fire barrier problems-part 3

    International Nuclear Information System (INIS)

    Verna, B.J.

    1993-01-01

    This article deals with problems associated with a thermal barrier material called Thermo-Lag 330. Typically in nuclear applications this material is used to provide either 1 hour (1/2 inch thick) or 3 hour (1 inch thick) barriers to prevent the spread of fires between redundant safety systems, and to protect cable trays and conduit. The article reviews concerns within the nuclear industry as to the proper handling of the material, how to interpret the data available on the material, the apparant conflicting assessments of the material when tested by different groups, etc. Research is ongoing on the suitability of the material, but the article points out that the manufacturer feels it should be installed by properly trained installers, the joints sealed with a grouting material, properly bundled to maintain its integrity, have a complete stress skin, and not be walked on after installation in order to function properly

  20. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tammy S. Edgecumble Summers

    2001-08-23

    This Analysis Model Report (AMR) was prepared in accordance with the Work Direction and Planning Document, ''Aging and Phase Stability of Waste Package Outer Barrier'' (CRWMS M&O 1999a). ICN 01 of this AMR was developed following guidelines provided in TWP-MGR-MD-000004 REV 01, ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001, Addendum B). It takes into consideration the Enhanced Design Alternative II (EDA II), which has been selected as the preferred design for the Engineered Barrier System (EBS) by the License Application Design Selection (LADS) program team (CRWMS M&O 1999b). The salient features of the EDA II design for this model are a waste package (WP) consisting of an outer barrier of Alloy 22 and an inner barrier of Type 316L stainless steel. This report provides information on the phase stability of Alloy 22l, the current waste-package-outer-barrier (WPOB) material. These phase stability studies are currently divided into three general areas: (1) Long-range order reactions; (2) Intermetallic and carbide precipitation in the base metal; and (3) Intermetallic and carbide precipitation in welded samples.