WorldWideScience

Sample records for remote pathogenic strain

  1. The Genetically Remote Pathogenic Strain NVH391-98 of the Bacillus cereus Group Represents the Cluster of Thermophilic Strains

    Energy Technology Data Exchange (ETDEWEB)

    Auger, Sandrine; Galleron, Nathalie; Bidnenko, Elena; Ehrlich, S. Dusko; Lapidus, Alla; Sorokin, Alexei

    2007-10-02

    Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17 degrees C and by the ability to grow at temperatures from 48 to 53 degrees C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster.

  2. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  3. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  4. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle

    OpenAIRE

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-01-01

    Background The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is reg...

  5. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.

    Science.gov (United States)

    Collado, M C; Meriluoto, J; Salminen, S

    2007-10-01

    The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.

  6. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens.

    Science.gov (United States)

    Singh, Tejinder P; Kaur, Gurpreet; Kapila, Suman; Malik, Ravinder K

    2017-01-01

    Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were able to adhere to Caco-2 cells. L. reuteri strains tested were able to inhibit and displace ( P strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5 M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cells and are highly antagonistic to pathogens tested in which surface associated proteins play an important role.

  7. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains.

    Science.gov (United States)

    Do, Jimmy; Zafar, Hassan; Saier, Milton H

    2017-06-01

    Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na + exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation of pathogenic Yersinia enterocolitica strains from different sources in Izmir region, Turkey.

    Science.gov (United States)

    Bozcal, Elif; Uzel, Atac; Aydemir, Sohret; Skurnik, Mikael

    2015-11-01

    Yersinia enterocolitica is a foodborne pathogen that is very rarely encountered in Turkey. In this work, several human, porcine, and environmental samples collected from Izmir region in Turkey were examined for the presence of Y. enterocolitica using different cultivation and enrichment methods. A total of nine pathogenic Y. enterocolitica strains were isolated; five strains from pig stool and manure samples and four strains from waste water samples. On the other hand, no Y. enterocolitica was isolated from human diarrheal stool samples (n = 102) and from 12 gulf, canal, municipal pool, and well water samples. Biochemical and serological characterization of the nine Y. enterocolitica strains revealed that they belonged to three different bioserotypes: 4/O:3, 2/O:9, and 2/O:5,27. All the strains were deemed pathogenic based on virulence factor-specific PCR analysis. Detection of pathogenic Y. enterocolitica strains from the pig and waste water samples from the Izmir region indicates that Y. enterocolitica is a potential risk for public health.

  9. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    Directory of Open Access Journals (Sweden)

    S Naganandhini

    Full Text Available The persistence of Shiga-like toxin producing E. coli (STEC strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU was compared with non-pathogenic (MTCC433 and genetically modified (DH5α strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days than those compared (60 days. Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA. The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  10. Genome sequence of the pathogenic Herbaspirillum seropedicae strain Os34, isolated from rice roots.

    Science.gov (United States)

    Ye, Weijun; Ye, Shuting; Liu, Jian; Chang, Siping; Chen, Mingyue; Zhu, Bo; Guo, Longbiao; An, Qianli

    2012-12-01

    Most Herbaspirillum seropedicae strains are beneficial endophytes to plants. In contrast, H. seropedicae strain Os34, isolated from rice roots, is pathogenic. The draft genome sequence of strain Os34 presented here allows in-depth comparative genome analyses to understand the specific mechanisms of beneficial and pathogenic Herbaspirillum-plant interactions.

  11. Genome sequence of the pathogenic Herbaspirillum seropedicae strain Os45, isolated from rice roots.

    Science.gov (United States)

    Zhu, Bo; Ye, Shuting; Chang, Siping; Chen, Mingyue; Sun, Li; An, Qianli

    2012-12-01

    Most Herbaspirillum seropedicae strains are beneficial to plants. In contrast, H. seropedicae strain Os45, isolated from rice roots, is pathogenic. The draft genome sequence of strain Os45 presented here allows an in-depth comparative genome analysis to understand the subtle mechanisms of beneficial and pathogenic Herbaspirillum-plant interactions.

  12. A replicative plasmid vector allows efficient complementation of pathogenic Leptospira strains.

    Science.gov (United States)

    Pappas, Christopher J; Benaroudj, Nadia; Picardeau, Mathieu

    2015-05-01

    Leptospirosis, an emerging zoonotic disease, remains poorly understood because of a lack of genetic manipulation tools available for pathogenic leptospires. Current genetic manipulation techniques include insertion of DNA by random transposon mutagenesis and homologous recombination via suicide vectors. This study describes the construction of a shuttle vector, pMaORI, that replicates within saprophytic, intermediate, and pathogenic leptospires. The shuttle vector was constructed by the insertion of a 2.9-kb DNA segment including the parA, parB, and rep genes into pMAT, a plasmid that cannot replicate in Leptospira spp. and contains a backbone consisting of an aadA cassette, ori R6K, and oriT RK2/RP4. The inserted DNA segment was isolated from a 52-kb region within Leptospira mayottensis strain 200901116 that is not found in the closely related strain L. mayottensis 200901122. Because of the size of this region and the presence of bacteriophage-like proteins, it is possible that this region is a result of a phage-related genomic island. The stability of the pMaORI plasmid within pathogenic strains was tested by passaging cultures 10 times without selection and confirming the presence of pMaORI. Concordantly, we report the use of trans complementation in the pathogen Leptospira interrogans. Transformation of a pMaORI vector carrying a functional copy of the perR gene in a null mutant background restores the expression of PerR and susceptibility to hydrogen peroxide comparable to that of wild-type cells. In conclusion, we demonstrate the replication of a stable plasmid vector in a large panel of Leptospira strains, including pathogens. The shuttle vector described will expand our ability to perform genetic manipulation of Leptospira spp. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  14. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  15. A new laboratory cultivation of Paramecium bursaria using non-pathogenic bacteria strains.

    Science.gov (United States)

    Bator, Tomasz

    2010-01-01

    In most studies dealing with the laboratory cultivation of paramecia (Paramecium bursaria), Klebsiella pneumoniae bacteria are used to inoculate the medium. However, Klebsiella pneumoniae is a typical pathogen, and its use is always associated with a risk of infection. The aim of the present research was to examine non-pathogenic bacteria strains as components of the medium for Paramecium bursaria. The paramecia were incubated on lettuce infusions bacterized with different bacteria strains: Bacillus subtilis DSM 10, Bacillus megaterium DSM 32, Escherichia coli DSM 498, Micrococcus luteus DSM 348. A strain derived from the natural habitat of Paramecium bursaria was used as the control one. Experiments were conducted under constant light and in the dark. Paramecia cells were counted under a stereomicroscope on consecutive days of incubation. The obtained results show that the most intensive growth of Paramecium bursaria occurs in the presence of Escherichia coli DSM 498. The use of this strain as a component of the medium allows one to obtain a high number of ciliates regardless of the light conditions. It can be concluded that the Paramecium bursaria cultivation procedure can be modified by using the non-pathogenic bacteria strain Escherichia coli DSM 498 instead of Klebsiella pneumoniae.

  16. Potential probiotic characteristics of Lactobacillus and Enterococcus strains isolated from traditional dadih fermented milk against pathogen intestinal colonization.

    Science.gov (United States)

    Collado, M Carmen; Surono, Ingrid S; Meriluoto, Jussi; Salminen, Seppo

    2007-03-01

    Traditional fermented buffalo milk in Indonesia (dadih) has been believed to have a beneficial impact on human health, which could be related to the properties of the lactic acid bacteria (LAB) involved in its fermentation process. In previous studies, it was discovered that strains of dadih lactic isolates possessed some beneficial properties in vitro. In the present study, the adhesion capacity of specific LAB isolates from dadih to intestinal mucus was analyzed. Further, the ability to inhibit model human pathogens and displace them from mucus was assessed. The adhesion of tested LAB strains was strain-dependent and varied from 1.4 to 9.8%. The most adhesive Lactobacillus plantarum strain was IS-10506, with 9.8% adhesion. The competition assay between dadih LAB isolates and pathogens showed that a 2-h preincubation with L. plantarum at 37 degrees C significantly reduced pathogen adhesion to mucus. All tested LAB strains displaced and inhibited pathogen adhesion, but the results were strain-specific and dependent on time and pathogen strains. In general, L. plantarum IS-10506 showed the best ability against pathogen adhesion.

  17. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    Science.gov (United States)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  18. Comparative in vitro inhibition of urinary tract pathogens by single- and multi-strain probiotics.

    Science.gov (United States)

    Chapman, C M C; Gibson, G R; Todd, S; Rowland, I

    2013-09-01

    Multi-species probiotic preparations have been suggested as having a wide spectrum of application, although few studies have compared their efficacy with that of individual component strains at equal concentrations. We therefore tested the ability of 4 single probiotics and 4 probiotic mixtures to inhibit the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. We used an agar spot test to test the ability of viable cells to inhibit pathogens, while a broth inhibition assay was used to assess inhibition by cell-free probiotic supernatants in both pH-neutralised and non-neutralised forms. In the agar spot test, all probiotic treatments showed inhibition, L. acidophilus was the most inhibitory single strain against E. faecalis, L. fermentum the most inhibitory against E. coli. A commercially available mixture of 14 strains (Bio-Kult(®)) was the most effective mixture, against E. faecalis, the 3-lactobacillus mixture the most inhibitory against E. coli. Mixtures were not significantly more inhibitory than single strains. In the broth inhibition assays, all probiotic supernatants inhibited both pathogens when pH was not controlled, with only 2 treatments causing inhibition at a neutral pH. Both viable cells of probiotics and supernatants of probiotic cultures were able to inhibit growth of two urinary tract pathogens. Probiotic mixtures prevented the growth of urinary tract pathogens but were not significantly more inhibitory than single strains. Probiotics appear to produce metabolites that are inhibitory towards urinary tract pathogens. Probiotics display potential to reduce the incidence of urinary tract infections via inhibition of colonisation.

  19. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains.

    Science.gov (United States)

    Argemi, Xavier; Nanoukon, Chimène; Affolabi, Dissou; Keller, Daniel; Hansmann, Yves; Riegel, Philippe; Baba-Moussa, Lamine; Prévost, Gilles

    2018-02-25

    Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus ; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC) similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8-89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes ( hsrA and dfrG , respectively), and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus . Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis .

  20. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains

    Directory of Open Access Journals (Sweden)

    Xavier Argemi

    2018-02-01

    Full Text Available Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8–89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes (hsrA and dfrG, respectively, and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus. Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis.

  1. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens

    OpenAIRE

    Singh, Tejinder P.; Kaur, Gurpreet; Kapila, Suman; Malik, Ravinder K.

    2017-01-01

    Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were ...

  2. Pathogenic strains of Yersinia enterocolitica isolated from domestic dogs (Canis familiaris) belonging to farmers are of the same subtype as pathogenic Y. enterocolitica strains isolated from humans and may be a source of human infection in Jiangsu Province, China.

    Science.gov (United States)

    Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi

    2010-05-01

    We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections.

  3. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    Science.gov (United States)

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-13

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  4. Selection of aggressive pathogenic and solopathogenic strains of Ustilago maydis to improve Huitlacoche production

    Directory of Open Access Journals (Sweden)

    Porfirio Raúl Galicia-García

    Full Text Available ABSTRACT Ustilago maydis is a basidiomycete known as the causative agent of 'common smut', worldwide disease of maize that is recognized by the galls it forms, which have considerable potential as a gourmet food. Results of infection are quite variable, even under optimal greenhouse conditions. In order to find pathogenic strains able to be used as a highly infective and stable inoculum for the successful production of galls either in greenhouses or in the field, ears with gall symptoms containing teliospores were recovered from maize plants. The teliospores were suspended in water and plated on nutrient-rich medium. Twenty-six colonies developed, containing three types of yeast-like colonies: saprotrophic, pathogenic, and solopathogenic. DAPI staining confirmed the presence of solopathogenic strains with diploid sporidia. Groups of different mating types were found when pairs of the 26 strains were arranged resembling partial-diallel combinations. Amplification of the partial b locus revealed that the strains found harbor the alleles b3 and b4, allowing the formation in dikaryotic strains of heterodimeric regulatory proteins associated with fungal development and pathogenicity. In this study, we isolated compatible haploid and solopathogenic diploid strains for their high capacity for inducing smut.

  5. Pathogenic Strains of Yersinia enterocolitica Isolated from Domestic Dogs (Canis familiaris) Belonging to Farmers Are of the Same Subtype as Pathogenic Y. enterocolitica Strains Isolated from Humans and May Be a Source of Human Infection in Jiangsu Province, China ▿ ‡

    Science.gov (United States)

    Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi

    2010-01-01

    We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections. PMID:20181899

  6. Reduction of teat skin mastitis pathogen loads: differences between strains, dips, and contact times.

    Science.gov (United States)

    Enger, B D; Fox, L K; Gay, J M; Johnson, K A

    2015-02-01

    The purpose of these experiments was to (1) assess differences in mastitis pathogen strain sensitivities to teat disinfectants (teat dips), and (2) determine the optimum time for premilking teat dips to remain in contact with teat skin to reduce pathogen loads on teat skin. Two experiments were conducted using the excised teat model. In experiment 1, the differences in mastitis pathogen strain sensitivities to 4 commercially available dips (dip A: 1% H2O2; dip B: 1% chlorine dioxide; dip C: 1% iodophor; and dip D: 0.5% iodophor) were evaluated. Four strains of 11 common mastitis pathogens (Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma bovis, Streptococcus dysgalactiae, Streptococcus uberis, Escherichia coli, Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus hyicus, Staphylococcus xylosus, and Staphylococcus haemolyticus) were tested. In experiment 2, the percentage log reduction of mastitis pathogens (Escherichia coli, Streptococcus uberis, Streptococcus dysgalactiae, Klebsiella species, Staphylococcus chromogenes, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis) on teat skin with 3 commercially available teat dips: dip A; dip D; and dip E: 0.25% iodophor, using dip contact times of 15, 30, and 45 s, was evaluated. Experiment 1 results indicated significant differences in strain sensitivities to dips within pathogen species: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Species differences were also found where Mycoplasma bovis (97.9% log reduction) was the most sensitive to tested teat dips and Staphylococcus haemolyticus (71.4% log reduction) the most resistant. Experiment 2 results indicated that contact times of 30 and 45 s were equally effective in reducing recovered bacteria for dips D and E and were also significantly more effective than a 15-s contact time. No differences were seen in recovered bacteria between tested contact times after treatment with dip

  7. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    Science.gov (United States)

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  8. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  9. Virulence-related genes, adhesion and invasion of some Yersinia enterocolitica-like strains suggests its pathogenic potential.

    Science.gov (United States)

    Imori, Priscilla F M; Passaglia, Jaqueline; Souza, Roberto A; Rocha, Lenaldo B; Falcão, Juliana P

    2017-03-01

    Yersina enterocolitica-like species have not been extensively studied regarding its pathogenic potential. This work aimed to assess the pathogenic potential of some Y. enterocolitica-like strains by evaluating the presence of virulence-related genes by PCR and their ability to adhere to and invade Caco-2 and HEp-2 cells. A total of 50 Y. frederiksenii, 55 Y. intermedia and 13 Y. kristensenii strains were studied. The strains contained the following genes: Y. frederiksenii, fepA(44%), fes(44%) and ystB(18%); Y. intermedia, ail(53%), fepA (35%), fepD(2%), fes(97%), hreP(2%), ystB(2%) and tccC(35%); Y. kristensenii, ail(62%), ystB(23%), fepA(77%), fepD(54%), fes(54%) and hreP(77%). Generally, the Y. enterocolitica-like strains had a reduced ability to adhere to and invade mammalian cells compared to the highly pathogenic Y. enterocolitica 8081. However, Y. kristensenii FCF410 and Y. frederiksenii FCF461 presented high invasion potentials in Caco-2 cells after five days of pre-incubation increased by 45- and 7.2-fold compared to Y. enterocolitica 8081, respectively; but, the ail gene was not detected in these strains. The presence of virulence-related genes in some of the Y. enterocolitica-like strains indicated their possible pathogenic potential. Moreover, the results suggest the existence of alternative virulence mechanisms and that the pathogenicity of Y. kristensenii and Y. frederiksenii may be strain-dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Experimental Evaluation of the Pathogenicity of Different Strains of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Antônio Aurélio Euzébio

    2012-01-01

    Full Text Available The pathogenesis of three different Schistosoma mansoni strains from the Brazilian states of Minas Gerais (BH strain and São Paulo (SJ and SD strains was evaluated in experimentally infected mice. Observations of the most severe clinical cases among local patients treated (SD strain in the city of Campinas (São Paulo, Brazil formed the basis of this study. Mice were used as definitive hosts and were infected with cercariae from Biomphalaria tenagophila (SJ and SD strains and Biomphalaria glabrata (BH strains. The parameters analyzed were as follows: number of S. mansoni eggs in mice feces; number of granulomas per tissue area in liver, spleen, lungs, pancreas, and ascending colon; measurements of hepatic and intestinal granulomas; number of adult worms; and measurements of trematode eggs. The comparison among the three strains indicated that the SD strain, isolated in Campinas, presented a higher worm recovery relative to the number of penetrating cercariae. In addition, when compared to the SJ and BH strains, the SD strain demonstrated similar pathogenicity to the BH strain, with a greater quantity of granulomas in the viscera, as well as larger granulomas and eggs. Furthermore, a greater quantity of trematode eggs was also shed in the feces.

  11. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    Science.gov (United States)

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    International Nuclear Information System (INIS)

    Huang, L.; Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C.; Yu, X.F.; Zhang, W.Y.

    2015-01-01

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain

  13. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); The 208th Hospital of PLA, Changchun (China); Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Yu, X.F. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Zhang, W.Y. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China)

    2015-03-27

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.

  14. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories.

    Science.gov (United States)

    Pérez-Ramírez, Elisa; Llorente, Francisco; Del Amo, Javier; Fall, Gamou; Sall, Amadou Alpha; Lubisi, Alison; Lecollinet, Sylvie; Vázquez, Ana; Jiménez-Clavero, Miguel Ángel

    2017-04-01

    Rodent models have been used extensively to study West Nile virus (WNV) infection because they develop severe neurological symptoms similar to those observed in human WNV neuroinvasive disease. Most of this research has focused on old lineage (L) 1 strains, while information about pathogenicity is lacking for the most recent L1 and L2 strains, as well as for newly defined lineages. In this study, 4-week-old Swiss mice were inoculated with a collection of 12 WNV isolates, comprising 10 old and recent L1 and L2 strains, the putative L6 strain from Malaysia and the proposed L7 strain Koutango (KOU). The intraperitoneal inoculation of 10-fold dilutions of each strain allowed the characterization of the isolates in terms of LD50, median survival times, ID50, replication in neural and extraneural tissues and antibody production. Based on these results, we classified the isolates in three groups: high virulence (all L1a strains, recent L2 strains and KOU), moderate virulence (B956 strain) and low virulence (Kunjin and Malaysian isolates). We determined that the inoculation of a single dose of 1000 p.f.u. would be sufficient to classify WNV strains by pathotype. We confirmed the enhanced virulence of the KOU strain with a high capacity to cause rapid systemic infection. We also corroborated that differences in pathogenicity among strains do not correlate with phylogenetic lineage or geographic origin, and confirmed that recent European and African WNV strains belonging to L1 and L2 are highly virulent and do not differ in their pathotype profile compared to the prototype NY99 strain.

  15. Replacement of glycoprotein B gene in the Herpes simplex virus type 1 strain ANGpath DNA that originating from non-pathogenic strain KOS reduces the pathogenicity of recombinant virus

    International Nuclear Information System (INIS)

    Kostal, M.; Bacik, I.; Rajcani, J.; Kaerner, H.C.

    1994-01-01

    Herpes simplex virus type-1 (HSV-1) strain ANGpath and its recombinants, in which the 8.1 kbp BamHI G restriction fragment (0.345-0.399) containing the glycoprotein B (gB path ) gene (UL27) or its sub-fragments-coding either for cytoplasmic or surface domain of gB-had been replaced with the corresponding fragments from non-pathogenic KOS virus DNA (gB KOS ), were tested for their pathogenicity for DBA/2 mice and rabbits. The recombinant ANGpath/B6 KOS prepared by transferring the 2.7 kbp SstI-SstI sub-fragment (0.351-0.368) of the BamHI G KOS fragment still had the original sequence of ANGpath DNA coding for the syn 3 marker in the cytoplasmic domain of gB and was pathogenic for mice as well as for rabbits. Virological and immuno-histological studies in DBA/2 mice infected with the latter pathogenic recombinant and with ANGpath showed the presence of infectious virus and viral antigen at inoculation site (epidermis, subcutaneous connective tissue and striated muscle in the area of right lip), in homo-lateral trigeminal nerve and ganglion, brain stem, midbrain, thalamic and hypothalamic nuclei. In contrast, non-pathogenic recombinants ANGpath/syn + B6 KOS (prepared by transferring the whole BamHI G KOS fragment) and ANGpath/syn +KOS (prepared by transferring the 0.8 kbp BamHI-SstI sub-fragment of the BamHI G KOS fragment) showed limited hematogenous and neural spread, but no evidence of replication in CNS; thus, their behaviour resembled that of the wild type strain KOS. The recombinant ANGpath/syn +KOS , which was not pathogenic for mice, still remained pathogenic for rabbits, a phenomenon indicating the presence of an additional locus in the gB molecule participating on virulence. Sequencing the 1478 bp SstI-SstI sub-fragment of the BamHI G path fragment (nt 53,348 - 54,826 of UL segment) showed the presence of at least 3 mutations as compared to the KOS sequence, from which the change of cytosine at nt 54,2251 altered the codon for arginine to that histidine

  16. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms

    Science.gov (United States)

    Arena, Mattia Pia; Silvain, Amandine; Normanno, Giovanni; Grieco, Francesco; Drider, Djamel; Spano, Giuseppe; Fiocco, Daniela

    2016-01-01

    Lactobacillus plantarum is one of the most versatile species extensively used in the food industry both as microbial starters and probiotic microorganisms. Several L. plantarum strains have been shown to produce different antimicrobial compounds such as organic acids, hydrogen peroxide, diacetyl, and also bacteriocins and antimicrobial peptides, both denoted by a variable spectrum of action. In recent decades, the selection of microbial molecules and/or bacterial strains able to produce antagonistic molecules to be used as antimicrobials and preservatives has been attracting scientific interest, in order to eliminate or reduce chemical additives, because of the growing attention of consumers for healthy and natural food products. The aim of this work was to investigate the antimicrobial activity of several food-isolated L. plantarum strains, analyzed against the pathogenic bacteria Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus. Antagonistic activity was assayed by agar spot test and revealed that strain L. plantarum 105 had the strongest ability to contrast the growth of L. monocytogenes, while strains L. plantarum 106 and 107 were the most active microorganisms against E. coli O157:H7. The antimicrobial ability was also screened by well diffusion assay and broth micro-dilution method using cell-free supernatants (CFS) from each Lactobacillus strain. Moreover, the chemical nature of the molecules released in the CFS, and possibly underlying the antagonistic activity, was preliminary characterized by exposure to different constraints such as pH neutralization, heating, catalase, and proteinase treatments. Our data suggest that the ability of L. plantarum cultures to contrast pathogens growth in vitro depends, at least in part, on a pH-lowering effect of supernatants and/or on the presence of organic acids. Cluster analysis was performed in order to group L. plantarum strains according to their antimicrobial effect

  17. Spatial self-organization in a multi-strain host–pathogen system

    International Nuclear Information System (INIS)

    Liu, Quan-Xing; Van de Koppel, Johan; Wang, Rong-Hua; Jin, Zhen; Alonso, David

    2010-01-01

    We develop stochastic spatial epidemic models with the competition of two pathogenic strains. The dynamics resulting from different approaches are examined using both non-spatial and spatially explicit models. Our results show that pair approximation, well-mixed ordinary differential equations (ODEs), Gillespie-algorithm-based simulations and spatially explicit models give similar qualitative results. In particular, the temporal evolution of the spatial model can be successfully approximated by pair equations. Simulation results obtained from the spatially explicit model show that, first, mutation plays a major role in multi-strain coexistence, second, mild virulence remarkably decreases the coexistence domain of the parameter space and, third, large-scale self-organized spatial patterns emerge for a wide range of transmission and virulence parameter values, where spatial self-organized clusters reveal a power law behavior within the coexistence domain

  18. Molecular Typing of Pathogenic Leptospira Serogroup Icterohaemorrhagiae Strains Circulating in China during the Past 50 Years

    Science.gov (United States)

    Zhang, Cuicai; Yang, Huimian; Li, Xiuwen; Cao, Zhiqiang; Zhou, Haijian; Zeng, Linzi; Xu, Jianmin; Xu, Yinghua; Chang, Yung-Fu; Guo, Xiaokui; Zhu, Yongzhang; Jiang, Xiugao

    2015-01-01

    Background Leptospirosis is one of the most important neglected tropical infectious diseases worldwide. Icterohaemorrhagiae has been throughout recent history, and still is, the predominant serogroup of this pathogen in China. However, very little in detail is known about the serovars or genotypes of this serogroup. Methodology/Principal Findings In this study, 120 epidemic strains from five geographically diverse regions in China collected over a 50 year period (1958~2008), and 8 international reference strains characterized by 16S rRNA sequencing and MLST analysis. 115, 11 and 2 strains were identified as L. interrogans, L. borgpetersenii, and L. kirschneri, respectively. 17 different STs were identified including 69 ST1 strains, 18 ST17, 18 ST128, 9 ST143 and 2 ST209. The remaining 12 strains belonged to 12 different STs. eBURST analysis demonstrated that, among the clonal complexes isolated (CCs), CC1 accounted for 73.3% (88/120) strains representing three STs: ST1, ST128 and ST98. ST1 was the most likely ancestral strain of this CC, followed by singleton CC17 (17/120) and CC143 (11/120). Further analysis of adding 116 serogroup Icterohaemorrhagiae strains in the MLST database and studies previously described using global eBURST analysis and MST dendrogram revealed relatively similar ST clustering patterns with five main CCs and 8 singletons among these 244 strains. CC17 was found to be the most prevalent clone of pathogenic Leptospira circulating worldwide. This is the first time, to our knowledge, that ST1 and ST17 strains were distributed among 4 distinct serovars, indicating a highly complicated relationship between serovars and STs. Conclusions/Significance Our studies demonstrated a high level of genetic diversity in the serogroup Icterohaemorrhagiae strains. Distinct from ST17 or ST37 circulating elsewhere, ST1 included in CC1, has over the past 50 years or so, proven to be the most prevalent ST of pathogenic leptospires isolated in China. Moreover, the

  19. [Screening strains for Trichoderma spp. for strong antagonism against ginseng root pathogens and study on their biological characters].

    Science.gov (United States)

    Zhao, A-Na; Ding, Wan-Long; Zhu, Dian-Long

    2006-10-01

    To screen the Trichodenna spp. for strong antagonist against ginseng root pathogens. The biological characters of ten Trichoderma strains were compared by culturing on different media. And their antagonistic activity against Phytophthora cactorum, Cylindrocarpon destructans and Rhizoctonia solani were measured on PDA. Tv04-2 and Th3080 showed a good growth on soil solution medium and PDA, and also showed high inhibitory efficacy to the three pathogens. The two Trichoderma strains showed different growth rate under light conditions and pH. Trichoderma strains were sensitive to most fungicides used in ginseng root disease controlling, however Tv04-2 was not sensitive to the fungicide Junchong Jueba.

  20. Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains

    Directory of Open Access Journals (Sweden)

    Sebastián Aguilar Pierlé

    2014-01-01

    Full Text Available The ability to capture genetic variation with unprecedented resolution improves our understanding of bacterial populations and their ability to cause disease. The goal of the pathogenomics era is to define genetic diversity that results in disease. Despite the economic losses caused by vector-borne bacteria in the Order Rickettsiales, little is known about the genetic variants responsible for observed phenotypes. The tick-transmitted rickettsial pathogen Anaplasma marginale infects cattle in tropical and subtropical regions worldwide, including Australia. Genomic analysis of North American A. marginale strains reveals a closed core genome defined by high levels of Single Nucleotide Polymorphisms (SNPs. Here we report the first genome sequences and comparative analysis for Australian strains that differ in virulence and transmissibility. A list of genetic differences that segregate with phenotype was evaluated for the ability to distinguish the attenuated strain from virulent field strains. Phylogenetic analyses of the Australian strains revealed a marked evolutionary distance from all previously sequenced strains. SNP analysis showed a strikingly reduced genetic diversity between these strains, with the smallest number of SNPs detected between any two A. marginale strains. The low diversity between these phenotypically distinct bacteria presents a unique opportunity to identify the genetic determinants of virulence and transmission.

  1. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients

    OpenAIRE

    Mendoza-Olazar?n, Soraya; Garcia-Mazcorro, Jos? F.; Morf?n-Otero, Rayo; Villarreal-Trevi?o, Licet; Camacho-Ortiz, Adri?n; Rodr?guez-Noriega, Eduardo; Bocanegra-Ibarias, Paola; Maldonado-Garza, H?ctor J.; Dowd, Scot E.; Garza-Gonz?lez, Elvira

    2017-01-01

    Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved...

  2. Pathogenicity of Salmonella Strains Isolated from Egg Shells and the Layer Farm Environment in Australia

    Science.gov (United States)

    McWhorter, Andrea R.; Davos, Dianne

    2014-01-01

    In Australia, the egg industry is periodically implicated during outbreaks of Salmonella food poisoning. Salmonella enterica serovar Typhimurium and other nontyphoidal Salmonella spp., in particular, are a major concern for Australian public health. Several definitive types of Salmonella Typhimurium strains, but primarily Salmonella Typhimurium definitive type 9 (DT9), have been frequently reported during egg-related food poisoning outbreaks in Australia. The aim of the present study was to generate a pathogenicity profile of nontyphoidal Salmonella isolates obtained from Australian egg farms. To achieve this, we assessed the capacity of Salmonella isolates to cause gastrointestinal disease using both in vitro and in vivo model systems. Data from in vitro experiments demonstrated that the invasion capacity of Salmonella serovars cultured to stationary phase (liquid phase) in LB medium was between 90- and 300-fold higher than bacterial suspensions in normal saline (cultured in solid phase). During the in vivo infection trial, clinical signs of infection and mortality were observed only for mice infected with either 103 or 105 CFU of S. Typhimurium DT9. No mortality was observed for mice infected with Salmonella serovars with medium or low invasive capacity in Caco-2 cells. Pathogenicity gene profiles were also generated for all serovars included in this study. The majority of serovars tested were positive for selected virulence genes. No relationship between the presence or absence of virulence genes by PCR and either in vitro invasive capacity or in vivo pathogenicity was detected. Our data expand the knowledge of strain-to-strain variation in the pathogenicity of Australian egg industry-related Salmonella spp. PMID:25362057

  3. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  4. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  5. The potential pathogenicity of chlorhexidine-sensitive Acanthamoeba strains isolated from contact lens cases from asymptomatic individuals in Tenerife, Canary Islands, Spain.

    Science.gov (United States)

    Martín-Navarro, Carmen M; Lorenzo-Morales, Jacob; Cabrera-Serra, M Gabriela; Rancel, Fernando; Coronado-Alvarez, Nieves M; Piñero, José E; Valladares, Basilio

    2008-11-01

    Pathogenic strains of the genus Acanthamoeba are causative agents of a serious sight-threatening infection of the eye known as Acanthamoeba keratitis. The prevalence of this infection has risen in the past 20 years, mainly due to the increase in number of contact lens wearers. In this study, the prevalence of Acanthamoeba in a risk group constituted by asymptomatic contact lens wearers from Tenerife, Canary Islands, Spain, was evaluated. Contact lenses and contact lens cases were analysed for the presence of Acanthamoeba isolates. The isolates' genotypes were also determined after rDNA sequencing. The pathogenic potential of the isolated strains was subsequently established using previously described molecular and biochemical assays, which allowed the selection of three strains with high pathogenic potential. Furthermore, the sensitivity of these isolates against two standard drugs, ciprofloxacin and chlorhexidine, was analysed. As the three selected strains were sensitive to chlorhexidine, its activity and IC(50) were evaluated. Chlorhexidine was found to be active against these strains and the obtained IC(50) values were compared to the concentrations of this drug present in contact lens maintenance solutions. It was observed that the measured IC(50) was higher than the concentration found in these maintenance solutions. Therefore, the ineffectiveness of chlorhexidine-containing contact lens maintenance solutions against potentially pathogenic strains of Acanthamoeba is demonstrated in this study.

  6. Draft Genome Sequences of Two Avian Pathogenic Escherichia coli Strains of Clinical Importance, E44 and E51

    DEFF Research Database (Denmark)

    Ronco, Troels; Stegger, Marc; Andersen, Paal S

    2016-01-01

    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their po......Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated...

  7. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Directory of Open Access Journals (Sweden)

    Emmanouil A Trantas

    2015-08-01

    Full Text Available The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor and P. mediterranea (Pmed, are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for commercially significant chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of a type III secretion system and of known type III effectors from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes.

  8. The ability of algal organic matter and surface runoff to promote the abundance of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in Long Island Sound, USA.

    Directory of Open Access Journals (Sweden)

    Jake D Thickman

    Full Text Available Food safety is a major concern in the shellfish industry, as severe illness can result from consuming shellfish that have accumulated waterborne pathogens. Shellfish harvesting areas are typically monitored for indicator bacteria such as fecal coliforms that serve as proxies for enteric pathogens although these indicators have shown little relation to some naturally occurring pathogenic bacteria such as Vibrio parahaemolyticus. To examine the dynamics and ecology of pathogenic and non-pathogenic strains of V. parahaemolyticus and address the relevance of indicator bacteria in predicting V. parahaemolyticus concentrations, field surveys and experiments were carried out in western Long Island Sound, NY, USA, a region that has experienced recent outbreaks of shellfish contaminated with V. parahaemolyticus. Pathogenic and non-pathogenic strains were quantified via PCR detection of marker genes and most probable number techniques. Field survey data showed little correspondence between fecal coliforms and V. parahaemolyticus, but significant correlations between V. parahaemolyticus and an alternative indicator, enterococci, and between V. parahaemolyticus and short-term (48 h rainfall were observed. Experiments demonstrated that enrichment of seawater with phytoplankton-derived dissolved organic matter significantly increased the concentration of total V. parahaemolyticus and the presence pathogenic V. parahaemolyticus, but higher temperatures did not. Collectively, these study results suggest that fecal coliforms may fail to account for the full suite of important shellfish pathogens but that enterococci could provide a potential alternative or supplement to shellfish sanitation monitoring. Given the ability of algal-derived dissolved organic matter to promote the growth of pathogenic V. parahaemolyticus, restricting nutrient inputs into coastal water bodies that promote algal blooms may indirectly decrease the proliferation of V. parahaemolyticus

  9. Differences in fecundity of Eimeria maxima strains exhibiting different levels of pathogenicity in its avian host.

    Science.gov (United States)

    Jenkins, Mark C; Dubey, J P; Miska, Katarzyna; Fetterer, Raymond

    2017-03-15

    Eimeria maxima is one of the most pathogenic species of avian coccidia, yet it is unknown why different E. maxima strains differ in the pathogenic effects they cause in chickens. The purpose of this study was to determine if a more pathogenic E. maxima strain (APU1) was also more fecund than a less pathogenic E. maxima strain (APU2). At identical doses, E. maxima APU1 always produces greater intestinal lesions and lower weight gain compared to E. maxima APU2. Using a dose response study, median and mean intestinal lesion scores in E. maxima APU1-infected chickens were greater by a score of 1-1.5 compared to chickens infected with E. maxima APU2. Likewise, weight gain depression in E. maxima APU1-infected chickens was 20-25% greater (equivalent to 110-130g body weight) than in E. maxima APU2-infected chickens. In order to understand the underlying cause of these observed clinical effects, 120 broiler chicks (5 oocyst levels, 6 replicates/level) were inoculated with various doses of E. maxima APU1 or APU2 oocysts. The dynamics of oocyst shedding was investigated by collecting fecal material every 12h from 114 to 210h post-inoculation (p.i.) and every 24h thereafter from 210 to 306h, and then processed for measuring E. maxima oocyst output. Oocysts were first observed at 138h p.i., and time of peak oocyst production was nearly identical for both E. maxima APU1 and APU2 around 150-162h. Total oocyst production was 1.1-2.6 fold higher at all dose levels for E. maxima APU1 compared to E. maxima APU2, being significantly higher (P<0.05) at the log 1.5 dose level. Other groups of chickens were infected with higher doses of E. maxima APU1 or APU2 oocysts, and intestinal lesions were assessed by histology at 72, 96, 120, and 144h p.i. Although schizonts, gamonts, and oocysts were observed at expected time-points, no obvious differences were noted in lesions induced by the two E. maxima strains. This study showed that the greater fecundity of E. maxima APU1 compared to E

  10. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    Science.gov (United States)

    Triana, Sergio; González, Andrés; Ohm, Robin A.; Wösten, Han A. B.; de Cock, Hans; Restrepo, Silvia

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. PMID:26472839

  11. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine

    Science.gov (United States)

    An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared, analyzed and compared to Chinese highly pathogenic PRRSV rJXwn06 and US Type 2 prototype VR-2332 in order to examine the effects of virus phenotype and genotype on growth in MARC-145 cells, as well as the imp...

  12. In vitro antimycobacterial activity and toxicity of eight medicinal plants against pathogenic and nonpathogenic mycobacterial strains.

    Science.gov (United States)

    Nguta, Joseph M; Appiah-Opong, Regina; Nyarko, Alexander K; Yeboah-Manu, Dorothy; Addo, Phyllis G A; Otchere, Isaac Darko; Kissi-Twum, Abena

    2016-12-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a serious public health challenge towards which new hits are urgently needed. Medicinal plants remains a major source of new ligands against global infectious illnesses. In our laboratories, we are currently investigating locally used ethnobotanicals for novel compounds against zoonotic tuberculosis. The microplate alamar blue assay (MABA) was used to study the anti-TB activity while the CellTiter 96® AQ ueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients (R 2 ) were used to compare the relationship between antimycobacterial activity of the eight crude extracts against nonpathogenic strains and the pathogenic Mycobacterium bovis. Minimum inhibitory concentration (MICs) values indicated that all the eight tested medicinal plant species had activity against all the three tested mycobacterial strains. Minimum inhibitory concentration value as low as 19.5µg/mL was observed against non-pathogenic strains M. bovis. Activity of the crude extracts against M. aurum was the best predictor of natural product activity against the pathogenic Mycobacterium bovis strain, with a correlation coefficient value (R 2 ) of 0.1371. Results obtained from the current study validate, in part, the traditional utilization of the tested medicinal plants against tuberculosis. The unripe fruits from Solanum torvum are a potential source of safe and efficacious anti-TB crude drugs as well as a source for natural compounds that act as new anti-infection agents, and thus deserve further investigation towards development of a new class of molecules with activity against sensitive and drug resistant strains of M. bovis. Copyright © 2016.

  13. In vitro antimycobacterial activity and toxicity of eight medicinal plants against pathogenic and nonpathogenic mycobacterial strains

    Directory of Open Access Journals (Sweden)

    Joseph M Nguta

    2016-01-01

    Full Text Available Tuberculosis (TB caused by Mycobacterium tuberculosis remains a serious public health challenge towards which new hits are urgently needed. Medicinal plants remains a major source of new ligands against global infectious illnesses. In our laboratories, we are currently investigating locally used ethnobotanicals for novel compounds against zoonotic tuberculosis. The microplate alamar blue assay (MABA was used to study the anti-TB activity while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate PMS, was used for cytotoxic studies. Correlation coefficients (R2 were used to compare the relationship between antimycobacterial activity of the eight crude extracts against nonpathogenic strains and the pathogenic Mycobacterium bovis. Minimum inhibitory concentration (MICs values indicated that all the eight tested medicinal plant species had activity against all the three tested mycobacterial strains. Minimum inhibitory concentration value as low as 19.5 μg/mL was observed against non-pathogenic strains M. bovis. Activity of the crude extracts against M. aurum was the best predictor of natural product activity against the pathogenic Mycobacterium bovis strain, with a correlation coefficient value (R2 of 0.1371. Results obtained from the current study validate, in part, the traditional utilization of the tested medicinal plants against tuberculosis. The unripe fruits from Solanum torvum are a potential source of safe and efficacious anti-TB crude drugs as well as a source for natural compounds that act as new anti-infection agents, and thus deserve further investigation towards development of a new class of molecules with activity against sensitive and drug resistant strains of M. bovis.

  14. Influence of Temperature on the Physiology and Virulence of the Insect Pathogen Serratia sp. Strain SCBI

    Science.gov (United States)

    Petersen, Lauren M.

    2012-01-01

    The physiology of a newly recognized Serratia species, termed South African Caenorhabditis briggsae Isolate (SCBI), which is both a nematode mutualist and an insect pathogen, was investigated and compared to that of Serratia marcescens Db11, a broad-host-range pathogen. The two Serratia strains had comparable levels of virulence for Manduca sexta and similar cytotoxic activity patterns, but motility and lipase and hemolytic activities differed significantly between them. PMID:23042169

  15. Influence of temperature on the physiology and virulence of the insect pathogen Serratia sp. Strain SCBI.

    Science.gov (United States)

    Petersen, Lauren M; Tisa, Louis S

    2012-12-01

    The physiology of a newly recognized Serratia species, termed South African Caenorhabditis briggsae Isolate (SCBI), which is both a nematode mutualist and an insect pathogen, was investigated and compared to that of Serratia marcescens Db11, a broad-host-range pathogen. The two Serratia strains had comparable levels of virulence for Manduca sexta and similar cytotoxic activity patterns, but motility and lipase and hemolytic activities differed significantly between them.

  16. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens.

    Science.gov (United States)

    Atassi, Fabrice; Servin, Alain L

    2010-03-01

    The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.

  17. R5 strains of human immunodeficiency virus type 1 from rapid progressors lacking X4 strains do not possess X4-type pathogenicity in human thymus

    NARCIS (Netherlands)

    Berkowitz, R. D.; van't Wout, A. B.; Kootstra, N. A.; Moreno, M. E.; Linquist-Stepps, V. D.; Bare, C.; Stoddart, C. A.; Schuitemaker, H.; McCune, J. M.

    1999-01-01

    Some individuals infected with only R5 strains of human immunodeficiency virus type 1 progress to AIDS as quickly as individuals harboring X4 strains. We determined that three R5 viruses were much less pathogenic than an X4 virus in SCID-hu Thy/Liv mice, suggesting that R5 virus-mediated rapid

  18. Genome Sequence of the Enterobacter mori Type Strain, LMG 25706, a Pathogenic Bacterium of Morus alba L. ▿

    Science.gov (United States)

    Zhu, Bo; Zhang, Guo-Qing; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Wang, Guo-Feng; Liu, He; Xie, Guan-Lin; Jin, Gu-Lei

    2011-01-01

    Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter. PMID:21602328

  19. Sequencing and generation of an infectious clone of the pathogenic goose parvovirus strain LH.

    Science.gov (United States)

    Wang, Jianye; Duan, Jinkun; Zhu, Liqian; Jiang, Zhiwei; Zhu, Guoqiang

    2015-03-01

    In this study, the complete genome of the virulent strain LH of goose parvovirus (GPV) was sequenced and cloned into the pBluescript II (SK) plasmid vector. Sequence alignments of the inverted terminal repeats (ITR) of GPV strains revealed a common 14-nt-pair deletion in the stem of the palindromic structure in the LH strain and three other strains isolated after 1982 when compared to three GPV strains isolated earlier than that time. Transfection of 11-day-old embryonated goose eggs with the plasmid pLH, which contains the entire genome of strain LH, resulted in successful rescue of the infectious virus. Death of embryos after transfection via the chorioallantoic membrane infiltration route occurred earlier than when transfection was done via the allantoic cavity inoculation route. The rescued virus exhibited virulence similar to that of its parental virus, as evaluated by the mortality rate in goslings. Generation of the pathogenic infectious clone provides us with a powerful tool to elucidate the molecular pathogenesis of GPV in the future.

  20. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Science.gov (United States)

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  1. New Genome Sequence of an Echinaceapurpurea Endophyte, Arthrobacter sp. Strain EpSL27, Able To Inhibit Human-Opportunistic Pathogens.

    Science.gov (United States)

    Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato

    2017-06-22

    We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. Copyright © 2017 Miceli et al.

  2. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    Science.gov (United States)

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  3. Effects of single- and multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens.

    Science.gov (United States)

    Chapman, C M C; Gibson, G R; Rowland, I

    2014-06-01

    There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Establishment of a Pathogenicity Index for One-day-old Broilers to Pasteurella multocida Strains Isolated from Clinical Cases in Poultry and Swine

    Directory of Open Access Journals (Sweden)

    RM Pilatti

    Full Text Available ABSTRACT Although Pasteurella multocida is a member of the respiratory microbiota, under some circumstances, it is a primary agent of diseases , such as fowl cholera (FC, that cause significant economic losses. Experimental inoculations can be employed to evaluate the pathogenicity of strains, but the results are usually subjective and knowledge on the pathogenesis of this agent is still limited. The objective of this study was to establish a new methodology for classifying the pathogenicity of P. multocida by formulating a standard index. Strains isolated from FC cases and from swine with respiratory problems were selected. One hundred mL of a bacterial culture of each strain, containing 106 CFU, was inoculated in 10 one-day-old broilers. Mortality after inoculation, time of death (TD, and the presence of six macroscopic lesions were evaluated over a period of seven days post-inoculation (dpi. A Pathogenicity Index Per Bird (IPI, ranging 0 to 10, was calculated. Liver and heart fragments were collected to reisolate the bacteria. Blood was collected from the surviving birds, and an ELISA test was carried out to detect specific antibodies. The median of the pathogenicity indices, the number of lesions and the rate of bacteria reisolation were significantly different (p<0.05 among the origins of the isolates (p<0.05. The pathogenicity index developed in this study allows the classification of Pasteurella multocida pathogenicity and may be an alternative to the pathogenicity models currently used for screening.

  5. Competition of pathogen strains leading to infection with variable infectivity and the effect of treatment

    NARCIS (Netherlands)

    Xiridou, Maria; Kretzschmar, Mirjam; Geskus, Ronald

    2005-01-01

    A model for the spread of two strains of a pathogen leading to an infection with variable infectivity is considered. The course of infection is described by two stages with different infectivity levels. The model is extended to account for treatment by including a third stage with different

  6. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens.

    Science.gov (United States)

    Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Cristea, Violeta Corina; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica

    2016-06-01

    The gastrointestinal microbiota contributes to the consolidation of the anti-infectious barrier against enteric pathogens. The purpose of this study was to investigate the influence of Bifidobacterium sp. strains, recently isolated from infant gastrointestinal microbiota on the in vitro growth and virulence features expression of enteropathogenic bacterial strains. The antibacterial activity of twelve Bifidobacterium sp. strains isolated from human feces was examined in vitro against a wide range of Gram negative pathogenic strains isolated from 30 infant patients (3 days to 5 years old) with diarrhea. Both potential probiotic strains (Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium catenulatum, Bifidobacterium breve, Bifidobacterium ruminantium) and enteropathogenic strains (EPEC, EIEC, Klebsiella pneumoniae, Salmonella sp., Yersinia enterocolitica, Pseudomonas aeruginosa) were identified by MALDI-TOF and confirmed serologically when needed. The bactericidal activity, growth curve, adherence to the cellular HEp-2 substratum and production of soluble virulence factors have been assessed in the presence of different Bifidobacterium sp. cultures and fractions (whole culture and free-cell supernatants). Among the twelve Bifidobacterium sp. strains, the largest spectrum of antimicrobial activity against 9 of the 18 enteropathogenic strains was revealed for a B. breve strain recently isolated from infant intestinal feces. The whole culture and free-cell supernatant of B. breve culture decreased the multiplication rate, shortened the log phase and the total duration of the growth curve, with an earlier entrance in the decline phase and inhibited the adherence capacity to a cellular substratum and the swimming/swarming motility too. These results indicate the significant probiotic potential of the B. breve strain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Vibrio tapetis Displays an Original Type IV Secretion System in Strains Pathogenic for Bivalve Molluscs

    Directory of Open Access Journals (Sweden)

    Graciela M. Dias

    2018-02-01

    Full Text Available The Brown Ring Disease (BRD caused high mortality rates since 1986 in the Manila clam Venerupis philippinarum introduced and cultured in Western Europe from the 1970s. The causative agent of BRD is a Gram-Negative bacterium, Vibrio tapetis, which is also pathogenic to fish. Here we report the first assembly of the complete genome of V. tapetis CECT4600T, together with the genome sequences of 16 additional strains isolated across a broad host and geographic range. Our extensive genome dataset allowed us to describe the pathogen pan- and core genomes and to identify putative virulence factors. The V. tapetis core genome consists of 3,352 genes, including multiple potential virulence factors represented by haemolysins, transcriptional regulators, Type I restriction modification system, GGDEF domain proteins, several conjugative plasmids, and a Type IV secretion system. Future research on the coevolutionary arms race between V. tapetis virulence factors and host resistance mechanisms will improve our understanding of how pathogenicity develops in this emerging pathogen.

  8. Bactericidal activities of GM flax seedcake extract on pathogenic bacteria clinical strains.

    Science.gov (United States)

    Zuk, Magdalena; Dorotkiewicz-Jach, Agata; Drulis-Kawa, Zuzanna; Arendt, Malgorzata; Kulma, Anna; Szopa, Jan

    2014-07-29

    The antibiotic resistance of pathogenic microorganisms is a worldwide problem. Each year several million people across the world acquire infections with bacteria that are antibiotic-resistant, which is costly in terms of human health. New antibiotics are extremely needed to overcome the current resistance problem. Transgenic flax plants overproducing compounds from phenylpropanoid pathway accumulate phenolic derivatives of potential antioxidative, and thus, antimicrobial activity. Alkali hydrolyzed seedcake extract containing coumaric acid, ferulic acid, caffeic acid, and lignan in high quantities was used as an assayed against pathogenic bacteria (commonly used model organisms and clinical strains). It was shown that the extract components had antibacterial activity, which might be useful as a prophylactic against bacterial infection. Bacteria topoisomerase II (gyrase) inhibition and genomic DNA disintegration are suggested to be the main reason for rendering antibacterial action. The data obtained strongly suggest that the seedcake extract preparation is a suitable candidate for antimicrobial action with a broad spectrum and partial selectivity. Such preparation can be applied in cases where there is a risk of multibacterial infection and excellent answer on global increase in multidrug resistance in pathogenic bacteria.

  9. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ?-lactam antibiotics

    OpenAIRE

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-01-01

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ?-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to A...

  10. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    Science.gov (United States)

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  11. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India.

    Science.gov (United States)

    Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay

    2015-09-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

  12. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

    Directory of Open Access Journals (Sweden)

    A. Naglot

    2015-09-01

    Full Text Available Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s in the inhibitory activity.

  13. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature.

    Science.gov (United States)

    Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae

    2005-06-01

    We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

  14. Genomic and pathogenic analysis of a Muscovy duck parvovirus strain causing short beak and dwarfism syndrome without tongue protrusion.

    Science.gov (United States)

    Fu, Qiuling; Huang, Yu; Wan, Chunhe; Fu, Guanghua; Qi, Baomin; Cheng, Longfei; Shi, Shaohua; Chen, Hongmei; Liu, Rongchang; Chen, Zhenhai

    2017-12-01

    In 2008, clinical cases of short beak and dwarfism syndrome (SBDS) caused by Muscovy duck parvovirus (MDPV) infection were found in mule duck and Taiwan white duck farms in Fujian, China. A MDPV LH strain causing duck SBDS without tongue protrusion was isolated in this study. Phylogenetic analysis show that the MDPV LH strain was clustered together with other MDPV strains, but divergent from GPV isolates. Two major fragment deletions were found in the inverted terminal repeats (ITR) of MDPV LH similar to the ones in the ITR of MDPV GX5, YY and SAAS-SHNH strains. To investigate the pathogenicity of the MDPV LH strain, virus infection of young mule ducks was performed. The infected ducks showed SBDS symptoms including retard growth and shorten beaks without tongue protrusion. Atrophy of thymus, spleen and bursa of Fabricius was identified in the infected ducks. The results show that MDPV LH strain is moderately pathogenic to mule duck, leading to occurrence of SBDS. As far as we know, it is the first study showing that SBDS without tongue protrusion, and atrophy of thymus, spleen and bursa of Fabricius possibly associated with immunosuppression were found in the MDPV-infected ducks. The established duck-MDPV-SBDS system will help us to further work on the virus pathogenesis and develop efficacious vaccine against MDPV infection. Copyright © 2017. Published by Elsevier Ltd.

  15. Draft genome sequence of pathogenic bacteria Vibrio parahaemolyticus strain Ba94C2, associated with acute hepatopancreatic necrosis disease isolate from South America

    Directory of Open Access Journals (Sweden)

    Leda Restrepo

    2016-09-01

    Full Text Available Vibrio parahaemolyticus is a pathogenic bacteria which has been associated to the early mortality syndrome (EMS also known as hepatopancreatic necrosis disease (AHPND causing high mortality in shrimp farms. Pathogenic strains contain two homologous genes related to insecticidal toxin genes, PirA and PirB, these toxin genes are located on a plasmid contained within the bacteria. Genomic sequences have allowed the finding of two strains with a divergent structure related to the geographic region from where they were found. The isolates from the geographic collection of Southeast Asia and Mexico show variable regions on the plasmid genome, indicating that even though they are not alike they still conserve the toxin genes. In this paper, we report for the first time, a pathogenic V. parahaemolyticus strain in shrimp from South America that showed symptoms of AHPND. The genomic analysis revealed that this strain of V. parahaemolyticus found in South America appears to be more related to the Southeast Asia as compared to the Mexican strains. This finding is of major importance for the shrimp industry, especially in regards to the urgent need for disease control strategies to avoid large EMS outbreaks and economic loss, and to determine its dispersion in South America. The whole-genome shotgun project of V. parahaemolyticus strain Ba94C2 have been deposited at DDBJ/EMBL/GenBank under the accession PRJNA335761.

  16. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2017-10-01

    Full Text Available Streptococcus agalactiae, or Group B Streptococcus (GBS, is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05, whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  17. Presence and Characterization of Extraintestinal Pathogenic Escherichia coli Virulence Genes in F165-Positive E. coli Strains Isolated from Diseased Calves and Pigs

    OpenAIRE

    Dezfulian, Hojabr; Batisson, Isabelle; Fairbrother, John M.; Lau, Peter C. K.; Nassar, Atef; Szatmari, George; Harel, Josée

    2003-01-01

    The virulence genotype profile and presence of a pathogenicity island(s) (PAI) were studied in 18 strains of F165-positive Escherichia coli originally isolated from diseased calves or piglets. On the basis of their adhesion phenotypes and genotypes, these extraintestinal pathogenic strains were classified into three groups. The F165 fimbrial complex consists of at least two serologically and genetically distinct fimbriae: F1651 and F1652. F1651 is encoded by the foo operon (pap-like), and F16...

  18. In vitro probiotic characterization of Lactobacillus strains from fermented radish and their anti-adherence activity against enteric pathogens.

    Science.gov (United States)

    Damodharan, Karthiyaini; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-11-01

    In this study, we evaluated the probiotic properties of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus fermentum strains isolated from fermented radish. All the strains survived the simulated oro-gastrointestinal transit condition and showed significantly higher adherence to Caco-2 cells compared with the probiotic strain Lactobacillus rhamnosus GG. The strains showed broad-spectrum antimicrobial activity, autoaggregation, and coaggregation capacity with pathogens. Furthermore, the Lactobacillus strains inhibited the adherence of Yersinia enterocolitica subsp. enterocolitica, Shigella boydii, and Salmonella choleraesuis to the Caco-2 cell line. The strains possessed bile salt hydrolase activity and their cholesterol-lowering activity in vitro was above 50% in the presence of bile. Strains of L. plantarum and L. pentosus possessed the plantaricin-encoding plnEF gene. In addition, the Lactobacillus strains maintained about 80% cell viability after freeze-drying in the presence of a combination of 5% skim milk and 5% maltodextrin as cryoprotectant, and 70% recovery of cell viability was observed in the absence of any cryoprotectant.

  19. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  20. [Antimycotic activity in vitro and in vivo of 5-fluorocytosine on pathogenic strains of Candida albicans and Cryptococcus neoformans].

    Science.gov (United States)

    Costa, A L; Valenti, A; Costa, G; Calogero, F

    1976-01-01

    The authors have analyzed the 5 Fluoro Cytosine (5FC) activity on strains of Candida albicans and Criptococcus neoformans, both in vitro and in vivo. In vitro the minimal inhibitory concentration (MIC) was determined; in vivo tests of pathogenicity on rabbit and mouse have been executed. The various findings obtained have shown a strong activity of the 5FC on strains of Candida and Criptococcus.

  1. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients.

    Science.gov (United States)

    Mendoza-Olazarán, Soraya; Garcia-Mazcorro, José F; Morfín-Otero, Rayo; Villarreal-Treviño, Licet; Camacho-Ortiz, Adrián; Rodríguez-Noriega, Eduardo; Bocanegra-Ibarias, Paola; Maldonado-Garza, Héctor J; Dowd, Scot E; Garza-González, Elvira

    2017-01-01

    Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved in virulence, disease, and defense and both species show phenotypic low biofilm production and evidence of increased antibiotic resistance associated to biofilm production. From both isolates, a new Staphylococcal Cassette Chromosome mec was detected: mec class A, ccr type 1. This is the first report of whole genome sequences of opportunistic S. cohnii isolated from human patients.

  2. The pathogenic potential of different pulsed-field gel electrophoresis types of Listeria monocytogenes strains isolated from food in Northeast Bosnia and Herzegovina.

    Science.gov (United States)

    Hodžić, Snjezana; Hukić, Mirsada; Franciosa, Giovanna; Aureli, Paolo

    2011-09-01

    Listeria monocytogenes is often present in meat and meat products that are sold in the area of northeast Bosnia and Herzegovina. The major objective of this study was to examine the virulence of L. monocytogenes strains isolated from these types of food in that geographic area. Polymerase chain reaction was used to detect eight genes responsible for virulence of this pathogen, namely, prfA, inlA, inlB, hly, plcA, plcB, actA, and mpl. All examined isolates were confirmed to possess the eight virulence genes. Ten different pulsed-field gel electrophoresis (PFGE) macrorestriction profiles were recognized among 19 L. monocytogenes strains after restriction with two different endonucleases (ApaI and AscI). The pathogenicity of three different PFGE types of L. monocytogenes was confirmed through in vivo tests, which were performed on female white mice (Pasteur strain), and it ranged from 3.55 × 10(8) LD50 to 1.58 × 10(10) LD50. All of the three different PFGE types of L. monocytogenes were regarded as moderately virulent in relation to the reference strain L. monocytogenes Scott A. This result might be one of the reasons for the absence of reported listeriosis in northeast Bosnia and Herzegovina, despite the high degree of food contamination with this pathogen.

  3. Efficacy of the Non-Pathogenic Agrobacterium Strains K84 and K1026 against Crown Gall in Tunisia

    Directory of Open Access Journals (Sweden)

    A. Rhouma

    2004-08-01

    Full Text Available The non-pathogenic Agrobacterium radiobacter strain K84 and its genetically modified (GEM strain K1026 were tested for their effectiveness against local Tunisian strains and two reference strains (C58 and B6 of the crown gall bacterium Agrobacterium tumefaciens. Tests in planta were carried out on herbaceous plants (tomato and tagetes and on some sensitive rootstocks (bitter almond, peach almond hybrid GF677 and quince BA29. In vitro tests showed that both K84 and K1026 were effective and that the difference between these strains was not statistically significant. On tomato and tagetes, strain K84 was effective against all crown gall isolates with the exception of the A. tumefaciens reference strain B6. GEM strain K1026 was very effective against all isolates from Tunisia and against the reference strains. Both antagonistic strains significantly reduced the percentage of galled plants as well as the number of galls per plant. Under field conditions, both antagonists controlled crown gall effectively. Best results were obtained on the bitter almond-tree rootstock. Antagonist effectiveness was less evident on quince BA29 and peach almond GF677 rootstocks. The genetically modified strain K1026 is of interest in controlling crown gall disease in Tunisia.

  4. Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes

    Directory of Open Access Journals (Sweden)

    Lorraine P. Smith

    2011-01-01

    Full Text Available Bacterial artificial chromosome (BAC vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130 of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.

  5. Molecular, morphological and pathogenic characterization of six strains of Metarhizium spp. (Deuteromycotina: Hyphomycetes for the control of Aegorhinus superciliosus (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    María Sepúlveda

    2016-03-01

    Full Text Available Aegorhinus superciliosus is an important pest on blueberry (Vaccinium corymbosum L. and other fruit trees. The use of entomopathogenic fungi as Metarhizium spp. has been evaluated for the control of this insect, but variability has been observed among different strains. The aim of this study was to characterize six promising strains of Metarhizium spp. for the control of A. superciliosus. The studied strains were QuM173c, Qu-M363, Qu-M171a, Qu-M156a, Qu-M421, and Qu-M430, all of which belonged to the Chilean Collection of Microbial Genetic Resources (ChCMGR of the Institute de Investigaciones Agropecuarias (INIA, Chile. Molecular characterization was made by sequencing the ITS region (Internal Transcribed Spacers, ITS-5.8S rDNA. The morphology of conidia was evaluated through scanning electron microscopy and radial colony growth was evaluated in potato dextrose agar (PDA, Sabouraud dextrose agar (SDA, agar enriched with larvae of Galleria mellonella (Lepidoptera: Pyralidae (GA, and agar enriched with adults of A. superciliosus (AA. Pathogenicity was studied based on mortality of adults of A. superciliosus inoculated with conidia. Sequencing of the ITS-5.8S rDNA region indicates that the strains belong to the clade of M. anisopliae var. anisopliae, except for Qu-M171a, which was identified as M. anisopliae var. lepidiotum. Conidia average length for the six strains was 5.09 pm and average conidia width was 1.92 pm. Radial colony growth differences were observed between strains (p < 0.01 and between different growth media (p < 0.01. The strains exhibited the highest colony growth in the GA medium, while in the AA medium they showed the lowest (p < 0.01. Pathogenicity tests show that Qu-M430 reached a 90% mortality rate (p < 0.01. Results show that there is variability between the studied strains, which is expressed in their morphology, molecular characteristics and pathogenicity towards A. superciliosus.

  6. Draft Genome Sequences of the Fish Pathogen Vibrio harveyi Strains VH2 and VH5

    DEFF Research Database (Denmark)

    Castillo, Daniel; D'Alvise, Paul; Middelboe, Mathias

    2015-01-01

    Vibrio harveyi is an important marine pathogen that is responsible for vibriosis outbreaks in cultured fish and invertebrates worldwide. Here, we announce the draft genome sequences of V. harveyi strains VH2 and VH5, isolated from farmed juvenile Seriola dumerili during outbreaks of vibriosis...... in Crete, Greece....

  7. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    Science.gov (United States)

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Youssef Darzi

    Full Text Available Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease.

  9. Potential Role of Diploscapter sp. Strain LKC25, a Bacterivorous Nematode from Soil, as a Vector of Food-Borne Pathogenic Bacteria to Preharvest Fruits and Vegetables

    Science.gov (United States)

    Gibbs, Daunte S.; Anderson, Gary L.; Beuchat, Larry R.; Carta, Lynn K.; Williams, Phillip L.

    2005-01-01

    Diploscapter, a thermotolerant, free-living soil bacterial-feeding nematode commonly found in compost, sewage, and agricultural soil in the United States, was studied to determine its potential role as a vehicle of Salmonella enterica serotype Poona, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes in contaminating preharvest fruits and vegetables. The ability of Diploscapter sp. strain LKC25 to survive on agar media, in cow manure, and in composted turkey manure and to be attracted to, ingest, and disperse food-borne pathogens inoculated into soil or a mixture of soil and composted turkey manure was investigated. Diploscapter sp. strain LKC25 survived and reproduced in lawns of S. enterica serotype Poona, E. coli O157:H7, and L. monocytogenes on agar media and in cow manure and composted turkey manure. Attraction of Diploscapter sp. strain LKC25 to colonies of pathogenic bacteria on tryptic soy agar within 10, 20, 30, and 60 min and 24 h was determined. At least 85% of the worms initially placed 0.5 to 1 cm away from bacterial colonies migrated to the colonies within 1 h. Within 24 h, ≥90% of the worms were embedded in colonies. The potential of Diploscapter sp. strain LKC25 to shed pathogenic bacteria after exposure to bacteria inoculated into soil or a mixture of soil and composted turkey manure was investigated. Results indicate that Diploscapter sp. strain LKC25 can shed pathogenic bacteria after exposure to pathogens in these milieus. They also demonstrate its potential to serve as a vector of food-borne pathogenic bacteria in soil, with or without amendment with compost, to the surface of preharvest fruits and vegetables in contact with soil. PMID:15870330

  10. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation.

    Science.gov (United States)

    Ruan, Yunfeng; Shen, Lu; Zou, Yan; Qi, Zhengnan; Yin, Jun; Jiang, Jie; Guo, Liang; He, Lin; Chen, Zijiang; Tang, Zisheng; Qin, Shengying

    2015-02-25

    Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. Prevotella intermedia ZT

  11. Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines.

    Science.gov (United States)

    Cruz, Alejandra; Marín, Patricia; González-Jaén, M Teresa; Aguilar, Kristel Grace I; Cumagun, Christian Joseph R

    2013-09-01

    Fusarium fujikuroi Nirenberg is a maize and rice pathogen causing important agricultural losses and produces fumonisins - mycotoxins which pose health risk to humans and farm animals. However, little information is available about the phylogenetics of this species and its ability to produce fumonisins in rice. We studied 32 strains isolated from rice in the Philippines and performed a phylogenetic analysis using the partial sequence of Elongation Factor 1 alpha (EF-1α) including isolates belonging to closely related species. Fumonisin B1 (FB1 ) production was analyzed in 7-day-old cultures grown in fumonisin-inducing medium by an enzyme-linked immunosorbent assay-based method and by real-time reverse transcriptase-polymerase chain reaction using primers for FUM1 gene, a key gene in fumonisin biosynthesis. Nucleotide diversities per site (π) were 0.00024 ± 0.00022 (standard deviation) for the 32 F. fujikuroi strains from the Philippines and 0.00189 ± 0.00143 for all 34 F. fujikuroi strains, respectively. F. fujikuroi isolates grouped into one cluster separated from the rest of isolates belonging to the closely related F. proliferatum and showed very low variability, irrespective of their geographic origin. The cluster containing strains of F. proliferatum showed higher intraspecific variability than F. fujikuroi. Thirteen of the 32 strains analyzed were FB1 producers (40.62%), with production ranging from 0.386 to 223.83 ppm. All isolates analyzed showed FUM1 gene expression above 1 and higher than the CT value of the non-template control sample. Both seedling stunting and elongation were induced by the isolates in comparison with the control. F. fujikuroi are distinct from F. proliferatum isolates based on phytogenetic analysis and are potential fumonisin producers because all are positive for FUM1 gene expression. No relationship between fumonisin production and pathogenicity could be observed. © 2013 Society of Chemical Industry.

  12. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi.

    Science.gov (United States)

    Prasad, Sathish; Morris, Peter C; Hansen, Rasmus; Meaden, Philip G; Austin, Brian

    2005-09-01

    Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic Vibrio harveyi strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a Vibrio sp., Vibrio fischeri, Vibrio gazogenes and Vibrio parahaemolyticus. The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at > or =60 degrees C for 10 min. The activity was stable between pH 2-11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of approximately 5.4 and a molecular mass of approximately 32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches.

  13. Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-10-01

    Full Text Available Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptome of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNP in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.

  14. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  15. Cross-species infection of specific-pathogen-free pigs by a genotype 4 strain of human hepatitis E virus

    Science.gov (United States)

    Feagins, A. R.; Opriessnig, T.; Huang, Y. W.; Halbur, P. G.; Meng, X. J.

    2010-01-01

    SUMMARY Hepatitis E virus (HEV) is an important pathogen. The animal strain of HEV, swine HEV, is related to human HEV. The genotype 3 swine HEV infected humans and genotype 3 human HEV infected pigs. The genotype 4 swine and human HEV strains are genetically related, but it is unknown whether genotype 4 human HEV can infect pigs. A swine bioassay was utilized in this study to determine whether genotype 4 human HEV can infect pigs. Fifteen, 4-week-old, specific-pathogen-free pigs were divided into 3 groups of 5 each. Group 1 pigs were each inoculated intravenously with PBS buffer as negative controls, group 2 pigs similarly with genotype 3 human HEV (strain US-2), and group 3 pigs similarly with genotype 4 human HEV (strain TW6196E). Serum and fecal samples were collected at 0, 7, 14, 21, 28, 35, 42, 49, and 56 days postinoculation (dpi) and tested for evidence of HEV infection. All pigs were necropsied at 56 dpi. As expected, the negative control pigs remained negative. The positive control pigs inoculated with genotype 3 human HEV all became infected as evidenced by detection of HEV antibodies, viremia and fecal virus shedding. All five pigs in group 3 inoculated with genotype 4 human HEV also became infected: fecal virus shedding and viremia were detected variably from 7 to 56 dpi, and seroconversion occurred by 28 dpi. The data indicated that genotype 4 human HEV has an expanded host range, and the results have important implications for understanding the natural history and zoonosis of HEV. PMID:18551597

  16. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  17. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nho

    Full Text Available Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus in northeast Asia, can be distinctly divided into two groups (type I and type II by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109 were determined and compared with the previously determined genome of a Korean strain (KCTC 11537. The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity.

  18. Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison).

    Science.gov (United States)

    Englund, L; Hård af Segerstad, C

    1998-01-01

    We compared two strains of avian influenza A viruses of subtype H10 by exposing mink to aerosols of A/mink/Sweden/3,900/84 (H10N4) naturally pathogenic for mink, or A/chicken/Germany/N/49, (H10N7). Lesions in the respiratory tract during the first week after infection were studied and described. Both virus strains caused inflammatory reactions in the lungs and antibody production in exposed mink but only mink/84 virus was reisolated. The lesions caused by mink/84 virus were more severe with higher area density of pneumonia, lower daily weight gain, and more virus in the tissues detected by immunohistochemistry. The results indicate that mink/84 (H10N4), but not chicken/49 virus (H10N7), established multiple cycle replication in infected cells in the mink.

  19. Vegetative compatibility group of Fusarium solani pathogenic to tobacco plant in peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Norhafeez bin Jusoh

    2013-12-01

    Full Text Available Five strains of Fusarium solani isolated from root rot of tobacco from Kelantan and Terengganu, Malaysia were tested for the pathogenicity on tobacco seedlings by root dipping method. All 5 isolates showed discoloration on the roots. The nitrate non-utilizing (nit mutants were generated from these pathogenic strains of F. solani and a compatible nit1 and NitM pair was obtained in each strain. Vegetative Compatible Groups (VCGs by nit mutants were determined. All 5 strains of F. solani were assigned to the independent VCGs. Non-pathogenic strains of F. solani previously isolated from root rot of tobacco in Malaysia also generated nit mutants and were assigned to 10 different VCGs. However, complementation of nit mutants between 5 pathogenic strains and 7 non-pathogenic strains of F. solani was not achieved. Both pathogenic and nonpathogenic strains were assigned to the independent VCGs. This suggested that the isolates of F. solani pathogenic to tobacco were derived from the progenies of crossing in the field. However, perithecium formation was not observed in their cultures.

  20. Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain.

    Science.gov (United States)

    Zhang, Wei-wei; Sun, Kun; Cheng, Shuang; Sun, Li

    2008-10-01

    Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQ(Vh) in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQ(Vh) protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQ(Vh) protein were 50 degrees C and pH 8.0. A vaccination study indicated that the purified recombinant DegQ(Vh) was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQ(Vh) as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQ(Vh) protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E. coli strain harboring pAQ1 could express and secrete the chimeric DegQ(Vh) protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

  1. Daphnia magna shows reduced infection upon secondary exposure to a pathogen.

    Science.gov (United States)

    McTaggart, Seanna J; Wilson, Philip J; Little, Tom J

    2012-12-23

    Previous pathogen exposure is an important predictor of the probability of becoming infected. This is deeply understood for vertebrate hosts, and increasingly so for invertebrate hosts. Here, we test if an initial pathogen exposure changes the infection outcome to a secondary pathogen exposure in the natural host-pathogen system Daphnia magna and Pasteuria ramosa. Hosts were initially exposed to an infective pathogen strain, a non-infective pathogen strain or a control. The same hosts underwent a second exposure, this time to an infective pathogen strain, either immediately after the initial encounter or 48 h later. We observed that an initial encounter with a pathogen always conferred protection against infection compared with controls.

  2. Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea.

    Science.gov (United States)

    Choi, Hwan-Won; Nam, Eeuri; Lee, Yoo Jin; Noh, Yun-Hee; Lee, Seung-Chul; Yoon, In-Joong; Kim, Hyun-Soo; Kang, Shien-Young; Choi, Young-Ki; Lee, Changhee

    2014-06-04

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine virus that exhibits genetic and pathogenic heterogeneity among isolates. The present study was conducted to determine the complete genome sequence and pathogenicity of two Korean type 2 PRRSV nonstructural protein 2 (nsp2) deletion mutants, CA-2 and KNU-12-KJ4. The full-length genomes of CA-2 and KNU-12-KJ4 were determined to be 15,018 and 15,019 nucleotides in length, excluding the poly(A) tail, respectively, which were 393- or 392-nucleotide shorter than that of the type 2 NA prototype strain VR-2332 due to the presence of notable large deletions within the nsp2 gene. The genomes of CA-2 and KNU-12-KJ4 consisted of a 189- or 190-nucleotide 5' untranslated region (UTR), a 14,677-nucleotide protein-coding region, and a 151-nucleotide 3' UTR. Whole genome evaluation revealed that the nucleotide sequences of CA-2 and KNU-12-KJ4 are most similar to each other (10.7% sequence divergence), and then to the Korean strain CA-1 (11.3% sequence divergence) and the US strain MN184C (13.1% sequence divergence), respectively. To evaluate the in vitro immunity of nsp2 deletion variants, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM-pCD163 cells infected with each virus strain using quantitative real-time RT-PCR. Cytokine genes including IL-8, IL-10, and TNF-α, and chemokines such as MCP-1 and RANTES were found to be significantly elevated in nsp2 deletion virus-infected PAM cells. In contrast, expression of interferons (IFN-β, γ, and λ) and antiviral genes including ISG-15, -54, and -56 were unchanged or down-regulated in PAM cells infected with the nsp2 deletion mutants. Animal studies to assess the pathogenicity of nsp2 deletion PRRSVs demonstrated that both CA-2 and KNU-12-KJ4 strains notably produce weight loss in infected pigs. Furthermore, the nsp2 deletion mutants replicated well in pigs with significantly increased and prolonged

  3. Two new nontoxic, non-pathogenic strains of Sphingomonas elodea for gellan gum production.

    Science.gov (United States)

    Dolan, Laurie C; Matulka, Ray A; LeBeau, Alex L; Boulet, Jamie M

    2016-07-01

    Two new strains of Sphingomonas elodea (designated as PHP1 and PBAD1) were tested for toxicity and pathogenicity in healthy Sprague-Dawley CD(®) IGS rats in separate studies. In each study, twelve rats/sex were administered ≥10(8) viable cells/rat by oral gavage, and four untreated rats/sex served as controls. Blood, feces, and selected organs/tissues collected at various times over the course of the 22 day study were evaluated for the presence of PHP1 or PBAD1 (depending on the study) by a validated method, to determine the potential for survival, propagation, or infectivity of PHP1 and PBAD1 cells in the rat. No mortalities, test substance-related changes in clinical or macroscopic findings, body weight or body weight gain were observed in treated animals compared with controls, indicating a lack of toxicity. PHP1 or PBAD1 were not detected in the tissue, fecal or fluid samples collected from treated animals. Therefore, neither PHP1 nor PBAD1 were pathogenic or acutely toxic under the conditions of the studies. Copyright © 2016. Published by Elsevier Inc.

  4. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    Science.gov (United States)

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  5. Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016.

    Science.gov (United States)

    Wang, Rui; Li, Liping; Huang, Yan; Luo, Fuguang; Liang, Wanwen; Gan, Xi; Huang, Ting; Lei, Aiying; Chen, Ming; Chen, Lianfu

    2015-11-04

    Streptococcus agalactiae (S. agalactiae), also known as group B Streptococcus (GBS), is an important pathogen for neonatal pneumonia, meningitis, bovine mastitis, and fish meningoencephalitis. The global outbreaks of Streptococcus disease in tilapia cause huge economic losses and threaten human food hygiene safety as well. To investigate the mechanism of S. agalactiae pathogenesis in tilapia and develop attenuated S. agalactiae vaccine, this study sequenced and comparatively analyzed the whole genomes of virulent wild-type S. agalactiae strain HN016 and its highly-passaged attenuated strain YM001 derived from tilapia. We performed Illumina sequencing of DNA prepared from strain HN016 and YM001. Sequencedreads were assembled and nucleotide comparisons, single nucleotide polymorphism (SNP) , indels were analyzed between the draft genomes of HN016 and YM001. Clustered regularly interspaced short palindromic repeats (CRISPRs) and prophage were detected and analyzed in different S. agalactiae strains. The genome of S. agalactiae YM001 was 2,047,957 bp with a GC content of 35.61 %; it contained 2044 genes and 88 RNAs. Meanwhile, the genome of S. agalactiae HN016 was 2,064,722 bp with a GC content of 35.66 %; it had 2063 genes and 101 RNAs. Comparative genome analysis indicated that compared with HN016, YM001 genome had two significant large deletions, at the sizes of 5832 and 11,116 bp respectively, resulting in the deletion of three rRNA and ten tRNA genes, as well as the deletion and functional damage of ten genes related to metabolism, transport, growth, anti-stress, etc. Besides these two large deletions, other ten deletions and 28 single nucleotide variations (SNVs) were also identified, mainly affecting the metabolism- and growth-related genes. The genome of attenuated S. agalactiae YM001 showed significant variations, resulting in the deletion of 10 functional genes, compared to the parental pathogenic strain HN016. The deleted and mutated functional genes all

  6. Kinases of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae: an overview

    Directory of Open Access Journals (Sweden)

    Alexandre Melo Bailão

    2007-01-01

    Full Text Available Mycoplasma synoviae and Mycoplasma hyopneumoniae are wall-less eubacteria belonging to the class of Mollicutes. These prokaryotes have a reduced genome size and reduced biosynthetic machinery. They cause great losses in animal production. M. synoviae is responsible for an upper respiratory tract disease of chickens and turkeys. M. hyopneumoniae is the causative agent of enzootic pneumonia in pigs. The complete genomes of these organisms showed 17 ORFs encoding kinases in M. synoviae and 15 in each of the M. hyopneumoniae strain. Four kinase genes were restricted to the avian pathogen while three were specific to the pig pathogen when compared to each other. All deduced kinases found in the non pathogenic strain (J[ATCC25934] were also found in the pathogenic M. hyopneumoniae strain. The enzymes were classified in nine families composing five fold groups.

  7. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis.

    Science.gov (United States)

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Teixidó, Neus; Figge, Marian J; Abadias, Maribel

    2013-06-01

    The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are "competitive with" or "antagonistic to" potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Diversity and Antagonistic Activity of Actinomycete Strains From Myristica Swamp Soils Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Varghese Rlnoy

    2014-05-01

    Full Text Available Under the present investigation Actinomycetes were isolated from the soils of Myristica swamps of southern Western Ghats and the antagonistic activity against different human bacterial pathogens was evaluated. Results of the present study revealed that Actinomycetes population in the soils of Myristica swamp was spatially and seasonally varied. Actinomycetes load was varied from 24×104 to 71×103, from 129×103 to 40×103 and from 31×104 to 84×103 in post monsoon, monsoon and pre monsoon respectively. A total of 23 Actinomycetes strains belonging to six genera were isolated from swamp soils. Identification of the isolates showed that most of the isolates belonged to the genus Streptomyces (11, followed by Nocardia (6, Micromonospora (3, Pseudonocardia (1, Streptosporangium (1, and Nocardiopsis (1. Antagonistic studies revealed that 91.3% of Actinomycete isolates were active against one or more tested pathogens, of that 56.52% exhibited activity against Gram negative and 86.95% showed activity against Gram positive bacteria. 39.13% isolates were active against all the bacterial pathogens selected and its inhibition zone diameter was also high. 69.5% of Actinomycetes were exhibited antibacterial activity against Listeria followed by Bacillus cereus (65.21%, Staphylococcus (60.86%, Vibrio cholera (52.17%, Salmonella (52.17% and E. coli (39.13%. The results indicate that the Myristica swamp soils of Southern Western Ghats might be a remarkable reserve of Actinomycetes with potential antagonistic activity.

  9. The first pathogenic Yersinia enterocolitica bioserotype 4/O:3 strain isolated from a hunted wild boar (Sus scrofa) in Poland.

    Science.gov (United States)

    Bancerz-Kisiel, A; Platt-Samoraj, A; Szczerba-Turek, A; Syczyło, K; Szweda, W

    2015-10-01

    The objective of this study was to identify the bioserotypes and virulence markers of Yersinia enterocolitica strains isolated from wild boars in Poland. Bacteriological examination of 302 rectal swabs from 151 wild boars resulted in the isolation of 40 Y. enterocolitica strains. The majority of the examined strains (n = 30), belonged to bioserotype 1A/NI. The presence of individual Y. enterocolitica strains belonging to bioserotypes 1B/NI (3), 1A/O:8 (2), 1A/O:27 (2), 2/NI (1), 2/O:9 (1) and 4/O:3 (1) was also demonstrated. Amplicons corresponding to ail and ystA genes were observed only in one Y. enterocolitica strain--bioserotype 4/O:3. The ail and ystB gene amplicons were noted in 11 Y. enterocolitica biotype 1A strains, although single amplicons of ystB gene were found in 28 of the tested samples. In four out of eight cases when two Y. enterocolitica strains were isolated from the same animal, the strains differed in biotype, serotype or virulence markers. The European population of wild boars continues to grow and spread to new areas, therefore, wild boars harbouring potentially pathogenic Y. enterocolitica 4/O:3 strains pose a challenge to public health.

  10. Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW(T), Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts.

    Science.gov (United States)

    Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai

    2016-06-29

    Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.

  11. Phytotoxic activity against Bromus tectorum for secondary metabolites of a seed-pathogenic Fusarium strain belonging to the F. tricinctum species complex.

    Science.gov (United States)

    Masi, Marco; Meyer, Susan; Pescitelli, Gennaro; Cimmino, Alessio; Clement, Suzette; Peacock, Beth; Evidente, Antonio

    2017-12-01

    The winter annual grass Bromus tectorum (cheatgrass) has become highly invasive in semiarid ecosystems of western North America. In these areas, a natural phenomenon, complete cheatgrass stand failure ('die-off'), is apparently caused by a complex interaction among soilborne fungal pathogens. Several Fusarium strains belonging to the Fusarium tricinctum species complex were isolated from these soils and found to be pathogenic on B. tectorum seeds. One of these strains was produced in cheatgrass seed culture to evaluate its ability to produce phytotoxins. Six metabolites were isolated and identified by spectroscopic methods (essentially 1D and 2D NMR and ESIMS) as acuminatopyrone (1), blumenol A (2), chlamydosporol (3), isochlamydosporol (4), ergosterol (5) and 4-hydroxybenzaldehyde (6). Upon testing against B. tectorum in a seedling bioassay, (6) the coleoptile and radicle length of cheatgrass seedlings were significantly reduced. Compounds 1 and 2 showed moderate activity, while 3-5 were not significantly different from the control.

  12. Pathogenicity and Host Range of Pathogen Causing Black Raspberry (Rubus coreanus) Anthracnose in Korea

    OpenAIRE

    Uh Seong Jeong; Ju Hee Kim; Ki Kwon Lee; Seong Soo Cheong; Wang Hyu Lee

    2013-01-01

    The strains of Colletotrichum gloeosporioides, C. coccodes, C. acutatum isolated from black raspberry werepathogenic to apple and strawberry after dropping inoculation, but showed weak pathogenicity in hot-pepperand tomato. The anthracnose pathogens of C. gloeosporioides, C. orbiculare, C. acutatum isolated from apple,hot-pepper and pumpkin showed pathogenicity in black raspberry. Moreover, the anthracnose pathogensisolated from apple caused disease symptoms in non-wounded inoculation.

  13. Analytical solution for a strained reinforcement layer bonded to lip-shaped crack under remote mode Ⅲ uniform load and concentrated load

    Institute of Scientific and Technical Information of China (English)

    You-wen LIU; Chao XIE; Chun-zhi JIANG; Qi-hong FANG

    2010-01-01

    In this paper,the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode Ⅲ uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation.The effects of material combinations,bond of interface and geometric configurations on interfacial stresses generated by eigenstrain,remote load and concentrated load are studied.The results show that the stress concentration and interfacial stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.

  14. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    Science.gov (United States)

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  15. Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity.

    Science.gov (United States)

    Xiang, Bin; Zhu, Wenxian; Li, Yaling; Gao, Pei; Liang, Jianpeng; Liu, Di; Ding, Chan; Liao, Ming; Kang, Yinfeng; Ren, Tao

    2018-06-01

    Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain showed stronger replication capacity than the La Sota strain in mature chicken BM-DCs. Gene expression profiling showed that MDA5, LGP2, TLR3, TLR7, IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, IL-18, IL-8, CCL5, IL-10, IL-12, MHC-I, and MHC-II levels were altered in mature DCs after infection with NDVs at all evaluated times postinfection. Notably, the GM strain triggered stronger innate immune responses than the La Sota strain in chicken BM-DCs. However, both strains were able to suppress the expression of some cytokines, such as IL-6 and IFN-α, in mature chicken DCs at 24 hpi. These data provide a foundation for further investigation of the role of chicken DCs in NDV infection.

  16. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  17. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  18. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  19. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  20. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Directory of Open Access Journals (Sweden)

    Tim van Opijnen

    2016-09-01

    Full Text Available The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  1. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells

    Science.gov (United States)

    Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-01-01

    ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912

  2. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    Science.gov (United States)

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  3. Typing of avian pathogenic Escherichia coli strains by REP-PCR Tipificação de amostras aviárias patogênicas de Escherichia coli pela REP-PCR

    Directory of Open Access Journals (Sweden)

    Marcelo Brocchi

    2006-06-01

    Full Text Available In the present study the repetitive extragenic palindromic (REP polymerase chain reaction (PCR technique was used to establish the clonal variability of 49 avian Escherichia coli (APEC strains isolated from different outbreak cases of septicemia (n=24, swollen head syndrome (n=14 and omphalitis (n=11. Thirty commensal strains isolated from poultry with no signs of these illnesses were used as control strains. The purified DNA of these strains produced electrophoretic profiles ranging from 0 to 15 bands with molecular sizes varying from 100 bp to 6.1 kb, allowing the grouping of the 79 strains into a dendrogram containing 49 REP-types. Although REP-PCR showed good discriminating power it was not able to group the strains either into specific pathogenic classes or to differentiate between pathogenic and non-pathogenic strains. On the contrary, we recently demonstrated that other techniques such as ERIC-PCR and isoenzyme profiles are appropriate to discriminate between commensal and APEC strains and also to group these strains into specific pathogenic classes. In conclusion, REP-PCR seems to be a technique neither efficient nor universal for APEC strains discrimination. However, the population clonal structure obtained with the use of REP-PCR must not be ignored particularly if one takes into account that the APEC pathogenic mechanisms are not completely understood yet.A técnica de REP (Repetitive extragenic palindrome-PCR foi utilizada para avaliar a variabilidade genética de 49 amostras de Escherichia coli patogênicas para aves (APEC, isoladas de aves de corte (frangos em diferentes surtos de septicemia (n=24, síndrome da cabeça inchada (n=14 e onfalite (n=11. Trinta amostras comensais, isoladas de frangos sem sinais de doença, foram utilizadas como controle. A análise do perfil eletroforético obtido por reação de REP-PCR utilizando DNA purificado das amostras evidenciou a amplificação de 0 a 15 bandas de DNA com pesos moleculares

  4. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska

    Science.gov (United States)

    Hollmén, Tuula E.; DebRoy, Chitrita; Flint, Paul L.; Safine, David E.; Schamber, Jason L.; Riddle, Ann E.; Trust, Kimberly A.

    2011-01-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.

  5. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska.

    Science.gov (United States)

    Hollmén, Tuula E; Debroy, Chitrita; Flint, Paul L; Safine, David E; Schamber, Jason L; Riddle, Ann E; Trust, Kimberly A

    2011-04-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Isolation of lactic acid bacteria from swine milk and characterization of potential probiotic strains with antagonistic effects against swine-associated gastrointestinal pathogens.

    Science.gov (United States)

    Quilodrán-Vega, Sandra Rayén; Villena, Julio; Valdebenito, José; Salas, María José; Parra, Cristian; Ruiz, Alvaro; Kitazawa, Haruki; García, Apolinaria

    2016-06-01

    Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.

  7. Pathogenic potential of a Costa Rican strain of 'Candidatus Rickettsia amblyommii' in guinea pigs (Cavia porcellus) and protective immunity against Rickettsia rickettsii.

    Science.gov (United States)

    Rivas, Juan J; Moreira-Soto, Andrés; Alvarado, Gilberth; Taylor, Lizeth; Calderón-Arguedas, Olger; Hun, Laya; Corrales-Aguilar, Eugenia; Morales, Juan Alberto; Troyo, Adriana

    2015-09-01

    'Candidatus Rickettsia amblyommii' is a spotted fever group rickettsia that is not considered pathogenic, although there is serologic evidence of possible infection in animals and humans. The aim of this study was to evaluate the pathogenic potential of a Costa Rican strain of 'Candidatus R. amblyommii' in guinea pigs and determine its capacity to generate protective immunity against a subsequent infection with a local strain of Rickettsia rickettsii isolated from a human case. Six guinea pigs were inoculated with 'Candidatus R. amblyommii' strain 9-CC-3-1 and two controls with cell culture medium. Health status was evaluated, and necropsies were executed at days 2, 4, and 13. Blood and tissues were processed by PCR to detect the gltA gene, and end titers of anti-'Candidatus R. amblyommii' IgG were determined by indirect immunofluorescence. To evaluate protective immunity, another 5 guinea pigs were infected with 'Candidatus R. amblyommii' (IGPs). After 4 weeks, these 5 IGPs and 3 controls (CGPs) were inoculated with pathogenic R. rickettsii. Clinical signs and titers of anti-Rickettsia IgG were determined. IgG titers reached 1:512 at day 13 post-infection with 'Candidatus R. amblyommii'. On day 2 after inoculation, two guinea pigs had enlarged testicles and 'Candidatus R. amblyommii' DNA was detected in testicles. Histopathology confirmed piogranulomatous orchitis with perivascular inflammatory infiltrate in the epididymis. In the protective immunity assay, anti-Rickettsia IgG end titers after R. rickettsii infection were lower in IGPs than in CGPs. IGPs exhibited only transient fever, while CGP showed signs of severe disease and mortality. R. rickettsii was detected in testicles and blood of CGPs. Results show that the strain 9-CC-3-1 of 'Candidatus R. amblyommii' was able to generate pathology and an antibody response in guinea pigs. Moreover, its capacity to generate protective immunity against R. rickettsii may modulate the epidemiology and severity of Rocky

  8. Selection and identification of non-pathogenic bacteria isolated from fermented pickles with antagonistic properties against two shrimp pathogens.

    Science.gov (United States)

    Zokaeifar, Hadi; Balcázar, José Luis; Kamarudin, Mohd Salleh; Sijam, Kamaruzaman; Arshad, Aziz; Saad, Che Roos

    2012-06-01

    In this study, potential probiotic strains were isolated from fermented pickles based on antagonistic activity against two shrimp pathogens (Vibrio harveyi and Vibrio parahaemolyticus). Two strains L10 and G1 were identified by biochemical tests, followed by16S ribosomal RNA gene sequence analysis as Bacillus subtilis, and characterized by PCR amplification of repetitive bacterial DNA elements (Rep-PCR). Subsequently, B. subtilis L10 and G1 strains were tested for antibacterial activity under different physical conditions, including culture medium, salinity, pH and temperature using the agar well diffusion assay. Among the different culture media, LB broth was the most suitable medium for antibacterial production. Both strains showed the highest level of antibacterial activity against two pathogens at 30 °C and 1.0% NaCl. Under the pH conditions, strain G1 showed the greatest activity against V. harveyi at pH 7.3-8.0 and against V. parahaemolyticus at pH 6.0-8.0, whereas strain L10 showed the greatest activity against two pathogens at pH 7.3. The cell-free supernatants of both strains were treated with four different enzymes in order to characterize the antibacterial substances against V. harveyi. The result showed considerable reduction of antibacterial activity for both strains, indicating the proteinaceous nature of the antibacterial substances. A wide range of tolerance to NaCl, pH and temperature was also recorded for both strains. In addition, both strains showed no virulence effect in juvenile shrimp Litopenaeus vannamei. On the basis of these results and safety of strains to L. vannamei, they may be considered for future challenge experiments in shrimp as a very promising alternative to the use of antibiotics.

  9. Molecular prophage typing of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kwon, Hyuk-Joon; Seong, Won-Jin; Kim, Jae-Hong

    2013-03-23

    Escherichia coli prophages confer virulence and resistance to physico-chemical, nutritional, and antibiotic stresses on their hosts, and they enhance the evolution of E. coli. Thus, studies on profiles of E. coli prophages are valuable to understand the population structure and evolution of E. coli pathogenicity. Large terminase genes participate in phage genome packaging and are one of the cornerstones for the identification of prophages. Thus, we designed primers to detect 16 types of large terminase genes and analyzed the genomes of 48 E. coli and Shigella reference strains for the prophage markers. We also investigated the distribution of the 16 prophage markers among 92 avian pathogenic E. coli (APEC) strains. APEC strains were classified into 61 prophage types (PPTs). Each strain was different from the reference strains as measured by the PPTs and from the frequency of each prophage marker. Investigation of the distribution of prophage-related serum resistance (bor), toxin (stx1 and cdtI), and T3SS effector (lom, espK, sopE, nleB, and ospG) genes revealed the presence of bor (44.1%), lom (95.5%) and cdtI (9.1%) in APEC strains with related prophages. Therefore, the molecular prophage typing method may be useful to understand population structure and evolution of E. coli pathogenicity, and further studies on the mobility of the prophages and the roles of virulence genes in APEC pathogenicity may be valuable. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes

    DEFF Research Database (Denmark)

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen

    2015-01-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence...... experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the colonization factor YghJ and the surface adhesin antigen 43, which is involved in pathogenesis of other Gram-negative bacteria......-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative...

  11. Prevalence of pathogens from Mollicutes class in cattle affected by respiratory diseases and molecular characteristics of Mycoplasma bovis field strains

    Directory of Open Access Journals (Sweden)

    Szacawa Ewelina

    2016-12-01

    Full Text Available Introduction: Mycoplasma bovis is one of the main pathogens involved in cattle pneumonia. Other mycoplasmas have also been directly implicated in respiratory diseases in cattle. The prevalence of different Mycoplasma spp. in cattle affected by respiratory diseases and molecular characteristics of M. bovis field strains were evaluated. Material and Methods: In total, 713 nasal swabs from 73 cattle herds were tested. The uvrC gene fragment was amplified by PCR and PCR products were sequenced. PCR/DGGE and RAPD were performed. Results: It was found that 39 (5.5% samples were positive for M. bovis in the PCR and six field strains had point nucleotide mutations. Additionally, the phylogenetic analysis of 20 M. bovis field strains tested with RAPD showed two distinct groups of M. bovis strains sharing only 3.8% similarity. PCR/DGGE analysis demonstrated the presence of bacteria belonging to the Mollicutes class in 79.1% of DNA isolates. The isolates were identified as: Mycoplasma bovirhinis, M. dispar, M. bovis, M. canis, M. arginini, M. canadense, M. bovoculi, M. alkalescens, and Ureaplasma diversum. Conclusion: Different Mycoplasma spp. strains play a crucial role in inducing respiratory diseases in cattle.

  12. Comparative analysis of lipopolysaccharides of pathogenic and intermediately pathogenic Leptospira species.

    Science.gov (United States)

    Patra, Kailash P; Choudhury, Biswa; Matthias, Michael M; Baga, Sheyenne; Bandyopadhya, Keya; Vinetz, Joseph M

    2015-10-30

    Lipopolysaccharides (LPS) are complex, amphipathic biomolecules that constitute the major surface component of Gram-negative bacteria. Leptospira, unlike other human-pathogenic spirochetes, produce LPS, which is fundamental to the taxonomy of the genus, involved in host-adaption and also the target of diagnostic antibodies. Despite its significance, little is known of Leptospira LPS composition and carbohydrate structure among different serovars. LPS from Leptospira interrogans serovar Copenhageni strain L1-130, a pathogenic species, and L. licerasiae serovar Varillal strain VAR 010, an intermediately pathogenic species, were studied. LPS prepared from aqueous and phenol phases were analyzed separately. L. interrogans serovar Copenhageni has additional sugars not found in L. licerasiae serovar Varillal, including fucose (2.7%), a high amount of GlcNAc (12.3%), and two different types of dideoxy HexNAc. SDS-PAGE indicated that L. interrogans serovar Copenhageni LPS had a far higher molecular weight and complexity than that of L. licerasiae serovar Varillal. Chemical composition showed that L. interrogans serovar Copenhageni LPS has an extended O-antigenic polysaccharide consisting of sugars, not present in L. licerasiae serovar Varillal. Arabinose, xylose, mannose, galactose and L-glycero-D-mannoheptose were detected in both the species. Fatty acid analysis by gas chromatography-mass spectrometry (GC-MS) showed the presence of hydroxypalmitate (3-OH-C16:0) only in L. interrogans serovar Copenhageni. Negative staining electron microscopic examination of LPS showed different filamentous morphologies in L. interrogans serovar Copenhageni vs. L. licerasiae serovar Varillal. This comparative biochemical analysis of pathogenic and intermediately pathogenic Leptospira LPS reveals important carbohydrate and lipid differences that underlie future work in understanding the mechanisms of host-adaptation, pathogenicity and vaccine development in leptospirosis.

  13. Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs.

    Science.gov (United States)

    Neef, N A; Lysons, R J; Trott, D J; Hampson, D J; Jones, P W; Morgan, J H

    1994-06-01

    Twelve intestinal spirochete strains of porcine origin were characterized on the basis of their phenotypic properties, by multilocus enzyme electrophoresis, and by pathogenicity testing in gnotobiotic pigs. The spirochetes used included two strains of Serpulina hyodysenteriae (B204 and P18A), two strains of Serpulina innocens (B256 and 4/71), one strain from the proposed new genus and species "Anguillina coli" (P43/6/78), and seven non-S. hyodysenteriae strains recently isolated from United Kingdom pig herds with a history of nonspecific diarrhea and typhlocolitis. By multilocus enzyme electrophoresis, five of these were identified as S. innocens, one was identified as an unspecified Serpulina sp., and one was identified as "A. coli." S. hyodysenteriae B204 and P18A, "A. coli" P43/6/78 and 2/7, and three (22/7, P280/1, and 14/5) of the five S. innocens field isolates induced mucoid feces and typhlocolitis in gnotobiotic pigs. None of the other spirochetes produced clinical signs or large intestinal pathology in this model. The "A. coli" strains induced a more watery diarrhea, with lesions present more proximally in the large intestine, than did the other pathogenic spirochetes. S. innocens 22/7 was also tested for pathogenicity in hysterotomy-derived pigs that had previously been artificially colonized with a spirochete-free intestinal flora and shown to be susceptible to swine dysentery. Despite effective colonization, strain 22/7 did not produce any disease, nor was there any exacerbation of large intestinal pathology or clinical signs when pigs with an experimentally induced existing colitis caused by Yersinia pseudotuberculosis were superinfected with strain 22/7. Certain non-S. hyodysenteriae spirochetes are therefore capable of inducing disease in gnotobiotic pigs, but their role as primary or opportunistic pathogens in conventional pigs remains equivocal.

  14. Complete Genome Sequence of Streptococcus thermophilus KLDS 3.1003, A Strain with High Antimicrobial Potential against Foodborne and Vaginal Pathogens

    Directory of Open Access Journals (Sweden)

    Smith E. Evivie

    2017-07-01

    Full Text Available Lactic acid bacteria play increasingly important roles in the food industry. Streptococcus thermophilus KLDS 3.1003 strain was isolated from traditional yogurt in Inner Mongolia, China. It has shown high antimicrobial activity against selected foodborne and vaginal pathogens. In this study, we investigated and analyzed its complete genome sequence. The S. thermophilus KLDS 3.1003 genome comprise of a 1,899,956 bp chromosome with a G+C content of 38.92%, 1,995 genes, and 6 rRNAs. With the exception of S. thermophilus M17TZA496, S. thermophilus KLDS 3.1003 has more tRNAs (amino acid coding genes compared to some S. thermophilus strains available on the National Centre for Biotechnology Information database. MG-RAST annotation showed that this strain has 317 subsystems with most genes associated with amino acid and carbohydrate metabolism. This strain also has a unique EPS gene cluster containing 23 genes, and may be a mixed dairy starter culture. This information provides more insight into the molecular basis of its potentials for further applications in the dairy and allied industries.

  15. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.

    Science.gov (United States)

    Hargreaves, Katherine R; Flores, Cesar O; Lawley, Trevor D; Clokie, Martha R J

    2014-08-26

    Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an

  16. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Science.gov (United States)

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  17. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Directory of Open Access Journals (Sweden)

    Hanna Skarin

    Full Text Available Clostridium botulinum (group III, Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  18. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain.

    Science.gov (United States)

    Kriszt, Rókus; Krifaton, Csilla; Szoboszlay, Sándor; Cserháti, Mátyás; Kriszt, Balázs; Kukolya, József; Czéh, Arpád; Fehér-Tóth, Szilvia; Török, Lívia; Szőke, Zsuzsanna; Kovács, Krisztina J; Barna, Teréz; Ferenczi, Szilamér

    2012-01-01

    Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to

  19. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain.

    Directory of Open Access Journals (Sweden)

    Rókus Kriszt

    Full Text Available Zearalenone (hereafter referred to as ZEA is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES, which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil, 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K

  20. A low pathogenic H5N2 influenza virus isolated in Taiwan acquired high pathogenicity by consecutive passages in chickens.

    OpenAIRE

    Soda, Kosuke; Cheng, Ming-Chu; Yoshida, Hiromi; Endo, Mayumi; Lee, Shu-Hwae; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Wang, Ching-Ho; Kida, Hiroshi

    2011-01-01

    H5N2 viruses were isolated from cloacal swab samples of apparently healthy chickens in Taiwan in 2003 and 2008 during surveillance of avian influenza. Each of the viruses was eradicated by stamping out. The official diagnosis report indicated that the Intravenous Pathogenicity Indexes (IVPIs) of the isolates were 0.00 and 0.89, respectively, indicating that these were low pathogenic strains, although the hemagglutinin of the strain isolated in 2008 (Taiwan08) had multibasic amino acid residue...

  1. The biofilm formation ability of Listeria monocytogenes isolated from meat, poultry, fish and processing plant environments is related to serotype and pathogenic profile of the strains

    Directory of Open Access Journals (Sweden)

    Domenico Meloni

    2012-10-01

    Full Text Available In the present study, the relationships between serotype, pathogenic profile and in vitro biofilm formation of 106 Listeria monocytogenes strains, having no epidemiological correlation and isolated from different environmental and food sources, were analyzed. The quantitative assessment of the in vitro biofilm formation was carried out by using a microtiter plate assay with spectrophotometric reading (OD620. The isolates were also submitted to serogrouping using the target genes lmo0737, lmo1118, ORF2819, ORF2110, prs, and to the evaluation of the presence of the following virulence genes: prfA, hlyA, rrn, inlA, inlB, iap, plcA, plcB, actA and mpl, by multiplex PCRs. The 62% of the strains showed weak or moderate in vitro ability in biofilm formation, in particular serotypes 1/2b and 4b, frequently associated with sporadic or epidemic listeriosis cases. The 25% of these isolates showed polymorphism for the actA gene, producing a fragment of 268-bp instead of the expected 385-bp. The deletion of nucleotides in this gene seems to be related to enhanced virulence properties among these strains. Strains belonging to serotypes associated with human infections and characterized by pathogenic potential are capable to persist within the processing plants forming biofilm.

  2. Pathogenic and genetic diversity of Xanthomonas translucens pv. undulosa in North Dakota.

    Science.gov (United States)

    Adhikari, Tika B; Gurung, Suraj; Hansen, Jana M; Bonman, J Michael

    2012-04-01

    Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa, has become more prevalent recently in North Dakota and neighboring states. From five locations in North Dakota, 226 strains of X. translucens pv. undulosa were collected and evaluated for pathogenicity and then selected strains were inoculated on a set of 12 wheat cultivars and other cereal hosts. The genetic diversity of all strains was determined using repetitive sequence-based polymerase chain reaction (rep-PCR) and insertion sequence-based (IS)-PCR. Bacterial strains were pathogenic on wheat and barley but symptom severity was greatest on wheat. Strains varied greatly in aggressiveness, and wheat cultivars also showed differential responses to several strains. The 16S ribosomal DNA sequences of the strains were identical, and distinct from those of the other Xanthomonas pathovars. Combined rep-PCR and IS-PCR data produced 213 haplotypes. Similar haplotypes were detected in more than one location. Although diversity was greatest (≈92%) among individuals within a location, statistically significant (P ≤ 0.001 or 0.05) genetic differentiation among locations was estimated, indicating geographic differentiation between pathogen populations. The results of this study provide information on the pathogen diversity in North Dakota, which will be useful to better identify and characterize resistant germplasm.

  3. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Kathryn Patterson Sutherland

    Full Text Available Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS, a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens to a marine invertebrate (A. palmata. These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  4. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Science.gov (United States)

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L; Porter, James W; Lipp, Erin K

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  5. Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera).

    Science.gov (United States)

    Giblot-Ducray, Danièle; Marefat, Alireza; Gillings, Michael R; Parkinson, Neil M; Bowman, John P; Ophel-Keller, Kathy; Taylor, Cathy; Facelli, Evelina; Scott, Eileen S

    2009-12-01

    Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.

  6. Molecular Occurrence of Enterocin A Gene among Enterococcus faecium Strains Isolated from Gastro-Intestinal Tract and Antimicrobial Effect of this Bacteriocin Against Clinical Pathogens

    Directory of Open Access Journals (Sweden)

    Mitra Salehi

    2014-06-01

    Materials and Methods: In this study occurrence of class II enterocin structural gene (enterocin A in a target of 42 Enterococcus faecium strains, isolated from gastrointestinal tract of animal have been surveyed. E. faecium identification and occurrence of enterocin A gene was performed by PCR method. Cell-free neutralized supernatant of gene positive strains was used to test bacteriocin production and antimicrobial spectrum of supernatant was assayed by wall diffusion method on the gram-positive and negative indicators bacteriaResults: Based on our results, 73.8% of isolated strains had enterocin A gene that they inhibited growth of indicator bacteria such as clinical strain of Pseudomonas aeruginosa, Salmonella enteric PTCC1709, Listeria monocytogenes, Bacillus cereus and Bacillus subtilis.Conclusions: Studied enterocins have growth inhibitory spectrum on Gram-positive and Gram-negative bacteria especially against pathogenic bacteria in the gastrointestinal tract. Therefore, these strains have the potential to explore and use as, alternative antimicrobial compound and bio-preservatives in food or feed or as probiotics.

  7. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  8. Pathogenicity for onion and genetic diversity of isolates of the pathogenic fungus Colletotrichum gloeosporioides (Phyllachoraceae) from the State of Pernambuco, Brazil.

    Science.gov (United States)

    Nova, M X Vila; Borges, L R; de Sousa, A C B; Brasileiro, B T R V; Lima, E A L A; da Costa, A F; de Oliveira, N T

    2011-02-22

    Onion anthracnose, caused by Colletotrichum gloeosporioides, is one of the main diseases of onions in the State of Pernambuco. We examined the pathogenicity of 15 C. gloeosporioides strains and analyzed their genetic variability using RAPDs and internal transcribed spacers (ITS) of the rDNA region. Ten of the strains were obtained from substrates and hosts other than onion, including chayote (Sechium edule), guava (Psidium guajava), pomegranate (Punica granatum), water from the Capibaribe River, maracock (Passiflora sp), coconut (Cocus nucifera), surinam cherry (Eugenia uniflora), and marine soil; five isolates came from onions collected from four different regions of the State of Pernambuco and one region of the State of Amazonas. Pathogenicity tests were carried out using onion leaves and bulbs. All strains were capable of causing disease in leaves, causing a variable degree of lesions on the leaves; four strains caused the most severe damage. In the onion bulb tests, only three of the above strains caused lesions. Seven primers of arbitrary sequences were used in the RAPD analysis, generating polymorphic bands that allowed the separation of the strains into three distinct groups. The amplification products generated with the primers ITS1 and ITS4 also showed polymorphism when digested with three restriction enzymes, DraI, HaeIII and MspI. Only the latter two demonstrated genetic variations among the strains. These two types of molecular markers were able to differentiate the strain from the State of Amazonas from those of the State of Pernambuco. However, there was no relationship between groups of strains, based on molecular markers, and degree of pathogenicity for onion leaves and bulbs.

  9. In Vitro and In Vivo Characterization of a Typical and a High Pathogenic Bovine Viral Diarrhea Virus Type II Strains

    Directory of Open Access Journals (Sweden)

    Dario Amilcar Malacari

    2018-04-01

    Full Text Available Non-cytopathic (ncp type 2 bovine viral diarrhea virus (BVDV-2 is widely prevalent in Argentina causing high mortality rates in cattle herds. In this study, we characterized an Argentinean ncp BVDV-2 field isolate (98-124 compared to a high-virulence reference strain (NY-93, using in silico analysis, in vitro assays, and in vivo infections of colostrum-deprived calves (CDC to compare pathogenic characters and virulence. In vitro infection of bovine peripheral blood mononuclear cells (PBMC with BVDV 98-124 induced necrosis shortly after infection while NY-93 strain increased the apoptotic rate in infected cells. Experimental infection of CDC (n = 4 each with these strains caused an enteric syndrome. High pyrexia was detected in both groups. Viremia and shedding were more prolonged in the CDC infected with the NY-93 strain. In addition, NY-93 infection elicited a severe lymphopenia that lasted for 14 days, whereas 98-124 strain reduced the leukocyte counts for 5 days. All infected animals had a diminished lymphoproliferation activity in response to a mitogen. Neutralizing and anti-NS3 antibodies were detected 3 weeks after infection in all infected calves. Virulence was associated with a more severe clinical score, prolonged immune-suppression, and a greater window for transmission. Studies of apoptosis/necrosis performed after in vitro PBMC infection also revealed differences between both strains that might be correlated to the in vivo pathogenesis. Our results identified 98-124 as a low-virulence strain.

  10. Antagonistic activity of dairy lactobacilli against gram-foodborne pathogens - doi: 10.4025/actascitechnol.v36i1.18776

    Directory of Open Access Journals (Sweden)

    Marco Geria

    2014-01-01

    Full Text Available Thirty-five strains of lactic acid bacteria were isolated from artisanal raw milk cheese, presumptively identified and tested against one dairy Escherichia coli strain. Six lactobacilli, exhibiting antagonistic activity, were identified at the species level and their action was evaluated against four strains of Gram-foodborne pathogens (Escherichia coli O26, Escherichia coli O157:H7, Salmonella spp. 1023, and Salmonella Typhimurium and the control strain Escherichia coli ATCC 45922. The antagonistic activity was determined by spot method and the inhibition zones were measured by Autodesk AutoCAD 2007. Three strains, all Lactobacillus paracasei, were active against all the pathogens; the other strains, all Lactobacillus plantarum, showed antagonistic activity against some pathogens. This study highlights the intense and different antagonistic activity induced by lactobacilli against various foodborne pathogens thus demonstrating that using selected lactic acid bacteria strains as adjunct cultures could be an effective strategy to prevent the development of foodborne pathogens in artisanal raw milk cheeses, and thus improving their safety.

  11. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  12. Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken.

    Science.gov (United States)

    Billam, P; LeRoith, T; Pudupakam, R S; Pierson, F W; Duncan, R B; Meng, X J

    2009-11-18

    Avian hepatitis E virus (avian HEV) is the primary causative agent of Hepatitis-Splenomegaly (HS) syndrome in chickens. Recently, a genetically unique strain of avian HEV, designated avian HEV-VA, was recovered from healthy chickens in Virginia. The objective of this study was to experimentally compare the pathogenicity of the prototype strain recovered from a chicken with HS syndrome and the avian HEV-VA strain in specific-pathogen-free chickens. An infectious stock of the avian HEV-VA strain was first generated and its infectivity titer determined in chickens. For the comparative pathogenesis study, 54 chickens of 6-week-old were assigned to 3 groups of 18 chickens each. The group 1 chickens were each intravenously inoculated with 5x10(2.5) 50% chicken infectious dose of the prototype strain. The group 2 received the same dose of the avian HEV-VA strain, and the group 3 served as negative controls. Six chickens from each group were necropsied at 2, 3 and 4 weeks post-inoculation (wpi). Most chickens in both inoculated groups seroconverted by 3wpi, and the mean anti-avian HEV antibody titers were higher for the prototype strain group than the avian HEV-VA strain group. There was no significant difference in the patterns of viremia and fecal virus shedding. Blood analyte profiles did not differ between treatment groups except for serum creatine phosphokinase levels which were higher for prototype avian HEV group than avian HEV-VA group. The hepatic lesion score was higher for the prototype strain group than the other two groups. The results indicated that the avian HEV-VA strain is only slightly attenuated compared to the prototype strain, suggesting that the full spectrum of HS syndrome is likely associated with other co-factors.

  13. Analysis of pathogenic factors of Proteus mirabilis isolated from urinary tract infection

    OpenAIRE

    室谷,勝久

    1991-01-01

    Proteus mirabilis has several pathogenic factors such as adherent ability to urinary tract epitherial cells, urease, motility and resistance to urine. The pathogenic activities of clinically isolated P. mirabilis were analyzed. Higher pathogenic strains (No. 25 and No. 30) which had morphologically different pili but had a higher density of pili showed strong adherent activity to bladder epithelial cells of mouse and rat. These strains also showed a clear chemotaxis to urinary tract tissue ex...

  14. MALDI-TOF-MS with PLS Modeling Enables Strain Typing of the Bacterial Plant Pathogen Xanthomonas axonopodis

    Science.gov (United States)

    Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.

    2018-02-01

    Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.

  15. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  16. Pseudomnas syringae – a Pathogen of Fruit Trees in Serbia

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2009-01-01

    Full Text Available Data about symptomatology, pathogenicity and bacteriological characteristics of Pseudomonas syringae, and PCR methods for fast and reliable detection of the pathogen are given in this paper. P. syringae has been experimentaly proved as a pathogen of pear, apple, apricot, plum cherry, and raspberry, and pathogen strains have also been isolated from necrotic peach buds. Two pathogen varieties, syringae and morsprunorum, were found in our research in Serbia, the former being dominant on fruit trees.The most reliable method for detection of this bacteria is PCR, using BOX and REP primers. This method has also revealed significant differences among the strains originating from fruit trees in Serbia. Thus, it was proved that the population of P. syringae in Serbia is heterogeneous, which is very important for future epidemiologocal studies. Control of this pathogen includes mechanical, cultural and chemical measures, but integrated approach is very important for sustainable control.

  17. A Natural Mutation Involving both Pathogenicity and Perithecium Formation in the Fusarium graminearum Species Complex

    Directory of Open Access Journals (Sweden)

    Haruhisha Suga

    2016-12-01

    Full Text Available Members of the Fusarium graminearum species complex (Fg complex or FGSC are the primary pathogens causing Fusarium head blight in wheat and barley worldwide. A natural pathogenicity mutant (strain 0225022 was found in a sample of the Fg complex collected in Japan. The mutant strain did not induce symptoms in wheat spikes beyond the point of inoculation, and did not form perithecia. No segregation of phenotypic deficiencies occurred in the progenies of a cross between the mutant and a fully pathogenic wild-type strain, which suggested that a single genetic locus controlled both traits. The locus was mapped to chromosome 2 by using sequence-tagged markers; and a deletion of ∼3 kb was detected in the mapped region of the mutant strain. The wild-type strain contains the FGSG_02810 gene, encoding a putative glycosylphosphatidylinositol anchor protein, in this region. The contribution of FGSG_02810 to pathogenicity and perithecium formation was confirmed by complementation in the mutant strain using gene transfer, and by gene disruption in the wild-type strain.

  18. Capturing the dynamics of pathogens with many strains

    DEFF Research Database (Denmark)

    Kucharski, Adam; Andreasen, Viggo; Gog, Julia

    2016-01-01

    Pathogens that consist of multiple antigenic variants are a serious public health concern. These infections, which include dengue virus, influenza and malaria, generate substantial morbidity and mortality. However, there are considerable theoretical challenges involved in modelling such infection...

  19. Bacterial Genome Engineering and Synthetic Biology: Combating Pathogens

    Science.gov (United States)

    2016-11-04

    extremely high genome sequence similarity between non-pathogenic and pathogenic strains by targeting small sequence variations present in the...Microbiol 2011, 14(5):524-531. 46. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA: Exploiting

  20. Clostridium difficile outbreak caused by NAP1/BI/027 strain and non-027 strains in a Mexican hospital

    Directory of Open Access Journals (Sweden)

    Rayo Morfin-Otero

    2016-01-01

    Conclusions: C. difficile NAP1/BI/027 strain and non-027 strains are established pathogens in our hospital. Accordingly, surveillance of C. difficile infections is now part of our nosocomial prevention program.

  1. Modulation of virulence and antibiotic susceptibility of enteropathogenic Escherichia coli strains by Enterococcus faecium probiotic strain culture fractions.

    Science.gov (United States)

    Ditu, Lia-Mara; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Voltsi, Chrysa; Bleotu, Coralia; Pelinescu, Diana; Mihaescu, Grigore; Lazar, Veronica

    2011-12-01

    The increasing rate of antimicrobial resistance drastically reduced the efficiency of conventional antibiotics and led to the reconsideration of the interspecies interactions in influencing bacterial virulence and response to therapy. The aim of the study was the investigation of the influence of the soluble and cellular fractions of Enterococcus (E.) faecium CMGB16 probiotic culture on the virulence and antibiotic resistance markers expression in clinical enteropathogenic Escherichia (E.) coli strains. The 7 clinical enteropathogenic E. coli strains, one standard E. coli ATCC 25,922 and one Bacillus (B.) cereus strains were cultivated in nutrient broth, aerobically at 37 °C, for 24 h. The E. faecium CMGB16 probiotic strain was cultivated in anaerobic conditions, at 37 °C in MRS (Man Rogosa Sharpe) broth, and co-cultivated with two pathogenic strains (B. cereus and E. coli O28) culture fractions (supernatant, washed sediment and heat-inactivated culture) for 6 h, at 37 °C. After co-cultivation, the soluble and cellular fractions of the probiotic strain cultivated in the presence of two pathogenic strains were separated by centrifugation (6000 rpm, 10 min), heat-inactivated (15 min, 100 °C) and co-cultivated with the clinical enteropathogenic E. coli strains in McConkey broth, for 24 h, at 37 °C, in order to investigate the influence of the probiotic fractions on the adherence capacity and antibiotic susceptibility. All tested probiotic combinations influenced the adherence pattern of E. coli tested strains. The enteropathogenic E. coli strains susceptibility to aminoglycosides, beta-lactams and quinolones was increased by all probiotic combinations and decreased for amoxicillin-clavulanic acid. This study demonstrates that the plurifactorial anti-infective action of probiotics is also due to the modulation of virulence factors and antibiotic susceptibility expression in E. coli pathogenic strains. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    Science.gov (United States)

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  3. Collagen-like proteins in pathogenic E. coli strains.

    Directory of Open Access Journals (Sweden)

    Neelanjana Ghosh

    Full Text Available The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.

  4. Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs.

    OpenAIRE

    Neef, N A; Lysons, R J; Trott, D J; Hampson, D J; Jones, P W; Morgan, J H

    1994-01-01

    Twelve intestinal spirochete strains of porcine origin were characterized on the basis of their phenotypic properties, by multilocus enzyme electrophoresis, and by pathogenicity testing in gnotobiotic pigs. The spirochetes used included two strains of Serpulina hyodysenteriae (B204 and P18A), two strains of Serpulina innocens (B256 and 4/71), one strain from the proposed new genus and species "Anguillina coli" (P43/6/78), and seven non-S. hyodysenteriae strains recently isolated from United K...

  5. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  6. Avian influenza prevalence among hunter-harvested birds in a remote Canadian First Nation community.

    Science.gov (United States)

    Liberda, Eric N; Meldrum, Richard; Charania, Nadia A; Davey, Robert; Tsuji, Leonard Js

    2017-01-01

    Avian influenza virus (AIV) prevalence has been associated with wild game and other bird species. The contamination of these birds may pose a greater risk to those who regularly hunt and consumed infected species. Due to resident concerns communicated by local Band Council, hunter-harvested birds from a remote First Nation community in subArctic Ontario, Canada were assessed for AIV. Hunters, and especially those who live a subsistence lifestyle, are at higher risk of AIV exposure due to their increased contact with wild birds, which represent an important part of their diet. Cloacal swabs from 304 harvested game birds representing several species of wild birds commonly hunted and consumed in this First Nation community were analyzed for AIV using real-time reverse transcription polymerase chain reaction. Subtyping was performed using reverse transcription polymerase chain reaction. Sequences were assembled using Lasergene, and the sequences were compared to Genbank. In total, 16 of the 304 cloacal swab samples were positive for AIV. Of the 16 positive samples, 12 were found in mallard ducks, 3 were found in snow geese (wavies), and 1 positive sample was found in partridge. The AIV samples were subtyped, when possible, and found to be positive for the low pathogenic avian influenza virus subtypes H3 and H4. No samples were positive for subtypes of human concern, namely H5 and H7. This work represents the first AIV monitoring program results of hunter-harvested birds in a remote subsistence First Nation community. Community-level surveillance of AIV in remote subsistence hunting communities may help to identify future risks, while educating those who may have the highest exposure about proper handling of hunted birds. Ultimately, only low pathogenic strains of AIV were found, but monitoring should be continued and expanded to safeguard those with the highest exposure risk to AIV.

  7. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.

    2015-12-08

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  8. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  9. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  10. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    Science.gov (United States)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  11. Study on the Biocontrol Activities of Trichoderma species in Greengram with Infected Fungal Pathogens

    International Nuclear Information System (INIS)

    May Waine Wityi Htun; Myat Thu; Saw Sandar Maw

    2011-12-01

    Seven species of Trichoderma were isolated from rhizospheric soil sources and studied by cultural morphology and microscopic examinations. In dual plate assay, antifungal effects of seven Trichoderma strains were screened against three plant pathogenic fungi (Fusarium oxysporum, Rhizoctonia solani and Pythium sp.) on PDA medium and T-5 isolate showed a wide percentage of inhibitory effects on target pathogens with PIRG value. All Trichoderma strains exhibited a clear zone formation on minimal synthetic medium supplemented with 1% colloidal chitin. T-2 and T-5 were the best chitinase producer strains. In vitro screening for protease activity, the highest protease producing activity of Trichoderma isolate (T-2) were observed in pH indicator medium after 7 days incubation. In pot trial experiment, only T-5 strain exhibited more fungal suppression efficiency on green gram plant than commercial fungicide, Trisan and the other strains. So, it can be said that the effective strain was T-5 strain only which have been more antifungal producing power on three fungal pathogens than Trisan and the resting strains.

  12. Multiple-locus variable-number tandem-repeat analysis of pathogenic Yersinia enterocolitica in China.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available The predominant bioserotypes of pathogenic Yersinia enterocolitica in China are 2/O: 9 and 3/O: 3; no pathogenic O: 8 strains have been found to date. Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA based on seven loci was able to distinguish 104 genotypes among 218 pathogenic Y. enterocolitica isolates in China and from abroad, showing a high resolution. The major pathogenic serogroups in China, O: 3 and O: 9, were divided into two clusters based on MLVA genotyping. The different distribution of Y. enterocolitica MLVA genotypes maybe due to the recent dissemination of specific clones of 2/O: 9 and 3/O: 3 strains in China. MLVA was a helpful tool for bacterial pathogen surveillance and investigation of pathogenic Y. enterocolitica outbreaks.

  13. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  14. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  15. Helicobacter pylori strains from a Nigerian cohort show divergent antibiotic resistance rates and a uniform pathogenicity profile.

    Directory of Open Access Journals (Sweden)

    Ute Harrison

    Full Text Available Antibiotic resistance in Helicobacter pylori is a factor preventing its successful eradication. Particularly in developing countries, resistance against commonly used antibiotics is widespread. Here, we present an epidemiological study from Nigeria with 111 isolates. We analyzed the associated disease outcome, and performed a detailed characterization of these isolated strains with respect to their antibiotic susceptibility and their virulence characteristics. Furthermore, statistical analysis was performed on microbiological data as well as patient information and the results of the gastroenterological examination. We found that the variability concerning the production of virulence factors between strains was minimal, with 96.4% of isolates being CagA-positive and 92.8% producing detectable VacA levels. In addition, high frequency of bacterial resistance was observed for metronidazole (99.1%, followed by amoxicillin (33.3%, clarithromycin (14.4% and tetracycline (4.5%. In conclusion, this study indicated that the infection rate of H. pylori infection within the cohort in the present study was surprisingly low (36.6%. Furthermore, an average gastric pathology was observed by histological grading and bacterial isolates showed a uniform pathogenicity profile while indicating divergent antibiotic resistance rates.

  16. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections.

    Science.gov (United States)

    Rynkiewicz, Evelyn C; Brown, Julia; Tufts, Danielle M; Huang, Ching-I; Kampen, Helge; Bent, Stephen J; Fish, Durland; Diuk-Wasser, Maria A

    2017-02-06

    Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. This asymmetric competitive interaction suggests that strain identity and

  17. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    Science.gov (United States)

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the

  18. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived...... cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs...... region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo....

  19. SCREENING OF FLUORESCENT RHIZOBACTERIA FOR THE BIOCONTROL OF SOILBORNE PLANT PATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    ANELISE DIAS

    2014-01-01

    Full Text Available The biocontrol of soilborne plant pathogens represents a promising approach from the environ- mental and practical points of view. Fluorescent pseudomonad rhizobacteria are well known by their antagonis- tic capacity towards several plant pathogens due to a diversity of antimicrobial metabolites they produce. This study was conceived to select and characterize rhizobacteria having antagonistic potential towards the patho- genic fungi Rhizoctonia solani and Sclerotium rolfsii. A total of 94 bacterial strains isolated from the rhizospheres of four vegetable species under organic cultivation were evaluated. Twenty-two strains which predominate in lettuce and rudbeckia rhizospheres showed identical biochemical profiles to Pseudomonas fluo- rescens, while in kale and parsley rhizospheres identical profiles to Pseudomonas putida (subgroups A and B strains prevailed. Two types of antagonism were verified in vitro and defined as competition and inhibition of mycelial growth. Sixty percent of the evaluated strains showed antagonistic potential and, among those, 24 strains expressed antagonism to both target fungi, with P. fluorescens being the most representative bacterial species. This work clearly identified a number of strains with potential for use as plant growth-promoting and biocontrol of the two soilborne fungal pathogens in vegetable crops production systems.

  20. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  1. In vitro inhibition of pathogenic Verticillium dahliae, causal agent of ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... In addition, plant pathogens directly affected through antibiosis and ... Trichoderma strains for antagonistic activity on the fungal pathogen V. ... Five soil sub samples were taken from the area around the healthy potato roots ...

  2. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    Directory of Open Access Journals (Sweden)

    Ayat Al-Laaeiby

    2016-03-01

    Full Text Available The dematiaceous (melanised fungus Lomentospora (Scedosporium prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2, UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN-melanin biosynthetic enzymes polyketide synthase (PKS1, tetrahydroxynapthalene reductase (4HNR and scytalone dehydratase (SCD1. Infectious propagules (spores of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  3. Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru

    Science.gov (United States)

    Gavilan, Ronnie G.; Zamudio, Maria L.; Martinez-Urtaza, Jaime

    2013-01-01

    Vibrio parahaemolyticus is a foodborne pathogen that has become a public health concern at the global scale. The epidemiological significance of V. parahaemolyticus infections in Latin America received little attention until the winter of 1997 when cases related to the pandemic clone were detected in the region, changing the epidemic dynamics of this pathogen in Peru. With the aim to assess the impact of the arrival of the pandemic clone on local populations of pathogenic V. parahaemolyticus in Peru, we investigated the population genetics and genomic variation in a complete collection of non-pandemic strains recovered from clinical sources in Peru during the pre- and post-emergence periods of the pandemic clone. A total of 56 clinical strains isolated in Peru during the period 1994 to 2007, 13 strains from Chile and 20 strains from Asia were characterized by Multilocus Sequence Typing (MLST) and checked for the presence of Variable Genomic Regions (VGRs). The emergence of O3:K6 cases in Peru implied a drastic disruption of the seasonal dynamics of infections and a shift in the serotype dominance of pathogenic V. parahaemolyticus. After the arrival of the pandemic clone, a great diversity of serovars not previously reported was detected in the country, which supports the introduction of additional populations cohabitating with the pandemic group. Moreover, the presence of genomic regions characteristic of the pandemic clone in other non-pandemic strains may represent early evidence of genetic transfer from the introduced population to the local communities. Finally, the results of this study stress the importance of population admixture, horizontal genetic transfer and homologous recombination as major events shaping the structure and diversity of pathogenic V. parahaemolyticus. PMID:23696906

  4. Induction of type I interferon signaling determines the relative pathogenicity of Staphylococcus aureus strains.

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2014-02-01

    Full Text Available The tremendous success of S. aureus as a human pathogen has been explained primarily by its array of virulence factors that enable the organism to evade host immunity. Perhaps equally important, but less well understood, is the importance of the intensity of the host response in determining the extent of pathology induced by S. aureus infection, particularly in the pathogenesis of pneumonia. We compared the pathogenesis of infection caused by two phylogenetically and epidemiologically distinct strains of S. aureus whose behavior in humans has been well characterized. Induction of the type I IFN cascade by strain 502A, due to a NOD2-IRF5 pathway, was the major factor in causing severe pneumonia and death in a murine model of pneumonia and was associated with autolysis and release of peptidogylcan. In contrast to USA300, 502A was readily eliminated from epithelial surfaces in vitro. Nonetheless, 502A caused significantly increased tissue damage due to the organisms that were able to invade systemically and trigger type I IFN responses, and this was ameliorated in Ifnar⁻/⁻ mice. The success of USA300 to cause invasive infection appears to depend upon its resistance to eradication from epithelial surfaces, but not production of specific toxins. Our studies illustrate the important and highly variable role of type I IFN signaling within a species and suggest that targeted immunomodulation of specific innate immune signaling cascades may be useful to prevent the excessive morbidity associated with S. aureus pneumonia.

  5. Evaluation and Comparison of the Pathogenicity and Host Immune Responses Induced by a G2b Taiwan Porcine Epidemic Diarrhea Virus (Strain Pintung 52) and Its Highly Cell-Culture Passaged Strain in Conventional 5-Week-Old Pigs.

    Science.gov (United States)

    Chang, Yen-Chen; Kao, Chi-Fei; Chang, Chia-Yu; Jeng, Chian-Ren; Tsai, Pei-Shiue; Pang, Victor Fei; Chiou, Hue-Ying; Peng, Ju-Yi; Cheng, Ivan-Chen; Chang, Hui-Wen

    2017-05-19

    A genogroup 2b (G2b) porcine epidemic diarrhea virus (PEDV) Taiwan Pintung 52 (PEDVPT) strain was isolated in 2014. The pathogenicity and host antibody responses elicited by low-passage (passage 5; PEDVPT-P5) and high-passage (passage 96; PEDVPT-P96) PEDVPT strains were compared in post-weaning PEDV-seronegative pigs by oral inoculation. PEDVPT-P5-inoculation induced typical diarrhea during 1-9 days post inoculation with fecal viral shedding persisting for 26 days. Compared to PEDVPT-P5, PEDVPT-P96 inoculation induced none-to-mild diarrhea and lower, delayed fecal viral shedding. Although PEDVPT-P96 elicited slightly lower neutralizing antibodies and PEDV-specific immunoglobulin G (IgG) and immunoglobulin A (IgA) titers, a reduction in pathogenicity and viral shedding of the subsequent challenge with PEDVPT-P5 were noted in both PEDVPT-P5- and PEDVPT-P96-inoculated pigs. Alignment and comparison of full-length sequences of PEDVPT-P5 and PEDVPT-P96 revealed 23 nucleotide changes and resultant 19 amino acid substitutions in non-structure proteins 2, 3, 4, 9, 14, 15, spike, open reading frame 3 (ORF3), and membrane proteins with no detectable deletion or insertion. The present study confirmed the pathogenicity of the PEDVPT isolate in conventional post-weaning pigs. Moreover, data regarding viral attenuation and potency of induced antibodies against PEDVPT-P5 identified PEDVPT-P96 as a potential live-attenuated vaccine candidate.

  6. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins

    Directory of Open Access Journals (Sweden)

    Andong eGong

    2015-10-01

    Full Text Available Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these pests is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production in the field and during storage.

  7. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    Science.gov (United States)

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  8. Noncontacting-optical-strain device

    Science.gov (United States)

    Silver, R. H.

    1970-01-01

    Noncontacting-strain-measuring gauge and extensometer remotely measures the mechanical displacement along the entire length of a test specimen. Measurement is accomplished by continuous scanning of a reflected light from reflective bench markings or stripes previously affixed to the specimen.

  9. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity

    Directory of Open Access Journals (Sweden)

    Shaun P. Stice

    2018-02-01

    Full Text Available Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA and repetitive extragenic palindrome repeat (rep-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.

  10. Diverse pathogenicity of equine herpesvirus 1 (EHV-1) isolates in CBA mouse model.

    Science.gov (United States)

    Yu, Mi Htay Htay; Kasem, Samy Gomaa Ahmed; Tsujimura, Koji; Matsumura, Tomio; Yanai, Tokuma; Yamaguchi, Tsuyoshi; Ohya, Kenji; Fukushi, Hideto

    2010-03-01

    The pathogenicity of equine herpesvirus 1 (EHV-1) isolates of Japan were evaluated by using the CBA mouse model. CBA mice were inoculated with eight Japanese EHV-1 strains (89c1, 90c16, 90c18, 97c11, 98c12, 00c19, 01c1 and HH-1) and one British strain (Ab4p). 89c1 caused slight body weight loss and nervous signs in mice at 8 days post infection (dpi). Severe weight loss and nervous signs were observed in mice inoculated with Ab4p at 6 dpi. The other strains did not cause apparent clinical signs. Infectious viruses were recovered from the lungs of all groups at 2 dpi. Histopathological analysis revealed interstitial pneumonia in the lungs of all mice inoculated with EHV-1. Encephalitis or meningoencephalitis was observed in the brains of mice inoculated with 89c1, 90c18, 97c11, 98c12, 01c1 and Ab4p. Japanese EHV-1 strains showed low pathogenicity in CBA mice, whereas the sequential affects of infection are similar to those of the highly pathogenic strain Ab4p. These results suggest that field isolates of EHV-1 have varying degrees of pathogenicity in CBA mice.

  11. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    Science.gov (United States)

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  12. Proof of Principle for a Real-Time Pathogen Isolation Media Diagnostic: The Use of Laser-Induced Breakdown Spectroscopy to Discriminate Bacterial Pathogens and Antimicrobial-Resistant Staphylococcus aureus Strains Grown on Blood Agar

    Directory of Open Access Journals (Sweden)

    Rosalie A. Multari

    2013-01-01

    Full Text Available Laser-Induced Breakdown Spectroscopy (LIBS is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media.

  13. A Spectral Mapping Signature for the Rapid Ohia Death (ROD) Pathogen in Hawaiian Forests

    Science.gov (United States)

    Pathogenic invasions are a major disruptive source of change in both agricultural and natural ecosystems. In forests, fungal pathogens can kill habitat-generating plant species such as canopy trees, but methods for remote detection, mapping and monitoring of such outbreaks are poorly developed. Cera...

  14. NATURAL ATYPICAL LISTERIA INNOCUA STRAINS WITH LISTERIA MONOCYTOGENES PATHOGENICITY ISLAND 1 GENES

    Science.gov (United States)

    The detection of the human foodborne pathogen, Listeria monocytogenes, in food, environmental samples and clinical specimens associated with cases of listeriosis, a rare but high mortality-rate disease, requires distinguishing the pathogen from other Listeria species. Speciation...

  15. The use of flagella and motility for plant colonization and fitness by different strains of the foodborne pathogen Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Lisa Gorski

    Full Text Available The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases.

  16. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    Science.gov (United States)

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  17. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  18. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    Science.gov (United States)

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite

  19. A single regulatory gene is sufficient to alter Vibrio aestuarianus pathogenicity in oysters.

    Science.gov (United States)

    Goudenège, David; Travers, Marie Agnès; Lemire, Astrid; Petton, Bruno; Haffner, Philippe; Labreuche, Yannick; Tourbiez, Delphine; Mangenot, Sophie; Calteau, Alexandra; Mazel, Didier; Nicolas, Jean Louis; Jacq, Annick; Le roux, Frédérique

    2015-11-01

    Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ß-lactam antibiotics.

    Science.gov (United States)

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-02-26

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to Amp does not influence bacterial growth and biofilm formation, but alters the virulence, colonization capacity, composition of extracellular polymeric substances and secretion of Type VI secretion system (T6SS) effector Hcp. This attenuation in virulence is linked to unique or differential expression of known virulence-associated genes based on genome-wide transcriptomic analysis. The reliability of expression data generated by RNA-Seq was verified with quantitative real-time PCR of 21 selected T6SS genes, where significant down-regulation in expression of hcp gene, corresponding to the reduction in secretion of Hcp, was observed under exposure to Amp. Hcp is highlighted as a potential target for Amp, with similar changes observed in virulence-associated phenotypes between exposure to Amp and mutation of hcp gene. In addition, Hcp secretion is reduced in knockout mutants of 4 differentially expressed T6SS genes.

  1. Preliminary Study on Bacterial Pathogenic in Grouper Culture and Its Inhibitor Bacteria in Lampung Bay

    Directory of Open Access Journals (Sweden)

    A. Hatmanti

    2008-01-01

    Full Text Available Investigation of pathogenic bacteria and its inhibitor on grouper culture in some places of Lampung Bay had been carried out. Six strains of pathogenic bacteria and 28 strains of inhibitior bacteria were found in grouper and its habitat.  By inhibition test, 4 strains inhibited pathogenic bacteria were obtained. Inhibition test for Vibrio harveyi had also been performed using a bacterial collection of Marine Microbiology Laboratory of Research Center of Oceanography-LIPI.  The result showed that 3 strains could be used against bacterial infection. This study offers a positive prospect to prevent outbreak of bacterial diseases in grouper culture. Keywords: grouper culture, Lampung, inhibitor bacteria, pathogenic bacteria, inhibition test   ABSTRAK Penelitian penyakit bakterial dan bakteri penghambatnya pada budidaya ikan kerapu di beberapa tempat di perairan Teluk Lampung telah dilakukan. Enam strain bakteri patogen dan 28 strain bakteri penghambat telah berhasil diisolasi dari ikan kerapu dan habitat tempat hidupnya.  Dari hasil uji tantang (inhibition test yang dilakukan, diperoleh 4 strain bakteri penghambat yang mampu menekan pertumbuhan bakteri patogen. Selain itu, uji tantang terhadap bakteri patogen Vibrio harveyi, menggunakan bakteri penghambat koleksi Laboratorium Mikrobiologi Laut Puslit Oseanografi LIPI juga telah dilakukan.  Hasil penelitian menunjukkan bahwa 3 strain bakteri mampu memberikan hambatan terhadap pertumbuhan Vibrio harveyi.  Studi ini memberikan prospek positif terhadap penanggulangan penyakit bakterial pada budidaya ikan kerapu. Kata kunci: budidaya kerapu, Lampung, bakteri penghambat, bakteri patogen, uji tantang

  2. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae.

    Science.gov (United States)

    Wang, Sibao; Leclerque, Andreas; Pava-Ripoll, Monica; Fang, Weiguo; St Leger, Raymond J

    2009-06-01

    Many strains of Metarhizium anisopliae have broad host ranges, but others are specialists and adapted to particular hosts. Patterns of gene duplication, divergence, and deletion in three generalist and three specialist strains were investigated by heterologous hybridization of genomic DNA to genes from the generalist strain Ma2575. As expected, major life processes are highly conserved, presumably due to purifying selection. However, up to 7% of Ma2575 genes were highly divergent or absent in specialist strains. Many of these sequences are conserved in other fungal species, suggesting that there has been rapid evolution and loss in specialist Metarhizium genomes. Some poorly hybridizing genes in specialists were functionally coordinated, indicative of reductive evolution. These included several involved in toxin biosynthesis and sugar metabolism in root exudates, suggesting that specialists are losing genes required to live in alternative hosts or as saprophytes. Several components of mobile genetic elements were also highly divergent or lost in specialists. Exceptionally, the genome of the specialist cricket pathogen Ma443 contained extra insertion elements that might play a role in generating evolutionary novelty. This study throws light on the abundance of orphans in genomes, as 15% of orphan sequences were found to be rapidly evolving in the Ma2575 lineage.

  3. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    Science.gov (United States)

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Effects of bile salt deconjugation by probiotic strains on the survival of antibiotic-resistant foodborne pathogens under simulated gastric conditions.

    Science.gov (United States)

    He, Xinlong; Zou, Yunyun; Cho, Youngjae; Ahn, Juhee

    2012-06-01

    This study was designed to evaluate the effects of bile acid deconjugation by probiotic strains on the antibiotic susceptibility of antibiotic-sensitive and multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. Eight probiotic strains, Bifidobacterium longum B6, Lactobacillus acidophilus ADH, Lactobacillus brevis KACC 10553, Lactobacillus casei KACC 12413, Lactobacillus paracasei ATCC 25598, Lactobacillus rhamnosus GG, Leuconostoc mesenteroides KACC 12312, and Pediococcus acidilactici KACC 12307, were used to examine bile acid tolerance. The ability to deconjugate bile acids was evaluated using both thin-layer chromatography and high-performance liquid chromatography. The antibiotic susceptibility testing was carried out to determine the synergistic inhibitory activity of deconjugated bile acids. L. acidophilus, L. brevis, and P. acidilactici showed the most tolerance to the conjugated bile acids. P. acidilactici deconjugated glycocholic acid and glycodeoxycholate from 3.18 and 3.09 mM to the detection limits, respectively. The antibiotic susceptibility of selected foodborne pathogens was increased by increasing the concentration of deconjugated bile acids. The study results are useful for understanding the relationship between bile acid deconjugation by probiotic strains and antibiotic susceptibility in the presence of deconjugated bile acids, and they may be useful for designing new probiotic-antibiotic combination therapy based on bile acid deconjugation.

  5. Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain

    Science.gov (United States)

    2013-01-01

    Background Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP), a mild, chronic pneumonia of swine. Despite presenting with low direct mortality, EP is responsible for major economic losses in the pig industry. To identify the virulence-associated determinants of M. hyopneumoniae, we determined the whole genome sequence of M. hyopneumoniae strain 168 and its attenuated high-passage strain 168-L and carried out comparative genomic analyses. Results We performed the first comprehensive analysis of M. hyopneumoniae strain 168 and its attenuated strain and made a preliminary survey of coding sequences (CDSs) that may be related to virulence. The 168-L genome has a highly similar gene content and order to that of 168, but is 4,483 bp smaller because there are 60 insertions and 43 deletions in 168-L. Besides these indels, 227 single nucleotide variations (SNVs) were identified. We further investigated the variants that affected CDSs, and compared them to reported virulence determinants. Notably, almost all of the reported virulence determinants are included in these variants affected CDSs. In addition to variations previously described in mycoplasma adhesins (P97, P102, P146, P159, P216, and LppT), cell envelope proteins (P95), cell surface antigens (P36), secreted proteins and chaperone protein (DnaK), mutations in genes related to metabolism and growth may also contribute to the attenuated virulence in 168-L. Furthermore, many mutations were located in the previously described repeat motif, which may be of primary importance for virulence. Conclusions We studied the virulence attenuation mechanism of M. hyopneumoniae by comparative genomic analysis of virulent strain 168 and its attenuated high-passage strain 168-L. Our findings provide a preliminary survey of CDSs that may be related to virulence. While these include reported virulence-related genes, other novel virulence determinants were also detected. This new information will form

  6. Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem HASSAN

    2014-09-01

    Full Text Available Colletotrichum falcatum is the major fungal pathogen causing sugarcane red rot. Four antagonistic bacterial strains exhibiting biocontrol activity against this pathogen in greenhouse conditions were characterized for production of different antifungal metabolites and biocontrol determinants to elucidate the mechanism of action involved in their antagonistic activity. The strains were also evaluated under field conditions to assess their biocontrol potential. All the strains produced hydrogen cyanide (HCN, and volatile and diffusible antibiotics. In addition, the Ochrobactrum intermedium strain NH-5 produced siderophores and the broad spectrum antibiotic 2, 4-diacetylphloroglucinol (2,4-DAPG; Pseudomonas sp. NH-203 produced siderophores, and Pseudomonas sp. NH-276 produced protease. Two strains, Ochrobactrum intermedium NH-5 and Stenotrophomonas maltophilia NH-300, exhibited good biocontrol activity, suppressing red rot by 44–52% on two sugarcane varieties, SPF-234 and Co-1148, in field experiments. The strains gave consistent results in three consecutive years and showed potential to be used as biopesticides.

  7. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis.

    Science.gov (United States)

    Chen, Yuhuang; Duan, Ran; Li, Xu; Li, Kewei; Liang, Junrong; Liu, Chang; Qiu, Haiyan; Xiao, Yuchun; Jing, Huaiqi; Wang, Xin

    2015-12-01

    The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    Science.gov (United States)

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  9. Evaluation of Antimicrobial Activity of Bacillus Strains Isolated from Various Resources

    Directory of Open Access Journals (Sweden)

    Mohsen Golnari Maranni

    2017-02-01

    Full Text Available Abstract Background: Prevalence extension of antibiotic resistant bacteria has raised concerns about control of infections especially nosocomial infections. Many attempts have been done to replace antibiotics or limit their use. The use of antimicrobial agents produced by bacteria as antibiotic replacement has been promising in recent years. The goal of this study was to isolate Bacillus strains and evaluate their antimicrobial activity against some standard pathogens and clinical antibiotic resistant strains. Materials and Methods: In the present study, Bacillus strains were isolated from various resources and identified by 16S rDNA PCR method. Then, the phylogenetic tree of the isolates was constructed and antimicrobial activity of the isolates was investigated against some standard pathogens and clinical antibiotic resistant strains using spotting and well diffusion methods. Results: Eight Bacillus strains were isolated from 15 different samples. Based on the molecular identification, the isolates were identified as B.pumilus, B.coagulans, B.licheniformis, B.endophitycus and B.amiloliquefaciens. The results showed that isolates have antimicrobial activity against meticilin-resistant Staphylococcus aureus, vancomycin resistant enterococci, Klebsiella, Acinetobacter, Salmonella, Shigella, Listeria, Streptococcus and Escherichia coli. Conclusion: In this study, isolated Bacillus strains produced antimicrobial agents against pathogens and antibiotic resistant strains and inhibited their growth.

  10. A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts.

    Directory of Open Access Journals (Sweden)

    Gabriel G Perron

    Full Text Available The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.

  11. Potential of Piper betle extracts on inhibition of oral pathogens.

    Science.gov (United States)

    Phumat, Pimpak; Khongkhunthian, Sakornrat; Wanachantararak, Phenphichar; Okonogi, Siriporn

    2017-01-01

    In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.

  12. Genetic diversity among major endemic strains of Leptospira interrogans in China

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Ming

    2007-07-01

    Full Text Available Abstract Background Leptospirosis is a world-widely distributed zoonosis. Humans become infected via exposure to pathogenic Leptospira spp. from contaminated water or soil. The availability of genomic sequences of Leptospira interrogans serovar Lai and serovar Copenhageni opened up opportunities to identify genetic diversity among different pathogenic strains of L. interrogans representing various kinds of serotypes (serogroups and serovars. Results Comparative genomic hybridization (CGH analysis was used to compare the gene content of L. interrogans serovar Lai strain Lai with that of other 10 L. interrogans strains prevailed in China and one identified from Brazil using a microarray spotted with 3,528 protein coding sequences (CDSs of strain Lai. The cutoff ratio of sample/reference (S/R hybridization for detecting the absence of genes from one tested strain was set by comparing the ratio of S/R hybridization and the in silico sequence similarities of strain Lai and serovar Copenhageni strain Fiocruz L1-130. Among the 11 strains tested, 275 CDSs were found absent from at least one strain. The common backbone of the L. interrogans genome was estimated to contain about 2,917 CDSs. The genes encoding fundamental cellular functions such as translation, energy production and conversion were conserved. While strain-specific genes include those that encode proteins related to either cell surface structures or carbohydrate transport and metabolism. We also found two genomic islands (GIs in strain Lai containing genes divergently absent in other strains. Because genes encoding proteins with potential pathogenic functions are located within GIs, these elements might contribute to the variations in disease manifestation. Differences in genes involved in O-antigen biosynthesis were also identified for strains belonging to different serogroups, which offers an opportunity for future development of genomic typing tools for serological classification

  13. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  14. Inhibitory potential of nine mentha species against pathogenic bacteria strains

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmad, N.; Rashid, M.; Ikram, A. U.; Shinwari, Z. K.

    2015-01-01

    Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover most of the Mentha species showed zone of inhibition in the range of 10-20 mm. (author)

  15. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  16. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140 shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains.

    Directory of Open Access Journals (Sweden)

    Xiangkai Zhu Ge

    Full Text Available Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140 with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89. Furthermore, the unique PAI I5155 (GI-12 was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18 strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates.

  17. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    Science.gov (United States)

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. MOLECULAR-GENETIC BASIS OF PHYSIOLOGY AND PATHOGENICITY OF COXIELLA BURNETII

    Directory of Open Access Journals (Sweden)

    Yu. A. Panpherova

    2012-01-01

    Full Text Available Abstract. The agent of Q-fever Coxiella burnetii is unusual intracellular pathogen which is possessed of biggest transporting and metabolic abilities in compare with microorganisms with similar parasitic strategy. It is supposed that different strains of the pathogen exist in various stages of pathological adaption and have different potential of virulence. The structure of C. burnetii genome, characteristics of metabolic routes, mechanisms of interaction with host cells and possible virulence factors are discussed in the review. The special attention is paid to Coxiella genotyping methods and possible correlations between genomic polymorphism of different strains and their virulence potential.

  19. Molecular characterization and phylogenetic analysis of highly pathogenic Vibrio alginolyticus strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile.

    Science.gov (United States)

    Mechri, Badreddine; Monastiri, Abir; Medhioub, Amel; Medhioub, Mohamed Nejib; Aouni, Mahjoub

    2017-10-01

    In the summer of 2008 and 2009, a series of mortalities in growing out seeds of R. decussatus juveniles were occurred in the eastern Tunisian littoral. Nine predominant bacterial strains were isolated from dead and moribund juveniles and characterized as Vibrio alginolyticus. These isolates were subjected to biochemical and molecular characterization. All the Vibrio strains were tested for their susceptibility against the most widely used antibiotic in aquaculture as well as, the assessment of the presence of erythromycin (emrB) and tetracycline (tetS) resistance genes among the tested bacteria. The degree of genetic relatedness between V. alginolyticus strains was evaluated on the basis of the Entero-Bacterial Repetitive Intergenic Consensus (ERIC) and the Random Amplification of Polymorphic DNA-PCR (RAPD-PCR) approaches. We also looked for siderophore activity and the ability to grow under iron limitation. Furthermore, the pathogenic potential of the tested isolates was evaluated using R. decussatus larva and juveniles as infection models. On antimicrobial susceptibility test, Vibrio strains exhibited total resistance to at least four antibiotics. The MICs data revealed that flumequine and oxolinic acid were the most effective antibiotics to control the studied bacteria. Results also showed that studied antibiotics resistance genes were widely disseminated in the genome of V. alginolyticus strains. Both ERIC and RAPD-PCR fingerprinting showed the presence of genetic variation among Vibrio isolates. However, RAPD typing exhibited a higher discriminative potential than ERIC-PCR. Besides, we reported here for the first time the co-production of catechol and hydroxamte by V. alginolyticus species. The challenge experiment showed that most of Vibrio isolates caused high mortality rates for both larva and juveniles at 48-h post-exposure to a bacterial concentration of 10 6  CFU/ml. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antibiotic resistance and pathogenicity factors in Staphylococcus ...

    Indian Academy of Sciences (India)

    know which endemic strains of S. aureus in dairy cattle ... Antibiotic resistance; cattle; mastitis; MRSA; pathogenic genes ... recommended by Clinical and Laboratory Standards Institute ...... fnbA, eno, hla and nuc, did not show any relation to.

  1. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens.

    Science.gov (United States)

    Armas, Federica; Camperio, Cristina; Marianelli, Cinzia

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions.

  2. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens.

    Directory of Open Access Journals (Sweden)

    Federica Armas

    Full Text Available Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP, and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions.

  3. Quantification of Salmonella Survival and Infection in an In vitro Model of the Human Intestinal Tract as Proxy for Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Lucas M. Wijnands

    2017-06-01

    Full Text Available Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a static, sequential gastrointestinal tract (GIT model system in which foodborne pathogens are exposed to simulated gastric and intestinal contents of the human digestive tract, including the interaction of pathogens with the intestinal epithelium. The system can be employed with any foodborne bacterial pathogens. Five strains of Salmonella Heidelberg and one strain of Salmonella Typhimurium were used to assess the robustness of the system. Four S. Heidelberg strains originated from an outbreak, the fifth S. Heidelberg strain and the S. Typhimurium strain originated from routine meat inspections. Data from plate counts, collected for determining the numbers of surviving bacteria in each stage, were used to quantify both the experimental uncertainty and biological variability of pathogen survival throughout the system. For this, a hierarchical Bayesian framework using Markov chain Monte Carlo (MCMC was employed. The model system is able to distinguish serovars/strains for in vitro infectivity when accounting for within strain biological variability and experimental uncertainty.

  4. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks.

    Science.gov (United States)

    Walsh, Aaron M; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C; Arthur, Cornelius T; Claesson, Marcus J; Scott, Karen P; Cotter, Paul D

    2017-08-15

    The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. Copyright

  5. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1.

    Directory of Open Access Journals (Sweden)

    Yingqin Luo

    Full Text Available Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1 is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

  6. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

    Directory of Open Access Journals (Sweden)

    Schirtzinger Erin E

    2008-02-01

    Full Text Available Abstract Background Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3, a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for Aedes aegypti mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain Results To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in Aedes aegypti mosquitoes was measured in vivo. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells. Conclusion The invasive DENV3 strain infects and disseminates in Ae. aegypti more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between

  7. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules

    Directory of Open Access Journals (Sweden)

    Pilar eMartínez-Hidalgo

    2015-09-01

    Full Text Available Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation.In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity.

  8. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR.

    Science.gov (United States)

    Nishiyama, Shoko; Slack, Olga A L; Lokugamage, Nandadeva; Hill, Terence E; Juelich, Terry L; Zhang, Lihong; Smith, Jennifer K; Perez, David; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-11-16

    Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.

  9. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    Science.gov (United States)

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  10. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi

    International Nuclear Information System (INIS)

    Arras, G.; Gambella, F.; Demontis, S.; Petretto, A.

    1995-01-01

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi

  11. Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum.

    OpenAIRE

    Bachmann, N.L.; Fraser, T.A.; Bertelli, C.; Jelocnik, M.; Gillett, A.; Funnell, O.; Flanagan, C.; Myers, G.S.; Timms, P.; Polkinghorne, A.

    2014-01-01

    Background Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. Results Comparisons of the draft C. pecorum genomes against the...

  12. ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity

    Directory of Open Access Journals (Sweden)

    Marisa Fabiana Nicolás

    2007-01-01

    Full Text Available ABC transporters represent one of the largest superfamilies of active membrane transport proteins (MTPs with a highly conserved ATPase domain that binds and hydrolyzes ATP, supplying energy for the uptake of a variety of nutrients and for the extrusion of drugs and metabolic wastes. The complete genomes of a non-pathogenic (J and pathogenic (7448 strain of Mycoplasma hyopneumoniae, as well as of a pathogenic (53 strain of Mycoplasma synoviae have been recently sequenced. A detailed study revealed a high percentage of CDSs encoding MTPs in M. hyopneumoniae strains J (13.4%, 7448 (13.8%, and in M. synoviae 53 (11.2%, and the ABC systems represented from 85.0 to 88.6% of those CDSs. Uptake systems are mainly involved in cell nutrition and some might be associated with virulence. Exporter systems include both drug and multidrug resistant systems (MDR, which may represent mechanisms of resistance to toxic molecules. No relation was found between the phylogeny of the ATPase domains and the lifestyle or pathogenicity of Mycoplasma, but several proteins, potentially useful as targets for the control of infections, were identified.

  13. Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen.

    Science.gov (United States)

    Campbell, A S; Ploetz, R C; Rollins, J A

    2017-01-01

    Raffaelea lauricola, a fungal symbiont of the ambrosia beetle Xyleborus glabratus, causes laurel wilt in members of the Lauraceae plant family. North American species in the family, such as avocado (Persea americana) and swamp bay (P. palustris), are particularly susceptible to laurel wilt, whereas the Asian camphortree (Cinnamomum camphora) is relatively tolerant. To determine whether susceptibility is related to pathogen colonization, a green fluorescent protein-labeled strain of R. lauricola was generated and used to inoculate avocado, swamp bay, and camphortree. Trees were harvested 3, 10, and 30 days after inoculation (DAI), and disease severity was rated on a 1-to-10 scale. By 30 DAI, avocado and swamp bay developed significantly more severe disease than camphortree (mean severities of 6.8 and 5.5 versus 1.6, P < 0.003). The extent of xylem colonization was recorded as the percentage of lumena that were colonized by the pathogen. More xylem was colonized in avocado than camphortree (0.9% versus 0.1%, P < 0.03) but colonization in swamp bay (0.4%) did not differ significantly from either host. Although there were significant correlations between xylem colonization and laurel wilt severity in avocado (r = 0.74), swamp bay (r = 0.82), and camphortree (r = 0.87), even severely affected trees of all species were scarcely colonized by the pathogen.

  14. Enteric Pathogen Survival Varies Substantially in Irrigation Water from Belgian Lettuce Producers

    Science.gov (United States)

    Van Der Linden, Inge; Cottyn, Bart; Uyttendaele, Mieke; Berkvens, Nick; Vlaemynck, Geertrui; Heyndrickx, Marc; Maes, Martine

    2014-01-01

    It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen’s survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 °C, although always more expressed at 20 °C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and

  15. [Distribution and drug resistance of the pathogenic bacteria from sputum specimens of 1 125 children with tracheo bronchial foreign bodies].

    Science.gov (United States)

    Wen, Xin; Su, Jinzhu; Cui, Li; Wang, Juan; Zuo, Lujie

    2015-02-01

    To analyze the distribution and drug susceptibility of the pathogenic bacteria in the airway secretions in children with tracheobronchial foreign bodies so as to assist physicians in clinical prescription. Sputum specimens of 1 125 children with tracheobronchial foreign bodies were collected in removal of the foreign bodies by rigid bronchoscope, and the drug susceptibility test was performed. Pathogenic bacteria were detected in 218 (19.4%) of 1 125 sputum specimens. Among the pathogenic bacteria, 126 (57.79%) strains were gram-negative bacilli, consisting of 76 (34.86%) strains of Haemophilus influenzae, 10 (4.59%) strains of Escherichia coli, 7 (3.21%) strains of Sewer enterobacter, 7 (3.21%) strains of Pseudomonas aeruginosa, and 6 (2.75%) strains of Klebsiella bacillus; and 92 (42.21%) strains were gram-positive bacilli, consisting of 80 (36.69%) strains of Streptococcus pneumonia and 10 (4.59%) strains of Escherichia coli. Most of detected gram-negative bacilli were highly sensitive to cefepime, ceftazidine, imipenem and amikacin, no strains were resistant to meropenem and ciprofloxacin. None of the detected gram-positive bacilli were resistant to cefepime, vancomycin, levofloxacin and teicoplanin. The Haemophilus influenzae of gram-negative bacilli and the Streptococcus pneumonia of gram-positive bacilli are the main pathogenic bacteria existing in the airway secretions of children with tracheobronchial foreign bodies. The Haemophilus influenzae were highly sensitive to cephalosporin, imipenem and amikacin, and the Streptococcus pneumonia to cefepime, vancomycin, levofloxacin and teicoplanin.

  16. Comparison of the immune responses associated with experimental bovine mastitis caused by different strains of Escherichia coli.

    Science.gov (United States)

    Blum, Shlomo E; Heller, Elimelech D; Jacoby, Shamay; Krifucks, Oleg; Leitner, Gabriel

    2017-05-01

    We studied the mammary immune response to different mammary pathogenic Escherichia coli (MPEC) strains in cows, hypothesising that the dynamics of response would differ. E. coli is a major aetiologic agent of acute clinical bovine mastitis of various degrees of severity with specific strains being associated with persistent infections. We compared challenge with three distinct pathogenic MPEC strains (VL2874, VL2732 and P4), isolated from different forms of mastitis (per-acute, persistent and acute, respectively). A secondary objective was to verify the lack of mammary pathogenicity of an environmental isolate (K71) that is used for comparison against MPEC in genomic and phenotypic studies. Twelve cows were challenged by intra-mammary infusion with one of the strains. Cellular and chemokine responses and bacterial culture follow-up were performed for 35 d. All cows challenged by any of the MPEC strains developed clinical mastitis. Differences were found in the intensity and duration of response, in somatic cell count, secreted cytokines (TNF-α, IL-6 and IL-17) and levels of milk leucocyte membrane Toll-like receptor 4 (TLR4). A sharp decrease of TLR4 on leucocytes was observed concomitantly to peak bacterial counts in milk. Intra-mammary infusion of strain K71 did not elicit inflammation and bacteria were not recovered from milk. Results suggest some differences in the mammary immune response to distinct MPEC strains that could be correlated to their previously observed pathogenic traits. This is also the first report of an E. coli strain that is non-pathogenic to the bovine mammary gland.

  17. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro.

    Science.gov (United States)

    Beltran, Sebastian; Munoz-Bergmann, Cristian A; Elola-Lopez, Ana; Quintana, Javiera; Segovia, Cristopher; Trombert, Annette N

    2016-01-07

    Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.

  18. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae

    Directory of Open Access Journals (Sweden)

    Kuhl Heiner

    2010-06-01

    Full Text Available Abstract Background The genus Erwinia includes plant-associated pathogenic and non-pathogenic Enterobacteria. Important pathogens such as Erwinia amylovora, the causative agent of fire blight and E. pyrifoliae causing bacterial shoot blight of pear in Asia belong to this genus. The species E. tasmaniensis and E. billingiae are epiphytic bacteria and may represent antagonists for biocontrol of fire blight. The presence of genes that are putatively involved in virulence in E. amylovora and E. pyrifoliae is of special interest for these species in consequence. Results Here we provide the complete genome sequences of the pathogenic E. pyrifoliae strain Ep1/96 with a size of 4.1 Mb and of the non-pathogenic species E. billingiae strain Eb661 with a size of 5.4 Mb, de novo determined by conventional Sanger sequencing and next generation sequencing techniques. Genome comparison reveals large inversions resulting from homologous recombination events. Furthermore, comparison of deduced proteins highlights a relation of E. billingiae strain Eb661 to E. tasmaniensis strain Et1/99 and a distance to E. pyrifoliae for the overall gene content as well as for the presence of encoded proteins representing virulence factors for the pathogenic species. Pathogenicity of E. pyrifoliae is supposed to have evolved by accumulation of potential virulence factors. E. pyrifoliae carries factors for type III secretion and cell invasion. Other genes described as virulence factors for E. amylovora are involved in the production of exopolysaccharides, the utilization of plant metabolites such as sorbitol and sucrose. Some virulence-associated genes of the pathogenic species are present in E. tasmaniensis but mostly absent in E. billingiae. Conclusion The data of the genome analyses correspond to the pathogenic lifestyle of E. pyrifoliae and underlines the epiphytic localization of E. tasmaniensis and E. billingiae as a saprophyte.

  19. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  20. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene.

    Science.gov (United States)

    Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André

    2003-08-01

    Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.

  1. Probiotic bacteria inhibit the bovine respiratory pathogen Mannheimia haemolytica serotype 1 in vitro.

    Science.gov (United States)

    Amat, S; Subramanian, S; Timsit, E; Alexander, T W

    2017-05-01

    This study evaluated the potential of probiotic bacteria to inhibit growth and cell adhesion of the bovine respiratory pathogen Mannheimia haemoltyica serotype 1. The inhibitory effects of nine probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis, Streptococcus thermophilus and two Paenibacillus polymyxa strains) against M. haemolytica were evaluated using a spot-on-lawn method. Probiotic strains were then tested for their adherence to bovine bronchial epithelial (BBE) cells and the ability to displace and compete against M. haemolytica on BBE. Except for S. thermophilus, all probiotic strains inhibited the growth of M. haemolytica, with zones of inhibition ranging between 12 and 19 mm. Lactobacillus strains and Lactococcus lactis displayed greater (P probiotics (probiotics. The results of this study suggest that probiotics may have the potential to colonize the bovine respiratory tract, and exert antagonistic effects against M. haemolytica serotype 1. A common method to control bovine respiratory disease (BRD) in feedlots is through mass medication with antibiotics upon cattle entry (i.e. metaphylaxis). Increasingly, antimicrobial resistance in BRD bacterial pathogens has been observed in feedlots, which may have important implications for cattle health. In this study, probiotic strains were shown to adhere to bovine respiratory cells and inhibit the BRD pathogen M. haemolytica serotype 1 through competition and displacement. Probiotics may therefore offer a mitigation strategy to reduce BRD bacterial pathogens, in place of metaphylactic antimicrobials. © 2017 Her Majesty the Queen in Right of Canada Letters in Applied Microbiology © 2017 The Society for Applied Microbiology Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.

  2. Brucella abortus strain 2308 Wisconsin genome: importance of the definition of reference strains

    Directory of Open Access Journals (Sweden)

    Marcela Suárez-Esquivel

    2016-09-01

    Full Text Available Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing (WGS analysis of the reference strain Brucella abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version at www.wikipedia.Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised.

  3. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  4. Recent advances in the use of laser-induced breakdown spectroscopy (LIBS) as a rapid point-of-care pathogen diagnostic

    Science.gov (United States)

    Rehse, Steven J.; Miziolek, Andrzej W.

    2012-06-01

    Laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. The significant advantages of LIBS include speed (present the latest advances achieved in LIBS-based bacterial sensing including the ability to uniquely identify species from more than five bacterial genera with high-sensitivity and specificity. Bacterial identifications are completely unaffected by environment, nutrition media, or state of growth and accurate diagnoses can be made on autoclaved or UV-irradiated specimens. Efficient discrimination of bacteria at the strain level has been demonstrated. A rapid urinary tract infection diagnosis has been simulated with no sample preparation and a one second diagnosis of a pathogen surrogate has been demonstrated using advanced chemometric analysis with a simple "stop-light" user interface. Stand-off bacterial identification at a 20-m distance has been demonstrated on a field-portable instrument. This technology could be implemented in doctors' offices, clinics, or hospital laboratories for point-of-care medical specimen analysis; mounted on military medical robotic platforms for in-the- field diagnostics; or used in stand-off configuration for remote sensing and detection.

  5. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Science.gov (United States)

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  6. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Directory of Open Access Journals (Sweden)

    Jordan Lee Harris

    Full Text Available Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  7. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(®) , Lactobacillus paracasei IMC 502(®) and SYNBIO(®) against pathogens.

    Science.gov (United States)

    Coman, M M; Verdenelli, M C; Cecchini, C; Silvi, S; Orpianesi, C; Boyko, N; Cresci, A

    2014-08-01

    Probiotic lactobacilli have a great potential to produce antimicrobial compounds that inhibit and control the microbial pathogen growth. The antimicrobial and antifungal activities of two probiotic strains, Lactobacillus rhamnosus IMC 501(®) and Lactobacillus paracasei IMC 502(®) , and their 1 : 1 combination, named SYNBIO(®) , were studied using four different methods. Using two modified streak methods and a well diffusion method, the inhibitory activity of the probiotics and their metabolites towards six Gram-positive, nine Gram-negative pathogenic bacterial strains and eight Candida strains was tested. Antagonistic effect of probiotic Lactobacillus strains was also investigated by coculturing assay highlighting a significant inhibition of most of the pathogens tested in this study. The combination SYNBIO(®) showed a microbicidal activity against most of the strains tested in the study. Compared with the control, most of the pathogenic bacteria and yeast were inhibited by all probiotic strains tested to various degrees. Screening Lactobacillus strains according to their activity in various environmental conditions could precede the clinical efficacy studies for adjunct treatment with probiotics in cure of different gastrointestinal and vaginal tract infections. © 2014 The Society for Applied Microbiology.

  8. Entomopathogenicity to Two Hemipteran Insects Is Common but Variable across Epiphytic Pseudomonas syringae Strains.

    Science.gov (United States)

    Smee, Melanie R; Baltrus, David A; Hendry, Tory A

    2017-01-01

    Strains of the well-studied plant pathogen Pseudomonas syringae show large differences in their ability to colonize plants epiphytically and to inflict damage to hosts. Additionally, P. syringae can infect some sap-sucking insects and at least one P. syringae strain is highly virulent to insects, causing death to most individuals within as few as 4 days and growing to high population densities within insect hosts. The likelihood of agricultural pest insects coming into contact with transient populations of P. syringae while feeding on plants is high, yet the ecological implications of these interactions are currently not well understood as virulence has not been tested across a wide range of strains. To investigate virulence differences across strains we exposed the sweet potato whitefly, Bemisia tabaci , and the pea aphid, Acyrthosiphon pisum , both of which are cosmopolitan agricultural pests, to 12 P. syringae strains. We used oral inoculations with bacteria suspended in artificial diet in order to assay virulence while controlling for other variables such as differences in epiphytic growth ability. Generally, patterns of pathogenicity remain consistent across the two species of hemipteran insects, with bacterial strains from phylogroup II, or genomospecies 1, causing the highest rate of mortality with up to 86% of individuals dead after 72 h post infection. The rate of mortality is highly variable across strains, some significantly different from negative control treatments and others showing no discernable difference. Interestingly, one of the most pathogenic strains to both aphids and whiteflies (Cit7) is thought to be non-pathogenic on plants. We also found Cit7 to establish the highest epiphytic population after 48 h on fava beans. Between the nine P. syringae strains tested for epiphytic ability there is also much variation, but epiphytic ability was positively correlated with pathogenicity to insects, suggesting that the two traits may be linked and that

  9. Entomopathogenicity to Two Hemipteran Insects Is Common but Variable across Epiphytic Pseudomonas syringae Strains

    Directory of Open Access Journals (Sweden)

    Melanie R. Smee

    2017-12-01

    Full Text Available Strains of the well-studied plant pathogen Pseudomonas syringae show large differences in their ability to colonize plants epiphytically and to inflict damage to hosts. Additionally, P. syringae can infect some sap-sucking insects and at least one P. syringae strain is highly virulent to insects, causing death to most individuals within as few as 4 days and growing to high population densities within insect hosts. The likelihood of agricultural pest insects coming into contact with transient populations of P. syringae while feeding on plants is high, yet the ecological implications of these interactions are currently not well understood as virulence has not been tested across a wide range of strains. To investigate virulence differences across strains we exposed the sweet potato whitefly, Bemisia tabaci, and the pea aphid, Acyrthosiphon pisum, both of which are cosmopolitan agricultural pests, to 12 P. syringae strains. We used oral inoculations with bacteria suspended in artificial diet in order to assay virulence while controlling for other variables such as differences in epiphytic growth ability. Generally, patterns of pathogenicity remain consistent across the two species of hemipteran insects, with bacterial strains from phylogroup II, or genomospecies 1, causing the highest rate of mortality with up to 86% of individuals dead after 72 h post infection. The rate of mortality is highly variable across strains, some significantly different from negative control treatments and others showing no discernable difference. Interestingly, one of the most pathogenic strains to both aphids and whiteflies (Cit7 is thought to be non-pathogenic on plants. We also found Cit7 to establish the highest epiphytic population after 48 h on fava beans. Between the nine P. syringae strains tested for epiphytic ability there is also much variation, but epiphytic ability was positively correlated with pathogenicity to insects, suggesting that the two traits may be

  10. Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms

    KAUST Repository

    Mantilla-Calderon, David

    2017-04-15

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly slower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable but no further decay was observed. Instead, 1 in every 10000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 were detected to have transferred to other native microorganisms in the sludge, or are released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24 h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater.IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study points at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic

  11. Clinical strains of Lactobacillus reduce the filamentation of Candida albicans and protect Galleria mellonella against experimental candidiasis.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Dos Santos Velloso, Marisol; Figueiredo, Lívia Mara Alves; Martins, Carolina Pistille; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2018-05-01

    Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.

  12. Genetic Characterization Of Syrian Erwinia Amylovora Strains By Amplified Fragment Length Polymorphism Technique

    International Nuclear Information System (INIS)

    Ammouneh, H.; Arabi, M.; Shoaib, A.

    2011-01-01

    Thirty Erwinia amylovora strains, collected from the main rosaceous crop-growing regions in Syria, were chosen as representatives of all major pathogenicity groups and were genetically studied by AFLP. Eight primer combinations were utilized and approximately 300 scorable bands in total were generated. Based on similarity coefficient, E. amylovora strains were placed into a main cluster containing two sub clusters, indicating very low genetic variations among the studied pathogen. The existence of two plasmids, pEA29 (present in nearly all E. amylovora isolates) and pEL60 (present mainly in Lebanese strains), was confirmed using multiplex PCR in all tested Syrian E. amylovora strains, indicating that Lebanese and Syrian isolates may share a common origin.(author)

  13. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  14. Genetic Diversity of the Leptospiral Immunoglobulin-like (Lig) Genes in Pathogenic Leptospira spp.

    Science.gov (United States)

    Recent serologic, immunoprotection, and pathogenesis studies implicate the Lig proteins as key virulence determinants in interactions of leptospiral pathogens with the mammalian host. We examined the sequence variation and recombination patterns of ligA, ligB, and ligC among 10 pathogenic strains. M...

  15. A preliminary study on the pathogenicity of Bacillus licheniformis bacteria in immunodepressed mice

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Jensen, N.E.; Giese, Steen Bjørck

    1997-01-01

    The pathogenicity of 13 strains of Bacillus licheniformis was studied in immunodepressed mice. The strains had been isolated from cases of bovine abortions (n=5), bovine feedstuffs (n=3), soil (n=l), and grain products (n=2). The origin of two strains was unknown. Groups of 10 mice were inoculated...... intravenously with B. licheniformis bacteria at doses from...

  16. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro

    Directory of Open Access Journals (Sweden)

    Sebastian Beltran

    Full Text Available BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis, characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7 adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus

  17. Comparison of three methods for the recovery of skin pathogens from impetigo swabs collected in a remote community of Northern Territory, Australia.

    Science.gov (United States)

    Bowen, Asha C; Tong, Steven Y C; Chatfield, Mark D; Andrews, Ross M; Carapetis, Jonathan R

    2013-06-01

    Impetigo is a common infection in children living in remote areas. Immediate plating of impetigo swabs is the gold standard for bacterial recovery but is rarely feasible in remote regions. Bacterial culture increases our understanding of antibiotic resistance and strain diversity, which guides treatment protocols and epidemiological monitoring. We investigated three practical alternatives for recovering Streptococcus pyogenes and Staphylococcus aureus from transported swabs: dry swabs transported at 4°C with desiccant and plated within 48 h; swabs inoculated into skim milk tryptone glucose glycerol broth (STGGB), transported at 4°C, stored at -70°C and plated within 61 days; and ESwabs inoculated into Amies broth, transported at 4°C and plated within 48 h. Detection of Strep. pyogenes and Staph. aureus from simultaneously collected swabs was compared for the dry vs STGGB (36 sores) and the STGGB vs Amies (39 sores) methods. Swabs were collected from 43 children (75 sores sampled) in a remote community of Northern Territory, Australia in November 2011. The children had impetigo and were participating in the Skin Sore Trial [Australian Clinical Trials Registry ACTRN12609000858291]. Recovery of Strep. pyogenes for dry vs STGGB was 72% (26/36) and 92% (33/36) and for STGGB vs Amies was 92% (36/39) for both methods. Staphylococcus aureus recovery for dry vs STGGB was 69% (25/36) and 72% 26/36) and for STGGB vs Amies was 74% (29/39) and 85% (33/39). STGGB and Amies media provided higher recovery of Strep. pyogenes than dry swabs. These results and the opportunity to batch and store specimens for molecular studies support the use of STGGB transport media for future impetigo research.

  18. Review of research on remote sensing with digital map. Remote sensing to suchi chizu no ketsugo ni yoru kenkyu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Sugimura, T [Remote Sensing Technology Center of Japan, Tokyo (Japan)

    1990-12-05

    This paper describes the relationship between remote sensing and digital map. The relation between remote sensing and digital map is roughly classified into two kinds. One of them is utilization of remote sensing and digital map in combination to analyze phenomena, and the other is normalization of remote sensing data by use of digital map. For examples of utilizing remote sensing and digital map, there are the creation of a perspective image of ground scene from Landsat MSS data by use of a mesh type digital map of the orthogonal co-ordinates, and the creation of an image of the enviromental research along roads from satilite data by use of a vector type digital map. Furthermore, this paper introduces a procedure of correcting geographical strains by use of a digital map and converting a radar image to corrected plane image, and the use of a digital map in the global scale for the analysis of floods and other purposes. 20 refs., 5 figs., 1 tab.

  19. Effect of helium-neon laser radiation on conventionally - pathogenous microorganisms

    International Nuclear Information System (INIS)

    Shesterina, M.V.; Kalyuk, A.N.; Maliev, B.M.

    1987-01-01

    Results are reported of single and multiple irradiation with low-energy helium-neon lasers (different doses and regimens) on growth and properties of conventionally-pathogenous microflora isolated from patients with pulmonary tuberculosis and cultures of standard microorganisms. The above mentioned laser radiation produced an inhibitory effect on some strains of conventionally-pathogenous microflora manifested in inhibition of the growth properties of cultures as the energy dose increased

  20. Evaluation of Lactic Acid Bacteria Isolated from Fermented Plant Products for Antagonistic Activity Against Urinary Tract Pathogen Staphylococcus saprophyticus.

    Science.gov (United States)

    Tsai, Cheng-Chih; Lai, Tzu-Min; Lin, Pei-Pei; Hsieh, You-Miin

    2018-06-01

    Urinary tract infections (UTIs) are the most common infectious diseases in infants and the elderly; they are also the most common among nosocomial infections. The treatment of UTIs usually involves a short-term course of antibiotics. The purpose of this study was to identify the strains of lactic acid bacteria (LAB) that can inhibit the urinary tract pathogen Staphylococcus saprophyticus, as alternatives to antibiotics. In this study, we collected 370 LAB strains from fermented plant products and reference strains from the Bioresources Collection and Research Center (BCRC). Using spent culture supernatants (SCS), we then screened these LAB strains with for antimicrobial effects on urinary tract pathogens by the well-diffusion assay. Seven LAB strains-PM2, PM68, PM78, PM201, PM206, PM229, and RY2-exhibited inhibitory activity and were evaluated for anti-growth activity against urinary tract pathogens by the co-culture inhibition assay. Anti-adhesion and anti-invasion activities against urinary tract pathogens were evaluated using the SV-HUC-1 urothelial cell cultures. The results revealed that the survival rate of S. saprophyticus ranged from 0.9-2.96%, with the pH continuously decreasing after co-culture with LAB strains for 4 h. In the competitive adhesion assay, the exclusion and competition groups performed better than the displacement group. In the SV-HUC-1 cell invasion assay, PM201, PM206, PM229, and RY2 were found to inhibit the invasion of SV-HUC-1 cells by S. saprophyticus BCRC 10786. To conclude, RY2, PM229, and PM68 strains exhibited inhibitory activity against the urinary tract pathogen S. saprophyticus.

  1. Isolation of an H5N8 Highly Pathogenic Avian Influenza Virus Strain from Wild Birds in Seoul, a Highly Urbanized Area in South Korea.

    Science.gov (United States)

    Kwon, Jung-Hoon; Lee, Dong-Hun; Jeong, Jei-Hyun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Sol; Gwon, Gyeong-Bin; Lee, Sang-Won; Choi, In-Soo; Song, Chang-Seon

    2017-07-01

    Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.

  2. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent

    Directory of Open Access Journals (Sweden)

    S.L. States

    2017-06-01

    Full Text Available Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding – such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.

  3. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates.

    Directory of Open Access Journals (Sweden)

    Peter Klotz

    Full Text Available The objective of this study was to characterize blaOXA-23 harbouring Acinetobacter indicus-like strains from cattle including genomic and phylogenetic analyses, antimicrobial susceptibility testing and evaluation of pathogenicity in vitro and in vivo. Nasal and rectal swabs (n = 45 from cattle in Germany were screened for carbapenem-non-susceptible Acinetobacter spp. Thereby, two carbapenem resistant Acinetobacter spp. from the nasal cavities of two calves could be isolated. MALDI-TOF mass spectrometry and 16S rDNA sequencing identified these isolates as A. indicus-like. A phylogenetic tree based on partial rpoB sequences indicated closest relation of the two bovine isolates to the A. indicus type strain A648T and human clinical A. indicus isolates, while whole genome comparison revealed considerable intraspecies diversity. High mimimum inhibitory concentrations were observed for carbapenems and other antibiotics including fluoroquinolones and gentamicin. Whole genome sequencing and PCR mapping revealed that both isolates harboured blaOXA-23 localized on the chromosome and surrounded by interrupted Tn2008 transposon structures. Since the pathogenic potential of A. indicus is unknown, pathogenicity was assessed employing the Galleria (G. mellonella infection model and an in vitro cytotoxicity assay using A549 human lung epithelial cells. Pathogenicity in vivo (G. mellonella killing assay and in vitro (cytotoxicity assay of the two A. indicus-like isolates was lower compared to A. baumannii ATCC 17978 and similar to A. lwoffii ATCC 15309. The reduced pathogenicity of A. indicus compared to A. baumannii correlated with the absence of important virulence genes encoding like phospholipase C1+C2, acinetobactin outer membrane protein BauA, RND-type efflux system proteins AdeRS and AdeAB or the trimeric autotransporter adhesin Ata. The emergence of carbapenem-resistant A. indicus-like strains from cattle carrying blaOXA-23 on transposable elements and

  4. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen - Methicillin resistant Staphylococcus aureus strains with respiratory origins.

    Science.gov (United States)

    Lin, Qun; Xu, Pusheng; Li, Jiaowu; Chen, Yin; Feng, Jieyi

    2017-08-01

    Loop-mediated isothermal amplification based detection assays using bacterial culture or colony for direct detection of methicillin resistant Staphylococcus aureus(MRSA) had been developed and evaluated, followed by its extensive application on a large scale of clinical MRSA isolated from respiratory origins, including nasal swabs and sputums. Six primers, including outer primers, inner primers and loop primers, were specifically designed for recognizing eight distinct sequences on four targets: 16SrRNA, femA, mecA and orfX. Twenty-seven reference strains were used to develop, evaluate and optimize this assay. Then, a total of 532 clinical MRSA isolates were employed for each detected targets. And the results were determined through both visual observation of the color change by naked eye and electrophoresis. The specific of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 40 min. The limit of detections (LOD) of bacteria culture LAMP assays were determined to be 10 4  CFU/ml for 16S rRNA, femA, as well as orfX and 10 5  CFU/ml for mecA, respectively. The established novel assays on MRSA detection may provide new strategies for rapid detection of foodborne pathogens. Copyright © 2017. Published by Elsevier Ltd.

  5. Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine.

    Directory of Open Access Journals (Sweden)

    Heidi C Vebø

    Full Text Available Urinary tract infection (UTI is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits.

  6. Genome sequence of herpes simplex virus 1 strain KOS.

    Science.gov (United States)

    Macdonald, Stuart J; Mostafa, Heba H; Morrison, Lynda A; Davido, David J

    2012-06-01

    Herpes simplex virus type 1 (HSV-1) strain KOS has been extensively used in many studies to examine HSV-1 replication, gene expression, and pathogenesis. Notably, strain KOS is known to be less pathogenic than the first sequenced genome of HSV-1, strain 17. To understand the genotypic differences between KOS and other phenotypically distinct strains of HSV-1, we sequenced the viral genome of strain KOS. When comparing strain KOS to strain 17, there are at least 1,024 small nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). The polymorphisms observed in the KOS genome will likely provide insights into the genes, their protein products, and the cis elements that regulate the biology of this HSV-1 strain.

  7. Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Hansen, Martin Asser; Jensen, Peter Østrup

    2013-01-01

    Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans strain with phenotypic investigations of its important pathogenic features. We...... that render it an opportunistic human pathogen, We found genes involved in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin. Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic modifying enzymes....... In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation enables further studies of the functionality of important identified genes contributing...

  8. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  9. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

    Science.gov (United States)

    Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina

    2016-01-01

    Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773

  11. Pathogenicity of Shigella in chickens.

    Science.gov (United States)

    Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.

  12. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    Science.gov (United States)

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  13. Strain specific variation of outer membrane proteins of wild Yersinia pestis strains subjected to different growth temperatures

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme Coutinho Abath

    1990-03-01

    Full Text Available Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76 were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page. Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.

  14. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health.

    Directory of Open Access Journals (Sweden)

    Hikmate eAbriouel

    2015-10-01

    Full Text Available Despite the use of several Weissella strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database.Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas,as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screeningunreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.

  16. Investigation of Sclerotinia sclerotiorum strains variability in Brazil.

    Science.gov (United States)

    Abreu, M J; Souza, E A

    2015-06-18

    White mold is a common bean disease caused by the fungus Sclerotinia sclerotiorum, resulting in economic losses in Brazil and worldwide. Lack of knowledge about the population structure of the pathogen makes it difficult to control the disease. The aim of this study was to characterize strains of S. sclerotiorum obtained from ex-perimental and commercial common bean fields in Brazil. We analyzed 50 strains of S. sclerotiorum collected at several locations in the state of Minas Gerais. The strains were characterized according to their ability and time for developing apothecia. Morphological and physiological analyses such as the mycelial growth index, colony color, the time re-quired to form the first sclerotia on media, the number of sclerotia per plate, average sclerotium size, and sclerotium shape were performed. We determined the mycelial compatibility, conducted molecular analy-sis of microsatellites, and evaluated the aggressiveness of 28 strains. Most strains had the ability to form apothecia. A small group of strains showed mycelial compatibility, and the strains showed different aggres-siveness levels. Overall, the population studied here demonstrated wide variability based on the morphological, physiological, and molecular traits analyzed. The average size and shape of sclerotia presented a cor-relation of 0.617, whereas the times required to form sclerotia and the number of sclerotia per plate showed a correlation of -0.455. The char-acterization of the pathogen population described herein will provide an important tool for promoting the development of bean cultivars re-sistant to white mold.

  17. Pathogen-induced Caenorhabditis elegans developmental plasticity has a hormetic effect on the resistance to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Leroy Magali

    2012-09-01

    Full Text Available Abstract Background Phenotypic plasticity, i.e. the capacity to change the phenotype in response to changes in the environment without alteration of the genotype, is important for coping with unstable environments. In spite of the ample evidence that microorganisms are a major environmental component playing a significant role in eukaryotic organisms health and disease, there is not much information about the effect of microorganism-induced developmental phenotypic plasticity on adult animals’ stress resistance and longevity. Results We examined the consequences of development of Caenorhabditis elegans larvae fed with different bacterial strains on stress resistance and lifespan of adult nematodes. Bacterial strains used in this study were either pathogenic or innocuous to nematodes. Exposure to the pathogen during development did not affect larval survival. However, the development of nematodes on the pathogenic bacterial strains increased lifespan of adult nematodes exposed to the same or a different pathogen. A longer nematode lifespan, developed on pathogens and exposed to pathogens as adults, did not result from an enhanced capacity to kill bacteria, but is likely due to an increased tolerance to the damage inflicted by the pathogenic bacteria. We observed that adult nematodes developed on a pathogen induce higher level of expression of the hsp-16.2 gene and have higher resistance to heat shock than nematodes developed on an innocuous strain. Therefore, the increased resistance to pathogens could be, at least partially, due to the early induction of the heat shock response in nematodes developed on pathogens. The lifespan increase is controlled by the DBL-1 transforming growth factor beta-like, DAF-2/DAF-16 insulin-like, and p38 MAP kinase pathways. Therefore, the observed modulation of adult nematode lifespans by developmental exposure to a pathogen is likely a genetically controlled response. Conclusions Our study shows that development

  18. Phenotypic Variation Is Almost Entirely Independent of the Host-Pathogen Relationship in Clinical Isolates of S. aureus.

    Directory of Open Access Journals (Sweden)

    Adrian D Land

    Full Text Available A key feature of Staphylococcus aureus biology is its ability to switch from an apparently benign colonizer of ~30% of the population to a cutaneous pathogen, to a deadly invasive pathogen. Little is known about the mechanisms driving this transition or the propensity of different S. aureus strains to engender different types of host-pathogen interactions. At the same time, significant weight has been given to the role of specific in vitro phenotypes in S. aureus virulence. Biofilm formation, hemolysis and pigment formation have all been associated with virulence in mice.To determine if there is a correlation between in vitro phenotype and the three types of host-pathogen relationships commonly exhibited by S. aureus in the context of its natural human host, we assayed 300 clinical isolates for phenotypes implicated in virulence including hemolysis, sensitivity to autolysis, and biofilm formation. For comparative purposes, we also assayed phenotype in 9 domesticated S. aureus strains routinely used for analysis of virulence determinants in laboratory settings.Strikingly, the clinical strains exhibited significant phenotypic uniformity in each of the assays evaluated in this study. One exception was a small, but significant, correlation between an increased propensity for biofilm formation and isolation from skin and soft tissue infections (SSTIs. In contrast, we observed a high degree of phenotypic variation between common laboratory strains that exhibit virulence in mouse models. These data suggest the existence of significant evolutionary pressure on the S. aureus genome and highlight a role for host factors as a strong determinant of the host-pathogen relationship. In addition, the high degree of variation between laboratory strains emphasizes the need for caution when applying data obtained in one lab strain to the analysis of another.

  19. Antibacterial activity of different honeys against pathogenic bacteria.

    Science.gov (United States)

    Voidarou, C; Alexopoulos, A; Plessas, S; Karapanou, A; Mantzourani, I; Stavropoulou, E; Fotou, K; Tzora, A; Skoufos, I; Bezirtzoglou, E

    2011-12-01

    To study the antimicrobial activity of honey, 60 samples of various botanical origin were evaluated for their antimicrobial activities against 16 clinical pathogens and their respective reference strains. The microbiological quality of honeys and the antibiotic susceptibility of the various isolates were also examined. The bioassay applied for determining the antimicrobial effect employs the well-agar diffusion method and the estimation of minimum active dilution which produces a 1mm diameter inhibition zone. All honey samples, despite their origin (coniferous, citrus, thyme or polyfloral), showed antibacterial activity against the pathogenic and their respective reference strains at variable levels. Coniferous and thyme honeys showed the highest activity with an average minimum dilution of 17.4 and 19.2% (w/v) followed by citrus and polyfloral honeys with 20.8 and 23.8% respectively. Clinical isolates of Staphylococcus aureus subsp. aureus, Escherichia coli, Salmonella enterica subsp. Enterica, Streptococcus pyogenes, Bacillus cereus and Bacillus subtilis were proven to be up to 60% more resistant than their equal reference strains thus emphasizing the variability in the antibacterial effect of honey and the need for further research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Histopathological changes induced in an animal model by potentially pathogenic Enterococcus faecalis strains recovered from ready-to-eat food outlets in Osun State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olawale AK

    2015-06-01

    Full Text Available Adetunji Kola Olawale,1,2 Oluwole Moses David,2,3 Adekemi Olubukunola Oluyege,2 Richard Temitope Osuntoyinbo,4 Solomon Anjuwon Laleye,5 Oladiran Famurewa,21Department of Applied Sciences, Osun State Polytechnic, Iree, 2Department of Microbiology, University of Ado-Ekiti, Ado-Ekiti, Nigeria; 3Phytomedicine Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa; 4Department of Microbiology, Waterford Regional Hospital, Waterford, Republic of Ireland; 5Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, NigeriaAbstract: Enterococci have been implicated as an emerging important cause of several diseases and multiple antibiotic resistance. However, there is little information about the prevalence of pathogenic and/or antibiotic-resistant Enterococcus faecalis in ready-to-eat foods in Nigeria. Here we report the pathogenic potential of three selected antibiotic-resistant E. faecalis strains isolated from food canteens and food outlets with different virulence determinant genes, including EFC 12 (with gel+, esp+, cylA+, and asa1+, EFT 148 (with gel+, ace+, and asa1+, and EFS 18 (with esp+ and cylA+ in an animal model. Enterococcemia, hematological parameters, and histopathological changes in organ tissues were examined in experimental animals. The results showed differences in enterococcemia and hematological parameters between the control group and experimental animal group. Enterococcemia was observed for 7 days, and the animal group infected with EFC 12 showed the highest growth rate, followed by EFT 148, with the lowest growth rate seen in the EFS 18-infected group. White blood cell count, packed cell volume, and platelets were significantly reduced (P<0.05 in the experimental animals compared with the controls. White blood cells decreased drastically during the study period in rats challenged with EFC 12 (from 7,800 to 6,120 per mm3 but levels remained higher in the control group (from 9,228 to 9

  1. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage.

    Directory of Open Access Journals (Sweden)

    Parul Mehrotra

    2014-07-01

    Full Text Available The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case. Subsequent analysis identified the core subset of host reactions that were targeted. It also elucidated that the goal of regulation was to integrate pathways facilitating macrophage survival, with those promoting mycobacterial sustenance. Intriguingly, this synthesis then provided an axis where both host- and pathogen-derived factors converged to define determinants of pathogenicity. Consequently, whereas the requirement for macrophage survival sensitized TB susceptibility to the glycemic status of the individual, mediation by pathogen ensured that the virulence properties of the infecting strain also contributed towards the resulting pathology.

  2. Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Connie Slocum

    2014-07-01

    Full Text Available Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4 agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE(-/- mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE(-/- mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune

  3. All Yersinia enterocolitica are pathogenic: virulence of phylogroup 1 Y. enterocolitica in a Galleria mellonella infection model.

    Science.gov (United States)

    Alenizi, Dhahi; Ringwood, Tamara; Redhwan, Alya; Bouraha, Bouchra; Wren, Brendan W; Prentice, Michael; McNally, Alan

    2016-08-01

    Yersinia enterocolitica is a zoonotic pathogen and a common cause of gastroenteritis in humans. The species is composed of six diverse phylogroups, of which strains of phylogroup 1 are considered non-pathogenic to mammals due to the lack of the major virulence plasmid pYV, and their lack of virulence in a mouse infection model. In the present report we present data examining the pathogenicity of strains of Y. enterocolitica across all six phylogroups in a Galleria mellonellla model. We have demonstrated that in this model strains of phylogroup 1 exhibit severe pathogenesis with a lethal dose of as low as 10 c.f.u., that this virulence is an active process and that flagella play a major role in the virulence phenotype. We have also demonstrated that the complete lack of virulence in Galleria of the mammalian pathogenic phylogroups is not due to carriage of the pYV virulence plasmid. Our data suggest that all Y. enterocolitica can be pathogenic, which may be a reflection of the true natural habitat of the species, and that we may need to reconsider the eco-evo perspective of this important bacterial species.

  4. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    Science.gov (United States)

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  5. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss.

    Directory of Open Access Journals (Sweden)

    Rajendra P Settem

    Full Text Available Alveolar bone (tooth-supporting bone erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

  6. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss.

    Science.gov (United States)

    Settem, Rajendra P; Honma, Kiyonobu; Sharma, Ashu

    2014-01-01

    Alveolar bone (tooth-supporting bone) erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

  7. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  8. Differentiation of strains of yellow fever virus in γ-irradiated mice

    International Nuclear Information System (INIS)

    Fitzgeorge, R.; Bradish, C.J.

    1980-01-01

    The mouse sensitized by optimal, sub-lethal γ-irradiation has been used for the differentiation of strains of yellow fever virus and for the resolution of their immunogenicity and pathogenicity as distinct characteristics. For different strains of yellow fever virus, the patterns of antibody-synthesis, regulatory immunity (pre-challenge) and protective immunity (post-challenge) are differentially sensitive to γ-irradiation. These critical differentiations of strains of yellow fever virus in γ-irradiated mice have been compared with those shown in normal athymic and immature mice in order to elucidate the range of quantifiable in vivo characteristics and the course of the virus-host interaction. This is discussed as a basis for the comparisons of the responses of model and principal hosts to vaccines and pathogens. (author)

  9. The pathogenicity of Beauveria bassiana: what happens after an endophytic phase in plants?

    Science.gov (United States)

    Akello, J; Dubois, T; Coyne, D; Kyamanywa, S

    2010-01-01

    The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study

  10. Tropism and pathogenicity of rickettsiae

    Directory of Open Access Journals (Sweden)

    Tsuneo eUchiyama

    2012-06-01

    Full Text Available Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group and typhus group rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism towards cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and nonpathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and nonpathogenic species of spotted fever group rickettsiae in mammalian cells. The growth of nonpathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of nonpathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the nonpathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.

  11. Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens.

    Science.gov (United States)

    Li, Wenbin; Song, Qijian; Brlansky, Ronald H; Hartung, John S

    2007-11-20

    Citrus bacterial canker (CBC) caused by Xanthomonas axonopodis pv. citri (Xac) was first documented in India and Java in the mid 19th century. Since that time, the known distribution of the disease has steadily increased. Concurrent with the dispersion of the pathogen, the diversity of described strains continues to increase, with novel strains appearing in Saudi Arabia, Iran, and Florida in the last decade. Herbarium specimens of infected plants provide an historical record documenting both the geographic distribution and genetic diversity of the pathogen in the past. However, no method was available to assess the genetic diversity within these herbarium samples. We have developed a method, insertion event scanning (IES), and applied the method to characterize the diversity present within CBC populations documented as herbarium specimens over the past century. IES is based on the specific amplification of junction fragments that define insertion events. The potential for IES in current forensic applications is demonstrated by finding an exact match of pathogen genotypes preserved in herbarium specimens from Japan and Florida, demonstrating the source of the original outbreak of citrus canker in Florida in 1911. IES is a very sensitive technique for differentiating bacterial strains and can be applied to any of the several hundred bacteria for which full genomic sequence data are available.

  12. Comparative genomics analyses revealed two virulent Listeria monocytogenes strains isolated from ready-to-eat food.

    Science.gov (United States)

    Lim, Shu Yong; Yap, Kien-Pong; Thong, Kwai Lin

    2016-01-01

    Listeria monocytogenes is an important foodborne pathogen that causes considerable morbidity in humans with high mortality rates. In this study, we have sequenced the genomes and performed comparative genomics analyses on two strains, LM115 and LM41, isolated from ready-to-eat food in Malaysia. The genome size of LM115 and LM41 was 2,959,041 and 2,963,111 bp, respectively. These two strains shared approximately 90% homologous genes. Comparative genomics and phylogenomic analyses revealed that LM115 and LM41 were more closely related to the reference strains F2365 and EGD-e, respectively. Our virulence profiling indicated a total of 31 virulence genes shared by both analysed strains. These shared genes included those that encode for internalins and L. monocytogenes pathogenicity island 1 (LIPI-1). Both the Malaysian L. monocytogenes strains also harboured several genes associated with stress tolerance to counter the adverse conditions. Seven antibiotic and efflux pump related genes which may confer resistance against lincomycin, erythromycin, fosfomycin, quinolone, tetracycline, and penicillin, and macrolides were identified in the genomes of both strains. Whole genome sequencing and comparative genomics analyses revealed two virulent L. monocytogenes strains isolated from ready-to-eat foods in Malaysia. The identification of strains with pathogenic, persistent, and antibiotic resistant potentials from minimally processed food warrant close attention from both healthcare and food industry.

  13. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.

    Directory of Open Access Journals (Sweden)

    Nicola K Petty

    2011-04-01

    Full Text Available Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC and enterohaemorrhagic E. coli (EHEC and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.

  14. Inhibition of Fungal Pathogens across Genotypes and Temperatures by Amphibian Skin Bacteria

    Directory of Open Access Journals (Sweden)

    Carly R. Muletz-Wolz

    2017-08-01

    Full Text Available Symbiotic bacteria may dampen the impacts of infectious diseases on hosts by inhibiting pathogen growth. However, our understanding of the generality of pathogen inhibition by different bacterial taxa across pathogen genotypes and environmental conditions is limited. Bacterial inhibitory properties are of particular interest for the amphibian-killing fungal pathogens (Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, for which probiotic applications as conservation strategies have been proposed. We quantified the inhibition strength of five putatively B. dendrobatidis-inhibitory bacteria isolated from woodland salamander skin against six Batrachochytrium genotypes at two temperatures (12 and 18°C. We selected six genotypes from across the Batrachochytrium phylogeny: B. salamandrivorans, B. dendrobatidis-Brazil and four genotypes of the B. dendrobatidis Global Panzootic Lineage (GPL1: JEL647, JEL404; GPL2: SRS810, JEL423. We performed 96-well plate challenge assays in a full factorial design. We detected a Batrachochytrium genotype by temperature interaction on bacterial inhibition score for all bacteria, indicating that bacteria vary in ability to inhibit Batrachochytrium depending on pathogen genotype and temperature. Acinetobacter rhizosphaerae moderately inhibited B. salamandrivorans at both temperatures (μ = 46–53%, but not any B. dendrobatidis genotypes. Chryseobacterium sp. inhibited three Batrachochytrium genotypes at both temperatures (μ = 5–71%. Pseudomonas sp. strain 1 inhibited all Batrachochytrium genotypes at 12°C and four Batrachochytrium genotypes at 18°C (μ = 5–100%. Pseudomonas sp. strain 2 and Stenotrophomonas sp. moderately to strongly inhibited all six Batrachochytrium genotypes at both temperatures (μ = 57–100%. All bacteria consistently inhibited B. salamandrivorans. Using cluster analysis of inhibition scores, we found that more closely related Batrachochytrium genotypes grouped together

  15. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  16. Molecular characterization, phylogeny analysis and pathogenicity of a Muscovy duck adenovirus strain isolated in China in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinheng [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China); Zhong, Yangjin; Zhou, Zhenhai; Liu, Yang [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); Zhang, Huanmin [USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823 (United States); Chen, Feng [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); Chen, Weiguo [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China); Xie, Qingmei, E-mail: qmx@scau.edu.cn [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China)

    2016-06-15

    This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The results of the analyses were in conformity with AdV properties. The full genome sequence was determined and analyzed. The new isolate (named CH-GD-12-2014) shared over 91% sequence identity with duck AdV-2 representing the species Duck aviadenovirus B. The most important distinguishing feature between the two DAdV strains was the presence of a second fiber gene in the Chinese isolate. Phylogeny reconstruction confirmed the affiliation of the virus with goose and duck AdVs in the genus Aviadenovirus. Experimental infection resulted in embryo death, and intramuscular inoculation provoked morbidity and mortality among ducks and chickens. - Highlights: • A duck adenovirus type 3 was isolated and the complete genome of DAdV-3 was obtained. • Physicochemical properties and electron microscopy were researched. • Pathogenicity of duck adenovirus type 3 was researched.

  17. Molecular characterization, phylogeny analysis and pathogenicity of a Muscovy duck adenovirus strain isolated in China in 2014

    International Nuclear Information System (INIS)

    Zhang, Xinheng; Zhong, Yangjin; Zhou, Zhenhai; Liu, Yang; Zhang, Huanmin; Chen, Feng; Chen, Weiguo; Xie, Qingmei

    2016-01-01

    This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The results of the analyses were in conformity with AdV properties. The full genome sequence was determined and analyzed. The new isolate (named CH-GD-12-2014) shared over 91% sequence identity with duck AdV-2 representing the species Duck aviadenovirus B. The most important distinguishing feature between the two DAdV strains was the presence of a second fiber gene in the Chinese isolate. Phylogeny reconstruction confirmed the affiliation of the virus with goose and duck AdVs in the genus Aviadenovirus. Experimental infection resulted in embryo death, and intramuscular inoculation provoked morbidity and mortality among ducks and chickens. - Highlights: • A duck adenovirus type 3 was isolated and the complete genome of DAdV-3 was obtained. • Physicochemical properties and electron microscopy were researched. • Pathogenicity of duck adenovirus type 3 was researched.

  18. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  19. Persistent environmental contamination with USA300 methicillin-resistant Staphylococcus aureus and other pathogenic strain types in households with S. aureus skin infections.

    Science.gov (United States)

    Eells, Samantha J; David, Michael Z; Taylor, Alexis; Ortiz, Nancy; Kumar, Neha; Sieth, Julia; Boyle-Vavra, Susan; Daum, Robert S; Miller, Loren G

    2014-11-01

    To understand the genotypic spectrum of environmental contamination of Staphylococcus aureus in households and its persistence. Prospective longitudinal cohort investigation. Index participants identified at 2 academic medical centers. Adults and children with S. aureus skin infections and their household contacts in Los Angeles and Chicago. Household fomites were surveyed for contamination at baseline and 3 months. All isolates underwent genetic typing. We enrolled 346 households, 88% of which completed the 3-month follow-up visit. S. aureus environmental contamination was 49% at baseline and 51% at 3 months. Among households with a USA300 methicillin-resistant S. aureus (MRSA) body infection isolate, environmental contamination with an indistinguishable MRSA strain was 58% at baseline and 63% at 3 months. Baseline factors associated with environmental contamination by the index subject's infection isolate were body colonization by any household member with the index subject's infection isolate at baseline (odds ratio [OR], 10.93 [95% confidence interval (CI), 5.75-20.79]), higher housing density (OR, 1.47 [95% CI, 1.10-1.96]), and more frequent household fomite cleaning (OR, 1.62 [95% CI, 1.16-2.27]). Household environmental contamination with the index subject's infection strain at 3 months was associated with USA300 MRSA and a synergistic interaction between baseline environmental contamination and body colonization by any household member with the index subject's infection strain. We found that infecting S. aureus isolates frequently persisted environmentally in households 3 months after skin infection. Presence of pathogenic S. aureus strain type in the environment in a household may represent a persistent reservoir that places household members at risk of future infection.

  20. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria.

    Science.gov (United States)

    Maier, R J

    2005-02-01

    Molecular hydrogen is produced as a fermentation by-product in the large intestine of animals and its production can be correlated with the digestibility of the carbohydrates consumed. Pathogenic Helicobacter species (Helicobacter pylori and H. hepaticus) have the ability to use H(2) through a respiratory hydrogenase, and it was demonstrated that the gas is present in the tissues colonized by these pathogens (the stomach and the liver respectively of live animals). Mutant strains of H. pylori unable to use H(2) are deficient in colonizing mice compared with the parent strain. On the basis of available annotated gene sequence information, the enteric pathogen Salmonella, like other enteric bacteria, contains three putative membrane-associated H(2)-using hydrogenase enzymes. From the analysis of gene-targeted mutants it is concluded that each of the three membrane-bound hydrogenases of Salmonella enterica serovar Typhimurium are coupled with an H(2)-oxidizing respiratory pathway. From microelectrode probe measurements on live mice, H(2) could be detected at approx. 50 muM levels within the tissues (liver and spleen), which are colonized by Salmonella. The half-saturation affinity of whole cells of these pathogens for H(2) is much less than this, so it is expected that the (H(2)-utilizing) hydrogenase enzymes be saturated with the reducing substrate in vivo. All three enteric NiFe hydrogenase enzymes contribute to virulence of the bacterium in a typhoid fever-mouse model, and the combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast with the parent strain) one that is not able to pass the intestinal tract to invade liver or spleen tissue. It is proposed that H(2) utilization and specifically its oxidation, coupled with a respiratory pathway, is required for energy production to permit growth and maintain efficient virulence of a number of pathogenic bacteria during infection of animals. These would be expected to include

  1. Variation in the Early Host-Pathogen Interaction of Bovine Macrophages with Divergent Mycobacterium bovis Strains in the United Kingdom.

    Science.gov (United States)

    Jensen, Kirsty; Gallagher, Iain J; Johnston, Nicholas; Welsh, Michael; Skuce, Robin; Williams, John L; Glass, Elizabeth J

    2018-03-01

    Bovine tuberculosis has been an escalating animal health issue in the United Kingdom since the 1980s, even though control policies have been in place for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis , in the reemergence of the disease has been largely overlooked. We compared the interaction between bovine monocyte-derived macrophages (bMDM) and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences in survival and growth in bMDM. Although uptake was similar, the number of viable intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome activation, and a greater type I interferon response than G18. In conclusion, the two investigated M. bovis strains interact in significantly different ways with the host macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces greater signaling to attract other immune cells and induces host cell death, which may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in the United Kingdom warrants further investigation. Copyright © 2018 Jensen et al.

  2. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  3. Coaggregation between probiotic bacteria and caries-associated strains: An in vitro study

    DEFF Research Database (Denmark)

    Twetman, Lisa; Larsen, Ulla; Fiehn, Nils-Erik

    2009-01-01

    Objective. To evaluate the in vitro abilities of probiotic bacteria derived from consumer products to coaggregate with caries-associated mutans streptococci. Material and Methods. Six lactobacillus strains (L. acidophilus (CCUG 5917), L. plantarum 299v, L. rhamnosus GG and LB21, L. paracasei F19, L....... A gastrointestinal pathogen (Escherichia coli) was aerobically cultivated on BHI broth as a positive control. After incubation, the bacteria were aerobically harvested, washed, and suspended in 10 mmol/l phosphate-buffered saline (pH 7.2). The probiotic strains were characterized with the API 50 CH system to confirm...... their identity. Coaggregation was determined by spectrophotometry in mixtures and bacterial suspensions alone after 1, 2, 4, and 24 h and expressed as the aggregation ratio (%). Results. All probiotic strains showed coaggregation abilities with the oral pathogens and the results were strain specific...

  4. Presence of Aspergillus sydowii, a pathogen of gorgonian sea fans in the marine sponge Spongia obscura.

    Science.gov (United States)

    Ein-Gil, Neta; Ilan, Micha; Carmeli, Shmuel; Smith, Garriet W; Pawlik, Joseph R; Yarden, Oded

    2009-06-01

    The fungus Aspergillus sydowii is the causative agent of epidemics that affect gorgonian corals (sea fans) and has significantly affected their populations in the Caribbean Sea. We have isolated a strain of A. sydowii from healthy marine sponges (Spongia obscura) collected in Bahamian inshore waters. After its identification on the basis of morphology, molecular markers and chemical profiling followed by pathogenicity tests, we found this strain to be highly similar to a strain isolated from diseased coral, and have shown the capacity of this fungus to persist in sponge environment. Our findings suggest that sponges have the possibility of being reservoirs of a potential marine pathogen.

  5. Population genomic insights into the emergence, crop-adaptation and dissemination of Pseudomonas syringae pathogens

    Science.gov (United States)

    Although pathogen strains that cause disease outbreaks are often well characterized, relatively little is known about the reservoir populations from which they emerge. Genomic comparison of outbreak strains with isolates of reservoir populations can give new insight into mechanisms of disease emerge...

  6. Construction of a stable GFP-tagged Vibrio harveyi strain for bacterial dynamics analysis of abalone infection.

    Science.gov (United States)

    Travers, Marie-Agnès; Barbou, Annaïck; Le Goïc, Nelly; Huchette, Sylvain; Paillard, Christine; Koken, Marcel

    2008-12-01

    Vibrio harveyi is a bacterial marine pathogen that can cause fatal disease in a large range of vertebrates and invertebrates, including the commercially important marine gastropod, Haliotis tuberculata. Since 1997, strains of this bacterium have regularly been causing high mortalities in farmed and wild abalone populations. The way in which the pathogen enters into abalone and the disease transmission mechanisms are thus far unknown. Therefore, a pathogenic strain, ORM4, was green fluorescent protein-tagged and validated both for its growth characteristics and for its virulence as a genuine model for abalone disease. The strain allows V. harveyi quantification by flow cytometry in seawater and in abalone haemolymph as well as the in situ detection of the parasite inside abalone tissues.

  7. Infection studies with two highly pathogenic avian influenza strains (Vietnamese and Indonesian) in Pekin ducks (Anas platyrhynchos), with particular reference to clinical disease, tissue tropism and viral shedding.

    Science.gov (United States)

    Bingham, John; Green, Diane J; Lowther, Sue; Klippel, Jessica; Burggraaf, Simon; Anderson, Danielle E; Wibawa, Hendra; Hoa, Dong Manh; Long, Ngo Thanh; Vu, Pham Phong; Middleton, Deborah J; Daniels, Peter W

    2009-08-01

    Pekin ducks were infected by the mucosal route (oral, nasal, ocular) with one of two strains of Eurasian lineage H5N1 highly pathogenic avian influenza virus: A/Muscovy duck/Vietnam/453/2004 and A/duck/Indramayu/BBVW/109/2006 (from Indonesia). Ducks were killed humanely on days 1, 2, 3, 5 and 7 after challenge, or whenever morbidity was severe enough to justify euthanasia. Morbidity was recorded by observation of clinical signs and cloacal temperatures; the disease was characterized by histopathology; tissue tropism was studied by immunohistochemistry and virus titration on tissue samples; and viral shedding patterns were determined by virus isolation and titration of oral and cloacal swabs. The Vietnamese strain caused severe morbidity with fever and depression; the Indonesian strain caused only transient fever. Both viruses had a predilection for a similar range of tissue types, but the quantity of tissue antigen and tissue virus titres were considerably higher with the Vietnamese strain. The Vietnamese strain caused severe myocarditis and skeletal myositis; both strains caused non-suppurative encephalitis and a range of other inflammatory reactions of varying severity. The principal epithelial tissue infected was that of the air sacs, but antigen was not abundant. Epithelium of the turbinates, trachea and bronchi had only rare infection with virus. Virus was shed from both the oral and cloacal routes; it was first detected 24 h after challenge and persisted until day 5 after challenge. The higher prevalence of virus from swabs from ducks infected with the Vietnamese strain indicates that this strain may be more adapted to ducks than the Indonesia strain.

  8. Pathogenesis of New Strains of Newcastle Disease Virus From Israel and Pakistan.

    Science.gov (United States)

    Pandarangga, P; Brown, C C; Miller, P J; Haddas, R; Rehmani, S F; Afonso, C L; Susta, L

    2016-07-01

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains-1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenotype XIIIb isolated in Pakistan (Karachi/07)-were characterized by intracerebral pathogenicity index and detailed clinicopathologic assessment. The intracerebral pathogenicity index values for Kvuzat/13 and Karachi/07 were 1.89 and 1.85, respectively, classifying these strains as virulent by international standards. In 4-week-old White Leghorn chickens, both strains caused 100% mortality within 4 (Kvuzat/13) and 5 (Karachi/07) days postinfection. Histopathology and immunohistochemistry for NDV nucleoprotein showed that both strains had wide systemic distribution, especially targeting lymphoid organs and mucosa-associated lymphoid tissues in the respiratory and intestinal tracts. Results of the animal experiment confirm that both Kvuzat/13 and Karachi/07 are highly virulent and behaved as velogenic viscerotropic NDV strains. © The Author(s) 2016.

  9. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  10. 3D modelling of the pathogenic Leptospira protein LipL32: A bioinformatics approach.

    Science.gov (United States)

    Kumaran, Sharmilah Kumari; Bakar, Mohd Faizal Abu; Mohd-Padil, Hirzahida; Mat-Sharani, Shuhaila; Sakinah, S; Poorani, K; Alsaeedy, Hiba; Peli, Amira; Wei, Teh Seoh; Ling, Mok Pooi; Hamat, Rukman Awang; Neela, Vasantha Kumari; Higuchi, Akon; Alarfaj, Abdullah A; Rajan, Mariappan; Benelli, Giovanni; Arulselvan, Palanisamy; Kumar, S Suresh

    2017-12-01

    Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species (Leptospiraceae). LipL32 is an abundant lipoprotein from the outer membrane proteins (OMPs) group, highly conserved among pathogenic and intermediate Leptospira species. Several studies used LipL32 as a specific gene to identify the presence of leptospires. This research was aimed to study the characteristics of LipL32 protein gene code, to fill the knowledge gap concerning the most appropriate gene that can be used as antigen to detect the Leptospira. Here, we investigated the features of LipL32 in fourteen Leptospira pathogenic strains based on comparative analyses of their primary, secondary structures and 3D modeling using a bioinformatics approach. Furthermore, the physicochemical properties of LipL32 in different strains were studied, shedding light on the identity of signal peptides, as well as on the secondary and tertiary structure of the LipL32 protein, supported by 3D modelling assays. The results showed that the LipL32 gene was present in all the fourteen pathogenic Leptospira strains used in this study, with limited diversity in terms of sequence conservation, hydrophobic group, hydrophilic group and number of turns (random coil). Overall, these results add basic knowledge to the characteristics of LipL32 protein, contributing to the identification of potential antigen candidates in future research, in order to ensure prompt and reliable detection of pathogenic Leptospira species. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    Science.gov (United States)

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  12. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp.

    Science.gov (United States)

    Singh, Karan; Zulkifli, Mohammad; Prasad, N G

    2016-12-01

    Drosophila melanogaster is an emerging model system for the study of evolutionary ecology of immunity. However, a large number of studies have used non natural pathogens as very few natural pathogens have been isolated and identified. Our aim was to isolate and characterize natural pathogen/s of D. melanogaster. A bacterial pathogen was isolated from wild caught Drosophila spp., identified as a new strain of Staphylococcus succinus subsp. succinus and named PK-1. This strain induced substantial mortality (36-62%) in adults of several laboratory populations of D. melanogaster. PK-1 grew rapidly within the body of the flies post infection and both males and females had roughly same number of colony forming units. Mortality was affected by mode of infection and dosage of the pathogen. However mating status of the host had no effect on mortality post infection. Given that there are very few known natural bacterial pathogens of D. melanogaster and that PK-1 can establish a sustained infection across various outbred and inbred populations of D. melanogaster this new isolate is a potential resource for future studies on immunity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  14. Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Dahl, M.; Klemm, Per

    2010-01-01

    Nissle 1917 has been used for many decades as a probiotic against a variety of intestinal disorders and is probably the best field-tested E. coil strain in the world. Here we have investigated the biofilm-forming capacity of Nissle 1917. We found that the strain was a good biofilm former. Not only...

  15. Characterization of European Yersinia enterocolitica 1A strains using restriction fragment length polymorphism and multilocus sequence analysis.

    Science.gov (United States)

    Murros, A; Säde, E; Johansson, P; Korkeala, H; Fredriksson-Ahomaa, M; Björkroth, J

    2016-10-01

    Yersinia enterocolitica is currently divided into two subspecies: subsp. enterocolitica including highly pathogenic strains of biotype 1B and subsp. palearctica including nonpathogenic strains of biotype 1A and moderately pathogenic strains of biotypes 2-5. In this work, we characterized 162 Y. enterocolitica strains of biotype 1A and 50 strains of biotypes 2-4 isolated from human, animal and food samples by restriction fragment length polymorphism using the HindIII restriction enzyme. Phylogenetic relatedness of 20 representative Y. enterocolitica strains including 15 biotype 1A strains was further studied by the multilocus sequence analysis of four housekeeping genes (glnA, gyrB, recA and HSP60). In all the analyses, biotype 1A strains formed a separate genomic group, which differed from Y. enterocolitica subsp. enterocolitica and from the strains of biotypes 2-4 of Y. enterocolitica subsp. palearctica. Based on these results, biotype 1A strains considered nonpathogenic should not be included in subspecies palearctica containing pathogenic strains of biotypes 2-5. Yersinia enterocolitica strains are currently divided into six biotypes and two subspecies. Strains of biotype 1A, which are phenotypically and genotypically very heterogeneous, are classified as subspecies palearctica. In this study, European Y. enterocolitica 1A strains isolated from both human and nonhuman sources were characterized using restriction fragment length polymorphism and multilocus sequence analysis. The European biotype 1A strains formed a separate group, which differed from strains belonging to subspecies enterocolitica and palearctica. This may indicate that the current division between the two subspecies is not sufficient considering the strain diversity within Y. enterocolitica. © 2016 The Society for Applied Microbiology.

  16. Large Strain Transparent Magneto-Active Polymer Nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)

    2016-01-01

    A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.

  17. [The pathogenic ecology research on plague in Qinghai plateau].

    Science.gov (United States)

    Dai, Rui-xia; Wei, Bai-qing; Li, Cun-xiang; Xiong, Hao-ming; Yang, Xiao-yan; Fan, Wei; Qi, Mei-ying; Jin, Juan; Wei, Rong-jie; Feng, Jian-ping; Jin, Xing; Wang, Zu-yun

    2013-12-01

    To study the pathogenic ecology characteristics of plague in Qinghai plateau. Applied molecular biology techniques, conventional technologies and geographic information system (GIS) to study phenotypic traits, plasmid spectrum, genotype, infected host and media spectrum etc.of 952 Yersinia pestis strains in Qinghai plateau plague foci, which were separated from different host and media in different regions during 1954 to 2012. The ecotypes of these strains were Qingzang plateau (91.49%, 871/952),Qilian mountain (6.41%, 61/952) and Microtus fuscus (1.26%, 12/952).83.6% (796/952) of these strains contained all the 4 virulence factors (Fr1, Pesticin1,Virulence antigen, and Pigmentation), 93.26% (367/392) were velogenic strains confirmed by virulence test.725 Yersinia pestis strains were separated from Qinghai plateau plague foci carried 9 kinds of plasmid, among which 713 strains from Marmot himalayan plague foci carried 9 kinds of plasmid, the Mr were 6×10(6), 7×10(6), 23×10(6), 27×10(6), 30×10(6), 45×10(6), 52×10(6), 65×10(6) and 92×10(6) respectively. 12 Yersinia pestis strains were separated from Microtus fuscus plague foci carried only 3 kinds of plasmid, the Mr were 6×10(6), 45×10(6), 65×10(6). Meanwhile, the strains carrying large plasmid (52×10(6), 65×10(6) and 92×10(6)) were only distributed in particular geographical location, which had the category property. The research also confirmed that 841 Yersinia pestis strains from two kinds of plague foci in Qinghai plateau had 11 genomovars. The strains of Marmot himalayan plague foci were given priority to genomovar 5 and 8, amounted to 611 strains, genomovar 8 accounted for 56.00% (471/841), genomovar 5 accounted for 23.07% (194/841). Besides, 3 new genomovars, including new 1(62 strains), new 2(52 strains), new 3(48 strains) were newly founded, and 12 strains of Microtus fuscus plague foci were genomovar 14. The main host and media of Qinghai plateau plague foci directly affected the spatial

  18. DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Denise A Magditch

    Full Text Available The disease cryptococcosis, caused by the fungus Cryptococcus neoformans, is acquired directly from environmental exposure rather than transmitted person-to-person. One explanation for the pathogenicity of this species is that interactions with environmental predators select for virulence. However, co-incubation of C. neoformans with amoeba can cause a "switch" from the normal yeast morphology to a pseudohyphal form, enabling fungi to survive exposure to amoeba, yet conversely reducing virulence in mammalian models of cryptococcosis. Like other human pathogenic fungi, C. neoformans is capable of microevolutionary changes that influence the biology of the organism and outcome of the host-pathogen interaction. A yeast-pseudohyphal phenotypic switch also happens under in vitro conditions. Here, we demonstrate that this morphological switch, rather than being under epigenetic control, is controlled by DNA mutation since all pseudohyphal strains bear mutations within genes encoding components of the RAM pathway. High rates of isolation of pseudohyphal strains can be explained by the physical size of RAM pathway genes and a hypermutator phenotype of the strain used in phenotypic switching studies. Reversion to wild type yeast morphology in vitro or within a mammalian host can occur through different mechanisms, with one being counter-acting mutations. Infection of mice with RAM mutants reveals several outcomes: clearance of the infection, asymptomatic maintenance of the strains, or reversion to wild type forms and progression of disease. These findings demonstrate a key role of mutation events in microevolution to modulate the ability of a fungal pathogen to cause disease.

  19. Effects of Lactobacillus rhamnosus and Lactobacillus acidophilus on bacterial vaginal pathogens.

    Science.gov (United States)

    Bertuccini, Lucia; Russo, Rosario; Iosi, Francesca; Superti, Fabiana

    2017-06-01

    The human vagina is colonized by a variety of microbes. Lactobacilli are the most common, mainly in healthy women; however, the microbiota composition can change rapidly, leading to infection or to a state in which potential pathogenic microorganisms co-exist with other commensals. In premenopausal women, urogenital infections, such as bacterial vaginosis and aerobic vaginitis, remain an important health problem. Treatment of these infections involves different kind of antibiotics; however, the recurrence rate remains high, and it must be also underlined that antibiotics are unable to spontaneously restore normal flora characterized by an abundant community of Lactobacilli. The main limitation is the inability to offer a long-term defensive barrier, thus facilitating relapses and recurrences. We report here the antimicrobial activities of two commercially existing Lactobacillus strains, Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus GLA-14 strains and their combination (Respecta® probiotic blend) against four different pathogens responsible for both bacterial vaginosis ( Gardenerella vaginalis and Atopobium vaginae) and aerobic vaginitis ( Staphylococcus aureus and Escherichia coli) by co-culturing assay. The probiotic combination, even if resulting in a different microbicidal activity against the different strains tested, demonstrated the efficacy of combined Lactobacillus strain treatment.

  20. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach.

    Science.gov (United States)

    Manjumeena, R; Duraibabu, D; Sudha, J; Kalaichelvan, P T

    2014-01-01

    Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles(AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

  1. Pathogenicity and genetic variation of 3 strains of Corynebacterium bovis in immunodeficient mice.

    Science.gov (United States)

    Dole, Vandana S; Henderson, Kenneth S; Fister, Richard D; Pietrowski, Michael T; Maldonado, Geomaris; Clifford, Charles B

    2013-07-01

    Corynebacterium bovis has been associated with hyperkeratotic dermatitis and acanthosis in mice. We studied 3 different strains of C. bovis: one previously described to cause hyperkeratotic dermatitis (HAC), one that infected athymic nude mice without leading to the classic clinical signs, and one of bovine origin (ATCC 7715). The 3 strains showed a few biochemical and genetic differences. Immunodeficient nude mice were housed in 3 independent isolators and inoculated with pure cultures of the 3 strains. We studied the transmission of these C. bovis studies to isolator-bedding and contact sentinels housed for 5 to 12 wk in filter-top or wire-top cages in the respective isolators. Using a 16S rRNA-based qPCR assay, we did not find consistent differences in growth and transmission among the 3 C. bovis strains, and neither the incidence nor severity of hyperkeratosis or acanthosis differed between strains. Housing in filter-top compared with wire-top cages did not alter the morbidity associated with any of the strains. Our findings confirmed the variability in the gross and histologic changes associated with C. bovis infection of mice. Although bacteriology was a sensitive method for the detection of Corynebacterium spp., standard algorithms occasionally misidentified C. bovis and several related species. Our study demonstrates that PCR of skin swabs or feces is a sensitive and specific method for the detection of C. bovis infection in mice. An rpoB-based screen of samples from North American vivaria revealed that HAC is the predominant C. bovis strain in laboratory mice.

  2. In vitro anidulafungin activity against yeasts – system and disseminated mycosis pathogens

    Directory of Open Access Journals (Sweden)

    A. B. Kulko

    2015-01-01

    Full Text Available We analyzed susceptibility to anidulafungin of yeasts clinical strains of Candida (14 species, Cryptococcus (1 species, Geotrichum (1 species, Rhodotorula (1 species and Saccharomyces (1 species. We revealed high anidulafungin activity against Candida spp., both common species and rare pathogens of candidiasis. It was found that over 99 % of Candida strains do not have an acquired resistance mechanisms to anidulafungin (microbiological criteria. The anidulafungin is not active against strains of Cryptococcus neoformans and Rhodotorula mucilaginosa.

  3. Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations.

    Science.gov (United States)

    Verdenelli, M C; Coman, M M; Cecchini, C; Silvi, S; Orpianesi, C; Cresci, A

    2014-05-01

    To test different Lactobacillus strains for their antipathogenic activity towards Candida strains and their adhesion properties for the preparation of vaginal ovules and douches to be used in vaginal candidiasis prevention. Five strains of lactobacilli were tested for their antimicrobial potential against different clinically isolated Candida strains. They were also screened for their ability to produce hydrogen peroxide and to coaggregate with pathogens. Adhesion properties of the five different Lactobacillus strains to HeLa cells and the presence of arcA gene were also assessed. The in vitro experiments demonstrated that all the five Lactobacillus strains tested possessed inhibitory action against the Candida strains using the radial streak method, but the effect is strain dependent. The same situation arises with regard to the ability of coaggregation that is present in all the strains into different degrees. Only Lactobacillus rhamnosus IMC 501(®) and Lactobacillus paracasei IMC 502(®) were able to produce H2O2 and none of the strains possess arcA gene. The most adherent strains to HeLa cells were Lact. rhamnosus IMC 501(®), Lact. paracasei IMC 502(®) and also their combination SYNBIO(®). This latter was selected for the preparation of ovules and douches using different matrix. Witepsol(®) ovules have proved the best formulation in terms of probiotic viability. Lactobacillus rhamnosus IMC 501(®), Lact. paracasei IMC 502(®) and SYNBIO(®) were able to produce H2O2, to coaggregate and to exert antimicrobial activity against pathogenic Candida strains and to strongly adhere to HeLa cells. All these properties together with those technological make these strains good candidates for the realization of formulations suitable for vaginal health. To develop new vaginal formulations taking into account the impact of probiotic strains on pathogens as well as the technological properties of the strains to validate their effectiveness in human health. © 2014 The

  4. Genome characterization of Turkey Rotavirus G strains from the United States identifies potential recombination events with human Rotavirus B strains.

    Science.gov (United States)

    Chen, Fangzhou; Knutson, Todd P; Porter, Robert E; Ciarlet, Max; Mor, Sunil Kumar; Marthaler, Douglas G

    2017-12-01

    Rotavirus G (RVG) strains have been detected in a variety of avian species, but RVG genomes have been published from only a single pigeon and two chicken strains. Two turkey RVG strains were identified and characterized, one in a hatchery with no reported health issues and the other in a hatchery with high embryo/poult mortality. The two turkey RVG strains shared only an 85.3 % nucleotide sequence identity in the VP7 gene while the other genes possessed high nucleotide identity among them (96.3-99.9 %). Low nucleotide percentage identities (31.6-87.3 %) occurred among the pigeon and chicken RVG strains. Interestingly, potential recombination events were detected between our RVG strains and a human RVB strain, in the VP6 and NSP3 segments. The epidemiology of RVG in avian flocks and the pathogenicity of the two different RVG strains should be further investigated to understand the ecology and impact of RVG in commercial poultry flocks.

  5. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Amruta, Narayanappa; Prasanna Kumar, M. K.; Puneeth, M. E.; Sarika, Gowdiperu; Kandikattu, Hemanth Kumar; Vishwanath, K.; Narayanaswamy, Sonnappa

    2018-01-01

    Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant’s rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides. PMID:29628819

  6. Comparison of Growth and the Cytokines Induced by Pathogenic Yersinia enterocolitica Bio-Serotypes 3/O: 3 and 2/O: 9.

    Science.gov (United States)

    Yang, Haoshu; Gu, Wenpeng; Qiu, Haiyan; Sun, Guixiang; Liang, Junrong; Li, Kewei; Xiao, Yuchun; Duan, Ran; Jing, Huaiqi; Wang, Xin

    2017-01-01

    Pathogenic Yersinia enterocolitica is widely distributed in China where the primary bio-serotypes are 3/O: 3 and 2/O: 9. Recently, the distribution of 2/O: 9 strains are being gradually replaced by 3/O: 3 strains where presently 3/O: 3 strains are the major pathogenic Y. enterocolitica in China. To identify the growth conditions and cytokines induced by Y. enterocolitica and providing some clues for this shift, we performed competitive growth in vitro and in vivo for these two bio-serotype strains; and we also compared the cytokines induced by them in infected BALB/C mice. We found 2/O: 9 strains grew more in vitro , while 3/O: 3 strains grew more in vivo regardless of using single cultures or mixed cultures. The cytokines induced by the two strains were similar: interleukin-6 (IL-6), IL-9, IL-13, granulocyte colony-stimulating factor (G-CSF), chemokines (KC), monocyte chemotactic protein 1 (MCP-1), macrophage inflammation protein-1α (MIP-1α), tumor necrosis factor-α (TNF-α), and RANTES were statistically up-regulated upon activation of normal T cells compared to the control. The cytokine values were higher in mixed infections than in single infections except for IL-6, G-CSF, and KC. The data illustrated the different growth of pathogenic Y. enterocolitica bio-serotype 3/O: 3 and 2/O: 9 in vitro and in vivo , and the cytokine changes induced by the two strains in infected BALB/C mice. The growth comparisons of two strains maybe reflect the higher pathogenic ability or resistance to host immune response for Y. enterocolitica bio-serotype 3/O: 3 and maybe it as one of the reason for bacteria shift.

  7. Comparison of Growth and the Cytokines Induced by Pathogenic Yersinia enterocolitica Bio-Serotypes 3/O: 3 and 2/O: 9

    Directory of Open Access Journals (Sweden)

    Haoshu Yang

    2017-05-01

    Full Text Available Pathogenic Yersinia enterocolitica is widely distributed in China where the primary bio-serotypes are 3/O: 3 and 2/O: 9. Recently, the distribution of 2/O: 9 strains are being gradually replaced by 3/O: 3 strains where presently 3/O: 3 strains are the major pathogenic Y. enterocolitica in China. To identify the growth conditions and cytokines induced by Y. enterocolitica and providing some clues for this shift, we performed competitive growth in vitro and in vivo for these two bio-serotype strains; and we also compared the cytokines induced by them in infected BALB/C mice. We found 2/O: 9 strains grew more in vitro, while 3/O: 3 strains grew more in vivo regardless of using single cultures or mixed cultures. The cytokines induced by the two strains were similar: interleukin-6 (IL-6, IL-9, IL-13, granulocyte colony-stimulating factor (G-CSF, chemokines (KC, monocyte chemotactic protein 1 (MCP-1, macrophage inflammation protein-1α (MIP-1α, tumor necrosis factor-α (TNF-α, and RANTES were statistically up-regulated upon activation of normal T cells compared to the control. The cytokine values were higher in mixed infections than in single infections except for IL-6, G-CSF, and KC. The data illustrated the different growth of pathogenic Y. enterocolitica bio-serotype 3/O: 3 and 2/O: 9 in vitro and in vivo, and the cytokine changes induced by the two strains in infected BALB/C mice. The growth comparisons of two strains maybe reflect the higher pathogenic ability or resistance to host immune response for Y. enterocolitica bio-serotype 3/O: 3 and maybe it as one of the reason for bacteria shift.

  8. Isolation and purification of Gallid herpesvirus 2 strains currently distributed in Japan.

    Science.gov (United States)

    Machida, Yuka; Murata, Shiro; Matsuyama-Kato, Ayumi; Isezaki, Masayoshi; Taneno, Akira; Sakai, Eishi; Konnai, Satoru; Ohashi, Kazuhiko

    2017-01-20

    Gallid herpesvirus 2 (GaHV-2) causes malignant lymphomas in chickens (Marek's disease, MD). Although MD is controlled through vaccination efforts, field isolates of GaHV-2 have increased in virulence worldwide and even cause MD in vaccinated chickens. GaHV-2 strains are classified into four categories (mild, virulent, very virulent and very virulent +) based on the virulence exhibited in experimental infection in unvaccinated or MD-vaccinated susceptible chickens. Although MD cases are sporadically reported in Japan, the recent field strains of GaHV-2 in Japan have not been characterized. During isolation of recent field strains by using primary chicken kidney cell cultures, a method classically used for GaHV-2 isolation, vaccine strains were simultaneously isolated. Therefore, it is necessary to separate vaccine strains to characterize the virulence and pathogenicity of the GaHV-2 strains currently distributed in Japan. In this study, we prepared cell suspensions from the spleens of MD-symptomatic chickens, inoculated day-old-chicks and isolated GaHV-2 strains by primary chicken kidney cell cultures at 2-3 weeks post inoculation. The isolated strains were passaged several times on chicken embryo fibroblast cells, and PCR analysis revealed that the isolated strains were not contaminated with vaccine strains. Moreover, the contaminant vaccine strains were completely removed by the purification of plaques observed in chicken kidney cells. These procedures are necessary to isolate GaHV-2 field strains from vaccine strains in order to carry out future studies to characterize these strains and glean insights into GaHV-2 virulence and pathogenicity.

  9. Assessment of the pathogenicity of cell-culture-adapted Newcastle disease virus strain Komarov.

    Science.gov (United States)

    Visnuvinayagam, Sivam; Thangavel, K; Lalitha, N; Malmarugan, S; Sukumar, Kuppannan

    2015-01-01

    Newcastle disease vaccines hitherto in vogue are produced from embryonated chicken eggs. Egg-adapted mesogenic vaccines possess several drawbacks such as paralysis and mortality in 2-week-old chicks and reduced egg production in the egg-laying flock. Owing to these possible drawbacks, we attempted to reduce the vaccine virulence for safe vaccination by adapting the virus in a chicken embryo fibroblast cell culture (CEFCC) system. Eighteen passages were carried out by CEFCC, and the pathogenicity was assessed on the basis of the mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index, at equal passage intervals. Although the reduction in virulence demonstrated with increasing passage levels in CEFCC was encouraging, 20% of the 2-week-old birds showed paralytic symptoms with the virus vaccine from the 18(th)(final) passage. Thus, a tissue-culture-adapted vaccine would demand a few more passages by CEFCC in order to achieve a complete reduction in virulence for use as a safe and effective vaccine, especially among younger chicks. Moreover, it can be safely administered even to unprimed 8-week-old birds.

  10. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard.

    Science.gov (United States)

    Abdel-Moein, Khaled A; Hamza, Dalia A

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.

  11. Molecular characterization of canine parvovirus strains in Argentina: Detection of the pathogenic variant CPV2c in vaccinated dogs.

    Science.gov (United States)

    Calderon, Marina Gallo; Mattion, Nora; Bucafusco, Danilo; Fogel, Fernando; Remorini, Patricia; La Torre, Jose

    2009-08-01

    PCR amplification with sequence-specific primers was used to detect canine parvovirus (CPV) DNA in 38 rectal swabs from Argentine domestic dogs with symptoms compatible with parvovirus disease. Twenty-seven out of 38 samples analyzed were CPV positive. The classical CPV2 strain was not detected in any of the samples, but nine samples were identified as CPV2a variant and 18 samples as CPV2b variant. Further sequence analysis revealed a mutation at amino acid 426 of the VP2 gene (Asp426Glu), characteristic of the CPV2c variant, in 14 out of 18 of the samples identified initially by PCR as CPV2b. The appearance of CPV2c variant in Argentina might be dated at least to the year 2003. Three different pathogenic CPV variants circulating currently in the Argentine domestic dog population were identified, with CPV2c being the only variant affecting vaccinated and unvaccinated dogs during the year 2008.

  12. Frost related dieback in Estonian energy plantations of willows in relation to fertilisation and pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cambours, M.A.; Nejad, P. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala (Sweden); Heinsoo, K. [Institute of Zoology and Botany, Estonian Agricultural University, Riia 181, 51014 Tartu (Estonia); Granhall, U. [Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, 750 07 Uppsala (Sweden)

    2006-03-15

    Two 9-year old Estonian Salix plantations suffering from dieback were studied: one situated on poor mineral soil and divided into fertilised and unfertilised plots (Saare plantation) and another growing on a well-decomposed and nitrogen-rich organic soil, without fertiliser application (Kambja plantation). Bacteria from internal tissues of visually damaged shoots from seven clones were isolated in spring and autumn. The strains were subsequently biochemically characterised and tested for ice nucleation activity and pathogenicity on Salix. Some strains were also analysed with 16S rRNA. High numbers of culturable bacteria were found, belonging mainly to Erwinia, Sphingomonas, Pseudomonas and Xanthomonas spp. Fertilised plots were significantly more colonised by bacteria than unfertilised plots and also more extensively damaged, showing a lower density of living plants after 7 years of culture. More ice nucleation active (INA) strains were found in Saare fertilised plots and at Kambja than in Saare unfertilised plots. Likewise, most pathogenic strains were isolated from Saare fertilised plots and from Kambja. For some of the willow clones studied, dieback appeared to be related to both clonal frost sensitivity and abundance of INA and pathogenic bacteria. The plantations probably suffered from the presence of high amounts of pathogens and from frost related injuries aggravated by INA bacteria. Most probably the fertilisation at Saare and the nitrogen-rich soil at Kambja created a favourable environment for bacterial development and led to high dieback levels after the first harvest. (author)

  13. Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania.

    Science.gov (United States)

    Dan, Sorin Daniel; Tăbăran, Alexandra; Mihaiu, Liora; Mihaiu, Marian

    2015-01-15

    The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012-2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, bla(TEM), tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat.

  14. Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains

    DEFF Research Database (Denmark)

    Castillo Bermúdez, Daniel Elías; Espejo, Romilio; Middelboe, Mathias

    2014-01-01

    Flavobacterium psychrophilum is currently one of the most devastating fish pathogens worldwide causing considerable economic losses in salmonid aquaculture. Recently, attention has been drawn to the use of phages for controlling F. psychrophilum, and phages infecting the pathogen have been isolated...... showed > 80% amino acid similarity to a specific region found in the virulent F. psychrophilum strain JIP02/86 (ATCC 49511), suggesting that a prophage similar to phage 6H was present in this strain. Screening for a collection of 49 F. psychrophilum strains isolated in Chile, Denmark, and USA...

  15. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan

    2007-01-01

    Pathogenic and attenuated strains of swine vesicular disease virus (SVDV), an enterovirus, have been characterized previously and, by using chimeric infectious cDNA clones, the key determinants of pathogenicity in pigs have been mapped to the coding region for 1D–2A. Within this region, residue 20...

  16. Children developing asthma by school-age display aberrant immune responses to pathogenic airway bacteria as infants

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Pedersen, Susanne Brix; Thysen, Anna Hammerich

    2014-01-01

    Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonisation of neonatal airways with the pathogenic bacterial strains H. influenzae, M. catarrhalis and S. pneumoniae is associated with increased risk of later childhood asthma. We hypothesized that c...... that children developing asthma have an abnormal immune response to pathogenic bacteria in infancy. We aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years.......Asthma is a highly prevalent chronic lung disease that commonly originates in early childhood. Colonisation of neonatal airways with the pathogenic bacterial strains H. influenzae, M. catarrhalis and S. pneumoniae is associated with increased risk of later childhood asthma. We hypothesized...

  17. [Pathogens in expressed prostatic secretion and their correlation with serum prostate specific antigen: analysis of 320 cases].

    Science.gov (United States)

    Wang, Shu-Xia; Zhang, Jia-Ming; Wu, Kai; Chen, Juan; Shi, Jian-Feng

    2014-08-01

    To investigate the pathogenic infection and its drug resistance in expressed prostatic secretion (EPS) and its correlation with serum PSA, and provide some evidence for the systematic and normalized diagnosis and treatment of prostatitis. Three EPS swabs were collected from each of the 320 prostatis patients following measurement of the serum PSA level, 1 for bacterial culture and identification, 1 for detection of Mycoplasma and drug sensitivity, and the other for examination of Chlamydia trachomatis antigen by colloidal gold immunoblot. Totally 244 strains were isolated from the 320 EPS samples, including 188 bacterial strains (dominated by Staphylococcus and sensitive to vancomycin or linezolid) and 44 Mycoplasma and Chlamydia strains (mainly Ureaplasma urealyticum and susceptible to josamycin or doxycycline). The serum PSA level was significantly higher in the pathogen-positive than in the pathogen-negative group ([6.98 +/- 0.56] microg/L vs [2.32 +/- 0.12] microg/L, P Prostatitis may lead to the elevation of the serum PSA level and the pathogens involved vary in their resistance to different antibacterial spectrums. Therefore, appropriate and individualized antibiotic therapy should be selected according to etiological diagnosis and the results of drug sensitivity test.

  18. A neonatal murine model for evaluation of enterovirus E HY12 virus infection and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Xiaochun Gai

    Full Text Available HY12 viruses are enteroviruses recently isolated from cattle characterized by severe respiratory and digestive disease with high morbidity and mortality in China. While the viruses exhibit unique biological and molecular characters distinct from known enterovirus E, the pathogenicity and viral pathogenesis remains largely unknown.Neonatal mice of Balb/C, ICR, and Kunming strain are infected with HY12 to determine the susceptible mouse strain. The minimal infection dose, the virus infection routes, the pathogenicity and tissue tropism for HY12 were determined by infecting susceptible mice with HY12 viruses, and confirmed by different approaches including virus isolation and recovery, virus detection, histopathology, and immunohistochemistry.A murine model for HY12 infection was successfully established and employed to investigate the pathogenicity of HY12 viruses. ICR mouse strain is the most susceptible strain for HY12 infection with a minimal infective dose as 2×106TCID50/mouse. HY12 viruses have the capability of infecting ICR suckling mice via all infection routes including intranasal administration, oral administration, intraperitoneal injection, subcutaneous injection, and intramuscular injection, which are confirmed by the isolation and recovery of viruses from HY12-infected mice; detection of viruses by RT-PCR; observations of pathological lesions and inflammatory cell infiltrations in the intestine, lung, liver, and brain; uncovering of HY12 virus antigens in majority of tissues, especially in intestine, lung, and infected brain of mice by immunohistochemistry assay.A neonatal murine model for HY12 infection is successfully established for determining the susceptible mouse strain, the minimal infective dose, the infection route, the viral pathogenicity and the tropism of HY12, thus providing an invaluable model system for elucidating the pathogenesis of HY12 viruses and the elicited immunity.

  19. DNA type analysis to differentiate strains of Xylophilus ampelinus from Europe and Hokkaido, Japan

    OpenAIRE

    Komatsu, Tsutomu; Shinmura, Akinori; Kondo, Norio

    2016-01-01

    Strains of the bacterium Xylophilus ampelinus were collected from Europe and Hokkaido, Japan. Genomic fingerprints generated from 43 strains revealed four DNA types (A-D) using the combined results of Rep-, ERIC-, and Box-PCR. Genetic variation was found among the strains examined; strains collected from Europe belonged to DNA types A or B, and strains collected from Hokkaido belonged to DNA types C or D. However, strains belonging to each DNA type showed the same pathogenicity to grapevines ...

  20. Natural occurrence and pathogenicity of Xanthomonas bacteria on ...

    African Journals Online (AJOL)

    The objectives of this study were to verify the presence of Xanthomonas bacteria on plants growing in and around enset gardens in South and Southwest Ethiopia, and to elucidate the pathogenicity of Xcm strains to cultivated and wild plants. Several economical and ornamental plants were assessed for wilting in South and ...

  1. A closer look at prion strains

    Science.gov (United States)

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves. PMID:23357828

  2. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    Full Text Available Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum, and two C4 grasses, Japanese stilt grass (Microstegium vimineum and bahia grass (Paspalum notatum. Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  3. Draft Genome Sequence of the Antagonistic Rhizosphere Bacterium Serratia plymuthica Strain PRI-2C

    NARCIS (Netherlands)

    Garbeva, P.; van Elsas, J.D.; de Boer, W.

    Serratia plymuthica strain PRI-2C is a rhizosphere bacterial strain with antagonistic activity against different plant pathogens. Here we present the 5.39-Mb (G+C content, 55.67%) draft genome sequence of S. plymuthica strain PRI-2C with the aim of providing insight into the genomic basis of its

  4. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  5. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, Anders

    2013-01-01

    of this study was to examine the in vitro inhibitory effects of selected commercial bacterial strains on pathogenic clostridia and their growth characteristics under simulated gastrointestinal conditions.The inhibitory effects of 17 commercial strains of Lactobacillus (n = 16) and Bifidobacterium (n = 1...

  6. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline

    Science.gov (United States)

    Jonah Piovia-Scott; Karen Pope; S. Joy Worth; Erica Bree Rosenblum; Dean Simon; Gordon Warburton; Louise A. Rollins-Smith; Laura K. Reinert; Heather L. Wells; Dan Rejmanek; Sharon Lawler; Janet Foley

    2015-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We...

  7. Comparative Genomic Characterization of the Highly Persistent and Potentially Virulent Cronobacter sakazakii ST83, CC65 Strain H322 and Other ST83 Strains

    Directory of Open Access Journals (Sweden)

    Hannah R. Chase

    2017-06-01

    Full Text Available Cronobacter (C. sakazakii is an opportunistic pathogen and has been associated with serious infections with high mortality rates predominantly in pre-term, low-birth weight and/or immune compromised neonates and infants. Infections have been epidemiologically linked to consumption of intrinsically and extrinsically contaminated lots of reconstituted powdered infant formula (PIF, thus contamination of such products is a challenging task for the PIF producing industry. We present the draft genome of C. sakazakii H322, a highly persistent sequence type (ST 83, clonal complex (CC 65, serotype O:7 strain obtained from a batch of non-released contaminated PIF product. The presence of this strain in the production environment was traced back more than 4 years. Whole genome sequencing (WGS of this strain together with four more ST83 strains (PIF production environment-associated confirmed a high degree of sequence homology among four of the five strains. Phylogenetic analysis using microarray (MA and WGS data showed that the ST83 strains were highly phylogenetically related and MA showed that between 5 and 38 genes differed from one another in these strains. All strains possessed the pESA3-like virulence plasmid and one strain possessed a pESA2-like plasmid. In addition, a pCS1-like plasmid was also found. In order to assess the potential in vivo pathogenicity of the ST83 strains, each strain was subjected to infection studies using the recently developed zebrafish embryo model. Our results showed a high (90–100% zebrafish mortality rate for all of these strains, suggesting a high risk for infections and illness in neonates potentially exposed to PIF contaminated with ST83 C. sakazakii strains. In summary, virulent ST83, CC65, serotype CsakO:7 strains, though rarely found intrinsically in PIF, can persist within a PIF manufacturing facility for years and potentially pose significant quality assurance challenges to the PIF manufacturing industry.

  8. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients

    DEFF Research Database (Denmark)

    Holden, Matthew T G; Seth-Smith, Helena M B; Crossman, Lisa C

    2009-01-01

    ; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome...... be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic...... success as an epidemic CF pathogen....

  9. Creation of the Probiotic Consortium on the Base of Strains of Bifidobacterium spp.

    Directory of Open Access Journals (Sweden)

    Kozhakhmetov, S. S.

    2009-01-01

    Full Text Available Nowadays, a widespread circulation of disbiotic conditions among the population of all ages in Kazakhstan requires an active development in industry for both preparations and products with probiotic properties. The gained bacterial isolates, Bifidobacterium adolescentis 180, B. breve 204, B. breve 584 and B. breve 587 were used in our researches and screening showed they possess high probiotic properties. The consortium possesses strong antimicrobial activity to pathogenic and potentially-pathogenic microflora, insulated during disbacteriosis, as well as from vagina and urea. They are able to produce vitamin B12 and also have antimutagenic activity. As a result, the consortium on the base of strains of Bifidobacterium spp. was received, possessing the following advantages: contains live mass of microbial, antagonistically active strains B. breve and B. adolescentis; contains more than 10^9 alive Bifidobacteria; does not contain plasmids, which means that it could not be a carrier of antibiotic stability for Gram-positive receptive pathogenic and potentially-pathogenic microflora.

  10. Molecular characterization of some new E. coli strains theoretically responsible for both intestinal and extraintestinal infections

    Directory of Open Access Journals (Sweden)

    Ghaleb Adwan

    2016-06-01

    Full Text Available Strains of E. coli are divided into 3 major groups; commensal strains, diarrheagenic (intestinal E. coli pathotypes and extraintestinal pathogenic E. coli. Extraintestinal pathogenic E. coli are unlike diarrheagenic pathotypes, they have not ability to cause intestinal disease in human, but they have normal ability for long-term colonization in the gut. This study aimed to spotlight on that intestinal and extraintestinal infections are not restricted to intestinal pathotypes and extraintestinal pathogenic E. coli, respectively. A total of 102 uropathogenic E. coli isolates were collected during 2012 and 2015. A multiplex PCR was used to detect phylogenetic groups, virulence factors for extraintestinal pathogenic E. coli and intestinal E. coli pathotypes genes. Results of this research showed that 12 (11.8% uropathogenic E. coli isolates had genes that are theoretically responsible for intestinal diseases, were 10 of these isolates belonged to phylogentic group D and 2 isolates to phylogentic group A. We conclude from these results, this is the first report on the molecular characterization of E. coli that theoretically can cause both intestinal and extraintestinal infections simultaneously. The presence of these strains has a great impact on public health. More studies are necessary before definitive conclusions if these strains are a different clone that theoretically have ability to cause both intestinal and extraintestinal infections and belonged to phylogenetic groups other than A and D. Products of diarrheagenic genes in UPEC strains need further studies to detect their effects in intestinal infections

  11. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  12. Environmental Burkholderia cenocepacia Strain Enhances Fitness by Serial Passages during Long-Term Chronic Airways Infection in Mice

    Directory of Open Access Journals (Sweden)

    Alessandra Bragonzi

    2017-11-01

    Full Text Available Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656T. Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts.

  13. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum

    Directory of Open Access Journals (Sweden)

    Gummer Joel P A

    2012-07-01

    Full Text Available Abstract Background It has been well established that the Gα subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Gγ and Gβ subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. Results G-protein Gγ and Gβ subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Gα subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4°C was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. Conclusion This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.

  14. Near ultraviolet radiation (280-400 nm): Direct and indirect effects on microbial pathogens

    International Nuclear Information System (INIS)

    Asthana, A.

    1993-01-01

    Responses of pigmented pathogenic fungi and E. coli strains differing in DNA repair and catalase proficiency to direct and indirect effects of ultraviolet radiation were evaluated. Pigments in the four fungal pathogens of Citrus differed in their ability to protect against direct UV and damage by UV-A -mediated phototoxins of both host and non-host origin. UV-A and UV-B did not inactivate the fungal species. Differential protection in wild type strains of the two Fusarium spp. and in the wild type strains of the two Penicilium spp. against UV-C was observed. Wild type and mutants with altered coloration in Penicilium spp. protected to varying extent against both α-T and 8-MOP in the presence of UV-A. UV-B irradiation of E. coli resulted in inactivation of strains deficient in DNA excision repair. Plasmid DNA damaged in vitro by UV-B from lamp systems as well as by sunlight, and transformed in vivo into bacterial cells lacking specific nucleases showed reduced transformation in DNA excision repair strains. UV-B enriched wavelengths isolated from a solar simulator affected plasmid DNA in a similar manner as UV-B from lamp systems. Sunlight, however affected the membrane of whole cells. Concentration of foliar furanocoumarins of Citrus jambhiri decreased with UV-B irradiation. Phototoxicity to Fusarium spp. was accounted for, in part, by furanocoumarins, psoralen and bergapten (5-MOP) and others. Pure psoralen and 5-MOP affected both Fusarium spp. similarly and carotenoids protected only partially in the wild type strains. Citrus targetted the cell membrane in Fusarium spp.l and in E. coli strains; carotenoids in both of which protected against such damage. Loss in structural integrity of plasmid DNA when treated with citral and UV-A correlated with loss in transforming activity. Biological damage to membrane and DNA was due to the production of hydrogen peroxide. Fruit-rot pathogens Penicilium spp. were not affected by either furanocoumarins or citrals

  15. Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigrum.

    Science.gov (United States)

    Liu, Fang; Cai, Lei; Crous, Pedro W; Damm, Ulrike

    2013-01-01

    The anthracnose pathogen of common bean (Phaseolus vulgaris) is usually identified as Colletotrichum lindemuthianum, while anthracnose of potato (Solanum tuberosum), peppers (Capsicum annuum), tomato (S. lycopersicum) and several other crop plants is often attributed to C. coccodes. In order to study the phylogenetic relationships of these important pathogens, we conducted a multigene analysis (ITS, ACT, TUB2, CHS-1, GAPDH) of strains previously identified as C. lindemuthianum, C. coccodes and other related species, as well as representative species of the major Colletotrichum species complexes. Strains of C. lindemuthianum belonged to a single clade; we selected an authentic specimen as lectotype, and an appropriate specimen and culture from the CBS collection to serve as epitype. Two clades were resolved within C. coccodes s. lat. One clade included the ex-neotype strain of C. coccodes on Solanum, while an epitype was selected for C. nigrum, which represents the oldest name of the second clade, which occurs on Capsicum, Solanum, as well as several other host plants. Furthermore, we recognized C. lycopersici as a synonym of C. nigrum, and C. biologicum as a synonym of C. coccodes.

  16. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Science.gov (United States)

    Wang, Shaohui; Meng, Qingmei; Dai, Jianjun; Han, Xiangan; Han, Yue; Ding, Chan; Liu, Haiwen; Yu, Shengqing

    2014-01-01

    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  17. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    Full Text Available Systemic infections by avian pathogenic Escherichia coli (APEC are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  18. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  19. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis

    Science.gov (United States)

    David, Susana; Mateus, A. R. A.; Duarte, Elsa L.; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants. PMID:26529092

  20. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea.

    Directory of Open Access Journals (Sweden)

    Hassan Alizadeh

    Full Text Available Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK, a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (P< 0.05 CXCL2 production in Chinese hamster corneas 3 and 7 days after infection, which coincided with increased inflammatory cells in the corneas. Results suggest that pathogenic species of Acanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.

  1. Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA

    Directory of Open Access Journals (Sweden)

    Marina S. Ascunce

    2016-03-01

    Full Text Available Pythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300 bp paired-end, 14 millions reads and PacBio (10  Kb fragment library, 356,001 reads. The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6 Mb contained in 8992 contigs, N50 of 13 Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000. Keywords: Oomycete, Pythium insidiosum, Pythiosis, Human emerging pathogen, Genome sequencing

  2. Swiss Army Pathogen: The Salmonella Entry Toolkit

    Directory of Open Access Journals (Sweden)

    Peter J. Hume

    2017-08-01

    Full Text Available Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS, a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.

  3. Diversity Assessment of Heat Resistance of Listeria monocytogenes Strains in a Continuous-Flow Heating System

    NARCIS (Netherlands)

    Veen, van der S.; Wagendorp, A.; Abee, T.; Wells-Bennik, M.H.J.

    2009-01-01

    Listeria monocytogenes is a foodborne pathogen that has the ability to survive relatively high temperatures compared with other nonsporulating foodborne pathogens. This study was performed to determine whether L. monocytogenes strains with relatively high heat resistances are adequately inactivated

  4. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jessica N Ricaldi

    Full Text Available The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835 provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010(T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT. Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for

  5. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity.

    Science.gov (United States)

    Borges, Karen Apellanis; Furian, Thales Quedi; de Souza, Sara Neves; Menezes, Rafaela; de Lima, Diane Alves; Fortes, Flávia Bornancini Borges; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz Souza; Nascimento, Vladimir Pinheiro

    2018-03-22

    Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum.

    Directory of Open Access Journals (Sweden)

    Nigel F Delaney

    2012-02-01

    Full Text Available Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus, a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8-1.2×10(-5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007 House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994-95 strains and have lost the CRISPR-associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.

  7. A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity

    Science.gov (United States)

    J.D. Podgwaite; B.J. Cosenza

    1976-01-01

    The ED50 of a strain of Serratia marcescens for microinjected instar III and IV gypsy moth larvae was 7.5 and 14.5 viable cells, respectively. Percentage and rate of mortality were found to be highly variable among replicates of the same instar and between instars in free-feeding bioassays. Mortality in second instar larvae...

  8. Comparative genomics of koala, cattle and sheep strains of Chlamydia pecorum.

    Science.gov (United States)

    Bachmann, Nathan L; Fraser, Tamieka A; Bertelli, Claire; Jelocnik, Martina; Gillett, Amber; Funnell, Oliver; Flanagan, Cheyne; Myers, Garry S A; Timms, Peter; Polkinghorne, Adam

    2014-08-08

    Chlamydia pecorum is an important pathogen of domesticated livestock including sheep, cattle and pigs. This pathogen is also a key factor in the decline of the koala in Australia. We sequenced the genomes of three koala C. pecorum strains, isolated from the urogenital tracts and conjunctiva of diseased koalas. The genome of the C. pecorum VR629 (IPA) strain, isolated from a sheep with polyarthritis, was also sequenced. Comparisons of the draft C. pecorum genomes against the complete genomes of livestock C. pecorum isolates revealed that these strains have a conserved gene content and order, sharing a nucleotide sequence similarity > 98%. Single nucleotide polymorphisms (SNPs) appear to be key factors in understanding the adaptive process. Two regions of the chromosome were found to be accumulating a large number of SNPs within the koala strains. These regions include the Chlamydia plasticity zone, which contains two cytotoxin genes (toxA and toxB), and a 77 kbp region that codes for putative type III effector proteins. In one koala strain (MC/MarsBar), the toxB gene was truncated by a premature stop codon but is full-length in IPTaLE and DBDeUG. Another five pseudogenes were also identified, two unique to the urogenital strains C. pecorum MC/MarsBar and C. pecorum DBDeUG, respectively, while three were unique to the koala C. pecorum conjunctival isolate IPTaLE. An examination of the distribution of these pseudogenes in C. pecorum strains from a variety of koala populations, alongside a number of sheep and cattle C. pecorum positive samples from Australian livestock, confirmed the presence of four predicted pseudogenes in koala C. pecorum clinical samples. Consistent with our genomics analyses, none of these pseudogenes were observed in the livestock C. pecorum samples examined. Interestingly, three SNPs resulting in pseudogenes identified in the IPTaLE isolate were not found in any other C. pecorum strain analysed, raising questions over the origin of these

  9. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    Directory of Open Access Journals (Sweden)

    Boyang Cao

    Full Text Available Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  10. A New Oligonucleotide Microarray for Detection of Pathogenic and Non-Pathogenic Legionella spp.

    Science.gov (United States)

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp. PMID:25469776

  11. Growth inhibition of shrimp pathogens by isolated gastrointestinal microflora of Macrobrachium rosenbergii de Man

    Directory of Open Access Journals (Sweden)

    Seehanat, S.

    2005-02-01

    Full Text Available The useful bacteria which were isolated from the gastrointestinal tract of freshwater prawn (Macrobrachium rosenbergii de Man, cultivated in earthen pond at Maha Sarakham province, Thailand, consisted of 14 isolates of Bacillus (B1 – B14 and 18 isolates of Lactic acid bacteria (LA1 – LA18. The abilities of all isolated bacteria on growth inhibition of pathogenic bacteria (Escherichia coli, Bacillus cereus, Aeromonas hydrophila and Pseudomonas aeruginosa were studied by paperdisc plate method. The results showed that the Bacillus B2 and B5 were unable to inhibit the growth of all of the tested pathogens. Bacillus B1, B10 and B12 were capable of inhibiting the growth of 3 of 4 tested pathogen strains. Although all of the isolated lactic acid bacteria (LA1 –LA18 could not inhibit the E. coli growth, all of them could inhibit the growth of B. cereus. The isolated lactic acid bacteria which were capable of inhibiting the growth of 3 tested pathogen strains (excluded E. coli were LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18. In order to select the high potential strain of bacteria for using as probiotics, Bacillus B1 , B3 , B4 , B10 and B12 and lactic acid bacteria LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18 were tested for their growth abilities in various growth conditions. The tested growth conditions included various concentrations of the bile salt and salt (NaCl and various pH and temperatures. The results revealed that Bacillus B1 and B10 and lactic acid bacteria LA13 , LA16 and LA18 exhibited high potential for using as probiotics. The results of biochemical test for identification of these high potential strains showed that Bacillus B1 and B10 were possibly B. licheniformis and B. thuringiensis respectively. The lactic acid bacteria LA13 , LA16 and LA18 were possibly the same strain and belonged to the genus Pediococcus.

  12. Influence of Environmental Parameters on Trichoderma Strains with Biocontrol Potential

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    2003-01-01

    Full Text Available Several mycoparasitic strains belonging to the filamentous fungal genus Trichoderma are promising candidates for the biological control of plant pathogenic fungi. When planning the application of antagonistic Trichoderma strains for the purposes of biological control, it is very important to consider the environmental parameters affecting the biocontrol agents in the soil. A series of abiotic and biotic environmental parameters has an influence on the biocontrol efficacy of Trichoderma. Some important parameters to be considered are the effects of temperature, water potential and pH, and the presence of pesticides, metal ions and antagonistic bacteria in the soil. Most of the Trichoderma strains are mesophilic. Low temperatures in winter may cause a problem during biological control by influencing the activity of the biocontrol agents. Another problem emerging during the application of Trichoderma strains as biocontrol agents is that they cannot tolerate dry conditions, however, we may need biocontrol agents against plant pathogenic fungi which are able to grow and cause disease even in dry soils. The pH characteristics of the soil also belong to the most important environmental parameters affecting the activities of mycoparasitic Trichoderma strains. Within the frames of a complex integrated plant protection strategy, we may have to combine Trichoderma strains with chemical pesticides or metal compounds, therefore it is important to collect information about the effects of pesticides and metal ions on the biocontrol strains. Antagonistic soil bacteria may also have negative effects on the biocontrol abilities of Trichoderma strains, therefore it may be advantageous if a biocontrol strain possesses bacterium- degrading abilities as well. This review will discuss the literature about the influence of temperature, water potential, pH, pesticides, metal ions and antagonistic bacteria on mycoparasitic Trichoderma strains including the results of our

  13. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  14. Global analysis of multi-strains SIS, SIR and MSIR epidemic models

    OpenAIRE

    Bichara , Derdei; Iggidr , Abderrahman; Sallet , Gauthier

    2014-01-01

    International audience; We consider SIS, SIR and MSIR models with standard mass action and varying population, with $n$ different pathogen strains of an infectious disease. We also consider the same models with vertical transmission. We prove that under generic conditions a competitive exclusion principle holds. To each strain a basic reproduction ratio can be associated. It corresponds to the case where only this strain exists. The basic reproduction ratio of the complete system is the maxim...

  15. Competitive exclusion principle for SIS and SIR models with n strains

    OpenAIRE

    Bichara , Derdei; Iggidr , Abderrahman; Sallet , Gauthier

    2012-01-01

    We consider SIS and SIR models with standard mass action and varying population, with $n$ different pathogen strains of an infectious disease. We also consider the same models with vertical transmission. We prove that under generic conditions a competitive exclusion principle holds. To each strain a basic reproduction ratio can be associated. It corresponds to the case where only this strain exists. The basic reproduction ratio of the complete system is the maximum of each individual basic re...

  16. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens.

    Science.gov (United States)

    Sánchez-Vallet, Andrea; Fouché, Simone; Fudal, Isabelle; Hartmann, Fanny E; Soyer, Jessica L; Tellier, Aurélien; Croll, Daniel

    2018-05-16

    Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation. Expected final online publication date for the Annual Review of Phytopathology Volume 56 is August 25, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  17. Draft genome sequence of the fish pathogen Flavobacterium columnare strain CSF-298-10

    Science.gov (United States)

    We announce the genome assembly of Flavobacterium columnare strain CSF-298-10, a strain isolated from an outbreak of Columnaris disease at a commercial trout farm in Snake River Valley Idaho, USA. The complete genome consists of 13 contigs totaling 3,284,579 bp, average G+C content of 31.5% and 2933...

  18. Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance.

    Science.gov (United States)

    Anderson, G W; Rosebrock, J A; Johnson, A J; Jennings, G B; Peters, C J

    1991-05-01

    A congenic rat strain (WF.LEW) was derived from the susceptible Wistar-Furth (WF) (background strain) and the resistant LEW (donor strain) inbred strains and was used to evaluate the phenotypic expression of a dominant Mendelian gene that confers resistance to fatal hepatic disease caused by the ZH501 strain of Rift Valley fever virus (RVFV). Resistance to hepatic disease developed gradually with age, with full expression at approximately 10 weeks in the WF.LEW and LEW rat strains. The ZH501 strain caused fatal hepatitis in WF rats regardless of age. However, resistance to the SA75 RVFV strain (relatively non-pathogenic for adult rats), was age- and dose-dependent in both WF and LEW rats. The resistance gene transferred to the newly derived WF.LEW congenic rat strain appears to amplify age-dependent resistance of adult rats, resulting in protection against fatal hepatic disease caused by the virulent ZH501 strain. The congenic rat strain will be a valuable asset in elucidating the mechanism of resistance to Rift Valley fever virus governed by the dominant Mendelian gene.

  19. Sieve analysis using the number of infecting pathogens.

    Science.gov (United States)

    Follmann, Dean; Huang, Chiung-Yu

    2017-12-14

    Assessment of vaccine efficacy as a function of the similarity of the infecting pathogen to the vaccine is an important scientific goal. Characterization of pathogen strains for which vaccine efficacy is low can increase understanding of the vaccine's mechanism of action and offer targets for vaccine improvement. Traditional sieve analysis estimates differential vaccine efficacy using a single identifiable pathogen for each subject. The similarity between this single entity and the vaccine immunogen is quantified, for example, by exact match or number of mismatched amino acids. With new technology, we can now obtain the actual count of genetically distinct pathogens that infect an individual. Let F be the number of distinct features of a species of pathogen. We assume a log-linear model for the expected number of infecting pathogens with feature "f," f=1,…,F. The model can be used directly in studies with passive surveillance of infections where the count of each type of pathogen is recorded at the end of some interval, or active surveillance where the time of infection is known. For active surveillance, we additionally assume that a proportional intensity model applies to the time of potentially infectious exposures and derive product and weighted estimating equation (WEE) estimators for the regression parameters in the log-linear model. The WEE estimator explicitly allows for waning vaccine efficacy and time-varying distributions of pathogens. We give conditions where sieve parameters have a per-exposure interpretation under passive surveillance. We evaluate the methods by simulation and analyze a phase III trial of a malaria vaccine. © 2017, The International Biometric Society.

  20. STRUCTURAL AND PHYSICOCHEMICAL SURFACE-PROPERTIES OF SERRATIA-MARCESCENS STRAINS

    NARCIS (Netherlands)

    VANDERMEI, HC; COWAN, MM; GENET, MJ; ROUXHET, PG; BUSSCHER, HJ

    1992-01-01

    Serratia marcescens is an important pathogen with noteworthy hydrophobicity characteristics as assessed by microbial adhesion to hydrocarbons. However, the present knowledge on the surface characteristics of S. marcescens strains does not include physicochemical properties relevant for adhesion such

  1. Pathogenic Vibrio parahaemolyticus isolated from biofouling on commercial vessels and harbor structures.

    Science.gov (United States)

    Revilla-Castellanos, Valeria J; Guerrero, Abraham; Gomez-Gil, Bruno; Navarro-Barrón, Erick; Lizárraga-Partida, Marcial L

    2015-01-01

    Ballast water is a significant vector of microbial dissemination; however, biofouling on commercial vessel hulls has been poorly studied with regard to pathogenic bacteria transport. Biofouling on three commercial vessels and seven port structures in Ensenada, Baja California, Mexico, was examined by qPCR to identify and quantify Vibrio parahaemolyticus, a worldwide recognized food-borne human pathogen. Pathogenic variants (trh+, tdh+) of V. parahaemolyticus were detected in biofouling homogenates samples from several docks in Ensenada and on the hulls of ships with Japanese and South Korean homeports, but not in reference sampling stations. A total of 26 tdh+ V. parahaemolyticus colonies and 1 ORF8+/O3:K6 strain were also isolated from enriched biofouling homogenate samples confirming the qPCR analysis. Our results suggest that biofouling is an important reservoir of pathogenic vibrios. Thus, ship biofouling might be an overlooked vector with regard to the dissemination of pathogens, primarily pathogenic V. parahaemolyticus.

  2. Adhesion of Human Probiotic Lactobacillus rhamnosus to Cervical and Vaginal Cells and Interaction with Vaginosis-Associated Pathogens

    Directory of Open Access Journals (Sweden)

    Sophie Coudeyras

    2008-01-01

    Full Text Available Objectives. The ability of a probiotic Lactobacillus rhamnosus strain (Lcr35 to adhere to cervical and vaginal cells and to affect the viability of two main vaginosis-associated pathogens, Prevotella bivia, Gardnerella vaginalis, as well as Candida albicans was investigated. Methods. Adhesion ability was determined in vitro with immortalized epithelial cells from the endocervix, ectocervix, and vagina. Coculture experiments were performed to count viable pathogens cells in the presence of Lcr35. Results. Lcr35 was able to specifically and rapidly adhere to the three cell lines. In coculture assays, a decrease in pathogen cell division rate was observed as from 4 hours of incubation and bactericidal activity after a longer period of incubation, mostly with P. bivia. Conclusion. The ability of Lcr35 to adhere to cervicovaginal cells and its antagonist activities against vaginosis-associated pathogens suggest that this probiotic strain is a promising candidate for use in therapy.

  3. Comparative genomics of Helicobacter pylori strains of China associated with different clinical outcome.

    Directory of Open Access Journals (Sweden)

    Yuanhai You

    Full Text Available In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90,000 probes covering six sequenced Helicobacter pylori (H. pylori genomes was designed. This microarray was used to compare the genomic profiles of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation was found among these strains, an additional 76 H. pylori strains associated with different clinical outcomes were isolated from various provinces of China. These strains were tested by polymerase chain reaction to demonstrate this distinction. We identified several highly variable regions in strains associated with gastritis, gastric ulceration, and gastric cancer. These regions are associated with genes involved in the bacterial type I, type II, and type III R-M systems. They were also associated with the virB gene, which lies on the well-studied cag pathogenic island. While previous studies have reported on the diverse genetic characterization of this pathogenic island, in this study, we find that it is conserved in all strains tested by microarray. Moreover, a number of genes involved in the type IV secretion system, which is related to horizontal DNA transfer between H. pylori strains, were identified in the comparative analysis of the strain-specific genes. These findings may provide insight into new biomarkers for the prediction of gastric diseases.

  4. A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Characterization

    Science.gov (United States)

    J.D. Podgwaite; B.J. Cosenza

    1976-01-01

    A gram-negative bacillus, pathogenic for gypsy moth larvae, was characterized culturally, morphologically, and physiologically as a member of the Serratia group of the family Enterobacteriaceae. The microorganism lacked the pigmentation characteristic of the group but was generally distinguished from closely related members of the family by its...

  5. Sheep carrying pathogenic Yersinia enterocolitica bioserotypes 2/O:9 and 5/O:3 in the feces at slaughter.

    Science.gov (United States)

    Joutsen, Suvi; Eklund, Kirsi-Maria; Laukkanen-Ninios, Riikka; Stephan, Roger; Fredriksson-Ahomaa, Maria

    2016-12-25

    Yersinia enterocolitica is a heterogeneous species including non-pathogenic strains belonging to biotype 1A and pathogenic strains belonging to biotypes 1B and 2-5. Pathogenic strains of biotypes 2-4 carrying the ail virulence gene have frequently been isolated from domestic pigs at slaughter. In sheep, mostly non-pathogenic biotype 1A strains have been reported. In our study, the prevalence of ail-positive Y. enterocolitica was studied by PCR and culturing in 406 young sheep (enterocolitica belonging to bioserotypes 2/O:9 and 5/O:3, carrying both chromosomal and plasmid-borne virulence genes, were isolated from the fecal samples of 10 (2%) and 23 (4%) sheep, respectively. All isolates of bioserotypes 2/O:9 (19 isolates) and 5/O:3 (53 isolates) carried the chromosomal virulence genes ail, inv, ystA, and myfA, and almost all isolates (71/72) also carried the virulence genes virF and yadA located on the virulence plasmid. The isolates showed high susceptibility to tested antimicrobials and low genetic diversity by PFGE. Y. enterocolitica bioserotype 5/O:3 is a very rare bioserotype, and has earlier only sporadically been reported in European wildlife and in sheep in Australia and New Zealand. Bioserotype 2/O:9 is a common bioserotype found in humans with yersiniosis, and has sporadically been isolated in wild and domestic animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    Science.gov (United States)

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.

  7. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans

    OpenAIRE

    Jacobsen, C. N.; Rosenfeldt Nielsen, V.; Hayford, A. E.; Møller, P. L.; Michaelsen, K. F.; Pærregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M.

    1999-01-01

    The probiotic potential of 47 selected strains of Lactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains, Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp. lactis CHCC 2329, and L. casei subsp. alactus CHCC 3137, were selected for in vivo studi...

  8. Competition between yogurt probiotics and periodontal pathogens in vitro.

    Science.gov (United States)

    Zhu, Yunwo; Xiao, Liying; Shen, Da; Hao, Yuqing

    2010-09-01

    To investigate the competition between probiotics in bio-yogurt and periodontal pathogens in vitro. The antimicrobial activity of bio-yogurt was studied by agar diffusion assays, using eight species of putative periodontal pathogens and a 'protective bacteria' as indicator strains. Four probiotic bacterial species (Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium) were isolated from yogurt and used to rate the competitive exclusion between probiotics and periodontal pathogens. Fresh yogurt inhibited all the periodontal pathogens included in this work, showing inhibition zones ranging from 9.3 (standard deviation 0.6) mm to 17.3 (standard deviation 1.7) mm, whereas heat-treated yogurt showed lower antimicrobial activity. In addition, neither fresh yogurt nor heat-treated yogurt inhibited the 'protective bacteria', Streptococcus sanguinis. The competition between yogurt probiotics and periodontal pathogens depended on the sequence of inoculation. When probiotics were inoculated first, Bifidobacterium inhibited Porphyromonas gingivalis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas circumdentaria, and Prevotella nigrescens; L. acidophilus inhibited P. gingivalis, A. actinomycetemcomitans, P. circumdentaria, P. nigrescens, and Peptostreptococcus anaerobius; L. bulgaricus inhibited P. gingivalis, A. actinomycetemcomitans, and P. nigrescens; and S. thermophilus inhibited P. gingivalis, F. nucleatum, and P. nigrescens. However, their antimicrobial properties were reduced when both species (probiotics and periodontal pathogens) were inoculated simultaneously. When periodontal pathogens were inoculated first, Prevotella intermedia inhibited Bifidobacterium and S. thermophilus. The results demonstrated that bio-yogurt and the probiotics that it contains are capable of inhibiting specific periodontal pathogens but have no effect on the periodontal protective bacteria.

  9. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    Energy Technology Data Exchange (ETDEWEB)

    Cary,; Bruce, R [Santa Fe, NM; Stubben, Christopher J [Los Alamos, NM

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  10. Isolation and Identification of L-asparaginase producing Erwinia strains which isolated from Potato Farms

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2016-09-01

    Full Text Available Introduction: L-Asparaginase can be effectively used for the treatment of lymphoblastic leukemia. The rapid growth of cancer cells are needed for L-asparagine abundant storage. L-asparaginase catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. The purpose of this study was to isolate and identify the L-asparaginase producing Erwinia strains from the potato farms of Jiroft. Materials and methods: Pectolytic Erwinia species isolated from crumbling potato in M9 medium. The desired L-asparaginase producing bacteria were isolated based on the color changes. Biochemical-microbial and the plant pathogenicity tests of these strains were also investigated with potato and geranium. The L-asparaginase production and molecular detection of these Erwinia strains were also investigated. Results: In this study, L-asparaginase producing Erwinia was isolated on the CVP and M9 mediums. The inoculation of Erwinia strains on the potato and geranium plants showed that Er8 and Er11 species have the ability to cause plant pathogenicity. Results showed that the maximum pathogenicity of Er8 and Er11 was observed after 48 and 15 h of inoculation in potato and geranium plants, respectively. 16S rDNA sequencing and phylogenetic analyses exhibited that Er8 and Er11 strains were similar to Erwinia chrysanthemi with 98% homology. Discussion and conclusion: Because of several applications of the Erwinia L-asparaginase in various fields, isolated Erwinia and their L-asparaginase can be suitable for applied utilization.

  11. Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization

    OpenAIRE

    Garzetti, Debora; Bouabe, Hicham; Heesemann, Juergen; Rakin, Alexander

    2012-01-01

    Abstract Background Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness pro...

  12. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island

    Directory of Open Access Journals (Sweden)

    Bonten Marc JM

    2010-04-01

    Full Text Available Abstract Background The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. Results We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI, which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. Conclusions Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come.

  13. Comparative susceptibility of veliger larvae of four bivalve mollusks to a Vibrio alginolyticus strain.

    Science.gov (United States)

    Luna-González, A; Maeda-Martínez, A N; Sainz, J C; Ascencio-Valle, F

    2002-06-03

    The susceptibility of 7 d old veliger larvae of the scallops Argopecten ventricosus and Nodipecten subnodosus, the penshell Atrina maura, and the Pacific oyster Crassostrea gigas to a pathogenic strain of Vibrio alginolyticus was investigated by challenging the larvae with different bacterial concentrations in a semi-static assay. The results indicate that the larvae of the 2 scallop species are more susceptible to the V. alginolyticus strain than those of the oyster and the penshell. Signs of the disease were similar to bacillary necrosis described in previous work. Interspecies differences in susceptibility to pathogens are discussed.

  14. Development of a Remote Consultation System Using Avatar Technology

    Science.gov (United States)

    Ohnishi, Tatsuya; Yajima, Hiroshi; Sawamoto, Jun

    The chance to use the Internet as a communications tool has been increasing, and the consultation businesses for customers at remote places are diversifying in their communication media and forms. In the remote consultation, the lack of non-verbal information is reported as one of the reasons for inefficiency and customer's dissatisfaction compared with the face-to-face consultation. The technique for supplementing non-verbal information with a TV telephone is proposed, and helps to confirm understanding degree or the utterance timing by watching the movement of the face. But the displayed face of the partner causes strong feeling of strain between strangers and the participants also care about background scene displayed on the monitor producing risks in the consultation tasks. In this paper, we propose a remote consultation method that uses avatar technology in the virtual space in order to provide non-verbal information and also avoiding the problem of TV telephone at the same time. The effectiveness of the proposed remote consultation method is confirmed by experiments.

  15. Lethality and Developmental Delay of Drosophila melanogaster Following Ingestion of Selected Pseudomonas fluorescens Strains

    Science.gov (United States)

    Pseudomonas fluorescens secretes antimicrobial compounds that promote plant health and provide protection from pathogens. We used a non-invasive feeding assay to study the toxicity of P. fluorescens strains Pf0-1, SBW25, and Pf-5 to Drosophila melanogaster. The three strains of P. fluorescens varie...

  16. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2

    Directory of Open Access Journals (Sweden)

    Md. Mahidul Islam Masum

    2017-09-01

    Full Text Available The Type VI secretion system (T6SS is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2 and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  17. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2.

    Science.gov (United States)

    Masum, Md Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang

    2017-09-21

    The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations Δ pppA , Δ clpB , Δ hcp , Δ dotU , Δ icmF , Δ impJ , and Δ impM caused similar virulence characteristics as RS-2. Moreover, the mutant Δ pppA , Δ clpB , Δ icmF , Δ impJ and Δ impM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants Δ pppA , Δ clpB , Δ icmF and Δ hcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  18. Pathogen infection distribution and drug resistance analysis of patients with severe liver disease

    Directory of Open Access Journals (Sweden)

    Xi CHEN

    2018-04-01

    Full Text Available Objective To explore the infection distribution and drug resistance of pathogens in patients with severe liver disease, and provide reference for clinical medication. Methods Retrospective analysis of the microbiological specimens from patients with severe liver disease in Department of Infection of our hospital from August 2014 to November 2016 and the drug susceptibility testing were carried out by means of K-B disc diffusion method after bacterial culturing, and the distribution and drug resistance of pathogens were analyzed. Results Totally 17 of 73 patients with severe liver disease developed hospital infection (23.3%. 104 strains of bacteria were isolated and 78 strains out of them were multidrug-resistant bacteria (75.0%. Among them, 28(26.9% strains were gram-positive coccus, mainly consisting of Staphylococcus aureus and Staphylococcus epidermidis, and 58(55.8% were gram-negative coccus, mainly composed of Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii, and 18(17.3% strains fungi. S.aureus and enterococci were resistant to penicillin, erythromycin and levofloxacin, the resistance rates were above 80.0%, but had low resistance rates to vancomycin, teicoplanin and tigecycline. The resistance rates of E.coli and K.pneumoniae to piperacillin, cefazolin and cefuroxime sodium were above 85.0%, but they had lower resistance rates to tigecycline and amikacin. Acinetobacter baumannii was 100% resistant to piperacillin and tazobactam, ceftazidime, imipenem and amikacin, but had low resistance to tigecycline and minocycline. Conclusions Multi-drug resistant bacteria are the main bacterial pathogens in patients with severe liver disease and have a high resistance rate to commonly used antibiotics, empirical treatment in the population at high risk of multidrug-resistant bacteria infections requires the use of broad-spectrum or high-grade antibiotics (e.g. carbapenems or tigecycline and drugs against specific pathogenic

  19. [Human plague and pneumonic plague : pathogenicity, epidemiology, clinical presentations and therapy].

    Science.gov (United States)

    Riehm, Julia M; Löscher, Thomas

    2015-07-01

    Yersinia pestis is a highly pathogenic gram-negative bacterium and the causative agent of human plague. In the last 1500 years and during three dreaded pandemics, millions of people became victims of Justinian's plague, the Black Death, or modern plague. Today, Y. pestis is endemic in natural foci of Asian, African and American countries. Due to its broad dissemination in mammal species and fleas, eradication of the pathogen will not be possible in the near future. In fact, plague is currently classified as a "re-emerging disease". Infection may occur after the bite of an infected flea, but also after oral ingestion or inhalation of the pathogen. The clinical presentations comprise the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Most human cases can successfully be treated with antibiotics. However, the high transmission rate and lethality of pneumonic plague require international and mandatory case notification and quarantine of patients. Rapid diagnosis, therapy and barrier nursing are not only crucial for the individual patient but also for the prevention of further spread of the pathogen or of epidemics. Therefore, WHO emergency schedules demand the isolation of cases, identification and surveillance of contacts as well as control of zoonotic reservoir animals and vectors. These sanctions and effective antibiotic treatment usually allow a rapid containment of outbreaks. However, multiple antibiotic resistant strains of Y. pestis have been isolated from patients in the past. So far, no outbreaks with such strains have been reported.

  20. Histopathological changes induced in an animal model by potentially pathogenic Enterococcus faecalis strains recovered from ready-to-eat food outlets in Osun State, Nigeria.

    Science.gov (United States)

    Olawale, Adetunji Kola; David, Oluwole Moses; Oluyege, Adekemi Olubukunola; Osuntoyinbo, Richard Temitope; Laleye, Solomon Anjuwon; Famurewa, Oladiran

    2015-01-01

    Enterococci have been implicated as an emerging important cause of several diseases and multiple antibiotic resistance. However, there is little information about the prevalence of pathogenic and/or antibiotic-resistant Enterococcus faecalis in ready-to-eat foods in Nigeria. Here we report the pathogenic potential of three selected antibiotic-resistant E. faecalis strains isolated from food canteens and food outlets with different virulence determinant genes, including EFC 12 (with gel (+), esp (+), cylA (+), and asa1 (+)), EFT 148 (with gel (+), ace (+), and asa1 (+)), and EFS 18 (with esp (+) and cylA (+)) in an animal model. Enterococcemia, hematological parameters, and histopathological changes in organ tissues were examined in experimental animals. The results showed differences in enterococcemia and hematological parameters between the control group and experimental animal group. Enterococcemia was observed for 7 days, and the animal group infected with EFC 12 showed the highest growth rate, followed by EFT 148, with the lowest growth rate seen in the EFS 18-infected group. White blood cell count, packed cell volume, and platelets were significantly reduced (Pfood canteens and food outlets; hence, there is a need for strict adherence to good hygiene practices in the study area owing to the epidemiological significance of foods.

  1. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  2. Dual Effects of Lactobacilli as a Cholesterol Assimilator and an Inhibitor ofGastrointestinal Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Amir Emami

    2014-02-01

    Full Text Available Background: Probiotics are live microbial supplements which can improve the healthy intestinal microbial balance. Lactobacilli are a group of lactic acid producing bacteria (LAB that are known as natural probiotics found in the dairy products. Objectives: In this study, we aimed to detect the most potent Lactobacillus isolates of the Fars province local dairy products in cholesterol removal and investigate their antibacterial properties against some gastrointestinal pathogens. Materials and Methods: Fifteen locally produced yogurt samples of the Fars province were collected and characterized with routine microbiology methods. Cholesterol removal ability of the Lactobacilli isolates were determined, and their growth inhibitory effect on some standard pathogenic strains pathogen was evaluated using the well-diffusion method. Results: In this study, five common strains of Lactobacilli including L. acidophilus, L. casei, L. fermentum, L. lactis, and L. bulgaricus were identified in the samples obtained from the locally produced yogurt in the Fars province. L. lactis and L. acidophilus were determined as the two most active strains with the maximum rate of cholesterol assimilation (5.6 and 4.5 mg/mL, respectively in the process of cholesterol removal. In the antibacterial activity assay, the two mentioned strains had significant inhibitory effect on all of the tested bacteria except for B. subtilis. Conclusions: Cholesterol removal ability had a direct relation with bacterial growth, so it is suggested to use the probiotic bacteria in the growth phase to achieve better results.

  3. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  4. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    Directory of Open Access Journals (Sweden)

    Adriano de Oliveira Torres Carrasco

    2016-03-01

    Full Text Available Abstract This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia and chickens (Gallus gallus in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota, developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  5. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.

    Science.gov (United States)

    Seo, Young-Su; Lim, Jae Yun; Park, Jungwook; Kim, Sunyoung; Lee, Hyun-Hee; Cheong, Hoon; Kim, Sang-Mok; Moon, Jae Sun; Hwang, Ingyu

    2015-05-06

    In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages. We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems. The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other

  6. Do wheelchairs spread pathogenic bacteria within hospital walls?

    Science.gov (United States)

    Peretz, Avi; Koiefman, Anna; Dinisman, Eleonora; Brodsky, Diana; Labay, Kozitta

    2014-02-01

    Transmission of nosocomial pathogens has been linked to transient colonization of health care workers, medical devices and other constituents of patients' environment. In this paper we present our findings concerning the presence of pathogenic bacteria on wheelchairs, and the possibility that wheelchairs constitute a reservoir of these bacteria and a means of spreading them. In this work we examined four wheelchairs, each from a different location: the internal medicine ward, the emergency department, the general surgery ward and wheelchair stockpile of the transportation unit of the hospital. The samples were collected and cultured on different media. Bacterial identification and antimicrobial sensitivity testing were carried out using accepted practices in the microbiology laboratory. We found that wheelchairs are contaminated with several pathogenic bacteria, among them antibiotic-resistant strains such as MRSA, Pseudomonas aeruginosa, Acinetobacter baumanni etc. Since there is no specific guideline protocol that deals with disinfection and cleaning frequency of wheelchairs in hospitals, we suggest each hospital to write one.

  7. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai-Tibet plateau of China.

    Science.gov (United States)

    Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo

    2016-12-07

    Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai-Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli.

  8. Evaluation of Anti-adherent Activity of Excretions of Irradiated Lucilia sericata Maggot and Certain Essential Oils against Some Pathogenic Bacterial Strains

    International Nuclear Information System (INIS)

    Eltablawy, S.Y.; Amin, M.M.

    2011-01-01

    Essential Oils are widely used for their medicinal properties. They block adhesion and colonization of pathogenic microbes to epithelial cells which associated with bacterial resistance to antibiotics. So, this study investigates the effect of Lu cilia sacarato (flesh fly-an ectoparasitic) excretions of non-irradiated and irradiated maggot and some essential oils on biofilm formation by tube method, antimicrobial susceptibility by agar disc diffusion method as well as on their anti-adherent activity by spectrophotometric method. The results showed that excretions and secretions (E/S) of non-irradiated and irradiated maggots (at 20 Gy), as well as (clove and cinnamon oils) did not have antibacterial activity against the tested bacterial strains Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (St. aureus) and Staphylococcus epidermidis (St. epidermidis) except marjoram oil which has low antimicrobial activity against all the tested strains. The results also showed that the most potent oil was clove which decrease biofilm of P. aeruginosa by 83%, followed by marjoram (69%), then E/S of non-irradiated maggots (66%). Whiles, biofilm was less affected by cinnamon oil and E/S of irradiated maggots by 50 % and 36%, respectively. In addition, clove oil and E/S of non-irradiated maggots affect the pre-adhered biofilm of P. aeruginosa by 57 and 45 %, respectively. Conclusion: Clove oil flowed by marjoram had anti-adherent effect on P. aeruginosa. Greater inhibition of adhesion was observed by excretions of non-irradiated lucilia sericata.

  9. Pan-genome analysis of Senegalese and Gambian strains of ...

    African Journals Online (AJOL)

    Mbaye

    2016-11-09

    Nov 9, 2016 ... 1National Laboratory for Research on Animal Diseases (LNERV ... and Rickettssiology, Faculty for Sciences and Technology - Dakar ... stability of its spores, the high level pathogenicity and ... with an anthrax epidemic through an atmospheric .... Characteristics of Bacillus anthracis strains (samples). Code.

  10. Antibiotic sensitivity and resistance in Ornithobacterium rhinotracheale strains from Belgian broiler chickens.

    Science.gov (United States)

    Devriese, L A; De Herdt, P; Haesebrouck, F

    2001-06-01

    Establishing the antibiotic sensitivity of the avian respiratory pathogen Ornithobacterium rhinotracheale is difficult because of the organism's complex growth requirements and the unusually frequent occurrence of resistance. The minimal inhibitory concentrations of 10 antibiotics were determined for 45 strains of O. rhinotracheale from Belgian broiler chickens collected from 45 farms between 1995 and 1998. They were compared with the type strain, which was isolated from a turkey, and a strain isolated from a rook. All the broiler strains were resistant to lincomycin and to the beta-lactams ampicillin and ceftiofur. Less than 10% of the strains were sensitive to the macrolides tylosin and spiramycin, tilmicosin and flumequine. A few strains were sensitive to enrofloxacin and doxycycline. All strains were sensitive to tiamulin.

  11. Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens

    Directory of Open Access Journals (Sweden)

    Juan L. Arqués

    2015-01-01

    Full Text Available The food industry seeks alternatives to satisfy consumer demands of safe foods with a long shelf-life able to maintain the nutritional and organoleptic quality. The application of antimicrobial compounds-producing protective cultures may provide an additional parameter of processing in order to improve the safety and ensure food quality, keeping or enhancing its sensorial characteristics. In addition, strong evidences suggest that certain probiotic strains can confer resistance against infection with enteric pathogens. Several mechanisms have been proposed to support this phenomenon, including antimicrobial compounds secreted by the probiotics, competitive exclusion, or stimulation of the immune system. Recent research has increasingly demonstrated the role of antimicrobial compounds as protective mechanism against intestinal pathogens and therefore certain strains could have an effect on both the food and the gut. In this aspect, the effects of the combination of different strains keep unknown. The development of multistrain probiotic dairy products with good technological properties and with improved characteristics to those shown by the individual strains, able to act not only as protective cultures in foods, but also as probiotics able to exert a protective action against infections, has gained increased interest.

  12. Evaluation of pathogenic potential of Rickettsia amblyommii in guinea pigs (Cavia porcellus) and protective immunity against Rickettsia rickettsii

    International Nuclear Information System (INIS)

    Rivas Mejias, Juan Jose

    2014-01-01

    The pathogenic potential of R. amblyommii 9-CC-3-1 is evaluated in guinea pigs, through measurements of temperature, weight and behavioral observations; also, the detection of bacteria in different organs. The protective immunity that this bacterium can offer in guinea pigs is evaluated, against a subsequent infection with pathogenic strain of R. rickettsii NRH-2010. The production of specific IgG antibodies, mild disease and the presence of the bacterium to testicular level in guinea pigs is evidenced, before experimental infection, with isolation of R. amblyommii 9-CC-3-1, indicating mild or localized infection and production of response immune against R. amblyommii. Immuno protection offered by the strain R. rickettsii NRH-2010 is evidenced to a subsequent infection of a pathogenic strain of R. rickettsii NRH-2010. The decrease of symptoms and severity of the disease has been evident; but, without prevent infection caused by R. rickettsii in guinea pigs. The tropism of R. amblyommii 9-CC-3-1 has been, possibly, a causative agent of infection and clinical pictures by spotted fevers [es

  13. Differences in pathogenicity of three animal isolates of Mycobacterium species in a mouse model.

    Directory of Open Access Journals (Sweden)

    Haodi Dong

    Full Text Available Animal mycobacterioses are among the most important zoonoses worldwide. These are generally caused by either Mycobacterium tuberculosis (MTB, M. bovis (MBO or M. avium (MAV. To test the hypothesis that different species of pathogenic mycobacteria isolated from varied anatomic locations or animal species differ in virulence and pathogenicity, we performed experiments with three mycobacteria strains (NTSE-3(MTB, NTSE-4(MBO and NTSE-5 (MAV obtained from animal species. Spoligotyping analysis was used to confirm both MTB and MBO strains while the MAV strain was confirmed by 16s rDNA sequencing. BALB/c mice were intranasally infected with the three strains at low and high CFU doses to evaluate variations in pathogenicity. Clinical and pathological parameters were assessed. Infected mice were euthanized at 80 days post-inoculation (dpi. Measures of lung and body weights indicated that the MBO infected group had higher mortality, more weight loss, higher bacterial burden and more severe lesions in lungs than the other two groups. Cytokine profiles showed higher levels of TNF-α for MBO versus MTB, while MAV had the highest amounts of IFN-β in vitro and in vivo. In vitro levels of other cytokines such as IL-1β, IL-10, IL-12, IL-17, and IFN-β showed that Th1 cells had the strongest response in MBO infected mice and that Th2 cells were inhibited. We found that the level of virulence among the three isolates decreased in the following order MBO>MTB>MAV.

  14. Typing methods for the plague pathogen, Yersinia pestis.

    Science.gov (United States)

    Lindler, Luther E

    2009-01-01

    Phenotypic and genotypic methodologies have been used to differentiate the etiological agent of plague, Yersinia pestis. Historically, phenotypic methods were used to place isolates into one of three biovars based on nitrate reduction and glycerol fermentation. Classification of Y. pestis into genetic subtypes is problematic due to the relative monomorphic nature of the pathogen. Resolution into groups is dependent on the number and types of loci used in the analysis. The last 5-10 years of research and analysis in the field of Y. pestis genotyping have resulted in a recognition by Western scientists that two basic types of Y. pestis exist. One type, considered to be classic strains that are able to cause human plague transmitted by the normal flea vector, is termed epidemic strains. The other type does not typically cause human infections by normal routes of infection, but is virulent for rodents and is termed endemic strains. Previous classification schemes used outside the Western hemisphere referred to these latter strains as Pestoides varieties of Y. pestis. Recent molecular analysis has definitely shown that both endemic and epidemic strains arose independently from a common Yersinia pseudotuberculosis ancestor. Currently, 11 major groups of Y. pestis are defined globally.

  15. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  16. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S L; Lye, D J; McKinstry, Craig A.; Vesper, Sephen J.

    2010-01-01

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (γ-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-α) transcripts. A. caviae has always been considered as opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests that an A. caviae strain can colonize the murine intestinal tract and cause what has been described by others as a dysregulatory cytokine response. This response could explain why a number of diarrheal waterborne disease cases have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.

  17. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    Science.gov (United States)

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

  18. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Christopher A Desjardins

    2011-10-01

    Full Text Available Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18 and one strain of Paracoccidioides lutzii (Pb01. These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic

  19. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply.

    Science.gov (United States)

    Meyer, M; Cox, J A; Hitchings, M D T; Burgin, L; Hort, M C; Hodson, D P; Gilligan, C A

    2017-10-01

    Infectious crop diseases spreading over large agricultural areas pose a threat to food security. Aggressive strains of the obligate pathogenic fungus Puccinia graminis f.sp. tritici (Pgt), causing the crop disease wheat stem rust, have been detected in East Africa and the Middle East, where they lead to substantial economic losses and threaten livelihoods of farmers. The majority of commercially grown wheat cultivars worldwide are susceptible to these emerging strains, which pose a risk to global wheat production, because the fungal spores transmitting the disease can be wind-dispersed over regions and even continents 1-11 . Targeted surveillance and control requires knowledge about airborne dispersal of pathogens, but the complex nature of long-distance dispersal poses significant challenges for quantitative research 12-14 . We combine international field surveys, global meteorological data, a Lagrangian dispersion model and high-performance computational resources to simulate a set of disease outbreak scenarios, tracing billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes for more than a decade. This provides the first quantitative assessment of spore transmission frequencies and amounts amongst all wheat producing countries in Southern/East Africa, the Middle East and Central/South Asia. We identify zones of high air-borne connectivity that geographically correspond with previously postulated wheat rust epidemiological zones (characterized by endemic disease and free movement of inoculum) 10,15 , and regions with genetic similarities in related pathogen populations 16,17 . We quantify the circumstances (routes, timing, outbreak sizes) under which virulent pathogen strains such as 'Ug99' 5,6 pose a threat from long-distance dispersal out of East Africa to the large wheat producing areas in Pakistan and India. Long-term mean spore dispersal trends (predominant direction, frequencies, amounts) are

  20. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens

    OpenAIRE

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026’s activity against Gram-negative foodborne pathogens.

  1. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.

    Science.gov (United States)

    Shokal, Upasana; Yadav, Shruti; Atri, Jaishri; Accetta, Julia; Kenney, Eric; Banks, Katherine; Katakam, Akash; Jaenike, John; Eleftherianos, Ioannis

    2016-02-09

    Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects

  2. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia

    OpenAIRE

    Muñoz, José F.; Gauthier, Gregory M.; Desjardins, Christopher A.; Gallo, Juan E.; Holder, Jason; Sullivan, Thomas D.; Marty, Amber J.; Carmen, John C.; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret

    2015-01-01

    Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated...

  3. Transcriptomic analysis of two Beauveria bassiana strains grown on cuticle extracts of the silkworm uncovers their different metabolic response at early infection stage.

    Science.gov (United States)

    Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji

    2017-05-01

    Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    2018-01-01

    ABSTRACT Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. PMID:29615502

  5. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae

    Directory of Open Access Journals (Sweden)

    Schneiker-Bekel Susanne

    2008-09-01

    Full Text Available Abstract Background Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. Results In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. Conclusion The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.

  6. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production.

    Science.gov (United States)

    Pashkova, Tatiana M; Vasilchenko, Alexey S; Khlopko, Yuriy A; Kochkina, Elena E; Kartashova, Olga L; Sycheva, Maria V

    2018-03-08

    We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. Copyright © 2018 Pashkova et al.

  7. Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives.

    Science.gov (United States)

    Brun, Sophie; Madrid, Hugo; Gerrits Van Den Ende, Bert; Andersen, Birgitte; Marinach-Patrice, Carine; Mazier, Dominique; De Hoog, G Sybren

    2013-01-01

    The genus Alternaria includes numerous phytopathogenic species, many of which are economically relevant. Traditionally, identification has been based on morphology, but is often hampered by the tendency of some strains to become sterile in culture and by the existence of species-complexes of morphologically similar taxa. This study aimed to assess if strains of four closely-related plant pathogens, i.e., accurately Alternaria dauci (ten strains), Alternaria porri (six), Alternaria solani (ten), and Alternaria tomatophila (ten) could be identified using multilocus phylogenetic analysis and Matrix-Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) profiling of proteins. Phylogenetic analyses were performed on three loci, i.e., the internal transcribed spacer (ITS) region of rRNA, and the glyceraldehyde-3-phosphate dehydrogenase (gpd) and Alternaria major antigen (Alt a 1) genes. Phylogenetic trees based on ITS sequences did not differentiate strains of A. solani, A. tomatophila, and A. porri, but these three species formed a clade separate from strains of A. dauci. The resolution improved in trees based on gpd and Alt a 1, which distinguished strains of the four species as separate clades. However, none provided significant bootstrap support for all four species, which could only be achieved when results for the three loci were combined. MALDI-TOF-based dendrograms showed three major clusters. The first comprised all A. dauci strains, the second included five strains of A. porri and one of A. solani, and the third included all strains of A. tomatophila, as well as all but one strain of A. solani, and one strain of A. porri. Thus, this study shows the usefulness of MALDI-TOF mass spectrometry as a promising tool for identification of these four species of Alternaria which are closely-related plant pathogens. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Pathogen reduction requirements for direct potable reuse in Antarctica: evaluating human health risks in small communities.

    Science.gov (United States)

    Barker, S Fiona; Packer, Michael; Scales, Peter J; Gray, Stephen; Snape, Ian; Hamilton, Andrew J

    2013-09-01

    Small, remote communities often have limited access to energy and water. Direct potable reuse of treated wastewater has recently gained attention as a potential solution for water-stressed regions, but requires further evaluation specific to small communities. The required pathogen reduction needed for safe implementation of direct potable reuse of treated sewage is an important consideration but these are typically quantified for larger communities and cities. A quantitative microbial risk assessment (QMRA) was conducted, using norovirus, giardia and Campylobacter as reference pathogens, to determine the level of treatment required to meet the tolerable annual disease burden of 10(-6) DALYs per person per year, using Davis Station in Antarctica as an example of a small remote community. Two scenarios were compared: published municipal sewage pathogen loads and estimated pathogen loads during a gastroenteritis outbreak. For the municipal sewage scenario, estimated required log10 reductions were 6.9, 8.0 and 7.4 for norovirus, giardia and Campylobacter respectively, while for the outbreak scenario the values were 12.1, 10.4 and 12.3 (95th percentiles). Pathogen concentrations are higher under outbreak conditions as a function of the relatively greater degree of contact between community members in a small population, compared with interactions in a large city, resulting in a higher proportion of the population being at risk of infection and illness. While the estimates of outbreak conditions may overestimate sewage concentration to some degree, the results suggest that additional treatment barriers would be required to achieve regulatory compliance for safe drinking water in small communities. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Toxins Produced by Valsa mali var. mali and Their Relationship with Pathogenicity

    Directory of Open Access Journals (Sweden)

    Caixia Wang

    2014-03-01

    Full Text Available Valsa mali var. mali (Vmm, the causal agent of apple tree canker disease, produces various toxic compounds, including protocatechuic acid, p-hydroxybenzoic acid, p-hydroxyacetophenone, 3-(p-hydroxyphenylpropanoic acid and phloroglucinol. Here, we examined the relationship between toxin production and the pathogenicity of Vmm strains and determined their bioactivities in several assays, for further elucidating the pathogenesis mechanisms of Vmm and for developing new procedures to control this disease. The toxins were quantified with the high performance liquid chromatography (HPLC method, and the results showed that the strain with attenuated virulence produced low levels of toxins with only three to four kinds of compounds being detectable. In contrast, higher amounts of toxins were produced by the more aggressive strain, and all five compounds were detected. This indicated a significant correlation between the pathogenicity of Vmm strains and their ability to produce toxins. However, this correlation only existed in planta, but not in vitro. During the infection of Vmm, protocatechuic acid was first detected at three days post inoculation (dpi, and the others at seven or 11 dpi. In addition, all compounds produced noticeable symptoms on host plants at concentrations of 2.5 to 40 mmol/L, with protocatechuic acid being the most effective compound, whereas 3-(p-hydroxyphenylpropanoic acid or p-hydroxybenzoic acid were the most active compounds on non-host plants.

  10. Inhibiting host-pathogen interactions using membrane-based nanostructures.

    Science.gov (United States)

    Bricarello, Daniel A; Patel, Mira A; Parikh, Atul N

    2012-06-01

    Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    Science.gov (United States)

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  12. Antibacterial activity of plasma from crocodile (Crocodylus siamensis against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Kommanee Jintana

    2012-07-01

    Full Text Available Abstract Background The Siamese crocodile (Crocodylus siamensis is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. Methods Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650 M and the purified plasma was tested for antibacterial activity. Results Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space

  13. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    Science.gov (United States)

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes

  14. Pathogenicity of facultative and obligate anaerobic bacteria in monoculture and combined with either Prevotella intermedia or Prevotella nigrescens.

    Science.gov (United States)

    Siqueira, J F; Magalhães, F A; Lima, K C; de Uzeda, M

    1998-12-01

    The pathogenicity of obligate and facultative anaerobic bacteria commonly found in endodontic infections was tested using a mouse model. The capacity of inducing abscesses was evaluated seven days after subcutaneous injection of the bacteria in pure culture and in combinations with either Prevotella intermedia or Prevotella nigrescens. Nine of the fifteen bacterial strains tested were pathogenic in pure culture. No statistically significant differences were detected between these strains in pure culture and in mixtures with either P. intermedia or P. nigrescens. Synergism between the bacterial strains was only apparent when associating Porphyromonas endodontalis with P. intermedia or P. nigrescens. Histopathological examination of tissue sections from induced abscesses revealed an acute inflammatory reaction, dominated by polymorphonuclear leukocytes. Sections from the control group using sterile medium showed no evidence of inflammatory reaction.

  15. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Raees Khan

    Full Text Available The substantial use of triclosan (TCS has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231 and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17, and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79% and soil-borne plant pathogenic bacteria (98%. These included a variety of enoyl-acyl carrier protein reductase (ENRs homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously

  16. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis

    Science.gov (United States)

    Khan, Raees; Roy, Nazish; Choi, Kihyuck

    2018-01-01

    The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed

  17. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS.

    Science.gov (United States)

    Livingstone, Morag; Wheelhouse, Nicholas; Ensor, Hannah; Rocchi, Mara; Maley, Stephen; Aitchison, Kevin; Wattegedera, Sean; Wilson, Kim; Sait, Michelle; Siarkou, Victoria; Vretou, Evangelia; Entrican, Gary; Dagleish, Mark; Longbottom, David

    2017-01-01

    This study investigated the pathogenesis of two variant strains (LLG and POS) of Chlamydia abortus, in comparison to a typical wild-type strain (S26/3) which is known to be responsible for late term abortion in small ruminants. Challenge with the three strains at mid-gestation resulted in similar pregnancy outcomes, with abortion occurring in approximately 50-60% of ewes with the mean gestational lengths also being similar. However, differences were observed in the severity of placental pathology, with infection appearing milder for strain LLG, which was reflected in the lower number of organisms shed in vaginal swabs post-partum and less gross pathology and organisms present in placental smears. Results for strain POS were somewhat different than LLG with a more focal restriction of infection observed. Post-abortion antibody responses revealed prominent differences in seropositivity to the major outer membrane protein (MOMP) present in elementary body (EB) preparations under denaturing conditions, most notably with anti-LLG and anti-POS convalescent sera where there was no or reduced detection of MOMP present in EBs derived from the three strains. These results and additional analysis of whole EB and chlamydial outer membrane complex preparations suggest that there are conformational differences in MOMP for the three strains. Overall, the results suggest that gross placental pathology and clinical outcome is not indicative of bacterial colonization and the severity of infection. The results also highlight potential conformational differences in MOMP epitopes that perhaps impact on disease diagnosis and the development of new vaccines.

  18. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS.

    Directory of Open Access Journals (Sweden)

    Morag Livingstone

    Full Text Available This study investigated the pathogenesis of two variant strains (LLG and POS of Chlamydia abortus, in comparison to a typical wild-type strain (S26/3 which is known to be responsible for late term abortion in small ruminants. Challenge with the three strains at mid-gestation resulted in similar pregnancy outcomes, with abortion occurring in approximately 50-60% of ewes with the mean gestational lengths also being similar. However, differences were observed in the severity of placental pathology, with infection appearing milder for strain LLG, which was reflected in the lower number of organisms shed in vaginal swabs post-partum and less gross pathology and organisms present in placental smears. Results for strain POS were somewhat different than LLG with a more focal restriction of infection observed. Post-abortion antibody responses revealed prominent differences in seropositivity to the major outer membrane protein (MOMP present in elementary body (EB preparations under denaturing conditions, most notably with anti-LLG and anti-POS convalescent sera where there was no or reduced detection of MOMP present in EBs derived from the three strains. These results and additional analysis of whole EB and chlamydial outer membrane complex preparations suggest that there are conformational differences in MOMP for the three strains. Overall, the results suggest that gross placental pathology and clinical outcome is not indicative of bacterial colonization and the severity of infection. The results also highlight potential conformational differences in MOMP epitopes that perhaps impact on disease diagnosis and the development of new vaccines.

  19. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens.

    Science.gov (United States)

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin

    2011-01-27

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. New trends in emerging pathogens.

    Science.gov (United States)

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  1. Complete genome sequence of Kytococcus sedentarius type strain (strain 541T)

    Energy Technology Data Exchange (ETDEWEB)

    Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrick; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Schneider, Susanne; Goker, Markus; Pukall, Rudiger; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens.

    Science.gov (United States)

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-25

    We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026's activity against Gram-negative foodborne pathogens. Copyright © 2018 Nannan et al.

  3. Quorum Sensing: A Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei

    National Research Council Canada - National Science Library

    Ulrich, Ricky L; DeShazer, David; Hines, Harry B; Jeddeloh, Jeffrey A

    2004-01-01

    .... To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models...

  4. Quorum Sensing: A transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei

    National Research Council Canada - National Science Library

    Ulrich, Ricky

    2004-01-01

    .... To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models...

  5. Pathogenicity characteristics of filamentous fungi strains isolated from processed oat Características de patogenicidade em amostras de fungos filamentosos isolados de aveia processada

    Directory of Open Access Journals (Sweden)

    Eliane N. B. da Silva

    1999-12-01

    Full Text Available Nineteen strains of filamentous fungi isolated from processed oat were tested for pathogenicity factors, based on three parameters: growth at 37oC, production of phospholipase and urease. Aspergillus niveus, Oidiodendron gryseum and Sporothrix cyanescens were positive for the three parameters. The other species were positive only for one or two of them.Dezenove amostras de fungos filamentosos isoladas de aveia processada foram testadas quanto a fatores de patogenicidade, utilizando-se três parâmetros: crescimento a 37oC, atividades fosfolipásica e ureásica. Sporothrix cianescens, Aspergillus niveus e Oidiodendron gryseum apresentaram características de patogenicidade nos três testes realizados. As demais espécies apresentaram características de patogenicidade somente em um ou dois destes parâmetros.

  6. [Genodiagnosis and molecular typing of the pathogens for plague, cholera, and anthrax].

    Science.gov (United States)

    Kutyrev, V V; Smirnova, N I

    2003-01-01

    The paper contains a survey of published data about the use of DNA-diagnostics in indicating and identifying the causative agents of highly dangerous infections like plague, cholera and anthrax. A discussion of data about the genetic relationship between strains of the mentioned causative agents isolated from different sources by using the molecular-typing methods as well as about the evolution ties between strains of different origins is in the focus of attention. Results of comparative studies of nucleotide sequences of genomes or of individual genomes in different Yersinia pestis, Vibrio cholerae and Bacillus anthracis strains, which are indicative of the evolution of their pathogenicity, are also under discussion.

  7. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    NARCIS (Netherlands)

    Slawiak, M.; Beckhoven, van J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G.; Wolf, van der J.M.

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing

  8. Clinical isolates of Yersinia enterocolitica Biotype 1A represent two phylogenetic lineages with differing pathogenicity-related properties

    Directory of Open Access Journals (Sweden)

    Sihvonen Leila M

    2012-09-01

    Full Text Available Abstract Background Y. enterocolitica biotype (BT 1A strains are often isolated from human clinical samples but their contribution to disease has remained a controversial topic. Variation and the population structure among the clinical Y. enterocolitica BT 1A isolates have been poorly characterized. We used multi-locus sequence typing (MLST, 16S rRNA gene sequencing, PCR for ystA and ystB, lipopolysaccharide analysis, phage typing, human serum complement killing assay and analysis of the symptoms of the patients to characterize 298 clinical Y. enterocolitica BT 1A isolates in order to evaluate their relatedness and pathogenic potential. Results A subset of 71 BT 1A strains, selected based on their varying LPS patterns, were subjected to detailed genetic analyses. The MLST on seven house-keeping genes (adk, argA, aroA, glnA, gyrB, thrA, trpE conducted on 43 of the strains discriminated them into 39 MLST-types. By Bayesian analysis of the population structure (BAPS the strains clustered conclusively into two distinct lineages, i.e. Genetic groups 1 and 2. The strains of Genetic group 1 were more closely related (97% similarity to the pathogenic bio/serotype 4/O:3 strains than Genetic group 2 strains (95% similarity. Further comparison of the 16S rRNA genes of the BT 1A strains indicated that altogether 17 of the 71 strains belong to Genetic group 2. On the 16S rRNA analysis, these 17 strains were only 98% similar to the previously identified subspecies of Y. enterocolitica. The strains of Genetic group 2 were uniform in their pathogenecity-related properties: they lacked the ystB gene, belonged to the same LPS subtype or were of rough type, were all resistant to the five tested yersiniophages, were largely resistant to serum complement and did not ferment fucose. The 54 strains in Genetic group 1 showed much more variation in these properties. The most commonly detected LPS types were similar to the LPS types of reference strains with serotypes O

  9. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens.

    Science.gov (United States)

    Depotter, Jasper R L; Rodriguez-Moreno, Luis; Thomma, Bart P H J; Wood, Thomas A

    2017-11-01

    Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.

  10. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production

    DEFF Research Database (Denmark)

    Ronco, Troels; Stegger, Marc; Olsen, Rikke Heidemann

    2017-01-01

    Escherichia coli infections known as colibacillosis constitute a considerable challenge to poultry farmers worldwide, in terms of decreased animal welfare and production economy. Colibacillosis is caused by avian pathogenic E. coli (APEC). APEC strains are extraintestinal pathogenic E. coli...... of isolates were collected from poultry with colibacillosis on Nordic farms. Subsequently, comparative genomic analyses were carried out. This included in silico typing (sero- and multi-locus sequence typing), identification of virulence and resistance genes and phylogenetic analyses based on single...... diseased broilers and breeders. The data indicate that the closely related ST117 O78:H4 strains have been transferred vertically through the broiler breeding pyramid into distantly located farms across the Nordic countries....

  11. Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host

    Directory of Open Access Journals (Sweden)

    Sujal S. Phadke

    2018-01-01

    Full Text Available Environmental opportunistic pathogens can exploit vulnerable hosts through expression of traits selected for in their natural environments. Pathogenicity is itself a complicated trait underpinned by multiple complex traits, such as thermotolerance, morphology, and stress response. The baker’s yeast, Saccharomyces cerevisiae, is a species with broad environmental tolerance that has been increasingly reported as an opportunistic pathogen of humans. Here we leveraged the genetic resources available in yeast and a model insect species, the greater waxmoth Galleria mellonella, to provide a genome-wide analysis of pathogenicity factors. Using serial passaging experiments of genetically marked wild-type strains, a hybrid strain was identified as the most fit genotype across all replicates. To dissect the genetic basis for pathogenicity in the hybrid isolate, bulk segregant analysis was performed which revealed eight quantitative trait loci significantly differing between the two bulks with alleles from both parents contributing to pathogenicity. A second passaging experiment with a library of deletion mutants for most yeast genes identified a large number of mutations whose relative fitness differed in vivo vs. in vitro, including mutations in genes controlling cell wall integrity, mitochondrial function, and tyrosine metabolism. Yeast is presumably subjected to a massive assault by the innate insect immune system that leads to melanization of the host and to a large bottleneck in yeast population size. Our data support that resistance to the innate immune response of the insect is key to survival in the host and identifies shared genetic mechanisms between S. cerevisiae and other opportunistic fungal pathogens.

  12. Multilocus enzyme electrophoresis on agarose gel as an aid to the identification of entomopathogenic Bacillus sphaericus strains.

    Science.gov (United States)

    Zahner, V; Rabinovitch, L; Cavados, C F; Momen, H

    1994-04-01

    Sixty strains of Bacillus sphaericus, including 31 insect pathogens were studied by multilocus enzyme electrophoresis and were classified into 44 zymovars (electrophoretic types). Among the entomopathogenic strains, 11 belong to the same zymovar (Z59) indicating a widespread frequent genotype. Bands of enzyme activity were not detected among the strains for the loci GPI (E.C.5.3.1.9), G6P (E.C.1.1.1.49), 6PG (E.C.1.1.1.44) and ME (E.C.1.1.1.40). The enzymatic loci NP (E.C.2.4.2.1) and ACON (E.C.4.2.1.3) were monomorphic while the other enzymes, MDH (E.C.1.1.1.37), LeDH (E.C.1.4.1.9), ADH (E.C.1.4.1.1), EST (E.C.3.1.1.1), PEP-2 (E.C.3.4.11.1), PEP-3 (E.C.3.4.11) and PEP-D (E.C. 3.4.13.9) were polymorphic. The genetic variation in the non-insect pathogenic group seemed to be greater than in the entomopathogenic group. This latter group appears to be distinct from other strains of these species. All insect pathogens were recovered in the same phenetic cluster and a diagnostic allele is reported for the identification of entomopathogenic strains.

  13. Comparison of the Pathogenesis of the Angola and Ravn Strains of Marburg Virus in the Outbred Guinea Pig Model.

    Science.gov (United States)

    Cross, Robert W; Fenton, Karla A; Geisbert, Joan B; Ebihara, Hideki; Mire, Chad E; Geisbert, Thomas W

    2015-10-01

    Phylogenetic comparisons of known Marburg virus (MARV) strains reveal 2 distinct genetic lineages: Ravn and the Lake Victoria Marburg complex (eg, Musoke, Popp, and Angola strains). Nucleotide variances of >20% between Ravn and other MARV genomes suggest that differing virulence between lineages may accompany this genetic divergence. To date, there exists limited systematic experimental evidence of pathogenic differences between MARV strains. Uniformly lethal outbred guinea pig models of MARV-Angola (MARV-Ang) and MARV-Ravn (MARV-Rav) were developed by serial adaptation. Changes in genomic sequence, weight, temperature, histopathologic findings, immunohistochemical findings, hematologic profiles, circulating biochemical enzyme levels, coagulation parameters, viremia levels, cytokine levels, eicanosoid levels, and nitric oxide production were compared between strains. MARV-Rav infection resulted in delayed increases in circulating inflammatory and prothrombotic elements, notably lower viremia levels, less severe histologic alterations, and a delay in mean time to death, compared with MARV-Ang infection. Both strains produced more marked coagulation abnormalities than previously seen in MARV-infected mice or inbred guinea pigs. Although both strains exhibit great similarity to pathogenic markers of human and nonhuman primate MARV infection, these data highlight several key differences in pathogenicity that may serve to guide the choice of strain and model used for development of vaccines or therapeutics for Marburg hemorrhagic fever. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Adaptive value of sex in microbial pathogens.

    Science.gov (United States)

    Michod, Richard E; Bernstein, Harris; Nedelcu, Aurora M

    2008-05-01

    Explaining the adaptive value of sex is one of the great outstanding problems in biology. The challenge comes from the difficulty in identifying the benefits provided by sex, which must outweigh the substantial costs of sex. Here, we consider the adaptive value of sex in viruses, bacteria and fungi, and particularly the information available on the adaptive role of sex in pathogenic microorganisms. Our general theme is that the varied aspects of sex in pathogens illustrate the varied issues surrounding the evolution of sex generally. These include, the benefits of sex (in the short- and long-term), as well as the costs of sex (both to the host and to the pathogen). For the benefits of sex (that is, its adaptive value), we consider three hypotheses: (i) sex provides for effective and efficient recombinational repair of DNA damages, (ii) sex provides DNA for food, and (iii) sex produces variation and reduces genetic associations among alleles under selection. Although the evolution of sex in microbial pathogens illustrates these general issues, our paper is not a general review of theories for the evolution of sex in all organisms. Rather, we focus on the adaptive value of sex in microbial pathogens and conclude that in terms of short-term benefits, the DNA repair hypothesis has the most support and is the most generally applicable hypothesis in this group. In particular, recombinational repair of DNA damages may substantially benefit pathogens when challenged by the oxidative defenses of the host. However, in the long-term, sex may help get rid of mutations, increase the rate of adaptation of the population, and, in pathogens, may infrequently create new infective strains. An additional general issue about sex illustrated by pathogens is that some of the most interesting consequences of sex are not necessarily the reasons for which sex evolved. For example, antibiotic resistance may be transferred by bacterial sex, but this transfer is probably not the reason sex

  15. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release

    DEFF Research Database (Denmark)

    Følsgaard, Nilofar Vahman; Schjørring, Susanne; Chawes, Bo Lund Krogsgaard

    2013-01-01

    Rationale: Bacterial colonization of neonatal airways with the pathogenic bacterial species, Moraxella catarrhalis, Streptococcus pneumoniae, and Haemophilus influenzae, is associated with later development of childhood asthma. Objectives: To study a possible association between colonization...... with pathogenic bacterial strains and the immune signature of the upper airways in healthy neonates. Methods: A total of 20 cytokines and chemokines were quantified in vivo in the airway mucosal lining fluid of 662 neonates from the Copenhagen Prospective Study of Asthma in Childhood 2010 birth cohort...

  16. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine.

    Science.gov (United States)

    Zhao, Ye; Cheng, Jin-long; Liu, Xiao-yu; Zhao, Jing; Hu, Yan-xin; Zhang, Guo-zhong

    2015-10-22

    Infectious bronchitis (IB) is a highly contagious respiratory and urogenital disease of chickens caused by infectious bronchitis virus (IBV). This disease is of considerable economic importance and is primarily controlled through biosecurity and immunization with live attenuated and inactivated IB vaccines of various serotypes. In the present study, we tested the safety and efficacy of an attenuated predominant Chinese QX-like IBV strain. The results revealed that the attenuated strain has a clear decrease in pathogenicity for specific-pathogen-free (SPF) chickens compared with the parent strain. Strain YN-inoculated birds had clinical signs of varying severity with 30% mortality, while the attenuated group appeared healthy, with less tissue damage. The attenuated strain also had relatively low tissue replication rates and higher antibody levels. The superior protective efficacy of the attenuated strain was observed when vaccinated birds were challenged with a homologous or heterologous field IBV strain, indicating the potential of the attenuated YN (aYN) as a vaccine. Producing a vaccine targeting the abundant serotype in China is essential to reducing the economic impact of IB on the poultry industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mycoplasmas and their host: emerging and re-emerging minimal pathogens.

    Science.gov (United States)

    Citti, Christine; Blanchard, Alain

    2013-04-01

    Commonly known as mycoplasmas, bacteria of the class Mollicutes include the smallest and simplest life forms capable of self replication outside of a host. Yet, this minimalism hides major human and animal pathogens whose prevalence and occurrence have long been underestimated. Owing to advances in sequencing methods, large data sets have become available for a number of mycoplasma species and strains, providing new diagnostic approaches, typing strategies, and means for comprehensive studies. A broader picture is thus emerging in which mycoplasmas are successful pathogens having evolved a number of mechanisms and strategies for surviving hostile environments and adapting to new niches or hosts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Comparative Analysis of two Helicobacter pylori Strains using Genomics and Mass Spectrometry-Based Proteomics

    Directory of Open Access Journals (Sweden)

    Roger Karlsson

    2016-11-01

    Full Text Available Helicobacter pylori, a gastroenteric pathogen believed to have co-evolved with humans over 100,000 years, shows significant genetic variability. This motivates the study of different H. pylori strains and the diseases they cause in order to identify determinants for disease evolution. In this study, we used proteomics tools to compare two H. pylori strains. Nic25_A was isolated in Nicaragua from a patient with intestinal metaplasia, and P12 was isolated in Europe from a patient with duodenal ulcers. Differences in the abundance of surface proteins between the two strains were determined with two mass spectrometry-based methods, label-free quantification (MaxQuant or the use of tandem mass tags (TMT. Each approach used a lipid-based protein immobilization (LPI™ technique to enrich peptides of surface proteins. Using the MaxQuant software, we found 52 proteins that differed significantly in abundance between the two strains (up- or downregulated by a factor of 1.5; with TMT, we found 18 proteins that differed in abundance between the strains. Strain P12 had a higher abundance of proteins encoded by the cag pathogenicity island, while levels of the acid response regulator ArsR and its regulatory targets (KatA, AmiE, and proteins involved in urease production were higher in strain Nic25_A. Our results show that differences in protein abundance between H. pylori strains can be detected with proteomic approaches; this could have important implications for the study of disease progression.

  19. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  20. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.; Adroub, S. A.; Abadi, Maram; Al Alwan, B.; Alkhateeb, R.; Gao, G.; Ragab, A.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab; Abdallah, A. M.

    2012-01-01

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  1. Baculovirus enhancins and their role in viral pathogenicity. Chapter 9

    Science.gov (United States)

    James M. Slavicek

    2012-01-01

    Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera. Baculoviruses have been used to control insect pests on agricultural crops and forests around the world. Efforts have been ongoing for the last two decades to develop strains of baculoviruses with...

  2. Fatty Acid Methyl Ester (FAME) analyses for characterization and detection of grapevine pathogens

    Science.gov (United States)

    Grapevines can become infected by a variety of devastating pathogens, including the bacterium Xylella fastidiosa and canker fungi. Multiple strains of Xylella fastidiosa exist, each causing different diseases on various hosts. Although sequence-based genotyping can assist in distinguishing these str...

  3. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  4. MicroRNA induction in human macrophages associated with infection with ancient and modern TB strains

    Directory of Open Access Journals (Sweden)

    L Furci

    2015-01-01

    Conclusion: In this study it was observed that the genetic diversity among Mtb strains and, in particular between ancient and modern strains, reflects on several aspects of host-pathogen interaction. In particular, the modulation of specific cellular microRNAs upon MTBC infection suggests a potential role for these microRNAs in the outcome of infection and, to a major extent, to the different epidemiological success of Mtb strains.

  5. Specific selection for virulent urinary tract infectious Escherichia coli strains during catheter-associated biofilm formation

    DEFF Research Database (Denmark)

    Ferrieres, Lionel; Hancock, Viktoria; Klemm, Per

    2007-01-01

    microorganisms can attach. Urinary tract infectious (UTI) Escherichia coli range in pathogenicity and the damage they cause - from benign asymptomatic bacteriuria (ABU) strains, which inflict no or few problems to the host, to uropathogenic E. coli (UPEC) strains, which are virulent and often cause severe...... for and promote biofilm formation of the most virulent group of UTI E. coli strains, hardly a desirable situation for the catheterized patient....

  6. Impact of exopolysaccharide production on functional properties of some Lactobacillus salivarius strains.

    Science.gov (United States)

    Mercan, Emin; İspirli, Hümeyra; Sert, Durmuş; Yılmaz, Mustafa Tahsin; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize functional properties of Lactobacillus salivarius strains isolated from chicken feces. Detection of genes responsible for exopolysaccharide (EPS) production revealed that all strains harbored a dextransucrase gene, but p-gtf gene was only detected in strain E4. Analysis of EPS production levels showed significant alterations among strains tested. Biofilm formation was found to be medium composition dependant, and there was a negative correlation with biofilm formation and EPS production. Autoaggregation properties and coaggregation of L. salivarius strains with chicken pathogens were appeared to be specific at strain level. An increment in bacterial adhesion to chicken gut explants was observed in L. salivarius strains with the reduction in EPS production levels. This study showed that strain-specific properties can determine the functional properties of L. salivarius strains, and the interference of these properties might be crucial for final selection of these strains for technological purposes.

  7. Type IV pili in Francisella – A virulence trait in an intracellular pathogen

    Directory of Open Access Journals (Sweden)

    Emelie eNäslund Salomonsson

    2011-02-01

    Full Text Available Francisella tularensis is a highly virulent intracellular human pathogen that is capable of rapid proliferation in the infected host. Mutants affected in intracellular survival and growth are highly attenuated which highlights the importance of the intracellular phase of the infection. Genomic analysis has revealed that Francisella encodes all genes required for expression of functional type IV pili (Tfp, and in this focused review we summarise recent findings regarding this system in the pathogenesis of tularemia. Tfp are dynamic adhesive structures that have been identified as major virulence determinants in several human pathogens, but it is not obvious what role these structures could have in an intracellular pathogen like Francisella. In the human pathogenic strains, genes required for secretion and assembly of Tfp and one pilin, PilA, have shown to be required for full virulence. Importantly, specific genetic differences have been identified between the different Francisella subspecies where in the most pathogenic type A variants all genes are intact while several Tfp genes are pseudogenes in the less pathogenic type B strains. This suggests that there has been a selection for expression of Tfp with different properties in the different subspecies. There is also a possibility that the genetic differences reflect adaption to different environmental niches of the subspecies and plays a role in transmission of tularemia. This is also in line with recent findings where Tfp pilins are found to be glycosylated which could reflect a role for Tfp in the environment to promote survival and transmission. We are still far from understanding the role of Tfp in virulence and transmission of tularemia, but with the genomic information and genetic tools available we are in a good position to address these issues in the future.

  8. Fine-Tuning Strain and Electronic Activation of Strain-Promoted 1,3-Dipolar Cycloadditions with Endocyclic Sulfamates in SNO-OCTs.

    Science.gov (United States)

    Burke, Eileen G; Gold, Brian; Hoang, Trish T; Raines, Ronald T; Schomaker, Jennifer M

    2017-06-14

    The ability to achieve predictable control over the polarization of strained cycloalkynes can influence their behavior in subsequent reactions, providing opportunities to increase both rate and chemoselectivity. A series of new heterocyclic strained cyclooctynes containing a sulfamate backbone (SNO-OCTs) were prepared under mild conditions by employing ring expansions of silylated methyleneaziridines. SNO-OCT derivative 8 outpaced even a difluorinated cyclooctyne in a 1,3-dipolar cycloaddition with benzylazide. The various orbital interactions of the propargylic and homopropargylic heteroatoms in SNO-OCT were explored both experimentally and computationally. The inclusion of these heteroatoms had a positive impact on stability and reactivity, where electronic effects could be utilized to relieve ring strain. The choice of the heteroatom combinations in various SNO-OCTs significantly affected the alkyne geometries, thus illustrating a new strategy for modulating strain via remote substituents. Additionally, this unique heteroatom activation was capable of accelerating the rate of reaction of SNO-OCT with diazoacetamide over azidoacetamide, opening the possibility of further method development in the context of chemoselective, bioorthogonal labeling.

  9. Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107

    DEFF Research Database (Denmark)

    Sosio, M.; Gallo, G.; Pozzi, R.

    2014-01-01

    We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC...

  10. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  11. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.

    Science.gov (United States)

    Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W

    2011-10-01

    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence

  12. Antimicrobial activity of Lactobacillus and Bifidobacterium strains against pathogenic microorganisms “in vitro”Atividade antimicrobiana de Lactobacillus e Bifodobacterium frente a microrganismos patogênicos “in vitro”

    Directory of Open Access Journals (Sweden)

    Giselle Nobre Costa

    2012-10-01

    Full Text Available Lactobacilli and bifidobacteria have a long history of safe use in foods. These bacteria have biotechnological characteristics of interest such as the inhibition of pathogens. In this work, two lactobacilli strain and a bifidobacterium strain isolated from human gut were evaluated concerning to their ability to inhibit pathogenic microorganisms in foods by diffusion agar tests. Moreover, we assessed the metabolites produced in culture broth under static and shaking growth to simulate anaerobiosis and aerobiosis conditions, respectively. L. acidophilus LA5, L. plantarum DCTA 8420 and B. lactis DCTA 8724 showed ability to inhibit S. aureus FRI 196, strains producer toxins A and D, as well as B. cereus ATCC 25923, E. coli ATCC 25922 and S. Enteritidis, whose inhibition halos reached, on average, 24 mm in diameter. In the agar diffusion method with concentrated culture medium, it was possible to observe the effect of oxygen on the production of toxic substances. This result showed that cultivation of Lactobacillus under aerobic conditions seems to exert greater inhibitory effect, whereas for Bifidobacterium strain the effect was the opposite.Lactobacilos e bifidobactérias apresentam um longo histórico de uso seguro em alimentos, além de apresentarem características de interesse biotecnológico como a inibição de patógenos. Neste trabalho duas linhagens de lactobacilos e uma de bifidobactéria, isoladas do intestino humano, foram avaliadas em testes de difusão em ágar, quanto à capacidade de inibição de microrganismos patogênicos de ocorrência comuns em toxinfecções alimentares. Adicionalmente, foram avaliados os metabólitos produzidos em caldo de cultivo estático e em agitação para simular condições de anaerobiose a aerobiose, respectivamente. As três bactérias, L. acidophilus LA5, L. plantarum DCTA 8420 e B. lactis DCTA 8724 apresentaram capacidade de inibição para S. aureus FRI 196 linhagem produtora de toxinas A e D

  13. Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain.

    Science.gov (United States)

    Sun, Jing; Wei, Yongwei; Rauf, Abdul; Zhang, Yu; Ma, Yuanmei; Zhang, Xiaodong; Shilo, Konstantin; Yu, Qingzhong; Saif, Y M; Lu, Xingmeng; Yu, Lian; Li, Jianrong

    2014-11-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene

  14. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

    Directory of Open Access Journals (Sweden)

    Luca Ruiu

    2013-09-01

    Full Text Available Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity.

  15. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    Science.gov (United States)

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. © 2016 Poultry Science Association Inc.

  16. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    Science.gov (United States)

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  17. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    Directory of Open Access Journals (Sweden)

    Hana eTuronova

    2015-07-01

    Full Text Available During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176 prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions. The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  18. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    Directory of Open Access Journals (Sweden)

    Teresa M. Barbosa

    2013-06-01

    Full Text Available Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.

  19. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    Science.gov (United States)

    Phelan, Robert W.; Barret, Matthieu; Cotter, Paul D.; O’Connor, Paula M.; Chen, Rui; Morrissey, John P.; Dobson, Alan D. W.; O’Gara, Fergal; Barbosa, Teresa M.

    2013-01-01

    Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications. PMID:23736764

  20. Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany.

    Science.gov (United States)

    Guenther, Sebastian; Bethe, Astrid; Fruth, Angelika; Semmler, Torsten; Ulrich, Rainer G; Wieler, Lothar H; Ewers, Christa

    2012-01-01

    Urban rats present a global public health concern as they are considered a reservoir and vector of zoonotic pathogens, including Escherichia coli. In view of the increasing emergence of antimicrobial resistant E. coli strains and the on-going discussion about environmental reservoirs, we intended to analyse whether urban rats might be a potential source of putatively zoonotic E. coli combining resistance and virulence. For that, we took fecal samples from 87 brown rats (Rattus norvegicus) and tested at least three E. coli colonies from each animal. Thirty two of these E. coli strains were pre-selected from a total of 211 non-duplicate isolates based on their phenotypic resistance to at least three antimicrobial classes, thus fulfilling the definition of multiresistance. As determined by multilocus sequence typing (MLST), these 32 strains belonged to 24 different sequence types (STs), indicating a high phylogenetic diversity. We identified STs, which frequently occur among extraintestinal pathogenic E. coli (ExPEC), such as STs 95, 131, 70, 428, and 127. Also, the detection of a number of typical virulence genes confirmed that the rats tested carried ExPEC-like strains. In particular, the finding of an Extended-spectrum beta-lactamase (ESBL)-producing strain which belongs to a highly virulent, so far mainly human- and avian-restricted ExPEC lineage (ST95), which expresses a serogroup linked with invasive strains (O18:NM:K1), and finally, which produces an ESBL-type frequently identified among human strains (CTX-M-9), pointed towards the important role, urban rats might play in the transmission of multiresistant and virulent E. coli strains. Indeed, using a chicken infection model, this strain showed a high in vivo pathogenicity. Imagining the high numbers of urban rats living worldwide, the way to the transmission of putatively zoonotic, multiresistant, and virulent strains might not be far ahead. The unforeseeable consequences of such an emerging public health

  1. Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus in Berlin, Germany.

    Directory of Open Access Journals (Sweden)

    Sebastian Guenther

    Full Text Available Urban rats present a global public health concern as they are considered a reservoir and vector of zoonotic pathogens, including Escherichia coli. In view of the increasing emergence of antimicrobial resistant E. coli strains and the on-going discussion about environmental reservoirs, we intended to analyse whether urban rats might be a potential source of putatively zoonotic E. coli combining resistance and virulence. For that, we took fecal samples from 87 brown rats (Rattus norvegicus and tested at least three E. coli colonies from each animal. Thirty two of these E. coli strains were pre-selected from a total of 211 non-duplicate isolates based on their phenotypic resistance to at least three antimicrobial classes, thus fulfilling the definition of multiresistance. As determined by multilocus sequence typing (MLST, these 32 strains belonged to 24 different sequence types (STs, indicating a high phylogenetic diversity. We identified STs, which frequently occur among extraintestinal pathogenic E. coli (ExPEC, such as STs 95, 131, 70, 428, and 127. Also, the detection of a number of typical virulence genes confirmed that the rats tested carried ExPEC-like strains. In particular, the finding of an Extended-spectrum beta-lactamase (ESBL-producing strain which belongs to a highly virulent, so far mainly human- and avian-restricted ExPEC lineage (ST95, which expresses a serogroup linked with invasive strains (O18:NM:K1, and finally, which produces an ESBL-type frequently identified among human strains (CTX-M-9, pointed towards the important role, urban rats might play in the transmission of multiresistant and virulent E. coli strains. Indeed, using a chicken infection model, this strain showed a high in vivo pathogenicity. Imagining the high numbers of urban rats living worldwide, the way to the transmission of putatively zoonotic, multiresistant, and virulent strains might not be far ahead. The unforeseeable consequences of such an emerging public

  2. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    2009-04-01

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18 and modB (modB1, 2. These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11, differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates

  3. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Science.gov (United States)

    Srikhanta, Yogitha N; Dowideit, Stefanie J; Edwards, Jennifer L; Falsetta, Megan L; Wu, Hsing-Ju; Harrison, Odile B; Fox, Kate L; Seib, Kate L; Maguire, Tina L; Wang, Andrew H-J; Maiden, Martin C; Grimmond, Sean M; Apicella, Michael A; Jennings, Michael P

    2009-04-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that

  4. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  5. Selection and evaluation of Malaysian Bacillus spp. strains as potential probiotics in cultured tiger grouper (Epinephelus fuscoguttatus).

    Science.gov (United States)

    Yasin, Ina-salwany Md; Razak, Nabilah Fatin; Natrah, F M I; Harmin, Sharr Azni

    2016-07-01

    A total of 58 Gram-positive bacteria strains were isolated from the marine environment and screened for potential probiotics for disease prevention and improving the productivity of tiger grouper Epinephelus fuscoguttatus larvae and juveniles. The bacteria were identified as Bacillus licheniformis, B. subtilis, B. circulans, B. sphaericus, B. cereus, Brevibacillus brevis, Corynebacterium propinquum, Leifsonia aquatica and Paenibacillus macerans. Only 24 strains showed antagonistic activities against four pathogenic strains; Vibrio alginolyticus, V. harveyi, V. parahaemolyticus and Aeromonas hydrophila, where two of the Bacillus strains, B12 and B45 demonstrated intermediate to highest level of inhibitory activity against these pathogenic strains, respectively. Further assessment by co-culture assay showed that Bacillus strain B12 exhibited a total inhibition of V. alginolyticus, while B45 strain displayed no inhibitory activity. Mixed culture of Bacillus B12 and B45 strains to outcompete V. alginolyticus was observed at a cell density of 10(7) CFU ml(-1). Molecular identification and phylogenetic tree analysis have categorized Bacillus strain B12 to the reference strains GQ340480 and JX290193 of? B. amyloliquafaciens, and Bacillus strain B45 with a reference strain JF496522 of B. subtilis. Safety tests of probionts by intraperitoneal administration of B12 and B45 strains at cell densities of 103, 105 and 10(7) CFU ml(-1) revealed no abnormalities and cent percent survival for healthy Epinephelus fuscoguttatus juveniles within 15 days of experimental period. Overall, the study revealed that Bacillus B12 strain possesses tremendous probiotic potential that could be used as a feed supplement in tiger grouper diets. ?

  6. [Geno- and phenotypic characteristic of Bacillus strains--components of endosporin].

    Science.gov (United States)

    Safronova, L A; Zelenaia, L B; Klochko, V V; Avdeeva, L V; Reva, O N; Podgorskiĭ, V S

    2012-01-01

    Endosporin is used in veterinary for the prophylaxis and treatment of disbacteriosis, intestinal infections, festering wounds and postpartum pyoinflammatory complications in agricultural animals. The probiotic is based on two Bacillus strains which inhibit growth of a broad spectrum of pathogenic microorganisms and synthesise proteolytic enzymes and other biologically active secondary metabolites, particularly - polysaccharides. The activity of these two strains was supplementary. For the species identification of these strains, sequences of 16S rRNA genes and fatty acid content of cell walls were analysed. It was found that the both strains belong to B. velezensis. Limitations of application of 16S rRNA sequences for identification of closely related species are discussed in the paper. A method of 16S rRNA sequence profiling by polymorphic nucleotides was proposed. It was also shown that usefulness of Bacillus strains in probiotics is mostly based on their unique strain specific properties rather than on general species characteristics.

  7. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii.

    Science.gov (United States)

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI-TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  8. Complete genome sequence of Serratia plymuthica strain AS12

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  9. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Complete genome sequence analysis of the fish pathogen Flavobacterium columnare provides insights into antibiotic resistance and pathogenicity related genes.

    Science.gov (United States)

    Zhang, Yulei; Zhao, Lijuan; Chen, Wenjie; Huang, Yunmao; Yang, Ling; Sarathbabu, V; Wu, Zaohe; Li, Jun; Nie, Pin; Lin, Li

    2017-10-01

    We analyzed here the complete genome sequences of a highly virulent Flavobacterium columnare Pf1 strain isolated in our laboratory. The complete genome consists of a 3,171,081 bp circular DNA with 2784 predicted protein-coding genes. Among these, 286 genes were predicted as antibiotic resistance genes, including 32 RND-type efflux pump related genes which were associated with the export of aminoglycosides, indicating inducible aminoglycosides resistances in F. columnare. On the other hand, 328 genes were predicted as pathogenicity related genes which could be classified as virulence factors, gliding motility proteins, adhesins, and many putative secreted proteases. These genes were probably involved in the colonization, invasion and destruction of fish tissues during the infection of F. columnare. Apparently, our obtained complete genome sequences provide the basis for the explanation of the interactions between the F. columnare and the infected fish. The predicted antibiotic resistance and pathogenicity related genes will shed a new light on the development of more efficient preventional strategies against the infection of F. columnare, which is a major worldwide fish pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  12. Contribution of Streptococcus mutans Strains with Collagen-Binding Proteins in the Presence of Serum to the Pathogenesis of Infective Endocarditis.

    Science.gov (United States)

    Otsugu, Masatoshi; Nomura, Ryota; Matayoshi, Saaya; Teramoto, Noboru; Nakano, Kazuhiko

    2017-12-01

    Streptococcus mutans , a major pathogen of dental caries, is considered one of the causative agents of infective endocarditis (IE). Recently, bacterial DNA encoding 120-kDa cell surface collagen-binding proteins (CBPs) has frequently been detected from S. mutans -positive IE patients. In addition, some of the CBP-positive S. mutans strains lacked a 190-kDa protein antigen (PA), whose absence strengthened the adhesion to and invasion of endothelial cells. The interaction between pathogenic bacteria and serum or plasma is considered an important virulence factor in developing systemic diseases; thus, we decided to analyze the pathogenesis of IE induced by S. mutans strains with different patterns of CBP and PA expression by focusing on the interaction with serum or plasma. CBP-positive (CBP + )/PA-negative (PA - ) strains showed prominent aggregation in the presence of human serum or plasma, which was significantly greater than that with CBP + /PA-positive (PA + ) and CBP-negative (CBP - )/PA+ strains. Aggregation of CBP + /PA - strains was also observed in the presence of a high concentration of type IV collagen, a major extracellular matrix protein in serum. In addition, aggregation of CBP + /PA - strains was drastically reduced when serum complement was inactivated. Furthermore, an ex vivo adherence model and an in vivo rat model of IE showed that extirpated heart valves infected with CBP + /PA - strains displayed prominent bacterial mass formation, which was not observed following infection with CBP + /PA + and CBP - /PA + strains. These results suggest that CBP + /PA - S. mutans strains utilize serum to contribute to their pathogenicity in IE. Copyright © 2017 American Society for Microbiology.

  13. Bacillus amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for the production of Bikalga, an alkaline fermented food

    DEFF Research Database (Denmark)

    Compaor, C.S.; Nielsen, D.S.; Sawadogo-Lingani, H.

    2013-01-01

    . Methods and Results: The strains were identified by gyrB gene sequencing and phenotypic tests as B. amyloliquefaciens ssp. plantarum. Their antimicrobial activity was determined by the agar spot and well assay, being inhibitory to a wide range of Gram-positive and Gram-negative pathogenic bacteria....... They produced several lipopeptide antibiotics and showed good potential for biological control of Bikalga. Significance and Impact of the Study: Pathogenic bacteria often occur in spontaneous food fermentations. This is the first report to identify indigenous B. amyloliquefaciens ssp. plantarum strains...

  14. Preliminary Evaluation of Probiotic Properties of Lactobacillus Strains Isolated from Sardinian Dairy Products

    OpenAIRE

    Pisano, Maria Barbara; Viale, Silvia; Conti, Stefania; Fadda, Maria Elisabetta; Deplano, Maura; Melis, Maria Paola; Deiana, Monica; Cosentino, Sofia

    2014-01-01

    Twenty-three Lactobacillus strains of dairy origin were evaluated for some functional properties relevant to their use as probiotics. A preliminary subtractive screening based on the abilities to inhibit the growth of microbial pathogens and hydrolyze conjugated bile salts was applied, and six strains were selected for further characterization including survival under gastrointestinal environmental conditions, adhesion to gut epithelial tissue, enzymatic activity, and some safety properties. ...

  15. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1 are responsible for pathogenicity in ducks

    Directory of Open Access Journals (Sweden)

    Kajihara Masahiro

    2013-02-01

    Full Text Available Abstract Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1 (HK483, did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1 (MON3 isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity.

  16. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Julien Brillard

    2015-01-01

    Full Text Available The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.

  17. Construction of a Nocardia brasiliensis fluorescent plasmid to study Actinomycetoma pathogenicity.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Rocha-Pizaña, María R

    2011-01-01

    Nocardia brasiliensis, is a bacteria that lives as saprophyte in soil and causes a disease called actinomycetoma in both human and animals. Nocardia brasiliensis is an intracellular, facultative bacterium that replicates and survives within host macrophages. The mechanisms involved in the evasion of the microbicidal actions of macrophages remain unclear. The filamentous growth of N. brasiliensis is resistant to unicellular preparations, leading to inaccurate quantification of bacterial numbers by means of colony forming units (CFU). As successful survival studies with green fluorescent protein (GFP)-expressing bacterial strains have been reported, we constructed a recombinant GFP-expressing strain of N. brasiliensis. The virulence of the modified strain is maintained because it induces mycetoma in BALB/c mice. This new strain can be used for bacterial survival assays using cytometry and to elucidate the pathogenicity mechanisms in Actinomycetoma infection. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens.

    Science.gov (United States)

    Chauhan, Ritika; Abraham, Jayanthi

    2013-07-01

    The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study was aimed to explore in vitro antimicrobial activity of lichen Parmotrema sp. The methanol and aqueous extracts of lichen Parmotrema sp. was extracted using Soxhlet extractor. Antibiotic assessment of methanol and aqueous extracts was done against eight bacterial (Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Salmonella sp., Shigella sp., Enterococci faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae,) clinical pathogens and five plant pathogenic fungal strains (Aspergillus terreus strain JAS1, Scedosporium sp. JAS1, Ganoderma sp. JAS4, Candida tropicalis and Fusarium sp.) by Kirby-Bauer method. The methanol lichen Parmotrema sp. extract inhibited all the test organisms. The highest antibacterial activity was found against Pseudomonas aeruginosa and Staphylococcus aureus. The weakest activity was manifested in Salmonella sp. and Scedosporium sp. JAS1. Strong antifungal effect was found against Ganoderma sp. JAS4 and Fusarium sp. The aqueous lichen Parmotrema sp. extract revealed neither antibacterial nor antifungal activity. The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  19. Antimicrobial potential for the combination of bovine lactoferrin or its hydrolysate with lactoferrin-resistant probiotics against foodborne pathogens.

    Science.gov (United States)

    Chen, P-W; Jheng, T T; Shyu, C-L; Mao, F C

    2013-03-01

    Previous reports have shown that several probiotic strains can resist the antibacterial activity of bovine lactoferrin (bLf), but the results are inconsistent. Moreover, a portion of orally administered apo-bLf is digested in vivo by pepsin to yield bLf hydrolysate, which produces stronger antibacterial activity than that observed with apo-bLf. However, whether bLf hydrolysate affects the growth of probiotic strains is unclear. Therefore, various probiotic strains in Taiwan were collected and evaluated for activity against apo-bLf and bLf hydrolysate in vitro. Thirteen probiotic strains were evaluated, and the growth of Lactobacillus acidophilus ATCC 4356, Lactobacillus salivarius ATCC 11741, Lactobacillus rhamnosus ATCC 53103, Bifidobacterium longum ATCC 15707, and Bifidobacterium lactis BCRC 17394 were inhibited by both apo-bLf and bLf hydrolysate. The growth of 8 strains were not affected by apo-bLf and bLf hydrolysate, including L. rhamnosus ATCC 7469, Lactobacillus reuteri ATCC 23272, Lactobacillus fermentum ATCC 11739, Lactobacillus coryniformis ATCC 25602, L. acidophilus BCRC 14065, Bifidobacterium infantis ATCC 15697, Bifidobacterium bifidum ATCC 29521, and Pediococcus acidilactici ATCC 8081. However, apo-bLf and its hydrolysate inhibited the growth of foodborne pathogens, including Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Enterococcus faecalis. Moreover, the supernatants produced by L. fermentum, B. lactis, and B. longum inhibited the growth of most pathogens. Importantly, a combination of apo-bLf or bLf hydrolysate with the supernatants of cultures of the organisms described above showed synergistic or partially synergistic effects against the growth of most of the selected pathogens. In conclusion, several probiotic strains are resistant to apo-bLf and bLf hydrolysate, warranting clinical studies to evaluate the antimicrobial potential for the combination of apo-bLf or its hydrolysate with specific probiotics. Copyright

  20. Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine▿

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E. Fidelma

    2009-01-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383