WorldWideScience

Sample records for reliable engineering predictions

  1. Reliability prediction of engineering systems with competing failure modes due to component degradation

    International Nuclear Information System (INIS)

    Son, Young Kap

    2011-01-01

    Reliability of an engineering system depends on two reliability metrics: the mechanical reliability, considering component failures, that a functional system topology is maintained and the performance reliability of adequate system performance in each functional configuration. Component degradation explains not only the component aging processes leading to failure in function, but also system performance change over time. Multiple competing failure modes for systems with degrading components in terms of system functionality and system performance are considered in this paper with the assumption that system functionality is not independent of system performance. To reduce errors in system reliability prediction, this paper tries to extend system performance reliability prediction methods in open literature through combining system mechanical reliability from component reliabilities and system performance reliability. The extended reliability prediction method provides a useful way to compare designs as well as to determine effective maintenance policy for efficient reliability growth. Application of the method to an electro-mechanical system, as an illustrative example, is explained in detail, and the prediction results are discussed. Both mechanical reliability and performance reliability are compared to total system reliability in terms of reliability prediction errors

  2. A Tutorial on Nonlinear Time-Series Data Mining in Engineering Asset Health and Reliability Prediction: Concepts, Models, and Algorithms

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2010-01-01

    Full Text Available The primary objective of engineering asset management is to optimize assets service delivery potential and to minimize the related risks and costs over their entire life through the development and application of asset health and usage management in which the health and reliability prediction plays an important role. In real-life situations where an engineering asset operates under dynamic operational and environmental conditions, the lifetime of an engineering asset is generally described as monitored nonlinear time-series data and subject to high levels of uncertainty and unpredictability. It has been proved that application of data mining techniques is very useful for extracting relevant features which can be used as parameters for assets diagnosis and prognosis. In this paper, a tutorial on nonlinear time-series data mining in engineering asset health and reliability prediction is given. Besides that an overview on health and reliability prediction techniques for engineering assets is covered, this tutorial will focus on concepts, models, algorithms, and applications of hidden Markov models (HMMs and hidden semi-Markov models (HSMMs in engineering asset health prognosis, which are representatives of recent engineering asset health prediction techniques.

  3. Reliability Engineering

    International Nuclear Information System (INIS)

    Lee, Sang Yong

    1992-07-01

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  4. Use of reliability engineering in development and manufacturing of metal parts

    International Nuclear Information System (INIS)

    Khan, A.; Iqbal, M.A.; Asif, M.

    2005-01-01

    The reliability engineering predicts modes of failures and weak links before the system is built instead of failure case study. The reliability engineering analysis will help in the manufacturing economy, assembly accuracy and qualification by testing, leading to production of metal parts in an aerospace industry. This methodology will also minimize the performance constraints in any requirement for the application of metal components in aerospace systems. The reliability engineering predicts the life of the parts under loading conditions whether dynamic or static. Reliability predictions can help engineers in making decisions about design of components, materials selection and qualification under applied stress levels. Two methods of reliability prediction i.e. Part Stress Analysis and Part Count have been used in this study. In this paper we will discuss how these two methods can be used to measure reliability of a system during development phases, which includes the measuring effect of environmental and operational variables. The equations are used to measure the reliability of each type of component, as well as, integration for measuring system applied for the reliability analysis. (author)

  5. NASA Applications and Lessons Learned in Reliability Engineering

    Science.gov (United States)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  6. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  7. System Reliability Engineering

    International Nuclear Information System (INIS)

    Lim, Tae Jin

    2005-02-01

    This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.

  8. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    Science.gov (United States)

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing

  9. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  10. Reliability engineering

    International Nuclear Information System (INIS)

    Lee, Chi Woo; Kim, Sun Jin; Lee, Seung Woo; Jeong, Sang Yeong

    1993-08-01

    This book start what is reliability? such as origin of reliability problems, definition of reliability and reliability and use of reliability. It also deals with probability and calculation of reliability, reliability function and failure rate, probability distribution of reliability, assumption of MTBF, process of probability distribution, down time, maintainability and availability, break down maintenance and preventive maintenance design of reliability, design of reliability for prediction and statistics, reliability test, reliability data and design and management of reliability.

  11. Reliability tasks from prediction to field use

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1975-01-01

    This tutorial paper is part of a series intended to sensitive on reliability prolems. Reliability probabilistic concept, is an important parameter of availability. Reliability prediction is an estimation process for evaluating design progress. It is only by the application of a reliability program that reliability objectives can be attained through the different stages of work: conception, fabrication, field use. The user is mainly interested in operational reliability. Indication are given on the support and the treatment of data in the case of electronic equipment at C.E.A. Reliability engineering requires a special state of mind which must be formed and developed in a company in the same way as it may be done for example for safety [fr

  12. Proceedings of the SRESA national conference on reliability and safety engineering

    International Nuclear Information System (INIS)

    Varde, P.V.; Vaishnavi, P.; Sujatha, S.; Valarmathi, A.

    2014-01-01

    The objective of this conference was to provide a forum for technical discussions on recent developments in the area of risk based approach and Prognostic Health Management of critical systems in decision making. The reliability and safety engineering methods are concerned with the way which the product fails, and the effects of failure is to understand how a product works and assures acceptable levels of safety. The reliability engineering addresses all the anticipated and possibly unanticipated causes of failure to ensure the occurrence of failure is prevented or minimized. The topics discussed in the conference were: Reliability in Engineering Design, Safety Assessment and Management, Reliability analysis and Assessment , Stochastic Petri nets for reliability Modeling, Dynamic Reliability, Reliability Prediction, Hardware Reliability, Software Reliability in Safety Critical Issues, Probabilistic Safety Assessment, Risk Informed Approach, Dynamic Models for Reliability Analysis, Reliability based Design and Analysis, Prognostics and Health Management, Remaining Useful Life (RUL), Human Reliability Modeling, Risk Based Applications, Hazard and Operability Study (HAZOP), Reliability in Network Security and Quality Assurance and Management etc. The papers relevant to INIS are indexed separately

  13. Prediction of safety critical software operational reliability from test reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1999-01-01

    It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately. (Author). 14 refs., 1 tab., 1 fig

  14. Introduction to quality and reliability engineering

    CERN Document Server

    Jiang, Renyan

    2015-01-01

    This book presents the state-of-the-art in quality and reliability engineering from a product life cycle standpoint. Topics in reliability include reliability models, life data analysis and modeling, design for reliability and accelerated life testing, while topics in quality include design for quality, acceptance sampling and supplier selection, statistical process control, production tests such as screening and burn-in, warranty and maintenance. The book provides comprehensive insights into two closely related subjects, and includes a wealth of examples and problems to enhance reader comprehension and link theory and practice. All numerical examples can be easily solved using Microsoft Excel. The book is intended for senior undergraduate and post-graduate students in related engineering and management programs such as mechanical engineering, manufacturing engineering, industrial engineering and engineering management programs, as well as for researchers and engineers in the quality and reliability fields. D...

  15. Reliability in engineering '87

    International Nuclear Information System (INIS)

    Tuma, M.

    1987-01-01

    The participants heard 51 papers dealing with the reliability of engineering products. Two of the papers were incorporated in INIS, namely ''Reliability comparison of two designs of low pressure regeneration of the 1000 MW unit at the Temelin nuclear power plant'' and ''Use of probability analysis of reliability in designing nuclear power facilities.''(J.B.)

  16. Reliability Engineering Analysis of ATLAS Data Reprocessing Campaigns

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration; Karpenko, D

    2013-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability...

  17. Reliability Engineering Analysis of ATLAS Data Reprocessing Campaigns

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability...

  18. Space transportation main engine reliability and safety

    Science.gov (United States)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  19. Reliability in automotive and mechanical engineering determination of component and system reliability

    CERN Document Server

    Bertsche, Bernd

    2008-01-01

    In the present contemporary climate of global competition in every branch of engineering and manufacture it has been shown from extensive customer surveys that above every other attribute, reliability stands as the most desired feature in a finished product. To survive this relentless fight for survival any organisation, which neglect the plea of attaining to excellence in reliability, will do so at a serious cost Reliability in Automotive and Mechanical Engineering draws together a wide spectrum of diverse and relevant applications and analyses on reliability engineering. This is distilled into this attractive and well documented volume and practising engineers are challenged with the formidable task of simultaneously improving reliability and reducing the costs and down-time due to maintenance. The volume brings together eleven chapters to highlight the importance of the interrelated reliability and maintenance disciplines. They represent the development trends and progress resulting in making this book ess...

  20. Reliability engineering theory and practice

    CERN Document Server

    Birolini, Alessandro

    2014-01-01

    This book shows how to build in, evaluate, and demonstrate reliability and availability of components, equipment, systems. It presents the state-of-theart of reliability engineering, both in theory and practice, and is based on the author's more than 30 years experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The structure of the book allows rapid access to practical results. This final edition extend and replace all previous editions. New are, in particular, a strategy to mitigate incomplete coverage, a comprehensive introduction to human reliability with design guidelines and new models, and a refinement of reliability allocation, design guidelines for maintainability, and concepts related to regenerative stochastic processes. The set of problems for homework has been extended. Methods & tools are given in a way that they can be tailored to cover different reliability requirement levels and be used for safety analysis. Because of the Appendice...

  1. Design reliability engineering

    International Nuclear Information System (INIS)

    Buden, D.; Hunt, R.N.M.

    1989-01-01

    Improved design techniques are needed to achieve high reliability at minimum cost. This is especially true of space systems where lifetimes of many years without maintenance are needed and severe mass limitations exist. Reliability must be designed into these systems from the start. Techniques are now being explored to structure a formal design process that will be more complete and less expensive. The intent is to integrate the best features of design, reliability analysis, and expert systems to design highly reliable systems to meet stressing needs. Taken into account are the large uncertainties that exist in materials, design models, and fabrication techniques. Expert systems are a convenient method to integrate into the design process a complete definition of all elements that should be considered and an opportunity to integrate the design process with reliability, safety, test engineering, maintenance and operator training. 1 fig

  2. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  3. The reliability of structural systems operating at high temperature: Replacing engineering judgement with operational experience

    International Nuclear Information System (INIS)

    Chevalier, M.J.; Smith, D.J.; Dean, D.W.

    2012-01-01

    Deterministic assessments are used to assess the integrity of structural systems operating at high temperature by providing a lower bound lifetime prediction, requiring considerable engineering judgement. However such a result may not satisfy the structural integrity assessment purpose if the results are overly conservative or conversely plant observations (such as failures) could undermine the assessment result if observed before the lower bound lifetime. This paper develops a reliability methodology for high temperature assessments and illustrates the impact and importance of managing the uncertainties within such an analysis. This is done by separating uncertainties into three classifications; aleatory uncertainty, quantifiable epistemic uncertainty and unquantifiable epistemic uncertainty. The result is a reliability model that can predict the behaviour of a structural system based upon plant observations, including failure and survival data. This can be used to reduce the over reliance upon engineering judgement which is prevalent in deterministic assessments. Highlights: ► Deterministic assessments are shown to be heavily reliant upon engineering judgment. ► Based upon the R5 procedure, a reliability model for a structural system is developed. ► Variables must be classified as either aleatory or epistemic to model their impact on reliability. ► Operation experience is then used to reduce reliance upon engineering judgment. ► This results in a model which can predict system behaviour and learn from operational experience.

  4. Reliability engineering for nuclear and other high technology systems

    International Nuclear Information System (INIS)

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  5. Reliability engineering: Old problems and new challenges

    International Nuclear Information System (INIS)

    Zio, E.

    2009-01-01

    The first recorded usage of the word reliability dates back to the 1800s, albeit referred to a person and not a technical system. Since then, the concept of reliability has become a pervasive attribute worth of both qualitative and quantitative connotations. In particular, the revolutionary social, cultural and technological changes that have occurred from the 1800s to the 2000s have contributed to the need for a rational framework and quantitative treatment of the reliability of engineered systems and plants. This has led to the rise of reliability engineering as a scientific discipline. In this paper, some considerations are shared with respect to a number of problems and challenges which researchers and practitioners in reliability engineering are facing when analyzing today's complex systems. The focus will be on the contribution of reliability to system safety and on its role within system risk analysis

  6. Reliability engineering theory and practice

    CERN Document Server

    Birolini, Alessandro

    2010-01-01

    Presenting a solid overview of reliability engineering, this volume enables readers to build and evaluate the reliability of various components, equipment and systems. Current applications are presented, and the text itself is based on the author's 30 years of experience in the field.

  7. Some approaches to system reliability improvement in engineering design

    International Nuclear Information System (INIS)

    Shen, Kecheng.

    1990-01-01

    In this thesis some approaches to system reliability improvement in engineering design are studied. In particular, the thesis aims at developing alternative methodologies for ranking of component importance which are more related to the design practice and which are more useful in system synthesis than the existing ones. It also aims at developing component reliability models by means of stress-strength interference which will enable both component reliability prediction and design for reliability. A new methodology for ranking of component importance is first developed based on the notion of the increase of the expected system yield. This methodology allows for incorporation of different improvement actions at the component level such as parallel redundancy, standby redundancy, burn-in, minimal repair and perfect replacement. For each of these improvement actions, the increase of system reliability is studied and used as the component importance measure. A possible connection between the commonly known models of component lifetimes and the stress-strength interference models is suggested. Under some general conditions the relationship between component failure rate and the stress and strength distribution characteristics is studied. A heuristic approach for obtaining bounds on failure probability through stress-strength interference is also presented. A case study and a worked example are presented, which illustrate and verify the developed importance measures and their applications in the analytical as well as synthetical work of engineering design. (author)

  8. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  9. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  10. Reliability engineering theory and practice

    CERN Document Server

    Birolini, Alessandro

    2017-01-01

    This book shows how to build in and assess reliability, availability, maintainability, and safety (RAMS) of components, equipment, and systems. It presents the state of the art of reliability (RAMS) engineering, in theory & practice, and is based on over 30 years author's experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The book structure allows rapid access to practical results. Methods & tools are given in a way that they can be tailored to cover different RAMS requirement levels. Thanks to Appendices A6 - A8 the book is mathematically self-contained, and can be used as a textbook or as a desktop reference with a large number of tables (60), figures (210), and examples / exercises^ 10,000 per year since 2013) were the motivation for this final edition, the 13th since 1985, including German editions. Extended and carefully reviewed to improve accuracy, it represents the continuous improvement effort to satisfy reader's needs and confidenc...

  11. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  12. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  13. Reliability: How much is it worth? Beyond its estimation or prediction, the (net) present value of reliability

    International Nuclear Information System (INIS)

    Saleh, J.H.; Marais, K.

    2006-01-01

    In this article, we link an engineering concept, reliability, to a financial and managerial concept, net present value, by exploring the impact of a system's reliability on its revenue generation capability. The framework here developed for non-repairable systems quantitatively captures the value of reliability from a financial standpoint. We show that traditional present value calculations of engineering systems do not account for system reliability, thus over-estimate a system's worth and can therefore lead to flawed investment decisions. It is therefore important to involve reliability engineers upfront before investment decisions are made in technical systems. In addition, the analyses here developed help designers identify the optimal level of reliability that maximizes a system's net present value-the financial value reliability provides to the system minus the cost to achieve this level of reliability. Although we recognize that there are numerous considerations driving the specification of an engineering system's reliability, we contend that the financial analysis of reliability here developed should be made available to decision-makers to support in part, or at least be factored into, the system reliability specification

  14. Advances in reliability and system engineering

    CERN Document Server

    Davim, J

    2017-01-01

    This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.

  15. Prediction of software operational reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1995-01-01

    A number of software reliability models have been developed to estimate and to predict software reliability. However, there are no established standard models to quantify software reliability. Most models estimate the quality of software in reliability figures such as remaining faults, failure rate, or mean time to next failure at the testing phase, and they consider them ultimate indicators of software reliability. Experience shows that there is a large gap between predicted reliability during development and reliability measured during operation, which means that predicted reliability, or so-called test reliability, is not operational reliability. Customers prefer operational reliability to test reliability. In this study, we propose a method that predicts operational reliability rather than test reliability by introducing the testing environment factor that quantifies the changes in environments

  16. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  17. Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Ahsan Shazaib

    2017-01-01

    Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.

  18. Reliability engineering. Theory and practice. 6. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Birolini, Alessandro

    2010-07-01

    This book shows how to build in, evaluate, and demonstrate reliability and availability of components, equipment, systems. It presents the state-of-the-art of reliability engineering, both in theory and practice, and is based on the author's 30 years experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The structure of the book allows rapid access to practical results. Besides extensions to cost models and approximate expressions, new in this edition are investigations on common cause failures, phased-mission systems, availability demonstration and estimation, confidence limits at system level, trend tests for early failures or wearout, as well as a review of maintenance strategies, an introduction to Petri nets and dynamic FTA, and a set of problems for home-work. Methods and tools are given in a way that they can be tailored to cover different reliability requirement levels and be used for safety analysis as well. This book is a textbook establishing a link between theory and practice, with a large number of tables, figures, and examples to support the practical aspects. (orig.)

  19. Database reliability engineering designing and operating resilient database systems

    CERN Document Server

    Campbell, Laine

    2018-01-01

    The infrastructure-as-code revolution in IT is also affecting database administration. With this practical book, developers, system administrators, and junior to mid-level DBAs will learn how the modern practice of site reliability engineering applies to the craft of database architecture and operations. Authors Laine Campbell and Charity Majors provide a framework for professionals looking to join the ranks of today’s database reliability engineers (DBRE). You’ll begin by exploring core operational concepts that DBREs need to master. Then you’ll examine a wide range of database persistence options, including how to implement key technologies to provide resilient, scalable, and performant data storage and retrieval. With a firm foundation in database reliability engineering, you’ll be ready to dive into the architecture and operations of any modern database. This book covers: Service-level requirements and risk management Building and evolving an architecture for operational visibility ...

  20. Program integration of predictive maintenance with reliability centered maintenance

    International Nuclear Information System (INIS)

    Strong, D.K. Jr; Wray, D.M.

    1990-01-01

    This paper addresses improving the safety and reliability of power plants in a cost-effective manner by integrating the recently developed reliability centered maintenance techniques with the traditional predictive maintenance techniques of nuclear power plants. The topics of the paper include a description of reliability centered maintenance (RCM), enhancing RCM with predictive maintenance, predictive maintenance programs, condition monitoring techniques, performance test techniques, the mid-Atlantic Reliability Centered Maintenance Users Group, test guides and the benefits of shared guide development

  1. An Introduction To Reliability

    International Nuclear Information System (INIS)

    Park, Kyoung Su

    1993-08-01

    This book introduces reliability with definition of reliability, requirement of reliability, system of life cycle and reliability, reliability and failure rate such as summary, reliability characteristic, chance failure, failure rate which changes over time, failure mode, replacement, reliability in engineering design, reliability test over assumption of failure rate, and drawing of reliability data, prediction of system reliability, conservation of system, failure such as summary and failure relay and analysis of system safety.

  2. Failure and reliability prediction by support vector machines regression of time series data

    International Nuclear Information System (INIS)

    Chagas Moura, Marcio das; Zio, Enrico; Lins, Isis Didier; Droguett, Enrique

    2011-01-01

    Support Vector Machines (SVMs) are kernel-based learning methods, which have been successfully adopted for regression problems. However, their use in reliability applications has not been widely explored. In this paper, a comparative analysis is presented in order to evaluate the SVM effectiveness in forecasting time-to-failure and reliability of engineered components based on time series data. The performance on literature case studies of SVM regression is measured against other advanced learning methods such as the Radial Basis Function, the traditional MultiLayer Perceptron model, Box-Jenkins autoregressive-integrated-moving average and the Infinite Impulse Response Locally Recurrent Neural Networks. The comparison shows that in the analyzed cases, SVM outperforms or is comparable to other techniques. - Highlights: → Realistic modeling of reliability demands complex mathematical formulations. → SVM is proper when the relation input/output is unknown or very costly to be obtained. → Results indicate the potential of SVM for reliability time series prediction. → Reliability estimates support the establishment of adequate maintenance strategies.

  3. The Problem of Ensuring Reliability of Gas Turbine Engines

    Science.gov (United States)

    Nozhnitsky, Yu A.

    2018-01-01

    Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.

  4. Engineering Design Handbook: Development Guide for Reliability. Part Three. Reliability Prediction

    Science.gov (United States)

    1976-01-01

    to t is pa(t)=l-qa(t) (10-6) This is the reliability of being closed, defined for this interval. 2 The probability that a contact viH be open...Monte Carlo simulation. Few people can know all about all available programs. Special- ists can assist in selecting a few from the avail- able many

  5. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  6. Verification, validation, and reliability of predictions

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.

    1987-04-01

    The objective of predicting long-term performance should be to make reliable determinations of whether the prediction falls within the criteria for acceptable performance. Establishing reliable predictions of long-term performance of a waste repository requires emphasis on valid theories to predict performance. The validation process must establish the validity of the theory, the parameters used in applying the theory, the arithmetic of calculations, and the interpretation of results; but validation of such performance predictions is not possible unless there are clear criteria for acceptable performance. Validation programs should emphasize identification of the substantive issues of prediction that need to be resolved. Examples relevant to waste package performance are predicting the life of waste containers and the time distribution of container failures, establishing the criteria for defining container failure, validating theories for time-dependent waste dissolution that depend on details of the repository environment, and determining the extent of congruent dissolution of radionuclides in the UO 2 matrix of spent fuel. Prediction and validation should go hand in hand and should be done and reviewed frequently, as essential tools for the programs to design and develop repositories. 29 refs

  7. LED system reliability

    NARCIS (Netherlands)

    Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.

    2011-01-01

    This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific

  8. Telecommunications system reliability engineering theory and practice

    CERN Document Server

    Ayers, Mark L

    2012-01-01

    "Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"

  9. Software reliability prediction using SPN | Abbasabadee | Journal of ...

    African Journals Online (AJOL)

    Software reliability prediction using SPN. ... In this research for computation of software reliability, component reliability model based on SPN would be proposed. An isomorphic markov ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  10. Nonparametric predictive inference in reliability

    International Nuclear Information System (INIS)

    Coolen, F.P.A.; Coolen-Schrijner, P.; Yan, K.J.

    2002-01-01

    We introduce a recently developed statistical approach, called nonparametric predictive inference (NPI), to reliability. Bounds for the survival function for a future observation are presented. We illustrate how NPI can deal with right-censored data, and discuss aspects of competing risks. We present possible applications of NPI for Bernoulli data, and we briefly outline applications of NPI for replacement decisions. The emphasis is on introduction and illustration of NPI in reliability contexts, detailed mathematical justifications are presented elsewhere

  11. Multivariate performance reliability prediction in real-time

    International Nuclear Information System (INIS)

    Lu, S.; Lu, H.; Kolarik, W.J.

    2001-01-01

    This paper presents a technique for predicting system performance reliability in real-time considering multiple failure modes. The technique includes on-line multivariate monitoring and forecasting of selected performance measures and conditional performance reliability estimates. The performance measures across time are treated as a multivariate time series. A state-space approach is used to model the multivariate time series. Recursive forecasting is performed by adopting Kalman filtering. The predicted mean vectors and covariance matrix of performance measures are used for the assessment of system survival/reliability with respect to the conditional performance reliability. The technique and modeling protocol discussed in this paper provide a means to forecast and evaluate the performance of an individual system in a dynamic environment in real-time. The paper also presents an example to demonstrate the technique

  12. Reliable predictions of waste performance in a geologic repository

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.

    1985-08-01

    Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs

  13. Highlights from the early (and pre-) history of reliability engineering

    International Nuclear Information System (INIS)

    Saleh, J.H.; Marais, K.

    2006-01-01

    Reliability is a popular concept that has been celebrated for years as a commendable attribute of a person or an artifact. From its modest beginning in 1816-the word reliability was first coined by Samuel T. Coleridge-reliability grew into an omnipresent attribute with qualitative and quantitative connotations that pervades every aspect of our present day technologically intensive world. In this short communication, we highlight key events and the history of ideas that led to the birth of Reliability Engineering, and its development in the subsequent decades. We first argue that statistics and mass production were the enablers in the rise of this new discipline, and the catalyst that accelerated the coming of this new discipline was the (unreliability of the) vacuum tube. We highlight the foundational role of AGREE report in 1957 in the birth of reliability engineering, and discuss the consolidation of numerous efforts in the 1950s into a coherent new technical discipline. We show that an evolution took place in the discipline in the following two decades along two directions: first, there was an increased specialization in the discipline (increased sophistication of statistical techniques, and the rise of a new branch focused on the actual physics of failure of components, Reliability Physics); second, there occurred a shift in the emphasis of the discipline from a component-centric to an emphasis on system-level attributes (system reliability, availability, safety). Finally, in selecting the particular events and highlights in the history of ideas that led to the birth and subsequent development of reliability engineering, we acknowledge a subjective component in this work and make no claims to exhaustiveness

  14. Study on evaluation of construction reliability for engineering project based on fuzzy language operator

    Science.gov (United States)

    Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping

    2018-03-01

    System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.

  15. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...

  16. Conceptual Software Reliability Prediction Models for Nuclear Power Plant Safety Systems

    International Nuclear Information System (INIS)

    Johnson, G.; Lawrence, D.; Yu, H.

    2000-01-01

    The objective of this project is to develop a method to predict the potential reliability of software to be used in a digital system instrumentation and control system. The reliability prediction is to make use of existing measures of software reliability such as those described in IEEE Std 982 and 982.2. This prediction must be of sufficient accuracy to provide a value for uncertainty that could be used in a nuclear power plant probabilistic risk assessment (PRA). For the purposes of the project, reliability was defined to be the probability that the digital system will successfully perform its intended safety function (for the distribution of conditions under which it is expected to respond) upon demand with no unintended functions that might affect system safety. The ultimate objective is to use the identified measures to develop a method for predicting the potential quantitative reliability of a digital system. The reliability prediction models proposed in this report are conceptual in nature. That is, possible prediction techniques are proposed and trial models are built, but in order to become a useful tool for predicting reliability, the models must be tested, modified according to the results, and validated. Using methods outlined by this project, models could be constructed to develop reliability estimates for elements of software systems. This would require careful review and refinement of the models, development of model parameters from actual experience data or expert elicitation, and careful validation. By combining these reliability estimates (generated from the validated models for the constituent parts) in structural software models, the reliability of the software system could then be predicted. Modeling digital system reliability will also require that methods be developed for combining reliability estimates for hardware and software. System structural models must also be developed in order to predict system reliability based upon the reliability

  17. Developing a system engineering program to improve performance and reliability

    International Nuclear Information System (INIS)

    Keuter, D.

    1985-01-01

    After several maintenance, operational, and equipment problems last year, Trojan set out on a mission to improve plant performance and reliability by strengthening its on-site engineering organization. This paper presents Trojan's plans in developing an on-site system engineering organization

  18. Reliability of windstorm predictions in the ECMWF ensemble prediction system

    Science.gov (United States)

    Becker, Nico; Ulbrich, Uwe

    2016-04-01

    Windstorms caused by extratropical cyclones are one of the most dangerous natural hazards in the European region. Therefore, reliable predictions of such storm events are needed. Case studies have shown that ensemble prediction systems (EPS) are able to provide useful information about windstorms between two and five days prior to the event. In this work, ensemble predictions with the European Centre for Medium-Range Weather Forecasts (ECMWF) EPS are evaluated in a four year period. Within the 50 ensemble members, which are initialized every 12 hours and are run for 10 days, windstorms are identified and tracked in time and space. By using a clustering approach, different predictions of the same storm are identified in the different ensemble members and compared to reanalysis data. The occurrence probability of the predicted storms is estimated by fitting a bivariate normal distribution to the storm track positions. Our results show, for example, that predicted storm clusters with occurrence probabilities of more than 50% have a matching observed storm in 80% of all cases at a lead time of two days. The predicted occurrence probabilities are reliable up to 3 days lead time. At longer lead times the occurrence probabilities are overestimated by the EPS.

  19. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  20. Reliability Engineering for Service Oriented Architectures

    Science.gov (United States)

    2013-02-01

    Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit

  1. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  2. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, we use an IFR distribution to develop a reliability model for the EBS

  3. Reliability modeling of an engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.; Flueck, J.A.

    1993-01-01

    The Weibull distribution is widely used in reliability literature as a distribution of time to failure, as it allows for both increasing failure rate (IFR) and decreasing failure rate (DFR) models. It has also been used to develop models for an engineered barrier system (EBS), which is known to be one of the key components in a deep geological repository for high level radioactive waste (HLW). The EBS failure time can more realistically be modelled by an IFR distribution, since the failure rate for the EBS is not expected to decrease with time. In this paper, an IFR distribution is used to develop a reliability model for the EBS

  4. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  5. Review of methods for the integration of reliability and design engineering

    International Nuclear Information System (INIS)

    Reilly, J.T.

    1978-03-01

    A review of methods for the integration of reliability and design engineering was carried out to establish a reliability program philosophy, an initial set of methods, and procedures to be used by both the designer and reliability analyst. The report outlines a set of procedures which implements a philosophy that requires increased involvement by the designer in reliability analysis. Discussions of each method reviewed include examples of its application

  6. Reliability analysis of C-130 turboprop engine components using artificial neural network

    Science.gov (United States)

    Qattan, Nizar A.

    In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine

  7. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  8. Robustness and Reliability of the GM Ignition Switch - A forensic Engineering case

    DEFF Research Database (Denmark)

    Eifler, Tobias; Lerche Olesen, Jonas; Howard, Thomas J.

    2014-01-01

    This paper uses forensic engineering from the perspectives of Robust Design and Reliability Engineering to review one of the most infamous recalls in automotive history, that of the GM ignition switch. The design, engineering and management failures in this case ultimately resulted in a fine of $35...... million, the recall of 2.6 million vehicles and the death of at least 13 people. In a systematic approach, design clarity, tolerance stack-ups, sensitivity analysis, etc. are used to analyse the ignition switch itself and to extend the usual consideration of reliability issues to the impact of variation...

  9. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  10. Life prediction and mechanical reliability of NT551 silicon nitride

    Science.gov (United States)

    Andrews, Mark Jay

    The inert strength and fatigue performance of a diesel engine exhaust valve made from silicon nitride (Si3N4) ceramic were assessed. The Si3N4 characterized in this study was manufactured by Saint Gobain/Norton Industrial Ceramics and was designated as NT551. The evaluation was made utilizing a probabilistic life prediction algorithm that combined censored test specimen strength data with a Weibull distribution function and the stress field of the ceramic valve obtained from finite element analysis. The major assumptions of the life prediction algorithm are that the bulk ceramic material is isotropic and homogeneous and that the strength-limiting flaws are uniformly distributed. The results from mechanical testing indicated that NT551 was not a homogeneous ceramic and that its strength were functions of temperature, loading rate, and machining orientation. Fractographic analysis identified four different failure modes; 2 were identified as inhomogeneities that were located throughout the bulk of NT551 and were due to processing operations. The fractographic analysis concluded that the strength degradation of NT551 observed from the temperature and loading rate test parameters was due to a change of state that occurred in its secondary phase. Pristine and engine-tested valves made from NT551 were loaded to failure and the inert strengths were obtained. Fractographic analysis of the valves identified the same four failure mechanisms as found with the test specimens. The fatigue performance and the inert strength of the Si3N 4 valves were assessed from censored and uncensored test specimen strength data, respectively. The inert strength failure probability predictions were compared to the inert strength of the Si3N4 valves. The inert strength failure probability predictions were more conservative than the strength of the valves. The lack of correlation between predicted and actual valve strength was due to the nonuniform distribution of inhomogeneities present in NT

  11. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    Science.gov (United States)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  12. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    Energy Technology Data Exchange (ETDEWEB)

    Emery, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coffin, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robbins, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Field, Richard V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeremy Yoo, Yung Suk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kacher, Josh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins with a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.

  13. A summary of methods of predicting reliability life of nuclear equipment with small samples

    International Nuclear Information System (INIS)

    Liao Weixian

    2000-03-01

    Some of nuclear equipment are manufactured in small batch, e.g., 1-3 sets. Their service life may be very difficult to determine experimentally in view of economy and technology. The method combining theoretical analysis with material tests to predict the life of equipment is put forward, based on that equipment consists of parts or elements which are made of different materials. The whole life of an equipment part consists of the crack forming life (i.e., the fatigue life or the damage accumulation life) and the crack extension life. Methods of predicting machine life has systematically summarized with the emphasis on those which use theoretical analysis to substitute large scale prototype experiments. Meanwhile, methods and steps of predicting reliability life have been described by taking into consideration of randomness of various variables and parameters in engineering. Finally, the latest advance and trends of machine life prediction are discussed

  14. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  15. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  16. Sound quality prediction for engine-radiated noise

    Science.gov (United States)

    Liu, Hai; Zhang, Junhong; Guo, Peng; Bi, Fengrong; Yu, Hanzhengnan; Ni, Guangjian

    2015-05-01

    Diesel engine-radiated noise quality prediction is an important topic because engine noise has a significant impact on the overall vehicle noise. Sound quality prediction is based on subjective and objective evaluation of engine noise. The integrated satisfaction index (ISI) is proposed as a criterion for differentiate noise quality in the subjective evaluation, and five psychoacoustic parameters are selected for characterizing and analyzing the noise quality of the diesel engine objectively. The combination of support vector machines (SVM) and genetic algorithm (GA) is proposed in order to establish a model for predicting the diesel engine-radiated noise quality for all operation conditions. The performance of the GA-SVM model is compared with the BP neural network model, and the results show that the mean relative error of the GA-SVM model is smaller than the BP neural network model. The importance rank of the sound quality metrics to the ISI is indicated by the non-parametric correlation analysis. This study suggests that the GA-SVM model is very useful for accurately predicting the diesel engine-radiated noise quality.

  17. Reliability Engineering

    CERN Document Server

    Lazzaroni, Massimo

    2012-01-01

    This book gives a practical guide for designers and users in Information and Communication Technology context. In particular, in the first Section, the definition of the fundamental terms according to the international standards are given. Then, some theoretical concepts and reliability models are presented in Chapters 2 and 3: the aim is to evaluate performance for components and systems and reliability growth. Chapter 4, by introducing the laboratory tests, puts in evidence the reliability concept from the experimental point of view. In ICT context, the failure rate for a given system can be

  18. Reflow Process Parameters Analysis and Reliability Prediction Considering Multiple Characteristic Values

    Directory of Open Access Journals (Sweden)

    Guo Yu

    2016-01-01

    Full Text Available As a major step surface mount technology, reflow process is the key factor affecting the quality of the final product. The setting parameters and characteristic value of temperature curve shows a nonlinear relationship. So parameter impacts on characteristic values are analyzed and the parameters adjustment process based on orthogonal experiment is proposed in the paper. First, setting parameters are determined and the orthogonal test is designed according to production conditions. Then each characteristic value for temperature profile is calculated. Further, multi-index orthogonal experiment is analyzed for acquiring the setting parameters which impacts the PCBA product quality greater. Finally, reliability prediction is carried out considering the main influencing parameters for providing a theoretical basis of parameters adjustment and product quality evaluation in engineering process.

  19. Predicting risk and human reliability: a new approach

    International Nuclear Information System (INIS)

    Duffey, R.; Ha, T.-S.

    2009-01-01

    Learning from experience describes human reliability and skill acquisition, and the resulting theory has been validated by comparison against millions of outcome data from multiple industries and technologies worldwide. The resulting predictions were used to benchmark the classic first generation human reliability methods adopted in probabilistic risk assessments. The learning rate, probabilities and response times are also consistent with the existing psychological models for human learning and error correction. The new approach also implies a finite lower bound probability that is not predicted by empirical statistical distributions that ignore the known and fundamental learning effects. (author)

  20. A generic method for assignment of reliability scores applied to solvent accessibility predictions

    Directory of Open Access Journals (Sweden)

    Nielsen Morten

    2009-07-01

    Full Text Available Abstract Background Estimation of the reliability of specific real value predictions is nontrivial and the efficacy of this is often questionable. It is important to know if you can trust a given prediction and therefore the best methods associate a prediction with a reliability score or index. For discrete qualitative predictions, the reliability is conventionally estimated as the difference between output scores of selected classes. Such an approach is not feasible for methods that predict a biological feature as a single real value rather than a classification. As a solution to this challenge, we have implemented a method that predicts the relative surface accessibility of an amino acid and simultaneously predicts the reliability for each prediction, in the form of a Z-score. Results An ensemble of artificial neural networks has been trained on a set of experimentally solved protein structures to predict the relative exposure of the amino acids. The method assigns a reliability score to each surface accessibility prediction as an inherent part of the training process. This is in contrast to the most commonly used procedures where reliabilities are obtained by post-processing the output. Conclusion The performance of the neural networks was evaluated on a commonly used set of sequences known as the CB513 set. An overall Pearson's correlation coefficient of 0.72 was obtained, which is comparable to the performance of the currently best public available method, Real-SPINE. Both methods associate a reliability score with the individual predictions. However, our implementation of reliability scores in the form of a Z-score is shown to be the more informative measure for discriminating good predictions from bad ones in the entire range from completely buried to fully exposed amino acids. This is evident when comparing the Pearson's correlation coefficient for the upper 20% of predictions sorted according to reliability. For this subset, values of 0

  1. Reliability analysis of component of affination centrifugal 1 machine by using reliability engineering

    Science.gov (United States)

    Sembiring, N.; Ginting, E.; Darnello, T.

    2017-12-01

    Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.

  2. A generic Approach for Reliability Predictions considering non-uniformly Deterioration Behaviour

    International Nuclear Information System (INIS)

    Krause, Jakob; Kabitzsch, Klaus

    2012-01-01

    Predictive maintenance offers the possibility to prognosticate the remaining time until a maintenance action of a machine has to be scheduled. Unfortunately, current predictive maintenance solutions are only suitable for very specific use cases like reliability predictions based on vibration monitoring. Furthermore, they do not consider the fact that machines may deteriorate non-uniformly, depending on external influences (e.g., the work piece material in a milling machine or the changing fruit acid concentration in a bottling plant). In this paper two concepts for a generic predictive maintenance solution which also considers non-uniformly aging behaviour are introduced. The first concept is based on system models representing the health state of a technical system. As these models are usually statically (viz. without a timely dimension) their coefficients are determined periodically and the resulting time series is used as aging indicator. The second concept focuses on external influences (contexts) which change the behaviour of the previous mentioned aging indicators in order to increase the accuracy of reliability predictions. Therefore, context-depended time series models are determined and used to predict machine reliability. Both concepts were evaluated on data of an air ventilation system. Thereby, it could be shown that they are suitable to determine aging indicators in a generic way and to incorporate external influences in the reliability prediction. Through this, the quality of reliability predictions can be significantly increased. In reality this leads to a more accurate scheduling of maintenance actions. Furthermore, the generic character of the solutions makes the concepts suitable for a wide range of aging processes.

  3. Designing the database for a reliability aware Model-Based System Engineering process

    International Nuclear Information System (INIS)

    Cressent, Robin; David, Pierre; Idasiak, Vincent; Kratz, Frederic

    2013-01-01

    This article outlines the need for a reliability database to implement model-based description of components failure modes and dysfunctional behaviors. We detail the requirements such a database should honor and describe our own solution: the Dysfunctional Behavior Database (DBD). Through the description of its meta-model, the benefits of integrating the DBD in the system design process is highlighted. The main advantages depicted are the possibility to manage feedback knowledge at various granularity and semantic levels and to ease drastically the interactions between system engineering activities and reliability studies. The compliance of the DBD with other reliability database such as FIDES is presented and illustrated. - Highlights: ► Model-Based System Engineering is more and more used in the industry. ► It results in a need for a reliability database able to deal with model-based description of dysfunctional behavior. ► The Dysfunctional Behavior Database aims to fulfill that need. ► It helps dealing with feedback management thanks to its structured meta-model. ► The DBD can profit from other reliability database such as FIDES.

  4. Bayesian approach in the power electric systems study of reliability ...

    African Journals Online (AJOL)

    Keywords: Reliability - Power System - Bayes Theorem - Weibull Model - Probability. ... ensure a series of estimated parameter (failure rate, mean time to failure, function .... only on random variable r.v. describing the operating conditions: ..... Multivariate performance reliability prediction in real-time, Reliability Engineering.

  5. Prediction of software operational reliability using testing environment factors

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Seong, Poong Hyun

    1995-01-01

    For many years, many researches have focused on the quantification of software reliability and there are many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. The experiences show that the operational reliability is higher than the test reliability User's interest is on the operational reliability rather than on the test reliability, however. With the assumption that the difference in reliability results from the change of environment, testing environment factors comprising the aging factor and the coverage factor are defined in this study to predict the ultimate operational reliability with the failure data. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results are close to the actual data

  6. A novel reliability evaluation method for large engineering systems

    Directory of Open Access Journals (Sweden)

    Reda Farag

    2016-06-01

    Full Text Available A novel reliability evaluation method for large nonlinear engineering systems excited by dynamic loading applied in time domain is presented. For this class of problems, the performance functions are expected to be function of time and implicit in nature. Available first- or second-order reliability method (FORM/SORM will be challenging to estimate reliability of such systems. Because of its inefficiency, the classical Monte Carlo simulation (MCS method also cannot be used for large nonlinear dynamic systems. In the proposed approach, only tens instead of hundreds or thousands of deterministic evaluations at intelligently selected points are used to extract the reliability information. A hybrid approach, consisting of the stochastic finite element method (SFEM developed by the author and his research team using FORM, response surface method (RSM, an interpolation scheme, and advanced factorial schemes, is proposed. The method is clarified with the help of several numerical examples.

  7. Alternative approaches to reliability modeling of a multiple engineered barrier system

    International Nuclear Information System (INIS)

    Ananda, M.M.A.; Singh, A.K.

    1994-01-01

    The lifetime of the engineered barrier system used for containment of high-level radioactive waste will significantly impact the total performance of a geological repository facility. Currently two types of designs are under consideration for an engineered barrier system, single engineered barrier system and multiple engineered barrier system. Multiple engineered barrier system consists of several metal barriers and the waste form (cladding). Some recent work show that a significant improvement of performance can be achieved by utilizing multiple engineered barrier systems. Considering sequential failures for each barrier, we model the reliability of the multiple engineered barrier system. Weibull and exponential lifetime distributions are used through out the analysis. Furthermore, the number of failed engineered barrier systems in a repository at a given time is modeled using a poisson approximation

  8. Reliability of ceramics for heat engine applications

    Science.gov (United States)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  9. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    Science.gov (United States)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  10. Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability

    Science.gov (United States)

    Safie, Fayssal M.

    2011-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing

  11. The reliability-quality relationship for quality systems and quality risk management.

    Science.gov (United States)

    Claycamp, H Gregg; Rahaman, Faiad; Urban, Jason M

    2012-01-01

    Engineering reliability typically refers to the probability that a system, or any of its components, will perform a required function for a stated period of time and under specified operating conditions. As such, reliability is inextricably linked with time-dependent quality concepts, such as maintaining a state of control and predicting the chances of losses from failures for quality risk management. Two popular current good manufacturing practice (cGMP) and quality risk management tools, failure mode and effects analysis (FMEA) and root cause analysis (RCA) are examples of engineering reliability evaluations that link reliability with quality and risk. Current concepts in pharmaceutical quality and quality management systems call for more predictive systems for maintaining quality; yet, the current pharmaceutical manufacturing literature and guidelines are curiously silent on engineering quality. This commentary discusses the meaning of engineering reliability while linking the concept to quality systems and quality risk management. The essay also discusses the difference between engineering reliability and statistical (assay) reliability. The assurance of quality in a pharmaceutical product is no longer measured only "after the fact" of manufacturing. Rather, concepts of quality systems and quality risk management call for designing quality assurance into all stages of the pharmaceutical product life cycle. Interestingly, most assays for quality are essentially static and inform product quality over the life cycle only by being repeated over time. Engineering process reliability is the fundamental concept that is meant to anticipate quality failures over the life cycle of the product. Reliability is a well-developed theory and practice for other types of manufactured products and manufacturing processes. Thus, it is well known to be an appropriate index of manufactured product quality. This essay discusses the meaning of reliability and its linkages with quality

  12. Surviving the Lead Reliability Engineer Role in High Unit Value Projects

    Science.gov (United States)

    Perez, Reinaldo J.

    2011-01-01

    A project with a very high unit value within a company is defined as a project where a) the project constitutes one of a kind (or two-of-a-kind) national asset type of project, b) very large cost, and c) a mission failure would be a very public event that will hurt the company's image. The Lead Reliability engineer in a high visibility project is by default involved in all phases of the project, from conceptual design to manufacture and testing. This paper explores a series of lessons learned, over a period of ten years of practical industrial experience by a Lead Reliability Engineer. We expand on the concepts outlined by these lessons learned via examples. The lessons learned are applicable to all industries.

  13. Predictive modeling and reducing cyclic variability in autoignition engines

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  14. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability

    International Nuclear Information System (INIS)

    García Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Cos Juez, F.J. de

    2015-01-01

    The present paper describes a hybrid PSO–SVM-based model for the prediction of the remaining useful life of aircraft engines. The proposed hybrid model combines support vector machines (SVMs), which have been successfully adopted for regression problems, with the particle swarm optimization (PSO) technique. This optimization technique involves kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not been yet widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid PSO–SVM-based model from the remaining measured parameters (input variables) for aircraft engines with success. A coefficient of determination equal to 0.9034 was obtained when this hybrid PSO–RBF–SVM-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. One of the main advantages of this predictive model is that it does not require information about the previous operation states of the engine. Finally, the main conclusions of this study are exposed. - Highlights: • A hybrid PSO–SVM-based model is built as a predictive model of the RUL values for aircraft engines. • The remaining physical–chemical variables in this process are studied in depth. • The obtained regression accuracy of our method is about 95%. • The results show that PSO–SVM-based model can assist in the diagnosis of the RUL values with accuracy

  15. Evaluation of Information Requirements of Reliability Methods in Engineering Design

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster; Restrepo-Giraldo, John Dairo; Ahmed-Kristensen, Saeema

    2010-01-01

    This paper aims to characterize the information needed to perform methods for robustness and reliability, and verify their applicability to early design stages. Several methods were evaluated on their support to synthesis in engineering design. Of those methods, FMEA, FTA and HAZOP were selected...

  16. Engineering and Design: Reliability Analysis of Navigation Lock and Dam Mechanical and Electrical Equipment

    National Research Council Canada - National Science Library

    Beranek, Dwight

    2001-01-01

    This engineer technical letter (ETL) provides guidance for assessing the reliability of mechanical and electrical systems of navigation locks and dams and for establishing an engineering basis for major rehabilitation investment decisions...

  17. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    Science.gov (United States)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  18. Reliable prediction and determination of Norwegian lamb carcass composition and value

    International Nuclear Information System (INIS)

    Kongsro, Jørgen

    2008-01-01

    The main objective of this work was to study prediction and determination of Norwegian lamb carcass composition with different techniques spanning from subjective appraisal to computer-intensive methods. There is an increasing demand, both from farmers and processors of meats, for a more objective and reliable system for prediction of muscle (lean meat), fat, bone and value of a lamb carcass. When introducing new technologies for determination of lamb carcass composition, the reference method used for calibration must be precise and reliable. The precision and reliability of the current dissection reference for lamb carcass classification and grading has never been quantified. A poor reference method will not benefit even the most optimal system for prediction and determination of lamb carcasses. To help achieve reliable systems, the uncertainty or errors in the reference method and measuring systems needs to be quantified. Using proper calibration methods for the measuring systems, the uncertainty and modeling power can be determined for lamb carcasses. The results of the work presented in this thesis show that the current classification system using subjective appraisal (EUROP) is reliable; however the accuracy with respect to carcass composition, especially for lean meat or muscle and carcass value, is poor. The reference method used for determining lamb carcass composition with respect to lamb carcass classification and grading is precise and reliable for carcass composition. For the composition and yield of sub-primal cuts, the reliability varied, and was especially poor for the breast cut. Further attention is needed for jointing and cutting of sub-primals to achieve even higher precision and reliability of the reference method. As an alternative to butcher or manual dissection, Computer Tomography (CT) showed promising results with respect to prediction of lamb carcass composition. This method is nicknamed “virtual dissection”. By utilizing the

  19. Calculating system reliability with SRFYDO

    Energy Technology Data Exchange (ETDEWEB)

    Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory

    2010-01-01

    SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.

  20. New Approaches to Reliability Assessment

    DEFF Research Database (Denmark)

    Ma, Ke; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    of energy. New approaches for reliability assessment are being taken in the design phase of power electronics systems based on the physics-of-failure in components. In this approach, many new methods, such as multidisciplinary simulation tools, strength testing of components, translation of mission profiles......, and statistical analysis, are involved to enable better prediction and design of reliability for products. This article gives an overview of the new design flow in the reliability engineering of power electronics from the system-level point of view and discusses some of the emerging needs for the technology...

  1. Alternative approach to automated management of load flow in engineering networks considering functional reliability

    Directory of Open Access Journals (Sweden)

    Ирина Александровна Гавриленко

    2016-02-01

    Full Text Available The approach to automated management of load flow in engineering networks considering functional reliability was proposed in the article. The improvement of the concept of operational and strategic management of load flow in engineering networks was considered. The verbal statement of the problem for thesis research is defined, namely, the problem of development of information technology for exact calculation of the functional reliability of the network, or the risk of short delivery of purpose-oriented product for consumers

  2. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    Science.gov (United States)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  3. A method of predicting the reliability of CDM coil insulation

    International Nuclear Information System (INIS)

    Kytasty, A.; Ogle, C.; Arrendale, H.

    1992-01-01

    This paper presents a method of predicting the reliability of the Collider Dipole Magnet (CDM) coil insulation design. The method proposes a probabilistic treatment of electrical test data, stress analysis, material properties variability and loading uncertainties to give the reliability estimate. The approach taken to predict reliability of design related failure modes of the CDM is to form analytical models of the various possible failure modes and their related mechanisms or causes, and then statistically assess the contributions of the various contributing variables. The probability of the failure mode occurring is interpreted as the number of times one would expect certain extreme situations to combine and randomly occur. One of the more complex failure modes of the CDM will be used to illustrate this methodology

  4. Performance reliability prediction for thermal aging based on kalman filtering

    International Nuclear Information System (INIS)

    Ren Shuhong; Wen Zhenhua; Xue Fei; Zhao Wensheng

    2015-01-01

    The performance reliability of the nuclear power plant main pipeline that failed due to thermal aging was studied by the performance degradation theory. Firstly, through the data obtained from the accelerated thermal aging experiments, the degradation process of the impact strength and fracture toughness of austenitic stainless steel material of the main pipeline was analyzed. The time-varying performance degradation model based on the state space method was built, and the performance trends were predicted by using Kalman filtering. Then, the multi-parameter and real-time performance reliability prediction model for the main pipeline thermal aging was developed by considering the correlation between the impact properties and fracture toughness, and by using the stochastic process theory. Thus, the thermal aging performance reliability and reliability life of the main pipeline with multi-parameter were obtained, which provides the scientific basis for the optimization management of the aging maintenance decision making for nuclear power plant main pipelines. (authors)

  5. Generating Reliable and Affective Choreography through Engineering

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    How do we define graceful motion? Is grace exclusively the province of living, sentient beings, or is it possible to automate graceful motion? The GRACE project (Generating Reliable and Affective Choreography through Engineering) uses these two questions to investigate what makes movement graceful....... The principal objective is to measure the role of kinesics on human-robot interactions through the development of an automated performance. If it is possible to create an automated program using autonomous, artificial agents that emulate aspects of human gracefulness, then we can apply this understanding more...... widely to contemporary robotics research and human-robot interaction (HRI)....

  6. Human reliability in complex systems: an overview

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1976-07-01

    A detailed analysis is presented of the main conceptual background underlying the areas of human reliability and human error. The concept of error is examined and generalized to that of human reliability, and some of the practical and methodological difficulties of reconciling the different standpoints of the human factors specialist and the engineer discussed. Following a survey of general reviews available on human reliability, quantitative techniques for prediction of human reliability are considered. An in-depth critical analysis of the various quantitative methods is then presented, together with the data bank requirements for human reliability prediction. Reliability considerations in process control and nuclear plant, and also areas of design, maintenance, testing and emergency situations are discussed. The effects of stress on human reliability are analysed and methods of minimizing these effects discussed. Finally, a summary is presented and proposals for further research are set out. (author)

  7. System reliability prediction using data from non-identical environments

    International Nuclear Information System (INIS)

    Bergman, B.; Ringi, M.

    1997-01-01

    Since information changes one's mind and probability assessments reflect one's degree of beliefs, a reliability prediction model should enclose all relevant information. Almost always ignored in existing reliability models is the dependence on component life lengths, induced by a common but unknown environment. Furthermore, existing models seldom permit learning from components' performance in similar systems, under the knowledge of non-identical operating environments. In an earlier paper by the present authors the first type of aspects were taken into account and in this paper that model is generalised so that failure data generated from several similar systems in non-identical environments may be used for the prediction of any similar system in its specific environment

  8. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  9. Use of probabilistic design methods for NASA applications. [to be used in design phase of Space Transportation Main Engine

    Science.gov (United States)

    Safie, Fayssal M.

    1992-01-01

    This paper presents a reliability evaluation process designed to improve the reliability of advanced launch systems. The work performed includes the development of a reliability prediction methodology to be used in the design phase of the Space Transportation Main Engine (STME). This includes prediction techniques which use historical data bases as well as deterministic and probabilistic engineering models for predicting design reliability. In summary, this paper describes a probabilistic design approach for the next-generation liquid rocket engine, the STME.

  10. A Reliable and Valid Survey to Predict a Patient’s Gagging Intensity

    Directory of Open Access Journals (Sweden)

    Casey M. Hearing

    2014-07-01

    Full Text Available Objectives: The aim of this study was to devise a reliable and valid survey to predict the intensity of someone’s gag reflex. Material and Methods: A 10-question Predictive Gagging Survey was created, refined, and tested on 59 undergraduate participants. The questions focused on risk factors and experiences that would indicate the presence and strength of someone’s gag reflex. Reliability was assessed by administering the survey to a group of 17 participants twice, with 3 weeks separating the two administrations. Finally, the survey was given to 25 dental patients. In these cases, patients completed an informed consent form, filled out the survey, and then had a maxillary impression taken while their gagging response was quantified from 1 to 5 on the Fiske and Dickinson Gagging Intensity Index. Results: There was a moderate positive correlation between the Predictive Gagging Survey and Fiske and Dickinson’s Gagging Severity Index, r = +0.64, demonstrating the survey’s validity. Furthermore, the test-retest reliability was r = +0.96, demonstrating the survey’s reliability. Conclusions: The Predictive Gagging Survey is a 10-question survey about gag-related experiences and behaviours. We established that it is a reliable and valid method to assess the strength of someone’s gag reflex.

  11. Prediction of the combustion process and emission formation of a bi-fuel s.i. engine

    International Nuclear Information System (INIS)

    D'Errico, Gianluca

    2008-01-01

    A thermodynamic model is developed and validated for the prediction of the combustion process and pollutant formation in s.i. engines, fuelled by gasoline and compressed natural gas. Attention is focused on the main physical and chemical phenomena to allow a reliable evaluation of the burning rate and of the specie concentrations, including intermediates such as CO, O, H, and OH. A new correlation for laminar flame speed of methane-air mixtures is derived by interpolating more than 1000 different conditions at high pressure and temperature, computed by a detailed chemical approach. Successively an extended dissertation about the fundamental mechanisms which govern the pollutant formation in the turbulent premixed combustion which characterizes the s.i. engines is given. The conclusion of such analysis is the definition of a new reduced chemical scheme, based on the application of partial-equilibrium and steady-state assumptions for the radicals and the solution of a transport equation for each specie which is kinetically controlled. Finally the proposed schemes and formulations were embedded into the developed quasi-D model and into a CFD code, to simulate a s.i. engine fuelled by gasoline and CNG, allowing a deeper understanding of the reliability of the simplifications made in the quasi-dimensional model and a comprehensive investigation of several physical and chemical properties, whose experimental measurement is not usually available. Computed results were compared with the available experimental data of in-cylinder pressure histories and engine emissions for two different engine configurations

  12. Derating design for optimizing reliability and cost with an application to liquid rocket engines

    International Nuclear Information System (INIS)

    Kim, Kyungmee O.; Roh, Taeseong; Lee, Jae-Woo; Zuo, Ming J.

    2016-01-01

    Derating is the operation of an item at a stress that is lower than its rated design value. Previous research has indicated that reliability can be increased from operational derating. In order to derate an item in field operation, however, an engineer must rate the design of the item at a stress level higher than the operational stress level, which increases the item's nominal failure rate and development costs. At present, there is no model available to quantify the cost and reliability that considers the design uprating as well as the operational derating. In this paper, we establish the reliability expression in terms of the derating level assuming that the nominal failure rate is constant with time for a fixed rated design value. The total development cost is expressed in terms of the rated design value and the number of tests necessary to demonstrate the reliability requirement. The properties of the optimal derating level are explained for maximizing the reliability or for minimizing the cost. As an example, the proposed model is applied to the design of liquid rocket engines. - Highlights: • Modeled the effect of derating design on the reliability and the development cost. • Discovered that derating design may reduce the cost of reliability demonstration test. • Optimized the derating design parameter for reliability maximization or cost minimization.

  13. Theory and practice of quality and reliability engineering in Asia industry

    CERN Document Server

    Goh, Thong

    2017-01-01

    This book discusses the application of quality and reliability engineering in Asian industries, and offers information for multinational companies (MNC) looking to transfer some of their operation and manufacturing capabilities to Asia and at the same time maintain high levels of reliability and quality. It is also provides small and medium enterprises (SME) in Asia with insights into producing high-quality and reliable products. It mainly comprises peer-reviewed papers that were presented at the Asian Network for Quality (ANQ) Congress 2014 held in Singapore (August, 2014), which provides a platform for companies, especially those within Asia where rapid changes and growth in manufacturing are taking place, to present their quality and reliability practices. The book presents practical demonstrations of how quality and reliability methodologies can be modified for the unique Asian market, and as such is a valuable resource for students, academics, professionals and practitioners in the field of quality and r...

  14. The accuracy of Internet search engines to predict diagnoses from symptoms can be assessed with a validated scoring system.

    Science.gov (United States)

    Shenker, Bennett S

    2014-02-01

    To validate a scoring system that evaluates the ability of Internet search engines to correctly predict diagnoses when symptoms are used as search terms. We developed a five point scoring system to evaluate the diagnostic accuracy of Internet search engines. We identified twenty diagnoses common to a primary care setting to validate the scoring system. One investigator entered the symptoms for each diagnosis into three Internet search engines (Google, Bing, and Ask) and saved the first five webpages from each search. Other investigators reviewed the webpages and assigned a diagnostic accuracy score. They rescored a random sample of webpages two weeks later. To validate the five point scoring system, we calculated convergent validity and test-retest reliability using Kendall's W and Spearman's rho, respectively. We used the Kruskal-Wallis test to look for differences in accuracy scores for the three Internet search engines. A total of 600 webpages were reviewed. Kendall's W for the raters was 0.71 (psearch engines is a valid and reliable instrument. The scoring system may be used in future Internet research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Prediction of software operational reliability using testing environment factor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung

    1995-02-01

    Software reliability is especially important to customers these days. The need to quantify software reliability of safety-critical systems has been received very special attention and the reliability is rated as one of software's most important attributes. Since the software is an intellectual product of human activity and since it is logically complex, the failures are inevitable. No standard models have been established to prove the correctness and to estimate the reliability of software systems by analysis and/or testing. For many years, many researches have focused on the quantification of software reliability and there are many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is on the operational reliability rather than on the test reliability, however. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, testing environment factor comprising the aging factor and the coverage factor are defined in this work to predict the ultimate operational reliability with the failure data. It is by incorporating test environments applied beyond the operational profile into testing environment factor Test reliability can also be estimated with this approach without any model change. The application results are close to the actual data. The approach used in this thesis is expected to be applicable to ultra high reliable software systems that are used in nuclear power plants, airplanes, and other safety-critical applications

  16. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  17. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  18. Methodology for risk assessment and reliability applied for pipeline engineering design and industrial valves operation

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Dierci [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgia. Lab. de Sistemas de Producao e Petroleo e Gas], e-mail: dsilveira@metal.eeimvr.uff.br; Batista, Fabiano [CICERO, Rio das Ostras, RJ (Brazil)

    2009-07-01

    Two kinds of situations may be distinguished for estimating the operating reliability when maneuvering industrial valves and the probability of undesired events in pipelines and industrial plants: situations in which the risk is identified in repetitive cycles of operations and situations in which there is a permanent hazard due to project configurations introduced by decisions during the engineering design definition stage. The estimation of reliability based on the influence of design options requires the choice of a numerical index, which may include a composite of human operating parameters based on biomechanics and ergonomics data. We first consider the design conditions under which the plant or pipeline operator reliability concepts can be applied when operating industrial valves, and then describe in details the ergonomics and biomechanics risks that would lend itself to engineering design database development and human reliability modeling and assessment. This engineering design database development and reliability modeling is based on a group of engineering design and biomechanics parameters likely to lead to over-exertion forces and working postures, which are themselves associated with the functioning of a particular plant or pipeline. This approach to construct based on ergonomics and biomechanics for a more common industrial valve positioning in the plant layout is proposed through the development of a methodology to assess physical efforts and operator reach, combining various elementary operations situations. These procedures can be combined with the genetic algorithm modeling and four elements of the man-machine systems: the individual, the task, the machinery and the environment. The proposed methodology should be viewed not as competing to traditional reliability and risk assessment bur rather as complementary, since it provides parameters related to physical efforts values for valves operation and workspace design and usability. (author)

  19. Operational reliability management; Gestao da confiabilidade operacional

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Edemir [Refinaria Alberto Pasqualini (REFAP), Canoas, RS (Brazil). Setor de Tecnologia de Equipamentos

    2000-07-01

    It is described the PETROBRAS Alberto Pasqualini Refinery process plant reliability management, strategies, maintenance organizational structure, management processes, predictive and preventive maintenance, condition monitoring techniques, reliability metrics, pointing out a need for close work relationship between production, maintenance and project engineering functions with highly qualified and committed proper teams, in order to reach one of the highest mechanical availability among Latin America refineries. (author)

  20. Generic methods for aero-engine exhaust emission prediction

    NARCIS (Netherlands)

    Shakariyants, S.A.

    2008-01-01

    In the thesis, generic methods have been developed for aero-engine combustor performance, combustion chemistry, as well as airplane aerodynamics, airplane and engine performance. These methods specifically aim to support diverse emission prediction studies coupled with airplane and engine

  1. Reliability of computerized cephalometric outcome predictions of mandibular set-back surgery

    Directory of Open Access Journals (Sweden)

    Stefanović Neda

    2011-01-01

    Full Text Available Introduction. A successful treatment outcome in dentofacial deformity patients commonly requires combined orthodontic-surgical therapy. This enables us to overcome functional, aesthetic and psychological problems. Since most patients state aesthetics as the primary motive for seeking therapy, cephalometric predictions of treatment outcome have become the essential part of treatment planning, especially in combined orthodontic-surgical cases. Objective. The aim of this study was to evaluate the validity and reliability of computerized orthognathic surgery outcome predictions generated using the Nemotec Dental Studio NX 2005 software. Methods. The sample of the study consisted of 31 patients diagnosed with mandibular prognathism who were surgically treated at the Hospital for Maxillofacial Surgery in Belgrade. Investigation was done on lateral cephalograms made before and after surgical treatment. Cephalograms were digitized and analyzed using computer software. According to measurements made on superimposed pre- and postsurgical cephalograms, the patients were retreated within the software and the predictions were assessed by measuring seven angular and three linear parameters. Prediction measurements were then compared with the actual outcome. Results. Results showed statistically significant changes between posttreatment and predicted values for parameters referring to lower lip and mentolabial sulcus position. Conclusion. Computerized cephalometric predictions for hard-tissue structures in the sagittal and vertical planes, as well as the VTO parameters, generated using the Nemotec Dental Studio NX 2005 software are reliable, while lower lip and mentolabial sulcus position predictions are not reliable enough.

  2. Optimization of reliability centered predictive maintenance scheme for inertial navigation system

    International Nuclear Information System (INIS)

    Jiang, Xiuhong; Duan, Fuhai; Tian, Heng; Wei, Xuedong

    2015-01-01

    The goal of this study is to propose a reliability centered predictive maintenance scheme for a complex structure Inertial Navigation System (INS) with several redundant components. GO Methodology is applied to build the INS reliability analysis model—GO chart. Components Remaining Useful Life (RUL) and system reliability are updated dynamically based on the combination of components lifetime distribution function, stress samples, and the system GO chart. Considering the redundant design in INS, maintenance time is based not only on components RUL, but also (and mainly) on the timing of when system reliability fails to meet the set threshold. The definition of components maintenance priority balances three factors: components importance to system, risk degree, and detection difficulty. Maintenance Priority Number (MPN) is introduced, which may provide quantitative maintenance priority results for all components. A maintenance unit time cost model is built based on components MPN, components RUL predictive model and maintenance intervals for the optimization of maintenance scope. The proposed scheme can be applied to serve as the reference for INS maintenance. Finally, three numerical examples prove the proposed predictive maintenance scheme is feasible and effective. - Highlights: • A dynamic PdM with a rolling horizon is proposed for INS with redundant components. • GO Methodology is applied to build the system reliability analysis model. • A concept of MPN is proposed to quantify the maintenance sequence of components. • An optimization model is built to select the optimal group of maintenance components. • The optimization goal is minimizing the cost of maintaining system reliability

  3. Test-Retest Reliability and Predictive Validity of the Implicit Association Test in Children

    Science.gov (United States)

    Rae, James R.; Olson, Kristina R.

    2018-01-01

    The Implicit Association Test (IAT) is increasingly used in developmental research despite minimal evidence of whether children's IAT scores are reliable across time or predictive of behavior. When test-retest reliability and predictive validity have been assessed, the results have been mixed, and because these studies have differed on many…

  4. Reliability and lifetime predictions of SLC klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Lee, T.G.; Vlieks, A.E.

    1989-01-01

    The energy upgrade of SLAC, with the first of the new 67 MW SLAC Linear Collider (SLC) klystrons, began over four years ago. Today there are over 200 of these klystrons in operation. As a result, there is a wealth of klystron performance and failure information that enables reasonable predictions to be made on life expectancy and reliability. Data from initial tests, follow-up tests and daily operation monitoring on the accelerator is stored for analysis. Presented here are life expectancy predictions with particular emphasis on cathode life. Also, based on this data, the authors will discuss some of the principal modes of failure. 3 refs., 2 figs., 1 tab

  5. Reliability and lifetime predictions of SLC klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Lee, T.G.; Vlieks, A.E.

    1989-03-01

    The energy upgrade of SLAC, with the first of the new 67 MW SLAC Linear Collider (SLC) klystrons, began over four years ago. Today there are over 200 of these klystrons in operation. As a result, there is a wealth klystron performance and failure information that enables reasonable predictions to be made on life expectancy and reliability. Data from initial tests, follow-up tests and daily operation monitoring on the accelerator is stores for analysis. Presented here are life expectancy predictions with particular emphasis on cathode life. Also, based on this data, we will discuss some of the principal modes of failure. 3 refs., 2 figs

  6. A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-05-01

    Full Text Available Remaining useful life (RUL estimation is considered as one of the most central points in the prognostics and health management (PHM. The present paper describes a nonlinear hybrid ABC–MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed, it is well-known that an accurate RUL estimation allows failure prevention in a more controllable way so that the effective maintenance can be carried out in appropriate time to correct impending faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS, which have been successfully adopted for regression problems, with the artificial bee colony (ABC technique. This optimization technique involves parameter setting in the MARS training procedure, which significantly influences the regression accuracy. However, its use in reliability applications has not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted here by using the hybrid ABC–MARS-based model from the remaining measured parameters (input variables for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained when this hybrid ABC–MARS-based model was applied to experimental data. The agreement of this model with experimental data confirmed its good performance. The main advantage of this predictive model is that it does not require information about the previous operation states of the aircraft engine.

  7. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  8. A common reference population from four European Holstein populations increases reliability of genomic predictions

    DEFF Research Database (Denmark)

    Lund, Mogens Sandø; de Ross, Sander PW; de Vries, Alfred G

    2011-01-01

    Background Size of the reference population and reliability of phenotypes are crucial factors influencing the reliability of genomic predictions. It is therefore useful to combine closely related populations. Increased accuracies of genomic predictions depend on the number of individuals added to...

  9. Towards more accurate and reliable predictions for nuclear applications

    International Nuclear Information System (INIS)

    Goriely, S.

    2015-01-01

    The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally. (orig.)

  10. Study of redundant Models in reliability prediction of HXMT's HES

    International Nuclear Information System (INIS)

    Wang Jinming; Liu Congzhan; Zhang Zhi; Ji Jianfeng

    2010-01-01

    Two redundant equipment structures of HXMT's HES are proposed firstly, the block backup and dual system cold-redundancy. Then prediction of the reliability is made by using parts count method. Research of comparison and analysis is also performed on the two proposals. A conclusion is drawn that a higher reliability and longer service life could be offered by taking a redundant equipment structure of block backup. (authors)

  11. Methodologies of the hardware reliability prediction for PSA of digital I and C systems

    International Nuclear Information System (INIS)

    Jung, H. S.; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Park, J.

    2000-09-01

    Digital I and C systems are being used widely in the Non-safety systems of the NPP and they are expanding their applications to safety critical systems. The regulatory body shifts their policy to risk based and may require Probabilistic Safety Assessment for the digital I and C systems. But there is no established reliability prediction methodology for the digital I and C systems including both software and hardware yet. This survey report includes a lot of reliability prediction methods for electronic systems in view of hardware. Each method has both the strong and the weak points. This report provides the state-of-art of prediction methods and focus on Bellcore method and MIL-HDBK-217F method in deeply. The reliability analysis models are reviewed and discussed to help analysts. Also this report includes state-of-art of software tools that are supporting reliability prediction

  12. Methodologies of the hardware reliability prediction for PSA of digital I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Park, J

    2000-09-01

    Digital I and C systems are being used widely in the Non-safety systems of the NPP and they are expanding their applications to safety critical systems. The regulatory body shifts their policy to risk based and may require Probabilistic Safety Assessment for the digital I and C systems. But there is no established reliability prediction methodology for the digital I and C systems including both software and hardware yet. This survey report includes a lot of reliability prediction methods for electronic systems in view of hardware. Each method has both the strong and the weak points. This report provides the state-of-art of prediction methods and focus on Bellcore method and MIL-HDBK-217F method in deeply. The reliability analysis models are reviewed and discussed to help analysts. Also this report includes state-of-art of software tools that are supporting reliability prediction.

  13. Comparison of GLIMPS and HFAST Stirling engine code predictions with experimental data

    Science.gov (United States)

    Geng, Steven M.; Tew, Roy C.

    1992-01-01

    Predictions from GLIMPS and HFAST design codes are compared with experimental data for the RE-1000 and SPRE free piston Stirling engines. Engine performance and available power loss predictions are compared. Differences exist between GLIMPS and HFAST loss predictions. Both codes require engine specific calibration to bring predictions and experimental data into agreement.

  14. Comparison of GLIMPS and HFAST Stirling engine code predictions with experimental data

    International Nuclear Information System (INIS)

    Geng, S.M.; Tew, R.C.

    1994-01-01

    Predictions from GLIMPS and HFAST design codes are compared with experimental data for the RE-1000 and SPRE free-piston Stirling engines. Engine performance and available power loss predictions are compared. Differences exist between GLIMPS and HFAST loss predictions. Both codes require engine-specific calibration to bring predictions and experimental data into agreement

  15. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide

    Science.gov (United States)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.

    2004-01-01

    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  16. A Predictive Approach to Network Reverse-Engineering

    Science.gov (United States)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  17. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    Science.gov (United States)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  18. Time-variant reliability assessment through equivalent stochastic process transformation

    International Nuclear Information System (INIS)

    Wang, Zequn; Chen, Wei

    2016-01-01

    Time-variant reliability measures the probability that an engineering system successfully performs intended functions over a certain period of time under various sources of uncertainty. In practice, it is computationally prohibitive to propagate uncertainty in time-variant reliability assessment based on expensive or complex numerical models. This paper presents an equivalent stochastic process transformation approach for cost-effective prediction of reliability deterioration over the life cycle of an engineering system. To reduce the high dimensionality, a time-independent reliability model is developed by translating random processes and time parameters into random parameters in order to equivalently cover all potential failures that may occur during the time interval of interest. With the time-independent reliability model, an instantaneous failure surface is attained by using a Kriging-based surrogate model to identify all potential failure events. To enhance the efficacy of failure surface identification, a maximum confidence enhancement method is utilized to update the Kriging model sequentially. Then, the time-variant reliability is approximated using Monte Carlo simulations of the Kriging model where system failures over a time interval are predicted by the instantaneous failure surface. The results of two case studies demonstrate that the proposed approach is able to accurately predict the time evolution of system reliability while requiring much less computational efforts compared with the existing analytical approach. - Highlights: • Developed a new approach for time-variant reliability analysis. • Proposed a novel stochastic process transformation procedure to reduce the dimensionality. • Employed Kriging models with confidence-based adaptive sampling scheme to enhance computational efficiency. • The approach is effective for handling random process in time-variant reliability analysis. • Two case studies are used to demonstrate the efficacy

  19. Differential reliability : probabilistic engineering applied to wood members in bending-tension

    Science.gov (United States)

    Stanley K. Suddarth; Frank E. Woeste; William L. Galligan

    1978-01-01

    Reliability analysis is a mathematical technique for appraising the design and materials of engineered structures to provide a quantitative estimate of probability of failure. Two or more cases which are similar in all respects but one may be analyzed by this method; the contrast between the probabilities of failure for these cases allows strong analytical focus on the...

  20. Bearing Procurement Analysis Method by Total Cost of Ownership Analysis and Reliability Prediction

    Science.gov (United States)

    Trusaji, Wildan; Akbar, Muhammad; Sukoyo; Irianto, Dradjad

    2018-03-01

    In making bearing procurement analysis, price and its reliability must be considered as decision criteria, since price determines the direct cost as acquisition cost and reliability of bearing determine the indirect cost such as maintenance cost. Despite the indirect cost is hard to identify and measured, it has high contribution to overall cost that will be incurred. So, the indirect cost of reliability must be considered when making bearing procurement analysis. This paper tries to explain bearing evaluation method with the total cost of ownership analysis to consider price and maintenance cost as decision criteria. Furthermore, since there is a lack of failure data when bearing evaluation phase is conducted, reliability prediction method is used to predict bearing reliability from its dynamic load rating parameter. With this method, bearing with a higher price but has higher reliability is preferable for long-term planning. But for short-term planning the cheaper one but has lower reliability is preferable. This contextuality can give rise to conflict between stakeholders. Thus, the planning horizon needs to be agreed by all stakeholder before making a procurement decision.

  1. Using predictive maintenance methods at Hanford Engineering Development Laboratory (HEDL) to increase equipment availability and reduce overall managed costs

    International Nuclear Information System (INIS)

    Stanton, G.A.; Grygiel, M.L.

    1986-08-01

    This paper describes the predictive maintenance program that is presently in place at Hanford Engineering Development Laboratory using vibration analysis and oil sampling techniques. A pilot program at the Fast Flux Test Facility (FFTF) has been established using reliability-based maintenance concepts such as trend and failure analysis techniques. The first system being analyzed at FFTF will be the electrical distribution system. 2 figs

  2. Impact of relationships between test and training animals and among training animals on reliability of genomic prediction.

    Science.gov (United States)

    Wu, X; Lund, M S; Sun, D; Zhang, Q; Su, G

    2015-10-01

    One of the factors affecting the reliability of genomic prediction is the relationship among the animals of interest. This study investigated the reliability of genomic prediction in various scenarios with regard to the relationship between test and training animals, and among animals within the training data set. Different training data sets were generated from EuroGenomics data and a group of Nordic Holstein bulls (born in 2005 and afterwards) as a common test data set. Genomic breeding values were predicted using a genomic best linear unbiased prediction model and a Bayesian mixture model. The results showed that a closer relationship between test and training animals led to a higher reliability of genomic predictions for the test animals, while a closer relationship among training animals resulted in a lower reliability. In addition, the Bayesian mixture model in general led to a slightly higher reliability of genomic prediction, especially for the scenario of distant relationships between training and test animals. Therefore, to prevent a decrease in reliability, constant updates of the training population with animals from more recent generations are required. Moreover, a training population consisting of less-related animals is favourable for reliability of genomic prediction. © 2015 Blackwell Verlag GmbH.

  3. Test-retest reliability and predictive validity of the Implicit Association Test in children.

    Science.gov (United States)

    Rae, James R; Olson, Kristina R

    2018-02-01

    The Implicit Association Test (IAT) is increasingly used in developmental research despite minimal evidence of whether children's IAT scores are reliable across time or predictive of behavior. When test-retest reliability and predictive validity have been assessed, the results have been mixed, and because these studies have differed on many factors simultaneously (lag-time between testing administrations, domain, etc.), it is difficult to discern what factors may explain variability in existing test-retest reliability and predictive validity estimates. Across five studies (total N = 519; ages 6- to 11-years-old), we manipulated two factors that have varied in previous developmental research-lag-time and domain. An internal meta-analysis of these studies revealed that, across three different methods of analyzing the data, mean test-retest (rs of .48, .38, and .34) and predictive validity (rs of .46, .20, and .10) effect sizes were significantly greater than zero. While lag-time did not moderate the magnitude of test-retest coefficients, whether we observed domain differences in test-retest reliability and predictive validity estimates was contingent on other factors, such as how we scored the IAT or whether we included estimates from a unique sample (i.e., a sample containing gender typical and gender diverse children). Recommendations are made for developmental researchers that utilize the IAT in their research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Engineering reliability in design phase: An application to AP-600 reactor passive safety system

    International Nuclear Information System (INIS)

    Majumdr, D.; Siahpush, A.S.; Hills, S.W.

    1992-01-01

    A computerized reliability enhancement methodology is described that can be used at the engineering design phase to help the designer achieve a desired reliability of the system. It can take into account the limitation imposed by a constraint such as budget, space, or weight. If the desired reliability of the system is known, it can determine the minimum reliabilities of the components, or how many redundant components are needed to achieve the desired reliability. This methodology is applied to examine the Automatic Depressurization System (ADS) of the new passively safe AP-600 reactor. The safety goal of a nuclear reactor dictates a certain reliability level of its components. It is found that a series parallel valve configuration instead of the parallel-series configuration of the four valves in one stage would improve the reliability of the ADS. Other valve characteristics and arrangements are explored to examine different reliability options for the system

  5. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    International Nuclear Information System (INIS)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-01-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading

  6. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 3: HARP Graphics Oriented (GO) input user's guide

    Science.gov (United States)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.

  7. Weibull-Based Design Methodology for Rotating Structures in Aircraft Engines

    Directory of Open Access Journals (Sweden)

    Erwin V. Zaretsky

    2003-01-01

    Full Text Available The NASA Energy-Efficient Engine (E3-Engine is used as the basis of a Weibull-based life and reliability analysis. Each component's life, and thus the engine's life, is defined by high-cycle fatigue or low-cycle fatigue. Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine's Weibull slope increases, the predicted life decreases. The predicted engine lives L5 (95% probability of survival of approximately 17,000 and 32,000 hr do correlate with current engine-maintenance practices without and with refurbishment, respectively. The individual high-pressure turbine (HPT blade lives necessary to obtain a blade system life L0.1 (99.9% probability of survival of 9000 hr for Weibull slopes of 3, 6, and 9 are 47,391; 20,652; and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9%, the predicted disk system life L0.1 can vary from 9408 to 24,911 hr.

  8. Reliability and Probabilistic Risk Assessment - How They Play Together

    Science.gov (United States)

    Safie, Fayssal M.; Stutts, Richard G.; Zhaofeng, Huang

    2015-01-01

    PRA methodology is one of the probabilistic analysis methods that NASA brought from the nuclear industry to assess the risk of LOM, LOV and LOC for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability and statistical data to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: What can go wrong? How likely is it? What is the severity of the degradation? Since 1986, NASA, along with industry partners, has conducted a number of PRA studies to predict the overall launch vehicles risks. Planning Research Corporation conducted the first of these studies in 1988. In 1995, Science Applications International Corporation (SAIC) conducted a comprehensive PRA study. In July 1996, NASA conducted a two-year study (October 1996 - September 1998) to develop a model that provided the overall Space Shuttle risk and estimates of risk changes due to proposed Space Shuttle upgrades. After the Columbia accident, NASA conducted a PRA on the Shuttle External Tank (ET) foam. This study was the most focused and extensive risk assessment that NASA has conducted in recent years. It used a dynamic, physics-based, integrated system analysis approach to understand the integrated system risk due to ET foam loss in flight. Most recently, a PRA for Ares I launch vehicle has been performed in support of the Constellation program. Reliability, on the other hand, addresses the loss of functions. In a broader sense, reliability engineering is a discipline that involves the application of engineering principles to the design and processing of products, both hardware and software, for meeting product reliability requirements or goals. It is a very broad design-support discipline. It has important interfaces with many other engineering disciplines. Reliability as a figure of merit (i.e. the metric) is the probability that an item will

  9. Can shoulder dystocia be reliably predicted?

    Science.gov (United States)

    Dodd, Jodie M; Catcheside, Britt; Scheil, Wendy

    2012-06-01

    To evaluate factors reported to increase the risk of shoulder dystocia, and to evaluate their predictive value at a population level. The South Australian Pregnancy Outcome Unit's population database from 2005 to 2010 was accessed to determine the occurrence of shoulder dystocia in addition to reported risk factors, including age, parity, self-reported ethnicity, presence of diabetes and infant birth weight. Odds ratios (and 95% confidence interval) of shoulder dystocia was calculated for each risk factor, which were then incorporated into a logistic regression model. Test characteristics for each variable in predicting shoulder dystocia were calculated. As a proportion of all births, the reported rate of shoulder dystocia increased significantly from 0.95% in 2005 to 1.38% in 2010 (P = 0.0002). Using a logistic regression model, induction of labour and infant birth weight greater than both 4000 and 4500 g were identified as significant independent predictors of shoulder dystocia. The value of risk factors alone and when incorporated into the logistic regression model was poorly predictive of the occurrence of shoulder dystocia. While there are a number of factors associated with an increased risk of shoulder dystocia, none are of sufficient sensitivity or positive predictive value to allow their use clinically to reliably and accurately identify the occurrence of shoulder dystocia. © 2012 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  10. Investigating Postgraduate College Admission Interviews: Generalizability Theory Reliability and Incremental Predictive Validity

    Science.gov (United States)

    Arce-Ferrer, Alvaro J.; Castillo, Irene Borges

    2007-01-01

    The use of face-to-face interviews is controversial for college admissions decisions in light of the lack of availability of validity and reliability evidence for most college admission processes. This study investigated reliability and incremental predictive validity of a face-to-face postgraduate college admission interview with a sample of…

  11. A dynamic particle filter-support vector regression method for reliability prediction

    International Nuclear Information System (INIS)

    Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico

    2013-01-01

    Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR

  12. Impact of Relationships between Test and Reference Animals and between Reference Animals on Reliability of Genomic Prediction

    DEFF Research Database (Denmark)

    Wu, Xiaoping; Lund, Mogens Sandø; Sun, Dongxiao

    This study investigated reliability of genomic prediction in various scenarios with regard to relationship between test and reference animals and between animals within the reference population. Different reference populations were generated from EuroGenomics data and 1288 Nordic Holstein bulls...... as a common test population. A GBLUP model and a Bayesian mixture model were applied to predict Genomic breeding values for bulls in the test data. Result showed that a closer relationship between test and reference animals led to a higher reliability, while a closer relationship between reference animal...... resulted in a lower reliability. Therefore, the design of reference population is important for improving the reliability of genomic prediction. With regard to model, the Bayesian mixture model in general led to slightly a higher reliability of genomic prediction than the GBLUP model...

  13. Practical application of reliability engineering in detailed design and maintenance

    International Nuclear Information System (INIS)

    Barden, S.E.

    1975-01-01

    Modern plant systems are closely coupled combinations of sophisticated and expensive equipment, some important parts of which may be in the development stage (high technology sector), and simpler, crude but not necessarily cheap equipment (low technology sector). Manpower resources involved with such plant systems can also be placed in high and low technology categories (i.e. specialist design and construction staff, and production staff, respectively). Neither can operate effectively without the other, and both are equally important. A sophisticated on-line computer controlling plant or analysing fault symptoms is useless, if not unsafe, if the peripheral sensing and control equipment on plant providing input data is poorly designed and inaccurate, and/or unreliable because of inadequate maintenance. Similarly, the designer can be misled and misinformed, and subsequent design evolution can be wrongly directed, if production recors do not accurately reflect what is actually happening on the plant. The application of Reliability Technology can be counter productive if it demands more effort in the collection of data that it save in facilitating quick, correct engineering decisions, and more accurate assessments of resource requirements. Reliability Engineering techniques must be simplified to made their use widely adopted in the important low technology sector, and established in all financial and contractural procedures associated with design specification and production management. This paper develops this theme with practical examples. (author)

  14. [Examination of safety improvement by failure record analysis that uses reliability engineering].

    Science.gov (United States)

    Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo

    2010-08-20

    How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety.

  15. Identification of informative features for predicting proinflammatory potentials of engine exhausts.

    Science.gov (United States)

    Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei

    2017-08-18

    The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.

  16. Integrated reliability condition monitoring and maintenance of equipment

    CERN Document Server

    Osarenren, John

    2015-01-01

    Consider a Viable and Cost-Effective Platform for the Industries of the Future (IOF) Benefit from improved safety, performance, and product deliveries to your customers. Achieve a higher rate of equipment availability, performance, product quality, and reliability. Integrated Reliability: Condition Monitoring and Maintenance of Equipment incorporates reliable engineering and mathematical modeling to help you move toward sustainable development in reliability condition monitoring and maintenance. This text introduces a cost-effective integrated reliability growth monitor, integrated reliability degradation monitor, technological inheritance coefficient sensors, and a maintenance tool that supplies real-time information for predicting and preventing potential failures of manufacturing processes and equipment. The author highlights five key elements that are essential to any improvement program: improving overall equipment and part effectiveness, quality, and reliability; improving process performance with maint...

  17. A methodology for noise prediction of turbofan engines.

    OpenAIRE

    Gustavo Di Fiore dos Santos

    2006-01-01

    A computional model is developed for prediction of noise emission from na existing or new turbofan engine. This model allows the simulation of noise generation from high bypass ratio turbofan engines, appropriate for use with computational programs for gas turbine performance developed at ITA. Analytical and empirical methods are used for spectrum shape, spectrum level, overall noise and free-field directivity noise. The most significant noise sources in turbofan engines are modeled: fan, com...

  18. Quality and reliability management and its applications

    CERN Document Server

    2016-01-01

    Integrating development processes, policies, and reliability predictions from the beginning of the product development lifecycle to ensure high levels of product performance and safety, this book helps companies overcome the challenges posed by increasingly complex systems in today’s competitive marketplace.   Examining both research on and practical aspects of product quality and reliability management with an emphasis on applications, the book features contributions written by active researchers and/or experienced practitioners in the field, so as to effectively bridge the gap between theory and practice and address new research challenges in reliability and quality management in practice.    Postgraduates, researchers and practitioners in the areas of reliability engineering and management, amongst others, will find the book to offer a state-of-the-art survey of quality and reliability management and practices.

  19. Towards early software reliability prediction for computer forensic tools (case study).

    Science.gov (United States)

    Abu Talib, Manar

    2016-01-01

    Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.

  20. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  1. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 1: HARP introduction and user's guide

    Science.gov (United States)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Boyd, Mark A.; Geist, Robert M.; Smotherman, Mark D.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references.

  2. Machine Maintenance Scheduling with Reliability Engineering Method and Maintenance Value Stream Mapping

    Science.gov (United States)

    Sembiring, N.; Nasution, A. H.

    2018-02-01

    Corrective maintenance i.e replacing or repairing the machine component after machine break down always done in a manufacturing company. It causes the production process must be stopped. Production time will decrease due to the maintenance team must replace or repair the damage machine component. This paper proposes a preventive maintenance’s schedule for a critical component of a critical machine of an crude palm oil and kernel company due to increase maintenance efficiency. The Reliability Engineering & Maintenance Value Stream Mapping is used as a method and a tool to analize the reliability of the component and reduce the wastage in any process by segregating value added and non value added activities.

  3. Addressing the reliability issues of intelligent well systems

    International Nuclear Information System (INIS)

    Drakeley, Brian; Douglas, Neil

    2000-01-01

    New Technology receives its fair share of 'risk aversion' both in good and not so good economic times from oil and gas operators evaluating application opportunities. This paper presents details of a strategy developed and implemented to bring to market an Intelligent Well system designed from day one to maximize system reliability, while offering the customer a high degree of choice in system functionality. A team of engineers and scientists skilled in all aspects of Reliability Analysis and Assessment analyzed the Intelligent Well system under development, gathered reliability performance data from other sources and using various analytical techniques developed matrices of system survival probability estimates for various scenarios. Interaction with the system and design engineers has been an on-going process as designs are modified to maximize reliability predictions and extensive qualification test programs developed from the component to the overall system level. The techniques used in the development project will be presented. A comparative model now exists that facilitates the evaluation of future design alternative considerations and also contains databases that can be readily updated with actual field data etc. (author)

  4. A new lifetime estimation model for a quicker LED reliability prediction

    Science.gov (United States)

    Hamon, B. H.; Mendizabal, L.; Feuillet, G.; Gasse, A.; Bataillou, B.

    2014-09-01

    LED reliability and lifetime prediction is a key point for Solid State Lighting adoption. For this purpose, one hundred and fifty LEDs have been aged for a reliability analysis. LEDs have been grouped following nine current-temperature stress conditions. Stress driving current was fixed between 350mA and 1A and ambient temperature between 85C and 120°C. Using integrating sphere and I(V) measurements, a cross study of the evolution of electrical and optical characteristics has been done. Results show two main failure mechanisms regarding lumen maintenance. The first one is the typically observed lumen depreciation and the second one is a much more quicker depreciation related to an increase of the leakage and non radiative currents. Models of the typical lumen depreciation and leakage resistance depreciation have been made using electrical and optical measurements during the aging tests. The combination of those models allows a new method toward a quicker LED lifetime prediction. These two models have been used for lifetime predictions for LEDs.

  5. Design for reliability: NASA reliability preferred practices for design and test

    Science.gov (United States)

    Lalli, Vincent R.

    1994-01-01

    This tutorial summarizes reliability experience from both NASA and industry and reflects engineering practices that support current and future civil space programs. These practices were collected from various NASA field centers and were reviewed by a committee of senior technical representatives from the participating centers (members are listed at the end). The material for this tutorial was taken from the publication issued by the NASA Reliability and Maintainability Steering Committee (NASA Reliability Preferred Practices for Design and Test. NASA TM-4322, 1991). Reliability must be an integral part of the systems engineering process. Although both disciplines must be weighed equally with other technical and programmatic demands, the application of sound reliability principles will be the key to the effectiveness and affordability of America's space program. Our space programs have shown that reliability efforts must focus on the design characteristics that affect the frequency of failure. Herein, we emphasize that these identified design characteristics must be controlled by applying conservative engineering principles.

  6. Effects of diesel fuel additives on engine performance and reliability. Part 2. Effects of lubricity additives; Keiyu tenkazai ga engine seino oyobi shinraisei ni ataeru eikyo. 2. Junkatsusei kojo ni yoru eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, J; Okada, M; Naruse, H [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    Many studies about the effects of lublicity additives for diesel fuel have been carried out and reported. These additives have already been used in Europe, north-America for couple of years and it has just started in Japanese market this July. This paper mainly describes the effects of lublicity additives on engine performance and reliability. At first, the effects on engine reliability were investigated during 30 thousand kms chasis dynamometer test. Secondary, the effects on piston ring corrosion, injection nozzle fouling and water separation were investigated. Furthermore, 70 thousand kms engine reliability test was conducted, and investigated some component parts. 2 refs., 10 figs., 4 tabs.

  7. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  8. Reliability Approach of a Compressor System using Reliability Block ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... This paper presents a reliability analysis of such a system using reliability ... Keywords-compressor system, reliability, reliability block diagram, RBD .... the same structure has been kept with the three subsystems: air flow, oil flow and .... and Safety in Engineering Design", Springer, 2009. [3] P. O'Connor ...

  9. Predicting Drug Recalls From Internet Search Engine Queries.

    Science.gov (United States)

    Yom-Tov, Elad

    2017-01-01

    Batches of pharmaceuticals are sometimes recalled from the market when a safety issue or a defect is detected in specific production runs of a drug. Such problems are usually detected when patients or healthcare providers report abnormalities to medical authorities. Here, we test the hypothesis that defective production lots can be detected earlier by monitoring queries to Internet search engines. We extracted queries from the USA to the Bing search engine, which mentioned one of the 5195 pharmaceutical drugs during 2015 and all recall notifications issued by the Food and Drug Administration (FDA) during that year. By using attributes that quantify the change in query volume at the state level, we attempted to predict if a recall of a specific drug will be ordered by FDA in a time horizon ranging from 1 to 40 days in future. Our results show that future drug recalls can indeed be identified with an AUC of 0.791 and a lift at 5% of approximately 6 when predicting a recall occurring one day ahead. This performance degrades as prediction is made for longer periods ahead. The most indicative attributes for prediction are sudden spikes in query volume about a specific medicine in each state. Recalls of prescription drugs and those estimated to be of medium-risk are more likely to be identified using search query data. These findings suggest that aggregated Internet search engine data can be used to facilitate in early warning of faulty batches of medicines.

  10. Final report on reliability and lifetime prediction.

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Kenneth T; Wise, Jonathan; Jones, Gary D.; Causa, Al G.; Terrill, Edward R.; Borowczak, Marc

    2012-12-01

    This document highlights the important results obtained from the subtask of the Goodyear CRADA devoted to better understanding reliability of tires and to developing better lifetime prediction methods. The overall objective was to establish the chemical and physical basis for the degradation of tires using standard as well as unique models and experimental techniques. Of particular interest was the potential application of our unique modulus profiling apparatus for assessing tire properties and for following tire degradation. During the course of this complex investigation, extensive relevant information was generated, including experimental results, data analyses and development of models and instruments. Detailed descriptions of the findings are included in this report.

  11. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  12. Application of systems engineering techniques (reliability, availability, maintainability, and dollars) to the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Boylan, J.G.; DeLozier, R.C.

    1982-01-01

    The systems engineering function for the Gas Centrifuge Enrichment Plant (GCEP) covers system requirements definition, analyses, verification, technical reviews, and other system efforts necessary to assure good balance of performance, safety, cost, and scheduling. The systems engineering function will support the design, installation, start-up, and operational phases of GCEP. The principal objectives of the systems engineering function are to: assure that the system requirements of the GCEP process are adequately specified and documented and that due consideration and emphasis are given to all aspects of the project; provide system analyses of the designs as they progress to assure that system requirements are met and that GCEP interfaces are compatible; assist in the definition of programs for the necessary and sufficient verification of GCEP systems; and integrate reliability, maintainability, logistics, safety, producibility, and other related specialties into a total system effort. This paper addresses the GCEP reliability, availability, maintainability, and dollars (RAM dollars) analyses which are the primary systems engineering tools for the development and implementation of trade-off studies. These studies are basic to reaching cost-effective project decisions. The steps necessary to achieve optimum cost-effective design are shown

  13. A competing risk model for the reliability of cylinder liners in marine Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Bocchetti, D. [Grimaldi Group, Naples (Italy); Giorgio, M. [Department of Aerospace and Mechanical Engineering, Second University of Naples, Aversa (Italy); Guida, M. [Department of Information Engineering and Electrical Engineering, University of Salerno, Fisciano (Italy); Pulcini, G. [Istituto Motori, National Research Council-CNR, Naples (Italy)], E-mail: g.pulcini@im.cnr.it

    2009-08-15

    In this paper, a competing risk model is proposed to describe the reliability of the cylinder liners of a marine Diesel engine. Cylinder liners presents two dominant failure modes: wear degradation and thermal cracking. The wear process is described through a stochastic process, whereas the failure time due to the thermal cracking is described by the Weibull distribution. The use of the proposed model allows performing goodness-of-fit test and parameters estimation on the basis of both wear and failure data. Moreover, it enables reliability estimates of the state of the liners to be obtained and the hierarchy of the failure mechanisms to be determined for any given age and wear level of the liner. The model has been applied to a real data set: 33 cylinder liners of Sulzer RTA 58 engines, which equip twin ships of the Grimaldi Group. Estimates of the liner reliability and of other quantities of interest under the competing risk model are obtained, as well as the conditional failure probability and mean residual lifetime, given the survival age and the accumulated wear. Furthermore, the model has been used to estimate the probability that a liner fails due to one of the failure modes when both of these modes act.

  14. Developing Predictive Maintenance Expertise to Improve Plant Equipment Reliability

    International Nuclear Information System (INIS)

    Wurzbach, Richard N.

    2002-01-01

    On-line equipment condition monitoring is a critical component of the world-class production and safety histories of many successful nuclear plant operators. From addressing availability and operability concerns of nuclear safety-related equipment to increasing profitability through support system reliability and reduced maintenance costs, Predictive Maintenance programs have increasingly become a vital contribution to the maintenance and operation decisions of nuclear facilities. In recent years, significant advancements have been made in the quality and portability of many of the instruments being used, and software improvements have been made as well. However, the single most influential component of the success of these programs is the impact of a trained and experienced team of personnel putting this technology to work. Changes in the nature of the power generation industry brought on by competition, mergers, and acquisitions, has taken the historically stable personnel environment of power generation and created a very dynamic situation. As a result, many facilities have seen a significant turnover in personnel in key positions, including predictive maintenance personnel. It has become the challenge for many nuclear operators to maintain the consistent contribution of quality data and information from predictive maintenance that has become important in the overall equipment decision process. These challenges can be met through the implementation of quality training to predictive maintenance personnel and regular updating and re-certification of key technology holders. The use of data management tools and services aid in the sharing of information across sites within an operating company, and with experts who can contribute value-added data management and analysis. The overall effectiveness of predictive maintenance programs can be improved through the incorporation of newly developed comprehensive technology training courses. These courses address the use of

  15. The Reliability and Predictive Validity of the Stalking Risk Profile.

    Science.gov (United States)

    McEwan, Troy E; Shea, Daniel E; Daffern, Michael; MacKenzie, Rachel D; Ogloff, James R P; Mullen, Paul E

    2018-03-01

    This study assessed the reliability and validity of the Stalking Risk Profile (SRP), a structured measure for assessing stalking risks. The SRP was administered at the point of assessment or retrospectively from file review for 241 adult stalkers (91% male) referred to a community-based forensic mental health service. Interrater reliability was high for stalker type, and moderate-to-substantial for risk judgments and domain scores. Evidence for predictive validity and discrimination between stalking recidivists and nonrecidivists for risk judgments depended on follow-up duration. Discrimination was moderate (area under the curve = 0.66-0.68) and positive and negative predictive values good over the full follow-up period ( Mdn = 170.43 weeks). At 6 months, discrimination was better than chance only for judgments related to stalking of new victims (area under the curve = 0.75); however, high-risk stalkers still reoffended against their original victim(s) 2 to 4 times as often as low-risk stalkers. Implications for the clinical utility and refinement of the SRP are discussed.

  16. Investigations and technical reviews on the reliability of prediction for migration behavior of radionuclides (H15)

    International Nuclear Information System (INIS)

    Tachikawa, Hirokazu

    2004-02-01

    The research plan of the validation on effects of colloids and organic materials drawn up by the Japan Nuclear Fuel Cycle Development Institute and its' research outcome were reviewed comprehensively by an expert committee established in the Nuclear Safety Research Association. Additionally, experimental investigations for the migration behavior of actinide elements and fission products in engineering barrier and natural barrier medias, and for solution chemistry of them were carried out and discussed by the committee, in order to enhance the reliability of prediction for migration behavior of radionuclides. The subjects investigated by the expert committee are as follows: (1) Research on solubility products of An(III) hydroxide. (2) Diffusion and electromigration behavior of plutonium in buffer material. (3) Analysis of the nuclide solubility in compacted bentonite. (4) Survey of the actual contamination by alpha emitters in steel materials. (author)

  17. Design of preventive maintenance system using the reliability engineering and maintenance value stream mapping methods in PT. XYZ

    Science.gov (United States)

    Sembiring, N.; Panjaitan, N.; Angelita, S.

    2018-02-01

    PT. XYZ is a company owned by non-governmental organizations engaged in the field of production of rubber processing becoming crumb rubber. Part of the production is supported by some of machines and interacting equipment to achieve optimal productivity. Types of the machine that are used in the production process are Conveyor Breaker, Breaker, Rolling Pin, Hammer Mill, Mill Roll, Conveyor, Shredder Crumb, and Dryer. Maintenance system in PT. XYZ is corrective maintenance i.e. repairing or replacing the engine components after the crash on the machine. Replacement of engine components on corrective maintenance causes the machine to stop operating during the production process is in progress. The result is in the loss of production time due to the operator must replace the damaged engine components. The loss of production time can impact on the production targets which were not reached and lead to high loss costs. The cost for all components is Rp. 4.088.514.505. This cost is really high just for maintaining a Mill Roll Machine. Therefore PT. XYZ is needed to do preventive maintenance i.e. scheduling engine components and improving maintenance efficiency. The used methods are Reliability Engineering and Maintenance Value Stream Mapping (MVSM). The needed data in this research are the interval of time damage to engine components, opportunity cost, labor cost, component cost, corrective repair time, preventive repair time, Mean Time To Opportunity (MTTO), Mean Time To Repair (MTTR), and Mean Time To Yield (MTTY). In this research, the critical components of Mill Roll machine are Spier, Bushing, Bearing, Coupling and Roll. Determination of damage distribution, reliability, MTTF, cost of failure, cost of preventive, current state map, and future state map are done so that the replacement time for each critical component with the lowest maintenance cost and preparation of Standard Operation Procedure (SOP) are developed. For the critical component that has been

  18. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    Science.gov (United States)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  19. Designing high availability systems DFSS and classical reliability techniques with practical real life examples

    CERN Document Server

    Taylor, Zachary

    2014-01-01

    A practical, step-by-step guide to designing world-class, high availability systems using both classical and DFSS reliability techniques Whether designing telecom, aerospace, automotive, medical, financial, or public safety systems, every engineer aims for the utmost reliability and availability in the systems he, or she, designs. But between the dream of world-class performance and reality falls the shadow of complexities that can bedevil even the most rigorous design process. While there are an array of robust predictive engineering tools, there has been no single-source guide to understan

  20. Evaluating the reliability of predictions made using environmental transfer models

    International Nuclear Information System (INIS)

    1989-01-01

    The development and application of mathematical models for predicting the consequences of releases of radionuclides into the environment from normal operations in the nuclear fuel cycle and in hypothetical accident conditions has increased dramatically in the last two decades. This Safety Practice publication has been prepared to provide guidance on the available methods for evaluating the reliability of environmental transfer model predictions. It provides a practical introduction of the subject and a particular emphasis has been given to worked examples in the text. It is intended to supplement existing IAEA publications on environmental assessment methodology. 60 refs, 17 figs, 12 tabs

  1. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  2. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    Science.gov (United States)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  3. Reliability Engineering Handbook

    Science.gov (United States)

    1964-06-01

    Operations Research for Management, Volume 11 by McCloskey and Coppinger, pp 329-339. ( Actuarial 24. Barlow, Rt. E., and Hunter, L. C., approach to failure...Engineers ( ASME ). (Pro- ceedings published) National Convention on Aeronautical Electronics - Sponsored by I.R.E. Annual Meeting - American

  4. System reliability developments in structural engineering

    International Nuclear Information System (INIS)

    Moses, F.

    1982-01-01

    Two major limitations occur in present structural design code developments utilizing reliability theory. The notional system reliabilities may differ significantly from calibrated component reliabilities. Secondly, actual failures are often due to gross errors not reflected in most present code formats. A review is presented of system reliability methods and further new concepts are developed. The incremental load approach for identifying and expressing collapse modes is expanded by employing a strategy to identify and enumerate the significant structural collapse modes. It further isolates the importance of critical components in the system performance. Ductile and brittle component behavior and strength correlation is reflected in the system model and illustrated in several examples. Modal combinations for the system reliability are also reviewed. From these developments a system factor can be addended to component safety checking equations. Values may be derived from system behavior by substituting in a damage model which accounts for the response range from component failure to collapse. Other strategies are discussed which emphasize quality assurance during design and in-service inspection for components whose behavior is critical to the system reliability. (Auth.)

  5. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  6. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The object of this research is to develop an in-service life-monitor system for the prediction of the remaining component and system life of aircraft engines. The...

  7. Medical device reliability and associated areas

    National Research Council Canada - National Science Library

    Dhillon, Balbir S

    2000-01-01

    .... Although the history of reliability engineering can be traced back to World War II, the application of reliability engineering concepts to medical devices is a fairly recent idea that goes back to the latter part of the 1960s when many publications on medical device reliability emerged. Today, a large number of books on general reliability have been...

  8. The application of cognitive models to the evaluation and prediction of human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.; Reason, J.T.

    1986-01-01

    The first section of the paper provides a brief overview of a number of important principles relevant to human reliability modeling that have emerged from cognitive models, and presents a synthesis of these approaches in the form of a Generic Error Modeling System (GEMS). The next section illustrates the application of GEMS to some well known nuclear power plant (NPP) incidents in which human error was a major contributor. The way in which design recommendations can emerge from analyses of this type is illustrated. The third section describes the use of cognitive models in the classification of human errors for prediction and data collection purposes. The final section addresses the predictive modeling of human error as part of human reliability assessment in Probabilistic Risk Assessment

  9. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  10. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  11. Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat.

    Science.gov (United States)

    Banyard, Harry G; Nosaka, Kazunori; Haff, G Gregory

    2017-07-01

    Banyard, HG, Nosaka, K, and Haff, GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res 31(7): 1897-1904, 2017-This study investigated the reliability and validity of the load-velocity relationship to predict the free-weight back squat one repetition maximum (1RM). Seventeen strength-trained males performed three 1RM assessments on 3 separate days. All repetitions were performed to full depth with maximal concentric effort. Predicted 1RMs were calculated by entering the mean concentric velocity of the 1RM (V1RM) into an individualized linear regression equation, which was derived from the load-velocity relationship of 3 (20, 40, 60% of 1RM), 4 (20, 40, 60, 80% of 1RM), or 5 (20, 40, 60, 80, 90% of 1RM) incremental warm-up sets. The actual 1RM (140.3 ± 27.2 kg) was very stable between 3 trials (ICC = 0.99; SEM = 2.9 kg; CV = 2.1%; ES = 0.11). Predicted 1RM from 5 warm-up sets up to and including 90% of 1RM was the most reliable (ICC = 0.92; SEM = 8.6 kg; CV = 5.7%; ES = -0.02) and valid (r = 0.93; SEE = 10.6 kg; CV = 7.4%; ES = 0.71) of the predicted 1RM methods. However, all predicted 1RMs were significantly different (p ≤ 0.05; ES = 0.71-1.04) from the actual 1RM. Individual variation for the actual 1RM was small between trials ranging from -5.6 to 4.8% compared with the most accurate predictive method up to 90% of 1RM, which was more variable (-5.5 to 27.8%). Importantly, the V1RM (0.24 ± 0.06 m·s) was unreliable between trials (ICC = 0.42; SEM = 0.05 m·s; CV = 22.5%; ES = 0.14). The load-velocity relationship for the full depth free-weight back squat showed moderate reliability and validity but could not accurately predict 1RM, which was stable between trials. Thus, the load-velocity relationship 1RM prediction method used in this study cannot accurately modify sessional training loads because of large V1RM variability.

  12. Reliability Standards of Complex Engineering Systems

    Science.gov (United States)

    Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.

    2017-11-01

    Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.

  13. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines Area of Interest 1.0: Reliable and Affordable Control Systems

    Science.gov (United States)

    Myers, William; Winter, Steve

    2006-01-01

    The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.

  14. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    Science.gov (United States)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2018-01-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  15. FPGA implementation of predictive degradation model for engine oil lifetime

    Science.gov (United States)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  16. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, Wayne [Cummins, Inc., Columbus, IN (United States); Rutland, Chris [Univ. of Wisconsin, Madison, WI (United States); Rohlfing, Eric [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Singh, Gurpreet [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; McIlroy, Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  17. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  18. Review and evaluation of Transamerica Delaval, Inc., diesel engine reliability and operability: Grand Gulf Nuclear Station Unit 1

    International Nuclear Information System (INIS)

    1984-07-01

    PNL and its consultants conclude that the TDI diesel engines at the GGNS have the needed operability and reliability to fulfill their intended (auxiliary) emergency power function for the first refueling cycle. This conclusion is reached with a number of understandings regarding limits to the engine requirements, NRC concurrence with MP and L findings/conclusions regarding items to be supplied to NRC, limitations on the engine Brake Mean Effective Pressure (BMEP), and MP and L's implementation of the modifications to their proposed surveillance and maintenance program

  19. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.

    Science.gov (United States)

    Soleimani, Hossein; Hensman, James; Saria, Suchi

    2017-08-21

    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.

  20. Semiconductor measurement technology: reliability technology for cardiac pacemakers 2: a workshop report, 1976

    International Nuclear Information System (INIS)

    Schafft, H.A.

    1977-01-01

    Summaries are presented of 12 invited talks on the following topics: the procurement and assurance of high reliability electronic parts, leak rate and moisture measurements, pacemaker batteries, and pacemaker leads. The workshop, second in a series, was held in response to strong interest expressed by the pacemaker community to address technical questions relevant to the enhancement and assurance of cardiac pacemaker reliability. Discussed at the workshop were a process validation wafer concept for assuring process uniformity in device chips; screen tests for assuring reliable electronic parts; reliability prediction; reliability comparison of semiconductor technologies; mechanisms of short-circuiting dendritic growths; details of helium and radioisotope leak test methods; a study to correlate package leak rates, as measured with test gasses, and actual moisture infusion; battery life prediction; microcalorimetric measurements to nondestructively evaluate batteries for pacemakers; and an engineer's and a physician's view of the present status of pacemaker leads. References are included with most of the reports

  1. Artificial neural network approach to predicting engine-out emissions and performance parameters of a turbo charged diesel engine

    Directory of Open Access Journals (Sweden)

    Özener Orkun

    2013-01-01

    Full Text Available This study details the artificial neural network (ANN modelling of a diesel engine to predict the torque, power, brake-specific fuel consumption and pollutant emissions, including carbon dioxide, carbon monoxide, nitrogen oxides, total hydrocarbons and filter smoke number. To collect data for training and testing the neural network, experiments were performed on a four cylinder, four stroke compression ignition engine. A total of 108 test points were run on a dynamometer. For the first part of this work, a parameter packet was used as the inputs for the neural network, and satisfactory regression was found with the outputs (over ~95%, excluding total hydrocarbons. The second stage of this work addressed developing new networks with additional inputs for predicting the total hydrocarbons, and the regression was raised from 75 % to 90 %. This study shows that the ANN approach can be used for accurately predicting characteristic values of an internal combustion engine and that the neural network performance can be increased using additional related input data.

  2. Nonparametric predictive inference for reliability of a k-out-of-m:G system with multiple component types

    International Nuclear Information System (INIS)

    Aboalkhair, Ahmad M.; Coolen, Frank P.A.; MacPhee, Iain M.

    2014-01-01

    Nonparametric predictive inference for system reliability has recently been presented, with specific focus on k-out-of-m:G systems. The reliability of systems is quantified by lower and upper probabilities of system functioning, given binary test results on components, taking uncertainty about component functioning and indeterminacy due to limited test information explicitly into account. Thus far, systems considered were series configurations of subsystems, with each subsystem i a k i -out-of-m i :G system which consisted of only one type of components. Key results are briefly summarized in this paper, and as an important generalization new results are presented for a single k-out-of-m:G system consisting of components of multiple types. The important aspects of redundancy and diversity for such systems are discussed. - Highlights: • New results on nonparametric predictive inference for system reliability. • Prediction of system reliability based on test data for components. • New insights on system redundancy optimization and diversity. • Components that appear inferior in tests may be included to enhance redundancy

  3. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 4: HARP Output (HARPO) graphics display user's guide

    Science.gov (United States)

    Sproles, Darrell W.; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.

  4. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  5. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  6. Predicting performance in a first engineering calculus course: implications for interventions

    Science.gov (United States)

    Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia

    2015-01-01

    At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take Engineering Analysis I, a calculus-based engineering analysis course. After the first two weeks of the semester, many students end up leaving Engineering Analysis I and moving to a mathematics intervention course. In an effort to retain more students in Engineering Analysis I, the department collaborated with university academic support services to create a summer intervention programme. Students were targeted for the summer programme based on their score on an algebra readiness exam (ARE). In a previous study, the ARE scores were found to be a significant predictor of retention and performance in Engineering Analysis I. This study continues that work, analysing data from students who entered the engineering school in the fall of 2012. The predictive validity of the ARE was verified, and a hierarchical linear regression model was created using math American College Testing (ACT) scores, ARE scores, summer intervention participation, and several metacognitive and motivational factors as measured by subscales of the Motivated Strategies for Learning Questionnaire. In the regression model, ARE score explained an additional 5.1% of the variation in exam performance in Engineering Analysis I beyond math ACT score. Students took the ARE before and after the summer interventions and scores were significantly higher following the intervention. However, intervention participants nonetheless had lower exam scores in Engineering Analysis I. The following factors related to motivation and learning strategies were found to significantly predict exam scores in Engineering Analysis I: time and study environment management, internal goal orientation, and test anxiety. The adjusted R2 for the full model was 0.42, meaning that the

  7. A method for uncertainty quantification in the life prediction of gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lodeby, K.; Isaksson, O.; Jaervstraat, N. [Volvo Aero Corporation, Trolhaettan (Sweden)

    1998-12-31

    A failure in an aircraft jet engine can have severe consequences which cannot be accepted and high requirements are therefore raised on engine reliability. Consequently, assessment of the reliability of life predictions used in design and maintenance are important. To assess the validity of the predicted life a method to quantify the contribution to the total uncertainty in the life prediction from different uncertainty sources is developed. The method is a structured approach for uncertainty quantification that uses a generic description of the life prediction process. It is based on an approximate error propagation theory combined with a unified treatment of random and systematic errors. The result is an approximate statistical distribution for the predicted life. The method is applied on life predictions for three different jet engine components. The total uncertainty became of reasonable order of magnitude and a good qualitative picture of the distribution of the uncertainty contribution from the different sources was obtained. The relative importance of the uncertainty sources differs between the three components. It is also highly dependent on the methods and assumptions used in the life prediction. Advantages and disadvantages of this method is discussed. (orig.) 11 refs.

  8. Prediction of knock limited operating conditions of a natural gas engine

    International Nuclear Information System (INIS)

    Soylu, Seref

    2005-01-01

    Computer models of engine processes are valuable tools for predicting and analyzing engine performance and allow exploration of many engine design alternatives in an inexpensive fashion. In the present work, a zero-dimensional, two zone thermodynamic model was used to determine the knock limited operating conditions of a natural gas engine. Experimentally based burning rate models were used for flame initiation and propagation calculations. A knock model was incorporated with the zero-dimensional model. Comparison of the measured and calculated cylinder pressure data indicated that the model is able to match the measured cylinder pressure data with less than 8% error in magnitudes if the computations are started at the experimental spark timing. The knock predictions agreed with the measurements also. With the established knock model, it is possible not only to investigate whether knock is observed with changing operating and design parameters, but also to evaluate their effects on the maximum possible knock intensity

  9. Appraisal of the PREP, KITT, and SAMPLE computer codes for the evaluation of the reliability characteristics of engineered systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P; White, R F

    1976-01-01

    For the probabilistic approach to reactor safety assessment by the use of event tree and fault tree techniques it is essential to be able to estimate the probabilities of failure of the various engineered safety features provided to mitigate the effects of postulated accident sequences. The PREP, KITT and SAMPLE computer codes, which incorporate Kinetic Tree Theory, perform these calculations and have been used extensively to evaluate the reliability characteristics of engineered safety features of American nuclear reactors. Working versions of these computer codes are now available in SRD, and this report explains the merits, capabilities and ease of application of the PREP, KITT, and SAMPLE programs for the solution of system reliability problems.

  10. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  11. Prediction of the production of nitrogen oxide (NOx) in turbojet engines

    Science.gov (United States)

    Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo

    Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO

  12. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  13. A generic method for assignment of reliability scores applied to solvent accessibility predictions

    DEFF Research Database (Denmark)

    Petersen, Bent; Petersen, Thomas Nordahl; Andersen, Pernille

    2009-01-01

    : The performance of the neural networks was evaluated on a commonly used set of sequences known as the CB513 set. An overall Pearson's correlation coefficient of 0.72 was obtained, which is comparable to the performance of the currently best public available method, Real-SPINE. Both methods associate a reliability...... comparing the Pearson's correlation coefficient for the upper 20% of predictions sorted according to reliability. For this subset, values of 0.79 and 0.74 are obtained using our and the compared method, respectively. This tendency is true for any selected subset....

  14. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology

    Directory of Open Access Journals (Sweden)

    Mario Ganau

    2018-02-01

    Full Text Available This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI, a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc., the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.

  15. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  16. Using Long-Short-Term-Memory Recurrent Neural Networks to Predict Aviation Engine Vibrations

    Science.gov (United States)

    ElSaid, AbdElRahman Ahmed

    This thesis examines building viable Recurrent Neural Networks (RNN) using Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations. The different networks are trained on a large database of flight data records obtained from an airline containing flights that suffered from excessive vibration. RNNs can provide a more generalizable and robust method for prediction over analytical calculations of engine vibration, as analytical calculations must be solved iteratively based on specific empirical engine parameters, and this database contains multiple types of engines. Further, LSTM RNNs provide a "memory" of the contribution of previous time series data which can further improve predictions of future vibration values. LSTM RNNs were used over traditional RNNs, as those suffer from vanishing/exploding gradients when trained with back propagation. The study managed to predict vibration values for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and 10.19% mean absolute error, respectively. These neural networks provide a promising means for the future development of warning systems so that suitable actions can be taken before the occurrence of excess vibration to avoid unfavorable situations during flight.

  17. Development of equipment reliability process using predictive technologies at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Taniguchi, Yuji; Sakuragi, Futoshi; Hamada, Seiichi

    2014-01-01

    Development of equipment reliability(ER) process, specifically for predictive maintenance (PdM) technologies integrated condition based maintenance (CBM) process, at Hamaoka Nuclear Power Station is introduced in this paper. Integration of predictive maintenance technologies such as vibration, oil analysis and thermo monitoring is more than important to establish strong maintenance strategies and to direct a specific technical development. In addition, a practical example of CBM is also presented to support the advantage of the idea. (author)

  18. The reliability, validity, sensitivity, specificity and predictive values of the Chinese version of the Rowland Universal Dementia Assessment Scale.

    Science.gov (United States)

    Chen, Chia-Wei; Chu, Hsin; Tsai, Chia-Fen; Yang, Hui-Ling; Tsai, Jui-Chen; Chung, Min-Huey; Liao, Yuan-Mei; Chi, Mei-Ju; Chou, Kuei-Ru

    2015-11-01

    The purpose of this study was to translate the Rowland Universal Dementia Assessment Scale into Chinese and to evaluate the psychometric properties (reliability and validity) and the diagnostic properties (sensitivity, specificity and predictive values) of the Chinese version of the Rowland Universal Dementia Assessment Scale. The accurate detection of early dementia requires screening tools with favourable cross-cultural linguistic and appropriate sensitivity, specificity, and predictive values, particularly for Chinese-speaking populations. This was a cross-sectional, descriptive study. Overall, 130 participants suspected to have cognitive impairment were enrolled in the study. A test-retest for determining reliability was scheduled four weeks after the initial test. Content validity was determined by five experts, whereas construct validity was established by using contrasted group technique. The participants' clinical diagnoses were used as the standard in calculating the sensitivity, specificity, positive predictive value and negative predictive value. The study revealed that the Chinese version of the Rowland Universal Dementia Assessment Scale exhibited a test-retest reliability of 0.90, an internal consistency reliability of 0.71, an inter-rater reliability (kappa value) of 0.88 and a content validity index of 0.97. Both the patients and healthy contrast group exhibited significant differences in their cognitive ability. The optimal cut-off points for the Chinese version of the Rowland Universal Dementia Assessment Scale in the test for mild cognitive impairment and dementia were 24 and 22, respectively; moreover, for these two conditions, the sensitivities of the scale were 0.79 and 0.76, the specificities were 0.91 and 0.81, the areas under the curve were 0.85 and 0.78, the positive predictive values were 0.99 and 0.83 and the negative predictive values were 0.96 and 0.91 respectively. The Chinese version of the Rowland Universal Dementia Assessment Scale

  19. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  20. ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction

    International Nuclear Information System (INIS)

    Toledo, Maria Luíza Guerra de; Freitas, Marta A.; Colosimo, Enrico A.; Gilardoni, Gustavo L.

    2015-01-01

    An appropriate maintenance policy is essential to reduce expenses and risks related to equipment failures. A fundamental aspect to be considered when specifying such policies is to be able to predict the reliability of the systems under study, based on a well fitted model. In this paper, the classes of models Arithmetic Reduction of Age and Arithmetic Reduction of Intensity are explored. Likelihood functions for such models are derived, and a graphical method is proposed for model selection. A real data set involving failures in trucks used by a Brazilian mining is analyzed considering models with different memories. Parameters, namely, shape and scale for Power Law Process, and the efficiency of repair were estimated for the best fitted model. Estimation of model parameters allowed us to derive reliability estimators to predict the behavior of the failure process. These results are a valuable information for the mining company and can be used to support decision making regarding preventive maintenance policy. - Highlights: • Likelihood functions for imperfect repair models are derived. • A goodness-of-fit technique is proposed as a tool for model selection. • Failures in trucks owned by a Brazilian mining are modeled. • Estimation allowed deriving reliability predictors to forecast the future failure process of the trucks

  1. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  2. Physics-based process modeling, reliability prediction, and design guidelines for flip-chip devices

    Science.gov (United States)

    Michaelides, Stylianos

    Flip Chip on Board (FCOB) and Chip-Scale Packages (CSPs) are relatively new technologies that are being increasingly used in the electronic packaging industry. Compared to the more widely used face-up wirebonding and TAB technologies, flip-chips and most CSPs provide the shortest possible leads, lower inductance, higher frequency, better noise control, higher density, greater input/output (I/O), smaller device footprint and lower profile. However, due to the short history and due to the introduction of several new electronic materials, designs, and processing conditions, very limited work has been done to understand the role of material, geometry, and processing parameters on the reliability of flip-chip devices. Also, with the ever-increasing complexity of semiconductor packages and with the continued reduction in time to market, it is too costly to wait until the later stages of design and testing to discover that the reliability is not satisfactory. The objective of the research is to develop integrated process-reliability models that will take into consideration the mechanics of assembly processes to be able to determine the reliability of face-down devices under thermal cycling and long-term temperature dwelling. The models incorporate the time and temperature-dependent constitutive behavior of various materials in the assembly to be able to predict failure modes such as die cracking and solder cracking. In addition, the models account for process-induced defects and macro-micro features of the assembly. Creep-fatigue and continuum-damage mechanics models for the solder interconnects and fracture-mechanics models for the die have been used to determine the reliability of the devices. The results predicted by the models have been successfully validated against experimental data. The validated models have been used to develop qualification and test procedures for implantable medical devices. In addition, the research has helped develop innovative face

  3. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  4. Transparent reliability model for fault-tolerant safety systems

    International Nuclear Information System (INIS)

    Bodsberg, Lars; Hokstad, Per

    1997-01-01

    A reliability model is presented which may serve as a tool for identification of cost-effective configurations and operating philosophies of computer-based process safety systems. The main merit of the model is the explicit relationship in the mathematical formulas between failure cause and the means used to improve system reliability such as self-test, redundancy, preventive maintenance and corrective maintenance. A component failure taxonomy has been developed which allows the analyst to treat hardware failures, human failures, and software failures of automatic systems in an integrated manner. Furthermore, the taxonomy distinguishes between failures due to excessive environmental stresses and failures initiated by humans during engineering and operation. Attention has been given to develop a transparent model which provides predictions which are in good agreement with observed system performance, and which is applicable for non-experts in the field of reliability

  5. Reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Krog, Grethe Risum; Rieneck, Klaus

    2005-01-01

    The objective of this study was to establish a reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women. This test is needed for future prenatal Rh prophylaxis.......The objective of this study was to establish a reliable test for prenatal prediction of fetal RhD type using maternal plasma from RhD negative women. This test is needed for future prenatal Rh prophylaxis....

  6. General Inattentiveness Is a Long-Term Reliable Trait Independently Predictive of Psychological Health

    DEFF Research Database (Denmark)

    Jensen, Christian Gaden; Niclasen, Janni; Vangkilde, Signe

    2016-01-01

    The Mindful Attention Awareness Scale (MAAS) measures perceived degree of inattentiveness in different contexts and is often used as a reversed indicator of mindfulness. MAAS is hypothesized to reflect a psychological trait or disposition when used outside attentional training contexts, but the l......The Mindful Attention Awareness Scale (MAAS) measures perceived degree of inattentiveness in different contexts and is often used as a reversed indicator of mindfulness. MAAS is hypothesized to reflect a psychological trait or disposition when used outside attentional training contexts......, but the long-term test-retest reliability of MAAS scores is virtually untested. It is unknown whether MAAS predicts psychological health after controlling for standardized socioeconomic status classifications. First, MAAS translated to Danish was validated psychometrically within a randomly invited healthy...... adult community sample (N = 490). Factor analysis confirmed that MAAS scores quantified a unifactorial construct of excellent composite reliability and consistent convergent validity. Structural equation modeling revealed that MAAS scores contributed independently to predicting psychological distress...

  7. Rotary engine performance limits predicted by a zero-dimensional model

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  8. System Noise Prediction of the DGEN 380 Turbofan Engine

    Science.gov (United States)

    Berton, Jeffrey J.

    2015-01-01

    The DGEN 380 is a small, separate-flow, geared turbofan. Its manufacturer, Price Induction, is promoting it for a small twinjet application in the emerging personal light jet market. Smaller, and producing less thrust than other entries in the industry, Price Induction is seeking to apply the engine to a 4- to 5-place twinjet designed to compete in an area currently dominated by propeller-driven airplanes. NASA is considering purchasing a DGEN 380 turbofan to test new propulsion noise reduction technologies in a relevant engine environment. To explore this possibility, NASA and Price Induction have signed a Space Act Agreement and have agreed to cooperate on engine acoustic testing. Static acoustic measurements of the engine were made by NASA researchers during July, 2014 at the Glenn Research Center. In the event that a DGEN turbofan becomes a NASA noise technology research testbed, it is in the interest of NASA to develop procedures to evaluate engine system noise metrics. This report documents the procedures used to project the DGEN static noise measurements to flight conditions and the prediction of system noise of a notional airplane powered by twin DGEN engines.

  9. Application of subset simulation in reliability estimation of underground pipelines

    International Nuclear Information System (INIS)

    Tee, Kong Fah; Khan, Lutfor Rahman; Li, Hongshuang

    2014-01-01

    This paper presents a computational framework for implementing an advanced Monte Carlo simulation method, called Subset Simulation (SS) for time-dependent reliability prediction of underground flexible pipelines. The SS can provide better resolution for low failure probability level of rare failure events which are commonly encountered in pipeline engineering applications. Random samples of statistical variables are generated efficiently and used for computing probabilistic reliability model. It gains its efficiency by expressing a small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment and compared with direct Monte Carlo simulation (MCS) method. Reliability of a buried flexible steel pipe with time-dependent failure modes, namely, corrosion induced deflection, buckling, wall thrust and bending stress has been assessed in this study. The analysis indicates that corrosion induced excessive deflection is the most critical failure event whereas buckling is the least susceptible during the whole service life of the pipe. The study also shows that SS is robust method to estimate the reliability of buried pipelines and it is more efficient than MCS, especially in small failure probability prediction

  10. Discrete Address Beacon System (DABS) Software System Reliability Modeling and Prediction.

    Science.gov (United States)

    1981-06-01

    Service ( ATARS ) module because of its interim status. Reliability prediction models for software modules were derived and then verified by matching...System (A’iCR3BS) and thus can be introduced gradually and economically without ma jor olper- ational or procedural change. Since DABS uses monopulse...lineanaly- sis tools or are ured during maintenance or pre-initialization were not modeled because they are not part of the mission software. The ATARS

  11. Collection of methods for reliability and safety engineering

    International Nuclear Information System (INIS)

    Fussell, J.B.; Rasmuson, D.M.; Wilson, J.R.; Burdick, G.R.; Zipperer, J.C.

    1976-04-01

    The document presented contains five reports each describing a method of reliability and safety engineering. Report I provides a conceptual framework for the study of component malfunctions during system evaluations. Report II provides methods for locating groups of critical component failures such that all the component failures in a given group can be caused to occur by the occurrence of a single separate event. These groups of component failures are called common cause candidates. Report III provides a method for acquiring and storing system-independent component failure logic information. The information stored is influenced by the concepts presented in Report I and also includes information useful in locating common cause candidates. Report IV puts forth methods for analyzing situations that involve systems which change character in a predetermined time sequence. These phased missions techniques are applicable to the hypothetical ''accident chains'' frequently analyzed for nuclear power plants. Report V presents a unified approach to cause-consequence analysis, a method of analysis useful during risk assessments. This approach, as developed by the Danish Atomic Energy Commission, is modified to reflect the format and symbology conventionally used for other types of analysis of nuclear reactor systems

  12. Reliability prediction for structures under cyclic loads and recurring inspections

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Jr

    2009-06-01

    Full Text Available This work presents a methodology for determining the reliability of fracture control plans for structures subjected to cyclic loads. It considers the variability of the parameters involved in the problem, such as initial flaw and crack growth curve. The probability of detection (POD curve of the field non-destructive inspection method and the condition/environment are used as important factors for structural confidence. According to classical damage tolerance analysis (DTA, inspection intervals are based on detectable crack size and crack growth rate. However, all variables have uncertainties, which makes the final result totally stochastic. The material properties, flight loads, engineering tools and even the reliability of inspection methods are subject to uncertainties which can affect significantly the final maintenance schedule. The present methodology incorporates all the uncertainties in a simulation process, such as Monte Carlo, and establishes a relationship between the reliability of the overall maintenance program and the proposed inspection interval, forming a “cascade” chart. Due to the scatter, it also defines the confidence level of the “acceptable” risk. As an example, the damage tolerance analysis (DTA results are presented for the upper cockpit longeron splice bolt of the BAF upgraded F-5EM. In this case, two possibilities of inspection intervals were found: one that can be characterized as remote risk, with a probability of failure (integrity nonsuccess of 1 in 10 million, per flight hour; and other as extremely improbable, with a probability of nonsuccess of 1 in 1 billion, per flight hour, according to aviation standards. These two results are compared with the classical military airplane damage tolerance requirements.

  13. A predictive model for knock onset in spark-ignition engines with cooled EGR

    International Nuclear Information System (INIS)

    Chen, Longhua; Li, Tie; Yin, Tao; Zheng, Bin

    2014-01-01

    Highlights: • Ratio of specific heats should be used as variable in development of knock model. • Increases in EGR or excess air ratio lead to increases in the ratio of specific heats. • The widely-used Douaud–Eyzat correlation fails to predict the knock onset when increasing EGR. • The newly developed model including p, T, EGR and λ as variables predicts the knock onset accurately. • Effect of temperature at intake valve closure on the predicted knock onset is relatively small. - Abstract: A predictive knock model is crucial for one dimensional (1-D) engine cycle simulation that has been proven to be a powerful tool in both optimization of the conceptual design and reduction of calibration efforts in development of spark-ignition (SI) engines. With application of advanced technologies such as exhaust gas recirculation (EGR) in modern SI engines, update of knock model is needed to give an acceptable prediction of knock onset. In this study, bench tests of a turbocharged gasoline SI engine with cooled EGR system operated under knocking conditions were conducted, the cylinder pressure traces were analyzed by the band-pass filtering technique, and the crank angle of knock onset was determined by the signal energy ratio (SER) and image processing method. A knock model considering multi-variable effects including pressure, temperature, EGR ratio and excess air ratio (λ) is formulated and calibrated with the experimental data using the multi-island genetic algorithm (GA). The calculation method of the end gas temperature, the impacts of the ratio of specific heats as well as the temperature at the intake valve closure on the end gas temperature are discussed. The performance of the new model is compared with the widely-used phenomenological knock models such as Douaud–Eyzat model and Hoepke model. While the widely-used knock models fail to give acceptable predictions when increasing EGR with fuel enrichment operations, the new model predicts the knock

  14. Reliability Prediction Of System And Component Of Process System Of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Sitorus Pane, Jupiter

    2001-01-01

    The older the reactor the higher the probability of the system and components suffer from loss of function or degradation. This phenomenon occurred because of wear, corrosion, and fatigue. Study on component reliability was generally performed deterministically and statistically. This paper would describe an analysis of using statistical method, i.e. regression Cox, in order to predict the reliability of the components and their environmental influence's factors. The result showed that the dynamics, non safety related, and mechanic components have higher risk of failure, whereas static, safety related, and electric have lower risk of failures. The relative risk value for variable of components dynamics, quality, dummy 1 and dummy 2 are of 1.54, 1.59, 1.50, and 0.83 compare to other components type with each variable. Component with the higher risk have lower reliability than lower one

  15. Dynamic reliability assessment and prediction for repairable systems with interval-censored data

    International Nuclear Information System (INIS)

    Peng, Yizhen; Wang, Yu; Zi, YanYang; Tsui, Kwok-Leung; Zhang, Chuhua

    2017-01-01

    The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented. - Highlights: • A new multiple imputation strategy was developed to derive the PDF of missing data. • A new order statistic model was developed to simplify the imputation procedure. • The parameters of the order statistic model were iteratively inferred by MCEM. • A real cases study was conducted to verify the effectiveness of the proposed method.

  16. Prediction of major pollutants emission in direct injection dual-fuel diesel and natural-gas engines

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Kashani, B.O.

    2000-01-01

    The dual-fuel diesel engine is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the dual-fuel diesel engine needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons and Carbon Monoxide (CO) emission, because the concentration of these pollutants are higher than that of the baseline diesel engine. Furthermore, the combustion process in a typical dual-fuel diesel engine tends to be complex, showing combination of the problems encountered both in diesel and spark ignition engines. In this work, a computer code has been modified for simulation of dual-fuel diesel engine combustion process. This model simulates dual-fuel diesel engine combustion by using a Multi-Zone Combustion Model for diesel pilot jet combustion and a conventional spark ignition combustion model for modelling of combustion of premixed gas/air charge. Also, in this model, there are four submodels for prediction of major emission pollutants such as: Unburnt Hydrocarbons, No, Co and soot which are emitted from dual-fuel diesel engine. For prediction of formation and oxidation rates of pollutants, relevant s conventional kinetically-controlled mechanisms and mass balances are used. the model has been verified by experimental data obtained from a heavy-duty truck and bus diesel engines. The comparison shows that, there exist good agreements between the experimental and predicted results from the dual-fuel diesel engine

  17. Further developments in performance prediction techniques of adiabatic diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Rasihhan, Y

    1990-01-01

    The engine cycle simulation program 'SPICE', developed at Bath University, has been used extensively for insulated diesel engine research. The present study introduces more comprehensive engine heat transfer models thus enabling us to study the insulated engine heat transfer and performance characteristics in more detail. The new version of 'SPICE' separates the gas to wall heat transfer into two parts, convective and radiative. For this purpose, a detailed radiative heat transfer model which considers both the flame (gas and soot) and wall to wall radiative heat transfer is written. The previous engine resistance model is refined and replaced by a more detailed resistance model which considers piston-liner conduction heat transfer and 2-D heat flow in the liner. The wall surface temperature swing is also included in the engine heat transfer calculations which is quite significant in low conductivity ceramic insulated engines. A 1-D finite difference model is written for the transient heat transfer region of the wall and linked to the engine resistance model. This new version of 'SPICE' is used to predict the insulated engine heat transfer and performance for the experimental Petter PH1W engine for various insulation levels and schemes. An answer to the controversy of increase in engine heat loss with insulation is looked for. The effect of wall deposits on engine heat transfer and its significance for the insulated engine is highlighted. (Author).

  18. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-05-14

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  19. The prediction of reliability and residual life of reactor pressure components

    International Nuclear Information System (INIS)

    Nemec, J.; Antalovsky, S.

    1978-01-01

    The paper deals with the problem of PWR pressure components reliability and residual life evaluation and prediction. A physical model of damage cumulation which serves as a theoretical basis for all considerations presents two major aspects. The first one describes the dependence of the degree of damage in the crack leading-edge in pressure components on the reactor system load-time history, i.e. on the number of transient loads. Both stages, fatigue crack initiation and growth through the wall until the critical length is reached, are investigated. The crack is supposed to initiate at the flaws in a strength weld joint or in the bimetallic weld of the base ferritic steel and the austenitic stainless overlay cladding. The growth rates of developed cracks are analysed in respect to different load-time histories. Important cyclic properties of some steels are derived from the low-cycle fatigue theory. The second aspect is the load-time history-dependent process of precipitation, deformation and radiation aging, characterized entirely by the critical crack-length value mentioned above. The fracture point, defined by the equation ''crack-length=critical value'' and hence the residual life, can be evaluated using this model and verified by in-service inspection. The physical model described is randomized by considering all the parameters of the model as random. Monte Carlo methods are applied and fatigue crack initiation and growth is simulated. This permits evaluation of the reliability and residual life of the component. The distributions of material and load-time history parameters are needed for such simulation. Both the deterministic and computer-simulated probabilistic predictions of reliability and residual life are verified by prior-to-failure sequential testing of data coming from in-service NDT periodical inspections. (author)

  20. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  1. What Reliability Engineers Should Know about Space Radiation Effects

    Science.gov (United States)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the

  2. Overview of system reliability analyses for PSA

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2012-01-01

    Overall explanations are given for many matters relating to system reliability analysis. Systems engineering, Operations research, Industrial engineering, Quality control are briefly explained. Many system reliability analysis methods including advanced methods are introduced. Discussions are given for FMEA, reliability block diagram, Markov model, Petri net, Bayesian network, goal tree success tree, dynamic flow graph methodology, cell-to-cell mapping technique, the GO-FLOW and others. (author)

  3. Standards in reliability and safety engineering

    International Nuclear Information System (INIS)

    O'Connor, Patrick

    1998-01-01

    This article explains how the highest 'world class' levels of reliability and safety are achieved, by adherence to the basic principles of excellence in design, production, support and maintenance, by continuous improvement, and by understanding that excellence and improvement lead to reduced costs. These principles are contrasted with the methods that have been developed and standardised, particularly military standards for reliability, ISO9000, and safety case regulations. The article concludes that the formal, standardised approaches are misleading and counterproductive, and recommends that they be replaced by a philosophy based on the realities of human performance

  4. Influence of flowfield and vehicle parameters on engineering aerothermal methods

    Science.gov (United States)

    Wurster, Kathryn E.; Zoby, E. Vincent; Thompson, Richard A.

    1989-01-01

    The reliability and flexibility of three engineering codes used in the aerosphace industry (AEROHEAT, INCHES, and MINIVER) were investigated by comparing the results of these codes with Reentry F flight data and ground-test heat-transfer data for a range of cone angles, and with the predictions obtained using the detailed VSL3D code; the engineering solutions were also compared. In particular, the impact of several vehicle and flow-field parameters on the heat transfer and the capability of the engineering codes to predict these results were determined. It was found that entropy, pressure gradient, nose bluntness, gas chemistry, and angle of attack all affect heating levels. A comparison of the results of the three engineering codes with Reentry F flight data and with the predictions obtained of the VSL3D code showed a very good agreement in the regions of the applicability of the codes. It is emphasized that the parameters used in this study can significantly influence the actual heating levels and the prediction capability of a code.

  5. Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.

    Science.gov (United States)

    Park, Juyoung; Kang, Kyungtae

    2014-09-01

    Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.

  6. Genotyping cows for the reference increase reliability of genomic prediction in a small breed

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Sørensen, Anders Christian; Lund, Mogens Sandø

    2013-01-01

    We hypothesized that adding cows to the reference population in a breed with a small number of reference bulls would increase reliabilities of genomic breeding values and genetic gain. We tested this premise by comparing two strategies for maintaining the reference population for genetic gain......, inbreeding and reliabilities of genomic predictions: 1) Adding 60 progeny tested bulls each year (B), and 2) in addition to 60 progeny tested bulls, adding 2,000 genotyped cows per year (C). Two breeding schemes were tested: 1) A turbo scheme (T) with only genotyped young bulls used intensively, and 2...... compared to the H-B, at the same level of ∆F. T-C yielded 15% higher ∆G compared t o T-B. Changing the breeding scheme from H-B to H-C increased ∆G by 5.5%. The lowest ∆F was observed with genotyping of cows. Reliabilities of GEBV in the C schemes showed a steep increase in reliability during the first...

  7. Numerical Prediction of CCV in a PFI Engine using a Parallel LES Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ameen, Muhsin M; Mirzaeian, Mohsen; Millo, Federico; Som, Sibendu

    2017-10-15

    Cycle-to-cycle variability (CCV) is detrimental to IC engine operation and can lead to partial burn, misfire, and knock. Predicting CCV numerically is extremely challenging due to two key reasons. Firstly, high-fidelity methods such as large eddy simulation (LES) are required to accurately resolve the incylinder turbulent flowfield both spatially and temporally. Secondly, CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. Ameen et al. (Int. J. Eng. Res., 2017) developed a parallel perturbation model (PPM) approach to dissociate this long time-scale problem into several shorter timescale problems. The strategy is to perform multiple single-cycle simulations in parallel by effectively perturbing the initial velocity field based on the intensity of the in-cylinder turbulence. This strategy was demonstrated for motored engine and it was shown that the mean and variance of the in-cylinder flowfield was captured reasonably well by this approach. In the present study, this PPM approach is extended to simulate the CCV in a fired port-fuel injected (PFI) SI engine. Two operating conditions are considered – a medium CCV operating case corresponding to 2500 rpm and 16 bar BMEP and a low CCV case corresponding to 4000 rpm and 12 bar BMEP. The predictions from this approach are also shown to be similar to the consecutive LES cycles. Both the consecutive and PPM LES cycles are observed to under-predict the variability in the early stage of combustion. The parallel approach slightly underpredicts the cyclic variability at all stages of combustion as compared to the consecutive LES cycles. However, it is shown that the parallel approach is able to predict the coefficient of variation (COV) of the in-cylinder pressure and burn rate related parameters with sufficient accuracy, and is also able to predict the qualitative trends in CCV with changing operating conditions. The convergence of the statistics

  8. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  9. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  10. Predicting emergency diesel starting performance

    International Nuclear Information System (INIS)

    DeBey, T.M.

    1989-01-01

    The US Department of Energy effort to extend the operational lives of commercial nuclear power plants has examined methods for predicting the performance of specific equipment. This effort focuses on performance prediction as a means for reducing equipment surveillance, maintenance, and outages. Realizing these goals will result in nuclear plants that are more reliable, have lower maintenance costs, and have longer lives. This paper describes a monitoring system that has been developed to predict starting performance in emergency diesels. A prototype system has been built and tested on an engine at Sandia National Laboratories. 2 refs

  11. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics

    Directory of Open Access Journals (Sweden)

    Kang Rui

    2016-06-01

    Full Text Available In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-based reliability metrics, possibility-theory-based reliability metrics (posbist reliability and uncertainty-theory-based reliability metrics (belief reliability. It is pointed out that a qualified reliability metric that is able to consider the effect of epistemic uncertainty needs to (1 compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2 satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.

  12. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  13. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    Science.gov (United States)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  14. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  15. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  16. Prediction of biodiesel ignition delay in a diesel engine using artificial neural networks

    International Nuclear Information System (INIS)

    Piloto-Rodríguez, Ramón; Sánchez-Borroto, Yisel

    2017-01-01

    Ignition delay is one of the most important parameters of the combustion process and have a strong influence in exhaust emissions and engines performance. In the present work, the results of the mathematical modeling of ignition delay through artificial neural networks are shown. The modeling starts from input values that cover thermodynamic variables, engines parameters and biodiesel properties. The model obtained is only useful for biodiesel samples and several neural network algorithms were applied in order to predict the ignition delay. From its correlation coefficient, prediction capability and lowest absolute error, the best model was selected. Among other network’s input parameters, the cetane number was taken into account, also previously predicted by the use of ANN. (author)

  17. Prediction of DI diesel engine emissions by multidimensional simulation; Tajigen simulation ni yoru DI diesel engine no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Y; Zhang, L; Hamaguchi, K; Minami, T; Yokota, K [Isuzu Advanced Engineering Center, Tokyo (Japan)

    1997-10-01

    To achieve the goal of using multidimensional simulation as a useful tool for predicting engine emissions in the stage of design or choice chamber shape and nozzle specifications, much work is needed to improve and modify calculation models. In this study , the spray model of KIVA-II have been modified using experimentally measured penetration of spray liquid phase. The modified KIVA-II was applied to a HSDI engine with different chambers and injectors. As a result of comparing with experiments, it was found that the KIVA-II using the modified spray model could relatively predict the change of emissions. 6 refs., 12 figs., 2 tabs.

  18. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE...THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA THESIS Presented to the Faculty Department of Systems Engineering and...036 A METHOD TO PREDICT COMPRESSOR STALL IN THE TF34-100 TURBOFAN ENGINE UTILIZING REAL-TIME PERFORMANCE DATA Shuxiang ‘Albert’ Li, BS

  19. Crankshaft and component adequacy: Update of analysis and testing developed for nuclear standby engines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains eight selections. Some of the topics are: reliability improvement of diesels in nuclear standby applications, diesel engine crankshaft torsional vibrations, pendulum dampers, transportation fatalities,and diesel component life predictions

  20. Reliability Engineering for ATLAS Petascale Data Processing on the Grid

    CERN Document Server

    Golubkov, D V; The ATLAS collaboration; Vaniachine, A V

    2012-01-01

    The ATLAS detector is in its third year of continuous LHC running taking data for physics analysis. A starting point for ATLAS physics analysis is reconstruction of the raw data. First-pass processing takes place shortly after data taking, followed later by reprocessing of the raw data with updated software and calibrations to improve the quality of the reconstructed data for physics analysis. Data reprocessing involves a significant commitment of computing resources and is conducted on the Grid. The reconstruction of one petabyte of ATLAS data with 1B collision events from the LHC takes about three million core-hours. Petascale data processing on the Grid involves millions of data processing jobs. At such scales, the reprocessing must handle a continuous stream of failures. Automatic job resubmission recovers transient failures at the cost of CPU time used by the failed jobs. Orchestrating ATLAS data processing applications to ensure efficient usage of tens of thousands of CPU-cores, reliability engineering ...

  1. Suitability review of FMEA and reliability analysis for digital plant protection system and digital engineered safety features actuation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)

    2000-11-15

    Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the

  2. [Reliability and validity of the Braden Scale for predicting pressure sore risk].

    Science.gov (United States)

    Boes, C

    2000-12-01

    For more accurate and objective pressure sore risk assessment various risk assessment tools were developed mainly in the USA and Great Britain. The Braden Scale for Predicting Pressure Sore Risk is one such example. By means of a literature analysis of German and English texts referring to the Braden Scale the scientific control criteria reliability and validity will be traced and consequences for application of the scale in Germany will be demonstrated. Analysis of 4 reliability studies shows an exclusive focus on interrater reliability. Further, even though examination of 19 validity studies occurs in many different settings, such examination is limited to the criteria sensitivity and specificity (accuracy). The range of sensitivity and specificity level is 35-100%. The recommended cut off points rank in the field of 10 to 19 points. The studies prove to be not comparable with each other. Furthermore, distortions in these studies can be found which affect accuracy of the scale. The results of the here presented analysis show an insufficient proof for reliability and validity in the American studies. In Germany, the Braden scale has not yet been tested under scientific criteria. Such testing is needed before using the scale in different German settings. During the course of such testing, construction and study procedures of the American studies can be used as a basis as can the problems be identified in the analysis presented below.

  3. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    OpenAIRE

    Hai An; Ling Zhou; Hui Sun

    2016-01-01

    Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...

  4. Do in-training evaluation reports deserve their bad reputations? A study of the reliability and predictive ability of ITER scores and narrative comments.

    Science.gov (United States)

    Ginsburg, Shiphra; Eva, Kevin; Regehr, Glenn

    2013-10-01

    Although scores on in-training evaluation reports (ITERs) are often criticized for poor reliability and validity, ITER comments may yield valuable information. The authors assessed across-rotation reliability of ITER scores in one internal medicine program, ability of ITER scores and comments to predict postgraduate year three (PGY3) performance, and reliability and incremental predictive validity of attendings' analysis of written comments. Numeric and narrative data from the first two years of ITERs for one cohort of residents at the University of Toronto Faculty of Medicine (2009-2011) were assessed for reliability and predictive validity of third-year performance. Twenty-four faculty attendings rank-ordered comments (without scores) such that each resident was ranked by three faculty. Mean ITER scores and comment rankings were submitted to regression analyses; dependent variables were PGY3 ITER scores and program directors' rankings. Reliabilities of ITER scores across nine rotations for 63 residents were 0.53 for both postgraduate year one (PGY1) and postgraduate year two (PGY2). Interrater reliabilities across three attendings' rankings were 0.83 for PGY1 and 0.79 for PGY2. There were strong correlations between ITER scores and comments within each year (0.72 and 0.70). Regressions revealed that PGY1 and PGY2 ITER scores collectively explained 25% of variance in PGY3 scores and 46% of variance in PGY3 rankings. Comment rankings did not improve predictions. ITER scores across multiple rotations showed decent reliability and predictive validity. Comment ranks did not add to the predictive ability, but correlation analyses suggest that trainee performance can be measured through these comments.

  5. Interactive reliability assessment using an integrated reliability data bank

    International Nuclear Information System (INIS)

    Allan, R.N.; Whitehead, A.M.

    1986-01-01

    The logical structure, techniques and practical application of a computer-aided technique based on a microcomputer using floppy disc Random Access Files is described. This interactive computational technique is efficient if the reliability prediction program is coupled directly to a relevant source of data to create an integrated reliability assessment/reliability data bank system. (DG)

  6. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  7. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  8. Predicting on-site environmental impacts of municipal engineering works

    International Nuclear Information System (INIS)

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Macarulla, Marcel

    2014-01-01

    The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering project documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also

  9. Predicting on-site environmental impacts of municipal engineering works

    Energy Technology Data Exchange (ETDEWEB)

    Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu; Macarulla, Marcel, E-mail: marcel.macarulla@upc.edu

    2014-01-15

    The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering project documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also

  10. Gearbox Reliability Collaborative Gearbox 3 Planet Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    The Gearbox Reliability Collaborative gearbox was redesigned to improve its load-sharing characteristics and predicted fatigue life. The most important aspect of the redesign was to replace the cylindrical roller bearings with preloaded tapered roller bearings in the planetary section. Similar to previous work, the strain gages installed on the planet tapered roller bearings were calibrated in a load frame. This report describes the calibration tests and provides the factors necessary to convert the measured units from dynamometer testing to bearing loads, suitable for comparison to engineering models.

  11. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  12. Reliability of dipstick assay in predicting urinary tract infection

    Directory of Open Access Journals (Sweden)

    Anith Kumar Mambatta

    2015-01-01

    Full Text Available Aims: Urine dipstick analysis is a quick, cheap and a useful test in predicting Urinary Tract Infection (UTI in hospitalized patients. Our aim is to evaluate the reliability (sensitivity of urine dipstick analysis against urine culture in the diagnosis of UTI. Materials and Methods: Patients admitted to our hospital suspected of having UTI, with positive urine cultures were included in this study from a 2-year period (January 2011 to December 2012. Dipstick urinalysis was done using multistix 10 SG (Siemens and clinitek advantus analyzer. The sensitivity of dipstick nitrites, leukocyte esterase and blood in these culture-positive UTI patients was calculated retrospectively. Results: Urine dipstick analysis of 635 urine culture-positive patients was studied. The sensitivity of nitrite alone and leukocyte esterase alone were 23.31% and 48.5%, respectively. The sensitivity of blood alone in positive urine culture was 63.94%, which was the highest sensitivity for a single screening test. The presence of leukocyte esterase and/or blood increased the sensitivity to 72.28%. The sensitivity was found to be the highest when nitrite, leukocyte and blood were considered together. Conclusions: Nitrite test and leukocyte esterase test when used individually is not reliable to rule out UTI. Hence, symptomatic UTI patients with negative dipstick assay should be subjected to urine culture for a proper management.

  13. The construction of life prediction models for the design of Stirling engine heater components

    Science.gov (United States)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  14. Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel

    International Nuclear Information System (INIS)

    Nunes de Faria, Mário M.; Vargas Machuca Bueno, Juan P.; Ayad, Sami M.M. Elmassalami; Belchior, Carlos R. Pereira

    2017-01-01

    Highlights: • A 0-D model for performance prediction of SI ICE fueled with biogas is proposed. • Relative difference between simulated and experimental values was under 5%. • Can be adapted for different biogas compositions and operating ranges. • Could be a valuable tool for predicting trends and guiding experimentation. • Is suitable for use with biogas supplies in developing regions. - Abstract: Biogas found its way from developing countries and is now an alternative to fossil fuels in internal combustion engines and with the advantage of lower greenhouse gas emissions. However, its use in gas engines requires engine modifications or adaptations that may be costly. This paper reports the results of experimental performance and emissions tests of an engine-generator unit fueled with biogas produced in a sewage plant in Brazil, operating under different loads, and with suitable engine modifications. These emissions and performance results were in agreement with the literature and it was confirmed that the penalties to engine performance were more significant than emission reduction in the operating range tested. Furthermore, a zero dimensional simulation model was employed to predict performance characteristics. Moreover, a differential thermodynamic equation system was solved, obtaining the pressure inside the cylinder as a function of the crank angle for different engine conditions. Mean effective pressure and indicated power were also obtained. The results of simulation and experimental tests of the engine in similar conditions were compared and the model validated. Although several simplifying assumptions were adopted and empirical correlations were used for Wiebe function, the model was adequate in predicting engine performance as the relative difference between simulated and experimental values was lower than 5%. The model can be adapted for use with different raw or enriched biogas compositions and could prove to be a valuable tool to guide

  15. How reliable must advanced nondestructive testing be? A concept for the prediction, validation and raised quality of NDT

    International Nuclear Information System (INIS)

    Nockemann, C.; Tillack, G.R.; Schnitger, D.; Heidt, H.

    1995-01-01

    A concept of the harmonic integration of the following three mainstays of the reliability of ndt is proposed: 1. Theoretical prediction of the reliability as a function of physical parameter by computer modelling of the test problem concerned and the ndt process; maximisation by variation of the parameters. 2. Experimental evaluation of the reliability of ndt processes by the application of statistical methods to test practice. 3. Increasing the reliability by the combination of several ndt methods in a standard DV environment and European interconnection and provision of a distributed databank system. International exchange of experience via telecommunication. (orig.) [de

  16. Advanced solutions for operational reliability improvements

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, K [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    A great number of new technical tools are today developed for improved operational reliability of machines and industrial equipment. Examples of such techniques and tools recently developed at the Technical Research Centre of Finland (VTT) are: metallographic approach for steam-piping lifetime estimation, an expert system AURORA for corrosion prediction and material selection, an automatic image-processing-based on-line wear particle analysis system, microsensors for condition monitoring, a condition monitoring and expert system, CEPDIA, for the diagnosis of centrifugal pumps, a machine tool analysis and diagnostic expert system, non-leakage magnetic fluid seals with extended lifetime and diamond-like surface coatings on components with decreased friction and wear properties. A hyperbook-supported holistic approach to problem solving in maintenance and reliability engineering has been developed to help the user achieve a holistic understanding of the problem and its relationships, to navigate among the several technical tools and methods available, and to find those suitable for his application. (orig.)

  17. Advanced solutions for operational reliability improvements

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, K. [VTT Manufacturing Technology, Espoo (Finland)

    1997-12-31

    A great number of new technical tools are today developed for improved operational reliability of machines and industrial equipment. Examples of such techniques and tools recently developed at the Technical Research Centre of Finland (VTT) are: metallographic approach for steam-piping lifetime estimation, an expert system AURORA for corrosion prediction and material selection, an automatic image-processing-based on-line wear particle analysis system, microsensors for condition monitoring, a condition monitoring and expert system, CEPDIA, for the diagnosis of centrifugal pumps, a machine tool analysis and diagnostic expert system, non-leakage magnetic fluid seals with extended lifetime and diamond-like surface coatings on components with decreased friction and wear properties. A hyperbook-supported holistic approach to problem solving in maintenance and reliability engineering has been developed to help the user achieve a holistic understanding of the problem and its relationships, to navigate among the several technical tools and methods available, and to find those suitable for his application. (orig.)

  18. Equipment Reliability Program in NPP Krsko

    International Nuclear Information System (INIS)

    Skaler, F.; Djetelic, N.

    2006-01-01

    Operation that is safe, reliable, effective and acceptable to public is the common message in a mission statement of commercial nuclear power plants (NPPs). To fulfill these goals, nuclear industry, among other areas, has to focus on: 1 Human Performance (HU) and 2 Equipment Reliability (EQ). The performance objective of HU is as follows: The behaviors of all personnel result in safe and reliable station operation. While unwanted human behaviors in operations mostly result directly in the event, the behavior flaws either in the area of maintenance or engineering usually cause decreased equipment reliability. Unsatisfied Human performance leads even the best designed power plants into significant operating events, which can be found as well-known examples in nuclear industry. Equipment reliability is today recognized as the key to success. While the human performance at most NPPs has been improving since the start of WANO / INPO / IAEA evaluations, the open energy market has forced the nuclear plants to reduce production costs and operate more reliably and effectively. The balance between these two (opposite) goals has made equipment reliability even more important for safe, reliable and efficient production. Insisting on on-line operation by ignoring some principles of safety could nowadays in a well-developed safety culture and human performance environment exceed the cost of electricity losses. In last decade the leading USA nuclear companies put a lot of effort to improve equipment reliability primarily based on INPO Equipment Reliability Program AP-913 at their NPP stations. The Equipment Reliability Program is the key program not only for safe and reliable operation, but also for the Life Cycle Management and Aging Management on the way to the nuclear power plant life extension. The purpose of Equipment Reliability process is to identify, organize, integrate and coordinate equipment reliability activities (preventive and predictive maintenance, maintenance

  19. Survey of industry methods for producing highly reliable software

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Persons, W.L.

    1994-11-01

    The Nuclear Reactor Regulation Office of the US Nuclear Regulatory Commission is charged with assessing the safety of new instrument and control designs for nuclear power plants which may use computer-based reactor protection systems. Lawrence Livermore National Laboratory has evaluated the latest techniques in software reliability for measurement, estimation, error detection, and prediction that can be used during the software life cycle as a means of risk assessment for reactor protection systems. One aspect of this task has been a survey of the software industry to collect information to help identify the design factors used to improve the reliability and safety of software. The intent was to discover what practices really work in industry and what design factors are used by industry to achieve highly reliable software. The results of the survey are documented in this report. Three companies participated in the survey: Computer Sciences Corporation, International Business Machines (Federal Systems Company), and TRW. Discussions were also held with NASA Software Engineering Lab/University of Maryland/CSC, and the AIAA Software Reliability Project

  20. A Probabilistic Design Methodology for a Turboshaft Engine Overall Performance Analysis

    Directory of Open Access Journals (Sweden)

    Min Chen

    2014-05-01

    Full Text Available In reality, the cumulative effect of the many uncertainties in engine component performance may stack up to affect the engine overall performance. This paper aims to quantify the impact of uncertainty in engine component performance on the overall performance of a turboshaft engine based on Monte-Carlo probabilistic design method. A novel probabilistic model of turboshaft engine, consisting of a Monte-Carlo simulation generator, a traditional nonlinear turboshaft engine model, and a probability statistical model, was implemented to predict this impact. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the engine overall performance prediction. This paper also shows that, taking into consideration the uncertainties in component performance, the turbine entry temperature and overall pressure ratio based on the probabilistic design method should increase by 0.76% and 8.33%, respectively, compared with the ones of deterministic design method. The comparison shows that the probabilistic approach provides a more credible and reliable way to assign the design space for a target engine overall performance.

  1. Status of the Ford program to evaluate ceramics for stator applications in automotive gas turbine engines

    Science.gov (United States)

    Trela, W.

    1980-01-01

    The paper reviews the progress of the major technical tasks of the DOE/NASA/Ford program Evaluation of Ceramics for Stator Applications in Automotive Gas Turbine Engines: reliability prediction, stator fabrication, material characterization, and stator evaluation. A fast fracture reliability model was prepared for a one-piece ceramic stator. Periodic inspection results are presented.

  2. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  3. The engineering project and reliability research of the safety interlock slow control system in BESIII

    International Nuclear Information System (INIS)

    Zhang Yinhong; Zhao Jingwei; Li Xiaonan; Xie Xiaoxi; Gao Cuishan; Bai Jingzhi; Chen Xihui; Min Jian; Nie Zhendong

    2008-01-01

    The new safety interlock slow control system of BESIII is designed to ensure that the BESIII interior equipments and the accelerator control center to work in coordination, and to guarantee the safety of the operating staff and all the important equipments at the same time. This paper introduces the hardware and software design of safety interlock system from the engineering requirements angle, including a detailed research on the software implementation technique of the state machine on PLC and the reliability of the system. (authors)

  4. HitPredict version 4: comprehensive reliability scoring of physical protein?protein interactions from more than 100 species

    OpenAIRE

    L?pez, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein?protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein?protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of p...

  5. Reliability of self-reported childhood physical abuse by adults and factors predictive of inconsistent reporting.

    Science.gov (United States)

    McKinney, Christy M; Harris, T Robert; Caetano, Raul

    2009-01-01

    Little is known about the reliability of self-reported child physical abuse (CPA) or CPA reporting practices. We estimated reliability and prevalence of self-reported CPA and identified factors predictive of inconsistent CPA reporting among 2,256 participants using surveys administered in 1995 and 2000. Reliability of CPA was fair to moderate (kappa = 0.41). Using a positive report from either survey, the prevalence of moderate (61.8%) and severe (12.0%) CPA was higher than at either survey alone. Compared to consistent reporters of having experienced CPA, inconsistent reporters were less likely to be > or = 30 years old (vs. 18-29) or Black (vs. White) and more likely to have report one type (vs. > or = 2) of CPA. These findings may assist researchers conducting and interpreting studies of CPA.

  6. Predictive piston motion control in a free-piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Jones, E.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-05-15

    A piston motion controller for a free-piston internal combustion engine is presented. To improve dynamic performance in the control of the piston motion and engine compression ratio, the controller response is determined from a prediction of engine top dead centre error rather than the measured value from the previous cycle. The proposed control approach showed superior performance compared with that of standard PI feedback control known from the literature due to a reduced control action time delay. The manipulation of fuel injection timing to reduce in-cylinder pressure peaks and cycle-to-cycle variations was also studied, indicating that with the piston motion estimation, the injection timing is a powerful control variable for this purpose. (author)

  7. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  8. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  9. Basic tuning of hydrogen powered car and artificial intelligent prediction of hydrogen engine characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania, 7001 (Australia); Karri, Vishy [Australian College of Kuwait, P.O. Box 1411, Safat 13015 (Kuwait)

    2010-09-15

    Many studies of renewable energy have shown hydrogen is one of the major green energy in the future. This has lead to the development of many automotive application of using hydrogen as a fuel especially in internal combustion engine. Nonetheless, there has been a slow growth and less knowledge details in building up the prototype and control methodology of the hydrogen internal combustion engine. In this paper, The Toyota Corolla 4 cylinder, 1.8l engine running on petrol was systematically modified in such a way that it could be operated on either gasoline or hydrogen at the choice of the driver. Within the scope of this project, several ancillary instruments such as a new inlet manifold, hydrogen fuel injection, storage system and leak detection safety system were implemented. Attention is directed towards special characteristics related to the basic tuning of hydrogen engine such as: air to fuel ratio operating conditions, ignition timing and injection timing in terms of different engine speed and throttle position. Based on the experimental data, a suite of neural network models were tested to accurately predict the effect of different engine operating conditions (speed and throttle position) on the hydrogen powered car engine characteristics. Predictions were found to be {+-}3% to the experimental values for all of case studies. This work provided better understanding of the effect of hydrogen engine characteristic parameters on different engine operating conditions. (author)

  10. Reliability of didactic grades to predict practical skills in an undergraduate dental college in Saudi Arabia.

    Science.gov (United States)

    Zawawi, Khalid H; Afify, Ahmed R; Yousef, Mohammed K; Othman, Hisham I; Al-Dharrab, Ayman A

    2015-01-01

    This longitudinal study was aimed to investigate the association between didactic grades and practical skills for dental students and whether didactic grades can reliability predict the dental students' practical performance. Didactic and practical grades for graduates from the Faculty of Dentistry, King Abdulaziz University, between the years 2009 and 2011 were collected. Four courses were selected: Dental Anatomy, Operative Dentistry, Prosthodontics, and Orthodontics. Pearson product-moment correlation analyses between didactic and practical scores were conducted. There was only a significant correlation between didactic and practical scores for the Dental Anatomy course (Pdidactic scores (Pdidactic and practical scores for all subjects. Based on the findings of this study, the relationship between didactic grades and practical performance is course specific. Didactic grades do not reliably predict the students' practical skills. Measuring practical performances should be independent from didactic grading.

  11. Engineering, maintenance, and initiatives to improve LAMPF beam availability and system reliability

    International Nuclear Information System (INIS)

    Harris, H.W.; DeHaven, R.A.; Hart, V.E.; Parsons, W.M.; Sturrock, J.C.

    1992-01-01

    Two different requirements are driving engineering studies and hardware development to improve LAMPF. The first is concerned with component and system improvements to increase beam availability during the LAMPF production cycle. Hardware changes in RF, power supplies, and magnets are being implemented to increase mean time between failure and reduce time to replace or repair failed units. A joint LAMPF-Industry project is on-going to improve reliability of RF components. A component test stand is being refurbished to include significant development capability. The second approach includes several changes that will increase the duty factor of the existing accelerator. Major changes are being evaluated for replacing the front end of the accelerator. Other changes improving the high brightness capability could result in a new performance plateau for LAMPF. 2 refs., 2 figs

  12. Forecasting systems reliability based on support vector regression with genetic algorithms

    International Nuclear Information System (INIS)

    Chen, K.-Y.

    2007-01-01

    This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error

  13. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  14. Prediction method of seismic residual deformation of caisson quay wall in liquefied foundation

    Science.gov (United States)

    Wang, Li-Yan; Liu, Han-Long; Jiang, Peng-Ming; Chen, Xiang-Xiang

    2011-03-01

    The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.

  15. Prediction of Global Damage and Reliability Based Upon Sequential Identification and Updating of RC Structures Subject to Earthquakes

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Skjærbæk, P. S.; Köylüoglu, H. U.

    The paper deals with the prediction of global damage and future structural reliability with special emphasis on sensitivity, bias and uncertainty of these predictions dependent on the statistically equivalent realizations of the future earthquake. The predictions are based on a modified Clough......-Johnston single-degree-of-freedom (SDOF) oscillator with three parameters which are calibrated to fit the displacement response and the damage development in the past earthquake....

  16. Reliability, Validity, and Predictive Utility of the 25-Item Criminogenic Cognitions Scale (CCS)

    OpenAIRE

    Tangney, June Price; Stuewig, Jeffrey; Furukawa, Emi; Kopelovich, Sarah; Meyer, Patrick; Cosby, Brandon

    2012-01-01

    Theory, research, and clinical reports suggest that moral cognitions play a role in initiating and sustaining criminal behavior. The 25 item Criminogenic Cognitions Scale (CCS) was designed to tap 5 dimensions: Notions of entitlement; Failure to Accept Responsibility; Short-Term Orientation; Insensitivity to Impact of Crime; and Negative Attitudes Toward Authority. Results from 552 jail inmates support the reliability, validity, and predictive utility of the measure. The CCS was linked to cri...

  17. An Engineering Model for Prediction of Waste Incineration in a Dump Combustor

    National Research Council Canada - National Science Library

    Arunajatesan, S

    1997-01-01

    An engineering model that can be used to obtain predictions of axial distributions of temperature and species concentrations in complex flows has been formulated and applied to waste incineration in a dump combustor...

  18. The 6-min push test is reliable and predicts low fitness in spinal cord injury.

    Science.gov (United States)

    Cowan, Rachel E; Callahan, Morgan K; Nash, Mark S

    2012-10-01

    The objective of this study is to assess 6-min push test (6MPT) reliability, determine whether the 6MPT is sensitive to fitness differences, and assess if 6MPT distance predicts fitness level in persons with spinal cord injury (SCI) or disease. Forty individuals with SCI who could self-propel a manual wheelchair completed an incremental arm crank peak oxygen consumption assessment and two 6MPTs across 3 d (37% tetraplegia (TP), 63% paraplegia (PP), 85% men, 70% white, 63% Hispanic, mean age = 34 ± 10 yr, mean duration of injury = 13 ± 10 yr, and mean body mass index = 24 ± 5 kg.m). Intraclass correlation and Bland-Altman plots assessed 6MPT distance (m) reliability. Mann-Whitney U test compared 6MPT distance (m) of high and low fitness groups for TP and PP. The fitness status prediction was developed using N = 30 and validated in N = 10 (validation group (VG)). A nonstatistical prediction approach, below or above a threshold distance (TP = 445 m and PP = 604 m), was validated statistically by binomial logistic regression. Accuracy, sensitivity, and specificity were computed to evaluate the threshold approach. Intraclass correlation coefficients exceeded 0.90 for the whole sample and the TP/PP subsets. High fitness persons propelled farther than low fitness persons for both TP/PP (both P < 0.05). Binomial logistic regression (P < 0.008) predicted the same fitness levels in the VG as the threshold approach. In the VG, overall accuracy was 70%. Eighty-six percent of low fitness persons were correctly identified (sensitivity), and 33% of high fitness persons were correctly identified (specificity). The 6MPT may be a useful tool for SCI clinicians and researchers. 6MPT distance demonstrates excellent reliability and is sensitive to differences in fitness level. 6MPT distances less than a threshold distance may be an effective approach to identify low fitness in person with SCI.

  19. Engineering, maintenance, and new initiatives to improve LAMPF beam availability and system reliability

    International Nuclear Information System (INIS)

    Harris, H.W.; DeHaven, R.A.; Hart, V.E.; Parsons, W.M.; Sturrock, J.C.

    1992-01-01

    Two different requirements are driving engineering studies and hardware development to improve LAMPF. The first is concerned with component and system improvements to increase beam availability during the LAMPF production cycle. Hardware changes in RF, power supplies, and magnets are being implemented to increase mean time between failure and reduce time to replace or repair failed units. A joint LAMPF-Industry project is on-going to improve reliability of RF components. A component test stand is being refurbished to include significant development capability. The second approach includes several changes that will increase the duty factor of the existing accelerator. Major changes are being evaluated for replacing the front end of the accelerator. Other changes improving high brightness capability could result in a new performance plateau for LAMPF

  20. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  1. An application of characteristic function in order to predict reliability and lifetime of aeronautical hardware

    Energy Technology Data Exchange (ETDEWEB)

    Żurek, Józef; Kaleta, Ryszard; Zieja, Mariusz [Air Force Institute of Technology ul. Księcia Bolesława 6 01-494 Warsaw (Poland)

    2016-06-08

    The forecasting of reliability and life of aeronautical hardware requires recognition of many and various destructive processes that deteriorate the health/maintenance status thereof. The aging of technical components of aircraft as an armament system proves of outstanding significance to reliability and safety of the whole system. The aging process is usually induced by many and various factors, just to mention mechanical, biological, climatic, or chemical ones. The aging is an irreversible process and considerably affects (i.e. reduces) reliability and lifetime of aeronautical equipment. Application of the characteristic function of the aging process is suggested to predict reliability and lifetime of aeronautical hardware. An increment in values of diagnostic parameters is introduced to formulate then, using the characteristic function and after some rearrangements, the partial differential equation. An analytical dependence for the characteristic function of the aging process is a solution to this equation. With the inverse transformation applied, the density function of the aging of aeronautical hardware is found. Having found the density function, one can determine the aeronautical equipment’s reliability and lifetime. The in-service collected or the life tests delivered data are used to attain this goal. Coefficients in this relationship are found using the likelihood function.

  2. An application of characteristic function in order to predict reliability and lifetime of aeronautical hardware

    International Nuclear Information System (INIS)

    Żurek, Józef; Kaleta, Ryszard; Zieja, Mariusz

    2016-01-01

    The forecasting of reliability and life of aeronautical hardware requires recognition of many and various destructive processes that deteriorate the health/maintenance status thereof. The aging of technical components of aircraft as an armament system proves of outstanding significance to reliability and safety of the whole system. The aging process is usually induced by many and various factors, just to mention mechanical, biological, climatic, or chemical ones. The aging is an irreversible process and considerably affects (i.e. reduces) reliability and lifetime of aeronautical equipment. Application of the characteristic function of the aging process is suggested to predict reliability and lifetime of aeronautical hardware. An increment in values of diagnostic parameters is introduced to formulate then, using the characteristic function and after some rearrangements, the partial differential equation. An analytical dependence for the characteristic function of the aging process is a solution to this equation. With the inverse transformation applied, the density function of the aging of aeronautical hardware is found. Having found the density function, one can determine the aeronautical equipment’s reliability and lifetime. The in-service collected or the life tests delivered data are used to attain this goal. Coefficients in this relationship are found using the likelihood function.

  3. Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models

    Science.gov (United States)

    Duffy, Stephen F.

    1997-01-01

    Al single crystal turbine blade material; map a simplistic failure strength envelope of the material; develop a statistically based reliability computer algorithm, verify the reliability model and computer algorithm, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macroanalysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.

  4. Calibration and comparison of the NASA Lewis free-piston Stirling engine model predictions with RE-1000 test data

    Science.gov (United States)

    Geng, Steven M.

    1987-01-01

    A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions.

  5. An overview of the IAEA Safety Series on procedures for evaluating the reliability of predictions made by environmental transfer models

    International Nuclear Information System (INIS)

    Hoffman, F.W.; Hofer, E.

    1987-10-01

    The International Atomic Energy Agency is preparing a Safety Series publication on practical approaches for evaluating the reliability of the predictions made by environmental radiological assessment models. This publication identifies factors that affect the reliability of these predictions and discusses methods for quantifying uncertainty. Emphasis is placed on understanding the quantity of interest specified by the assessment question and distinguishing between stochastic variability and lack of knowledge about either the true value or the true distribution of values for quantity of interest. Among the many approaches discussed, model testing using independent data sets (model validation) is considered the best method for evaluating the accuracy in model predictions. Analytical and numerical methods for propagating the uncertainties in model parameters are presented and the strengths and weaknesses of model intercomparison exercises are also discussed. It is recognized that subjective judgment is employed throughout the entire modelling process, and quantitative reliability statements must be subjectively obtained when models are applied to different situations from those under which they have been tested. (6 refs.)

  6. Long-term Mechanical Circulatory Support System reliability recommendation by the National Clinical Trial Initiative subcommittee.

    Science.gov (United States)

    Lee, James

    2009-01-01

    The Long-Term Mechanical Circulatory Support (MCS) System Reliability Recommendation was published in the American Society for Artificial Internal Organs (ASAIO) Journal and the Annals of Thoracic Surgery in 1998. At that time, it was stated that the document would be periodically reviewed to assess its timeliness and appropriateness within 5 years. Given the wealth of clinical experience in MCS systems, a new recommendation has been drafted by consensus of a group of representatives from the medical community, academia, industry, and government. The new recommendation describes a reliability test methodology and provides detailed reliability recommendations. In addition, the new recommendation provides additional information and clinical data in appendices that are intended to assist the reliability test engineer in the development of a reliability test that is expected to give improved predictions of clinical reliability compared with past test methods. The appendices are available for download at the ASAIO journal web site at www.asaiojournal.com.

  7. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  8. An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method

    Science.gov (United States)

    Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo

    2018-05-01

    The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.

  9. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  10. Proposal for future trend of engine mechatronics in marine diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Higashino, Ichiro; Higashi, Tadanori (Ashiya Univ., Hyogo (Japan))

    1989-02-01

    A future condition of engine mechatronics in the marine diesel engines was proposed. As a result of investigation, it was understood that the diesel engine, as mechatronicalized for the land plant use with an already high technology, is done for the marine use as an amplification of applying that for the land plant use. The marine diesel engine, if only maintaining the good performance in all the operating conditions, is low in mechatronicalized effect as compared with that for the land plant use. Particularly, there is no expectation of effect on the large ship. While as a reply to an inquiry to 100 enterprises, expectation, in the all automation electronic control, was of, in the order of expectation, reliability, automation, energy and labor saving, and anomaly diagnosis, which showed the most desired expectation to be of reliability. In other words, the reliability is presently one of the weakest points to apply the electronic control, which inversely requires the solution for the reliability. However there can be no expectation of decrease in fuel coat due to the mechatronicalization. 13 refs., 1 tab.

  11. How to quantify exposure to traumatic stress? Reliability and predictive validity of measures for cumulative trauma exposure in a post-conflict population.

    Science.gov (United States)

    Wilker, Sarah; Pfeiffer, Anett; Kolassa, Stephan; Koslowski, Daniela; Elbert, Thomas; Kolassa, Iris-Tatjana

    2015-01-01

    While studies with survivors of single traumatic experiences highlight individual response variation following trauma, research from conflict regions shows that almost everyone develops posttraumatic stress disorder (PTSD) if trauma exposure reaches extreme levels. Therefore, evaluating the effects of cumulative trauma exposure is of utmost importance in studies investigating risk factors for PTSD. Yet, little research has been devoted to evaluate how this important environmental risk factor can be best quantified. We investigated the retest reliability and predictive validity of different trauma measures in a sample of 227 Ugandan rebel war survivors. Trauma exposure was modeled as the number of traumatic event types experienced or as a score considering traumatic event frequencies. In addition, we investigated whether age at trauma exposure can be reliably measured and improves PTSD risk prediction. All trauma measures showed good reliability. While prediction of lifetime PTSD was most accurate from the number of different traumatic event types experienced, inclusion of event frequencies slightly improved the prediction of current PTSD. As assessing the number of traumatic events experienced is the least stressful and time-consuming assessment and leads to the best prediction of lifetime PTSD, we recommend this measure for research on PTSD etiology.

  12. Software reliability studies

    Science.gov (United States)

    Hoppa, Mary Ann; Wilson, Larry W.

    1994-01-01

    There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Our research has shown that by improving the quality of the data one can greatly improve the predictions. We are working on methodologies which control some of the randomness inherent in the standard data generation processes in order to improve the accuracy of predictions. Our contribution is twofold in that we describe an experimental methodology using a data structure called the debugging graph and apply this methodology to assess the robustness of existing models. The debugging graph is used to analyze the effects of various fault recovery orders on the predictive accuracy of several well-known software reliability algorithms. We found that, along a particular debugging path in the graph, the predictive performance of different models can vary greatly. Similarly, just because a model 'fits' a given path's data well does not guarantee that the model would perform well on a different path. Further we observed bug interactions and noted their potential effects on the predictive process. We saw that not only do different faults fail at different rates, but that those rates can be affected by the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault interaction.

  13. Application of structural reliability and risk assessment to life prediction and life extension decision making

    International Nuclear Information System (INIS)

    Meyer, T.A.; Balkey, K.R.; Bishop, B.A.

    1987-01-01

    There can be numerous uncertainties involved in performing component life assessments. In addition, sufficient data may be unavailable to make a useful life prediction. Structural Reliability and Risk Assessment (SRRA) is primarily an analytical methodology or tool that quantifies the impact of uncertainties on the structural life of plant components and can address the lack of data in component life prediction. As a prelude to discussing the technical aspects of SRRA, a brief review of general component life prediction methods is first made so as to better develop an understanding of the role of SRRA in such evaluations. SRRA is then presented as it is applied in component life evaluations with example applications being discussed for both nuclear and non-nuclear components

  14. A new solar power output prediction based on hybrid forecast engine and decomposition model.

    Science.gov (United States)

    Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando

    2018-06-12

    Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A study of operational and testing reliability in software reliability analysis

    International Nuclear Information System (INIS)

    Yang, B.; Xie, M.

    2000-01-01

    Software reliability is an important aspect of any complex equipment today. Software reliability is usually estimated based on reliability models such as nonhomogeneous Poisson process (NHPP) models. Software systems are improving in testing phase, while it normally does not change in operational phase. Depending on whether the reliability is to be predicted for testing phase or operation phase, different measure should be used. In this paper, two different reliability concepts, namely, the operational reliability and the testing reliability, are clarified and studied in detail. These concepts have been mixed up or even misused in some existing literature. Using different reliability concept will lead to different reliability values obtained and it will further lead to different reliability-based decisions made. The difference of the estimated reliabilities is studied and the effect on the optimal release time is investigated

  16. Quantitative metal magnetic memory reliability modeling for welded joints

    Science.gov (United States)

    Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng

    2016-03-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  17. 48 CFR 52.248-2 - Value Engineering-Architect-Engineer.

    Science.gov (United States)

    2010-10-01

    ... cycle cost consistent with required performance, reliability, quality, and safety. Value engineering... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Value Engineering... Clauses 52.248-2 Value Engineering—Architect-Engineer. As prescribed in 48.201(f), insert the following...

  18. Ground motion prediction needs for nuclear engineering design

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1985-01-01

    The basic design philosophy of nuclear power plants stipulates that the risk to the public be as low as reasonably achievable. As a result of this philosophy, the seismic design of nuclear power plants has tended, over time, to diverge from that of other engineered structures. The emphasis at the present time is to specify ground motion at a nuclear facility site as realistically as possible and to design all safety-related structures to respond to the specified ground motion in the elastic range. The characteristics of this realistic design ground motion are discussed and present prediction needs identified

  19. An investigation of engine performance parameters and artificial intelligent emission prediction of hydrogen powered car

    International Nuclear Information System (INIS)

    Ho, Tien; Karri, Vishy; Lim, Daniel; Barret, Danny

    2008-01-01

    With the depletion of fossil fuel resources and the potential consequences of climate change due to fossil fuel use, much effort has been put into the search for alternative fuels for transportation. Although there are several potential alternative fuels, which have low impact on the environment, none of these fuels have the ability to be used as the sole 'fuel of the future'. One fuel which is likely to become a part of the over all solution to the transportation fuel dilemma is hydrogen. In this paper, The Toyota Corolla four cylinder, 1.8 l engine running on petrol is systematically converted to run on hydrogen. Several ancillary instruments for measuring various engine operating parameters and emissions are fitted to appraise the performance of the hydrogen car. The effect of hydrogen as a fuel compares with gasoline on engine operating parameters and effect of engine operating parameters on emission characteristics is discussed. Based on the experimental setup, a suite of neural network models were tested to accurately predict the effect of major engine operating conditions on the hydrogen car emissions. Predictions were found to be ±4% to the experimental values. This work provided better understanding of the effect of engine process parameters on emissions. (author)

  20. Pocket Handbook on Reliability

    Science.gov (United States)

    1975-09-01

    exponencial distributions Weibull distribution, -xtimating reliability, confidence intervals, relia- bility growth, 0. P- curves, Bayesian analysis. 20 A S...introduction for those not familiar with reliability and a good refresher for those who are currently working in the area. LEWIS NERI, CHIEF...includes one or both of the following objectives: a) prediction of the current system reliability, b) projection on the system reliability for someI future

  1. Toward scalable parts families for predictable design of biological circuits.

    Science.gov (United States)

    Lucks, Julius B; Qi, Lei; Whitaker, Weston R; Arkin, Adam P

    2008-12-01

    Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts--encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts--independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications.

  2. Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing

    NARCIS (Netherlands)

    Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q.

    2015-01-01

    A methodology, based on accelerated degradation testing, is developed to predict the lifetime of remote phosphor plates used in solid-state lighting (SSL) applications. Both thermal stress and light intensity are used to accelerate degradation reaction in remote phosphor plates. A reliability model,

  3. Identification of Black Spots Based on Reliability Approach

    Directory of Open Access Journals (Sweden)

    Ahmadreza Ghaffari

    2013-12-01

    Full Text Available Identifying crash “black-spots”, “hot-spots” or “high-risk” locations is one of the most important and prevalent concerns in traffic safety and various methods have been devised and presented for solving this issue until now. In this paper, a new method based on the reliability analysis is presented to identify black-spots. Reliability analysis has an ordered framework to consider the probabilistic nature of engineering problems, so crashes with their probabilistic na -ture can be applied. In this study, the application of this new method was compared with the commonly implemented Frequency and Empirical Bayesian methods using simulated data. The results indicated that the traditional methods can lead to an inconsistent prediction due to their inconsider -ation of the variance of the number of crashes in each site and their dependence on the mean of the data.

  4. Predictive modeling of performance of a helium charged Stirling engine using an artificial neural network

    International Nuclear Information System (INIS)

    Özgören, Yaşar Önder; Çetinkaya, Selim; Sarıdemir, Suat; Çiçek, Adem; Kara, Fuat

    2013-01-01

    Highlights: ► Max torque and power values were obtained at 3.5 bar Pch, 1273 K Hst and 1.4:1 r. ► According to ANOVA, the most influential parameter on power was Hst with 48.75%. ► According to ANOVA, the most influential parameter on torque was Hst with 41.78%. ► ANN (R 2 = 99.8% for T, P) was superior to regression method (R 2 = 92% for T, 81% for P). ► LM was the best learning algorithm in predicting both power and torque. - Abstract: In this study, an artificial neural network (ANN) model was developed to predict the torque and power of a beta-type Stirling engine using helium as the working fluid. The best results were obtained by 5-11-7-1 and 5-13-7-1 network architectures, with double hidden layers for the torque and power respectively. For these network architectures, the Levenberg–Marquardt (LM) learning algorithm was used. Engine performance values predicted with the developed ANN model were compared with the actual performance values measured experimentally, and substantially coinciding results were observed. After ANN training, correlation coefficients (R 2 ) of both engine performance values for testing and training data were very close to 1. Similarly, root-mean-square error (RMSE) and mean error percentage (MEP) values for the testing and training data were less than 0.02% and 3.5% respectively. These results showed that the ANN is an acceptable model for prediction of the torque and power of the beta-type Stirling engine

  5. A RANS knock model to predict the statistical occurrence of engine knock

    International Nuclear Information System (INIS)

    D'Adamo, Alessandro; Breda, Sebastiano; Fontanesi, Stefano; Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia

    2017-01-01

    Highlights: • Development of a new RANS model for SI engine knock probability. • Turbulence-derived transport equations for variances of mixture fraction and enthalpy. • Gasoline autoignition delay times calculated from detailed chemical kinetics. • Knock probability validated against experiments on optically accessible GDI unit. • PDF-based knock model accounting for the random nature of SI engine knock in RANS simulations. - Abstract: In the recent past engine knock emerged as one of the main limiting aspects for the achievement of higher efficiency targets in modern spark-ignition (SI) engines. To attain these requirements, engine operating points must be moved as close as possible to the onset of abnormal combustions, although the turbulent nature of flow field and SI combustion leads to possibly ample fluctuations between consecutive engine cycles. This forces engine designers to distance the target condition from its theoretical optimum in order to prevent abnormal combustion, which can potentially damage engine components because of few individual heavy-knocking cycles. A statistically based RANS knock model is presented in this study, whose aim is the prediction not only of the ensemble average knock occurrence, poorly meaningful in such a stochastic event, but also of a knock probability. The model is based on look-up tables of autoignition times from detailed chemistry, coupled with transport equations for the variance of mixture fraction and enthalpy. The transported perturbations around the ensemble average value are based on variable gradients and on a local turbulent time scale. A multi-variate cell-based Gaussian-PDF model is proposed for the unburnt mixture, resulting in a statistical distribution for the in-cell reaction rate. An average knock precursor and its variance are independently calculated and transported; this results in the prediction of an earliest knock probability preceding the ensemble average knock onset, as confirmed by

  6. The effect of corrosion on the structural reliability of steel offshore structures

    International Nuclear Information System (INIS)

    Melchers, Robert E.

    2005-01-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions

  7. The effect of corrosion on the structural reliability of steel offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, Robert E. [Centre for Infrastructure Performance and Reliability, Department of Civil, Surveying and Environmental Engineering, School of Engineering, University of Newcastle, University Drive, Callaghan NSW 2300 (Australia)]. E-mail: rob.melchers@newcastle.edu.au

    2005-10-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions.

  8. Reactor fuel reliability constraints on power shape control

    International Nuclear Information System (INIS)

    Gelhaus, F.; Hallam, J.; Sauar, T.

    1977-01-01

    The level of reliability of fuel rods operating in commercial nuclear power plants has been less than desired for a number of reasons. Several of these causes have been successfully minimized, but pellet-clad interaction failures persist. Since power and power change are dominant parameters in this failure mode, restrictions on operational maneuvers have been recommended by all U. S. fuel suppliers. Slower-than-design allowable maneuvers decrease the plant capacity factor, which can cost a utility up to $7 million per year per plant. To assist utility engineering and operations personnel in their day-to-day decisions in this regard, the Electric Power Research Institute (EPRI) is initiating a project, designated RP895, to develop a fully computerized Power Shape Monitoring System (PSMS) for core-wide fuel rod reliability prediction. This paper describes the PSMS system and details some of the hardware/software requirements as they are now perceived. Salient results from a just-completed complementary EPRI-funded study, RP509, are described; this effort employed hand data acquisition and many man-machine interfaces that will be fully integrated and automated in the PSMS. The capabilities of the PSMS will derive from the use of modern minicomputer hardware and software and from accurate computational modules that enable near-real-time predictive capability

  9. Adaptation and Implementation of Predictive Maintenance Technique with Nondestructive Testing for Power Plants

    International Nuclear Information System (INIS)

    Jung, Gye Jo; Jung, Nam Gun

    2010-01-01

    Many forces are pressuring utilities to reduce operating and maintenance costs without cutting back on reliability or availability. Many utility managers are re-evaluating maintenance strategies to meet these demands. To utilities how to reduce maintenance costs and extent the effective operating life of equipment, predictive maintenance technique can be adapted. Predictive maintenance had three types program which are in-house program, engineering company program and mixed program. We can approach successful predictive maintenance program with 'smart trust' concept

  10. How to quantify exposure to traumatic stress? Reliability and predictive validity of measures for cumulative trauma exposure in a post-conflict population

    Directory of Open Access Journals (Sweden)

    Sarah Wilker

    2015-11-01

    Full Text Available Background: While studies with survivors of single traumatic experiences highlight individual response variation following trauma, research from conflict regions shows that almost everyone develops posttraumatic stress disorder (PTSD if trauma exposure reaches extreme levels. Therefore, evaluating the effects of cumulative trauma exposure is of utmost importance in studies investigating risk factors for PTSD. Yet, little research has been devoted to evaluate how this important environmental risk factor can be best quantified. Methods: We investigated the retest reliability and predictive validity of different trauma measures in a sample of 227 Ugandan rebel war survivors. Trauma exposure was modeled as the number of traumatic event types experienced or as a score considering traumatic event frequencies. In addition, we investigated whether age at trauma exposure can be reliably measured and improves PTSD risk prediction. Results: All trauma measures showed good reliability. While prediction of lifetime PTSD was most accurate from the number of different traumatic event types experienced, inclusion of event frequencies slightly improved the prediction of current PTSD. Conclusions: As assessing the number of traumatic events experienced is the least stressful and time-consuming assessment and leads to the best prediction of lifetime PTSD, we recommend this measure for research on PTSD etiology.

  11. Reliability, Validity, and Predictive Utility of the 25-Item Criminogenic Cognitions Scale (CCS).

    Science.gov (United States)

    Tangney, June Price; Stuewig, Jeffrey; Furukawa, Emi; Kopelovich, Sarah; Meyer, Patrick; Cosby, Brandon

    2012-10-01

    Theory, research, and clinical reports suggest that moral cognitions play a role in initiating and sustaining criminal behavior. The 25 item Criminogenic Cognitions Scale (CCS) was designed to tap 5 dimensions: Notions of entitlement; Failure to Accept Responsibility; Short-Term Orientation; Insensitivity to Impact of Crime; and Negative Attitudes Toward Authority. Results from 552 jail inmates support the reliability, validity, and predictive utility of the measure. The CCS was linked to criminal justice system involvement, self-report measures of aggression, impulsivity, and lack of empathy. Additionally, the CCS was associated with violent criminal history, antisocial personality, and clinicians' ratings of risk for future violence and psychopathy (PCL:SV). Furthermore, criminogenic thinking upon incarceration predicted subsequent official reports of inmate misconduct during incarceration. CCS scores varied somewhat by gender and race. Research and applied uses of CCS are discussed.

  12. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage

    Science.gov (United States)

    Mansour, Joseph M.; Lee, Zhenghong; Welter, Jean F.

    2016-01-01

    In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458

  13. A new model to predict diffusive self-heating during composting incorporating the reaction engineering approach (REA) framework.

    Science.gov (United States)

    Putranto, Aditya; Chen, Xiao Dong

    2017-05-01

    During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    Science.gov (United States)

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  15. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

    Science.gov (United States)

    Reddy, Abhinay; Cho, Jaehoon; Ling, Sam; Reddy, Vamsee; Shlykov, Maksim; Saier, Milton H

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. © 2014 S. Karger AG, Basel.

  16. Field reliability of electronic systems

    International Nuclear Information System (INIS)

    Elm, T.

    1984-02-01

    This report investigates, through several examples from the field, the reliability of electronic units in a broader sense. That is, it treats not just random parts failure, but also inadequate reliability design and (externally and internally) induced failures. The report is not meant to be merely an indication of the state of the art for the reliability prediction methods we know, but also as a contribution to the investigation of man-machine interplay in the operation and repair of electronic equipment. The report firmly links electronics reliability to safety and risk analyses approaches with a broader, system oriented view of reliability prediction and with postfailure stress analysis. It is intended to reveal, in a qualitative manner, the existence of symptom and cause patterns. It provides a background for further investigations to identify the detailed mechanisms of the faults and the remedical actions and precautions for achieving cost effective reliability. (author)

  17. Experiment and prediction on thermal conductivity of Al2O3/ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    Experiment and prediction on thermal conductivity of Al2O3/ZnO nano thin film interface structure. PING YANG*, LIQIANG ZHANG, HAIYING YANG†, DONGJING LIU and XIALONG LI. Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS,. School of Mechanical Engineering, Jiangsu University, ...

  18. Reliability and Availability of Cloud Computing

    CERN Document Server

    Bauer, Eric

    2012-01-01

    A holistic approach to service reliability and availability of cloud computing Reliability and Availability of Cloud Computing provides IS/IT system and solution architects, developers, and engineers with the knowledge needed to assess the impact of virtualization and cloud computing on service reliability and availability. It reveals how to select the most appropriate design for reliability diligence to assure that user expectations are met. Organized in three parts (basics, risk analysis, and recommendations), this resource is accessible to readers of diverse backgrounds and experience le

  19. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software.

    Science.gov (United States)

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.

  20. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software

    Science.gov (United States)

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054

  1. Identifying factors influencing reliability of professional systems

    NARCIS (Netherlands)

    Balasubramanian, A.; Kevrekidis, K.; Sonnemans, P.J.M.; Newby, M.J.

    2008-01-01

    Modern product development strategies call for a more proactive approach to fight intense global competition in terms of technological innovation, shorter time to market, quality and reliability and accommodative price. From a reliability engineering perspective, development managers would like to

  2. Reliability Prediction for Combustors and Turbines. Volume I.

    Science.gov (United States)

    1977-06-01

    comprised of many sophisticated components utilizing the latest in high-strength materials and technology. This is especially true in the turbine component...JT9D engine. This inspection technique makes use of a horoscope probe to look into the en- gine hot section while the engine remains installed in the...engine can now be removed based on results observed with the horoscope . This type of failure can be caused by any of the three primary turbine airfoil

  3. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

    Science.gov (United States)

    2017-10-01

    ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...distribution is unlimited. AD U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Munitions Engineering Technology Center Picatinny...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

  4. Systems engineering approach towards performance monitoring of emergency diesel generator

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Lee, Y.K.

    2013-01-01

    Full-text: Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort. (author)

  5. Weibull distribution in reliability data analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang

    2015-01-01

    Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)

  6. Using personality item characteristics to predict single-item reliability, retest reliability, and self-other agreement

    NARCIS (Netherlands)

    de Vries, Reinout Everhard; Realo, Anu; Allik, Jüri

    2016-01-01

    The use of reliability estimates is increasingly scrutinized as scholars become more aware that test–retest stability and self–other agreement provide a better approximation of the theoretical and practical usefulness of an instrument than its internal reliability. In this study, we investigate item

  7. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  8. Engineering high reliability, low-jitter Marx generators

    International Nuclear Information System (INIS)

    Schneider, L.X.; Lockwood, G.J.

    1985-01-01

    Multimodule pulsed power accelerators typically require high module reliability and nanosecond regime simultaneity between modules. Energy storage using bipolar Marx generators can meet these requirements. Experience gained from computer simulations and the development of the DEMON II Marx generator has led to a fundamental understanding of the operation of these multistage devices. As a result of this research, significant improvements in erection time jitter and reliability have been realized in multistage, bipolar Marx generators. Erection time jitter has been measured as low as 2.5 nanoseconds for the 3.2MV, 16-stage PBFA I Marx and 3.5 nanoseconds for the 6.0MV, 30-stage PBFA II (DEMON II) Marx, while maintaining exceptionally low prefire rates. Performance data are presented from the DEMON II Marx research program, as well as discussions on the use of computer simulations in designing low-jitter Marx generators

  9. Remaining life prediction of I and C cables for reliability assessment of NPP systems

    International Nuclear Information System (INIS)

    Santhosh, T.V.; Ghosh, A.K.; Fernandes, B.G.

    2012-01-01

    Highlights: ► A framework for time dependent reliability prediction of I and C cables for use in PSA of NPP has been developed using stress–strength interference theory. ► The proposed methodology has been illustrated with the accelerated thermal aging data on a typical XLPE cable. ► The behavior of insulation resistance when the degradation process is linear or exponential has also been modeled. ► The reliability index or probability of failure obtained from this approach can be used in system reliability evaluation to account for cable aging for PSA of NPP. - Abstract: Instrumentation and control (I and C) cables are one of the most important components in nuclear power plants (NPPs) because they provide power to safety-related equipment and also to transmit signals to and from various controllers to perform safety operations. I and C cables in NPP are subjected to a variety of aging and degradation stressors that can produce immediate degradation or aging-related mechanisms causing the degradation of cable components over time. Although, there exits several life estimation techniques, currently there is no any standard methodology or an approach toward estimating the time dependent reliability of I and C cables that can be directly used in probabilistic safety assessment (PSA) applications. Hence, the objective of this study is to develop an approach to estimate and confirm the continued acceptable margin in cable insulation life over time subjected to aging. This paper presents a framework based on the structural reliability theory to quantify the life time of I and C cable subjecting to thermal aging. Since cross-linked polyethylene (XLPE) cables are extensively being used in Indian NPPs, the remaining life time evaluations have been carried out for a typical XLPE cable. However, the methodology can be extended to other cables such as polyvinyl chloride (PVC), ethylene propylene rubber (EPR), etc.

  10. Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model

    International Nuclear Information System (INIS)

    Karvountzis-Kontakiotis, Apostolos; Ntziachristos, Leonidas

    2016-01-01

    Highlights: • Presentation of a novel emissions model to predict pollutants formation in engines. • Model based on detailed chemistry, requires no application-specific calibration. • Combined with 0D and 1D combustion models with low additional computational cost. • Demonstrates accurate prediction of cyclic variability of pollutants emissions. - Abstract: This study proposes a novel emissions model for the prediction of spark ignition (SI) engine emissions at homogeneous combustion conditions, using post combustion analysis and a detailed chemistry mechanism. The novel emissions model considers an unburned and a burned zone, where the latter is considered as a homogeneous reactor and is modeled using a detailed chemical kinetics mechanism. This allows detailed emission predictions at high speed practically based only on combustion pressure and temperature profiles, without the need for calibration of the model parameters. The predictability of the emissions model is compared against the extended Zeldovich mechanism for NO and a simplified two-step reaction kinetic model for CO, which both constitute the most widespread existing approaches in the literature. Under various engine load and speed conditions examined, the mean error in NO prediction was 28% for the existing models and less than 1.3% for the new model proposed. The novel emissions model was also used to predict emissions variation due to cyclic combustion variability and demonstrated mean prediction error of 6% and 3.6% for NO and CO respectively, compared to 36% (NO) and 67% (CO) for the simplified model. The results show that the emissions model proposed offers substantial improvements in the prediction of the results without significant increase in calculation time.

  11. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    Science.gov (United States)

    Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana

    2013-04-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  12. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    International Nuclear Information System (INIS)

    Ghiazza, Mara; Carella, Emanuele; Corazzari, Ingrid; Fenoglio, Ivana; Oliaro-Bosso, Simonetta; Viola, Franca

    2013-01-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  13. A critique of reliability prediction techniques for avionics applications

    Directory of Open Access Journals (Sweden)

    Guru Prasad PANDIAN

    2018-01-01

    Full Text Available Avionics (aeronautics and aerospace industries must rely on components and systems of demonstrated high reliability. For this, handbook-based methods have been traditionally used to design for reliability, develop test plans, and define maintenance requirements and sustainment logistics. However, these methods have been criticized as flawed and leading to inaccurate and misleading results. In its recent report on enhancing defense system reliability, the U.S. National Academy of Sciences has recently discredited these methods, judging the Military Handbook (MIL-HDBK-217 and its progeny as invalid and inaccurate. This paper discusses the issues that arise with the use of handbook-based methods in commercial and military avionics applications. Alternative approaches to reliability design (and its demonstration are also discussed, including similarity analysis, testing, physics-of-failure, and data analytics for prognostics and systems health management.

  14. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  15. A new approach for reliability analysis with time-variant performance characteristics

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2013-01-01

    Reliability represents safety level in industry practice and may variant due to time-variant operation condition and components deterioration throughout a product life-cycle. Thus, the capability to perform time-variant reliability analysis is of vital importance in practical engineering applications. This paper presents a new approach, referred to as nested extreme response surface (NERS), that can efficiently tackle time dependency issue in time-variant reliability analysis and enable to solve such problem by easily integrating with advanced time-independent tools. The key of the NERS approach is to build a nested response surface of time corresponding to the extreme value of the limit state function by employing Kriging model. To obtain the data for the Kriging model, the efficient global optimization technique is integrated with the NERS to extract the extreme time responses of the limit state function for any given system input. An adaptive response prediction and model maturation mechanism is developed based on mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-variant reliability analysis can be converted into the time-independent reliability analysis and existing advanced reliability analysis methods can be used. Three case studies are used to demonstrate the efficiency and accuracy of NERS approach

  16. IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES

    Directory of Open Access Journals (Sweden)

    Wojnar Sławomir

    2014-06-01

    Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.

  17. Proposed Reliability/Cost Model

    Science.gov (United States)

    Delionback, L. M.

    1982-01-01

    New technique estimates cost of improvement in reliability for complex system. Model format/approach is dependent upon use of subsystem cost-estimating relationships (CER's) in devising cost-effective policy. Proposed methodology should have application in broad range of engineering management decisions.

  18. RADC Thermal Guide for Reliability Engineers.

    Science.gov (United States)

    1982-06-01

    ABSORBER when standing next to a fireplace. ALL EMISIVITIES I 1F Opaque bodies absorb part and reflect the rest of•PLATES A 6 1 FT x1 FT /’ (o.3o~.,,, the...heat is trans- PHYSICAL- ferred. Heat transfer by conduction occurs as a DESIG N result of the transfer of molecular kinetic energy. M PHeat transfer...substance, describing its ability forced into an aircraft by the aircraft’s motion, to conduct heat as a consequence of molecular RELIABILITY-The

  19. Quality and Reliability of Large-Eddy Simulations II

    CERN Document Server

    Salvetti, Maria Vittoria; Meyers, Johan; Sagaut, Pierre

    2011-01-01

    The second Workshop on "Quality and Reliability of Large-Eddy Simulations", QLES2009, was held at the University of Pisa from September 9 to September 11, 2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The focus of QLES2009 was on issues related to predicting, assessing and assuring the quality of LES. The main goal of QLES2009 was to enhance the knowledge on error sources and on their interaction in LES and to devise criteria for the prediction and optimization of simulation quality, by bringing together mathematicians, physicists and engineers and providing a platform specifically addressing these aspects for LES. Contributions were made by leading experts in the field. The present book contains the written contributions to QLES2009 and is divided into three parts, which reflect the main topics addressed at the workshop: (i) SGS modeling and discretization errors; (ii) Assessment and reduction of computational errors; (iii) Mathematical analysis and foundation for SGS modeling.

  20. Hawaii Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  1. System reliability as perceived by maintenance personnel on petroleum production facilities

    International Nuclear Information System (INIS)

    Antonovsky, A.; Pollock, C.; Straker, L.

    2016-01-01

    The aim of this research was to understand the relationship between maintenance staff perceptions of organisational effectiveness and operational reliability in petroleum operations. Engineering measures exist that assess the effectiveness of maintenance and reliability of equipment. These measures are typically retrospective and may not provide insight into what impedes system reliability. Perceptions of organisational effectiveness by the workforce may provide a predictive measure that could improve our understanding of the human factors that influence system reliability. Maintenance personnel (n=133) from nine petroleum production facilities completed a survey as part of a study of human factors and maintenance reliability. 69 respondents (51.9%) provided comments to an open-ended question in the survey, and these data were analysed using Interpretive Phenomenological Analysis to extract themes. Four super-ordinate themes were identified from the analysis: 1) Communication and access to information, 2) Efficiency of current work systems, 3) Need for better workgroup support, and 4) Management impacts on the workplace. We found a significant relationship between the frequency of the four super-ordinate themes and the facility reliability level as measured by ‘Mean Time Between Failures’: χ"2(6,N=158)=16.2, p=.013. These results demonstrated that operational effectiveness might be differentiated on the basis of survey-derived perceptions of maintenance personnel. - Highlights: • Thematic analysis of survey comments provided insights into workplace reliability • Worker’s comments on reliability related to technical data on time between failures • Management decision-making was the main theme in the lower reliability workplaces • Improving efficiency was the main theme in the higher reliability workplaces • Communication and better workgroup support were themes at all reliability levels

  2. Problem of nuclear power plant reliability

    International Nuclear Information System (INIS)

    Popyrin, L.S.; Nefedov, Yu.V.

    1989-01-01

    The problem of substantiation of rational and methods of ensurance of NPP reliability at the stage of its designing has been studied. It is shown that the optimal level of NPP reliability is determined by coordinating solution of the proiblems for optimization of reliability of power industry, heat and power supply and nuclear power generation systems comprising NPP, and problems of reliability optimization of NPP proper, as a complex engineering system. The conclusion is made that the greatest attention should be paid to the development of mathematical models of reliability, taking into account different methods of equipment redundancy, as well as dependence of failures on barious factors, improvement of NPP reliability indices, development of data base, working out of the complec of consistent standards of reliability. 230 refs.; 2 figs.; 1 tab

  3. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  4. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  5. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  6. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    Kondakci, Suleyman

    2015-01-01

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  7. Reliability Parts Derating Guidelines

    Science.gov (United States)

    1982-06-01

    226-30, October 1974. 66 I, 26. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser Engineering and...Vol. R-23, No. 4, 226-30, October 1974. 28. "Reliability of GAAS Injection Lasers", De Loach , B. C., Jr., 1973 IEEE/OSA Conference on Laser...opnatien ot 󈨊 deg C, mounted on a 4-inach square 0.250~ inch thick al~loy alum~nusi panel.. This mounting technique should be L~ ken into cunoidur~tiou

  8. Reliability evaluation of power systems

    CERN Document Server

    Billinton, Roy

    1996-01-01

    The Second Edition of this well-received textbook presents over a decade of new research in power system reliability-while maintaining the general concept, structure, and style of the original volume. This edition features new chapters on the growing areas of Monte Carlo simulation and reliability economics. In addition, chapters cover the latest developments in techniques and their application to real problems. The text also explores the progress occurring in the structure, planning, and operation of real power systems due to changing ownership, regulation, and access. This work serves as a companion volume to Reliability Evaluation of Engineering Systems: Second Edition (1992).

  9. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  10. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  11. Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model

    Science.gov (United States)

    Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman

    2014-04-01

    The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.

  12. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  13. Stirling engine application study

    Science.gov (United States)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  14. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  15. On the reliability of predictions of geomechanical response - project Cosa in perspective

    International Nuclear Information System (INIS)

    Knowles, N.C.; Lowe, M.J.S.; Come, B.

    1990-01-01

    Project COSA (Comparison of computer codes for Salt) was set up by the CEC as international benchmark exercise to compare the reliability of predictions of thermo-mechanical response of HLW repositories in salt. The first phase (COSA I) was conducted between 1984-1986 and attention was directed at code verification issues. The second phase (COSA II), carried out in the period 1986-1988, addressed code validation and other issues. Specifically, a series of experimental heat and pressure tests carried out at the Asse Mine in Wast Germany were modelled and predictions of the thermo-mechanical behaviour were compared. Ten European organisations participated. A key feature of this exercise was that, as far as possible, the calculations were performed blind (i.e. without any knowledge of the observed behaviour) using the best information available a priori, to describe the physical situation to be modelled. Interest centred around the various constitutive models (of material behaviour) for rock-salt and the assumptions about the in situ state of stress. The paper gives an overview of the project, presents some broad conclusions and attempts to assess their significance. 17 refs., 6 figs., 2 tabs

  16. Prediction of degradation and fracture of structural materials

    International Nuclear Information System (INIS)

    Tomkins, B.

    1992-01-01

    Prediction of materials performance in an engineering integrity context requires the underpinning of predictive modelling tuned by inputs from design, fabrication, operating experience, and laboratory testing. In this regard, in addition to fracture resistance four important areas of time dependent degradation are considered - mechanical, environmental, irradiation and thermal. The status of prediction of materials performance is discussed in relation to a number of important components such as LWR reactor pressure vessels and steam generators, and Fast Reactor high temperature structures. In each case the role of materials modelling is examined and the balance of factors which contribute to the overall prediction of component integrity/reliability noted. Structural integrity arguments must follow a clear strategy if the required level of confidence is to be established. Various strategies and their evolution are discussed. (author)

  17. Initial tests of thermoacoustic space power engine

    International Nuclear Information System (INIS)

    Backhaus, S.N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  18. Hawaii electric system reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  19. Stochastic reliability and maintenance modeling essays in honor of Professor Shunji Osaki on his 70th birthday

    CERN Document Server

    Nakagawa, Toshio

    2013-01-01

    In honor of the work of Professor Shunji Osaki, Stochastic Reliability and Maintenance Modeling provides a comprehensive study of the legacy of and ongoing research in stochastic reliability and maintenance modeling. Including associated application areas such as dependable computing, performance evaluation, software engineering, communication engineering, distinguished researchers review and build on the contributions over the last four decades by Professor Shunji Osaki. Fundamental yet significant research results are presented and discussed clearly alongside new ideas and topics on stochastic reliability and maintenance modeling to inspire future research. Across 15 chapters readers gain the knowledge and understanding to apply reliability and maintenance theory to computer and communication systems. Stochastic Reliability and Maintenance Modeling is ideal for graduate students and researchers in reliability engineering, and workers, managers and engineers engaged in computer, maintenance and management wo...

  20. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2010-01-01

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency.

  1. Performance Evaluation of 14 Neural Network Architectures Used for Predicting Heat Transfer Characteristics of Engine Oils

    Science.gov (United States)

    Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.

    2012-01-01

    This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.

  2. Nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1981-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date

  3. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    Science.gov (United States)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  4. Anterior Cruciate Ligament Tear: Reliability of MR Imaging to Predict Stability after Conservative Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won; Ahn, Jin Hwan; Ahn, Joong Mo; Yoon, Young Cheol; Hong, Hyun Pyo; Yoo, So Young; Kim, Seon Woo [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2007-06-15

    The aim of this study is to evaluate the reliability of MR imaging to predict the stability of the torn anterior cruciate ligament (ACL) after complete recovery of the ligament's continuity. Twenty patients with 20 knee injuries (13 males and 7 females; age range, 20 54) were enrolled in the study. The inclusion criteria were a positive history of acute trauma, diagnosis of the ACL tear by both the physical examination and the MR imaging at the initial presentation, conservative treatment, complete recovery of the continuity of the ligament on the follow up (FU) MR images and availability of the KT-2000 measurements. Two radiologists, who worked in consensus, graded the MR findings with using a 3-point system for the signal intensity, sharpness, straightness and the thickness of the healed ligament. The insufficiency of ACL was categorized into three groups according to the KT-2000 measurements. The statistic correlations between the grades of the MR findings and the degrees of ACL insufficiency were analyzed using the Cochran-Mantel-Haenszel test (p < 0.05). The p-values for each category of the MR findings according to the different groups of the KT-2000 measurements were 0.9180 for the MR signal intensity, 1.0000 for sharpness, 0.5038 for straightness and 0.2950 for thickness of the ACL. The MR findings were not significantly different between the different KT-2000 groups. MR imaging itself is not a reliable examination to predict stability of the ACL rupture outcome, even when the MR images show an intact appearance of the ACL.

  5. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    Science.gov (United States)

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  6. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines

    International Nuclear Information System (INIS)

    D’Ambrosio, Stefano; Finesso, Roberto; Fu, Lezhong; Mittica, Antonio; Spessa, Ezio

    2014-01-01

    Highlights: • New semi-empirical correlation to predict NOx emissions in diesel engines. • Based on a real-time three-zone diagnostic combustion model. • The model is of fast application, and is therefore suitable for control-oriented applications. - Abstract: The present work describes the development of a fast control-oriented semi-empirical model that is capable of predicting NOx emissions in diesel engines under steady state and transient conditions. The model takes into account the maximum in-cylinder burned gas temperature of the main injection, the ambient gas-to-fuel ratio, the mass of injected fuel, the engine speed and the injection pressure. The evaluation of the temperature of the burned gas is based on a three-zone real-time diagnostic thermodynamic model that has recently been developed by the authors. Two correlations have also been developed in the present study, in order to evaluate the maximum burned gas temperature during the main combustion phase (derived from the three-zone diagnostic model) on the basis of significant engine parameters. The model has been tuned and applied to two diesel engines that feature different injection systems of the indirect acting piezoelectric, direct acting piezoelectric and solenoid type, respectively, over a wide range of steady-state operating conditions. The model has also been validated in transient operation conditions, over the urban and extra-urban phases of an NEDC. It has been shown that the proposed approach is capable of improving the predictive capability of NOx emissions, compared to previous approaches, and is characterized by a very low computational effort, as it is based on a single-equation correlation. It is therefore suitable for real-time applications, and could also be integrated in the engine control unit for closed-loop or feed-forward control tasks

  7. Human engineering

    International Nuclear Information System (INIS)

    Yang, Seong Hwan; Park, Bum; Gang, Yeong Sik; Gal, Won Mo; Baek, Seung Ryeol; Choe, Jeong Hwa; Kim, Dae Sung

    2006-07-01

    This book mentions human engineering, which deals with introduction of human engineering, Man-Machine system like system design, and analysis and evaluation of Man-Machine system, data processing and data input, display, system control of man, human mistake and reliability, human measurement and design of working place, human working, hand tool and manual material handling, condition of working circumstance, working management, working analysis, motion analysis working measurement, and working improvement and design in human engineering.

  8. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    Science.gov (United States)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  9. On which term is the prediction of the behaviour of glass necessary and reliable?

    International Nuclear Information System (INIS)

    Lefevre, J.

    1997-01-01

    The author questions the ethics of the deep underground storage of high-level radioactive wastes. The time periods that are considered for the confinement are so long that it is completely impossible to predict the way of life of people at that time and the level of knowledge they will have reached. There is a total agreement about the ethics principle of not jeopardizing life and environment of future generations but the difficulty is to draw the limits of this protection. In the regulations of most countries 2 periods of time are defined: the first 500 years and 10.000 years. 500 years is the period of high heat releases due to the decay of most fission products and is also a reasonable time during which the confining site (structures and packages) stays accessible. 10.000 years is considered as the period of time during which predictions are reliable, beyond this time uncertainties become too important and more and more numerous. (A.C.)

  10. Role of recent research in improving check valve reliability at nuclear power plants

    International Nuclear Information System (INIS)

    Kalsi, M.S.; Horst, C.L.; Wang, J.K.; Sharma, V.

    1990-01-01

    Check valve failures at nuclear power plants in recent years have led to serious safety concerns, and caused extensive damage to other plant components which had a significant impact on plant availability. In order to understand the failure mechanism and improve the reliability of check valves, a systematic research effort was proposed by Kalsi Engineering, Inc. to U.S. Nuclear Regulatory Commission (NRC). The overall goal of the research was to develop models for predicting the performance and degradation of swing check valves in nuclear power plant systems so that appropriate preventive maintenance or design modifications can be performed to improve the reliability of check valves. Under Phase I of this research, a large matrix of tests was run with instrumented swing check valves to determine the stability of the disc under a variety of upstream flow disturbances, covering a wide range of disc stop positions and flow velocities in two different valve sizes. The goals of Phase II research were to develop predictive models which quantify the anticipated degradation of swing check valves that have flow disturbances closely upstream of the valve and are operating under flow velocities that do not result in full disc opening. This research allows the inspection/maintenance activities to be focussed on those check valves that are more likely to suffer premature degradation. The quantitative wear and fatigue prediction methodology can be used to develop a sound preventive maintenance program. The results of the research also show the improvements in check valve performance/reliability that can be achieved by certain modifications in the valve design

  11. From LESSEPS to the workstation for reliability engineers

    International Nuclear Information System (INIS)

    Ancelin, C.; Bouissou, M.; Collet, J.; Gallois, M.; Magne, L.; Villatte, N.; Yedid, C.; Mulet-Marquis, D.

    1994-01-01

    Three Mile Island and Chernobyl in the nuclear industry, Challenger, in the space industry, Seveso and Bhopal in the chemical industry - all these accidents show how difficult it is to forecast all likely accident scenarios that may occur in complex systems. This was, however, the objective of the probabilistic safety assessment (PSA) performed by EDF at the Paluel nuclear power plant. The full computerization of this study led to the LESSEPS project, aimed at automating three different steps: generation of reliability models -based on the use of expert systems, qualitative and quantitative processing of these models using computer codes, and overall management of PSA studies. This paper presents the results obtained and the gradual transformation of this first generation of tools into a workstation aimed at integrating reliability studies at all stages of an industrial process. (author)

  12. Reliability of engineered basements as blast shelters

    International Nuclear Information System (INIS)

    Longinow, A.; Mohammadi, J.; Robinson, R.R.

    1983-01-01

    A method for predicting the probability of failure of structures by considering multiple failure modes was formulated. It was applied to the analysis of a reinforced concrete slab when subjected to a uniformly distributed blast load over its surface. Currently available criteria for failure due to flexure and shear were used in predicting the probability of failure. This method is capable of considering all major components of a structure, the respective failure modes of each component, and of predicting the probability of failure of the structure as a whole

  13. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Hutton, A.

    1992-08-01

    For the next generation of high performance, high average luminosity colliders, the ''factories,'' reliability engineering must be introduced right at the inception of the project and maintained as a central theme throughout the project. There are several aspects which will be addressed separately: Concept; design; motivation; management techniques; and fault diagnosis

  14. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    Science.gov (United States)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  15. Parts and Components Reliability Assessment: A Cost Effective Approach

    Science.gov (United States)

    Lee, Lydia

    2009-01-01

    System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.

  16. A Method for Improving Reliability of Radiation Detection using Deep Learning Framework

    International Nuclear Information System (INIS)

    Chang, Hojong; Kim, Tae-Ho; Han, Byunghun; Kim, Hyunduk; Kim, Ki-duk

    2017-01-01

    Radiation detection is essential technology for overall field of radiation and nuclear engineering. Previously, technology for radiation detection composes of preparation of the table of the input spectrum to output spectrum in advance, which requires simulation of numerous predicted output spectrum with simulation using parameters modeling the spectrum. In this paper, we propose new technique to improve the performance of radiation detector. The software in the radiation detector has been stagnant for a while with possible intrinsic error of simulation. In the proposed method, to predict the input source using output spectrum measured by radiation detector is performed using deep neural network. With highly complex model, we expect that the complex pattern between data and the label can be captured well. Furthermore, the radiation detector should be calibrated regularly and beforehand. We propose a method to calibrate radiation detector using GAN. We hope that the power of deep learning may also reach to radiation detectors and make huge improvement on the field. Using improved radiation detector, the reliability of detection would be confident, and there are many tasks remaining to solve using deep learning in nuclear engineering society.

  17. Reliability of construction materials

    International Nuclear Information System (INIS)

    Merz, H.

    1976-01-01

    One can also speak of reliability with respect to materials. While for reliability of components the MTBF (mean time between failures) is regarded as the main criterium, this is replaced with regard to materials by possible failure mechanisms like physical/chemical reaction mechanisms, disturbances of physical or chemical equilibrium, or other interactions or changes of system. The main tasks of the reliability analysis of materials therefore is the prediction of the various failure reasons, the identification of interactions, and the development of nondestructive testing methods. (RW) [de

  18. Bayesian methods in reliability

    Science.gov (United States)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  19. Maintenance personnel performance simulation (MAPPS): a model for predicting maintenance performance reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Knee, H.E.; Krois, P.A.; Haas, P.M.; Siegel, A.I.; Ryan, T.G.

    1983-01-01

    The NRC has developed a structured, quantitative, predictive methodology in the form of a computerized simulation model for assessing maintainer task performance. Objective of the overall program is to develop, validate, and disseminate a practical, useful, and acceptable methodology for the quantitative assessment of NPP maintenance personnel reliability. The program was organized into four phases: (1) scoping study, (2) model development, (3) model evaluation, and (4) model dissemination. The program is currently nearing completion of Phase 2 - Model Development

  20. Iterative and non-iterative solutions of engine flows using ASM and k-ε turbulence models

    International Nuclear Information System (INIS)

    Khaleghi, H.; Fallah, E.

    2003-01-01

    Various turbulent models are widely developed in order to make a good prediction of turbulence phenomena in different applications. The standard k-ε model shows a poor prediction for some applications. The Reynolds Stress Model (RSM) is expected to give a better prediction of turbulent characteristics, because a separate differential equation for each Reynolds stress component is solved in this model. In order to save both time and memory in this calculation a new Algebraic Stress Model (ASM) which was developed by Lumly et al in 1995 is used for calculations of flow characteristics in the internal combustion engine chamber. With using turbulent realizability principles, this model becomes a powerful and reliable turbulence model. In this paper the abilities of the model is examined in internal combustion engine flows. The results of ASM and k-ε models are compared with the experimental data. It is shown that the poor predictions of k-ε model are modified by ASM model. Also in this paper non-iterative PISO and iterative SIMPLE solution algorithms are compared. The results show that the PISO solution algorithm is the preferred and more efficient procedure in the calculation of internal combustion engine. (author)

  1. Structural Reliability Methods

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Madsen, H. O.

    The structural reliability methods quantitatively treat the uncertainty of predicting the behaviour and properties of a structure given the uncertain properties of its geometry, materials, and the actions it is supposed to withstand. This book addresses the probabilistic methods for evaluation...... of structural reliability, including the theoretical basis for these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature...... of the uncertainties and their interplay is the developed, step-by-step. The concepts presented are illustrated by numerous examples throughout the text....

  2. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  3. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  4. The Reliability and Predictive Ability of a Biomarker of Oxidative DNA Damage on Functional Outcomes after Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Yu-Wei Hsieh

    2014-04-01

    Full Text Available We evaluated the reliability of 8-hydroxy-2'-deoxyguanosine (8-OHdG, and determined its ability to predict functional outcomes in stroke survivors. The rehabilitation effect on 8-OHdG and functional outcomes were also assessed. Sixty-one stroke patients received a 4-week rehabilitation. Urinary 8-OHdG levels were determined by liquid chromatography–tandem mass spectrometry. The test-retest reliability of 8-OHdG was good (interclass correlation coefficient = 0.76. Upper-limb motor function and muscle power determined by the Fugl-Meyer Assessment (FMA and Medical Research Council (MRC scales before rehabilitation showed significant negative correlation with 8-OHdG (r = −0.38, r = −0.30; p < 0.05. After rehabilitation, we found a fair and significant correlation between 8-OHdG and FMA (r = −0.34 and 8-OHdG and pain (r = 0.26, p < 0.05. Baseline 8-OHdG was significantly correlated with post-treatment FMA, MRC, and pain scores (r = −0.34, −0.31, and 0.25; p < 0.05, indicating its ability to predict functional outcomes. 8-OHdG levels were significantly decreased, and functional outcomes were improved after rehabilitation. The exploratory study findings conclude that 8-OHdG is a reliable and promising biomarker of oxidative stress and could be a valid predictor of functional outcomes in patients. Monitoring of behavioral indicators along with biomarkers may have crucial benefits in translational stroke research.

  5. Software engineering

    CERN Document Server

    Sommerville, Ian

    2010-01-01

    The ninth edition of Software Engineering presents a broad perspective of software engineering, focusing on the processes and techniques fundamental to the creation of reliable, software systems. Increased coverage of agile methods and software reuse, along with coverage of 'traditional' plan-driven software engineering, gives readers the most up-to-date view of the field currently available. Practical case studies, a full set of easy-to-access supplements, and extensive web resources make teaching the course easier than ever.

  6. Notes on human factors problems in process plant reliability and safety prediction

    International Nuclear Information System (INIS)

    Rasmussen, J.; Taylor, J.R.

    1976-09-01

    The basis for plant operator reliability evaluation is described. Principles for plant design, necessary to permit reliability evaluation, are outlined. Five approaches to the plant operator reliability problem are described. Case stories, illustrating operator reliability problems, are given. (author)

  7. Reliability Model of Power Transformer with ONAN Cooling

    OpenAIRE

    M. Sefidgaran; M. Mirzaie; A. Ebrahimzadeh

    2010-01-01

    Reliability of a power system is considerably influenced by its equipments. Power transformers are one of the most critical and expensive equipments of a power system and their proper functions are vital for the substations and utilities. Therefore, reliability model of power transformer is very important in the risk assessment of the engineering systems. This model shows the characteristics and functions of a transformer in the power system. In this paper the reliability model...

  8. Engineering bacterial translation initiation - Do we have all the tools we need?

    Science.gov (United States)

    Vigar, Justin R J; Wieden, Hans-Joachim

    2017-11-01

    Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier

  9. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR

    Science.gov (United States)

    Rahmati, Mehdi

    2017-08-01

    Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed

  10. Advancements in valve technology and industry lessons lead to improved plant reliability and cost savings

    International Nuclear Information System (INIS)

    Sharma, V.; Kalsi, M.S.

    2005-01-01

    Plant reliability and safety hinges on the proper functioning of several valves. Recent advancements in valve technology have resulted in new analytical and test methods for evaluating and improving valve and actuator reliability. This is especially significant in critical service applications in which the economic impact of a valve failure on production, outage schedules and consequential damages far surpasses the initial equipment purchase price. This paper presents an overview of recent advances in valve technology driven by reliability concerns and cost savings objectives without comprising safety in the Nuclear Power Industry. This overview is based on over 27 years of experience in supporting US and International nuclear power utilities, and contributing to EPRI, and NSSS Owners' Groups in developing generic models/methodologies to address industry wide issues; performing design basis reviews; and implementing plant-wide valve reliability improvement programs. Various analytical prediction software and hardware solutions and training seminars are now available to implement valve programs covering power plants' lifecycle from the construction phase through life extension and power up rate. These tools and methodologies can enhance valve-engineering activities including the selection, sizing, proper application, condition monitoring, failure analysis, and condition based maintenance optimization with a focus on potential bad actors. This paper offers two such examples, the Kalsi Valve and Actuator Program (KVAP) and Check Valve Analysis and Prioritization (CVAP) [1-3, 8, 9, 11-13]. The advanced, validated torque prediction models incorporated into KVAP software for AOVs and MOVs have improved reliability of margin predictions and enabled cost savings through elimination of unwarranted equipment modifications. CVAP models provides a basis to prioritize the population of valves recommended for preventive maintenance, inspection and/or modification, allowing

  11. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  12. A pediatric FOUR score coma scale: interrater reliability and predictive validity.

    Science.gov (United States)

    Czaikowski, Brianna L; Liang, Hong; Stewart, C Todd

    2014-04-01

    The Full Outline of UnResponsiveness (FOUR) Score is a coma scale that consists of four components (eye and motor response, brainstem reflexes, and respiration). It was originally validated among the adult population and recently in a pediatric population. To enhance clinical assessment of pediatric intensive care unit patients, including those intubated and/or sedated, at our children's hospital, we modified the FOUR Score Scale for this population. This modified scale would provide many of the same advantages as the original, such as interrater reliability, simplicity, and elimination of the verbal component that is not compatible with the Glasgow Coma Scale (GCS), creating a more valuable neurological assessment tool for the nursing community. Our goal was to potentially provide greater information than the formally used GCS when assessing critically ill, neurologically impaired patients, including those sedated and/or intubated. Experienced pediatric intensive care unit nurses were trained as "expert raters." Two different nurses assessed each subject using the Pediatric FOUR Score Scale (PFSS), GCS, and Richmond Agitation Sedation Scale at three different time points. Data were compared with the Pediatric Cerebral Performance Category (PCPC) assessed by another nurse. Our hypothesis was that the PFSS and PCPC should highly correlate and the GCS and PCPC should correlate lower. Study results show that the PFSS is excellent for interrater reliability for trained nurse-rater pairs and prediction of poor outcome and in-hospital mortality, under various situations, but there were no statistically significant differences between the PFSS and the GCS. However, the PFSS does have the potential to provide greater neurological assessment in the intubated and/or sedated patient based on the outcomes of our study.

  13. Improving Predictions with Reliable Extrapolation Schemes and Better Understanding of Factorization

    Science.gov (United States)

    More, Sushant N.

    New insights into the inter-nucleon interactions, developments in many-body technology, and the surge in computational capabilities has led to phenomenal progress in low-energy nuclear physics in the past few years. Nonetheless, many calculations still lack a robust uncertainty quantification which is essential for making reliable predictions. In this work we investigate two distinct sources of uncertainty and develop ways to account for them. Harmonic oscillator basis expansions are widely used in ab-initio nuclear structure calculations. Finite computational resources usually require that the basis be truncated before observables are fully converged, necessitating reliable extrapolation schemes. It has been demonstrated recently that errors introduced from basis truncation can be taken into account by focusing on the infrared and ultraviolet cutoffs induced by a truncated basis. We show that a finite oscillator basis effectively imposes a hard-wall boundary condition in coordinate space. We accurately determine the position of the hard-wall as a function of oscillator space parameters, derive infrared extrapolation formulas for the energy and other observables, and discuss the extension of this approach to higher angular momentum and to other localized bases. We exploit the duality of the harmonic oscillator to account for the errors introduced by a finite ultraviolet cutoff. Nucleon knockout reactions have been widely used to study and understand nuclear properties. Such an analysis implicitly assumes that the effects of the probe can be separated from the physics of the target nucleus. This factorization between nuclear structure and reaction components depends on the renormalization scale and scheme, and has not been well understood. But it is potentially critical for interpreting experiments and for extracting process-independent nuclear properties. We use a class of unitary transformations called the similarity renormalization group (SRG) transformations to

  14. Recommendations on the use of expert judgment in safety and reliability engineering studies. Two offshore case studies

    International Nuclear Information System (INIS)

    Hokstada, Per; Oien, Knut; Reinertsen, Rune

    1998-01-01

    This paper provides guidance on the process of establishing input data to safety and reliability engineering analyses when no or little field data exist, and expert judgment is required. Some recommendations are directly related to a discussion of basic requirements for scientific work. Further, two case studies are discussed in order to highlight some actual problem areas that are experienced when using expert judgment, and some recommendations for handling these problems are given. The first case describes how expert judgment was used to analyse the safe operation of an umbilical on a semisubmersible drilling rig, and the second case is related to establishing generic failure rates/probabilities for components of offshore safety systems

  15. Maintenance Decision Based on Data Fusion of Aero Engines

    Directory of Open Access Journals (Sweden)

    Huawei Wang

    2013-01-01

    Full Text Available Maintenance has gained a great importance as a support function for ensuring aero engine reliability and availability. Cost-effectiveness and risk control are two basic criteria for accurate maintenance. Given that aero engines have much condition monitoring data, this paper presents a new condition-based maintenance decision system that employs data fusion for improving accuracy of reliability evaluation. Bayesian linear model has been applied, so that the performance degradation evaluation of aero engines could be realized. A reliability evaluation model has been presented based on gamma process, which achieves the accurate evaluation by information fusion. In reliability evaluation model, the shape parameter is estimated by the performance degradation evaluation result, and the scale parameter is estimated by failure, inspection, and repair information. What is more, with such reliability evaluation as input variables and by using particle swarm optimization (PSO, a stochastic optimization of maintenance decision for aircraft engines has been presented, in which the effectiveness and the accuracy are demonstrated by a numerical example.

  16. Detailed disc assembly temperature prediction: comparison between CFD and simplified engineering methods

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2003-09-01

    Full Text Available Institute of Aeronautics and Astronautics Inc. All rights reserved. DETAILED DISC ASSEMBLY TEMPERATURE PREDICTION: COMPARISON BETWEEN CFD AND SIMPLIFIED ENGINEERING METHODS ISABE-2005-1130 Glen Snedden, Thomas Roos and Kavendra Naidoo CSIR, Defencetek... transfer and conduction code (Gaugler, 1978) Taw Adiabatic Wall Temperature y+ Near wall Reynolds number Introduction In order to calculate life degradation of gas turbine disc assemblies, it is necessary to model the transient thermal and mechanical...

  17. The nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1982-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date

  18. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  19. Predicting catastrophes of non-autonomous networks with visibility graphs and horizontal visibility

    Science.gov (United States)

    Zhang, Haicheng; Xu, Daolin; Wu, Yousheng

    2018-05-01

    Prediction of potential catastrophes in engineering systems is a challenging problem. We first attempt to construct a complex network to predict catastrophes of a multi-modular floating system in advance of their occurrences. Response time series of the system can be mapped into an virtual network by using visibility graph or horizontal visibility algorithm. The topology characteristics of the networks can be used to forecast catastrophes of the system. Numerical results show that there is an obvious corresponding relationship between the variation of topology characteristics and the onset of catastrophes. A Catastrophe Index (CI) is proposed as a numerical indicator to measure a qualitative change from a stable state to a catastrophic state. The two approaches, the visibility graph and horizontal visibility algorithms, are compared by using the index in the reliability analysis with different data lengths and sampling frequencies. The technique of virtual network method is potentially extendable to catastrophe predictions of other engineering systems.

  20. Reliability data collection and use in risk and availability assessment

    International Nuclear Information System (INIS)

    Colombari, V.

    1989-01-01

    For EuReDatA it is a prevailing objective to initiate and support contact between experts, companies and institutions active in reliability engineering and research. Main topics of this 6th EuReDatA Conference are: Reliability data banks; incidents data banks; common cause data; source and propagation of uncertainties; computer aided risk analysis; reliability and incidents data acquisition and processing; human reliability; probabilistic safety and availability assessment; feedback of reliability into system design; data fusion; reliability modeling and techniques; structural and mechanical reliability; consequence modeling; software and electronic reliability; reliability tests. Some conference papers are separately indexed in the database. (HP)

  1. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  2. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  3. Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines

    Directory of Open Access Journals (Sweden)

    Seungha Lee

    2017-03-01

    Full Text Available This study describes the development of a semi-physical, real-time nitric oxide (NO prediction model that is capable of cycle-by-cycle prediction in a light-duty diesel engine. The model utilizes the measured in-cylinder pressure and information obtained from the engine control unit (ECU. From the inputs, the model takes into account the pilot injection burning and mixing, which affects the in-cylinder mixture formation. The representative in-cylinder temperature for NO formation was determined from the mixture composition calculation. The selected temperature and mixture composition was substituted using a simplified form of the NO formation rate equation for the cycle-by-cycle estimation. The reactive area and the duration of NO formation were assumed to be limited by the fuel quantity. The model predictability was verified not only using various steady-state conditions, including the variation of the EGR rate, the boost pressure, the rail pressure, and the injection timing, but also using transient conditions, which represent the worldwide harmonized light vehicles test procedure (WLTC. The WLTC NO prediction results produced less than 3% error with the measured value. In addition, the proposed model maintained its reliability in terms of hardware aging, the changing and artificial perturbations during steady-state and transient engine operations. The model has been shown to require low computational effort because of the cycle-by-cycle, engine-out NO emission prediction and control were performed simultaneously in an embedded system for the automotive application. We expect that the developed NO prediction model can be helpful in emission calibration during the engine design stage or in the real-time controlling of the exhaust NO emission for improving fuel consumption while satisfying NO emission legislation.

  4. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China

    Science.gov (United States)

    Du, Zhicheng; Xu, Lin; Zhang, Wangjian; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2017-01-01

    Objectives Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. Design Ecological study. Setting and participants Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011–2014. Analyses were conducted at aggregate level and no confidential information was involved. Outcome measures A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. Results A high correlation between HFMD incidence and BDI (r=0.794, pmodel. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of −345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%. Conclusions An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings. PMID:28988169

  5. A Robust Model Predictive Control for efficient thermal management of internal combustion engines

    International Nuclear Information System (INIS)

    Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio

    2016-01-01

    Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO_2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for

  6. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  7. Reliability of electronic systems

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2001-01-01

    Reliability techniques have been developed subsequently as a need of the diverse engineering disciplines, nevertheless they are not few those that think they have been work a lot on reliability before the same word was used in the current context. Military, space and nuclear industries were the first ones that have been involved in this topic, however not only in these environments it is that it has been carried out this small great revolution in benefit of the increase of the reliability figures of the products of those industries, but rather it has extended to the whole industry. The fact of the massive production, characteristic of the current industries, drove four decades ago, to the fall of the reliability of its products, on one hand, because the massively itself and, for other, to the recently discovered and even not stabilized industrial techniques. Industry should be changed according to those two new requirements, creating products of medium complexity and assuring an enough reliability appropriated to production costs and controls. Reliability began to be integral part of the manufactured product. Facing this philosophy, the book describes reliability techniques applied to electronics systems and provides a coherent and rigorous framework for these diverse activities providing a unifying scientific basis for the entire subject. It consists of eight chapters plus a lot of statistical tables and an extensive annotated bibliography. Chapters embrace the following topics: 1- Introduction to Reliability; 2- Basic Mathematical Concepts; 3- Catastrophic Failure Models; 4-Parametric Failure Models; 5- Systems Reliability; 6- Reliability in Design and Project; 7- Reliability Tests; 8- Software Reliability. This book is in Spanish language and has a potentially diverse audience as a text book from academic to industrial courses. (author)

  8. Reliability and Maintainability (RAM) Training

    Science.gov (United States)

    Lalli, Vincent R. (Editor); Malec, Henry A. (Editor); Packard, Michael H. (Editor)

    2000-01-01

    The theme of this manual is failure physics-the study of how products, hardware, software, and systems fail and what can be done about it. The intent is to impart useful information, to extend the limits of production capability, and to assist in achieving low-cost reliable products. In a broader sense the manual should do more. It should underscore the urgent need CI for mature attitudes toward reliability. Five of the chapters were originally presented as a classroom course to over 1000 Martin Marietta engineers and technicians. Another four chapters and three appendixes have been added, We begin with a view of reliability from the years 1940 to 2000. Chapter 2 starts the training material with a review of mathematics and a description of what elements contribute to product failures. The remaining chapters elucidate basic reliability theory and the disciplines that allow us to control and eliminate failures.

  9. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  10. Evaluation of the Predictive Capabilities of a Phenomenological Combustion Model for Natural Gas SI Engine

    Directory of Open Access Journals (Sweden)

    Toman Rastislav

    2017-12-01

    Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.

  11. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Kumar, Sachin; Mishra, Vivek; Joshi, N.S.; Varde, P.V.

    2014-01-01

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  12. Reliability Analysis on NPP's Safety-Related Control Module with Field Data

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Seong Hun

    2006-01-01

    The automatic control systems used in nuclear power plant (NPP) consists of numerous control modules that can be considered to be a network of components various complex ways. The control modules require relatively high reliability than industrial electronic products. Reliability prediction provides the rational basis of system designs and also provides the safety significance of system operations. The aim of this paper is to minimize the deficiencies of the traditional reliability prediction method calculation using the available field return data. This way is possible to do more realistic reliability assessment. SAMCHANG Enterprise Company (SEC) has established database containing high quality data at the module and component level from module maintenance in NPP. On the basis of these, this paper compares results that add failure record (field data) to Telcordia-SR-332 reliability prediction model with MIL-HDBK-217F prediction results

  13. Advanced rotary engine studies

    Science.gov (United States)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  14. Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction.

    Directory of Open Access Journals (Sweden)

    Thomas H A Ederveen

    Full Text Available Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35-52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4% and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.

  15. Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation

    Directory of Open Access Journals (Sweden)

    Samuel Raja Ayyanan

    2014-01-01

    Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.

  16. Statistics for Engineers

    International Nuclear Information System (INIS)

    Kim, Jin Gyeong; Park, Jin Ho; Park, Hyeon Jin; Lee, Jae Jun; Jun, Whong Seok; Whang, Jin Su

    2009-08-01

    This book explains statistics for engineers using MATLAB, which includes arrangement and summary of data, probability, probability distribution, sampling distribution, assumption, check, variance analysis, regression analysis, categorical data analysis, quality assurance such as conception of control chart, consecutive control chart, breakthrough strategy and analysis using Matlab, reliability analysis like measurement of reliability and analysis with Maltab, and Markov chain.

  17. Assessment of an Anomaly Detector for Jet Engine Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sebastien Borguet

    2011-01-01

    Full Text Available The goal of module performance analysis is to reliably assess the health of the main components of an aircraft engine. A predictive maintenance strategy can leverage this information to increase operability and safety as well as to reduce costs. Degradation undergone by an engine can be divided into gradual deterioration and accidental events. Kalman filters have proven very efficient at tracking progressive deterioration but are poor performers in the face of abrupt events. Adaptive estimation is considered as an appropriate solution to this deficiency. This paper reports the evaluation of the detection capability of an adaptive diagnosis tool on the basis of simulated scenarios that may be encountered during the operation of a commercial turbofan engine. The diagnosis tool combines a Kalman filter and a secondary system that monitors the residuals. This auxiliary component implements a generalised likelihood ratio test in order to detect abrupt events.

  18. Reliability of Degree-Day Models to Predict the Development Time of Plutella xylostella (L.) under Field Conditions.

    Science.gov (United States)

    Marchioro, C A; Krechemer, F S; de Moraes, C P; Foerster, L A

    2015-12-01

    The diamondback moth, Plutella xylostella (L.), is a cosmopolitan pest of brassicaceous crops occurring in regions with highly distinct climate conditions. Several studies have investigated the relationship between temperature and P. xylostella development rate, providing degree-day models for populations from different geographical regions. However, there are no data available to date to demonstrate the suitability of such models to make reliable projections on the development time for this species in field conditions. In the present study, 19 models available in the literature were tested regarding their ability to accurately predict the development time of two cohorts of P. xylostella under field conditions. Only 11 out of the 19 models tested accurately predicted the development time for the first cohort of P. xylostella, but only seven for the second cohort. Five models correctly predicted the development time for both cohorts evaluated. Our data demonstrate that the accuracy of the models available for P. xylostella varies widely and therefore should be used with caution for pest management purposes.

  19. Determining the optimum length of a bridge opening with a specified reliability level of water runoff

    Directory of Open Access Journals (Sweden)

    Evdokimov Sergey

    2017-01-01

    Full Text Available Current trends in construction are aimed at providing reliability and safety of engineering facilities. According to the latest government regulations for construction, the scientific approach to engineering research, design, construction and operation of construction projects is a key priority. The reliability of a road depends on a great number of factors and characteristics of their statistical compounds (sequential and parallel. A part of a road with such man-made structures as a bridge or a pipe is considered as a system with a sequential element connection. The overall reliability is the multiplication of the reliability of these elements. The parameters of engineering structures defined by analytical dependences are highly volatile because of the inaccuracy of the defining factors. However each physical parameter is statistically unstable that is evaluated by variable coefficient of their values. It causes the fluctuation in the parameters of engineering structures. Their study may result in the changes in general and particular design rules in order to increase the reliability. The paper gives the grounds for these changes by the example of a bridge. It allows calculating its optimum length with a specified reliability level of water runoff under the bridge.

  20. Turbomachine Sealing and Secondary Flows - Part 3. Part 3; Review of Power-Stream Support, Unsteady Flow Systems, Seal and Disk Cavity Flows, Engine Externals, and Life and Reliability Issues

    Science.gov (United States)

    Hendricks, R. C.; Steinetz, B. M.; Zaretsky, E. V.; Athavale, M. M.; Przekwas, A. J.

    2004-01-01

    The issues and components supporting the engine power stream are reviewed. It is essential that companies pay close attention to engine sealing issues, particularly on the high-pressure spool or high-pressure pumps. Small changes in these systems are reflected throughout the entire engine. Although cavity, platform, and tip sealing are complex and have a significant effect on component and engine performance, computational tools (e.g., NASA-developed INDSEAL, SCISEAL, and ADPAC) are available to help guide the designer and the experimenter. Gas turbine engine and rocket engine externals must all function efficiently with a high degree of reliability in order for the engine to run but often receive little attention until they malfunction. Within the open literature statistically significant data for critical engine components are virtually nonexistent; the classic approach is deterministic. Studies show that variations with loading can have a significant effect on component performance and life. Without validation data they are just studies. These variations and deficits in statistical databases require immediate attention.

  1. Application of a truncated normal failure distribution in reliability testing

    Science.gov (United States)

    Groves, C., Jr.

    1968-01-01

    Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.

  2. Design for Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya

    2017-01-01

    Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...

  3. External Validation and Evaluation of Reliability and Validity of the Modified Seoul National University Renal Stone Complexity Scoring System to Predict Stone-Free Status After Retrograde Intrarenal Surgery.

    Science.gov (United States)

    Park, Juhyun; Kang, Minyong; Jeong, Chang Wook; Oh, Sohee; Lee, Jeong Woo; Lee, Seung Bae; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong

    2015-08-01

    The modified Seoul National University Renal Stone Complexity scoring system (S-ReSC-R) for retrograde intrarenal surgery (RIRS) was developed as a tool to predict stone-free rate (SFR) after RIRS. We externally validated the S-ReSC-R. We retrospectively reviewed 159 patients who underwent RIRS. The S-ReSC-R was assigned from 1 to 12 according to the location and number of sites involved. The stone-free status was defined as no evidence of a stone or with clinically insignificant residual fragment stones less than 2 mm. Interobserver and test-retest reliabilities were evaluated. Statistical performance of the prediction model was assessed by its predictive accuracy, predictive probability, and clinical usefulness. Overall SFR was 73.0%. The SFRs were 86.7%, 70.2%, and 48.6% in low-score (1-2), intermediate-score (3-4), and high-score (5-12) groups, respectively (pR revealed an area under the curve (AUC) of 0.731 (95% CI 0.650-0.813). The AUC of the three-titered S-ReSC-R was 0.701 (95% CI 0.609-0.794). The calibration plot showed that the predicted probability of SFR had a concordance comparable to that of observed frequency. The Hosmer-Lemeshow goodness of fit test revealed a p-value of 0.01 for the S-ReSC-R and 0.90 for the three-titered S-ReSC-R. Interobserver and test-retest reliabilities revealed an almost perfect level of agreement. The present study proved the predictive value of S-ReSC-R to predict SFR following RIRS in an independent cohort. Interobserver and test-retest reliabilities confirmed that S-ReSC-R was reliable and valid.

  4. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  5. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  6. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  7. Reliability issues at the LHC

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Gillies, James D

    2002-01-01

    The Lectures on reliability issues at the LHC will be focused on five main Modules on five days. Module 1: Basic Elements in Reliability Engineering Some basic terms, definitions and methods, from components up to the system and the plant, common cause failures and human factor issues. Module 2: Interrelations of Reliability & Safety (R&S) Reliability and risk informed approach, living models, risk monitoring. Module 3: The ideal R&S Process for Large Scale Systems From R&S goals via the implementation into the system to the proof of the compliance. Module 4: Some Applications of R&S on LHC Master logic, anatomy of risk, cause - consequence diagram, decomposition and aggregation of the system. Module 5: Lessons learned from R&S Application in various Technologies Success stories, pitfalls, constrains in data and methods, limitations per se, experienced in aviation, space, process, nuclear, offshore and transport systems and plants. The Lectures will reflect in summary the compromise in...

  8. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, new concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.

  9. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  10. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  11. Flood design recipes vs. reality: can predictions for ungauged basins be trusted?

    Science.gov (United States)

    Efstratiadis, A.; Koussis, A. D.; Koutsoyiannis, D.; Mamassis, N.

    2014-06-01

    Despite the great scientific and technological advances in flood hydrology, everyday engineering practices still follow simplistic approaches that are easy to formally implement in ungauged areas. In general, these "recipes" have been developed many decades ago, based on field data from typically few experimental catchments. However, many of them have been neither updated nor validated across all hydroclimatic and geomorphological conditions. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, on the safety and cost of the related flood protection works. Preliminary results, based on historical flood data from Cyprus and Greece, indicate that a substantial revision of many aspects of flood engineering procedures is required, including the regionalization formulas as well as the modelling concepts themselves. In order to provide a consistent design framework and to ensure realistic predictions of the flood risk (a key issue of the 2007/60/EU Directive) in ungauged basins, it is necessary to rethink the current engineering practices. In this vein, the collection of reliable hydrological data would be essential for re-evaluating the existing "recipes", taking into account local peculiarities, and for updating the modelling methodologies as needed.

  12. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  13. New design of engineered safety features-component control system to improve performance and reliability

    International Nuclear Information System (INIS)

    Kim, S.T.; Jung, H.W.; Lee, S.J.; Cho, C.H.; Kim, D.H.; Kim, H.

    2006-01-01

    Full text: Full text: The Engineered Safety Features-Component Control System (ESF-CCS) controls the engineered safety features of a Nuclear Power Plant such as Solenoid Operated Valves (SOV), Motor Operated Valves (MOV), pumps, dampers, etc. to mitigate the effects of a Design Basis Accident (DBA) or an abnormal operation. ESF-CCS serves as an interface system between the Plant Protection System (PPS) and remote actuation devices. ESF-CCS is composed of fault tolerant Group Controllers GC, Loop Controllers (LC), ESF-CCS Test and Interface Processor (ETIP) and Cabinet Operator Module (COM) and Control Channel Gateway (CCG) etc. GCs in each division are designed to be fully independent triple configuration, which perform system level NSSS and BOP ESFAS logic (2-out-of-4 logic and l-out-of-2 logic, respectively) making it possible to test each GC individually during normal operation. In the existing configuration, the safety-related plant component control is part of the Plant Control System (PCS) non-safety system. For increased safety and reliability, this design change incorporates this part into the LCs, and is therefore designed according to the safety-critical system procedures. The test and diagnosis capabilities of ETIP and COM are reinforced. By means of an automatic periodic test for all main functions of the system, it is possible to quickly determine an abnormal status of the system, and to decrease the elapsed time for tests, thus effectively increasing availability. ESF-CCS consists of four independent divisions (A, B, C, and D) in the Advanced Power Reactor 1400 (APR1400). One prototype division is being manufactured and will be tested

  14. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    Science.gov (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  15. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  16. Development of an engineering level prediction method for high angle of attack aerodynamics

    Science.gov (United States)

    Reisenthel, Patrick H.; Rodman, Laura C.; Nixon, David

    1993-01-01

    The present work is concerned with predicting the unsteady flow considered to be the cause of the structural failure of twin vertical tail aircraft. An engineering tool has been produced for high angle of attack aerodynamics using the simplest physical models. The main innovation behind this work is its emphasis on the modeling of two key aspects of the dominant physics associated with high angle-of-attack airflows, namely unsteady separation and vortex breakdown.

  17. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

    1996-02-01

    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  18. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China.

    Science.gov (United States)

    Du, Zhicheng; Xu, Lin; Zhang, Wangjian; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2017-10-06

    Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. Ecological study. Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011-2014. Analyses were conducted at aggregate level and no confidential information was involved. A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. A high correlation between HFMD incidence and BDI ( r =0.794, pengine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Use of reliability in the LMFBR industry

    International Nuclear Information System (INIS)

    Penland, J.R.; Smith, A.M.; Goeser, D.K.

    1977-01-01

    This mission of a Reliability Program for an LMFBR should be to enhance the design and operational characteristics relative to safety and to plant availability. Successful accomplishment of this mission requires proper integration of several reliability engineering tasks--analysis, testing, parts controls and program controls. Such integration requires, in turn, that the program be structured, planned and managed. This paper describes the technical integration necessary and the management activities required to achieve mission success for LMFBR's

  20. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool.

    Directory of Open Access Journals (Sweden)

    Manuel Stemmer

    Full Text Available Engineering of the CRISPR/Cas9 system has opened a plethora of new opportunities for site-directed mutagenesis and targeted genome modification. Fundamental to this is a stretch of twenty nucleotides at the 5' end of a guide RNA that provides specificity to the bound Cas9 endonuclease. Since a sequence of twenty nucleotides can occur multiple times in a given genome and some mismatches seem to be accepted by the CRISPR/Cas9 complex, an efficient and reliable in silico selection and evaluation of the targeting site is key prerequisite for the experimental success. Here we present the CRISPR/Cas9 target online predictor (CCTop, http://crispr.cos.uni-heidelberg.de to overcome limitations of already available tools. CCTop provides an intuitive user interface with reasonable default parameters that can easily be tuned by the user. From a given query sequence, CCTop identifies and ranks all candidate sgRNA target sites according to their off-target quality and displays full documentation. CCTop was experimentally validated for gene inactivation, non-homologous end-joining as well as homology directed repair. Thus, CCTop provides the bench biologist with a tool for the rapid and efficient identification of high quality target sites.

  1. Evaluation on reliability and safety of marine diesel engine and mechatronics. Hakuyo diesel kikan to mechatronics no shinraiseiter dot anzensei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kido, H. (Kaigi Univ., Kobe (Japan)); Hashimoto, T. (Kobe Univ. of Mercantile Marine, Kobe (Japan))

    1992-06-01

    Reliability and safety are evaluated for main diesel engines, generator diesl engines, their mechatronics and auxiliary machines on ships. The evaluation is based no statistical analysis of field data collected from outland navigation by MO diesel engine the period of 1983-1988. Evaluation indexes are used for analysis, such as failure rate (total number of failure/total navigation hour), mean maintenance man power: mh (total maintenance man power for determined period/total number of failure), manning index: MI (maintenance manpower for repairing failure occurred during 1000 hour navigation). With respect of total failure of ship plant as a whole, the failure rate decreased from 13.2 to 7.4, namely almost to half and mh was tending to increase from 5.5 to 5.8, while MI decreased from 73.0 to 43.1. With respect to heavy failure which is regarded as a scale of safety, the failure rate remained within a range of 0.7-0.5 and mh showed down-up movement like 30{yields}10.4{yields}18.8, while MI moved like 18.6{yields}5{yields} 10.9 . 3 refs., 9 figs., 3 tabs.

  2. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions

    DEFF Research Database (Denmark)

    Cai Ong, Jiun; Pang, Kar Mun; Walther, Jens Honore

    2018-01-01

    This paper reports the implementation and evaluation of a Lagrangian soot tracking (LST) method for the modeling of soot in diesel engines. The LST model employed here has the tracking capability of a Lagrangian method and the ability to predict primary soot particle sizing. The Moss-Brookes soot...... in predicting temporal soot cloud development, mean soot diameter and primary soot size distribution is evaluated using measurements of n-heptane and n-dodecane spray combustion obtained under diesel engine-like conditions. In addition, sensitivity studies are carried out to investigate the influence of soot....... A higher rate of soot oxidation due to OH causes the soot particles to be fully oxidized downstream of the flame. In general, the LST model performs better than the Eulerian method in terms of predicting soot sizing and accessing information of individual soot particles, both of which are shortcomings...

  3. Adding Robustness to Support Vector Machines Against Adversarial Reverse Engineering

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-01-01

    Many classification algorithms have been successfully deployed in security-sensitive applications including spam filters and intrusion detection systems. Under such adversarial environments, adversaries can generate exploratory attacks against the defender such as evasion and reverse engineering. In this paper, we discuss why reverse engineering attacks can be carried out quite efficiently against fixed classifiers, and investigate the use of randomization as a suitable strategy for mitigating their risk. In particular, we derive a semidefinite programming (SDP) formulation for learning a distribution of classifiers subject to the constraint that any single classifier picked at random from such distribution provides reliable predictions with a high probability. We analyze the tradeoff between variance of the distribution and its predictive accuracy, and establish that one can almost always incorporate randomization with large variance without incurring a loss in accuracy. In other words, the conventional approach of using a fixed classifier in adversarial environments is generally Pareto suboptimal. Finally, we validate such conclusions on both synthetic and real-world classification problems. Copyright 2014 ACM.

  4. Tracking reliability for space cabin-borne equipment in development by Crow model.

    Science.gov (United States)

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  5. General inattentiveness is a long-term reliable trait independently predictive of psychological health: Danish validation studies of the Mindful Attention Awareness Scale.

    Science.gov (United States)

    Jensen, Christian Gaden; Niclasen, Janni; Vangkilde, Signe Allerup; Petersen, Anders; Hasselbalch, Steen Gregers

    2016-05-01

    The Mindful Attention Awareness Scale (MAAS) measures perceived degree of inattentiveness in different contexts and is often used as a reversed indicator of mindfulness. MAAS is hypothesized to reflect a psychological trait or disposition when used outside attentional training contexts, but the long-term test-retest reliability of MAAS scores is virtually untested. It is unknown whether MAAS predicts psychological health after controlling for standardized socioeconomic status classifications. First, MAAS translated to Danish was validated psychometrically within a randomly invited healthy adult community sample (N = 490). Factor analysis confirmed that MAAS scores quantified a unifactorial construct of excellent composite reliability and consistent convergent validity. Structural equation modeling revealed that MAAS scores contributed independently to predicting psychological distress and mental health, after controlling for age, gender, income, socioeconomic occupational class, stressful life events, and social desirability (β = 0.32-.42, ps health. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Some areas of reliability technique which have been neglected to some extent - maintainability - human reliability - mechanical reliability - repairable systems

    International Nuclear Information System (INIS)

    Akersten, P.A.

    1985-01-01

    The present thesis consists of four papers, three of which are of a expositary nature and one more theoretical. The first two papers have a natural coupling to the man-machine interface. The first paper is devoted to the concept of maintainability and the role of man as maintenance technician. The second paper discusses aspects of human reliability, mainly studying man as operator. However, maintenance tasks can be studied in the same manner. The third paper concerns reliability prediction for mechanical components. This is an area of vital importance for the reliability practitioner, who needs realistic and easy-to-use mathematical models for different failure modes. The fourth paper discusses mathematical models for repairable systems, especially the problem of testing whether a constant event intensity model is adequate or not. (author)

  7. Modeling the dynamic and thermodynamic operation of Stirling engines by means of an equivalent electrical circuit

    International Nuclear Information System (INIS)

    Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto

    2017-01-01

    Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.

  8. The Reliability and Predictive Ability of a Biomarker of Oxidative DNA Damage on Functional Outcomes after Stroke Rehabilitation

    Science.gov (United States)

    Hsieh, Yu-Wei; Lin, Keh-Chung; Korivi, Mallikarjuna; Lee, Tsong-Hai; Wu, Ching-Yi; Wu, Kuen-Yuh

    2014-01-01

    We evaluated the reliability of 8-hydroxy-2′-deoxyguanosine (8-OHdG), and determined its ability to predict functional outcomes in stroke survivors. The rehabilitation effect on 8-OHdG and functional outcomes were also assessed. Sixty-one stroke patients received a 4-week rehabilitation. Urinary 8-OHdG levels were determined by liquid chromatography–tandem mass spectrometry. The test-retest reliability of 8-OHdG was good (interclass correlation coefficient = 0.76). Upper-limb motor function and muscle power determined by the Fugl-Meyer Assessment (FMA) and Medical Research Council (MRC) scales before rehabilitation showed significant negative correlation with 8-OHdG (r = −0.38, r = −0.30; p rehabilitation, we found a fair and significant correlation between 8-OHdG and FMA (r = −0.34) and 8-OHdG and pain (r = 0.26, p rehabilitation. The exploratory study findings conclude that 8-OHdG is a reliable and promising biomarker of oxidative stress and could be a valid predictor of functional outcomes in patients. Monitoring of behavioral indicators along with biomarkers may have crucial benefits in translational stroke research. PMID:24743892

  9. Mixing Bayes and empirical Bayes inference to anticipate the realization of engineering concerns about variant system designs

    International Nuclear Information System (INIS)

    Quigley, John; Walls, Lesley

    2011-01-01

    Mixing Bayes and Empirical Bayes inference provides reliability estimates for variant system designs by using relevant failure data - observed and anticipated - about engineering changes arising due to modification and innovation. A coherent inference framework is proposed to predict the realization of engineering concerns during product development so that informed decisions can be made about the system design and the analysis conducted to prove reliability. The proposed method involves combining subjective prior distributions for the number of engineering concerns with empirical priors for the non-parametric distribution of time to realize these concerns in such a way that we can cross-tabulate classes of concerns to failure events within time partitions at an appropriate level of granularity. To support efficient implementation, a computationally convenient hypergeometric approximation is developed for the counting distributions appropriate to our underlying stochastic model. The accuracy of our approximation over first-order alternatives is examined, and demonstrated, through an evaluation experiment. An industrial application illustrates model implementation and shows how estimates can be updated using information arising during development test and analysis.

  10. Development and Use of Engineering Standards for Computational Fluid Dynamics for Complex Aerospace Systems

    Science.gov (United States)

    Lee, Hyung B.; Ghia, Urmila; Bayyuk, Sami; Oberkampf, William L.; Roy, Christopher J.; Benek, John A.; Rumsey, Christopher L.; Powers, Joseph M.; Bush, Robert H.; Mani, Mortaza

    2016-01-01

    Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making.

  11. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  12. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  13. Interior Noise Prediction of the Automobile Based on Hybrid FE-SEA Method

    Directory of Open Access Journals (Sweden)

    S. M. Chen

    2011-01-01

    created using hybrid FE-SEA method. The modal density was calculated using analytical method and finite element method; the damping loss factors of the structural and acoustic cavity subsystems were also calculated with analytical method; the coupling loss factors between structure and structure, structure and acoustic cavity were both calculated. Four different kinds of excitations including road excitations, engine mount excitations, sound radiation excitations of the engine, and wind excitations are exerted on the body of automobile when the automobile is running on the road. All the excitations were calculated using virtual prototype technology, computational fluid dynamics (CFD, and experiments realized in the design and development stage. The interior noise of the automobile was predicted and verified at speed of 120 km/h. The predicted and tested overall SPLs of the interior noise were 73.79 and 74.44 dB(A respectively. The comparison results also show that the prediction precision is satisfied, and the effectiveness and reliability of the hybrid FE-SEA model of the automobile is verified.

  14. Unified model to predict flexural shear behavior of externally bonded RC beams

    International Nuclear Information System (INIS)

    Colotti, V.; Spadea, G.; Swamy, R.N.

    2006-01-01

    Structural strengthening with externally bonded reinforcement is now recognized as a cost-effective, structurally sound and practically efficient method of rehabilitating deteriorating and damaged reinforced concrete beams. There is now an urgent need to develop a sound engineering basis which can predict the failure loads of all such strengthened beams in a reliable and consistent manner. Existing models to predict the behavior at ultimate of strengthened beams suffer from many limitations and weaknesses. This paper presents a unified global model, based on the Strut-and-Tie approach, to predict the failure loads of reinforced concrete beams strengthened for flexure and/or shear. This structural model is based on rational engineering principles, considers all the possible failure modes, and incorporates the load transfer mechanism bond to reflect the debonding phenomena which has a dominant influence on the failure process of plated beams. The model is validated against about 200 strengthened beam test reported in the literature and failing in flexure and/or shear, involving a large number of structural variables and steel, carbon and glass fiber reinforced polymer laminates as reinforcing medium. (author)

  15. Assessing the reliability of predictive activity coefficient models for molecules consisting of several functional groups

    Directory of Open Access Journals (Sweden)

    R. P. Gerber

    2013-03-01

    Full Text Available Currently, the most successful predictive models for activity coefficients are those based on functional groups such as UNIFAC. In contrast, these models require a large amount of experimental data for the determination of their parameter matrix. A more recent alternative is the models based on COSMO, for which only a small set of universal parameters must be calibrated. In this work, a recalibrated COSMO-SAC model was compared with the UNIFAC (Do model employing experimental infinite dilution activity coefficient data for 2236 non-hydrogen-bonding binary mixtures at different temperatures. As expected, UNIFAC (Do presented better overall performance, with a mean absolute error of 0.12 ln-units against 0.22 for our COSMO-SAC implementation. However, in cases involving molecules with several functional groups or when functional groups appear in an unusual way, the deviation for UNIFAC was 0.44 as opposed to 0.20 for COSMO-SAC. These results show that COSMO-SAC provides more reliable predictions for multi-functional or more complex molecules, reaffirming its future prospects.

  16. Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model

    Directory of Open Access Journals (Sweden)

    Mereu Paolo

    2009-11-01

    Full Text Available Abstract Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus aged 2 years (A, B and C. In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0

  17. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  18. Prognostics and health management of engineering systems an introduction

    CERN Document Server

    Kim, Nam-Ho; Choi, Joo-Ho

    2017-01-01

    This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application. Among the many topics discussed in-depth are: • Prognostics tutorials using least-squares • Bayesian inference and parameter estimation • Physics-based prognostics algorithms including non...

  19. Reliability prediction of large fuel cell stack based on structure stress analysis

    Science.gov (United States)

    Liu, L. F.; Liu, B.; Wu, C. W.

    2017-09-01

    The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.

  20. Software reliability for safety-critical applications

    International Nuclear Information System (INIS)

    Everett, B.; Musa, J.

    1994-01-01

    In this talk, the authors address the question open-quotes Can Software Reliability Engineering measurement and modeling techniques be applied to safety-critical applications?close quotes Quantitative techniques have long been applied in engineering hardware components of safety-critical applications. The authors have seen a growing acceptance and use of quantitative techniques in engineering software systems but a continuing reluctance in using such techniques in safety-critical applications. The general case posed against using quantitative techniques for software components runs along the following lines: safety-critical applications should be engineered such that catastrophic failures occur less frequently than one in a billion hours of operation; current software measurement/modeling techniques rely on using failure history data collected during testing; one would have to accumulate over a billion operational hours to verify failure rate objectives of about one per billion hours

  1. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  2. Reliability and maintainability data acquisition in equipment development tests

    International Nuclear Information System (INIS)

    Haire, M.J.; Gift, E.H.

    1983-10-01

    The need for collection of reliability, maintainability, and availability data adds a new dimension to the data acquisition requirements of equipment development tests. This report describes the reliability and maintainability data that are considered necessary to ensure that sufficient and high quality data exist for a comprehensive, quantitative evaluation of equipment and system availability. These necessary data are presented as a set of data collection forms. Three data acquisition forms are discussed: an inventory and technical data form, which is filed by the design engineer when the design is finished or the equipment is received; an event report form, which is completed by the senior test operator at each shutdown; and a maintainability report, which is a collaborative effort between senior operators and lead engineers and is completed on restart. In addition, elements of a reliability, maintainability evaluation program are described. Emphasis is placed on the role of data, its storage, and use in such a program

  3. Use of PRA methodology for enhancing operational safety and reliability

    International Nuclear Information System (INIS)

    Chu, B.; Rumble, E.; Najafi, B.; Putney, B.; Young, J.

    1985-01-01

    This paper describes a broad scope, on-going R and D study, sponsored by the Electric Power Research Institute (EPRI) to utilize key features of the state-of-the-art plant information management and system analysis techniques to develop and demonstrate a practical engineering tool for assisting plant engineering and operational staff to perform their activities more effectively. The study is foreseen to consist of two major activities: to develop a user-friendly, integrated software system; and to demonstrate the applications of this software on-site. This integrated software, Reliability Analysis Program with In-Plant Data (RAPID), will consist of three types of interrelated elements: an Executive Controller which will provide engineering and operations staff users with interface and control of the other two software elements, a Data Base Manager which can acquire, store, select, and transfer data, and Applications Modules which will perform the specific reliability-oriented functions. A broad range of these functions has been envisaged. The immediate emphasis will be focused on four application modules: a Plant Status Module, a Technical Specification Optimization Module, a Reliability Assessment Module, and a Utility Module for acquiring plant data

  4. Reliability study: digital engineered safety feature actuation system of Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sudarno; Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2003-04-01

    The usage of digital Instrumentation and Control (I and C) in a nuclear power plant becomes more extensive, including safety related systems. The PSA application of these new designs are very important in order to evaluate their reliability. In particular, Korean Standard Nuclear Power Plants (KSNPPs), typically Ulchin 5 and 6 (UCN 5 and 6) reactor units, adopted the digital safety-critical systems such as Digital Plant Protection System (DPPS) and Digital Engineered Safety Feature Actuation System (DESFAS). In this research, we developed fault tree models for assessing the unavailability of the DESFAS functions. We also performed an analysis of the quantification results. The unavailability results of different DESFAS functions showed that their values are comprised from 5.461E-5 to 3.14E-4. The system unavailability of DESFAS AFAS-1 is estimated as 5.461E-5, which is about 27% less than that of analog system if we consider the difference of human failure probability estimation between both analyses. The results of this study could be utilized in risk-effect analysis of KSNPP. We expect that the safety analysis result will contribute to design feedback

  5. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  6. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  7. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  8. Predictive analysis on the electric energy distribution systems reliability: applying the synerGEE system; Analisis predictivo de la confiabilidad en los sistemas de distribucion de energia electrica: aplicando el sistema synerGEE

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Andrade, Carlos

    2008-12-15

    Electrical distribution systems ought to deliver electric power as economical as possible with an acceptable degree of service quality and continuity. Nevertheless, their faults represent one of the main causes of customer's unavailability. At the moment, a wide range of determinist criteria in the improvement of systems reliability based on past behavior are used, but they do not respond to the stochastic nature of system behavior, and are applied without an adequate balance between reliability and economy. In order to obtain this balance a minimum cost planning methodology that considers the predictive analysis of different investment alternatives in addition to the past behavior of the system is required, which guarantees that the economic resource available and limited will be used to gather the greater possible reliability degree. In this work this problem is approached with the fundamentals and methodologies needed to assess the design effects and operative criteria over the main reliability indexes used by the main utilities around the world, with emphasis on the need to optimize economical resources. The use of the system SynerGEETM, is investigated, probing it as a useful tool for the predictive reliability analysis. Due to the lack of experience that exists in Mexico with this type of analysis, distribution engineers has to become familiar with the concepts of the reliability engineering, their application to establish distribution systems models, and acquiring the ability to use the modern simulation tools, allowing them to evaluate the behavior of these systems with enough analytical rigor. In this sense a serial of well known study cases are presented to help them in this labor. [Spanish] Los sistemas de distribucion de energia electrica deben satisfacer la demanda de energia electrica de la forma mas economica posible, con un grado de calidad y continuidad aceptable. Sin embargo, sus fallas son una de las principales causas de indisponibilidad en

  9. Prediction method of long-term reliability in improving residual stresses by means of surface finishing

    International Nuclear Information System (INIS)

    Sera, Takehiko; Hirano, Shinro; Chigusa, Naoki; Okano, Shigetaka; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2012-01-01

    Surface finishing methods, such as Water Jet Peening (WJP), have been applied to welds in some major components of nuclear power plants as a counter measure to Primary Water Stress Corrosion Cracking (PWSCC). In addition, the methods of surface finishing (buffing treatment) is being standardized, and thus the buffing treatment has been also recognized as the well-established method of improving stress. On the other hand, the long-term stability of peening techniques has been confirmed by accelerated test. However, the effectiveness of stress improvement by surface treatment is limited to thin layers and the effect of complicated residual stress distribution in the weld metal beneath the surface is not strictly taken into account for long-term stability. This paper, therefore, describes the accelerated tests, which confirmed that the long-term stability of the layer subjected to buffing treatment was equal to that subjected to WJP. The long-term reliability of very thin stress improved layer was also confirmed through a trial evaluation by thermal elastic-plastic creep analysis, even if the effect of complicated residual stress distribution in the weld metal was excessively taken into account. Considering the above findings, an approach is proposed for constructing the prediction method of the long-term reliability of stress improvement by surface finishing. (author)

  10. Choosing nuclear engineering: A survey of nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Shillenn, J.K.; Klevans, E.H.

    1988-01-01

    Maintaining a reliable pool of qualified nuclear engineering graduates depends on the ability of nuclear engineering undergraduate programs to recruit students. With the prospect of declining enrollments in nuclear engineering it is important for nuclear engineering programs to know what factors influence students to choose nuclear engineering as an undergraduate major and why they choose a particular undergraduate program. This type of information can be very important to nuclear engineering programs that develop recruiting strategies. To provide some insight into this area, a questionnaire was designed and given to undergraduate nuclear engineering students at Pennsylvania State University. The purpose of the survey was to provide information on the reasons that students picked nuclear engineering as a career and chose to attend Penn State. The questionnaire was given to 27 students in their junior year during the spring semester of 1987 and again to 35 junior students during the spring semester of 1988. There was little difference except as noted between the two groups on their responses to the questionnaire. A partial listing of the survey results is provided

  11. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    Science.gov (United States)

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  12. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    Science.gov (United States)

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  13. A comparative study on the HW reliability assessment methods for digital I and C equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Lee, G. Y. [Korea Atomic Energy Research Institute, Taejeon (Korea); Kim, M. C. [Korea Advanced Institute of Science and Technology, Taejeon (Korea); Jun, S. T. [KHNP, Taejeon (Korea)

    2002-03-01

    It is necessary to predict or to evaluate the reliability of electronic equipment for the probabilistic safety analysis of digital instrument and control equipment. But most databases for the reliability prediction have no data for the up-to-date equipment and the failure modes are not classified. The prediction results for the specific component show different values according to the methods and databases. For boards and systems each method shows different values than others also. This study is for reliability prediction of PDC system for Wolsong NPP1 as a digital I and C equipment. Various reliability prediction methods and failure databases are used in calculation of the reliability to compare the effects of sensitivity and accuracy of each model and database. Many considerations for the reliability assessment of digital systems are derived with the results of this study. 14 refs., 19 figs., 15 tabs. (Author)

  14. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  15. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  16. Reliability of steam-turbine rotors. Task 1. Lifetime prediction analysis system. Final report

    International Nuclear Information System (INIS)

    Nair, P.K.; Pennick, H.G.; Peters, J.E.; Wells, C.H.

    1982-12-01

    Task 1 of RP 502, Reliability of Steam Turbine Rotors, resulted in the development of a computerized lifetime prediction analysis system (STRAP) for the automatic evaluation of rotor integrity based upon the results of a boresonic examination of near-bore defects. Concurrently an advanced boresonic examination system (TREES), designed to acquire data automatically for lifetime analysis, was developed and delivered to the maintenance shop of a major utility. This system and a semi-automated, state-of-the-art system (BUCS) were evaluated on two retired rotors as part of the Task 2 effort. A modified nonproprietary version of STRAP, called SAFER, is now available for rotor lifetime prediction analysis. STRAP and SAFER share a common fracture analysis postprocessor for rapid evaluation of either conventional boresonic amplitude data or TREES cell data. The final version of this postprocessor contains general stress intensity correlations for elliptical cracks in a radial stress gradient and provision for elastic-plastic instability of the ligament between an imbedded crack and the bore surface. Both linear elastic and ligament rupture models were developed for rapid analysis of linkup within three-dimensional clusters of defects. Bore stress-rupture criteria are included, but a creep-fatigue crack growth data base is not available. Physical and mechanical properties of air-melt 1CrMoV forgings are built into the program; however, only bounding values of fracture toughness versus temperature are available. Owing to the lack of data regarding the probability of flaw detection for the boresonic systems and of quantitative verification of the flaw linkup analysis, automatic evlauation of boresonic results is not recommended, and the lifetime prediction system is currently restricted to conservative, deterministic analysis of specified flaw geometries

  17. NDE reliability and probability of detection (POD) evolution and paradigm shift

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra [NDE Engineering, Materials and Process Engineering, Honeywell Aerospace, Phoenix, AZ 85034 (United States)

    2014-02-18

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed “Have Cracks – Will Travel” or in short “Have Cracks” by Lockheed Georgia Company for US Air Force during 1974–1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability and Reproducibility (Gage R and R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using

  18. Prediction of Osteoporosis through Radiographic Assessment of Proximal Femoral Morphology and Texture in Elderly; is it Valid and Reliable

    Directory of Open Access Journals (Sweden)

    Özkan Köse

    2015-08-01

    Full Text Available Objective: The purpose of this study was to determine the best predictive radiographic measurement method to identify the presence of osteoporosis and test the inter-observer and intra-observer reliability and validity of these methods in postmenopausal women. Materials and Methods: Ninety-two elderly female patients who presented with hip pain were included. Hip radiographs were used to determine the values of Singh index (SI, canal-to-calcar ratio (CCR, and cortical thickness index (CTI. All measurements were performed by two independent observers on two separate occasions, at least 4 weeks apart. Bone mineral density (BMD was assessed by DEXA. In the first part of the analysis, reliability of the all measurement methods was tested. In the second part, correlation coefficient (Pearson r was used to determine the relationship between the measurement methods and BMD. Finally ROC curve analysis was performed to determine the sensitivity, specificity, and threshold values for each radiographic measurement method. Results: Intra-observer reliability analysis of SI revealed kappa coefficient of 0.359 for observer A, and 0.224 for observer B. Inter-observer reliability analysis of SI revealed kappa coefficient of 0.070 for observer A and 0.051 for observer B. The intra-observer and inter-observer reliability was good and excellent for CTI and CCR for both observers (ICC: 0.920 and ICC: 0.936. There was no correlation between SI and BMD (p=0.818. On the other hand, there was a significant correlation between CTI and CCR and BMD (p=0.001. All measured indices were significantly different (p<0.05 between osteoporotic and non-osteoporotic patients. CTI value less than 0.3 or CCR value less than 0.47 reflects the presence of osteoporosis with 100% sensitivity and 98% specificity. Conclusion: SI is not reliable and do not correlate with BMD. However, both CTI and CCR showed good and excellent reliability, and each index correlated well with the real BMD

  19. Analysis of sodium valve reliability data at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF

  20. Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.

    Science.gov (United States)

    1981-09-01

    overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.