WorldWideScience

Sample records for remote sensing science

  1. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  2. Remote sensing information sciences research group

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1988-01-01

    Research conducted under this grant was used to extend and expand existing remote sensing activities at the University of California, Santa Barbara in the areas of georeferenced information systems, matching assisted information extraction from image data and large spatial data bases, artificial intelligence, and vegetation analysis and modeling. The research thrusts during the past year are summarized. The projects are discussed in some detail.

  3. Can remote sensing help citizen-science based phenological studies?

    Science.gov (United States)

    Delbart, Nicolas; Elisabeth, Beaubien; Laurent, Kergoat; Thuy, Le Toan

    2017-04-01

    Citizen science networks and remote sensing are both efficient to collect massive data related to phenology. However both differ in their advantages and drawbacks for this purpose. Contrarily to remote sensing, citizen science allows distinguishing species-specific phenological responses to climate variability. On the other hand, large portions of territory of a country like Canada are not covered by citizen science networks, and the time series are often incomplete. The main mode of interaction between both types of data consists in validating the maps showing the ecosystem foliage transition times, such as the green-up date, obtained from remote sensing data with field observations, and in particular those collected by citizen scientists. Thus the citizen science phenology data bring confidence to remote sensing based studies. However, one can merely find studies in which remote sensing is used to improve in any way citizen science based study. Here we present bi-directional interactions between both types of data. We first use phenological data from the PlantWatch citizen science network to show that one remote sensing method green-up date relates to the leaf-out date of woody species but also to the whole plant community phenology at the regional level, including flowering phenology. Second we use a remote sensing time series to constrain the analysis of citizen data to overcome the main drawbacks that is the incompleteness of time series. In particular we analyze the interspecies differences in phenology at the scale of so-called "pheno-regions" delineated using remote sensing green-up maps.

  4. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p.

  5. Ocean Sciences and Remote Sensing Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: A 52,000 ft 2 state-of-the-art buildig designed to house NRL's Oceanography Division, part of the Ocean and Atmospheric Science and Technology Directorate....

  6. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Science.gov (United States)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  7. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  8. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  9. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  10. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  11. Visualizing Meta-Information in Remotely Sensed Earth Science Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Remotely sensed Earth Science datasets are characterized by their complexity and size, which results in difficulty in effectively disseminating this information to...

  12. Remote Sensing Information Sciences Research Group, year four

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    The needs of the remote sensing research and application community which will be served by the Earth Observing System (EOS) and space station, including associated polar and co-orbiting platforms are examined. Research conducted was used to extend and expand existing remote sensing research activities in the areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence, and vegetation analysis and modeling. Projects are discussed in detail.

  13. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  14. Activities of the Remote Sensing Information Sciences Research Group

    Science.gov (United States)

    Estes, J. E.; Botkin, D.; Peuquet, D.; Smith, T.; Star, J. L. (Principal Investigator)

    1984-01-01

    Topics on the analysis and processing of remotely sensed data in the areas of vegetation analysis and modelling, georeferenced information systems, machine assisted information extraction from image data, and artificial intelligence are investigated. Discussions on support field data and specific applications of the proposed technologies are also included.

  15. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  16. Remote Sensing

    Indian Academy of Sciences (India)

    observed that all bodies at temperatures above zero degrees absolute emit electromagnetic radiation at different wavelengths, as per Planck's law. 2. B(A, T) = 2hc ..... International co-operation of nations in evolving integrated global observa- tion for disaster studies is getting in place. Evolution of Remote Sensing in India.

  17. Inroads of remote sensing into hydrologic science during the WRR era

    National Research Council Canada - National Science Library

    Lettenmaier, Dennis P; Alsdorf, Doug; Dozier, Jeff; Huffman, George J; Pan, Ming; Wood, Eric F

    2015-01-01

    .... We attribute this evolution to production of data sets that scientists not well versed in remote sensing can use, and to educational initiatives like NASA's Earth System Science Fellowship program...

  18. Theme issue ;State-of-the-art in photogrammetry, remote sensing and spatial information science;

    Science.gov (United States)

    Heipke, Christian; Madden, Marguerite; Li, Zhilin; Dowman, Ian

    2016-05-01

    Over the past few years, photogrammetry, remote sensing and spatial information science have witnessed great changes in virtually every stage of information from imagery. Indeed, we have seen, for example, a sharply increased interest in unmanned aerial vehicles,

  19. Introduction to remote sensing

    CERN Document Server

    Campbell, James B

    2012-01-01

    A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations in

  20. Inroads of remote sensing into hydrologic science during the WRR era

    Science.gov (United States)

    Lettenmaier, Dennis P.; Alsdorf, Doug; Dozier, Jeff; Huffman, George J.; Pan, Ming; Wood, Eric F.

    2015-09-01

    The first issue of WRR appeared eight years after the launch of Sputnik, but by WRR's 25th anniversary, only seven papers that used remote sensing had appeared. Over the journal's second 25 years, that changed remarkably, and remote sensing is now widely used in hydrology and other geophysical sciences. We attribute this evolution to production of data sets that scientists not well versed in remote sensing can use, and to educational initiatives like NASA's Earth System Science Fellowship program that has supported over a thousand scientists, many in hydrology. We review progress in remote sensing in hydrology from a water balance perspective. We argue that progress is primarily attributable to a creative use of existing and past satellite sensors to estimate such variables as evapotranspiration rates or water storage in lakes and reservoirs and to new and planned missions. Recent transforming technologies include the Gravity Recovery and Climate Experiment (GRACE), the European Soil Moisture and Ocean Salinity (SMOS) and U.S. Soil Moisture Active Passive (SMAP) missions, and the Global Precipitation Measurement (GPM) mission. Future missions include Surface Water and Ocean Topography (SWOT) to measure river discharge and lake, reservoir, and wetland storage. Measurement of some important hydrologic variables remains problematic: retrieval of snow water equivalent (SWE) from space remains elusive especially in mountain areas, even though snow cover extent is well observed, and was the topic of 4 of the first 5 remote sensing papers published in WRR. We argue that this area deserves more strategic thinking from the hydrology community.

  1. Remote Sensing and the Earth.

    Science.gov (United States)

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  2. Assessing the Interdisciplinary Use of Socioeconomic and Remote Sensing Data in the Earth Sciences

    Science.gov (United States)

    Chen, R. S.; Downs, R. R.; Schumacher, J.

    2013-12-01

    Remotely sensed data are widely used in Earth science research and applications not just to improve understanding of natural systems but also to elucidate interactions between natural and human systems and to model and predict human impacts on the environment, whether planned or unplanned. It is therefore often necessary for both remote sensing and socioeconomic data to be used together in both Earth science and social science research, for example in modeling past, present, and future land cover change, in assessing societal vulnerability to geophysical and climatological hazards, in measuring the human health impacts of air and water pollution, or in developing improved approaches to managing water, ecological, and other resources. The NASA Socioeconomic Data and Applications Center (SEDAC) was established as part of the Earth Observing System Data and Information System (EOSDIS) to facilitate access to and use of socioeconomic data in conjunction with remote sensing data in both research and applications. SEDAC provides access both to socioeconomic data that have been transformed into forms more readily usable by Earth scientists and other users, and to integrated datasets that incorporate both socioeconomic and remote sensing data. SEDAC data have been cited in at least 2,000 scientific papers covering a wide range of scientific disciplines and problem areas. In many cases, SEDAC data are cited in these papers along with other remote sensing datasets available from NASA or other sources. However, such citations do not necessarily indicate significant, integrated use of SEDAC and remote sensing data. To assess the level and type of integrated data use, we analyze a selection of recent SEDAC data citations in Earth science journals to characterize the ways in which SEDAC data have been used in the underlying research project and the paper itself. Papers were selected based on the presence of a SEDAC data citation and one or more keywords related to a remote

  3. Sharing NASA Science with Decision Makers: A Perspective from NASA's Applied Remote Sensing Training (ARSET) Program

    Science.gov (United States)

    Prados, A. I.; Blevins, B.; Hook, E.

    2015-12-01

    NASA ARSET http://arset.gsfc.nasa.gov has been providing applied remote sensing training since 2008. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support. The program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The target audience for the program are professionals engaged in environmental management in the public and private sectors, such as air quality forecasters, public utilities, water managers and non-governmental organizations engaged in conservation. Many program participants have little or no expertise in NASA remote sensing, and it's frequently their very first exposure to NASA's vast resources. One the key challenges for the program has been the evolution and refinement of its approach to communicating NASA data access, research, and ultimately its value to stakeholders. We discuss ARSET's best practices for sharing NASA science, which include 1) training ARSET staff and other NASA scientists on methods for science communication, 2) communicating the proper amount of scientific information at a level that is commensurate with the technical skills of program participants, 3) communicating the benefit of NASA resources to stakeholders, and 4) getting to know the audience and tailoring the message so that science information is conveyed within the context of agencies' unique environmental challenges.

  4. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  5. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  6. Urban remote sensing investigations.

    OpenAIRE

    Jean-Paul DONNAY; Binard, Marc; Marchal, Denis; Istvan NADASDI

    1995-01-01

    This paper deals with the research activities achieved by the team TELSAT/06-TELSAT/11/06-TELSAT/T3/D03 of the University of Liege, in the framework of the National research programme on satellite remote sensing (National Scientific Policy Office). The team specialized in urban remote sensing and especially in applications relevant to urban, land and country planning and the monitoring of enevironment. Besides a theoretical approach of the methods of remote sensing, those trends imply a good ...

  7. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  8. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    Science.gov (United States)

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection

  9. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  10. Remote Sensing Reflectance at 667 nm, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures the remote sensing reflectance (Rrs) at 667nm. This can be used to view very high concentrations of phytoplankton in the very surface of the water.

  11. Remote Sensing Information Classification

    Science.gov (United States)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  12. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  13. Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations

    Science.gov (United States)

    Callahan, Lisa W.

    2010-01-01

    Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and

  14. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  15. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  16. Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures

    Directory of Open Access Journals (Sweden)

    Freek van der Meer

    2011-11-01

    Full Text Available In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 µm range. A Bruker Vertex 70 FTIR spectrometer was chosen as the base instrument. It was modified with an external integrating sphere with a 30 mm sampling port to allow measuring large, inhomogeneous samples and quantitatively compare the laboratory results to airborne and spaceborne remote sensing data. During the processing to directional-hemispherical reflectance values, a background radiation subtraction is performed, removing the effect of radiance not reflected from the sample itself on the detector. This provides more accurate reflectance values for low-reflecting samples. Repeat measurements taken over a 20 month period on a quartz sand standard show that the repeatability of the system is very high, with a standard deviation ranging between 0.001 and 0.006 reflectance units depending on wavelength. This high level of repeatability is achieved even after replacing optical components, re-aligning mirrors and placement of sample port reducers. Absolute reflectance values of measurements taken by the instrument here presented compare very favorably to measurements of other leading laboratories taken on identical sample standards.

  17. EPA REMOTE SENSING RESEARCH

    Science.gov (United States)

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  18. Section summary: Remote sensing

    Science.gov (United States)

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  19. Introduction to the Special Session on Thermal Remote Sensing Data for Earth Science Research: The Critical Need for Continued Data Collection and Development of Future Thermal Satellite Sensors

    Science.gov (United States)

    Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon

    2006-01-01

    There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.

  20. Classification of remotely sensed images

    CSIR Research Space (South Africa)

    Dudeni, N

    2008-10-01

    Full Text Available images N. Dudeni, P. Debba Introduction to Remote Sensing Introduction to Image Classification Objective of the study Classification algorithms by group Unsupervised algorithms Supervised classification algorithms Spatial... of remotely sensed images N. Dudeni, P. Debba Introduction to Remote Sensing Introduction to Image Classification Objective of the study Classification algorithms by group Unsupervised algorithms Supervised classification algorithms...

  1. NATO Advanced Study Institute on Remote Sensing Applications in Marine Science and Technology

    CERN Document Server

    1983-01-01

    This summer school was a sequel to the summer school on Remote Sensing in Meteorology, Oceanography and Hydrology which was held in Dundee in 1980 and the proceedings of which were published by Ellis Horwood Ltd., Chichester, England. At the present summer scnool we concentrated on only part of the subject area that was covered in 1980. Although there was some repetit­ ion of material that was presented in 1980, because by and large we had a new set of participants, most subjects were treated in considerably greater detail than had been possible previously. The major topics covered in the present summer school were (i) the general principles of remote sensing with particular reference to marine applications, (ii) applications to physical oceanography, (iii) marine resources applications and (iv) coastal monitoring and protection. The material contained in this volume represents the written texts of most of the lectures presented at the summer school. One important set of lecture notes was not available; this...

  2. Remote sensing program

    Science.gov (United States)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  3. Applications of Remote Sensing

    Science.gov (United States)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  4. Engaging Remote Sensing and Citizen Science into Water Quality Monitoring: A Case Study in Nhue-Day River Basin, Vietnam

    Science.gov (United States)

    Thi Van Le, Khoa; Minkman, Ellen; Nguyen Thi Phuong, Thuy; Rutten, Martine; Bastiaanssen, Wim

    2016-04-01

    Remote sensing and citizen science can be utilized to fulfill the gap of conventional monitoring methods. However, how to engage these techniques, principally taking advantage of local capacities and of globally accessible data for satisfying the continuous data requirements and uncertainties are exciting challenges. Previous studies in Vietnam showed that official documents regulated towards responding the vital need of upgrading national water monitoring infrastructures do not put the huge potentials of free satellite images and crowd-based data collection into account, this factor also limits publications related to these techniques. In this research, a new water monitoring approach will be developed friendly with areas suffering poor quality monitoring works. Particularly, algorithms respecting to the relationship between temperature, total suspended sediment (TSS), chlorophyll and information collected by sensors onboard Landsat-8 and Sentinel-2 MSI satellites are built in the study area in Northern Vietnam; additionally, undergraduate student volunteers were sent to the sites with all the measurement activities are designed to coincide with the time when the study area captured by the satellites to compare the results. While conventional techniques are proving their irreplaceable role in the water monitoring network, the utilization of remote sensing techniques and citizen science in this study will demonstrate highly supportive values, saving monitoring costs and time; advantaging local human resources to science; providing an inclusive assessment of water quality changes along with land-use change in the study area, these approaches are excellent alternatives to meet the demand of real-time, continuous data nationwide.

  5. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  6. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Lange, Julia

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... state-of-the-art ‘guideline’ available for people involved in Remote Sensing in Wind Energy....

  7. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus......-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  8. Season Spotter: Using Citizen Science to Validate and Scale Plant Phenology from Near-Surface Remote Sensing

    Directory of Open Access Journals (Sweden)

    Margaret Kosmala

    2016-09-01

    Full Text Available The impact of a rapidly changing climate on the biosphere is an urgent area of research for mitigation policy and management. Plant phenology is a sensitive indicator of climate change and regulates the seasonality of carbon, water, and energy fluxes between the land surface and the climate system, making it an important tool for studying biosphere–atmosphere interactions. To monitor plant phenology at regional and continental scales, automated near-surface cameras are being increasingly used to supplement phenology data derived from satellite imagery and data from ground-based human observers. We used imagery from a network of phenology cameras in a citizen science project called Season Spotter to investigate whether information could be derived from these images beyond standard, color-based vegetation indices. We found that engaging citizen science volunteers resulted in useful science knowledge in three ways: first, volunteers were able to detect some, but not all, reproductive phenology events, connecting landscape-level measures with field-based measures. Second, volunteers successfully demarcated individual trees in landscape imagery, facilitating scaling of vegetation indices from organism to ecosystem. And third, volunteers’ data were used to validate phenology transition dates calculated from vegetation indices and to identify potential improvements to existing algorithms to enable better biological interpretation. As a result, the use of citizen science in combination with near-surface remote sensing of phenology can be used to link ground-based phenology observations to satellite sensor data for scaling and validation. Well-designed citizen science projects targeting improved data processing and validation of remote sensing imagery hold promise for providing the data needed to address grand challenges in environmental science and Earth observation.

  9. History and future of remote sensing technology and education

    Science.gov (United States)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  10. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  11. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  12. Overview of Outreach Activities of the Planetary Sciences and Remote Sensing Group at Freie Universität Berlin

    Science.gov (United States)

    Musiol, S.; Balthasar, H.; Dumke, A.; Gross, C.; Michael, G.; Neu, D.; Platz, T.; Rosenberg, H.; Schreiner, B.; Walter, S. H. G.; van Gasselt, S.

    2014-04-01

    Planetary Sciences teach us how special our homeplanet is in the solar system. Incorporating a broad variety of natural science topics they count to the most fundamental branches of scientific research with a strong interdisciplinary character. However, since planetary sciences are not a school subject, children as well as adults are often lacking an overall awareness and understanding of that field. The mission of planetary education has to be fulfilled by research institutions. With several platforms and activities our group is engaged to address this topic. The Planetary Sciences and Remote Sensing Group at Freie Universität Berlin (FUB) is involved in space missions such as Mars Express with the High Resolution Stereo Camera (HRSC), Cassini to Saturn, and Dawn to the asteroids Vesta and Ceres. Moreover, we participate in developing a planetary X-ray fluorescence spectrometer. Information of our planetary research activities can be found on our institutes website [1]. Our outreach activities include press releases, an image download hub, permanent and special exhibition support, 3D-HD-animation production, science fairs, workshops, hands-on courses, public talks at observatories and schools, as well as media appearances in radio, press and TV.

  13. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    Science.gov (United States)

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  14. Downscaling in remote sensing

    Science.gov (United States)

    Atkinson, Peter M.

    2013-06-01

    Downscaling has an important role to play in remote sensing. It allows prediction at a finer spatial resolution than that of the input imagery, based on either (i) assumptions or prior knowledge about the character of the target spatial variation coupled with spatial optimisation, (ii) spatial prediction through interpolation or (iii) direct information on the relation between spatial resolutions in the form of a regression model. Two classes of goal can be distinguished based on whether continua are predicted (through downscaling or area-to-point prediction) or categories are predicted (super-resolution mapping), in both cases from continuous input data. This paper reviews a range of techniques for both goals, focusing on area-to-point kriging and downscaling cokriging in the former case and spatial optimisation techniques and multiple point geostatistics in the latter case. Several issues are discussed including the information content of training data, including training images, the need for model-based uncertainty information to accompany downscaling predictions, and the fundamental limits on the representativeness of downscaling predictions. The paper ends with a look towards the grand challenge of downscaling in the context of time-series image stacks. The challenge here is to use all the available information to produce a downscaled series of images that is coherent between images and, thus, which helps to distinguish real changes (signal) from noise.

  15. Taiwan's second remote sensing satellite

    Science.gov (United States)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  16. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    Peña, Alfredo; Hasager, Charlotte Bay; Badger, Merete

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risø) during the first PhD Summer School: Remote Sensing in Wind Energy...... colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art ‘guideline’ available for people involved in Remote Sensing...

  17. Signal processing for remote sensing

    CERN Document Server

    Chen, CH

    2007-01-01

    Written by leaders in the field, Signal Processing for Remote Sensing explores the data acquisitions segment of remote sensing. Each chapter presents a major research result or the most up to date development of a topic. The book includes a chapter by Dr. Norden Huang, inventor of the Huang-Hilbert transform who, along with and Dr. Steven Long discusses the application of the transform to remote sensing problems. It also contains a chapter by Dr. Enders A. Robinson, who has made major contributions to seismic signal processing for over half a century, on the basic problem of constructing seism

  18. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  19. PHOTOGRAMMETRY – REMOTE SENSING AND GEOINFORMATION

    Directory of Open Access Journals (Sweden)

    M. A. Lazaridou

    2012-07-01

    Full Text Available Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc, and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers in the Lab. of Photogrammetry – Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  20. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  1. Theory of microwave remote sensing

    Science.gov (United States)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1985-01-01

    Active and passive microwave remote sensing of earth terrains is studied. Electromagnetic wave scattering and emission from stratified media and rough surfaces are considered with particular application to the remote sensing of soil moisture. Radiative transfer theory for both the random and discrete scatterer models is examined. Vector radiative transfer equations for nonspherical particles are developed for both active and passive remote sensing. Single and multiple scattering solutions are illustrated with applications to remote sensing problems. Analytical wave theory using the Dyson and Bethe-Salpeter equations is employed to treat scattering by random media. The backscattering enhancement effects, strong permittivity fluctuation theory, and modified radiative transfer equations are addressed. The electromagnetic wave scattering from a dense distribution of discrete scatterers is studied. The effective propagation constants and backscattering coefficients are calculated and illustrated for dense media.

  2. Remote sensing of Earth terrain

    Science.gov (United States)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  3. Remote sensing of oil slicks

    Digital Repository Service at National Institute of Oceanography (India)

    Fondekar, S.P.; Rao, L.V.G.

    Airborne remote sensing is very useful for oil-spill monitoring ans surveillance. It ranks very high among available methods due to its capability of large area coverage with good resolution and speed for detection of oil slicks. It overcomes...

  4. Scale issues in remote sensing

    CERN Document Server

    Weng, Qihao

    2014-01-01

    This book provides up-to-date developments, methods, and techniques in the field of GIS and remote sensing and features articles from internationally renowned authorities on three interrelated perspectives of scaling issues: scale in land surface properties, land surface patterns, and land surface processes. The book is ideal as a professional reference for practicing geographic information scientists and remote sensing engineers as well as a supplemental reading for graduate level students.

  5. Radiative transfer and remote sensing

    Science.gov (United States)

    Conrath, B. J.

    1982-01-01

    Radiative transfer, the basic theoretical tool for the quantitative interpretation of planetary infrared spectra, is discussed. The function it plays in linking the remotely sensed data to the properties of the atmosphere (composition, thermal structure, dynamics, etc.), is inferred. A brief overview of the remote sensing problem as it pertains to the interpretation of planetary spectra is presented. The presentation is tutorial rather than exhaustive.

  6. Earth view: A business guide to orbital remote sensing

    Science.gov (United States)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  7. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  8. Remote sensing of water quality

    Science.gov (United States)

    Hovis, W. A.

    1978-01-01

    Remote sensing from aircraft has been used to determine water content in areas such as the New York Bight. Extension of the techniques developed to satellite sensing of the Chesapeake Bay will begin in 1978 with the launch of Nimbus-G. Remote sensing offers a number of interesting possibilities for investigating a reasonably large body of water, such as the Chesapeake Bay, coupled with some disadvantages. The chief advantage of remote sensing is that it offers the opportunity to cover large areas in relatively short periods of time. Low altitude satellites traveling at about 7 km/s can cover the Chesapeake Bay in about 1 minute so that the entire Bay can be studied under almost identical conditions of solar illumination.

  9. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  10. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  11. Remote sensing activities in Asia

    Science.gov (United States)

    Murai, Shunji

    An overview of remote sensing activities in Asia is given, with the history of the annual Asian Conference on Remote Sensing (ACRS) showing how cooperation between Asian remote sensing scientists and their related organizations has improved remarkably since the first ACRS in 1980 In 1981, the Asian Association on Remote Sensing (AARS) was founded with five member countries As of 1991, there are now 18 ordinary members and 5 associate members. United Nations organization such as ESCAP, UNDP, UNEP, UNCRD etc. have been and are contributing to developing countries in Asia in the fields of education, training and/or pilot projects in conjunction or in cooperation with AARS activities. The key Asian countries in remote sensing such as Japan, China, India, Thailand etc. are promoting not only national projects but also regional cooperation through personnel exchange, joint research, international workshops and international training through ACRS. The following article is a summary of the author's activities for the twelve years since 1980 aimed at fostering regional cooperation in Asia.

  12. Remote Sensing for Wind Energy

    DEFF Research Database (Denmark)

    The Remote Sensing in Wind Energy Compendium provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind this compendium began in year 2008 at Risø DTU during the first PhD Summer School: Remote Sensing in Wind Energy. Thus...... in the Meteorology and Test and Measurements Programs from the Wind Energy Division at Risø DTU in the PhD Summer Schools. We hope to add more topics in future editions and to update as necessary, to provide a truly state-of-the-art compendium available for people involved in Remote Sensing in Wind Energy....

  13. Remote sensing for urban planning

    Science.gov (United States)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  14. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    Science.gov (United States)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  15. Thermal infrared spectrometer for earth science remote sensing applications : instrument modifications and measurement procedures

    NARCIS (Netherlands)

    Hecker, C.; Hook, S.; Meijde, M. van der; Bakker, W.H.; Werff, H.M.A. van der; Wilbrink, H.J.; Ruitenbeek, F.J.A. van; Smeth, J.B. de; Meer, F.D. van der

    2011-01-01

    In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 μm range. A Bruker Vertex 70 FTIR spectrometer was chosen

  16. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  17. Remote Sensing of Water Pollution

    Science.gov (United States)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  18. Water management and remote sensing

    NARCIS (Netherlands)

    Assem, S. van den; Bastiaanssen, W.G.M.; Claassen, T.H.L.; Feddes, R.A.; Menenti, M.; Minderhoud, P.; Nieuwenhuis, G.J.A.; Nieuwkoop, J. van; Stokkom, H.T.C. van; Stokman, N.G.M.; Thunnissen, H.A.M.; Visser, T.N.M.

    1990-01-01

    In modern water management detailed information is required on processes that occur and on the state of water systems, including the way they are influenced by human activities. Remote sensing can contribute significantly to these information. For example, areal patterns of water quality parameters

  19. E-Learning in Photogrammetry, Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Vyas, Anjana; König, Gerhard

    2016-06-01

    Science and technology are evolving leaps and bounds. The advancements in GI-Science for natural and built environment helps in improving the quality of life. Learning through education and training needs to be at par with those advancements, which plays a vital role in utilization of technology. New technologies that creates new opportunities have enabled Geomatics to broaden the horizon (skills and competencies). Government policies and decisions support the use of geospatial science in various sectors of governance. Mapping, Land management, Urban planning, Environmental planning, Industrialization are some of the areas where the geomatics has become a baseline for decision making at national level. There is a need to bridge the gap between developments in geospatial science and its utilization and implementation. To prepare a framework for standardisation it is important to understand the theories of education and prevailing practices, with articulate goals exploring variety of teaching techniques. E-Learning is an erudition practice shaped for facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources through digital and network-enabled technology. It is a shift from traditional education or training to ICT-based flexible and collaborative learning based on the community of learners, academia, professionals, experts and facilitators. Developments in e-learning is focussed on computer assisted learning which has become popular because of its potential for providing more flexible access to content and instruction at any time, from any place (Means et al, 2009). With the advent of the geo-spatial technology, fast development in the software and hardware, the demand for skilled manpower is increasing and the need is for training, education, research and dissemination. It suggests inter-organisational cooperation between academia, industry, government and international collaboration. There is a

  20. Remote Sensing of Atmospheric and Ionospheric Disturbances using Radio Science Techniques

    Science.gov (United States)

    Yang, Y. M.; Paik, M.; Oudrhiri, K.; Buccino, D.; Kahan, D. S.

    2016-12-01

    Atmospheres and ionospheres can have significant impacts on radio frequency signal propagation such as Deep Space Network and Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Previous studies indicate that Earth's atmospheric, surface, and interior processes, such as seismic activities, tsunamis, meteor impacts, and volcanic eruptions, are able to trigger atmospheric acoustic and gravity waves (AGWs), which potentially induce traveling ionospheric disturbances (TIDs) in the upper atmosphere. These perturbations are relatively small to the background of atmospheric and ionospheric profiles but detectable to radio frequency signals. In this research, we will demonstrate the ability of using ground- and space-based radio science techniques to detect and characterize atmospheric and ionospheric wave propagation from solid earth events including seismic activities and tsunamis. The detected wave trains with wave characteristics such as propagation speeds and wavelengths are classified through analysis of the line of sight (LOS) and radio occultation measurements made by different frequency radio waves. Dominant and different physical characteristics of AGW and TID propagations are found to be associated with specific surface wave propagations. In this research, we compare observations made by different frequency radio signals, corresponding model simulations, and other geophysical measurements of surface wave propagation such as seismometers, infrasound arrays and DART buoys. Results are shown to improve our understanding of the interactions between surface, atmosphere, and ionosphere. The better understanding of the coupling between planetary interior, surface, atmosphere, and ionosphere will benefit from innovative radio science techniques.

  1. Remote sensing information sciences research group: Browse in the EOS era

    Science.gov (United States)

    Estes, John E.; Star, Jeffrey L.

    1989-01-01

    The problem of science data browse was examined. Given the tremendous data volumes that are planned for future space missions, particularly the Earth Observing System in the late 1990's, the need for access to large spatial databases must be understood. Work was continued to refine the concept of data browse. Further, software was developed to provide a testbed of the concepts, both to locate possibly interesting data, as well as view a small portion of the data. Build II was placed on a minicomputer and a PC in the laboratory, and provided accounts for use in the testbed. Consideration of the testbed software as an element of in-house data management plans was begun.

  2. Remote sensing of natural resources

    CERN Document Server

    Wang, Guangxing

    2013-01-01

    "… a comprehensive view on and real world examples of remote sensing technologies in natural resources assessment and monitoring. … state-of-the-art knowledge in this multidisciplinary field. Readers can expect to finish the book armed with the required knowledge to understand the immense literature available and apply their knowledge to the understanding of sampling design, the analysis of multi-source imagery, and the application of the techniques to specific problems relevant to natural resources."-Yuhong He, University of Toronto Mississauga, Ontario, Canada"The list of topics covered is so complete that I would recommend the book to anyone teaching a graduate course on vegetation analysis through digital image analysis. … I recommend this book then for anyone doing advanced digital image analysis and environmental GIS courses who want to cover topics related to applied remote sensing work involving vegetation analysis."-Charles Roberts, Florida Atlantic University, Boca Raton, USA, in Economic Bota...

  3. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  4. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  5. Remote sensing for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Bay Hasager, C.; Lange, J. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark) (and others

    2013-06-15

    The Remote Sensing in Wind Energy report provides a description of several topics and it is our hope that students and others interested will learn from it. The idea behind it began in year 2008 at DTU Wind Energy (formerly Risoe) during the first PhD Summer School: Remote Sensing in Wind Energy. Thus it is closely linked to the PhD Summer Schools where state-of-the-art is presented during the lecture sessions. The advantage of the report is to supplement with in-depth, article style information. Thus we strive to provide link from the lectures, field demonstrations, and hands-on exercises to theory. The report will allow alumni to trace back details after the course and benefit from the collection of information. This is the third edition of the report (first externally available), after very successful and demanded first two, and we warmly acknowledge all the contributing authors for their work in the writing of the chapters, and we also acknowledge all our colleagues in the Meteorology and Test and Measurements Sections from DTU Wind Energy in the PhD Summer Schools. We hope to continue adding more topics in future editions and to update and improve as necessary, to provide a truly state-of-the-art 'guideline' available for people involved in Remote Sensing in Wind Energy. (Author)

  6. E-learning based distance education programme on Remote Sensing and Geoinformation Science - An initiative of IIRS

    Science.gov (United States)

    Karnatak, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.; Srivastav, S. K.; Gupta, P. K.

    2014-11-01

    IIRS has initiated its interactive distance education based capacity building under IIRS outreach programme in year 2007 where more than 15000+ students were trained in the field of geospatial technology using Satellite based interactive terminals and internet based learning using A-View software. During last decade the utilization of Internet technology by different user groups in the society is emerged as a technological revaluation which has directly affect the life of human being. The Internet is used extensively in India for various purposes right from entrainment to critical decision making in government machinery. The role of internet technology is very important for capacity building in any discipline which can satisfy the needs of maximum users in minimum time. Further to enhance the outreach of geospatial science and technology, IIRS has initiated e-learning based certificate courses of different durations. The contents for e-learning based capacity building programme are developed for various target user groups including mid-career professionals, researchers, academia, fresh graduates, and user department professionals from different States and Central Government ministries. The official website of IIRS e-learning is hosted at elearning.iirs.gov.in" target="_blank">http://elearning.iirs.gov.in. The contents of IIRS e-learning programme are flexible for anytime, anywhere learning keeping in mind the demands of geographically dispersed audience and their requirements. The program is comprehensive with variety of online delivery modes with interactive, easy to learn and having a proper blend of concepts and practical to elicit students' full potential. The course content of this programme includes Image Statistics, Basics of Remote Sensing, Photogrammetry and Cartography, Digital Image Processing, Geographical Information System, Global Positioning System, Customization of Geospatial tools and Applications of Geospatial Technologies. The syllabus of the

  7. Microwave remote sensing from space

    Science.gov (United States)

    Carver, K. R.; Elachi, C.; Ulaby, F. T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

  8. Biogeochemical cycling and remote sensing

    Science.gov (United States)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  9. Microwave remote sensing laboratory design

    Science.gov (United States)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  10. Ten ways remote sensing can contribute to conservation

    Science.gov (United States)

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  11. Ten ways remote sensing can contribute to conservation.

    Science.gov (United States)

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  12. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  13. Remote Sensing and Reflectance Profiling in Entomology.

    Science.gov (United States)

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  14. Basic Remote Sensing Investigations for Beach Reconnaissance.

    Science.gov (United States)

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  15. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  16. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    1997-01-01

    This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, s

  17. Applications of remote sensing to watershed management

    Science.gov (United States)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  18. Textbooks and technical references for remote sensing

    Science.gov (United States)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  19. Using remotely-sensed data for optimal field sampling

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available M B E R 2 0 0 8 15 USING REMOTELY- SENSED DATA FOR OPTIMAL FIELD SAMPLING BY DR PRAVESH DEBBA STATISTICS IS THE SCIENCE pertaining to the collection, summary, analysis, interpretation and presentation of data. It is often impractical... studies are: where to sample, what to sample and how many samples to obtain. Conventional sampling techniques are not always suitable in environmental studies and scientists have explored the use of remotely-sensed data as ancillary information to aid...

  20. Investigating the Potential Range Expansion of the Vector Mosquito Aedes Aegypti in Mexico with NASA Earth Science Remote Sensing Results

    Science.gov (United States)

    Crosson, W. L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Monaghan, A. J.; Eisen, L.; Lozano-Fuentes, S.; Ochoa, C.; Tapia, B.; Welsh-Rodriquez, C. M.; hide

    2012-01-01

    In tropical and sub ]tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio ]economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data-- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation-- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  1. Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

    Science.gov (United States)

    Crosson, W. L.; Eisen, L.; Estes, M. G.; Estes, S. M.; Hayden, M.; Lozano-Fuentes, S.; Monaghan, A. J.; Moreno Madriñán, M. J.; Ochoa, C.; Quattrochi, D.; Tapia, B.; Welsh-Rodriguez, C. M.

    2012-12-01

    In tropical and sub-tropical regions, the mosquito Aedes aegypti is the major vector for the virus causing dengue, a serious public health issue in these areas. Through ongoing NSF- and NASA-funded studies, field surveys of Aedes aegypti and an integrated modeling approach are being used to improve our understanding of the potential range of the mosquito to expand toward heavily populated high elevation areas such as Mexico City under various climate change and socio-economic scenarios. This work serves three primary objectives: (1) Employ NASA remotely-sensed data to supplement the environmental monitoring and modeling component of the project. These data -- for example, surface temperature, precipitation, vegetation indices, soil moisture and elevation -- are critical for understanding the habitat necessary for mosquito survival and abundance; (2) Implement training sessions to instruct scientists and students from Mexico and the U.S. on how to use remote sensing and implement the NASA SERVIR Regional Visualization and Monitoring System; (3) Employ the SERVIR framework to optimize the dissemination of key project results in order to increase their societal relevance and benefits in developing climate adaptation strategies. Field surveys of larval, pupal and adult Aedes aegypti, as well as detailed physical and social household characteristics, were conducted in the summers of 2011and 2012 at geographic scales from the household to the community along a transect from sea level to 2400 m ASL. These data are being used in models to estimate Aedes aegypti habitat suitability. In 2011, Aedes aegypti were identified at an elevation of over 2150 m in Puebla, the highest elevation at which this species has been observed.

  2. Observation of Hydrological Processes Using Remote Sensing. Chapter 2.14; Volume 2: The Science of Hydrology

    Science.gov (United States)

    Wilder, Peter (Editor); Su, Z.; Robeling, R. A.; Schulz, J.; Holleman, I.; Levizzani, V.; Timmermans, W. J.; Rott, H.; Mognard-Campbell, N.; de Jeu, R.; hide

    2011-01-01

    Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as

  3. Archeological methodology and remote sensing.

    Science.gov (United States)

    Gumerman, G J; Lyons, T R

    1971-04-09

    We have shown that the different spectral surveying techniques and the resultant imagery vary in their applicability to archeological prediction and exploration, but their applications are far broader than we have indicated. Their full potential, to a considerable extent, still remains unexplored. Table 1 is a chart of the more common sensor systems useful to archeological investigators. Several kinds of photography, thermal infrared imagery, and radar imagery are listed. Checks in various categories of direct and indirect utility in archeological research indicate that the different systems do provide varying degrees of input for studies in these areas. Photography and multispectral photography have the broadest applications in this field. Standard black-and-white aerial photography generally serves the purposes of archeological exploration and site analysis better than infrared scanner imagery, radar, or color photography. However, the real value of remotesensing experimentation lies in the utilization of different instruments and in the comparison and correlation of their data output. It can be stated without doubt that there is no one all-purpose remotesensing device on which the archeologist can rely that will reveal all evidence of human occupations. Remote-sensing data will not replace the traditional ground-based site survey, but, used judiciously, data gathered from aerial reconnaissance can reveal many cultural features unsuspected from the ground. The spectral properties of sites distinguishable by various types of remote sensors may perhaps be one of their most characteristic features, and yet the meaning of the differential discrimnination of features has not been determined for the most part, since such spectral properties are poorly understood at this date. The difficulty in isolating the causes of acceptable definition in certain portion of the spectrum and the lack of acceptable definition in others suggests that the evaluation of remote-sensing

  4. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  5. Planning and Implementation of Remote Sensing Experiments.

    Science.gov (United States)

    Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.

  6. Natural Resource Information System. Remote Sensing Studies.

    Science.gov (United States)

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  7. Some guidelines for remote sensing in hydrology

    Science.gov (United States)

    Robinove, Charles J.; Anderson, Daniel G.

    1969-01-01

    Remote sensing in the field of hydrology is beginning to be applied to significant problems, such as thermal pollution, in many programs of the Federal and State Governments as well as in operation of many private organizations. The purpose of this paper is to guide the hydrologist to a better understanding of how he may collect, synthesize, and interpret remote sensing data.

  8. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    Science.gov (United States)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    sensing data collection protocol to meet NEON science requirements? How do aircraft altitude, spatial sampling, spatial resolution, and LiDAR instrument configuration affect data retrievals? What are appropriate algorithms to derive ECVs from AOP data? What methodology should be followed to validate AOP remote sensing products and how should ground truth data be collected? Early test flights were focused on radiometric and geometric calibration as well as processing from raw data to Level-1 products. Subsequent flights were conducted focusing on collecting vegetation chemistry and structure measurements. These test flights that were conducted during 2012 have proved to be extremely valuable for verifying instrument functionality and performance, exercising remote sensing collection protocols, and providing data for algorithm and science product validation. Results from these early flights are presented, including the radiometric and geometric calibration of the AOP instruments. These 2012 flight campaigns are just the first of a series of test flights that will take place over the next several years as part of the NEON observatory construction. Lessons learned from these early campaigns will inform both airborne and ground data collection methodologies for future campaigns as well as guide the AOP sampling strategy before NEON enters full science operations.

  9. Progress in remote sensing (1972-1976)

    Science.gov (United States)

    Fischer, W. A.; Hemphill, W.R.; Kover, Allan

    1976-01-01

    This report concerns the progress in remote sensing during the period 1972–1976. Remote sensing has been variously defined but is basically the art or science of telling something about an object without touching it. During the past four years, the major research thrusts have been in three areas: (1) computer-assisted enhancement and interpretation systems; (2) earth science applications of Landsat data; (3) and investigations of the usefulness of observations of luminescence, thermal infrared, and microwave energies. Based on the data sales at the EROS Data Center, the largest users of the Landsat data are industrial companies, followed by government agencies (both national and foreign), and academic institutions. Thermal surveys from aircraft have become largely operational, however, significant research is being undertaken in the field of thermal modeling and analysis of high altitude images. Microwave research is increasing rapidly and programs are being developed for satellite observations. Microwave research is concentrating on oil spill detection, soil moisture measurement, and observations of ice distributions. Luminescence investigations offer promise for becoming a quantitative method of assessing vegetation stress and pollutant concentrations.

  10. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    Science.gov (United States)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  11. The U.S. Geological Survey Land Remote Sensing Program

    Science.gov (United States)

    ,

    2007-01-01

    The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.

  12. Advanced and applied remote sensing of environmental conditions

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  13. Making 'Sense' of Science.

    Science.gov (United States)

    Gosse, Bonnie

    1996-01-01

    Addresses the need for a good science program to teach students to integrate both the analytical and the creative pathways of inquiry. Also compares the specific functions of the brain's right (creative) and left (analytical) hemispheres as related to science. Suggests how to design a creative sense-gathering activity, and offers several sample…

  14. Paleovalleys mapping using remote sensing

    Science.gov (United States)

    Baibatsha, A. B.

    2014-06-01

    For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25-90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.

  15. Paleovalleys mapping using remote sensing

    Directory of Open Access Journals (Sweden)

    A. B. Baibatsha

    2014-06-01

    Full Text Available For work materials used multispectral satellite imagery Landsat (7 channels, medium spatial resolution (14,25–90 m and a digital elevation model (data SRTM. For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.

  16. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  17. Hyperspectral remote sensing for terrestrial applications

    Science.gov (United States)

    Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,

    2015-01-01

    Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.

  18. Preface: Remote Sensing in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-08-01

    Full Text Available The Special Issue (SI on “Remote Sensing in Coastal Environments” presents a wide range of articles focusing on a variety of remote sensing models and techniques to address coastal issues and processes ranging for wetlands and water quality to coral reefs and kelp habitats. The SI is comprised of twenty-one papers, covering a broad range of research topics that employ remote sensing imagery, models, and techniques to monitor water quality, vegetation, habitat suitability, and geomorphology in the coastal zone. This preface provides a brief summary of each article published in the SI.

  19. An international organization for remote sensing

    Science.gov (United States)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  20. Galilean satellite remote sensing by the Galileo Jupiter Orbiter

    Science.gov (United States)

    Yeates, C. M.; Klaasen, K. P.; Clarke, T. C.

    1983-01-01

    The derivation of a mission design strategy for the Galileo Jupiter Orbiter which best satisfies the requirements for remote sensing of the surfaces of the Galilean satellites during a 20-month orbital tour of the Jovian system is described. The celestial mechanics of a spacecraft orbiting about Jupiter and interacting with the Galilean satellites is discussed. A satellite tour strategy designed to optimize the accomplishment of remote sensing, field and particle science, and radio science objectives is developed. Finally, an assessment is made of how well these objectives can be met given the spacecraft, the capabilities of the scientific instruments, and the structure of the satellite tour.

  1. Hyperspectral remote sensing for light pollution monitoring

    Directory of Open Access Journals (Sweden)

    P. Marcoionni

    2006-06-01

    Full Text Available industries. In this paper we introduce the results from a remote sensing campaign performed in September 2001 at night time. For the first time nocturnal light pollution was measured at high spatial and spectral resolution using two airborne hyperspectral sensors, namely the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS and the Visible InfraRed Scanner (VIRS-200. These imagers, generally employed for day-time Earth remote sensing, were flown over the Tuscany coast (Italy on board of a Casa 212/200 airplane from an altitude of 1.5-2.0 km. We describe the experimental activities which preceded the remote sensing campaign, the optimization of sensor configuration, and the images as far acquired. The obtained results point out the novelty of the performed measurements and highlight the need to employ advanced remote sensing techniques as a spectroscopic tool for light pollution monitoring.

  2. NOAA Coastal Mapping Remote Sensing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Remote Sensing Division is responsible for providing data to support the Coastal Mapping Program, Emergency Response efforts, and the Aeronautical Survey Program...

  3. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  4. Remote sensing of multimodal transportation systems.

    Science.gov (United States)

    2016-09-01

    Hyperspectral remote sensing is an emerging field with many potential applications in the observation, management, and maintenance of the global transportation infrastructure. This report describes the development of an affordable framework to captur...

  5. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  6. Preface: Remote Sensing of Water Resources

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-02-01

    Full Text Available The Special Issue (SI on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  7. Remote sensing, imaging, and signal engineering

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  8. Toward interactive search in remote sensing imagery

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Do [Los Alamos National Laboratory; Harvey, Neal [Los Alamos National Laboratory; Theile, James [Los Alamos National Laboratory

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  9. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  10. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  11. The Ancient Maya Landscape: Facing the Challenges and Embracing the Promise of Integrating Archaeology, Remote Sensing, Soil Science and Hydrologic Modeling for Coupled Natural and Human Systems.

    Science.gov (United States)

    Murtha, T., Jr.; Duffy, C.; Cook, B. D.; Schroder, W.; Webster, D.; French, K. D.; Alcover, O.; Golden, C.; Balzotti, C.; Shaffer, D.

    2016-12-01

    Relying on a niche inheritance perspective, this paper discusses the long-term spatial and temporal dynamics of land-use management, agricultural decision making and patterns of resource availability in the tropical lowlands of Central America. We introduce and describe ongoing research that addresses a series of long standing questions about coupled natural and human history dynamics in the Central Maya lowlands, emphasizing the role of landscape and region to address these questions. First, we summarize the results of a CNH pilot study focused on the evolution of the regional landscape of Tikal, Guatemala. Particular attention is centered on how we integrated landscape survey, traditional archaeology and soil studies to understand the spatial and temporal dynamics of agricultural land use and intensification over a two thousand period. Additionally, we discuss how these results were integrated into remote sensing, hydrological and erosion models to better understand how past changes in available water and productive land compare to what we know about settlement patterns in the Tikal Region over that same time period. We not only describe how the Maya transformed this landscape, but also how the region influenced changing patterns of settlement and land use. We finish this section with a discussion of some of the unique challenges integrating archaeological information to study CNH dynamics during this pilot study. Second, we introduce a new project designed to `scale up' the pilot study for a macro-regional analysis of the lowland Maya landscape. The new project leverages a uniquely sampled LIDAR data set designed to refine measurements of above ground carbon storage. Our new project quantitatively examines these data for evidence for past human activity. Preliminary results offer a promising path for tightly integrating archaeology, natural science, remote sensing and modeling for studying CNH dynamics in the deep and recent past.

  12. Structural mapping based on potential field and remote sensing data ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 6. Structural mapping based on potential field and remote sensing data, South Rewa Gondwana Basin, India. Swarnapriya Chowdari Bijendra Singh B Nageswara Rao Niraj Kumar A P Singh D V Chandrasekhar. Volume 126 Issue 6 August 2017 Article ...

  13. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  14. Literature relevant to remote sensing of water quality

    Science.gov (United States)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  15. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    2007-01-01

    Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. This book, in its 3rd edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standa

  16. Introducing inquiry-based hands-on satellite remote sensing technology into the Earth science curricula of Hawaii’s classrooms

    Science.gov (United States)

    Moxey, L.; Polovina, J. J.

    2009-12-01

    Currently available satellite technology intended primarily for oceanographic, atmospheric and environmental monitoring efforts and studies can also provide the educational community with valuable pedagogical tools. The “Hawaii from Space” program developed by the NOAA OceanWatch - Central Pacific Office provided two schools within the State of Hawaii with a low-cost Advanced Very High Resolution - Automatic Picture Transmission (AVHRR-APT) satellite receiving station (i.e.: computer, specialized radio receiver, antenna, software, etc), enabling students and teachers alike to operate the equipment for acquiring and downloading “live” visible and InfraRed (IR) imagery from the NOAA AVHRR polar-orbiting satellites directly from within their classrooms. By acquiring, decoding, archiving, and distributing online the daytime and nighttime data they collect over the Hawaiian Archipelago and adjacent regions, students are able to study a wealth of oceanographic, atmospheric and environmental phenomena. The dynamic cooperative learning environment that ensues from the incorporation of hands-on space-based radio communication technology and satellite remote sensing tools within the classroom further serves to empower and engage students. By presenting students with an inquiry-based learning framework, educators can present a multidisciplinary and integrated Earth science curriculum that encompasses various STEM subjects for investigating natural processes from local and regional perspectives. The partnership experiences with Hawaii’s schools highlights the importance of maintaining an active outreach support program for furthering and enhancing the science education of future generations.

  17. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  18. JPRS Report, Science & Technology, 16th International Congress of the International Society for Photogrammetry and Remote Sensing -- Volume 2

    Science.gov (United States)

    1989-01-27

    nBWT|3^ zi^ Administration and guided also by international trends ™PE;/rom 1985 on revised its own policy and structure in the area of Remote...Rego Barbosa, Osvaldo Caldas; MCT - MINISTERIO DA CIENCIA E TECNOLOGIA , INPE - INSTITUTO DE PESQUISAS ESPACIAIS, Rod. Presidente Dutra, km 40 12630

  19. Photogrammetry and remote sensing education subjects

    Science.gov (United States)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.

    2017-09-01

    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  20. Remote sensing of land surface phenology

    Science.gov (United States)

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  1. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  2. Remote sensing from UAVs for hydrological monitoring

    DEFF Research Database (Denmark)

    Bandini, Filippo; Garcia, Monica; Bauer-Gottwein, Peter

    compared to other technologies: compared to field based techniques, remote sensing with UAVs is a non-destructive technique, less time consuming, ensures a reduced time between acquisition and interpretation of data and gives the possibility to access remote and unsafe areas. Compared to full...... will be able to record the spectral signatures of water and land surfaces with a pixel resolution of around 15 cm, whereas the thermal camera will sense water and land surface temperature with a resolution of 40 cm. Post-processing of data from the thermal camera will allow retrieving vegetation and soil...

  3. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  4. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  5. [Remote sensing resource monitoring on Atractylodes lancea].

    Science.gov (United States)

    Sun, Yu-Zhang; Guo, Lan-Ping; Zhu, Wen-Quan; Huang, Lu-Qi; Gu, Xiao-He; Han, Li-Jian; Pan, Yao-Zhong

    2008-02-01

    Remote sensing technology was used for investigation of the resources of Atractylodes lancea. Firstly, the general situation of Jiangshu Maoshan and A. lancea in Maoshan was introduced; Secondly, the methods of remote sensing on the resource of the wild drugs were explained. Thirdly, the TM images were interpret according to the differences of the objects reflex spectrum, and growth environments in Damao mountain, Ermao mountain and Xiaomao mountain were divided into different sub-areas according to the results of the field investigations. Finally, the resource of A. lancea in Jiangshu Maoshan was estimated.

  6. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  7. Microwave remote sensing from space

    OpenAIRE

    Carver, Keith R.; Elachi, Charles; Ulaby, Fawwaz T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms--soil and...

  8. Image registration for remote sensing

    National Research Council Canada - National Science Library

    Le Moigne, Jacqueline; Netanyahu, Nathan S; Eastman, Roger D

    2011-01-01

    ... for environmental, political and basic science studies. The book brings together invited contributions by 36 distinguished researchers in the field to present a coherent and detailed overview of current research and practice in the application of image...

  9. Microwave remote sensing of natural stratification

    Science.gov (United States)

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2011-11-01

    The response of natural stratification to electromagnetic wave has received much attention in last decades, due to its crucial role played in the remote sensing arena. In this context, when the superficial structure of the Earth, whose formation is inherently layered, is concerned, the most general scheme that can be adopted includes the characterization of layered random media. Moreover, a key issue in remote sensing of Earth and other Planets is to reveal the content under the surface illuminated by the sensors. For such a purpose, a quantitative mathematical analysis of wave propagation in three-dimensional layered rough media is fundamental in understanding intriguing scattering phenomena in such structures, especially in the perspective of remote sensing applications. Recently, a systematic formulation has been introduced to deal with the analysis of a layered structure with an arbitrary number of rough interfaces. Specifically, the results of the Boundary Perturbation Theory (BPT) lead to polarimetric, formally symmetric and physical revealing closed form analytical solutions. The comprehensive scattering model based on the BPT methodologically permits to analyze the bi-static scattering patterns of 3D multilayered rough media. The aim of this paper is to systematically show how polarimetric models obtainable in powerful BPT framework can be successfully applied to several situations of interest, emphasizing its wide relevance in the remote sensing applications scenario. In particular, a proper characterization of the relevant interfacial roughness is adopted resorting to the fractal geometry; numerical examples are then presented with reference to representative of several situations of interest.

  10. Review: Estimating evapotranspiration using remote sensing and ...

    African Journals Online (AJOL)

    Review: Estimating evapotranspiration using remote sensing and the Surface Energy Balance System – A South African perspective. ... It is therefore recommended that any further research using the SEBS model in South Africa should be limited to agricultural areas where accurate vegetation parameters can be obtained, ...

  11. Gully Features Extraction Using Remote Sensing Techniques ...

    African Journals Online (AJOL)

    Gullies are large and deep erosion depressions or channels normally occurring in drainage ways. They are spectrally heterogeneous, making them difficult to map using pixel based classification technique. The advancement of remote sensing in terms of Geographic Object Based Image Analysis (GEOBIA) provides new ...

  12. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  13. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  14. Satellite Remote Sensing for Monitoring and Assessment

    Science.gov (United States)

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  15. Spectrodirectional Remote Sensing: From Pixels to Processes

    NARCIS (Netherlands)

    Schaepman, M.E.

    2007-01-01

    This paper discusses the historical evolution of imaging spectroscopy in Earth observation as well as directional (or multiangular) research leading to current achievements in spectrodirectional remote sensing. It elaborates on the evolution from two separate research areas into a common approach to

  16. Remote optical stethoscope and optomyography sensing device

    Science.gov (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  17. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  18. Towards remote sensing of river discharge from space (Invited)

    Science.gov (United States)

    Smith, L. C.; Durand, M. T.; Andreadis, K.; Mersel, M. K.

    2010-12-01

    Consistent, spatially extensive measurements of water flux in rivers are essential for numerous scientific and pragmatic reasons, but such data are absent for many parts of the world. Satellite retrievals of river discharge, therefore, are a tantalizing prospect and stated science requirement of at least one proposed satellite mission (SWOT, the Surface Water Ocean Topography mission). While remote sensing will never achieve the continuous temporal sampling of permanent in situ river gauging stations, the dense synoptic sampling afforded from space provides a powerful compliment to in situ networks with strong potential to transform the science of land-surface hydrology in much the same way that radar altimeters have transformed the science of physical oceanography since 1978. In many parts of the world, satellite retrievals offer the only hope for obtaining any discharge proxies at all. However, an outstanding problem is that no remote sensing technology can measure river discharge directly. A variety of approaches ranging from in situ calibration to advanced data-assimilation modeling have been explored, but the field is highly immature. This poses both challenges and opportunities for the hydrologic science community, as it progresses toward developing effective remote-sensing algorithms to obtain synoptic, intercalibrated, and consistent measurements of discharge throughout entire river drainage networks.

  19. Forest structural assessment using remote sensing technologies: an ...

    African Journals Online (AJOL)

    -Natal and MONDI Business Paper have recently embarked on a remote sensing cooperative. The primary focus of this cooperative is to explore the potential benefits associated with using remote sensing for forestry-related activities.

  20. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  1. Coastal remote sensing – towards integrated coastal research and management

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2012-10-01

    Full Text Available coastal resources and anthropogenic infrastructure for a safer future. What is the role of remote sensing? The coastal zone connects terrestrial biophysical systems with marine systems. Some marine ecosystems cannot function without intact inland... for the development of sound integrated management solutions. To date, however, remote sensing applications usually focus on areas landward from the highwater line (?terrestrial? remote sensing), while ?marine? remote sensing does not pay attention to the shallow...

  2. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  3. Towards operational environmental applications using terrestrial remote sensing

    NARCIS (Netherlands)

    Veldkamp JG; Velde RJ van de; LBG

    1996-01-01

    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  4. An introduction to quantitative remote sensing. [data processing

    Science.gov (United States)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  5. Annotated bibliography of remote sensing methods for monitoring desertification

    Science.gov (United States)

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  6. Do it yourself remote sensing: Generating an inexpensive, high tech, real science lake mapping project for the classroom

    Science.gov (United States)

    Metzger, Stephen M.

    1993-01-01

    The utilization of modest equipment and software revealed bottom contours and water column conditions of a dynamic water body. Classroom discussions of field techniques and equipment capabilities followed by exercises with the data sets in cause-and-effect analysis all contributed to participatory education in the process of science. This project is presented as a case study of the value of engaging secondary and collegiate level students in planning, executing and appraising a real world investigation which they can directly relate to. A 1 km wide bay, experiencing marsh inflow, along an 8 km long lake situated 120 km north of Ottawa, Canada, on the glaciated Canadian Precambrian Shield was mapped in midsummer for submerged topography, bottom composition, temperature profile, turbudity, dissolved oxygen and biota distribution. Low level aerial photographs scanned into image processing software are permitting spatial classification of bottom variations in biology and geology. Instrumentation consisted of a portable sport fishing SONAR depth finder, an electronic lead line multiprobe with photocell, thermistor and dissolved oxygen sensors, a selective depth water sampler, portable pH meter, an underwater camera mounted on a home-made platform with a bottom-contact trigger and a disposable underwater camera for shallow survey work. Sampling transects were referenced using a Brunton hand transit triangulating several shore markers.

  7. Microwave remote sensing of ionized air.

    Energy Technology Data Exchange (ETDEWEB)

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C. (Nuclear Engineering Division)

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  8. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  9. The Citizens and Remote Sensing Observational Network (CARSON) Guide: Merging NASA Remote Sensing Data with Local Environmental Awareness

    Science.gov (United States)

    Acker, James; Riebeek, Holli; Ledley, Tamara Shapiro; Herring, David; Lloyd, Steven

    2008-01-01

    "Citizen science" generally refers to observatoinal research and data collection conducted by non-professionals, commonly as volunteers. In the environmental science field, citizen scientists may be involved with local nad regional issues such as bird and wildlife populations, weather, urban sprawl, natural hazards, wetlands, lakes and rivers, estuaries, and a spectrum of public health concerns. Some citizen scientists may be primarily motivated by the intellectual challenge of scientific observations. Citizen scientists may now examine and utilize remote-sensing data related to their particular topics of interest with the easy-to-use NASA Web-based tools Giovanni and NEO, which allow exploration and investigation of a wide variety of Earth remote sensing data sets. The CARSON (Citizens and Remote Sensing Observational Network) Guide will be an online resource consisting of chapters each demonstrating how to utilize Giovanni and NEO to access and analyze specific remote-sensing data. Integrated in each chapter will be descriptions of methods that citizen scientists can employ to collect, monitor, analyze, and share data related to the chapter topic which pertain to environmental and ecological conditions in their local region. A workshop held in August 2008 initiated the development of prototype chapters on water quality, air quality, and precipitation. These will be the initial chapters in the first release of the CARSON Guide, which will be used in a pilot project at the Maryland Science Center in spring 2009. The goal of the CARSON Guide is to augment and enhance citizen scientist environmental research with NASA satellite data by creating a participatory network consisting of motivated individuals, environmental groups and organizations, and science-focused institutions such as museuma and nature centers. Members of the network could potentially interact with government programs, academic research projects, and not-for-profit organizations focused on

  10. The Citizens And Remote Sensing Observational Network (CARSON) Guide: Merging NASA Remote-Sensing Data with Local Environmental Awareness

    Science.gov (United States)

    Acker, J.; Riebeek, H.; Ledley, T. S.; Herring, D.; Lloyd, S.

    2008-12-01

    "Citizen science" generally refers to observational research and data collection conducted by non- professionals, commonly as volunteers. In the environmental science field, citizen scientists may be involved with local and regional issues such as bird and wildlife populations, weather, urban sprawl, natural hazards, wetlands, lakes and rivers, estuaries, and a spectrum of public health concerns. Some citizen scientists may be primarily motivated by the intellectual challenge of scientific observations. Citizen scientists may now examine and utilize remote-sensing data related to their particular topics of interest with the easy-to-use NASA Web-based tools Giovanni and NEO, which allow exploration and investigation of a wide variety of Earth remote-sensing data sets. The CARSON (Citizens And Remote Sensing Observational Network) Guide will be an online resource consisting of chapters each demonstrating how to utilize Giovanni and NEO to access and analyze specific remote-sensing data. Integrated in each chapter will be descriptions of methods that citizen scientists can employ to collect, monitor, analyze, and share data related to the chapter topic which pertain to environmental and ecological conditions in their local region. A workshop held in August 2008 initiated the development of prototype chapters on water quality, air quality, and precipitation. These will be the initial chapters in the first release of the CARSON Guide, which will be used in a pilot project at the Maryland Science Center in spring 2009. The goal of the CARSON Guide is to augment and enhance citizen scientist environmental research with NASA satellite data by creating a participatory network consisting of motivated individuals, environmental groups and organizations, and science-focused institutions such as museums and nature centers. Members of the network could potentially interact with government programs, academic research projects, and not-for-profit organizations focused on

  11. Computer applications in remote sensing education

    Science.gov (United States)

    Danielson, R. L.

    1980-01-01

    Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.

  12. Review of oil spill remote sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Best practices in Remote Sensing for REDD+

    DEFF Research Database (Denmark)

    Dons, Klaus; Grogan, Kenneth

    2012-01-01

    due to steep terrain, • phenological gradients across natural, agricultural and forestry ecosystems including plantations and • the need to serve the REDD-specific context of deforestation and forest degradation across spatial and temporal scales make remote sensing based approaches particularly...... and governance, and deforestation and forest degradation processes. The second part summarizes the available literature on remote sensing based good practices for REDD. It largely draws from the documents of the Intergovernmental Panel on Climate Change (IPCC), the United Nations Framework Convention on Climate...... Change (UNFCCC) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) methods sourcebook. These documents provide a generic framework on methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals caused by deforestation, gains and losses...

  14. The Fundamental Framework of Remote Sensing Validation System

    Science.gov (United States)

    Jiang, X.-G.; Xi, X.-H.; Wu, M.-J.; Li, Z.-L.

    2009-04-01

    Remote sensing is a very complicated course. It is influenced by many factors, such as speciality of remote sensing sensor, radiant transmission characteristic of atmosphere, work environment of remote sensing platform, data transmission, data reception, data processing, and property of observed object etc. Whether the received data is consistent with the design specifications? Can the data meet the demands of remote sensing applications? How about the accuracy of the data products, retrieval products and application products of remote sensing? It is essential to carry out the validation to assess the data quality and application potential. Validation is effective approach to valuate remote sensing products. It is the significant link between remote sensing data and information. Research on remote sensing validation is very important for sensor development, data quality analysis and control. This paper focuses on the study of remote sensing validation and validation system. Different from the previous work done by other researchers, we study the validation from the viewpoint of systematic engineering considering that validation is involved with many aspects as talked about. Validation is not just a single and simple course. It is complicated system. Validation system is the important part of whole earth observation system. First of all, in this paper the category of remote sensing validation is defined. Remote sensing validation includes not only the data products validation, but also the retrieval products validation and application products validation. Second, the new concept, remote sensing validation system, is proposed. Then, the general framework, software structure and functions of validation system are studied and put forward. The validation system is composed of validation field module, data acquirement module, data processing module, data storage and management module, data scaling module, and remote sensing products validation module. And finally the

  15. Benchmarking of Remote Sensing Segmentation Methods

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal; Scarpa, G.; Gaetano, R.

    2015-01-01

    Roč. 8, č. 5 (2015), s. 2240-2248 ISSN 1939-1404 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : benchmark * remote sensing segmentation * unsupervised segmentation * supervised segmentation Subject RIV: BD - Theory of Information Impact factor: 2.145, year: 2015 http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf

  16. Ocean Remote Sensing Using Ambient Noise

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Remote Sensing Using Ambient Noise Michael G...approximation to the transient Green’s function G(xA|xB, t) between locations xA and xB is estimated by cross-correlating records of ambient noise...Williams, N. A. Zabotin, L. Zabotina and G. J. Banker, 2014, Acoustic Green’s function extraction from ambient noise in a coastal ocean environment

  17. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  18. Applications of Remote Sensing and Geographic Information System (GIS) in Archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    The advancement of remote sensing technology and the analysing capability of Geographical Information System (GIS) can very well be used in the science of Archaeology. Though these subjects look apart, they can be studied in conjunction with each...

  19. A Review of Wetland Remote Sensing

    Directory of Open Access Journals (Sweden)

    Meng Guo

    2017-04-01

    Full Text Available Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  20. Application of Remote Sensing in Agriculture

    Science.gov (United States)

    Piekarczyk, Jan

    2014-12-01

    With increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.

  1. A Review of Wetland Remote Sensing.

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-04-05

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  2. A Review of Wetland Remote Sensing

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-01-01

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers. PMID:28379174

  3. Combining remotely sensed data using aggregation algorithms

    Directory of Open Access Journals (Sweden)

    W. J. Shuttleworth

    1998-01-01

    Full Text Available This paper describes a strategic approach for providing documentation of the surface energy exchange for heterogeneous land surfaces via the simultaneous, four-dimensional assimilation of several streams of remotely sensed data into a coupled land surface-atmosphere model. The basic concepts and underlying theory behind this proposed approach are presented with the intent that this will guide, facilitate, and stimulate future research focused on its practical implementation when appropriate data from the Earth Observing System (EOS become available. The theoretical concepts that underlie the approach are derived from relationships between the values of parameters which control surface exchanges at pixel (or patch scale and the area-average value of equivalent parameters applicable at larger, grid scale. A three-step implementation method is proposed which involves (a estimating grid-average surface radiation fluxes from appropriate remotely sensed data; (b absorbing these radiation flux estimates into a four-dimensional data assimilation model in which grid-average values of vegetation-related parameters are calculated from pertinent remotely sensed data using the equations that link pixel and grid scales; and (c improving the resulting estimate of the surface energy balance-again using scale-linking equations by estimating the effect of soil-moisture availability, perhaps assuming that cloud-free pixels are an unbiased subsample of all the pixels in the grid square.

  4. Remote Sensing and Geosciences for Archaeology

    Directory of Open Access Journals (Sweden)

    Deodato Tapete

    2018-01-01

    Full Text Available Archaeological remote sensing is not a novel discipline. Indeed, there is already a suite of geoscientific techniques that are regularly used by practitioners in the field, according to standards and best practice guidelines. However, (i the technological development of sensors for data capture; (ii the accessibility of new remote sensing and Earth Observation data; and (iii the awareness that a combination of different techniques can lead to retrieval of diverse and complementary information to characterize landscapes and objects of archaeological value and significance, are currently three triggers stimulating advances in methodologies for data acquisition, signal processing, and the integration and fusion of extracted information. The Special Issue “Remote Sensing and Geosciences for Archaeology” therefore presents a collection of scientific contributions that provides a sample of the state-of-the-art and forefront research in this field. Site discovery, understanding of cultural landscapes, augmented knowledge of heritage, condition assessment, and conservation are the main research and practice targets that the papers published in this Special Issue aim to address.

  5. The cross time and space features in remote sensing applications

    Science.gov (United States)

    Lu, J. X.; Song, W. L.; Qu, W.; Fu, J. E.; Pang, Z. G.

    2015-08-01

    Remote sensing is one subject of the modern geomatics, with a high priority for practical applications in which cross time and space analysis is one of its significant features. Object recognition and/or parameter retrieval are normally the first step in remote sensing applications, whereas cross time and space change analysis of those surface objects and/or parameters will make remote sensing applications more valuable. Based on a short review on the historic evolution of remote sensing and its current classification system, the cross time and space features commonly existing in remote sensing applications were discussed. The paper, aiming at improving remote sensing applications and promoting development of the remote sensing subject from a new vision, proposed a methodology based subject classification approach for remote sensing and then suggest to establish the theory of cross time and space remote sensing applications. The authors believe that such a new cross time and space concept meets the demand for new theories and new ideas from remote sensing subject and is of practical help to future remote sensing applications.

  6. Distributed calibrating snow models using remotely sensed snow cover information

    Science.gov (United States)

    Li, H.

    2015-12-01

    Distributed calibrating snow models using remotely sensed snow cover information Hongyi Li1, Tao Che1, Xin Li1, Jian Wang11. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China For improving the simulation accuracy of snow model, remotely sensed snow cover data are used to calibrate spatial parameters of snow model. A physically based snow model is developed and snow parameters including snow surface roughness, new snow density and critical threshold temperature distinguishing snowfall from precipitation, are spatially calibrated in this study. The study region, Babaohe basin, located in northwestern China, have seasonal snow cover and with complex terrain. The results indicates that the spatially calibration of snow model parameters make the simulation results more reasonable, and the simulated snow accumulation days, plot-scale snow depth are more better than lumped calibration.

  7. Remote Sensing:From Trained Professionals to General Public

    Directory of Open Access Journals (Sweden)

    SHAN Jie

    2017-10-01

    Full Text Available Influenced by the growing popularity of smart phones and the rapid development of open science, remote sensing is being developed and applied more by general public than by trained professionals. This trend is mainly embodied in the democratized data collection, democratized data processing and democratized data usage. This paper discusses and analyzes the three aforementioned characteristics, introduces some recent representative work and progress. It also lists numerous international open data processing tools, including photogrammetry processing, laser scanning processing, machine learning, and spatial information management. In addition, the article makes a detailed description of the benefits of open data, and lists a number of global data programs and experimental data sets for scientific research. At the end of this paper, it is pointed out that the democratization of remote sensing will not only produce great economic benefits, but also bring about great social benefits, and finally change the landscape of industry and the life style of people.

  8. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    Science.gov (United States)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all

  9. Specific sensors for special roles in oil spill remote sensing

    Science.gov (United States)

    Brown, Carl E.; Fingas, Mervin F.

    1997-01-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. The general public expects that the government and/or the spiller know the location and the extent of the contamination. The Emergencies Science Division (ESD) of Environment Canada, is responsible for remote sensing during oil spill emergencies along Canada's three coastlines, extensive inland waterways, as well as over the entire land mass. In addition to providing operational remote sensing, ESD conducts research into the development of airborne oil spill remote sensors, including the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) and the Laser Ultrasonic Remote SEnsing of Oil Thickness (LURSOT) sensor. It has long been recognized that there is not one sensor or 'magic bullet' which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide filed-of-view and can therefore be used to map the overall extent of the spill. These sensors, however lack the specificity required to positively identify oil and related products. This is even more of a problem along complicated beach and shoreline environments where several substrates are present. The specific laser- based sensors under development by Environment Canada are designed to respond to special roles in oil spill response. In particular, the SLEAF is being developed to unambiguously detect and map oil and related petroleum products in complicated marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non- specific sensors. This confirmation will release response crews from the time consuming task of physically inspecting each site, and direct crews to sites that

  10. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  11. Remote sensing of coastal and ocean studies

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.

    -red and microwave radiation find use in remote sensing. Coastal and open oceans are commonly studied by ships. These studies involve measurement and interpretation of physical, chemical, biological and geological parameters of the ocean in different seasons. While... the ships are slow and expensive, oceans are vast and dJnamic. It is thus not possible to have simultaneous measurements of any oceanic parameter even over a region as small as 1000 sq. km. One can neither make a single ship move fast enough to cover...

  12. On strategies for inverting remote sensing data

    Science.gov (United States)

    Jeffrey, W.; Rosner, R.

    1986-01-01

    Attention is given to a number of methods for inverting remote sensing data obtained in a variety of astronomical applications. Applications include image restoration, inversion of helioseismological data to obtain the internal rotation rate of stars such as the sun, fitting of spectra (especially thermal line spectra) to grating or other dispersed observed spectra, differential emission measure analysis, and reconstruction of images derived from interferometric observations. The results consider the tradeoff between resolution and variance and the stability properties for each method and propose an inversion stragegy using the available techniques.

  13. Oil pollution signatures by remote sensing.

    Science.gov (United States)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  14. Introduction to Remote Sensing Image Registration

    Science.gov (United States)

    Le Moigne, Jacqueline

    2017-01-01

    For many applications, accurate and fast image registration of large amounts of multi-source data is the first necessary step before subsequent processing and integration. Image registration is defined by several steps and each step can be approached by various methods which all present diverse advantages and drawbacks depending on the type of data, the type of applications, the a prior information known about the data and the type of accuracy that is required. This paper will first present a general overview of remote sensing image registration and then will go over a few specific methods and their applications

  15. Remote sensing and actuation using unmanned vehicles

    CERN Document Server

    Chao, Haiyang

    2012-01-01

    Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.

  16. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  17. Remote shock sensing and notification system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  18. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  19. A History of NASA Remote Sensing Contributions to Archaeology

    Science.gov (United States)

    Giardino, Marco J.

    2010-01-01

    During its long history of developing and deploying remote sensing instruments, NASA has provided a scientific data that have benefitted a variety of scientific applications among them archaeology. Multispectral and hyperspectral instrument mounted on orbiting and suborbital platforms have provided new and important information for the discovery, delineation and analysis of archaeological sites worldwide. Since the early 1970s, several of the ten NASA centers have collaborated with archaeologists to refine and validate the use of active and passive remote sensing for archeological use. The Stennis Space Center (SSC), located in Mississippi USA has been the NASA leader in archeological research. Together with colleagues from Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and the Jet Propulsion Laboratory (JPL), SSC scientists have provided the archaeological community with useful images and sophisticated processing that have pushed the technological frontiers of archaeological research and applications. Successful projects include identifying prehistoric roads in Chaco canyon, identifying sites from the Lewis and Clark Corps of Discovery exploration and assessing prehistoric settlement patterns in southeast Louisiana. The Scientific Data Purchase (SDP) stimulated commercial companies to collect archaeological data. At present, NASA formally solicits "space archaeology" proposals through its Earth Science Directorate and continues to assist archaeologists and cultural resource managers in doing their work more efficiently and effectively. This paper focuses on passive remote sensing and does not consider the significant contributions made by NASA active sensors. Hyperspectral data offers new opportunities for future archeological discoveries.

  20. Remote sensing in operational range management programs in Western Canada

    Science.gov (United States)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  1. On applications of remote sensing for environmental monitoring.

    Science.gov (United States)

    Spitzer, D

    1986-11-01

    Modern airborne and satellite remote sensing techniques offer attractive opportunities to coastal monitoring systems. Improvements of the evaluation of larger scales phenomena and processes due to the synopticity of the remote sensing data are of particular interest. However, some uncertainties and limitations about remote sensing must be considered. Microwave, infrared and visible radiation methods and their applications are briefly discussed and some applications are demonstrated. Special attention is paid to the remote sensing of various pollutants in the sea, in particular with respect to oil pollution.Promising developments of the remote sensing methods for coastal monitoring are to be expected from the European remote sensing satellite missions ERS 1 and ERS 2.Combination of these observations with simultaneous in situ measurements from ships (sea truth) appears to be most advantageous for the interpretation of the collected data.

  2. Remote sensing programs and courses in engineering and water resources

    Science.gov (United States)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  3. The Application of NASA Remote Sensing Technology to Human Health

    Science.gov (United States)

    Watts, C. T.

    2007-01-01

    With the help of satellites, the Earth's environment can be monitored from a distance. Earth observing satellites and sensors collect data and survey patterns that supply important information about the environment relating to its affect on human health. Combined with ground data, such patterns and remote sensing data can be essential to public health applications. Remote sensing technology is providing information that can help predict factors that affect human health, such as disease, drought, famine, and floods. A number of public health concerns that affect Earth's human population are part of the current National Aeronautics and Space Administration (NASA) Earth Science Applications Plan to provide remotely gathered data to public health decision-makers to aid in forming and implementing policy to protect human health and preserve well-being. These areas of concern are: air quality; water quality; weather and climate change; infectious, zoonotic, and vector-borne disease; sunshine; food resource security; and health risks associated with the built environment. Collaborations within the Earth Science Applications Plan join local, state, national, or global organizations and agencies as partners. These partnerships engage in projects that strive to understand the connection between the environment and health. The important outcome is to put this understanding to use through enhancement of decision support tools that aid policy and management decisions on environmental health risks. Future plans will further employ developed models in formats that are compatible and accessible to all public health organizations.

  4. Science & the Senses: Perceptions & Deceptions

    Science.gov (United States)

    Stansfield, William D.

    2012-01-01

    Science requires the acquisition and analysis of empirical (sense-derived) data. Given the same physical objects or phenomena, the sense organs of all people do not respond equally to these stimuli, nor do their minds interpret sensory signals identically. Therefore, teachers should develop lectures on human sensory systems that include some…

  5. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  6. Some operative applications of remote sensing

    Directory of Open Access Journals (Sweden)

    A. Tonelli

    2000-06-01

    Full Text Available Among the methods of applied geophysics, remote sensing plays a major and an ancillary role, at the same time. The major role deals with the acquisition and processing of data with the aim of describing the properties of the surfaces and their subsurface mass. The ancillary one consists in furnishing indications to address specific geophysical surveys. The paper presents some operative applications of remote sensing by stations fixed on ground and by airborne surveys: monitoring the biogas vents and evaluating their flow in waste disposal sites, analyzing the stability of rocky walls, studying the moisture content of soils for the most general purposes and in particular to contribute to archaeological prospecting. Single and multitemporal collection of data are taken into consideration to describe polarizing properties of the surfaces and to define the heat capacity in the thermal infrared domain and the presence of luminescent phenomena in the visible range. The use of environmental indicators, like vegetation, is also discussed with the aim of revealing through superficial seepages the pattern of underlying mass.

  7. Laser remote sensing of underwater objects

    Science.gov (United States)

    Wojtanowski, J.; Mierczyk, Z.; Zygmunt, M.

    2008-10-01

    Theoretical and practical aspects of laser application in the field of underwater remote sensing have been presented. A multi-level analysis and computational results dealing with 0.532 μm laser wavelength were performed to determine the expected capabilities of underwater laser penetration with regard to the Lidar system developed in Optoelectronics Institute of Military University of Technology in Warsaw. Since the device is to perform underwater measurements from above the water level, the influence of the water-atmosphere interface had to be included in the analysis. Sea water characteristics concerning electromagnetic radiation propagation have been widely considered covering the mechanisms of absorption, scattering and the effective attenuation typical for representative types of sea waters. Software application developed in Mathcad environment enabled to model the impact of both absorption and scattering coefficients of different types of sea water on geometrical and energetic parameters of laser beam propagating in the underwater environment. The impact of reflectance properties of the remotely sensed underwater object on the reflected signal level has been investigated as well. Analytical approach covered both "echo" signal reflected from an underwater object and background noise signal level generated mainly by the sunlight and diffuse atmospheric illumination.

  8. A Terminal Area Icing Remote Sensing System

    Science.gov (United States)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  9. Airborne multidimensional integrated remote sensing system

    Science.gov (United States)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  10. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    Science.gov (United States)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  11. Quantification of Permafrost Creep by Remote Sensing

    Science.gov (United States)

    Roer, I.; Kaeaeb, A.

    2008-12-01

    Rockglaciers and frozen talus slopes are distinct landforms representing the occurrence of permafrost conditions in high mountain environments. The interpretation of ongoing permafrost creep and its reaction times is still limited due to the complex setting of interrelating processes within the system. Therefore, a detailed monitoring of rockglaciers and frozen talus slopes seems advisable to better understand the system as well as to assess possible consequences like rockfall hazards or debris-flow starting zones. In this context, remote sensing techniques are increasingly important. High accuracy techniques and data with high spatial and temporal resolution are required for the quantification of rockglacier movement. Digital Terrain Models (DTMs) derived from optical stereo, synthetic aperture radar (SAR) or laser scanning data are the most important data sets for the quantification of permafrost-related mass movements. Correlation image analysis of multitemporal orthophotos allow for the quantification of horizontal displacements, while vertical changes in landform geometry are computed by DTM comparisons. In the European Alps the movement of rockglaciers is monitored over a period of several decades by the combined application of remote sensing and geodetic methods. The resulting kinematics (horizontal and vertical displacements) as well as spatio-temporal variations thereof are considered in terms of rheology. The distinct changes in process rates or landform failures - probably related to permafrost degradation - are analysed in combination with data on surface and subsurface temperatures and internal structures (e.g., ice content, unfrozen water content).

  12. Domestic parking estimation using remotely sensed data

    Science.gov (United States)

    Ramzi, Ahmed

    2012-10-01

    Parking is an integral part of the traffic system everywhere. Provision of parking facilities to meet peak of demands parking in cities of millions is always a real challenge for traffic and transport experts. Parking demand is a function of population and car ownership which is obtained from traffic statistics. Parking supply in an area is the number of legal parking stalls available in that area. The traditional treatment of the parking studies utilizes data collected either directly from on street counting and inquiries or indirectly from local and national traffic censuses. Both methods consume time, efforts, and funds. Alternatively, it is reasonable to make use of the eventually available data based on remotely sensed data which might be flown for other purposes. The objective of this work is to develop a new approach based on utilization of integration of remotely sensed data, field measurements, censuses and traffic records of the studied area for studying domestic parking problems in residential areas especially in informal areas. Expected outcomes from the research project establish a methodology to manage the issue and to find the reasons caused the shortage in domestics and the solutions to overcome this problems.

  13. Remotely Sensing the Photochemical Reflectance Index (PRI)

    Science.gov (United States)

    Vanderbilt, Vern

    2015-01-01

    In remote sensing, the Photochemical Reflectance Index (PRI) provides insight into physiological processes occurring inside the leaves in a stand of plants. Developed by Gamon et al., (1990 and 1992), PRI evolved from laboratory measurements of the reflectance of individual leaves (Bilger et al.,1989). Yet in a remotely sensed image, a pixel measurement may include light from both reflecting and transmitting leaves. We conducted laboratory experiments comparing values of PRI based upon polarized reflectance and transmittance measurements of water and nutrient stressed leaves. We illuminated single detached leaves using a current controlled light source (Oriel model 66881) and measured the leaf weight using an analytical balance (Mettler model AE 260) and the light reflected and transmitted by the leaf during dry down using two Analytical Spectral Devices spectroradiometers. Polarizers on the incident and reflected light beams allowed us to divide the leaf reflectance into two parts: a polarized surface reflectance and a non-polarized 'leaf interior' reflectance. Our results underscore the importance when calculating PRI of removing the leaf surface reflection, which contains no information about physiological processes ongoing in the leaf interior. The results show that the leaf physiology information is in the leaf interior reflectance, not the leaf transmittance. Applied to a plant stand, these results suggest use of polarization measurements in sun-view directions that minimize the number of sunlit transmitting leaves in the sensor field of view.

  14. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  15. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  16. Mobile and Remote Inertial Sensing with Atom Interferometers

    CERN Document Server

    Barrett, B; Cantin, E; Antoni-Micollier, L; Bertoldi, A; Battelier, B; Bouyer, P; Lautier, J; Landragin, A

    2013-01-01

    The past three decades have shown dramatic progress in the ability to manipulate and coherently control the motion of atoms. This exquisite control offers the prospect of a new generation of inertial sensors with unprecedented sensitivity and accuracy, which will be important for both fundamental and applied science. In this article, we review some of our recent results regarding the application of atom interferometry to inertial measurements using compact mobile sensors. We also discuss future applications of this technology, such as remote sensing of geophysical effects, gravitational wave detection, and precise tests of the weak equivalence principle in Space.

  17. Remote sensing and geographic information systems: Advanced technologies for environmental monitoring and management

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, M. [Univ. of Vechta (Germany)

    1996-12-31

    This paper addresses the potential of remote sensing and GIS technologies for environmental monitoring and management. It reports on the efforts at the University of Vechta to establish a new University program in environmental monitoring and management. This program is placed in an interdisciplinary environment and integrates advanced spatial technologies such as remote sensing and GIS with ecological science and environmental planning. First results of a new graduate level course in Environmental Monitoring will be presented.

  18. Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument

    Science.gov (United States)

    Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.

    2015-01-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown

  19. 7th IGRSM International Remote Sensing & GIS Conference and Exhibition

    Science.gov (United States)

    Shariff, Abdul Rashid Mohamed

    2014-06-01

    IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence

  20. Method to analyze remotely sensed spectral data

    Science.gov (United States)

    Stork, Christopher L [Albuquerque, NM; Van Benthem, Mark H [Middletown, DE

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  1. Smart turbine control with remote wind sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, E.A. [Catch the Wind Inc., Manassas, VA (United States)

    2009-07-01

    Turbine controls use anemometers and wind vanes located behind the turbine blades on the nacelle. Anemometer/wind vane limitations include calibration and the fact that they are affected by disturbed flow and do not represent inflow to the turbine. This presentation discussed smart turbine control with remote wind sensing in an effort to address the industry's needs. The presentation provided a hypothesis that forward looking LIDAR enables improved pointing accuracy which can lead to improved aerodynamic efficiency; reduced asymmetrical loading on turbine components; and more power production. A test equipment vindicator and laser wind sensor was illustrated as a potential technology. A test site, installation, and turbine control logic were also presented along with preliminary results. It was concluded that LIDAR data can keep the turbine aligned with the wind. tabs., figs.

  2. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  3. A review of progress in identifying and characterizing biocrusts using proximal and remote sensing

    Science.gov (United States)

    Rozenstein, Offer; Adamowski, Jan

    2017-05-01

    Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.

  4. Linear- and Repetitive-Feature Detection Within Remotely Sensed Imagery

    Science.gov (United States)

    2017-04-01

    Remotely Sensed Imagery Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra to ry Brendan A. West April 2017 Approved for...Mapping—Case Study: Alevrada, Central Greece. In Proceedings of SPIE 4886, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II

  5. Linear- and Repetitive Feature Detection Within Remotely Sensed Imagery

    Science.gov (United States)

    2017-04-01

    Remotely Sensed Imagery Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra to ry Brendan A. West April 2017 Approved for...Mapping—Case Study: Alevrada, Central Greece. In Proceedings of SPIE 4886, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II

  6. Page 1 Forest survey and management using remote sensing 229 ...

    Indian Academy of Sciences (India)

    Forest survey and management using remote sensing 229. Lackner H 1966 Forstl. Bundesversuchsanstalt Wien, Heft, p. 72. Langley P G 1969 Remote sensing of environment, Proc. Int. Symp., Ann Arbor, p. 1179. Langley P G & Sharpnack D A 1968 The development of an earth resources information system using aerial.

  7. Current Application of Remote Sensing Techniques in Land Use ...

    African Journals Online (AJOL)

    MICHAEL

    most efficient scientific tool in conjunction with ground truth and ... Data sources. Remote sensing image data: We used LANDSAT. (spatial resolution 30m), LISS III (spatial resolution. 23.5m) and ASTER data (spatial resolution 15m) for. 2008 in the study ... spectral remote sensing data is essential for analyzing land use and ...

  8. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  9. A remote sensing evaluation for agronomic land use mapping in ...

    African Journals Online (AJOL)

    The principal objective of this study is to identify, demarcate and map agricultural land use categories of Tehran province on basis of remote sensing survey technique. In this research, Landsat ETM images of July 2006 were used to expose the use of remote sensing technique in order to produce current land use map of the ...

  10. Deriving harmonised forest information in Europe using remote sensing methods

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria

    the need for harmonised forest information can be satisfied using remote sensing methods. In conclusion, the study showed that it is possible to derive harmonised forest information of high spatial detail in Europe with remote sensing. The study also highlighted the imperative provision of accuracy...

  11. Recent developments in remote sensing for coastal and marine applications

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2017-01-01

    Full Text Available at the coast is that it is in a permanent state of change. Remote sensing, whether from orbiting (space-borne) or air-borne platforms, can greatly assist in the task of monitoring coastal environments. In particular, remote sensing enables simultaneous or near...

  12. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  13. The potential of remote sensing technology for the detection and ...

    African Journals Online (AJOL)

    Internationally, a number of studies have successfully used remote sensing technology to monitor forest damage. Remote sensing technology allows for instantaneous methods of assessments whereby ground assessments would be impossible on a regular basis. This paper provides an overview of how advances in ...

  14. Remote sensing and change detection in rangelands | Palmer ...

    African Journals Online (AJOL)

    To most land managers, remote sensing has remained illusive, seldom allowing the manager to use it to its full potential. In contrast, the policy maker, backed by GIS laboratories and remote sensing specialists, is confronted by plausible scenarios of degradation and transformation. After intervening, he is seldom active long ...

  15. Indirect remote sensing of a cryptic forest understorey invasive species

    NARCIS (Netherlands)

    Joshi, C.; Leeuw, de J.; Andel, van J.; Skidmore, A.K.; Lekhak, H.D.; Duren, van I.C.; Norbu, N.

    2006-01-01

    Remote sensing has successfully been applied to map the distribution of canopy dominating invasive species. Many invaders however, do not dominate the canopy, and remote sensing has so far not been applied to map such species. In this study, an indirect method was used to map the seed production of

  16. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  17. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Science.gov (United States)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  18. Integrated Gis-remote sensing processing applied to vegetation ...

    African Journals Online (AJOL)

    This study examines the special advantage offered by GIS-Remote Sensing processing to survey of vegetation, a renewable natural resource in Ibadan, South-Western, Nigeria with a view to eliciting support for sound environmental policy in the future. A remotely sensed digital image of SPOT by its linear enhancement on ...

  19. Estimation of areal soil water content through microwave remote sensing

    NARCIS (Netherlands)

    Oevelen, van P.J.

    2000-01-01

    In this thesis the use of microwave remote sensing to estimate soil water content is investigated. A general framework is described which is applicable to both passive and active microwave remote sensing of soil water content. The various steps necessary to estimate areal soil water content

  20. Intelligent Systems: Terrestrial Observation and Prediction Using Remote Sensing Data

    Science.gov (United States)

    Coughlan, Joseph C.

    2005-01-01

    NASA has made science and technology investments to better utilize its large space-borne remote sensing data holdings of the Earth. With the launch of Terra, NASA created a data-rich environment where the challenge is to fully utilize the data collected from EOS however, despite unprecedented amounts of observed data, there is a need for increasing the frequency, resolution, and diversity of observations. Current terrestrial models that use remote sensing data were constructed in a relatively data and compute limited era and do not take full advantage of on-line learning methods and assimilation techniques that can exploit these data. NASA has invested in visualization, data mining and knowledge discovery methods which have facilitated data exploitation, but these methods are insufficient for improving Earth science models that have extensive background knowledge nor do these methods refine understanding of complex processes. Investing in interdisciplinary teams that include computational scientists can lead to new models and systems for online operation and analysis of data that can autonomously improve in prediction skill over time.

  1. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects

    Science.gov (United States)

    Robert E. Kennedy; Philip A. Townsend; John E. Gross; Warren B. Cohen; Paul Bolstad; Wang Y. Q.; Phyllis Adams

    2009-01-01

    Remote sensing provides a broad view of landscapes and can be consistent through time, making it an important tool for monitoring and managing protected areas. An impediment to broader use of remote sensing science for monitoring has been the need for resource managers to understand the specialized capabilities of an ever-expanding array of image sources and analysis...

  2. APPLICATION OF REMOTE SENSING IN MANGROVE STUDIES : A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Zainul Hidayah

    2010-04-01

    Full Text Available In order to assess the extent of the decline of mangrove ecosystems, extensive mapping and monitoring programs are needed. To monitor the change in large-scale coverage of mangrove areas over certain periods of time, remote sensing technology offers many advantages compared to conventional field monitoring. The main benefit of using remote sensing is related to its speed and continuity in collecting space images of a broad area of the Earth’s surface. With the specific application on mangrove studies, remote sensing enables spatial and spectral information to be collected from the mangrove forests environment mostly located in inaccessible areas, where ground measurements become difficult and expensive. This review of the literature emphasizes the application of remote sensing in change detection and mapping of mangrove ecosystems. Key words : mangroves, remote sensing, mapping, field monitoring, continuity 

  3. Laser Remote Sensing: FY07 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.; Mendoza, Albert

    2007-09-30

    Standoff detection and characterization of chemical plumes using Frequency Modulated Differential Absorption Lidar (FM-DIAL) is a promising technique for the detection of nuclear proliferation activities. For the last several years Pacific Northwest National Laboratory (PNNL) has been developing an FM-DIAL based remote sensing system as part of PNNL's Infrared Sensors project within NA-22's Enabling Technologies portfolio. In FY06 the remote sensing effort became a stand-alone project within the Plutonium Production portfolio with the primary goal of transitioning technology from the laboratory to the user community. Current systems remotely detect trace chemicals in the atmosphere over path lengths of hundreds of meters for monostatic operation (without a retro-reflector target) and up to ten kilometers for bistatic operation (with a retro-reflector target). The FM-DIAL sensor is sensitive and highly selective for chemicals with narrow-band absorption features on the order of 1-2 cm-1; as a result, the FM-DIAL sensors are best suited to simple di-atomic or tri-atomic molecules and other molecules with unusually narrow absorption features. A broadband sensor is currently being developed. It is designed to detect chemicals with spectral features on the order of several 10s of wavenumbers wide. This will expand the applicability of this technology to the detection of more complicated molecules. Our efforts in FY07 focused on the detection of chemicals associated with the PUREX process. The highest value performance measure for FY07, namely the demonstration of the Broadband Laser Spectrometer (BLS) during chemical release experiments, was successfully achieved in June, July and August of this year. Significant advancements have been made with each of the other tasks as well. A short-wave infrared version of the miniature FM-DIAL (FM-Mini) instrument was successfully demonstrated during field tests in June. During FY07 another version of the FM-Mini was

  4. Remote Chemical Sensing Using Quantum Cascade Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Schultz, John F.

    2003-01-30

    Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.

  5. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    Science.gov (United States)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  6. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  7. In Situ/Remote Sensing Integration to Assess Forest Health—A Review

    Directory of Open Access Journals (Sweden)

    Marion Pause

    2016-06-01

    Full Text Available For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted.

  8. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Science.gov (United States)

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  9. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.; Norgaard, Madeline J.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing with geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.

  10. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.; Norgaard, Madeline J.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and belowground ecosystems. However, the integration of biophysical and soil remote sensing with geospatial information about the e nvironment holds great promise for mapping SMC biogeography. Additional research needs invol ve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.

  11. Operational programs in forest management and priority in the utilization of remote sensing

    Science.gov (United States)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  12. TOGA - A GNSS Reflections Instrument for Remote Sensing Using Beamforming

    Science.gov (United States)

    Esterhuizen, S.; Meehan, T. K.; Robison, D.

    2009-01-01

    Remotely sensing the Earth's surface using GNSS signals as bi-static radar sources is one of the most challenging applications for radiometric instrument design. As part of NASA's Instrument Incubator Program, our group at JPL has built a prototype instrument, TOGA (Time-shifted, Orthometric, GNSS Array), to address a variety of GNSS science needs. Observing GNSS reflections is major focus of the design/development effort. The TOGA design features a steerable beam antenna array which can form a high-gain antenna pattern in multiple directions simultaneously. Multiple FPGAs provide flexible digital signal processing logic to process both GPS and Galileo reflections. A Linux OS based science processor serves as experiment scheduler and data post-processor. This paper outlines the TOGA design approach as well as preliminary results of reflection data collected from test flights over the Pacific ocean. This reflections data demonstrates observation of the GPS L1/L2C/L5 signals.

  13. [Advances in the research on hyperspectral remote sensing in biodiversity and conservation].

    Science.gov (United States)

    He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai

    2012-06-01

    With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.

  14. Remote Oxygen Sensing by Ionospheric Excitation (ROSIE

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2009-05-01

    Full Text Available The principal optical observable emission resulting from ionospheric modification (IM experiments is the atomic oxygen red line at 630 nm, originating from the O(1D–3P transition. Because the O(1D atom has a long radiative lifetime, it is sensitive to collisional relaxation and an observed decay faster than the radiative rate can be attributed to collisions with atmospheric species. In contrast to the common practice of ignoring O-atoms in interpreting such observations in the past, recent experimental studies on the relaxation of O(1D by O(3P have revealed the dominant role of oxygen atoms in controlling the lifetime of O(1D at altitudes relevant to IM experiments. Using the most up-to-date rate coefficients for collisional relaxation of O(1D by O, N2, and O2, it is now possible to analyze the red line decays observed in IM experiments and thus probe the local ionospheric composition. In this manner, we can demonstrate an approach to remotely detect O-atoms at the altitudes relevant to IM experiments, which we call remote oxygen sensing by ionospheric excitation (ROSIE. The results can be compared with atmospheric models and used to study the temporal, seasonal, altitude and spatial variation of ionospheric O-atom density in the vicinity of heating facilities. We discuss the relevance to atmospheric observations and ionospheric heating experiments and report an analysis of representative IM data.

  15. IMAGE QUATY ASSESSMENT FOR VHR REMOTE SENSING IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Z. Li

    2016-06-01

    Full Text Available The data from remote sensing images are widely used for characterizing land use and land cover at present. With the increasing availability of very high resolution (VHR remote sensing images, the remote sensing image classification becomes more and more important for information extraction. The VHR remote sensing images are rich in details, but high within-class variance as well as low between-class variance make the classification of ground cover a difficult task. What’s more, some related studies show that the quality of VHR remote sensing images also has a great influence on the ability of the automatic image classification. Therefore, the research that how to select the appropriate VHR remote sensing images to meet the application of classification is of great significance. In this context, the factors of VHR remote sensing image classification ability are discussed and some indices are selected for describing the image quality and the image classification ability objectively. Then, we explore the relationship of the indices of image quality and image classification ability under a specific classification framework. The results of the experiments show that these image quality indices are not effective for indicating the image classification ability directly. However, according to the image quality metrics, we can still propose some suggestion for the application of classification.

  16. Remote Sensing Terminology in a Global and Knowledge-Based World

    Science.gov (United States)

    Kancheva, Rumiana

    The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy

  17. A practical CO2 flux remote sensing technique

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike

    2017-04-01

    An accurate quantification of CO2 flux from both natural and anthropogenic sources is of great interest in various areas of the Earth, environmental and atmospheric sciences. As emitted excess CO2 quickly dilutes into the 400 ppm ambient CO2 concentration and degassing often occurs diffusively, measuring CO2 fluxes is challenging. Therefore, fluxes are usually derived from grids of in-situ measurements, which are labour intensive measurements. Other than a safe measurement distance, remote sensing offers quick, spatially integrated and thus a more thorough measurement of gas fluxes. Active remote sensing combines these merits with operation independent of sunlight or clear sky conditions. Due to their weight and size, active remote sensing platforms for CO2, such as LIDAR, cannot easily be applied in the field or transported overseas. Moreover, their complexity requires a rather lengthy setup procedure to be undertaken by skilled personal. To meet the need for a rugged, practical CO2 remote sensing technique to scan volcanic plumes, we have developed the CO2 LIDAR. It measures 1-D column densities of CO2 with sufficient sensitivity to reveal the contribution of magmatic CO2. The CO2 LIDAR has been mounted inside a small aircraft and used to measure atmospheric column CO2 concentrations between the aircraft and the ground. It was further employed on the ground, measuring CO2 emissions from mud volcanism. During the measurement campaign the CO2 LIDAR demonstrated reliability, portability, quick set-up time (10 to 15 min) and platform independence. This new technique opens the possibility of rapid, comprehensive surveys of point source, open-vent CO2 emissions, as well as emissions from more diffuse sources such as lakes and fumarole fields. Currently, within the proof-of-concept ERC project CarbSens, a further reduction in size, weight and operational complexity is underway with the goal to commercialize the platform. Areas of potential applications include fugitive

  18. A Review of Oil Spill Remote Sensing.

    Science.gov (United States)

    Fingas, Merv; Brown, Carl E

    2017-12-30

    The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.

  19. Assessment of Watershed Drought Using Remote Sensing

    Science.gov (United States)

    Chataut, S.; Piechota, T.

    2005-12-01

    This paper focuses on drought assessment of the Upper Colorado River Basin (UCRB) using remote sensing. Lee's Ferry discharge data for Colorado river in the UCRB and the various Palmer Drought Indices (PDI) such as Palmer Hydrological Drought Indices (PHDI), Palmer Drought Severity Index (PDSI), and Palmer Z Index (ZINDX) for the five climatic divisions of the UCRB for last 100 years will be analyzed to find out the best climatic division in the UCRB for carrying out the further analysis between the Normalized Difference Vegetation Index (NDVI) obtained from 5 km resolution Advanced Very High Radiometric Radar (AVHRR) data and the various PDI. The multivariate statistical technique called rotated principal component analysis will be carried out in the time series of the NDVI data in order to avoid multicollinearity and to extract the component that significantly explains the variance in the dataset. The corresponding significant principal scores will be correlated with the PDI to derive relationship between the NDVI and PDI. Preliminary analysis has shown that there is significant correlation between the NDVI and the various PDI, which implies that NDVI could be used as an important data source to detect and monitor the drought condition in the UCRB.

  20. Anomaly Detection from Hyperspectral Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Qiandong Guo

    2016-12-01

    Full Text Available Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data covering the post-attack World Trade Center (WTC and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed–Xiaoli detector (RXD, the blocked adaptive computation efficient outlier nominator (BACON, the random selection based anomaly detector (RSAD, the weighted-RXD (W-RXD, and the probabilistic anomaly detector (PAD are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD.

  1. Far Ultraviolet Remote Sensing: Challenges and Opportunities

    Science.gov (United States)

    Paxton, L. J.

    2004-12-01

    The far ultraviolet is commonly taken to be that spectral range from 115 nm to 185 nm. This definition reflects the practical nature and origin of the measurement technique. The short wavelength cut-off is defined by the transmittance cut-off of window materials (about 115 nm). The long wavelength end of the region is defined by the desire to exclude the orders-of-magnitude brighter signal at around 195 nm, which, happily, coincides with the fall-off in CsI photocathode efficiency at around 185 nm. The FUV allows us to probe the atmosphere down to about 130 km (as low as 80 km in H Lyman alpha). In this paper I will discuss what we have learned by using a novel imager, GUVI, on TIMED to study the ionosphere-thermosphere (IT) system, how we see the IT coupled to geospace and the solar input, and what we can learn from a future FUV system. In particular, I want to stress that FUV remote sensing is an important COMPONENT of a complete system for exploring the connections between the Sun, geospace, and the IT system. To that end, I will briefly discuss how those data need to be integrated into a virtual observatory that will enable new investigations into the near-Earth environment.

  2. Zombie algorithms: a timesaving remote sensing systems engineering tool

    Science.gov (United States)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  3. Open Access Data in Polar and Cryospheric Remote Sensing

    Directory of Open Access Journals (Sweden)

    Allen Pope

    2014-07-01

    Full Text Available This paper aims to introduce the main types and sources of remotely sensed data that are freely available and have cryospheric applications. We describe aerial and satellite photography, satellite-borne visible, near-infrared and thermal infrared sensors, synthetic aperture radar, passive microwave imagers and active microwave scatterometers. We consider the availability and practical utility of archival data, dating back in some cases to the 1920s for aerial photography and the 1960s for satellite imagery, the data that are being collected today and the prospects for future data collection; in all cases, with a focus on data that are openly accessible. Derived data products are increasingly available, and we give examples of such products of particular value in polar and cryospheric research. We also discuss the availability and applicability of free and, where possible, open-source software tools for reading and processing remotely sensed data. The paper concludes with a discussion of open data access within polar and cryospheric sciences, considering trends in data discoverability, access, sharing and use.

  4. Remote Sensing Tropical Coral Reefs: The View from Above.

    Science.gov (United States)

    Purkis, Sam J

    2018-01-03

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  5. Atmospheric Radiative Transfer for Satellite Remote Sensing: Validation and Uncertainty

    Science.gov (United States)

    Marshak, Alexander

    2007-01-01

    My presentation will begin with the discussion of the Intercomparison of three-dimensional (3D) Radiative Codes (13RC) project that has been started in 1997. I will highlight the question of how well the atmospheric science community can solve the 3D radiative transfer equation. Initially I3RC was focused only on algorithm intercomparison; now it has acquired a broader identity providing new insights and creating new community resources for 3D radiative transfer calculations. Then I will switch to satellite remote sensing. Almost all radiative transfer calculations for satellite remote sensing are one-dimensional (1D) assuming (i) no variability inside a satellite pixel and (ii) no radiative interactions between pixels. The assumptions behind the 1D approach will be checked using cloud and aerosol data measured by the MODerate Resolution Imaging Spectroradiometer (MODIS) on board of two NASA satellites TERRA and AQUA. In the discussion, I will use both analysis technique: statistical analysis over large areas and time intervals, and single scene analysis to validate how well the 1D radiative transfer equation describes radiative regime in cloudy atmospheres.

  6. Quantitative interpretation of Great Lakes remote sensing data

    Science.gov (United States)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  7. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  8. Archaeological, Geophysical, and Remote Sensing Investigations of the 1910 Wright Brothers' Hangar, Wright-Patterson Air Force Base, Ohio

    National Research Council Canada - National Science Library

    Babson, David

    1998-01-01

    .... S. Army Corps of Engineers Waterways Experiment Station (CEWES), and airborne remote sensing studies conducted by the Earth Observation Research Office of the Science and Technology Laboratory at the John C...

  9. Remote sensing application for delineating coastal vegetation - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.

    Remote sensing data has been used for mapping coastal vegetation along the Goa Coast, India. The study envisages the use of digital image processing techniques for delineating geomorphic features and associated vegetation, including mangrove, along...

  10. A Web-Based Airborne Remote Sensing Telemetry Server Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  11. Model-based remote sensing algorithms for particulate organic ...

    Indian Academy of Sciences (India)

    based remote sensing algorithms for particulate organic carbon (POC) in the Northeastern Gulf of Mexico. Young Baek Son Wilford D Gardner Alexey V Mishonov Mary Jo Richardson. Volume 118 Issue 1 February 2009 pp 1-10 ...

  12. Blending the most fundamental Remote-Sensing principles (RS ...

    African Journals Online (AJOL)

    Blending the most fundamental Remote-Sensing principles (RS) with the most functional spatial knowledge (GIS) with the objective of the determination of the accident-prone palms and points (case study: Tehran-Hamadan Highway on Saveh Superhighway)

  13. Decision tree approach for classification of remotely sensed satellite ...

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source ...

  14. Use of remote sensing and molecular markers to detect toxic ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    2) to correlate remote sensing imagery with ground level monitoring for the detection and characterization of the development of cyanobacterial hyperscum crust over a period of 6 months; (3) to use a combination of molecular ...

  15. Reflectance quantities in optical remote sensing - definitions and case studies

    NARCIS (Netherlands)

    Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.

    2006-01-01

    The remote sensing community puts major efforts into calibration and validation of sensors, measurements, and derived products to quantify and reduce uncertainties. Given recent advances in instrument design, radiometric calibration, atmospheric correction, algorithm development, product

  16. Remote Sensing Applications to Water Quality Management in Florida

    Science.gov (United States)

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  17. Remote sensing of multimodal transportation systems : research brief.

    Science.gov (United States)

    2016-09-01

    Remote Sensing of Multimodal Transportation Systems : Rapid condition monitoring and performance evaluations of the vast and vulnerable transportation infrastructure has been elusive. The framework and models developed in this research will enable th...

  18. Microwave Remote Sensing: Needs and Requirements Concerning Technology

    DEFF Research Database (Denmark)

    Skou, Niels

    2003-01-01

    Spaceborne microwave remote sensing instruments, like the imaging radiometer and the synthetic aperture radar, are over timed faced with two partly conflicting requirements: performance expectations (resolutions, sensitivity, coverage) steadily increase with resource allocations (weight, power...

  19. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  20. [Biogeocenosis thermodynamics based on remote sensing].

    Science.gov (United States)

    Sandlerskiĭ, R B; Puzachenko, Iu G

    2009-01-01

    Methodological issues in the studies of spatial and temporal variations in the energy conversion are shown to be solvable on the basis of information thermodynamic approach using the remote sensing techniques. A possibility of evaluation of the main components of the energy balance of a biogeocenosis, considered as an open thermodynamic system maintaining its structure through the conversion of solar energy, is demonstrated by analysis of the southern taiga landscapes of Valdai Hills. Analysis of the ratio of thermodynamic variables for the different types of biogeocenosis shows that the energy flow absorbed by the surface, is being redistributed among balance components by various mechanisms, and it depends on the structure of the redistribution system expressed by the non-equilibrium. Non-equilibrium of the solar energy transformation is determined before all by the energy costs in the synthesis of biological products, and has a little impact on exergy of the solar radiation, i.e., the cost of energy to evaporation. Invariance of energy conversion by landscape as a whole and generalized types of biogeocenoses are estimated. The ability of the taiga landscapes to maintain energy absorbed invariants, exergy and temperatures forms a naturally determined series similar to a succession trend: meadows--falls--deciduous forests--coniferous forest. Anthropogenic objects are shown to possess the weakest autoregulation ability. Raised bogs keep high heating of the territory and preserve precipitation in the subsurface runoff, in contrast to the forests carrying out moisture transport from the soil into the atmosphere. The bog's ability to maintain the level of biological production is comparable to that of coniferous forests. The role of forest vegetation in climate regulation is estimated; it is shown that the absence of forests increases the surface temperature by 4 degrees C.

  1. Remote Sensing and Quantization of Analog Sensors

    Science.gov (United States)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  2. Using remote sensing to predict earthquake impacts

    Science.gov (United States)

    Fylaktos, Asimakis; Yfantidou, Anastasia

    2017-09-01

    Natural hazards like earthquakes can result to enormous property damage, and human casualties in mountainous areas. Italy has always been exposed to numerous earthquakes, mostly concentrated in central and southern regions. Last year, two seismic events near Norcia (central Italy) have occurred, which led to substantial loss of life and extensive damage to properties, infrastructure and cultural heritage. This research utilizes remote sensing products and GIS software, to provide a database of information. We used both SAR images of Sentinel 1A and optical imagery of Landsat 8 to examine the differences of topography with the aid of the multi temporal monitoring technique. This technique suits for the observation of any surface deformation. This database is a cluster of information regarding the consequences of the earthquakes in groups, such as property and infrastructure damage, regional rifts, cultivation loss, landslides and surface deformations amongst others, all mapped on GIS software. Relevant organizations can implement these data in order to calculate the financial impact of these types of earthquakes. In the future, we can enrich this database including more regions and enhance the variety of its applications. For instance, we could predict the future impacts of any type of earthquake in several areas, and design a preliminarily model of emergency for immediate evacuation and quick recovery response. It is important to know how the surface moves, in particular geographical regions like Italy, Cyprus and Greece, where earthquakes are so frequent. We are not able to predict earthquakes, but using data from this research, we may assess the damage that could be caused in the future.

  3. CSIR-NLC mobile LIDAR for atmosphere remote sensing

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-07-01

    Full Text Available Africa. 2Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa. 3Tshwane University of Technology, Pretoria 0001, South Africa. ABSTRACT A mobile LIDAR (LIght Detection... obtained using the CSIR-NLC mobile LIDAR in a 23 hour field campaign at the University of Pretoria. Index Terms— Atmospheric measurements, Remote sensing, Aerosols, Air pollution, Meteorology 1. INTRODUCTION Remote sensing is a technique...

  4. [Use of Remote Sensing for Crop and Soil Analysis

    Science.gov (United States)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  5. Fast Registration of Remotely Sensed Images for Earthquake Damage Estimation

    Directory of Open Access Journals (Sweden)

    Kasaei Shohreh

    2006-01-01

    Full Text Available Analysis of the multispectral remotely sensed images of the areas destroyed by an earthquake is proved to be a helpful tool for destruction assessments. The performance of such methods is highly dependant on the preprocess that registers the two shots before and after an event. In this paper, we propose a new fast and reliable change detection method for remotely sensed images and analyze its performance. The experimental results show the efficiency of the proposed algorithm.

  6. Development of a Near Ground Remote Sensing System

    OpenAIRE

    Yanchao Zhang; Yuzhao Xiao; Zaichun Zhuang; Liping Zhou; Fei Liu; Yong He

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) have shown great potential in agriculture and are increasingly being developed for agricultural use. There are still a lot of experiments that need to be done to improve their performance and explore new uses, but experiments using UAVs are limited by many conditions like weather and location and the time it takes to prepare for a flight. To promote UAV remote sensing, a near ground remote sensing platform was developed. This platform consists of three major pa...

  7. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    Science.gov (United States)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  8. Practice in 35-mm air remote sensing and aerophotogrammetry

    Science.gov (United States)

    Jiang, Yuezu; Wang, Yangsheng; Du, Chuan

    1998-08-01

    With the development of light or super light aircraft that is used as the airborne platform for 35 mm air remote sensing, the updating of cameras and the improvement of sensitive films, an increasingly complete foundation has been laid for 35 mm air remote sensing. Practices show that this technology combined with analytical plotter produced satisfactory precision, achieving a major breakthrough in photogrammetry. It can also be used for large-scale topographic mapping in an engineering area.

  9. Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion

    OpenAIRE

    Anu Swatantran; Ralph Dubayah; Scott Goetz; Michelle Hofton; Betts, Matthew G; Mindy Sun; Marc Simard; Richard Holmes

    2012-01-01

    BACKGROUND: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting mult...

  10. Laser remote sensing of water, soil, and vegetation

    Science.gov (United States)

    Voliak, Konstantin I.; Bunkin, A. F.

    2000-02-01

    The data on laboratory and field test of the versatile lidar based on a pulsed Nd:YAG laser for ecological monitoring of water bodies, ground vegetation, and soil are presented. The lidar was designed at the Wave Research of Russian Academy of Sciences. We report on the result of some experiments of 1997 and 1998, performed in Brazil. In particular, simultaneous measurement of soil, ground vegetation, and seawater fluorescence exited by the third laser harmonic at 355 nm has demonstrated the main spectral features of these objects. The new procedure of spectral processing gives us an opportunity to compare the vertical profiles of organic content in soil different Brazilian regions. The study has also shown the florescence characteristics of seawater samples kept inside a sealed box at fixed temperature to change dramatically during about two hours, which indicates the importance of water remote sensing in situ in comparison to the conventional microbiological analysis in vivo.

  11. Remote sensing of global croplands for food security

    Science.gov (United States)

    Thenkabail, Prasad S.; Biradar, Chandrashekhar M.; Turral, Hugh; Lyon, John G.

    2009-01-01

    Increases in populations have created an increasing demand for food crops while increases in demand for biofuels have created an increase in demand for fuel crops. What has not increased is the amount of croplands and their productivity. These and many other factors such as decreasing water resources in a changing climate have created a crisis like situation in global food security. Decision makers in these situations need accurate information based on science. Remote Sensing of Global Croplands for Food Security provides a comprehensive knowledge base in use of satellite sensor-based maps and statistics that can be used to develop strategies for croplands (irrigated and rainfed) and their water use for food security.

  12. Microwave Remote Sensing and the Cold Land Processes Field Experiment

    Science.gov (United States)

    Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process

  13. Remote sensing monitoring the spatio-temporal changes of ...

    Indian Academy of Sciences (India)

    Xiaoming Cao

    2017-06-16

    Jun 16, 2017 ... the spatio-temporal variations of drought based on the temperature vegetation dryness index (TVDI). The results indicated that ... MODIS remote sensing data would be an effective method to monitor regional drought, moreover, it would be more ...... in high biomass ecosystems; Remote Sens. Environ. 115.

  14. Supervised remote sensing image classification: An example of a ...

    African Journals Online (AJOL)

    Software like ILWIS and GRASS GIS can be employed for remote sensing image processing and geographic information systems applications. The modules of the ... In this research, the support vector machine binary classifier/algorithm based on a one-against-one approach implemented in MATLAB is applied to remote ...

  15. ICUD-0499 Low-cost remotely sensed environmental monitoring stations

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    This study contributes with extensive research of applying low-cost remotely sensed monitoring stations to an urban environment. Design requirements are scrutinized, including applications for remote data access, hardware design, and monitoring network design. A network of 9 monitoring stations m...

  16. Geospatial Education and Research Development: A Laboratory for Remote Sensing and Environmental Analysis (LaRSEA)

    Science.gov (United States)

    Allen, Thomas R., Jr.

    1999-01-01

    Old Dominion University has claimed the title "University of the 21st Century," with a bold emphasis on technology innovation and application. In keeping with this claim, the proposed work has implemented a new laboratory equipped for remote sensing as well as curriculum and research innovations afforded for present and future faculty and students. The developments summarized within this report would not have been possible without the support of the NASA grant and significant cost-sharing of several units within the University. The grant effectively spring-boarded the university into major improvements in its approach to remote sensing and geospatial information technologies. The university has now committed to licensing Erdas Imagine software for the laboratory, a campus-wide ESRI geographic information system (GIS) products license, and several smaller software and hardware utilities available to faculty and students through the laboratory. Campus beneficiaries of this grant have included faculty from departments including Ocean, Earth. and Atmospheric Sciences, Political Science and Geography, Ecological Sciences, Environmental Health, and Civil and Environmental Engineering. High student interest is evidenced in students in geology, geography, ecology, urban studies, and planning. Three new courses have been added to the catalog and offered this year. Cross-cutting curriculum changes are in place with growing enrollments in remote sensing, GIS, and a new co-taught seminar in applied coastal remote sensing. The enabling grant has also allowed project participants to attract external funding for research grants, thereby providing additional funds beyond the planned matching, maintenance and growth of software and hardware, and stipends for student assistants. Two undergraduate assistants and two graduate assistants have been employed by full-time assistantships as a result. A new certificate is offered to students completing an interdisciplinary course sequence

  17. Multiple Classifier System for Remote Sensing Image Classification: A Review

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2012-04-01

    Full Text Available Over the last two decades, multiple classifier system (MCS or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird, hyperspectral image (OMISII and multi-spectral image (Landsat ETM+.Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community.

  18. What is a picture worth? A history of remote sensing

    Science.gov (United States)

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  19. Remote sensing image compression assessment based on multilevel distortions

    Science.gov (United States)

    Jiang, Hongxu; Yang, Kai; Liu, Tingshan; Zhang, Yongfei

    2014-01-01

    The measurement of visual quality is of fundamental importance to remote sensing image compression, especially for image quality assessment and compression algorithm optimization. We exploit the distortion features of optical remote sensing image compression and propose a full-reference image quality metric based on multilevel distortions (MLD), which assesses image quality by calculating distortions of three levels (such as pixel-level, contexture-level, and content-level) between original images and compressed images. Based on this, a multiscale MLD (MMLD) algorithm is designed and it outperforms the other current methods in our testing. In order to validate the performance of our algorithm, a special remote sensing image compression distortion (RICD) database is constructed, involving 250 remote sensing images compressed with different algorithms and various distortions. Experimental results on RICD and Laboratory for Image and Video Engineering databases show that the proposed MMLD algorithm has better consistency with subjective perception values than current state-of-the-art methods in remote sensing image compression assessment, and the objective assessment results can show the distortion features and visual quality of compressed image well. It is suitable to be the evaluation criteria for optical remote sensing image compression.

  20. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    Science.gov (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  1. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li

    2014-11-01

    Full Text Available Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1 scale issue; (2 transportability issue; (3 data availability; and (4 uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  2. Grapevine Remote Sensing Analysis of Phylloxera Early Stress (GRAPES): Remote Sensing Analysis Summary

    Science.gov (United States)

    Lobitz, Brad; Johnson, Lee; Hlavka, Chris; Armstrong, Roy; Bell, Cindy

    1997-01-01

    High spatial resolution airborne imagery was acquired in California's Napa Valley in 1993 and 1994 as part of the Grapevine Remote sensing Analysis of Phylloxera Early Stress (GRAPES) project. Investigators from NASA, the University of California, the California State University, and Robert Mondavi Winery examined the application of airborne digital imaging technology to vineyard management, with emphasis on detecting the phylloxera infestation in California vineyards. Because the root louse causes vine stress that leads to grapevine death in three to five years, the infested areas must be replanted with resistant rootstock. Early detection of infestation and changing cultural practices can compensate for vine damage. Vineyard managers need improved information to decide where and when to replant fields or sections of fields to minimize crop financial losses. Annual relative changes in leaf area due to phylloxera infestation were determined by using information obtained from computing Normalized Difference Vegetation Index (NDVI) images. Two other methods of monitoring vineyards through imagery were also investigated: optical sensing of the Red Edge Inflection Point (REIP), and thermal sensing. These did not convey the stress patterns as well as the NDVI imagery and require specialized sensor configurations. NDVI-derived products are recommended for monitoring phylloxera infestations.

  3. Unmanned aerial systems for photogrammetry and remote sensing: A review

    OpenAIRE

    Colomina, Ismael; Molina, Pere

    2014-01-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last...

  4. Quarterly literature review of the remote sensing of natural resources

    Science.gov (United States)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.

  5. Remote Sensing: The View from Above. Know Your Environment.

    Science.gov (United States)

    Academy of Natural Sciences, Philadelphia, PA.

    This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…

  6. Remote Sensing Place : Satellite Images as Visual Spatial Imaginaries

    NARCIS (Netherlands)

    Shim, David

    How do people come to know the world? How do they get a sense of place and space? Arguably, one of the ways in which they do this is through the practice of remote sensing, among which satellite imagery is one of the most widespread and potent tools of engaging, representing and constructing space.

  7. Remote sensing place : Satellite images as visual spatial imaginaries

    NARCIS (Netherlands)

    Shim, David

    How do people come to know the world? How do they get a sense of place and space? Arguably, one of the ways in which they do this is through the practice of remote sensing, among which satellite imagery is one of the most widespread and potent tools of engaging, representing and constructing space.

  8. System and method for evaluating wind flow fields using remote sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  9. Incorporating Applied Undergraduate Research in Senior to Graduate Level Remote Sensing Courses

    Science.gov (United States)

    Henley, Richard B.; Unger, Daniel R.; Kulhavy, David L.; Hung, I-Kuai

    2016-01-01

    An Arthur Temple College of Forestry and Agriculture (ATCOFA) senior spatial science undergraduate student engaged in a multi-course undergraduate research project to expand his expertise in remote sensing and assess the applied instruction methodology employed within ATCOFA. The project consisted of performing a change detection…

  10. The Function of Remote Sensing in Support of Environmental Policy

    Directory of Open Access Journals (Sweden)

    Maarten Smies

    2010-07-01

    Full Text Available Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1, there is apparently little academic interest in the societal contribution of environmental remote sensing. This is because none of the more than 300 peer reviewed papers described actual policy support. This paper describes and discusses the potential, actual support, and limitations of earth observation with respect to supporting the various stages of environmental policy development. Examples are given of the use of remote sensing in problem identification and policy formulation, policy implementation, and policy control and evaluation. While initially, remote sensing contributed primarily to the identification of environmental problems and policy implementation, more recently, interest expanded to applications in policy control and evaluation. The paper concludes that the potential of earth observation to control and evaluate, and thus assess the efficiency and effectiveness of policy, offers the possibility of strengthening governance.

  11. Remote Sensing Time Series Product Tool

    Science.gov (United States)

    Prados, D.; Ryan, R. E.; Ross, K. W.

    2006-12-01

    experienced programmers to bypass the GUI and to create more user-specific output products, such as comparison time plots or images. This type of time series analysis tool for remotely sensed imagery could be the basis of a large-area vegetation surveillance system. The TSPT has been used to generate NDVI time series over growing seasons in California and Argentina and for hurricane events, such as Hurricane Katrina.

  12. Use of remote sensing for land use policy formulation

    Science.gov (United States)

    1981-01-01

    Progress in studies for using remotely sensed data for assessing crop stress and in crop estimation is reported. The estimation of acreage of small forested areas in the southern lower peninsula of Michigan using LANDSAT data is evaluated. Damage to small grains caused by the cereal leaf beetle was assessed through remote sensing. The remote detection of X-disease of peach and cherry trees and of fire blight of pear and apple trees was investigated. The reliability of improving on standard methods of crop production estimation was demonstrated. Areas of virus infestation in vineyards and blueberry fields in western and southwestern Michigan were identified. The installation and systems integration of a microcomputer system for processing and making available remotely sensed data are described.

  13. Accessing and Utilizing Remote Sensing Data for Vectorborne Infectious Diseases Surveillance and Modeling

    Science.gov (United States)

    Kiang, Richard; Adimi, Farida; Kempler, Steven

    2008-01-01

    Background: The transmission of vectorborne infectious diseases is often influenced by environmental, meteorological and climatic parameters, because the vector life cycle depends on these factors. For example, the geophysical parameters relevant to malaria transmission include precipitation, surface temperature, humidity, elevation, and vegetation type. Because these parameters are routinely measured by satellites, remote sensing is an important technological tool for predicting, preventing, and containing a number of vectorborne infectious diseases, such as malaria, dengue, West Nile virus, etc. Methods: A variety of NASA remote sensing data can be used for modeling vectorborne infectious disease transmission. We will discuss both the well known and less known remote sensing data, including Landsat, AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), TRMM (Tropical Rainfall Measuring Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), EO-1 (Earth Observing One) ALI (Advanced Land Imager), and SIESIP (Seasonal to Interannual Earth Science Information Partner) dataset. Giovanni is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center. It provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. After remote sensing data is obtained, a variety of techniques, including generalized linear models and artificial intelligence oriented methods, t 3 can be used to model the dependency of disease transmission on these parameters. Results: The processes of accessing, visualizing and utilizing precipitation data using Giovanni, and acquiring other data at additional websites are illustrated. Malaria incidence time series for some parts of Thailand and Indonesia are used to demonstrate that malaria incidences are reasonably well modeled with generalized linear models and artificial

  14. A Prototype Network for Remote Sensing Validation in China

    Directory of Open Access Journals (Sweden)

    Mingguo Ma

    2015-04-01

    Full Text Available Validation is an essential and important step before the application of remote sensing products. This paper introduces a prototype of the validation network for remote sensing products in China (VRPC. The VRPC aims to improve remote sensing products at a regional scale in China. These improvements will enhance the applicability of the key remote sensing products in understanding and interpretation of typical land surface processes in China. The framework of the VRPC is introduced first, including its four basic components. Then, the basic selection principles of the observation sites are described, and the principles for the validation of the remote sensing products are established. The VRPC will be realized in stages. In the first stage, four stations that have improved remote sensing observation facilities have been incorporated according to the selection principles. Certain core observation sites have been constructed at these stations. Next the Heihe Station is introduced in detail as an example. The three levels of observation (the research base, pixel-scale validation sites, and regional coverage adopted by the Heihe Station are carefully explained. The pixel-scale validation sites with nested multi-scale observation systems in this station are the most unique feature, and these sites aim to solve some key scientific problems associated with remote sensing product validation (e.g., the scale effect and scale transformation. Multi-year of in situ measurements will ensure the high accuracy and inter-annual validity of the land products, which will provide dynamic regional monitoring and simulation capabilities in China. The observation sites of the VRPC are open, with the goal of increasing cooperation and exchange with global programs.

  15. Remote sensing strategies for global resource exploration and environmental management

    Science.gov (United States)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources

  16. Geological remote sensing signatures of terrestrial impact craters

    Science.gov (United States)

    Garvin, J. B.; Schnetzler, C.; Grieve, R. A. F.

    1988-01-01

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events.

  17. Research on Key Technology of Mining Remote Sensing Dynamic Monitoring Information System

    Science.gov (United States)

    Sun, J.; Xiang, H.

    2017-09-01

    Problems exist in remote sensing dynamic monitoring of mining are expounded, general idea of building remote sensing dynamic monitoring information system is presented, and timely release of service-oriented remote sensing monitoring results is established. Mobile device-based data verification subsystem is developed using mobile GIS, remote sensing dynamic monitoring information system of mining is constructed, and "timely release, fast handling and timely feedback" rapid response mechanism of remote sensing dynamic monitoring is implemented.

  18. Developing Integrated Remote Sensing and Geographical Information Sciences Procedures to Assess Impacts of Climate Variations on Spatio-Temporal Distribution of Mangroves

    Science.gov (United States)

    Qaisar, Maha

    2016-07-01

    Pakistan's periled treasures of mangroves require protection from devastating anthropogenic activities, which can only be achieved through the identification and management of this habitat. The primary objective of this study is to identify the potential habitat of mangroves along the coastline of Pakistan with the help of Remote Sensing (RS) and Geographical Information System (GIS) techniques. Once the mangroves were identified, species of mangroves need to be separated through Object Based Image Analysis (OBIA) which gave the area of mangroves and non mangroves sites. Later other parameters of Sea Surface Temperature, Sea Surface Salinity, chlorophyll-a along with altimetry data were used to assess the climatic variations on the spatio-temporal distribution of mangroves. Since mangroves provide economical, ecological, biological indication of Coastal Change or Sea Level Rise. Therefore, this provides a strong platform to assess the climatic variations which are posing negative impacts on the mangroves ecosystem. The results indicate that mangroves are present throughout along the coastline, proving that Pakistan is rich in these diverse ecosystems. Pakistan being at important geo strategic position can also benefit from its vast mangroves and other coastal resources such as coral reefs and fish varieties. Moreover, coastal zone management through involvement of the local community and establishment of Marine Protected Area (MPA) is the need of the hour to avoid deforestation of mangroves, which can prove to be deadly damaging for the fish populace since it provides habitats to various marine animals. However, the established relationship among SST, SSS, chlorophyll-a and altimetry data assisted to know the suitable sites for mangroves. But due to enhanced climatic impacts these relationships are distorted which has posed devastating effects on the growth and distribution of mangroves. Study area was Karachi Coast, Pakistan. The total area of Karachi is about 70

  19. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  20. The remote sensing of tropospheric composition from space

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John P. [Bremen Univ. (DE). Inst. fuer Umweltphysik (IUP); Platt, Ulrich [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik; Borrell, Peter (eds.) [P and PMB Consultants, Newcastle-under-Lyme (United Kingdom)

    2011-07-01

    The impact of anthropogenic activities on our atmospheric environment is of growing public concern and satellite-based techniques now provide an essential component of observational strategies on regional and global scales. The purpose of this book is to summarise the state of the art in the field in general, while describing both key techniques and findings in particular. It opens with an historical perspective of the field together with the basic principles of remote sensing from space. Three chapters follow on the techniques and on the solutions to the problems associated with the various spectral regions in which observations are made. The particular challenges posed by aerosols and clouds are covered in the next two chapters. Of special importance is the accuracy and reliability of remote sensing data and these issues are covered in a chapter on validation. The final section of the book is concerned with the exploitation of data, with chapters on observational aspects, which includes both individual and synergistic studies, and on the comparison of global and regional observations with chemical transport and climate models and the added value that the interaction brings to both. The book concludes with scientific needs and likely future developments in the field, and the necessary actions to be taken if we are to have the global observation system that the Earth needs in its present, deteriorating state. The appendices provide a comprehensive list of satellite instruments, global representations of some ancillary data such as fire counts and light pollution, a list of abbreviations and acronyms, and a set of colourful timelines indicating the satellite coverage of tropospheric composition in the foreseeable future. Altogether, this book will be a timely reference and overview for anyone working at the interface of environmental, atmospheric and space sciences. (orig.)

  1. New Directions in Land Remote Sensing Policy and International Cooperation

    Science.gov (United States)

    Stryker, Timothy

    2010-12-01

    Recent changes to land remote sensing satellite data policies in Brazil and the United States have led to the phenomenal growth in the delivery of land imagery to users worldwide. These new policies, which provide free and unrestricted access to land remote sensing data over a standard electronic interface, are expected to provide significant benefits to scientific and operational users, and open up new areas of Earth system science research and environmental monitoring. Freely-available data sets from the China-Brazil Earth Resources Satellites (CBERS), the U.S. Landsat satellites, and other satellite missions provide essential information for land surface monitoring, ecosystems management, disaster mitigation, and climate change research. These missions are making important contributions to the goals and objectives of regional and global terrestrial research and monitoring programs. These programs are in turn providing significant support to the goals and objectives of the United Nations Framework Convention on Climate Change (UN FCCC), the Global Earth Observation System of Systems (GEOSS), and the UN Reduction in Emissions from Deforestation and Degradation (REDD) program. These data policies are well-aligned with the "Data Democracy" initiative undertaken by the international Committee on Earth Observation Satellites (CEOS), through its current Chair, Brazil's National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais, or INPE), and its former chairs, South Africa's Council for Scientific and Industrial Research (CSIR) and Thailand's Geo Informatics and Space Technology Development Agency (GISTDA). Comparable policies for land imaging data are under consideration within Europe and Canada. Collectively, these initiatives have the potential to accelerate and improve international mission collaboration, and greatly enhance the access, use, and application of land surface imagery for environmental monitoring and societal adaption to changing

  2. Famine Early Warning Systems and Their Use of Satellite Remote Sensing Data

    Science.gov (United States)

    Brown, Molly E.; Essam, Timothy; Leonard, Kenneth

    2011-01-01

    Famine early warning organizations have experience that has much to contribute to efforts to incorporate climate and weather information into economic and political systems. Food security crises are now caused almost exclusively by problems of food access, not absolute food availability, but the role of monitoring agricultural production both locally and globally remains central. The price of food important to the understanding of food security in any region, but it needs to be understood in the context of local production. Thus remote sensing is still at the center of much food security analysis, along with an examination of markets, trade and economic policies during food security analyses. Technology including satellite remote sensing, earth science models, databases of food production and yield, and modem telecommunication systems contributed to improved food production information. Here we present an econometric approach focused on bringing together satellite remote sensing and market analysis into food security assessment in the context of early warning.

  3. Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data

    Directory of Open Access Journals (Sweden)

    Daniel A. Griffith

    2016-06-01

    Full Text Available Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon their statistical features of uncertainty through variance inflation, and the compounding of duplicate information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive and very strong, has been hindered by computational intensity associated with the massive number of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed. Recent advances in spatial statistical estimation theory support the extraction of information and the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial autocorrelation. This paper summarizes an effective methodological approach to achieve this end, illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive model is modeled with a beta-beta mixture approach and is further investigated with three different sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.

  4. [Analysis of related factors of slope plant hyperspectral remote sensing].

    Science.gov (United States)

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  5. Water column correction for coral reef studies by remote sensing.

    Science.gov (United States)

    Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton

    2014-09-11

    Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  6. Water Column Correction for Coral Reef Studies by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Maria Laura Zoffoli

    2014-09-01

    Full Text Available Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.

  7. Remote sensing education and Internet/World Wide Web technology

    Science.gov (United States)

    Griffith, J.A.; Egbert, S.L.

    2001-01-01

    Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.

  8. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  9. Polarization Remote Sensing Physical Mechanism, Key Methods and Application

    Science.gov (United States)

    Yang, B.; Wu, T.; Chen, W.; Li, Y.; Knjazihhin, J.; Asundi, A.; Yan, L.

    2017-09-01

    China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1) Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2) Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3) Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  10. [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].

    Science.gov (United States)

    Wang, Li-Wen; Wei, Ya-Xing

    2013-10-01

    Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.

  11. Linking climate change education through the integration of a kite-borne remote sensing system

    Directory of Open Access Journals (Sweden)

    Yichun Xie

    2014-09-01

    Full Text Available A majority of secondary science teachers are found to include the topic of climate change in their courses. However, teachers informally and sporadically discuss climate change and students rarely understand the underlying scientific concepts. The project team developed an innovative pedagogical approach, in which teachers and students learn climate change concepts by analyzing National Aeronautics and Space Administration (NASA global data collected through satellites and by imitating the NASA data collection process through NASA Airborne Earth Research Observation Kites And Tethered Systems (AEROKATS, a kite-borne remote sensing system. Besides AEROKATS, other major components of this system include a web-collection of NASA and remote sensing data and related educational resources, project-based learning for teacher professional development, teacher and student field trips, iOS devices, smart field data collector apps, portable weather stations, probeware, and a virtual teacher collaboratory supported with a GIS-enabled mapping portal. Three sets of research instruments, the NASA Long-Term Experience –Educator End of Event Survey, the Teacher End of Project Survey, and the pre-and-post-Investigating Climate Change and Remote Sensing (ICCARS project student exams, are adapted to study the pedagogical impacts of the NASA AEROKATS remote sensing system. These findings confirm that climate change education is more effective when both teachers and students actively participate in authentic scientific inquiry by collecting and analyzing remote sensing data, developing hypotheses, designing experiments, sharing findings, and discussing results.

  12. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  13. Geospatial Analysis and Remote Sensing from Airplanes and Satellites for Cultural Resources Management

    Science.gov (United States)

    Giardino, Marco J.; Haley, Bryan S.

    2005-01-01

    Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously

  14. Semantic structure tree with application to remote sensing image segmentation

    Science.gov (United States)

    Zhang, Xiangrong; Pan, Xian; Hou, Biao; Jiao, Licheng

    2010-10-01

    This paper presents a new method based on Semantic Structure Tree (SST) for remote sensing image segmentation, in which, the semantic image analysis is used to construct the SST of the image. The leaves of the SST represent the semantics of the image and serve as human semantic understanding of the image. The root of the tree is the whole image. The SST uses grammar rules to construct a hierarchy structure of the image and gives a complete high-level semantics contents description of the image. Experimental results show that the tree can give efficient description of the semantic content of the remote sensing image, and can be well used in remote sensing image segmentation.

  15. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  16. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland shows a clear layering. The observed layers from the radar data can be used as an in-situ validation...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  17. Scientific Programming Using Java: A Remote Sensing Example

    Science.gov (United States)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  18. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    Science.gov (United States)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  19. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  20. Autonomous Coral Reef Survey in Support of Remote Sensing

    Directory of Open Access Journals (Sweden)

    Steven G. Ackleson

    2017-10-01

    Full Text Available An autonomous surface vehicle instrumented with optical and acoustical sensors was deployed in Kane'ohe Bay, HI, U.S.A., to provide high-resolution, in situ observations of coral reef reflectance with minimal human presence. The data represented a wide range in bottom type, water depth, and illumination and supported more thorough investigations of remote sensing methods for identifying and mapping shallow reef features. The in situ data were used to compute spectral bottom reflectance and remote sensing reflectance, Rrs,λ, as a function of water depth and benthic features. The signals were used to distinguish between live coral and uncolonized sediment within the depth range of the measurements (2.5–5 m. In situRrs, λ were found to compare well with remotely sensed measurements from an imaging spectrometer, the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS, deployed on an aircraft at high altitude. Cloud cover and in situ sensor orientation were found to have minimal impact on in situRrs, λ, suggesting that valid reflectance data may be collected using autonomous surveys even when atmospheric conditions are not favorable for remote sensing operations. The use of reflectance in the red and near infrared portions of the spectrum, expressed as the red edge height, REHλ, was investigated for detecting live aquatic vegetative biomass, including coral symbionts and turf algae. The REHλ signal from live coral was detected in Kane'ohe Bay to a depth of approximately 4 m with in situ measurements. A remote sensing algorithm based on the REHλ signal was defined and applied to AVIRIS imagery of the entire bay and was found to reveal areas of shallow, dense coral and algal cover. The peak wavelength of REHλ decreased with increasing water depth, indicating that a more complete examination of the red edge signal may potentially yield a remote sensing approach to simultaneously estimate vegetative biomass and bathymetry in shallow water.

  1. Remote sensing of water and nitrogen stress in broccoli

    Science.gov (United States)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  2. The global troposphere - Biogeochemical cycles, chemistry, and remote sensing

    Science.gov (United States)

    Levine, J. S.; Allario, F.

    1982-01-01

    The chemical composition of the troposphere is controlled by various biogeochemical cycles that couple the atmosphere with the oceans, the solid earth and the biosphere, and by atmospheric photochemical/chemical reactions. These cycles and reactions are discussed and a number of key questions concerning tropospheric composition and chemistry for the carbon, nitrogen, oxygen and sulfur species are identified. Next, various remote sensing techniques and instruments capable of measuring and monitoring tropospheric species from the ground, aircraft and space to address some of these key questions are reviewed. Future thrusts in remote sensing of the troposphere are also considered.

  3. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  4. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  5. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    Science.gov (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  6. Remote Sensing in Archeology: Classifying Bajos of the Paten, Guatemala

    Science.gov (United States)

    Lowry, James D., Jr.

    1998-01-01

    This project focuses on the adaptation of human populations to their environments from prehistoric times to the present. It emphasizes interdisciplinary research to develop ecological baselines through the use of remotely sensed imagery, in situ field work, and the modeling of human population dynamics. It utilizes cultural and biological data from dated archaeological sites to assess the subsistence and settlement patterns of human societies in response to changing climatic and environmental conditions. The utilization of remote sensing techniques in archaeology is relatively new, exciting, and opens many doors.

  7. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  8. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    Science.gov (United States)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  9. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    Science.gov (United States)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  10. The use of remote sensing for landslide studies in Europe

    Science.gov (United States)

    Tofani, Veronica; Agostini, Andrea; Segoni, Samuele; Catani, Filippo; Casagli, Nicola

    2013-04-01

    The existing remote sensing techniques and their actual application in Europe for landslide detection, mapping and monitoring have been investigated. Data and information necessary to evaluate the subjects have been collected through a questionnaire, designed using a Google form, which was disseminated among end-users and researchers involved in landslide. In total, 49 answers were collected, coming from 17 European countries and from different kinds of institutions (universities, research institutes, public institutes and private companies). The spatial distribution of the answers is consistent with the distribution of landslides in Europe, the significance of landslides impact on society and the estimated landslide susceptibility in the various countries. The outcomes showed that landslide detection and mapping is mainly performed with aerial photos, often associated with optical and radar imagery. Concerning landslide monitoring, satellite radars prevail over the other types of data followed by aerial photos and meteorological sensors. Since subsampling the answers according to the different typology of institutions it is not noticeable a clear gap between research institutes and end users, it is possible to infer that in landslide remote sensing the research is advancing at the same pace as its day-to-day application. Apart from optical and radar imagery, other techniques are less widespread and some of them are not so well established, notwithstanding their performances are increasing at a fast rate as scientific and technological improvements are accomplished. Remote sensing is mainly used for detection/mapping and monitoring of slides, flows and lateral spreads with a preferably large scale of analysis (1:5000 - 1:25000). All the compilers integrate remote sensing data with other thematic data, mainly geological maps, landslide inventory maps and DTMs and derived maps. Concerning landslide monitoring, the results of the questionnaire stressed that the best

  11. Earth and atmospheric remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Curran, Robert J. (Editor); Smith, James A. (Editor); Watson, Ken (Editor)

    1991-01-01

    The papers presented in this volume address the technical aspects of earth and atmospheric remote sensing. Topics discussed include spaceborne and ground-based applications of laser remote sensing, advanced applications of lasers in remote sensing, laser ranging applications, data analysis and systems for biospheric processes, measurements for biospheric processes, and remote sensing for geology and geophysics. Papers are presented on a space-qualified laser transmitter for lidar applications, solid state lasers for planetary exploration, automated band selection for multispectral meteorological applications, aerospace remote sensing of natural water organics, and remote sensing of volcanic ash hazards to aircraft.

  12. Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data

    Directory of Open Access Journals (Sweden)

    Wei Tu

    2018-01-01

    Full Text Available Portraying urban functional zones provides useful insights into understanding complex urban systems and establishing rational urban planning. Although several studies have confirmed the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human sensing data like mobile phone positioning data to identify urban functional zones has still not been investigated. In this study, a new framework integrating remote sensing imagery and mobile phone positioning data was developed to analyze urban functional zones with landscape and human activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images. Human activities were extracted from massive mobile phone positioning data. By integrating them, urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological area were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China, as an example, the conducted experiment shows that the pattern of landscapes and human activities in the urban functional zones in Shenzhen does not totally conform to the classical urban theories. It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to act as bridges between the urban structure, human activity and urban planning policy, providing scientific support for rational urban planning and sustainable urban development policymaking.

  13. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    Science.gov (United States)

    Moe, Karen; Cappleare, Patrice; Frye, Stuart; LeMoigne, Jacqueline; Mandl, Daniel; Flatley, Thomas; Geist, Alessandro

    2015-01-01

    of ground infrastructure, resulting in improved efficiencies, accuracy and science benefits. Hence a remote sensing payload and its data may become one of millions of connected objects in the emerging Internet of Things (IoT), and be as easily accessible by a users smart phone as any other smart appliance.

  14. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    Science.gov (United States)

    Moe, K.; Cappelaere, P. G.; Frye, S. W.; LeMoigne, J.; Mandl, D.; Flatley, T.; Geist, A.

    2015-12-01

    control of ground infrastructure, resulting in improved efficiencies, accuracy and science benefits. Hence a remote sensing payload and its data may become one of millions of connected objects in the emerging Internet of Things (IoT), and be as easily accessible by a user's smart phone as any other smart appliance.

  15. Evaluating Remotely Sensed Phenological Metrics in a Dynamic Ecosystem Model

    Directory of Open Access Journals (Sweden)

    Hong Xu

    2014-05-01

    Full Text Available Vegetation phenology plays an important role in regulating processes of terrestrial ecosystems. Dynamic ecosystem models (DEMs require representation of phenology to simulate the exchange of matter and energy between the land and atmosphere. Location-specific parameterization with phenological observations can potentially improve the performance of phenological models embedded in DEMs. As ground-based phenological observations are limited, phenology derived from remote sensing can be used as an alternative to parameterize phenological models. It is important to evaluate to what extent remotely sensed phenological metrics are capturing the phenology observed on the ground. We evaluated six methods based on two vegetation indices (VIs (i.e., Normalized Difference Vegetation Index and Enhanced Vegetation Index for retrieving the phenology of temperate forest in the Agro-IBIS model. First, we compared the remotely sensed phenological metrics with observations at Harvard Forest and found that most of the methods have large biases regardless of the VI used. Only two methods for the leaf onset and one method for the leaf offset showed a moderate performance. When remotely sensed phenological metrics were used to parameterize phenological models, the bias is maintained, and errors propagate to predictions of gross primary productivity and net ecosystem production. Our results show that Agro-IBIS has different sensitivities to leaf onset and offset in terms of carbon assimilation, suggesting it might be better to examine the respective impact of leaf onset and offset rather than the overall impact of the growing season length.

  16. Review of commonly used remote sensing and ground-based ...

    African Journals Online (AJOL)

    This review provides an overview of the use of remote sensing data, the development of spectral reflectance indices for detecting plant water stress, and the usefulness of field measurements for ground-truthing purposes. Reliable measurements of plant water stress over large areas are often required for management ...

  17. A review of hyperspectral remote sensing and its application in ...

    African Journals Online (AJOL)

    2007-04-02

    Apr 2, 2007 ... tion, geology, oil and mineral exploration, geography and urban to non-urban localities (Landgrebe, 1999). The advantage of using satellite remote sensing systems was to .... or finer whereas airborne systems generally acquire higher spa- tial resolution data usually in the order of 5 m or finer. Contiguous ...

  18. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available This study used remotely-sensed phenology data derived from Advanced Very High Resolution Radiometer (AVHRR), in a fully supervised decision-tree classification based on the new biome map of South Africa. The objectives were: (i) to investigate...

  19. Estimating evapotranspiration using remote sensing and the Surface ...

    African Journals Online (AJOL)

    2013-07-08

    Jul 8, 2013 ... Remote sensing-based evapotranspiration (ET) algorithms developed in recent years are well suited for estimating evapo- transpiration and its spatial trends over time. In this paper the application of energy balance methods in South Africa is reviewed, showing that the Surface Energy Balance Algorithm ...

  20. Beyond NDVI: Extraction of biophysical variables from remote sensing imagery

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    2014-01-01

    This chapter provides an overview of methods used for the extraction of biophysical vegetation variables from remote sensing imagery. It starts with the description of the main spectral regions in the optical window of the electromagnetic spectrum based on typical spectral signatures of land

  1. Validation of remotely-sensed evapotranspiration and NDWI using ...

    African Journals Online (AJOL)

    Remote sensing techniques and products have recently been developed for the estimation of water balance variables. The objective of this study was to test the reliability of LandSAF (Land Surface Analyses Satellite Applications Facility) evapotranspiration (ET) and SPOT-Vegetation Normalised Difference Water Index ...

  2. Remote sensing for mapping wetland floods in Kafue Flats, Zambia ...

    African Journals Online (AJOL)

    Monitoring huge and dynamic floodplains such as the Kafue Flats in Zambia is critical to its sustainable use. This requires among other things accurate, past and current geo-referenced flood maps. The aim of this study was, therefore, to use remotely sensed data to generate flood maps for Kafue Flats. Flood maps were ...

  3. PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING

    Science.gov (United States)

    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...

  4. A NEW APPROACH TO PIP CROP MONITORING USING REMOTE SENSING

    Science.gov (United States)

    Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...

  5. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    Tadesse

    Satellite data of Indian remote-sensing satellite-P6, linear imaging self-scanning satellite-III. (IRS-P6, LISS-III) of .... areas on an image by identifying 'training' sites of known targets and then extrapolating those spectral ... scientists use satellite sensors that observe the distinct wavelengths of visible and near-infrared sunlight ...

  6. Forest inventory in the digital remote sensing age | | Southern ...

    African Journals Online (AJOL)

    Applications of sampling theory together with the technical developments in the field of remote sensing have opened new paths in forest inventory. This paper presents an overview of ongoing research in the field of automatic feature extraction and pattern recognition, which may provide options towards a fully automated ...

  7. Application of remote sensing technique in biomass change detection

    African Journals Online (AJOL)

    Application of remote sensing technique in biomass change detection: a case study of Bromley and Chihota, Zimbabwe. ... Ethiopian Journal of Environmental Studies and Management ... It is in the interest of environmental monitoring and sustainable development that biomass change be constantly determined. There are ...

  8. Monitoring of Gangotri glacier using remote sensing and ground ...

    Indian Academy of Sciences (India)

    In this study, Gangotri glacier was monitored using Indian Remote Sensing (IRS) LISS-III sensor data in combination with field collected snow-meteorological data for a period of seven years (2001–2008). An overall decreasing trend in the areal extent of seasonal snow cover area (SCA) was observed. An upward shifting ...

  9. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration ...

  10. GIS and Remote Sensing Based Assessment of Climate Change ...

    African Journals Online (AJOL)

    The effects of climate change are severe in developing countries like Ethiopia where agriculture is the dominant economy. The Remote Sensing and GIS based analysis of climate change impact is crucial to help Ethiopia benefit the most from the technology. This study aims at assessing changes and variations in climatic ...

  11. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems

    Science.gov (United States)

    Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz

    2014-01-01

    Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...

  12. Assessing the potential of remote sensing to discriminate invasive ...

    African Journals Online (AJOL)

    The usefulness of remote sensing to discriminate Seriphium plumosum from grass using a field spectrometer data was investigated in this study. Analysis focused on wavelength regions that showed potential of discriminating S. plumosum from grass which were determined from global pair spectral comparison between S.

  13. Remote sensing image segmentation based on Hadoop cloud platform

    Science.gov (United States)

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  14. UAV low-altitude remote sensing for precision weed management

    Science.gov (United States)

    Precision weed management, an application of precision agriculture, accounts for within-field variability of weed infestation and herbicide damage. Unmanned aerial vehicles (UAVs) provide a unique platform for remote sensing of field crops. They are more efficient and flexible than manned agricultur...

  15. Opportunities for Increasing Societal Value of Remote Sensing Data ...

    African Journals Online (AJOL)

    Despite the enormous capital required to fund remote sensing initiatives, governments worldwide are increasingly adopting earth observation technologies to optimise operational efficiency and societal benefit. However, the value of information derived from earth observation will increase substantially if augmented by ...

  16. Title: Gully Erosion Mapping Using Remote Sensing Techniques in ...

    African Journals Online (AJOL)

    NdifelaniM

    Abstract. Gullies are large and deep erosion depressions or channels normally occurring in drainage ways. They are spectrally heterogeneous, making them difficult to map using pixel based classification technique. The advancement of remote sensing in terms of Geographic Object Based Image Analysis. (GEOBIA) ...

  17. Remote Sensing of the Heliospheric Solar Wind using Radio ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 439–444. Remote Sensing of the Heliospheric Solar Wind using Radio. Astronomy Methods and Numerical Simulations. S. Ananthakrishnan, National Center for Radio Astrophysics, Tata Institute of. Fundamental Research, Pune, India. Abstract. The ground-based radio astronomy method of interplanetary.

  18. Using Remote Sensing and Geospatial Technology for Climate Change Education

    Science.gov (United States)

    Cox, Helen; Kelly, Kimberle; Yetter, Laura

    2014-01-01

    This curriculum and instruction paper describes initial implementation and evaluation of remote-sensing exercises designed to promote post-secondary climate literacy in the geosciences. Tutorials developed by the first author engaged students in the analysis of climate change data obtained from NASA satellite missions, including the LANDSAT,…

  19. Quantifying early-seral forest composition with remote sensing

    Science.gov (United States)

    Rayma A. Cooley; Peter T. Wolter; Brian R. Sturtevant

    2016-01-01

    Spatially explicit modeling of recovering forest structure within two years following wildfire disturbance has not been attempted, yet such knowledge is critical for determining successional pathways. We used remote sensing and field data, along with digital climate and terrain data, to model and map early-seral aspen structure and vegetation species richness following...

  20. Remote sensing monitoring the spatio-temporal changes of ...

    Indian Academy of Sciences (India)

    The results indicated that (1) the developed general Ts-NDVI space extracted from the AVHRR and MODIS remote sensing data would be an effective method to monitor regional drought, moreover, it would be more meaningful if the single time Ts-NDVI space showed an unstable condition; (2) the inverted TVDI was ...

  1. Remote sensing estimates of impervious surfaces for pluvial flood modelling

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin

    This paper investigates the accuracy of medium resolution (MR) satellite imagery in estimating impervious surfaces for European cities at the detail required for pluvial flood modelling. Using remote sensing techniques enables precise and systematic quantification of the influence of the past 30...

  2. Microwave interferometric radiometry in remote sensing: An invited historical review

    DEFF Research Database (Denmark)

    Martin-Neira, M.; LeVine, D. M.; Kerr, Y.

    2014-01-01

    The launch of the Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009 marked a milestone in remote sensing for it was the first time a radiometer capable of acquiring wide field of view images at every single snapshot, a unique feature of the synthetic aperture technique, made it t...

  3. Radar remote sensing data for applications in forestry

    NARCIS (Netherlands)

    Hoekman, D.H.

    1990-01-01

    This thesis describes an investigation into the applications of radar remote sensing in forestry. During a four-year period (1982-1985), an extensive set of radar data was acquired at four test sites with forest plantations in The Netherlands: the Roggebotzand and Horsterwold sites at

  4. Satellite remote sensing for water erosion assessment: A review

    NARCIS (Netherlands)

    Vrieling, A.

    2006-01-01

    Water erosion creates negative impacts on agricultural production, infrastructure, and water quality across the world. Regional-scale water erosion assessment is important, but limited by data availability and quality. Satellite remote sensing can contribute through providing spatial data to such

  5. Integrated ancillary and remote sensing data for land use ...

    African Journals Online (AJOL)

    Full Name

    empirical satellite remote sensing data are used to train and test the Gaussian mixture model algorithm. For the purpose of validating the ... The extraction of land cover information from satellite images using image classifiers has been the subject of intense .... of j under the condition that x is given. Reorganizing equation.

  6. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    Tadesse

    Remotely sensed data procured from satellite IRS-P6, LISS-III (2005) and collateral data generated from ... Land-use land-cover map of the study area was prepared from satellite data using supervised maximum .... analysis to determine coefficient for two coordinate transformation equations that is used to interrelate the ...

  7. Remote sensing of spectral signatures of tropospheric aerosols

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    (MOS) sensor on board the Indian Remote Sensing satellite (IRS-P3) launched by the Indian Space. Research Organization ... to 1010nm at high radiometric resolution, precision, and with narrow spectral bands have been available for a variety of land, .... Solution of radiative transfer equation. Chandrasekhar (1960).

  8. Supervised Gaussian mixture model based remote sensing image ...

    African Journals Online (AJOL)

    The objective of this research is to experiment the use of the parametric Gaussian mixture model multi-class classifier/algorithm for multi-class remote sensing task, implemented in MATLAB. MATLAB is a programming language just like C, C++, and python. In this research, a computer program implemented in MATLAB is ...

  9. Radar remote sensing to support tropical forest management

    NARCIS (Netherlands)

    Sanden, van der J.J.

    1997-01-01

    This text describes an investigation into the potential of radar remote sensing for application to tropical forest management. The information content of various radar images is compared and assessed with regard to the information requirements of parties involved in tropical forest

  10. Potential to monitor plant stress using remote sensing tools

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-01-01

    Full Text Available simple ratio indices were selected for mapping leaf water potential and leaf N for wet and dry season using RapidEye data. We conclude that remote sensing images can be applied for the long term vegetation monitoring for future biodiversity conservation...

  11. Natural resource inventory for urban planning utilizing remote sensing techniques

    Science.gov (United States)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  12. Remote sensing and human health: new sensors and new opportunities

    Science.gov (United States)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  13. Applying remote sensing & GIS for the mapping of basic education ...

    African Journals Online (AJOL)

    Applying remote sensing & GIS for the mapping of basic education schools in Adamawa state, Nigeria. ... boundaries are generated and stored, the attitude of stakeholders and the low computer literacy level of end-users are among the problems that should be addressed if digital mapping is to be fully embraced.

  14. A review of hyperspectral remote sensing and its application in ...

    African Journals Online (AJOL)

    Multispectral imagery has been used as the data source for water and land observational remote sensing from airborne and satellite systems since the early 1960s. Over the past two decades, advances in sensor technology have made it possible for the collection of several hundred spectral bands. This is commonly ...

  15. Monitoring Shoreline Change using Remote Sensing and GIS: A ...

    African Journals Online (AJOL)

    Key words: remote sensing, geographic information system (GIS), aerial photographs, shoreline change. Data from aerial photographs taken in 1981, 1992 and 2002 of the Kunduchi shoreline off the Dar es Salaam coast were integrated in a geographic information system (GIS) to determine shoreline change in that locality.

  16. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil fractions in dune ecosystems along the Kenyan coast. The accurate measurements of field samples are required by Kenya Wildlife for environmental monitoring. The current methodology for ...

  17. Natural Resource Monitoring of Rheum tanguticum by Multilevel Remote Sensing

    Directory of Open Access Journals (Sweden)

    Caixiang Xie

    2014-01-01

    Full Text Available Remote sensing has been extensively applied in agriculture for its objectiveness and promptness. However, few applications are available for monitoring natural medicinal plants. In the paper, a multilevel monitoring system, which includes satellite and aerial remote sensing, as well as ground investigation, was initially proposed to monitor natural Rheum tanguticum resource in Baihe Pasture, Zoige County, Sichuan Province. The amount of R. tanguticum from images is M=S*ρ and S is vegetation coverage obtained by satellite imaging, whereas ρ is R. tanguticum density obtained by low-altitude imaging. Only the R. tanguticum which coverages exceeded 1 m2 could be recognized from the remote sensing image because of the 0.1 m resolution of the remote sensing image (called effective resource at that moment, and the results of ground investigation represented the amounts of R. tanguticum resource in all sizes (called the future resource. The data in paper showed that the present available amount of R. tanguticum accounted for 4% to 5% of the total quantity. The quantity information and the population structure of R. tanguticum in the Baihe Pasture were initially confirmed by this system. It is feasible to monitor the quantitative distribution for natural medicinal plants with scattered distribution.

  18. Use of radar remote sensing in coastal zone management

    NARCIS (Netherlands)

    Hoogeboom, P.

    1995-01-01

    This paper, presented in poster form addresses the use of radar remote sensing in coastal zone management. Current and future applications in The Netherlands are highlighted with an outlook to technology and models that are involved. Applications include monitoring of the environment, oil spills,

  19. How Can Remote Sensing Be Used for Water Quality Monitoring?

    Science.gov (United States)

    “How can remote sensing address information needs and gaps in water quality and quantity management?” was a workshop convened during the biennial National Water Quality Monitoring Conference 2014, held in Cincinnati, OH. The focus of this workshop was to provide an o...

  20. Integrated ancillary and remote sensing data for land use ...

    African Journals Online (AJOL)

    Full Name

    python. In this research, a computer program implemented in MATLAB is used to experiment the. Gaussian mixture model algorithm. Using the supervised classification technique, both simulated and empirical satellite remote sensing data are used to train and test the Gaussian mixture model algorithm. For the purpose of ...

  1. Preface: Remote Sensing in Flood Monitoring and Management

    Directory of Open Access Journals (Sweden)

    Guy J-P. Schumann

    2015-12-01

    Full Text Available This Special Issue is a collection of papers studying the use of remote sensing data and methods for flood monitoring and management. The articles contributed span a wide range of topics and present novel processing techniques, review methods and discuss limitations, and also report on current capabilities and outline emerging needs. This preface provides a brief overview of the content. [...

  2. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  3. Remote Sensing and GIS Assessment of Flood Vulnerability of ...

    African Journals Online (AJOL)

    Lokoja, the Kogi state capital, is located at the Niger-Benue confluence. Hazards erupt when human activities in the confluence area are not properly managed. This article uses the Remote Sensing and GIS technique to assess the flood vulnerability zones of the town using the bench mark minimum and maximum water ...

  4. Remote sensing techniques aid in preattack planning for fire management

    Science.gov (United States)

    Lucy Anne Salazar

    1982-01-01

    Remote sensing techniques were investigated as an alternative for documenting selected prettack fire planning information. Locations of fuel models, road systems, and water sources were recorded by Landsat satellite imagery and aerial photography for a portion of the Six Rivers National Forest in northwestern California. The two fuel model groups used were from the...

  5. Analysis of urban decay from low resolution satellite remote sensing ...

    African Journals Online (AJOL)

    This paper analyzed the spatial and temporal pattern of urban decay in different parts of a traditional organic city through data extracted from satellite remote sensing images. It analyzed temporal differences in urban quality in the city using uniform parameter of urban blight measurement. It presented a classification scheme ...

  6. Validation of remotely-sensed evapotranspiration and NDWI using ...

    African Journals Online (AJOL)

    2014-02-28

    Feb 28, 2014 ... 5CETA, Facultad de Ciencias Físicas Exactas y Naturales, Av Filloy S/N, Campus Univ. Nacional de Córdoba, C.P 5000, Argentina. ABSTRACT. Quantification of the water cycle components is key to managing water resources. Remote sensing techniques and products have recently been developed for ...

  7. Estimating canopy water content using hyperspectral remote sensing data

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E.

    2010-01-01

    Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper, in particular the spectral information provided by the

  8. SPECCHIO: a spectrum database for remote sensing applications.

    NARCIS (Netherlands)

    Bojinski, S.; Schaepman, M.E.; Schlapfer, D.; Itten, K.I.

    2003-01-01

    Representative and comprehensive information on the spectral properties of natural and artificial materials on the Earth's surface is highly relevant in aircraft or satellite remote sensing, such as geological mapping, vegetation analysis, or water quality estimation. For this reason, the spectrum

  9. Mapping of Landscape Cover Using Remote Sensing and GIS in ...

    African Journals Online (AJOL)

    To address these concerns in Chandoli National Park its land-use landcover and forest crown density were mapped. The National Park is situated in Western Ghats, India lying within 170 04' 00" N to 170 19' 54" N and 730 40' 43" E to 730 53' 09" E. In the present study, Remote Sensing (RS) and Geographical Information ...

  10. The Solar Spectrum: An Atmospheric Remote Sensing Perspective

    Science.gov (United States)

    Toon, Geoff

    2013-01-01

    The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.

  11. The Impact of Drone Technology on Arctic Remote Sensing Data

    Science.gov (United States)

    Ruthkoski, T.; Greaves, H.

    2016-12-01

    Unmanned Aircraft Systems (UAS), more commonly known as drones, present unique remote sensing capabilities. In the harsh climate and remoteness of the Alaskan Arctic, UAS are expected to dramatically advance data collection methods. In August 2016, the Federal Aviation Administration (FAA) will begin to allow small UAS to be used in research activities beyond aviation technology development. However, the quality of remote sensing data collected by drone is still a matter of speculation and flight operations protocol is in early stages. This project presents preliminary evidence that consumer-grade optics mounted on small UAS are able to produce valid scientific data. Lessons learned from Toolik Field Station flight operations development in accordance with current FAA guidelines will also be discussed.

  12. Field calibration and validation of remote-sensing surveys

    Science.gov (United States)

    Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher

    2013-01-01

    The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.

  13. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  14. Mission Prospects: Remote Sensing of Coronal Suprathermal Seed Particles

    Science.gov (United States)

    Moses, J.; Laming, J. M.; Ko, Y.

    2013-12-01

    A new perspective on the feasibility of remote sensing detection and characterization of suprathermal particles serving the role of seeds in solar energetic particle (SEP) acceleration has recently been achieved via a combination of theoretical (Laming et al. 2013 http://dx.doi.org/10.1088/0004-637X/770/1/73) and experimental (Kohl et al. 2011 http://arxiv.org/abs/1104.3817, Moses et al. 2011 http://dx.doi.org/10.1117/12.896868) developments. The location, density and velocity distribution of these seed particles can now be established as science observing requirements for instrument specification. The most promising instrumentation for these observations is a UV coronal spectrometer. While the spectroscopic and spatial resolution of the one existing, spaceflight UV coronal spectrometer - SOHO UVCS - meets this specification; the effective area of this instrument is two orders of magnitude too low. Initial attempts at achieving increased effective area by directly scaling UVCS have not been successfully transitioned into flight programs (e.g. Gardner et al. 1999, 'Advanced Solar Coronal Explorer Mission (ASCE)', SPIE 3764, 134). With the recent development of instrument designs achieving the requisite increase in effective area within a volume envelope comparable to UVCS, the options for achieving a successful flight program have been increased. This work is supported in part by the Office of Naval Research/Naval Research Laboratory Basic Research (6.1) Program and NASA-DoD PR 12SHP12/2-0151.

  15. Compressed sensing in astronomy and remote sensing: a data fusion perspective

    Science.gov (United States)

    Bobin, J.; Starck, J.-L.

    2009-08-01

    Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression. In a previous study1 we gave new insights into the use of Compressed Sensing (CS) in the scope of astronomical data analysis. More specifically, we showed how CS is flexible enough to account for particular observational strategies such as raster scans. This kind of CS data fusion concept led to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments onboard the Herschel spacecraft which will launched in late 2008/early 2009. In this paper, we extend this work by showing how CS can be effectively used to jointly decode multiple observations at the level of map making. This allows us to directly estimate large areas of the sky from one or several raster scans. Beyond the particular but important Herschel example, we strongly believe that CS can be applied to a wider range of applications such as in earth science and remote sensing where dealing with multiple redundant observations is common place. Simple but illustrative examples are given that show the effectiveness of CS when decoding is made from multiple redundant observations.

  16. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    João Viana

    2017-11-01

    Full Text Available A mixed methods bibliometric analysis was performed to ascertain the characteristic of scientific literature published in a 10-year period (2007–2016 regarding the application of remote sensing data in human health. A search was performed on the Scopus database, followed by manual revision using synthesis studies’ techniques, requiring the authors to sort through more than 8000 medical concepts to create the query, and to manually select relevant papers from over 2000 documents. From the initial 2752 papers identified, 520 articles were selected for analysis, showing that the United States ranked first, with a total of 250 (48.1% of the total documents, followed by France and the United Kingdom, with 67 (12.9% of the total and 54 (10.4% of the total documents, respectively. When considering authorship, the top three authors were Vounatsou P (22 articles, Utzinger J (19 articles, and Vignolles C (13 articles. Regarding disease-specific keywords, malaria, dengue, and schistosomiasis were the most frequent keywords, occurring 142, 34, and 24 times, respectively. For some infectious diseases and other highly pathogenic or emerging infectious diseases, remote sensing has become a very powerful instrument. Also, several studies relate different environmental factors retrieved by remote sensing data with other diseases, such as asthma exacerbations. Health-related remote sensing publications are increasing and this paper highlights the importance of these related technologies toward better information and, ideally, better provision of healthcare. On the other hand, this paper provides an overall picture of the state of the research regarding the application of remote sensing data in human health and identifies the most active stakeholders e.g., authors and institutions in the field, informing possible new collaboration research groups.

  17. Tools and Services for Working with Multiple Land Remote Sensing Data Products

    Science.gov (United States)

    Krehbiel, C.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.; Maiersperger, T.

    2016-12-01

    The availability of increasingly large and diverse satellite remote sensing datasets provides both an opportunity and a challenge across broad Earth science research communities. On one hand, the extensive assortment of available data offer unprecedented opportunities to improve our understanding of Earth science and enable data use across a multitude of science disciplines. On the other hand, increasingly complex formats, data structures, and metadata can be an obstacle to data use for the broad user community that is interested in incorporating remote sensing Earth science data into their research. NASA's Land Processes Distributed Active Archive Center (LP DAAC) provides easy to use Python notebook tutorials for services such as accessing land remote sensing data from the LP DAAC Data Pool and interpreting data quality information from MODIS. We use examples to demonstrate the capabilities of the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), such as spatially and spectrally subsetting data, decoding valuable quality information, and exploring initial analysis results within the user interface. We also show data recipes for R and Python scripts that help users process ASTER L1T and ASTER Global Emissivity Datasets.

  18. Airborne remote sensing for geology and the environment; present and future

    Science.gov (United States)

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  19. Regularization destriping of remote sensing imagery

    Directory of Open Access Journals (Sweden)

    R. Basnayake

    2017-07-01

    Full Text Available We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS on the Suomi National Polar Partnership (NPP orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL hyperspectral Portable Remote Imaging Spectrometer (PRISM sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features while promoting data fidelity, and the functional is minimized by solving the Euler–Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  20. Regularization destriping of remote sensing imagery

    Science.gov (United States)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  1. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    Science.gov (United States)

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    , especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.

  2. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  3. Research investigations in and demonstrations of remote sensing applications to urban environmental problems

    Science.gov (United States)

    Hidalgo, J. U.

    1975-01-01

    The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.

  4. A remote sensing and GIS-enabled asset management system (RS-GAMS).

    Science.gov (United States)

    2013-04-01

    Under U.S. Department of Transportation (DOT) Commercial Remote Sensing and : Spatial Information (CRS&SI) Technology Initiative 2 of the Transportation : Infrastructure Construction and Condition Assessment, an intelligent Remote Sensing and : GIS-b...

  5. A remote sensing and GIS-enabled asset management system (RS-GAMS) : phase 2.

    Science.gov (United States)

    2014-04-01

    Under the U.S. Department of Transportation (DOT) Commercial Remote Sensing and Spatial : Information (CRS&SI) Technology Initiative 2 of the Transportation Infrastructure Construction : and Condition Assessment, an intelligent Remote Sensing and GIS...

  6. Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Omar A. Alcover Firpi

    2016-11-01

    Full Text Available A review of Google Earth Engine for archaeological remote sensing using satellite data. GEE is a freely accessible software option for processing remotely sensed data, part of the larger Google suite of products.

  7. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model

    DEFF Research Database (Denmark)

    Andersen, Jens; Dybkjær, Gorm Ibsen; Jensen, Karsten Høgh

    2002-01-01

    distributed hydrological modelling, remote sensing, precipitation, leaf area index, NOAA AVHRR, cold cloud duration......distributed hydrological modelling, remote sensing, precipitation, leaf area index, NOAA AVHRR, cold cloud duration...

  8. Perspectives in using a remotely sensed dryness index in distributed hydrological models at river basin scale

    DEFF Research Database (Denmark)

    Andersen, J.; Sandholt, Inge; Jensen, Karsten Høgh

    2002-01-01

    Remote Sensing, hydrological modelling, dryness index, surface temperature, vegetation index, Africa, Senegal, soil moisture......Remote Sensing, hydrological modelling, dryness index, surface temperature, vegetation index, Africa, Senegal, soil moisture...

  9. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    Science.gov (United States)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  10. The Use of Commercial Remote Sensing Predicting Helicopter Brownout Conditions

    Science.gov (United States)

    2007-09-01

    landing. 4 Figure 2. Soil caught in rotor downwash, start of brownout (from Brownout California soil resource lab) . A second issue ...Sensing in Predicting Helicopter Brownout Conditions. September 2006 (Top Secret). Tan, Kim H., First Edition, Enviromental Soil Science Marcel

  11. A Parallel Processing Algorithm for Remote Sensing Classification

    Science.gov (United States)

    Gualtieri, J. Anthony

    2005-01-01

    A current thread in parallel computation is the use of cluster computers created by networking a few to thousands of commodity general-purpose workstation-level commuters using the Linux operating system. For example on the Medusa cluster at NASA/GSFC, this provides for super computing performance, 130 G(sub flops) (Linpack Benchmark) at moderate cost, $370K. However, to be useful for scientific computing in the area of Earth science, issues of ease of programming, access to existing scientific libraries, and portability of existing code need to be considered. In this paper, I address these issues in the context of tools for rendering earth science remote sensing data into useful products. In particular, I focus on a problem that can be decomposed into a set of independent tasks, which on a serial computer would be performed sequentially, but with a cluster computer can be performed in parallel, giving an obvious speedup. To make the ideas concrete, I consider the problem of classifying hyperspectral imagery where some ground truth is available to train the classifier. In particular I will use the Support Vector Machine (SVM) approach as applied to hyperspectral imagery. The approach will be to introduce notions about parallel computation and then to restrict the development to the SVM problem. Pseudocode (an outline of the computation) will be described and then details specific to the implementation will be given. Then timing results will be reported to show what speedups are possible using parallel computation. The paper will close with a discussion of the results.

  12. Hyperspectral Remote Sensing and Ecological Modeling Research and Education at Mid America Remote Sensing Center (MARC): Field and Laboratory Enhancement

    Science.gov (United States)

    Cetin, Haluk

    1999-01-01

    The purpose of this project was to establish a new hyperspectral remote sensing laboratory at the Mid-America Remote sensing Center (MARC), dedicated to in situ and laboratory measurements of environmental samples and to the manipulation, analysis, and storage of remotely sensed data for environmental monitoring and research in ecological modeling using hyperspectral remote sensing at MARC, one of three research facilities of the Center of Reservoir Research at Murray State University (MSU), a Kentucky Commonwealth Center of Excellence. The equipment purchased, a FieldSpec FR portable spectroradiometer and peripherals, and ENVI hyperspectral data processing software, allowed MARC to provide hands-on experience, education, and training for the students of the Department of Geosciences in quantitative remote sensing using hyperspectral data, Geographic Information System (GIS), digital image processing (DIP), computer, geological and geophysical mapping; to provide field support to the researchers and students collecting in situ and laboratory measurements of environmental data; to create a spectral library of the cover types and to establish a World Wide Web server to provide the spectral library to other academic, state and Federal institutions. Much of the research will soon be published in scientific journals. A World Wide Web page has been created at the web site of MARC. Results of this project are grouped in two categories, education and research accomplishments. The Principal Investigator (PI) modified remote sensing and DIP courses to introduce students to ii situ field spectra and laboratory remote sensing studies for environmental monitoring in the region by using the new equipment in the courses. The PI collected in situ measurements using the spectroradiometer for the ER-2 mission to Puerto Rico project for the Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS). Currently MARC is mapping water quality in Kentucky Lake and

  13. Combining Remote Sensing with in situ Measurements for Riverine Characterization

    Science.gov (United States)

    Calantoni, J.; Palmsten, M. L.; Simeonov, J.; Dobson, D. W.; Zarske, K.; Puleo, J. A.; Holland, K. T.

    2014-12-01

    At the U.S. Naval Research Laboratory we are employing a wide variety of novel remote sensing techniques combined with traditional in situ sampling to characterize riverine hydrodynamics and morphodynamics. Surface currents were estimated from particle image velocimetry (PIV) using imagery from visible to infrared bands, from both fixed and airborne platforms. Terrestrial LIDAR has been used for subaerial mapping from a fixed platform. Additionally, LIDAR has been combined with hydrographic surveying (multibeam) in mobile scanning mode using a small boat. Hydrographic surveying (side scan) has also been performed using underwater autonomous vehicles. Surface drifters have been deployed in combination with a remotely operated, floating acoustic Doppler current profiler. Other fixed platform, in situ sensors, such as pencil beam and sector scanning sonars, acoustic Doppler velocimeters, and water level sensors have been deployed. We will present an overview of a variety of measurements from different rivers around the world focusing on validation examples of remotely sensed quantities with more traditional in situ measurements. Finally, we will discuss long-term goals to use remotely sensed data within an integrated environmental modeling framework.

  14. Advances in remote sensing of vegetation function and traits

    KAUST Repository

    Houborg, Rasmus

    2015-07-09

    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales. However, the translation of remote sensing signals into meaningful descriptors of vegetation function and traits is still associated with large uncertainties due to complex interactions between leaf, canopy, and atmospheric mediums, and significant challenges in the treatment of confounding factors in spectrum-trait relations. This editorial provides (1) a background on major advances in the remote sensing of vegetation, (2) a detailed timeline and description of relevant historical and planned satellite missions, and (3) an outline of remaining challenges, upcoming opportunities and key research objectives to be tackled. The introduction sets the stage for thirteen Special Issue papers here that focus on novel approaches for exploiting current and future advancements in remote sensor technologies. The described enhancements in spectral, spatial and temporal resolution and radiometric performance provide exciting opportunities to significantly advance the ability to accurately monitor and model the state and function of vegetation canopies at multiple scales on a timely basis.

  15. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    Science.gov (United States)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  16. Remote Sensing Open Access Journal: Leading a New Paradigm in Publishing

    Directory of Open Access Journals (Sweden)

    Prasad S. Thenkabail

    2011-12-01

    Full Text Available Remote Sensing is a pathfinding open access journal providing great opportunities for the growing community of remote sensing and geoscience scientists and practitioners to publish high quality research and practical papers expeditiously. It is a journal keeping up with the changing times we live in: open access, instant access, free access, and global access from whichever precise latitude and longitude you live in on the planet Earth or for that matter anywhere in space as long as we have internet access! So, open access journals are breaking many paradigms and setting forth new ones that will soon become the norm as we advance into the twenty-first century. The days of inordinate delays in publishing good science research articles are fast disappearing with open access journals. In remote sensing and geoscience, Remote Sensing (http://www.mdpi.com/journal/remotesensing/ is one of the pioneers, thanks to the vision of Dr. Shu-Kun Lin, the publisher. It started in the year 2009 with headquarters in Basel, Switzerland and a branch office in Beijing, China. It will soon complete Volume 3 by the end of 2011.

  17. Optically Remote Noncontact Heart Rates Sensing Technique

    Science.gov (United States)

    Thongkongoum, W.; Boonduang, S.; Limsuwan, P.

    2017-09-01

    Heart rate monitoring via optically remote noncontact technique was reported in this research. A green laser (5 mW, 532±10 nm) was projected onto the left carotid artery. The reflected laser light on the screen carried the deviation of the interference patterns. The interference patterns were recorded by the digital camera. The recorded videos of the interference patterns were frame by frame analysed by 2 standard digital image processing (DIP) techniques, block matching (BM) and optical flow (OF) techniques. The region of interest (ROI) pixels within the interference patterns were analysed for periodically changes of the interference patterns due to the heart pumping action. Both results of BM and OF techniques were compared with the reference medical heart rate monitoring device by which a contact measurement using pulse transit technique. The results obtained from BM technique was 74.67 bpm (beats per minute) and OF technique was 75.95 bpm. Those results when compared with the reference value of 75.43±1 bpm, the errors were found to be 1.01% and 0.69%, respectively.

  18. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    Science.gov (United States)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  19. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements

    OpenAIRE

    Pahlevan, Nima; Schott, John R.; Franz, Bryan A.; Zibordi, Giuseppe; Markham, Brian; Bailey, Sean; Schaaf, Crystal B.; Ondrusek, Michael; Greb, Steven; Strait, Christopher M.

    2017-01-01

    The Operational Land Imager (OLI) onboard Landsat 8 is generating high-quality aquatic science products, the most critical of which is the remote sensing reflectance (Rrs); defined as the ratio of water-leaving radiance to the total downwelling irradiance just above water. The quality of the Rrs products has not, however, been extensively assessed. This manuscript provides a comprehensive evaluation of Level 1B, i.e., top of atmosphere reflectance, and Rrs products available from OLI imagery ...

  20. Development of a Miniature L-band Radiometer for Education Outreach in Remote Sensing

    Science.gov (United States)

    King, Lyon B.

    2004-01-01

    Work performed under this grant developed a 1.4-Mhz radiometer for use in soil moisture remote sensing from space. The resulting instrument was integrated onto HuskySat. HuskySat is a 30-kg nanosatellite built under sponsorship from the Air Force Research Laboratory and NASA. This report consists of the interface document for the radiometer (the Science Payload of HuskySat) as detailed in the vehicle design report.

  1. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  2. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Science.gov (United States)

    2013-07-24

    ... of Private Remote-Sensing Space Systems AGENCY: National Oceanic and Atmospheric Administration (NOAA... of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of 1992 and with the national security and...

  3. 75 FR 32360 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Science.gov (United States)

    2010-06-08

    ... of Private Remote-Sensing Space Systems AGENCY: National Oceanic and Atmospheric Administration (NOAA... the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of 1992...

  4. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  5. RSComPro: An Open Communication Protocol for Remote Sensing Systems

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Trujillo, Juan-José

    The remote sensing protocol (RSComPro) is a communication protocol, which has been developed for controlling multiple remote sensing systems simultaneously through a UDP/IP and TPC/IP network. This protocol is meant to be open to the remote sensing community. The scope is the implementation of so...

  6. RSComPro: An Open Communication Protocol for Remote Sensing Systems

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Trujillo, Juan-José

    The remote sensing protocol (RSComPro) is a communication protocol which has been developed for controlling multiple remote sensing systems simultaneously through a UDP/IP and TPC/IP network. This protocol is meant to be open to the remote sensing community. The scope is the implementation of so-...

  7. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    Science.gov (United States)

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  8. Remote sensing applications to support sustainable natural resource management

    Science.gov (United States)

    Brewer, Charles Kenneth

    The original design of this dissertation project was relatively simple and straightforward. It was intended to produce one single, dynamic, classification and mapping system for existing vegetation that could rely on commonly available inventory and remote sensing data. This classification and mapping system was intended to provide the analytical basis for resource planning and management. The problems encountered during the first phase of the original design transformed this project into an extensive analysis of the nature of these problems and a decade-long remote sensing applications development endeavor. What evolved from this applications development process is a portion of what has become a "system of systems" to inform and support natural resource management. This dissertation presents the progression of work that sequentially developed a suite of remote sensing applications designed to address different aspects of the problems encountered with the original project. These remote sensing applications feature different resource issues, and resource components and are presented in separate chapters. Chapter one provides an introduction and description of the project evolution and chapter six provides a summary of the work and concluding discussion. Chapters two through five describe remote sensing applications that represent related, yet independent studies that are presented essentially as previously published. Chapter two evaluates different approaches to classifying and mapping fire severity using multi-temporal Landsat TM data. The recommended method currently represents the analytical basis for fire severity data produced by the USDA Forest Service and the US Geological Survey. Chapter three also uses multi-temporal Landsat data and compares quantitative, remote-sensing-based change detection methods for forest management related canopy change. The recommended method has been widely applied for a variety of forest health and disaster response applications

  9. Environmental monitoring: civilian applications of remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, W.; Lapp, M.; Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States); Phipps, G. [Sandia National Labs., Albuquerque, NM (United States)

    1996-11-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  10. NASA's Water Solutions Using Remote Sensing

    Science.gov (United States)

    Toll, David

    2012-01-01

    NASA Water Resources works within Earth sciences to leverage investments of space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities into water resources management decision support tools for the sustainable use of water. Earth science satellite observations and modelling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of the water cycle. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. The NASA Water Resources Program has the objective to provide NASA products to help deal with these issues with the goal for the sustainable use of water. The Water Resources program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use (includes evapotranspiration) and irrigation; 3) drought; 4) water quality; and 5) climate and water resources. NASA primarily works with national and international groups such as other US government agencies (NOAA, EPA, USGS, USAID) and various other groups to maximize the widest use of the water products. A summary of NASA's water activities linked to helping solve issues for developing countries will be highlighted.

  11. PREFACE: 35th International Symposium on Remote Sensing of Environment (ISRSE35)

    Science.gov (United States)

    2014-03-01

    35th International Symposium on Remote Sensing of Environment (ISRSE35) 22-26 April, 2013, Beijing, China The 35th International Symposium on Remote Sensing of Environment (ISRSE35) was successfully convened in Beijing, China, from April 22nd to 26th, 2013. This was the first event in the ISRSE series being held in China. The symposium was hosted by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, and co-organized by the International Center for Remote Sensing of Environment (ICRSE), the International Society for Photogrammetry and Remote Sensing (ISPRS), the Group on Earth Observations (GEO), the International Society for Digital Earth (ISDE) and the Chinese Academy of Sciences (CAS). The theme of the symposium was ''Earth Observation and Global Environmental Change''. Back in 1962, the first ISRSE was convened at the University of Michigan, USA. Over the past 50 years, Earth observation has advanced significantly, and remote sensing has become a mature technology for observing the Earth and monitoring global environmental change. At present, remote sensing has already entered an era of integrated, coordinated and sustainable global Earth observation and rapid development of spatial information services. It is very exciting to see that remote sensing technologies have become indispensable tools in numerous fields of Earth systems science, and are playing more and more important roles in areas such as land resources surveying and mapping, crop and forest monitoring, mineral exploration, urban development, ocean and coastlines resources surveillance, and in the monitoring and assessment of floods, droughts, forest fires, landslides and earthquakes. Thus, remote sensing has made great contributions to the socio-economic development of the world and it is anticipated that it will provide more powerful support in advancing the fields of Earth systems science and global change research. The 35th ISRSE was a platform for scientists and

  12. Remote Sensing of Volcanic ASH at the Met Office

    Directory of Open Access Journals (Sweden)

    Marenco F.

    2016-01-01

    Full Text Available The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA, has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK will be much better equipped to deal with such a crisis, should it happen in the future.

  13. Remote Sensing of Volcanic ASH at the Met Office

    Science.gov (United States)

    Marenco, F.; Kent, J.; Adam, M.; Buxmann, J.; Francis, P.; Haywood, J.

    2016-06-01

    The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA), has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK) will be much better equipped to deal with such a crisis, should it happen in the future.

  14. Vibration measurement on large structures by microwave remote sensing

    Science.gov (United States)

    Gentile, Carmelo

    2012-06-01

    Recent advances in radar techniques and systems have led to the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are addressed and discussed. Subsequently, the results of past and recent tests of full-scale structures are presented, in order to demonstrate the reliability and accuracy of microwave remote sensing; furthermore, the simplicity of use of the radar technology is exemplified in practical cases, where the access with conventional techniques is uneasy or even hazardous, such as the stay cables of cable-stayed bridges.

  15. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  16. Application of airborne remote sensing to the ancient Pompeii site

    Science.gov (United States)

    Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi

    1996-12-01

    The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.

  17. Genetic programming approach to extracting features from remotely sensed imagery

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, J. P. (James P.); Perkins, S. J. (Simon J.); Harvey, N. R. (Neal R.); Szymanski, J. J. (John J.); Brumby, Steven P.

    2001-01-01

    Multi-instrument data sets present an interesting challenge to feature extraction algorithm developers. Beyond the immediate problems of spatial co-registration, the remote sensing scientist must explore a complex algorithm space in which both spatial and spectral signatures may be required to identify a feature of interest. We describe a genetic programming/supervised classifier software system, called Genie, which evolves and combines spatio-spectral image processing tools for remotely sensed imagery. We describe our representation of candidate image processing pipelines, and discuss our set of primitive image operators. Our primary application has been in the field of geospatial feature extraction, including wildfire scars and general land-cover classes, using publicly available multi-spectral imagery (MSI) and hyper-spectral imagery (HSI). Here, we demonstrate our system on Landsat 7 Enhanced Thematic Mapper (ETM+) MSI. We exhibit an evolved pipeline, and discuss its operation and performance.

  18. Remote sensing and vegetation mapping in South Africa

    Directory of Open Access Journals (Sweden)

    M. L. Jarman

    1983-12-01

    Full Text Available The kinds of imagery, types of data and general relationships between scale of study, scale of mapping and scale of remote sensing products that are appropriate to the South African situation for visual and digital analysis are presented. The type of remote sensing product and processing, the type of field exercise appropriate to each, and the purpose of producing maps at each scale are discussed. Lack of repetitive imagery to date has not allowed for the full investigation of monitoring potential and careful planning at national level is needed to ensure availability of imagery for monitoring purposes. Map production processes which are rapid and accurate should be utilized. An integrated approach to vegetation mapping and surveying, which incorporates the best features of both visual and digital processing, is recommended for use.

  19. Remote sensing for rural development planning in Africa

    Science.gov (United States)

    Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.

    1983-01-01

    Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.

  20. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  1. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    Science.gov (United States)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  2. State resource management and role of remote sensing. [California

    Science.gov (United States)

    Johnson, H. D.

    1981-01-01

    Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.

  3. Remote sensing of CO2 leakage from geologic sequestration projects

    Science.gov (United States)

    Verkerke, Joshua L.; Williams, David J.; Thoma, Eben

    2014-09-01

    Monitoring for leak hazards is an important consideration in the deployment of carbon dioxide geologic sequestration. Failure to detect and correct leaks may invalidate any potential emissions benefits intended by such projects. Presented is a review of remote sensing methods primed to serve a central role in any monitoring program due to their minimally invasive nature and potential for large area coverage in a limited timeframe or in real-time as a continuous monitoring program. Methods investigated were divided into those capable of indirect detection of carbon dioxide leakage, such as monitoring for vegetative stress and ground surface deformation, and those that directly detect gaseous and atmospheric compounds, by means of such tools as Open-Path Fourier Transform Infrared or Tunable Diode Lasers. Both direct and indirect methods present viable means of detecting a leak event, though ultimately, a robust approach will incorporate multiple monitoring tools that may include both direct and indirect remote sensing methods.

  4. Application of remote sensing to estimating soil erosion potential

    Science.gov (United States)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  5. Observations in the solar spectrum interest for remote sensing purposes

    Science.gov (United States)

    Herman, M.; Vanderbilt, V.

    1994-01-01

    The polarization of the sunlight scattered by atmospheric aerosols or cloud droplets and reflected from ground surfaces or plant canopies may convey much information when used for remote sensing purposes. The typical polarization features of aerosols, cloud droplets, and plant canopies, as observed by ground based and airborne sensors, are investigated, looking especially for those invariant properties amenable to description by simple models when possible. The question of polarization measurements from space is addressed. The interest of such measurements for remote sensing purposes is investigated, and their feasibility is tested by using results obtained during field campaigns of the airborne POLDER instrument, a radiometer designed to measure the directionality and polarization of the sunlight scattered by the ground atmosphere system.

  6. The Increasing Use of Remote Sensing Data in Studying the Climatological Impacts on Public Health

    Science.gov (United States)

    Kempler, S.; Benedict, K. K.; Ceccato, P.; Golden, M.; Maxwell, S.; Morain, S.; Soebiyanto, R.; Tong, D.

    2011-12-01

    One of the most fortunate outcomes of the capture and transformation of remote sensing data into applied information is their usefulness and impacts to better understanding climatological impacts on public health. Today, with petabytes of remote sensing data providing global coverage of climatological parameters, public health research and policy decision makers have an unprecedented (and growing) data record that relates the effects of climatic parameters, such as rainfall, heat, soil moisture, etc. to incidences and spread of disease, as well as predictive modeling. In addition, tools and services that specifically serve public health researchers and respondents have grown in response to the needs of the these information users. This presentation provides: A perspective of the use of remote sensing data in public health research; NASA funded systems developed to facilitate specific public health decision and public support services, and: Insights on remote sensing data and information services that are available for public health studies and decision making. After providing a review of the use of remote sensing data, the following specific services will be discussed: - Rainfall, Vegetation and Water Bodies Monitoring for Malaria Surveillance - Heat Evaluation and Assessment - Multi-resolution Nested Dust Forecast - Socioeconomic Data and Application Center (SEDAC) Health Related Data and Services - Goddard Earth Sciences Data and Information Services Center (GES DISC) Health Related Data and Services The purpose of this presentation is to provide a (strong) flavor of the data and information services available to public health research and decision making, to invoke new ways of thinking about how public health work can be accomplished, and stimulate new ideas on how information services can be further utilized.

  7. Remote Sensing for Air Quality Applications: An Overview for the Eastern US

    Science.gov (United States)

    Dickerson, R. R.; Allen, D. J.; Arkinson, H.; Brent, L. C.; Canty, T. P.; Crawford, J. H.; Goldberg, D.; He, H.; Kondragunta, S.; Krotkov, N. A.; Marufu, T. L.; Pickering, K. E.; Salawitch, R. J.; Stehr, J. W.; Thompson, A. M.; Tzortziou, M.; Yang, K.

    2011-12-01

    Remotely sensed data have had limited influence on air pollution control strategy due to differences between the air quality and remote sensing communities both scientific and cultural. Space-based remote sensing of the troposphere works best for column content measurements, providing little information on altitude profiles, but State air quality managers are necessarily focused on maximal surface concentrations and forecasts based on numerical models such as CMAQ. Chemical transport models face a variety of challenges in predicting smog and haze. The variability in ozone concentrations and the spatial scale of smog events are often under-predicted. Emissions inventories and photochemical lifetimes remain uncertain. Prior measurements indicate that air near the Earths surface is often disconnected from air aloft even a few hundred meters above the ground. Substantial concentrations of O3, PM2.5, and their precursors (e.g., NOx, VOCs, and SO2) are however often found in the residual layer or the lower free troposphere, and these can mix down to the surface. Because the lifetimes of pollutants aloft are longer and wind speeds are higher, transport is more effective and pollutants emitted at one site can reduce air quality well downwind. Source regions can be in compliance with air quality standards while receptor regions are in violation. DISCOVER-AQ, an intensive field experiment conducted in July 2011, demonstrated that remotely sensed data can be of great value in assessing emissions inventories, as well as in evaluating simulations of boundary-layer dynamics, and chemical mechanisms. For example, CO makes an excellent tracer for mobile sources and vertical mixing; measured NO2 column content tests NOx emissions andremoval/sequestration mechanisms; AOD measurements help with evaluation of simulated secondary aerosol production. Remotely sensed data can thus play an increasingly useful role in policy-relevant science.

  8. Satellite remote sensing and multiscale geophysical investigations for geoarcheology: case studies from Perù

    Science.gov (United States)

    Capozzoli, Luigi; Delle Rose, Marco; Lasaponara, Rosa; Masini, Nicola; Rizzo, Enzo; Romano, Gerardo

    2013-04-01

    Satellite remote sensing as well as geophysical techniques proved to be successful tools for characterizing archaeological areas. In order to provide useful information on the presence of buried structures and the iteration between the aqueducts (Puquios) and the local hydrogeological setting, a multi-disciplinary and multi-scale approach based on the integration of satellite remote sensing and geophysical techniques was applied in different sites of Perù. Such investigations were carried out by the Italian mission ITACA, funded by the Italian Ministry Affairs and composed of researchers of two institutes of CNR (IMAA and IBAM), which provides a scientific support for archaeological research, since 2007. In detail, the archaeological Cahuachi site (0-400 AD) was investigated by geoelectrical and georadar prospecting, in order to highlight buried structures and platforms. The detection and characterization of perhispanic aqueducts and canals were the main aims in the Nasca drainage basin and in the Ceremonial Centre of Pachacamac (500-1400 ADF). Finally, the integration of all data acquired by the different remote sensing techniques allowed for spatially characterizing the archaeological features, thus providing important information for the planning of next archaeological excavations and glimpses into the use and management of water resources by prehispanic civilizations. References Lasaponara R., Masini N., Rizzo E., Orefici G. 2011. New discoveries in the Piramide Naranjada in Cahuachi (Peru) using satellite, Ground Probing Radar and magnetic investigations, Journal of Archaeological Science, 38(9), 2031-2039, doi:10.1016/j.jas.2010.12.010 Masini N., Lasaponara R., Rizzo E., Orefici G. 2012. Integrated Remote Sensing Approach in Cahuachi (Peru): Studies and Results of the ITACA Mission (2007-2010), In: Lasaponara R., Masini N. (Eds) 2012, Satellite Remote Sensing: a new tool for Archaeology, Springer, Verlag Berlin Heidelberg, ISBN 978-90-481-8800-0, doi: 10

  9. Remote Sensing of Volcanic ASH at the Met Office

    OpenAIRE

    Marenco F.; Kent J.; Adam M; Buxmann J.; Francis P.; Haywood J.

    2016-01-01

    The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA), has been set up to enable a rapid response,...

  10. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  11. Optical remote sensing of lakes: an overview on Lake Maggiore

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2013-08-01

    Full Text Available Optical satellite remote sensing represents an opportunity to integrate traditional methods for assessing water quality of lakes: strengths of remote sensing methods are the good spatial and temporal coverage, the possibility to monitor many lakes simultaneously and the reduced costs. In this work we present an overview of optical remote sensing techniques applied to lake water monitoring. Then, examples of applications focused on lake Maggiore, the second largest lake in Italy are discussed by presenting the temporal trend of chlorophyll-a (chl-a, suspended particulate matter (SPM, coloured dissolved organic matter (CDOM and the z90 signal depth (the latter indicating the water depth from which 90% of the reflected light comes from as estimated from the images acquired by the Medium Resolution Imaging Spectrometer (MERIS in the pelagic area of the lake from 2003 to 2011. Concerning the chl-a trend, the results are in agreement with the concentration values measured during field surveys, confirming the good status of lake Maggiore, although occasional events of water deterioration were observed (e.g., an average increase of chl-a concentration, with a decrease of transparency, as a consequence of an anomalous phytoplankton occurred in summer 2011. A series of MERIS-derived maps (summer period 2011 of the z90 signal are also analysed in order to show the spatial variability of lake waters, which on average were clearer in the central pelagic zones. We expect that the recently launched (e.g., Landsat-8 and the future satellite missions (e.g., Sentinel-3 carrying sensors with improved spectral and spatial resolution are going to lead to a larger use of remote sensing for the assessment and monitoring of water quality parameters, by also allowing further applications (e.g., classification of phytoplankton functional types to be developed.

  12. Electromagnetic Models for Remote Sensing of Layered Rough Media

    OpenAIRE

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2010-01-01

    A quantitative mathematical analysis of wave propagation in three-dimensional layered rough media is fundamental in understanding intriguing scattering phenomena in such structures, especially in the perspective of remote sensing applications. The results of the Boundary Perturbation Theory (BPT), as introduced by P. Imperatore and his coauthors in many different papers, essentially constitutes the content of this chapter in which the theoretical body of results is presented in organized mann...

  13. SEARCHING REMOTELY SENSED IMAGES FOR MEANINGFUL NESTED GESTALTEN

    OpenAIRE

    E. Michaelsen; Muench, D.; M. Arens

    2016-01-01

    Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data. We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained from an input image and the space of all possible Gestalt algebra terms is searched for well-asse...

  14. Searching remotely sensed images for meaningful nested gestalten

    OpenAIRE

    Michaelsen, Eckart; Münch, David; Arens, Michael

    2016-01-01

    Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data. We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained from an input image and the space of all possible Gestalt algebra terms is searched for well-assessed inst...

  15. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    Science.gov (United States)

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  16. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria

    Science.gov (United States)

    Stumpf, Rick P; Davis, Timothy W.; Wynne, Timothy T.; Graham, Jennifer; Loftin, Keith A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A.

    2016-01-01

    Using satellite imagery to quantify the spatial patterns of cyanobacterial toxins has several challenges. These challenges include the need for surrogate pigments – since cyanotoxins cannot be directly detected by remote sensing, the variability in the relationship between the pigments and cyanotoxins – especially microcystins (MC), and the lack of standardization of the various measurement methods. A dual-model strategy can provide an approach to address these challenges. One model uses either chlorophyll-a (Chl-a) or phycocyanin (PC) collected in situ as a surrogate to estimate the MC concentration. The other uses a remote sensing algorithm to estimate the concentration of the surrogate pigment. Where blooms are mixtures of cyanobacteria and eukaryotic algae, PC should be the preferred surrogate to Chl-a. Where cyanobacteria dominate, Chl-a is a better surrogate than PC for remote sensing. Phycocyanin is less sensitive to detection by optical remote sensing, it is less frequently measured, PC laboratory methods are still not standardized, and PC has greater intracellular variability. Either pigment should not be presumed to have a fixed relationship with MC for any water body. The MC-pigment relationship can be valid over weeks, but have considerable intra- and inter-annual variability due to changes in the amount of MC produced relative to cyanobacterial biomass. To detect pigments by satellite, three classes of algorithms (analytic, semi-analytic, and derivative) have been used. Analytical and semi-analytical algorithms are more sensitive but less robust than derivatives because they depend on accurate atmospheric correction; as a result derivatives are more commonly used. Derivatives can estimate Chl-a concentration, and research suggests they can detect and possibly quantify PC. Derivative algorithms, however, need to be standardized in order to evaluate the reproducibility of parameterizations between lakes. A strategy for producing useful estimates

  17. ISSSR Tutorial 1: Introduction to Spectral Remote Sensing

    Science.gov (United States)

    1994-08-01

    frequencies can undergo conversion to thermal energy, a process of broad-band absorption, as in solar heating of the earth, solar cookers , and...chruges resulting from changes in viewing angle. The upper Jet of aerial photographs (A) is of an urea on the south coast of Puerto Rico., showing watef...the existing concepts of multispectral remote sensing with reflected solar energy. This was the Airborne Imaging Spectrometer (AIS) developed by the Jet

  18. Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data

    Science.gov (United States)

    2011-01-01

    the relationship between reflec- tance and soil moisture where there is ground cover and ascertain the Normalized Difference Vegetation Index ( NDVI ...in those areas. This could establish a minimum NDVI for ground cover that would allow for estimation of soil moisture. Alternatively, they could...REPORT DATE (DD-MM-YYYY) 14-02-2012 2. REPORT TYPE Journal Article 3. DATES COVERED /From - To) 4. TITLE AND SUBTITLE Remote Sensing of Soil

  19. Mapping migratory bird prevalence using remote sensing data fusion.

    Directory of Open Access Journals (Sweden)

    Anu Swatantran

    Full Text Available BACKGROUND: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. METHODOLOGY AND PRINCIPAL FINDINGS: A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion" models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. CONCLUSION AND SIGNIFICANCE: Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.

  20. Parallelized LEDAPS method for Remote Sensing Preprocessing Based on MPI

    OpenAIRE

    CHEN, Xionghua; ZHANG, Xu; GUO, Ying; MA, Yong; YANG, Yanchen

    2013-01-01

    Based on Landsat image, the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) uses radiation change detection method for image processing and offers the surface reflectivity products for ecosystem carbon sequestration and carbon reserves. As the accumulation of massive remote sensing data, the traditional serial LEDAPS for image processing has a long cycle that make a lot of difficulties in practical application. For this problem, this paper design a high performance parallel ...

  1. Remote sensing for studying atmospheric aerosols in Malaysia

    Science.gov (United States)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  2. Bibliography of Remote Sensing Techniques Used in Wetland Research

    Science.gov (United States)

    1993-01-01

    Terchunian, A., Klemas, V., Segovio, A. et al. 1986. Mangrove mapping in Ecuador : the impact of shrimp pond construction. Environmental Manage- ment... Laguna de Bay through multispectral digital analysis of Landsat imageries. Proceedings of the twelfth international symposium on remote sensing of...Mangrove mapping in Ecuador : the impact of shrimp pond construction. Environmental Manage- ment. 10(3): 345-350. Weaver, M. G., Cross, G. H., and Mead, R

  3. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  4. Mapping migratory bird prevalence using remote sensing data fusion.

    Science.gov (United States)

    Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G; Sun, Mindy; Simard, Marc; Holmes, Richard

    2012-01-01

    Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.

  5. Development of lidar for remote sensing of the Martian surface

    Science.gov (United States)

    Smirnov, Leonid V.; Ryzhova, Victoria A.; Grishkanich, Alexander S.

    2017-05-01

    In the framework of the project, substances are indicators, which are the main constituents of a watery suspension found on the surface of Mars. According to the conducted researches, the spectral region for the study of indicator substances was chosen. The method of remote sensing of the surface and the lidar construction scheme are chosen. The results of the preliminary calculation of the system are presented.

  6. HAITI EARTHQUAKE DAMAGE ASSESSMENT: REVIEW OF THE REMOTE SENSING ROLE

    Directory of Open Access Journals (Sweden)

    P. Boccardo

    2012-08-01

    In a few days several map products based on the aforementioned analysis were delivered to end users: a review of the different types and purposes of this products will be provided and discussed. An assessment of the thematic accuracy of remotely sensed based products will be carried out on the basis of a review of the several available studies focused on this issue, including the main outcomes of a validation based on a comparison with in-situ data performed by the authors.

  7. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  8. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    Science.gov (United States)

    Stryker, Timothy

    In recent years, there has been much discussion about U.S. commercial remoteUnder the Act, the Secretary of Commerce sensing policies and how effectively theylicenses the operations of private U.S. address U.S. national security, foreignremote sensing satellite systems, in policy, commercial, and public interests.consultation with the Secretaries of Defense, This paper will provide an overview of U.S.State, and Interior. PDD-23 provided further commercial remote sensing laws,details concerning the operation of advanced regulations, and policies, and describe recentsystems, as well as criteria for the export of NOAA initiatives. It will also addressturnkey systems and/or components. In July related foreign practices, and the overall2000, pursuant to the authority delegated to legal context for trade and investment in thisit by the Secretary of Commerce, NOAA critical industry.iss ued new regulations for the industry. Licensing and Regulationsatellite systems. NOAA's program is The 1992 Land Remote Sensing Policy Act ("the Act"), and the 1994 policy on Foreign Access to Remote Sensing Space Capabilities (known as Presidential Decision Directive-23, or PDD-23) put into place an ambitious legal and policy framework for the U.S. Government's licensing of privately-owned, high-resolution satellite systems. Previously, capabilities afforded national security and observes the international obligations of the United States; maintain positive control of spacecraft operations; maintain a tasking record in conjunction with other record-keeping requirements; provide U.S. Government access to and use of data when required for national security or foreign policy purposes; provide for U.S. Government review of all significant foreign agreements; obtain U.S. Government approval for any encryption devices used; make available unenhanced data to a "sensed state" as soon as such data are available and on reasonable cost terms and conditions; make available unenhanced data as requested

  9. Spice Tools Supporting Planetary Remote Sensing

    Science.gov (United States)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2016-06-01

    NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events

  10. Assimilating data from remote sensing into a high-resolution global hydrological model

    Science.gov (United States)

    Lu, Yang; Sutanudjaja, Edwin; Drost, Niels; Hut, Rolf; Steele-Dunne, Susan; van de Giesen, Nick; de Jong, Kor; van Beek, Ludovicus; Bierkens, Marc

    2014-05-01

    This study is focused on the challenges of assimilating current and planned remote sensing data into the modified PCR-GLOB-WB model to yield optimal results. The development of a high-resolution (1 km or finer) global hydrological model has been put forward as 'Grand Challenge' for the hydrological community. Extensive assimilation of remote sensing data is a promising route to constrain and ensure the accuracy of such a hydrological model, but it poses a great challenge in many aspects. Over the last 30 years, advances in remote sensing techniques have triggered the exponential growth of hydrologically useful data from remote sensing. Aside from the ICT challenge of streaming and handing the sheer volume of data, and selecting an appropriate assimilation algorithm, the fundamental questions of which datasets contain the most useful information and how to use them must be addressed. The first task is to divide the candidate datasets into those that will be assimilated and those that will be used to parameterize or force the model. As the time step is reduced from daily to ~hourly, remote sensing data may play a crucial role in providing a more dynamic description of the land surface, or in downscaling the forcing data. Here, we will present a outline of the key processes in the PCR-GLOB-WB and a summary of which states and fluxes will benefit most from assimilation, and which model parameters can be modified to incorporate real-time information from remote sensing. Finally, we need to consider the gap in spatial scales. The PCR-GLOB-WB model is now running at 10 km resolution and will be modified to run at 1 km scale, while the spatial resolution of many remote sensing products is considerably coarser. We will present an overview of the downscaling approaches under consideration for key state variables. The eWaterCycle project is a collaboration between Delft University of Technology, Utrecht University and the Netherlands eScience Center. The final aim is to

  11. Software agents for the dissemination of remote terrestrial sensing data

    Science.gov (United States)

    Toomey, Christopher N.; Simoudis, Evangelos; Johnson, Raymond W.; Mark, William S.

    1994-01-01

    Remote terrestrial sensing (RTS) data is constantly being collected from a variety of space-based and earth-based sensors. The collected data, and especially 'value-added' analyses of the data, are finding growing application for commercial, government, and scientific purposes. The scale of this data collection and analysis is truly enormous; e.g., by 1995, the amount of data available in just one sector, NASA space science, will reach 5 petabytes. Moreover, the amount of data, and the value of analyzing the data, are expected to increase dramatically as new satellites and sensors become available (e.g., NASA's Earth Observing System satellites). Lockheed and other companies are beginning to provide data and analysis commercially. A critical issue for the exploitation of collected data is the dissemination of data and value-added analyses to a diverse and widely distributed customer base. Customers must be able to use their computational environment (eventually the National Information Infrastructure) to obtain timely and complete information, without having to know the details of where the relevant data resides and how it is accessed. Customers must be able to routinely use standard, widely available (and, therefore, low cost) analyses, while also being able to readily create on demand highly customized analyses to make crucial decisions. The diversity of user needs creates a difficult software problem: how can users easily state their needs, while the computational environment assumes the responsibility of finding (or creating) relevant information, and then delivering the results in a form that users understand? A software agent is a self-contained, active software module that contains an explicit representation of its operational knowledge. This explicit representation allows agents to examine their own capabilities in order to modify their goals to meet changing needs and to take advantage of dynamic opportunities. In addition, the explicit representation

  12. Mid-Latitude Snowmelt Onset Detection Via Microwave Remote Sensing

    Science.gov (United States)

    Vuyovich, C.; Jacobs, J. M.; Osborne, D.; Hunsaker, A. G.; Tuttle, S. E.

    2016-12-01

    The timing and magnitude of spring snowmelt events are critical for understanding the winter-to-spring transition of the hydrologic cycle and ecosystem processes. Melt timing determination is challenging because snowpack ripening observations are seldom available. Remotely sensed passive microwave observations show promise for determining snowpack wetting and melt onset at global scales. Studies performed in northern latitude regions verify the theoretical concept of microwave snowmelt detection methods under ideal conditions. However, early winter snowmelt events within mid-latitude regions introduce large regional climate differences that add considerable amounts of noise to the microwave observations. Diurnal Amplitude Variation (DAV), Frequency Difference (FD) and Polarization Ratio (PR) are three methods that use remotely sensed passive microwave observations to determine snowpack wetting and melt onset. This study evaluates the performance of these approaches to determine spring melt onset and early winter flood events in mid-latitudes. The suitability of microwave remote sensing techniques to detect snowmelt was found to vary regionally. Physical characteristics including basin latitude, regional air temperatures, snow depth, snow covered area, forest density, and rain intensity were examined to understand how and why the observed microwave signatures associated with snow cover vary over contrasting regions.

  13. Remote Sensing Image Registration with Line Segments and Their Intersections

    Directory of Open Access Journals (Sweden)

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  14. Long-range strategy for remote sensing: an integrated supersystem

    Science.gov (United States)

    Glackin, David L.; Dodd, Joseph K.

    1995-12-01

    Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.

  15. Parallel relative radiometric normalisation for remote sensing image mosaics

    Science.gov (United States)

    Chen, Chong; Chen, Zhenjie; Li, Manchun; Liu, Yongxue; Cheng, Liang; Ren, Yibin

    2014-12-01

    Relative radiometric normalisation (RRN) is a vital step to achieve radiometric consistency among remote sensing images. Geo-analysis over large areas often involves mosaicking massive remote sensing images. Hence RRN becomes a data-intensive and computing-intensive task. This study implements a parallel RNN method based on the iteratively re-weighted multivariate alteration detection (IR-MAD) transformation and orthogonal regression. To parallelise the method of IR-MAD and orthogonal regression, there are two key problems: the normalisation path determination and the task dependence on normalisation coefficients calculation. In this paper, the reference image and normalisation paths are determined based on the shortest distance algorithm to reduce normalisation error. Formulas of orthogonal regression are acquired considering the effect of the normalisation path to reduce the task dependence on the calculation of coefficients. A master-slave parallel mode is proposed to implement the parallel method, and a task queue and a process queue are used for task scheduling. Experiments show that the parallel RRN method provides good normalisation results and favourable parallel speed-up, efficiency and scalability, which indicate that the parallel method can handle large volumes of remote sensing images efficiently.

  16. Contradictions in the Dynamics of Remote Sensing based Evapotranspiration Calculation

    Science.gov (United States)

    Dhungel, R.

    2016-12-01

    The significance of accurate evapotranspiration (ET) need not be overstated because of the current prolonged drought, water scarcity, increasing population, and climate change in many parts of the world. The remote sensing based ET calculation methods had been taken as one of the reliable tools for estimating ET at larger temporal and spatial resolution. The linearity between temperature difference (DT) and surface temperature (Ts) from the thermal band of the satellite is utilized in many operational evapotranspiration (ET) models (SEBAL/METRIC) invoking the anchor pixel concept. In these models, the surface-air temperature difference in anchor pixels (dThot/cold) are calculated based on known the sensible heat flux (H) from the surface energy balance method. We explored the inherent differences while inverting the aerodynamic equation of H with the actual surface-air temperature (dTact) to dThot/cold. The results showed that this formulation possibly underestimates H with smaller dT slope, which overall overestimates the ET. The major finding and innovative aspect of this study are to present the two inconsistent behaviors of the identical process of energy transformation, which had been utilized by remote sensing based evapotranspiration models. This study will help to understand the uncertainty in H calculations in these models, explore the limitations of this methodology (dThot, cold), and warrant further discussion of this application in remote sensing and micrometeorology community.

  17. Remote Sensing for Mineral Exploration in Central Portugal

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel

    2017-09-01

    Full Text Available Central Portugal is well known for the existence of Sn-W and Au-Ag mineral occurrences primarily associated with hydrothermal processes. Despite the economic and strategic importance of such occurrences, the detailed geology of this particular region is poorly known and there is an obvious absence of geological mapping at an adequate scale. Remote sensing techniques were used in order to increase current geological knowledge of the Góis–Castanheira de Pêra area (600 km2 and to guide future exploration stages by targeting and prioritising potential locations. Digital image processing algorithms, such as Red, Green, Blue (RGB colour composites, digital spatial filters, band ratios and Principal Components Analysis, were applied to Landsat 8 imagery and elevation data. Lineaments were extracted relying on geological photointerpretation criteria, allowing the identification of new geological–structural elements. Fieldwork was carried out in order to validate the remote sensing interpretations. Integration of remote sensing data with other information sources led to the definition of locations possibly suitable for hosting Sn-W and Au-Ag mineral occurrences. These areas were ranked according to their mineral potential. Targeting the most promising locations resulted in a reduction to less than 10% of the original study area (50.5 km2.

  18. Mixing height determination using remote sensing systems. General remarks

    Energy Technology Data Exchange (ETDEWEB)

    Beyrich, F. [BTU Cottbus, LS Umweltmeteorologie, Cottbus (Germany)

    1997-10-01

    Remote sensing systems can be considered today as a real alternative to classical soundings with respect to the MH (mixing height) determination. They have the basic advantage to allow continuous monitoring of the ABL (atmospheric boundary layer). Some technical issues which limit their operational use at present should be solved in the near future (frequency allocation, eye safety, costs). Taking into account specific operating conditions and the formulated-above requirements of a sounding system to be used for MH determination it becomes obvious that none of the available systems meets all of them, i.e., the `Mixing height-meter` does not exist. Therefore, reliable MH determination under a wide variety of conditions can be achieved only by integrating different instruments into a complex sounding system. The S-profiles provide a suitable data base for MH estimation from all types of remote sensing instruments. The criteria to deduce MH-values from these profiles should consider the structure type and the evolution stage of the ABL as well as the shape of the profiles. A certain kind of harmonization concerning these criteria should be achieved. MH values derived automatically from remote sensing data appear to be not yet reliable enough for direct operational use, they should be in any case critically examined by a trained analyst. Contemporary mathematical methods (wavelet transforms, fuzzy logics) are supposed to allow considerable progress in this field in the near future. (au) 19 refs.

  19. Proxies for soil organic carbon derived from remote sensing

    Science.gov (United States)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  20. Multitask SVM learning for remote sensing data classification

    Science.gov (United States)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.