WorldWideScience

Sample records for reliable dna-based diagnostics

  1. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki

    2013-01-01

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  2. Diagnostic reliability of MMPI-2 computer-based test interpretations.

    Science.gov (United States)

    Pant, Hina; McCabe, Brian J; Deskovitz, Mark A; Weed, Nathan C; Williams, John E

    2014-09-01

    Reflecting the common use of the MMPI-2 to provide diagnostic considerations, computer-based test interpretations (CBTIs) also typically offer diagnostic suggestions. However, these diagnostic suggestions can sometimes be shown to vary widely across different CBTI programs even for identical MMPI-2 profiles. The present study evaluated the diagnostic reliability of 6 commercially available CBTIs using a 20-item Q-sort task developed for this study. Four raters each sorted diagnostic classifications based on these 6 CBTI reports for 20 MMPI-2 profiles. Two questions were addressed. First, do users of CBTIs understand the diagnostic information contained within the reports similarly? Overall, diagnostic sorts of the CBTIs showed moderate inter-interpreter diagnostic reliability (mean r = .56), with sorts for the 1/2/3 profile showing the highest inter-interpreter diagnostic reliability (mean r = .67). Second, do different CBTIs programs vary with respect to diagnostic suggestions? It was found that diagnostic sorts of the CBTIs had a mean inter-CBTI diagnostic reliability of r = .56, indicating moderate but not strong agreement across CBTIs in terms of diagnostic suggestions. The strongest inter-CBTI diagnostic agreement was found for sorts of the 1/2/3 profile CBTIs (mean r = .71). Limitations and future directions are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Opto-electronic DNA chip-based integrated card for clinical diagnostics.

    Science.gov (United States)

    Marchand, Gilles; Broyer, Patrick; Lanet, Véronique; Delattre, Cyril; Foucault, Frédéric; Menou, Lionel; Calvas, Bernard; Roller, Denis; Ginot, Frédéric; Campagnolo, Raymond; Mallard, Frédéric

    2008-02-01

    Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.

  4. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  5. High-Throughput Array Instrument for DNA-Based Breast Cancer Diagnostics

    National Research Council Canada - National Science Library

    Swerdlow, Harold

    2000-01-01

    ...) for breast-cancer diagnostics. These methods are based upon large numbers of discrete DNA spots placed on glass microscope slides typically, and hybridized to a probe derived from a tIssue or blood sample...

  6. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    Directory of Open Access Journals (Sweden)

    Han Yih Lau

    2017-12-01

    Full Text Available Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.

  7. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection

    OpenAIRE

    Lau, Han Yih; Botella, Jose R.

    2017-01-01

    Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care di...

  8. Reliability and diagnostic of modular systems

    Directory of Open Access Journals (Sweden)

    J. Kohlas

    2014-01-01

    Full Text Available Reliability and diagnostic are in general two problems discussed separately. Yet the two problems are in fact closely related to each other. Here, this relation is considered in the simple case of modular systems. We show, how the computation of reliability and diagnostic can efficiently be done within the same Bayesian network induced by the modularity of the structure function of the system.

  9. Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures.

    Science.gov (United States)

    Schwalbe, E C; Hicks, D; Rafiee, G; Bashton, M; Gohlke, H; Enshaei, A; Potluri, S; Matthiesen, J; Mather, M; Taleongpong, P; Chaston, R; Silmon, A; Curtis, A; Lindsey, J C; Crosier, S; Smith, A J; Goschzik, T; Doz, F; Rutkowski, S; Lannering, B; Pietsch, T; Bailey, S; Williamson, D; Clifford, S C

    2017-10-18

    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation.

  10. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  11. A New FRET-Based Sensitive DNA Sensor for Medical Diagnostics using PNA Probe and Water-Soluble Blue Light Emitting Polymer

    Directory of Open Access Journals (Sweden)

    Nidhi Mathur

    2008-01-01

    Full Text Available A reliable, fast, and low-cost biosensor for medical diagnostics using DNA sequence detection has been developed and tested for the detection of the bacterium “Bacillus anthracis.” In this sensor, Poly [9,9-di (6,6′- N, N′ trimethylammonium hexylfluorenyl-2, 7-diyl-alt-co- (1,4-phenylene] dibromide salt (PFP has been taken as cationic conjugated polymer (CCP and PNA attached with fluorescein dye (PNAC∗ as a probe. The basic principle of this sensor is that when a PNAC∗ probe is hybridized with a single strand DNA (ssDNA having complementary sequence, Forster resonance energy transfer (FRET may take place from PFP to the PNAC∗/DNA complex. If the FRET is efficient, the photoluminescence from the PFP will be highly quenched and that from PNAC∗ will be enhanced. On the other hand, if the DNA sequence is noncomplementary to PNA, FRET will not occur.

  12. Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Steven Y Leigh

    Full Text Available Surface-enhanced Raman scattering (SERS nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types ("flavors", each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI, based on the output of a direct classical least-squares (DCLS demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.

  13. A Ribeiroia spp. (Class: Trematoda) - Specific PCR-based diagnostic

    Science.gov (United States)

    Reinitz, David M.; Yoshino, T.P.; Cole, Rebecca A.

    2007-01-01

    Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases. ?? American Society of Parasitologists 2007.

  14. Method matters: Understanding diagnostic reliability in DSM-IV and DSM-5.

    Science.gov (United States)

    Chmielewski, Michael; Clark, Lee Anna; Bagby, R Michael; Watson, David

    2015-08-01

    Diagnostic reliability is essential for the science and practice of psychology, in part because reliability is necessary for validity. Recently, the DSM-5 field trials documented lower diagnostic reliability than past field trials and the general research literature, resulting in substantial criticism of the DSM-5 diagnostic criteria. Rather than indicating specific problems with DSM-5, however, the field trials may have revealed long-standing diagnostic issues that have been hidden due to a reliance on audio/video recordings for estimating reliability. We estimated the reliability of DSM-IV diagnoses using both the standard audio-recording method and the test-retest method used in the DSM-5 field trials, in which different clinicians conduct separate interviews. Psychiatric patients (N = 339) were diagnosed using the SCID-I/P; 218 were diagnosed a second time by an independent interviewer. Diagnostic reliability using the audio-recording method (N = 49) was "good" to "excellent" (M κ = .80) and comparable to the DSM-IV field trials estimates. Reliability using the test-retest method (N = 218) was "poor" to "fair" (M κ = .47) and similar to DSM-5 field-trials' estimates. Despite low test-retest diagnostic reliability, self-reported symptoms were highly stable. Moreover, there was no association between change in self-report and change in diagnostic status. These results demonstrate the influence of method on estimates of diagnostic reliability. (c) 2015 APA, all rights reserved).

  15. Approaches to Demonstrating the Reliability and Validity of Core Diagnostic Criteria for Chronic Pain.

    Science.gov (United States)

    Bruehl, Stephen; Ohrbach, Richard; Sharma, Sonia; Widerstrom-Noga, Eva; Dworkin, Robert H; Fillingim, Roger B; Turk, Dennis C

    2016-09-01

    The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society Pain Taxonomy (AAPT) is designed to be an evidence-based multidimensional chronic pain classification system that will facilitate more comprehensive and consistent chronic pain diagnoses, and thereby enhance research, clinical communication, and ultimately patient care. Core diagnostic criteria (dimension 1) for individual chronic pain conditions included in the initial version of AAPT will be the focus of subsequent empirical research to evaluate and provide evidence for their reliability and validity. Challenges to validating diagnostic criteria in the absence of clear and identifiable pathophysiological mechanisms are described. Based in part on previous experience regarding the development of evidence-based diagnostic criteria for psychiatric disorders, headache, and specific chronic pain conditions (fibromyalgia, complex regional pain syndrome, temporomandibular disorders, pain associated with spinal cord injuries), several potential approaches for documentation of the reliability and validity of the AAPT diagnostic criteria are summarized. The AAPT is designed to be an evidence-based multidimensional chronic pain classification system. Conceptual and methodological issues related to demonstrating the reliability and validity of the proposed AAPT chronic pain diagnostic criteria are discussed. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Newborn Congenital Cytomegalovirus Screening Based on Clinical Manifestations and Evaluation of DNA-based Assays for In Vitro Diagnostics.

    Science.gov (United States)

    Fujii, Tomoyuki; Oka, Akira; Morioka, Ichiro; Moriuchi, Hiroyuki; Koyano, Shin; Yamada, Hideto; Saito, Shigeru; Sameshima, Hiroshi; Nagamatsu, Takeshi; Tsuchida, Shinya; Inoue, Naoki

    2017-10-01

    To establish a strategy for congenital cytomegalovirus (cCMV) screening and to establish confirmatory assays approved as in vitro diagnostics by the regulatory authorities, we evaluated the clinical risks and performance of diagnostic assays developed by commercial companies, since cCMV infection has significant clinical consequences. Newborns with clinical manifestations considered to be consequences of cCMV infection (n = 575) were screened for the presence of cytomegalovirus (CMV) DNA in urine specimens collected onto filter paper placed in their diapers using the polymerase chain reaction-based assay reported previously. Liquid urine specimens were obtained from all of 20 CMV-positive newborns and 107 of the CMV-negative newborns identified in the screening. We used these 127 specimens, as well as 12 from cCMV cases identified in a previous study and 41 from healthy newborns, to compare the performance of 2 commercial assays and 1 in-house assay. The risk-based screening allowed the identification of cCMV cases at least 10-fold more efficiently than our previous universal screening, although there appears to be a limit to the identification of asymptomatically infected newborns. Although CMV-specific IgM during pregnancy was found frequently in mothers of cCMV newborns, CMV-IgM alone is not an effective diagnostic marker. The urine-filter-based assay and the 3 diagnostic assays yielded identical results. Although risk-based and universal newborn screening strategies for cCMV infection each have their respective advantages and disadvantages, urine-filter-based assay followed by confirmatory in vitro diagnostics assays is able to identify cCMV cases efficiently.

  17. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    Science.gov (United States)

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  18. Leishmania diagnostic and identification py using 32P labelled DNA probes

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro de; Melo, Maria Norma de

    1999-10-01

    P 32 labelled DNA probes are valious instruments for the parasitic diseases by using hybridization reaction. In this paper we describe the methodology and present the foundations for the radioactive probes production, based on the kinetoplast DNA (kDNA), for the Leishmania diagnostic an identification. We also describe the kDNA purification protocol from Leishmania reference cepa, the process of P 32 labelling of the kDNA by using the nick translation method, gathering, sample preparation and treatment, the optimum conditions for the hybridization reaction and the procedures for the autoradiography

  19. Human Papillomavirus (HPV) Infection in Squamous Cell Carcinomas Arising From the Oropharynx: Detection of HPV DNA and p16 Immunohistochemistry as Diagnostic and Prognostic Indicators—A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Bussu, Francesco, E-mail: francesco.bussu.md@gmail.com [Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Sali, Michela [Institute of Microbiology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Gallus, Roberto [Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Petrone, Gianluigi; Zannoni, Gian Franco [Institute of Histopathology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Autorino, Rosa; Dinapoli, Nicola [Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Santangelo, Rosaria [Institute of Microbiology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Vellone, Valerio Gaetano [Institute of Histopathology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Graziani, Cristina [Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Miccichè, Francesco [Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Almadori, Giovanni; Galli, Jacopo [Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Delogu, Giovanni; Sanguinetti, Maurizio [Institute of Microbiology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); Rindi, Guido [Institute of Histopathology, Università Cattolica del Sacro Cuore, Policlinico A. Gemelli, Roma (Italy); and others

    2014-08-01

    Purpose: Human papillomavirus (HPV) 16 infection is associated with oropharyngeal carcinogenesis and is likely the cause of the reported increase in disease incidence. We evaluated the prevalence of HPV infection and the reliability of different diagnostic tools using primary tumor samples from a cohort of 50 patients. Methods and Materials: Formalin-fixed paraffin-embedded (FFPE) tumor samples were collected from all 50 consecutive primary oropharyngeal SCC patients who were enrolled in the study; fresh tumor samples were available in 22 cases. NucliSENS EasyQ HPVv1 was used for RNA, and Digene Hybrid Capture-2(HC2) was used for DNA detection. p16 Expression was evaluated by immunohistochemistry in FPPE specimens. Results: Based on the DNA detection assay on FFPE samples, the frequency of high-risk HPV infection was 32%. The agreement rate between HPV RNA and HPV DNA detection in fresh samples was 100%. The agreement rate between p16 immunohistochemistry (IHC) and the detection of HPV DNA in the FFPE samples was fair but not excellent (κ = 0.618). HPV DNA detection was highly significant, as measured by disease-specific survival and determined using a Wilcoxon test (P=.001). p16 IHC also exhibited a prognostic value but with a lower statistical significance (P=.0475). The detection of HPV DNA, but not p16 IHC, was also significantly correlated with locoregional control (P=.0461). Conclusion: Diagnostic methods based on the detection of HPV nucleic acids appear to be more reliable and objective because they do not require reading by a trained histopathologist. Furthermore, the detection of HPV DNA exhibits an improved correlation with survival, and therefore appears definitely more reliable than p16 IHC for routine use in clinical practice.

  20. Human Papillomavirus (HPV) Infection in Squamous Cell Carcinomas Arising From the Oropharynx: Detection of HPV DNA and p16 Immunohistochemistry as Diagnostic and Prognostic Indicators—A Pilot Study

    International Nuclear Information System (INIS)

    Bussu, Francesco; Sali, Michela; Gallus, Roberto; Petrone, Gianluigi; Zannoni, Gian Franco; Autorino, Rosa; Dinapoli, Nicola; Santangelo, Rosaria; Vellone, Valerio Gaetano; Graziani, Cristina; Miccichè, Francesco; Almadori, Giovanni; Galli, Jacopo; Delogu, Giovanni; Sanguinetti, Maurizio; Rindi, Guido

    2014-01-01

    Purpose: Human papillomavirus (HPV) 16 infection is associated with oropharyngeal carcinogenesis and is likely the cause of the reported increase in disease incidence. We evaluated the prevalence of HPV infection and the reliability of different diagnostic tools using primary tumor samples from a cohort of 50 patients. Methods and Materials: Formalin-fixed paraffin-embedded (FFPE) tumor samples were collected from all 50 consecutive primary oropharyngeal SCC patients who were enrolled in the study; fresh tumor samples were available in 22 cases. NucliSENS EasyQ HPVv1 was used for RNA, and Digene Hybrid Capture-2(HC2) was used for DNA detection. p16 Expression was evaluated by immunohistochemistry in FPPE specimens. Results: Based on the DNA detection assay on FFPE samples, the frequency of high-risk HPV infection was 32%. The agreement rate between HPV RNA and HPV DNA detection in fresh samples was 100%. The agreement rate between p16 immunohistochemistry (IHC) and the detection of HPV DNA in the FFPE samples was fair but not excellent (κ = 0.618). HPV DNA detection was highly significant, as measured by disease-specific survival and determined using a Wilcoxon test (P=.001). p16 IHC also exhibited a prognostic value but with a lower statistical significance (P=.0475). The detection of HPV DNA, but not p16 IHC, was also significantly correlated with locoregional control (P=.0461). Conclusion: Diagnostic methods based on the detection of HPV nucleic acids appear to be more reliable and objective because they do not require reading by a trained histopathologist. Furthermore, the detection of HPV DNA exhibits an improved correlation with survival, and therefore appears definitely more reliable than p16 IHC for routine use in clinical practice

  1. Diagnostics and reliability of pipeline systems

    CERN Document Server

    Timashev, Sviatoslav

    2016-01-01

    The book contains solutions to fundamental problems which arise due to the logic of development of specific branches of science, which are related to pipeline safety, but mainly are subordinate to the needs of pipeline transportation.          The book deploys important but not yet solved aspects of reliability and safety assurance of pipeline systems, which are vital aspects not only for the oil and gas industry and, in general, fuel and energy industries , but also to virtually all contemporary industries and technologies. The volume will be useful to specialists and experts in the field of diagnostics/ inspection, monitoring, reliability and safety of critical infrastructures. First and foremost, it will be useful to the decision making persons —operators of different types of pipelines, pipeline diagnostics/inspection vendors, and designers of in-line –inspection (ILI) tools, industrial and ecological safety specialists, as well as to researchers and graduate students.

  2. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  3. An improved method of DNA extraction from plants for pathogen ...

    African Journals Online (AJOL)

    Polymerase chain reaction (PCR)-based applications in plant molecular biology and molecular diagnostics for plant pathogens require good quality DNA for reliable and reproducible results. Leaf tissue is often the choice for DNA extraction, but the use of other sources such as tubers, stems, or seeds, is not uncommon.

  4. Reliability and Validity of Autism Diagnostic Interview-Revised, Japanese Version

    Science.gov (United States)

    Tsuchiya, Kenji J.; Matsumoto, Kaori; Yagi, Atsuko; Inada, Naoko; Kuroda, Miho; Inokuchi, Eiko; Koyama, Tomonori; Kamio, Yoko; Tsujii, Masatsugu; Sakai, Saeko; Mohri, Ikuko; Taniike, Masako; Iwanaga, Ryoichiro; Ogasahara, Kei; Miyachi, Taishi; Nakajima, Shunji; Tani, Iori; Ohnishi, Masafumi; Inoue, Masahiko; Nomura, Kazuyo; Hagiwara, Taku; Uchiyama, Tokio; Ichikawa, Hironobu; Kobayashi, Shuji; Miyamoto, Ken; Nakamura, Kazuhiko; Suzuki, Katsuaki; Mori, Norio; Takei, Nori

    2013-01-01

    To examine the inter-rater reliability of Autism Diagnostic Interview-Revised, Japanese Version (ADI-R-JV), the authors recruited 51 individuals aged 3-19 years, interviewed by two independent raters. Subsequently, to assess the discriminant and diagnostic validity of ADI-R-JV, the authors investigated 317 individuals aged 2-19 years, who were…

  5. Pyrrolo-dC modified duplex DNA as a novel probe for the sensitive assay of base excision repair enzyme activity.

    Science.gov (United States)

    Lee, Chang Yeol; Park, Ki Soo; Park, Hyun Gyu

    2017-12-15

    We develop a novel approach to determine formamidopyrimidine DNA glycosylase (Fpg) activity by taking advantage of the unique fluorescence property of pyrrolo-dC (PdC) positioned opposite to 8-oxoguanine (8-oxoG) in duplex DNA. In its initial state, PdC in duplex DNA undergoes the efficient stacking and collisional quenching interactions, showing the low fluorescence signal. In contrast, the presence of Fpg, which specifically removes 8-oxoG and incises resulting apurinic (AP) site, transforms duplex DNA into single-stranded (ss) DNAs. As a result, the intrinsic fluorescence signal of PdC in ssDNA is recovered to exhibit the significantly enhanced fluorescence signal. Based on this Fpg-dependent fluorescence response of PdC, we could reliably determine Fpg activity down to 1.25U/ml with a linear response from 0 to 50U/ml. In addition, the diagnostic capability of this strategy was successfully demonstrated by reliably assaying Fpg activity in human blood serum, showing its great potential in the practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Learning Diagnostic Diagrams in Transport-Based Data-Collection Systems

    DEFF Research Database (Denmark)

    Tran, Vu The; Eklund, Peter; Cook, Chris

    2014-01-01

    Insights about service improvement in a transit network can be gained by studying transit service reliability. In this paper, a general procedure for constructing a transit service reliability diagnostic (Tsrd) diagram based on a Bayesian network is proposed to automatically build a behavioural...

  7. Communication: Electron ionization of DNA bases

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  8. Experimental Investigation on Admittance-Based Piezoelectric Sensor Diagnostic Process

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyejin; Park, Tongil; Park, Gyuhae [Chonnam National University, Gwangju (Korea, Republic of)

    2015-01-15

    Structural health monitoring (SHM) techniques based on the use of active-sensing piezoelectric (PZT) materials have received considerable attention. The validation of the PZT functionality during SHM operation is critical to successfully implementing a reliable SHM system. In this study, we investigated several parameters that affect the admittance-based sensor diagnostic process. We experimentally identified the temperature dependency of the active-sensor diagnostic process. We found that the admittance-based sensor diagnostic process can differentiate the adhesion conditions of bonding materials that are used to install a PZT on a structure, which is important when designing a sensor diagnostic process for an SHM system.

  9. Nanotechnology based diagnostics for neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Nicholas S; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  10. Nanotechnology based diagnostics for neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Nicholas S.; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  11. Nanotechnology based diagnostics for neurological disorders

    International Nuclear Information System (INIS)

    Kurek, Nicholas S.; Chandra, Sathees B.

    2012-01-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  12. Telepsychiatry clinical decision support system used by non-psychiatrists in remote areas: Validity & reliability of diagnostic module

    Science.gov (United States)

    Malhotra, Savita; Chakrabarti, Subho; Shah, Ruchita; Sharma, Minali; Sharma, Kanu Priya; Malhotra, Akanksha; Upadhyaya, Suneet K.; Margoob, Mushtaq A.; Maqbool, Dar; Jassal, Gopal D.

    2017-01-01

    Background & objectives: A knowledge-based, logically-linked online telepsychiatric decision support system for diagnosis and treatment of mental disorders was developed and validated. We evaluated diagnostic accuracy and reliability of the application at remote sites when used by non-psychiatrists who underwent a brief training in its use through video-conferencing. Methods: The study was conducted at a nodal telepsychiatry centre, and three geographically remote peripheral centres. The diagnostic tool of application had a screening followed by detailed criteria-wise diagnostic modules for 18 psychiatric disorders. A total of 100 consecutive consenting adult outpatients attending remote telepsychiatry centres were included. To assess inter-rater reliability, patients were interviewed face to face by non-specialists at remote sites using the application (active interviewer) and simultaneously on online application via video-conferencing by a passive assessor at nodal centre. Another interviewer at the nodal centre rated the patient using Mini-International Neuropsychiatric Interview (MINI) for diagnostic validation. Results: Screening sub-module had high sensitivity (80-100%), low positive predictive values (PPV) (0.10-0.71) but high negative predictive value (NPV) (0.97-1) for most disorders. For the diagnostic sub-modules, Cohen's kappa was >0.4 for all disorders, with kappa of 0.7-1.0 for most disorders. PPV and NPV were high for most disorders. Inter-rater agreement analysis revealed kappa >0.6 for all disorders. Interpretation & conclusions: Diagnostic tool showed acceptable to good validity and reliability when used by non-specialists at remote sites. Our findings show that diagnostic tool of the telepsychiatry application has potential to empower non-psychiatrist doctors and paramedics to diagnose psychiatric disorders accurately and reliably in remote sites. PMID:29265020

  13. Systematic review of reliability and diagnostic validity of joint vibration analysis for diagnosis of temporomandibular disorders.

    Science.gov (United States)

    Sharma, Sonia; Crow, Heidi C; McCall, W D; Gonzalez, Yoly M

    2013-01-01

    To conduct a systematic review of papers reporting the reliability and diagnostic validity of the joint vibration analysis (JVA) for diagnosis of temporomandibular disorders (TMD). A search of Pubmed identified English-language publications of the reliability and diagnostic validity of the JVA. Guidelines were adapted from applied STAndards for the Reporting of Diagnostic accuracy studies (STARD) to evaluate the publications. Fifteen publications were included in this review, each of which presented methodological limitations. This literature is unable to provide evidence to support the reliability and diagnostic validity of the JVA for diagnosis of TMD.

  14. Binge Eating Disorder: Reliability and Validity of a New Diagnostic Category.

    Science.gov (United States)

    Brody, Michelle L.; And Others

    1994-01-01

    Examined reliability and validity of binge eating disorder (BED), proposed for inclusion in Diagnostic and Statistical Manual of Mental Disorders (DSM), fourth edition. Interrater reliability of BED diagnosis compared favorably with that of most diagnoses in DSM revised third edition. Study comparing obese individuals with and without BED and…

  15. Multi-immunoreaction-based dual-color capillary electrophoresis for enhanced diagnostic reliability of thyroid gland disease.

    Science.gov (United States)

    Woo, Nain; Kim, Su-Kang; Kang, Seong Ho

    2017-08-04

    Thyroid-stimulating hormone (TSH) secretion plays a critical role in regulating thyroid gland function and circulating thyroid hormones (i.e., thyroxine (T4) and triiodothyronine (T3)). A novel multi-immunoreaction-based dual-color capillary electrophoresis (CE) technique was investigated in this study to assess its reliability in diagnosing thyroid gland disease via simultaneous detection of TSH, T3, and T4 in a single run of CE. Compared to the conventional immunoreaction technique, multi-immunoreaction of biotinylated streptavidin antibodies increased the selectivity and sensitivity for individual hormones in human blood samples. Dual-color laser-induced fluorescence (LIF) detection-based CE performed in a running buffer of 25mM Na 2 B 4 O 7 -NaOH (pH 9.3) allowed for fast, simultaneous quantitative analysis of three target thyroid hormones using different excited wavelengths within 3.2min. This process had excellent sensitivity and detection limits of 0.05-5.32 fM. The results showed 1000-100,000 times higher detection sensitivity than previous methods. Method validation with enzyme linked immunosorbent assay for application with human blood samples showed that the CE method was not significantly different at the 98% confidence level. Therefore, the developed CE-LIF method has the advantages of high detection sensitivity, faster analysis time, and smaller sample amount compared to the conventional methods The combined multi-immunoreaction and dual-color CE-LIF method should have increased diagnostic reliability for thyroid gland disease compared to conventional methods based on its highly sensitive detection of thyroid hormones using a single injection and high-throughput screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. "Off-on" electrochemical hairpin-DNA-based genosensor for cancer diagnostics.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt; Ferapontova, Elena E

    2011-03-01

    A simple and robust "off-on" signaling genosensor platform with improved selectivity for single-nucleotide polymorphism (SNP) detection based on the electronic DNA hairpin molecular beacons has been developed. The DNA beacons were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 3'-end, while the 5'-end was labeled with a methylene blue (MB) redox probe. A typical "on-off" change of the electrochemical signal was observed upon hybridization of the 27-33 nucleotide (nt) long hairpin DNA to the target DNA, in agreement with all the hitherto published data. Truncation of the DNA hairpin beacons down to 20 nts provided improved genosensor selectivity for SNP and allowed switching of the electrochemical genosensor response from the on-off to the off-on mode. Switching was consistent with the variation in the mechanism of the electron transfer reaction between the electrode and the MB redox label, for the folded beacon being characteristic of the electrochemistry of adsorbed species, while for the "open" duplex structure being formally controlled by the diffusion of the redox label within the adsorbate layer. The relative current intensities of both processes were governed by the length of the formed DNA duplex, potential scan rate, and apparent diffusion coefficient of the redox species. The off-on genosensor design used for detection of a cancer biomarker TP53 gene sequence favored discrimination between the healthy and SNP-containing DNA sequences, which was particularly pronounced at short hybridization times.

  17. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    Science.gov (United States)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  18. Droplet digital PCR-based EGFR mutation detection with an internal quality control index to determine the quality of DNA.

    Science.gov (United States)

    Kim, Sung-Su; Choi, Hyun-Jeung; Kim, Jin Ju; Kim, M Sun; Lee, In-Seon; Byun, Bohyun; Jia, Lina; Oh, Myung Ryurl; Moon, Youngho; Park, Sarah; Choi, Joon-Seok; Chae, Seoung Wan; Nam, Byung-Ho; Kim, Jin-Soo; Kim, Jihun; Min, Byung Soh; Lee, Jae Seok; Won, Jae-Kyung; Cho, Soo Youn; Choi, Yoon-La; Shin, Young Kee

    2018-01-11

    In clinical translational research and molecular in vitro diagnostics, a major challenge in the detection of genetic mutations is overcoming artefactual results caused by the low-quality of formalin-fixed paraffin-embedded tissue (FFPET)-derived DNA (FFPET-DNA). Here, we propose the use of an 'internal quality control (iQC) index' as a criterion for judging the minimum quality of DNA for PCR-based analyses. In a pre-clinical study comparing the results from droplet digital PCR-based EGFR mutation test (ddEGFR test) and qPCR-based EGFR mutation test (cobas EGFR test), iQC index ≥ 0.5 (iQC copies ≥ 500, using 3.3 ng of FFPET-DNA [1,000 genome equivalents]) was established, indicating that more than half of the input DNA was amplifiable. Using this criterion, we conducted a retrospective comparative clinical study of the ddEGFR and cobas EGFR tests for the detection of EGFR mutations in non-small cell lung cancer (NSCLC) FFPET-DNA samples. Compared with the cobas EGFR test, the ddEGFR test exhibited superior analytical performance and equivalent or higher clinical performance. Furthermore, iQC index is a reliable indicator of the quality of FFPET-DNA and could be used to prevent incorrect diagnoses arising from low-quality samples.

  19. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    Science.gov (United States)

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  20. Reliability of self-reported diagnostic radiation history in BRCA1/2 mutation carriers

    International Nuclear Information System (INIS)

    Pijpe, Anouk; Manders, Peggy; Mulder, Renee L.; Leeuwen, Flora E. van; Rookus, Matti A.

    2010-01-01

    We assessed reliability of self-reported diagnostic radiation history in BRCA1/2 mutation carriers with and without breast cancer. Within the frame-work of the HEBON study, 401 BRCA1/2 mutation carriers completed a baseline (1999-2004) and a follow-up questionnaire (2006-2007). Test-retest reliability of self-reported exposure to chest X-rays, fluoroscopies and mammograms was assessed for the entire study population and by case status. Overall proportion agreement on reporting ever/never exposure was good (> 75%), while the corresponding kappa coefficients were between 0.40 and 0.75, indicating at least moderate reliability beyond chance. Reliability of number of exposures was also good (> 75%). Proportion agreement on reporting age at first mammogram was low (40%) for exact consistency and moderate (60%) for consistency ± 1 year. Reliability of age at first mammogram was higher for cases than for unaffected carriers (P < 0.001) but this difference disappeared when excluding diagnostic mammograms (P = 0.60). In unaffected carriers proportion agreement on age at last mammogram was 50%. In general, the direction of disagreement on all items was equally distributed. More consistent reporting was mainly determined by a younger age at questionnaire completion. In conclusion, inconsistent self-report of diagnostic radiation by BRCA1/2 mutation carriers was mainly non-differential by disease status.

  1. DNA-based identification of invasive alien species in relation to Canadian federal policy and law, and the basis of rapid-response management.

    Science.gov (United States)

    Thomas, Vernon G; Hanner, Robert H; Borisenko, Alex V

    2016-11-01

    Managing invasive alien species in Canada requires reliable taxonomic identification as the basis of rapid-response management. This can be challenging, especially when organisms are small and lack morphological diagnostic features. DNA-based techniques, such as DNA barcoding, offer a reliable, rapid, and inexpensive toolkit for taxonomic identification of individual or bulk samples, forensic remains, and even environmental DNA. Well suited for this requirement, they could be more broadly deployed and incorporated into the operating policy and practices of Canadian federal departments and should be authorized under these agencies' articles of law. These include Fisheries and Oceans Canada, Canadian Food Inspection Agency, Transport Canada, Environment Canada, Parks Canada, and Health Canada. These efforts should be harmonized with the appropriate provisions of provincial jurisdictions, for example, the Ontario Invasive Species Act. This approach necessitates that a network of accredited, certified laboratories exists, and that updated DNA reference libraries are readily accessible. Harmonizing this approach is vital among Canadian federal agencies, and between the federal and provincial levels of government. Canadian policy and law must also be harmonized with that of the USA when detecting, and responding to, invasive species in contiguous lands and waters. Creating capacity in legislation for use of DNA-based identifications brings the authority to fund, train, deploy, and certify staff, and to refine further developments in this molecular technology.

  2. Gold-based optical biosensor for single-mismatched DNA detection using salt-induced hybridization

    DEFF Research Database (Denmark)

    Zhan, Zongrui; Ma, Xingyi; Cao, Cuong

    2011-01-01

    In this study, a gold nanoparticle (Au-NP)-based detection method for sensitive and specific DNA-based diagnostic applications is described. A sandwich format consisting of Au-NPs/DNA/PMP (Streptavidin-coated MagnetSphere Para-Magnetic Particles) was fabricated. PMPs captured and separated target...

  3. DNA-based approaches to identify forest fungi in Pacific Islands: A pilot study

    Science.gov (United States)

    Anna E. Case; Sara M. Ashiglar; Phil G. Cannon; Ernesto P. Militante; Edwin R. Tadiosa; Mutya Quintos-Manalo; Nelson M. Pampolina; John W. Hanna; Fred E. Brooks; Amy L. Ross-Davis; Mee-Sook Kim; Ned B. Klopfenstein

    2013-01-01

    DNA-based diagnostics have been successfully used to characterize diverse forest fungi (e.g., Hoff et al. 2004, Kim et al. 2006, Glaeser & Lindner 2011). DNA sequencing of the internal transcribed spacer (ITS) and large subunit (LSU) regions of nuclear ribosomal DNA (rDNA) has proved especially useful (Sonnenberg et al. 2007, Seifert 2009, Schoch et al. 2012) for...

  4. Reliability and validity of a Chinese version of the Diagnostic Interview for Borderlines-Revised.

    Science.gov (United States)

    Wang, Lanlan; Yuan, Chenmei; Qiu, Jianying; Gunderson, John; Zhang, Min; Jiang, Kaida; Leung, Freedom; Zhong, Jie; Xiao, Zeping

    2014-09-01

    Borderline personality disorder (BPD) is the most studied of the axis II disorders. One of the most widely used diagnostic instruments is the Diagnostic Interview for Borderline Patients-Revised (DIB-R). The aim of this study was to test the reliability and validity of DIB-R for use in the Chinese culture. The reliability and validity of the DIB-R Chinese version were assessed in a sample of 236 outpatients with a probable BPD diagnosis. The Structured Clinical Interview for DSM-IV Personality Disorders (SCID-II) was used as a standard. Test-retest reliability was tested six months later with 20 patients, and inter-rater reliability was tested on 32 patients. The Chinese version of the DIB-R showed good internal global consistency (Cronbach's α of 0.916), good test-retest reliability (Pearson correlation of 0.704), good inter-rater reliability (intra-class correlation coefficient of 0.892 and kappa of 0.861). When compared with the DSM-IV diagnosis as measured by the SCID-II, the DIB-R showed relatively good sensitivity (0.768) and specificity (0.891) at the cutoff of 7, moderate diagnostic convergence (kappa of 0.631), as well as good discriminating validity. The Chinese version of the DIB-R has good psychometric properties, which renders it a valuable method for examining the presence, the severity, and component phenotypes of BPD in Chinese samples. © 2013 Wiley Publishing Asia Pty Ltd.

  5. A web-based test of residents' skills in diagnostic radiology

    International Nuclear Information System (INIS)

    Finlay, K.; Norman, G.R.; Keane, D.R.; Stolberg, H.

    2006-01-01

    To develop an objective, Web-based tool for evaluating residents' knowledge of diagnostic radiology. We developed and tested a Web-based evaluation tool (the Diagnostic Radiology Skills Test) that consists of 3 tests, one in each of 3 domains of diagnostic radiology: chest, gastrointestinal, and musculoskeletal imaging. Each test comprises 30 cases representing a range of difficulty in the domain, including normal states, normal variants, typical cases of common diagnoses, and cases with more subtle findings. Cases are presented with a long menu of domain-specific possible diagnoses (response options), each coded for diagnostic appropriateness. Our subjects were 21 residents in postgraduate year (PGY) 2 to 5 and 11 experts in diagnostic radiology. Subjects accessed the tool via a Web site on our Web server. Residents test results were compared for reliability and validity across domain, case, and training level. In addition, results were correlated with commonly used established and objective evaluation tools. The tool demonstrated consistent monotonic improvement in performance with training level. It showed acceptable reliability in discriminating between residents at different performance levels, both within and across training levels (r = 0.53 within level and 0.69 across levels). Test results also had concurrent validity against the American College of Radiology In-Training Examination, a widely accepted objective assessment tool (r = 0.65, P < 0.01), and 2 Objective Structured Clinical Examinations (OSCEs) focusing on diagnostic skills (r = 0.78 and r 0.69, P < 0.01, respectively). Our study demonstrates the feasibility of a Web-based, standardized, objective assessment method for evaluating residents' performance. (author)

  6. Advanced Electrochemical Platforms for Cancer Diagnostics based on Nanoswitchable DNA Architectures

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Cancer is an important chronic disease and a serious public health problem. One in three can be expected to be diagnosed with cancer in our lifetimes and one in four will die of it. One of the most important factors in the fight against cancer is its early and reliable detection and greater...... availability of screening tests, since any cancer is easier to treat when treatment is started early. In this context, genosensor nanotechnologies have become increasingly important for prognosis and diagnosis of cancer, post-cytotoxic therapy analysis, and anticancer drug development. Assays for mutated genes...... and specific proteins, shown to be indicators of cancer development, are of high priority. Great efforts are made to develop new nanobiotechnologies to improve the selectivity and sensitivity of analysis. Among them, combination of electrochemistry and DNA nanotechnology allowed the development of extremely...

  7. Eating Disorder Diagnostic Scale: Additional Evidence of Reliability and Validity

    Science.gov (United States)

    Stice, Eric; Fisher, Melissa; Martinez, Erin

    2004-01-01

    The authors conducted 4 studies investigating the reliability and validity of the Eating Disorder Diagnostic Scale (HDDS; E. Stice, C. F. Telch, & S. L. Rizvi, 2000), a brief self-report measure for diagnosing anorexia nervosa, bulimia nervosa, and binge eating disorder. Study 1 found that the HDDS showed criterion validity with interview-based…

  8. Publishing nutrition research: validity, reliability, and diagnostic test assessment in nutrition-related research.

    Science.gov (United States)

    Gleason, Philip M; Harris, Jeffrey; Sheean, Patricia M; Boushey, Carol J; Bruemmer, Barbara

    2010-03-01

    This is the sixth in a series of monographs on research design and analysis. The purpose of this article is to describe and discuss several concepts related to the measurement of nutrition-related characteristics and outcomes, including validity, reliability, and diagnostic tests. The article reviews the methodologic issues related to capturing the various aspects of a given nutrition measure's reliability, including test-retest, inter-item, and interobserver or inter-rater reliability. Similarly, it covers content validity, indicators of absolute vs relative validity, and internal vs external validity. With respect to diagnostic assessment, the article summarizes the concepts of sensitivity and specificity. The hope is that dietetics practitioners will be able to both use high-quality measures of nutrition concepts in their research and recognize these measures in research completed by others. Copyright 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  9. Water chemistry data acquisition, processing, evaluation and diagnostic systems in Light Water Reactors: Future improvement of plant reliability and safety

    International Nuclear Information System (INIS)

    Uchida, S.; Takiguchi, H.; Ishigure, K.

    2006-01-01

    Data acquisition, processing and evaluation systems have been applied in major Japanese PWRs and BWRs to provide (1) reliable and quick data acquisition with manpower savings in plant chemical laboratories and (2) smooth and reliable information transfer among chemists, plant operators, and supervisors. Data acquisition systems in plants consist of automatic and semi-automatic instruments for chemical analyses, e. g., X-ray fluorescence analysis and ion chromatography, while data processing systems consist of PC base-sub-systems, e.g., data storage, reliability evaluation, clear display, and document preparation for understanding the plant own water chemistry trends. Precise and reliable evaluations of water chemistry data are required in order to improve plant reliability and safety. For this, quality assurance of the water chemistry data acquisition system is needed. At the same time, theoretical models are being applied to bridge the gaps between measured water chemistry data and the information desired to understand the interaction of materials and cooling water in plants. Major models which have already been applied for plant evaluation are: (1) water radiolysis models for BWRs and PWRs; (2) crevice radiolysis model for SCC in BWRs; and (3) crevice pH model for SG tubing in PWRs. High temperature water chemistry sensors and automatic plant diagnostic systems have been applied in only restricted areas. ECP sensors are gaining popularity as tools to determine the effects of hydrogen injection in BWR systems. Automatic plant diagnostic systems based on artificial intelligence will be more popular after having sufficient experience with off line diagnostic systems. (author)

  10. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  11. Radiation induced DNA double-strand breaks in radiology; Strahleninduzierte DNA-Doppelstrangbrueche in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Kuefner, M.A. [Dornbirn Hospital (Austria). Dept. of Radiology; Brand, M.; Engert, C.; Uder, M. [Erlangen University Hospital (Germany). Dept. of Radiology; Schwab, S.A. [Radiologis, Oberasbach (Germany)

    2015-10-15

    Shortly after the discovery of X-rays, their damaging effect on biological tissues was observed. The determination of radiation exposure in diagnostic and interventional radiology is usually based on physical measurements or mathematical algorithms with standardized dose simulations. γ-H2AX immunofluorescence microscopy is a reliable and sensitive method for the quantification of radiation induced DNA double-strand breaks (DSB) in blood lymphocytes. The detectable amount of these DNA damages correlates well with the dose received. However, the biological radiation damage depends not only on dose but also on other individual factors like radiation sensitivity and DNA repair capacity. Iodinated contrast agents can enhance the x-ray induced DNA damage level. After their induction DSB are quickly repaired. A protective effect of antioxidants has been postulated in experimental studies. This review explains the principle of the γ-H2AX technique and provides an overview on studies evaluating DSB in radiologic examinations.

  12. SU-F-E-01: Pitfalls: Reliability and Performance of Diagnostic X-Sources

    Energy Technology Data Exchange (ETDEWEB)

    Behling, R [Philips Medical Systems DMC GmbHHamburg (United States)

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. The author is employee of Royal Philips.

  13. SU-F-E-01: Pitfalls: Reliability and Performance of Diagnostic X-Sources

    International Nuclear Information System (INIS)

    Behling, R

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. The author is employee of Royal Philips

  14. Reliability studies of diagnostic methods in Indian traditional Ayurveda medicine: An overview

    Science.gov (United States)

    Kurande, Vrinda Hitendra; Waagepetersen, Rasmus; Toft, Egon; Prasad, Ramjee

    2013-01-01

    Recently, a need to develop supportive new scientific evidence for contemporary Ayurveda has emerged. One of the research objectives is an assessment of the reliability of diagnoses and treatment. Reliability is a quantitative measure of consistency. It is a crucial issue in classification (such as prakriti classification), method development (pulse diagnosis), quality assurance for diagnosis and treatment and in the conduct of clinical studies. Several reliability studies are conducted in western medicine. The investigation of the reliability of traditional Chinese, Japanese and Sasang medicine diagnoses is in the formative stage. However, reliability studies in Ayurveda are in the preliminary stage. In this paper, examples are provided to illustrate relevant concepts of reliability studies of diagnostic methods and their implication in practice, education, and training. An introduction to reliability estimates and different study designs and statistical analysis is given for future studies in Ayurveda. PMID:23930037

  15. A Rewritable, Random-Access DNA-Based Storage System.

    Science.gov (United States)

    Yazdi, S M Hossein Tabatabaei; Yuan, Yongbo; Ma, Jian; Zhao, Huimin; Milenkovic, Olgica

    2015-09-18

    We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

  16. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  17. Fast infectious diseases diagnostics based on microfluidic biochip system

    Directory of Open Access Journals (Sweden)

    Qin Huang

    2017-03-01

    Full Text Available Molecular diagnostics is one of the most important tools currently in use for clinical pathogen detection due to its high sensitivity, specificity, and low consume of sample and reagent is keyword to low cost molecular diagnostics. In this paper, a sensitive DNA isothermal amplification method for fast clinical infectious diseases diagnostics at aM concentrations of DNA was developed using a polycarbonate (PC microfluidic chip. A portable confocal optical fluorescence detector was specifically developed for the microfluidic chip that was capable of highly sensitive real-time detection of amplified products for sequence-specific molecular identification near the optical diffraction limit with low background. The molecular diagnostics of Listeria monocytogenes with nucleic acid extracted from stool samples was performed at a minimum DNA template concentration of 3.65aM, and a detection limit of less than five copies of genomic DNA. Contrast to the general polymerase chain reaction (PCR at eppendorf (EP tube, the detection time in our developed method was reduced from 1.5h to 45min for multi-target parallel detection, the consume of sample and reagent was dropped from 25μL to 1.45μL. This novel microfluidic chip system and method can be used to develop a micro total analysis system as a clinically relevant pathogen molecular diagnostics method via the amplification of targets, with potential applications in biotechnology, medicine, and clinical molecular diagnostics.

  18. DNA Diagnostics: Optical or by Electronics?

    KAUST Repository

    Khan, Hadayat Ullah

    2016-01-15

    In this paper, we very briefly review DNA biosensors based on optical and electrical detection principles, referring mainly to our past work applying both techniques but here using nearly identical sensor chip surface architectures, i.e., capture probe layers that were prepared based on a pulsed plasma deposition protocol for maleic anhydride and subsequent wet-chemical attachment of the amine-functionalized peptide nucleic acid (PNA) probe oligonucleotides. 15 mer DNA target strands, labeled with Cy5-chromophores that were attached at the 5’ end were used for surface plasmon optical detection and the same target DNA but without label was used in OTFT sensor-based detection where the mere charge density of the bound (hybridized) DNA molecules modulate the source-drain current. The sensing mechanisms and the detection limits of the devices are described in some detail. Both techniques allow for the monitoring of surface hybridization reactions, and offer the capacity to quantitatively discriminate between targets with different degrees of mismatched sequences.

  19. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    International Nuclear Information System (INIS)

    Behling, R.

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  20. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    International Nuclear Information System (INIS)

    2016-01-01

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  1. TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Behling, R. [Philips Medical Systems DMC GmbH (United States)

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  2. TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, the aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate

  3. Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability.

    Science.gov (United States)

    Perinetti, Giuseppe; Primozic, Jasmina; Sharma, Bhavna; Cioffi, Iacopo; Contardo, Luca

    2018-03-28

    The capability of the cervical vertebral maturation (CVM) method in the identification of the mandibular growth peak on an individual basis remains undetermined. The diagnostic reliability of the six-stage CVM method in the identification of the mandibular growth peak was thus investigated. From the files of the Oregon and Burlington Growth Studies (data obtained between early 1950s and middle 1970s), 50 subjects (26 females, 24 males) with at least seven annual lateral cephalograms taken from 9 to 16 years were identified. Cervical vertebral maturation was assessed according to the CVM code staging system, and mandibular growth was defined as annual increments in Co-Gn distance. A diagnostic reliability analysis was carried out to establish the capability of the circumpubertal CVM stages 2, 3, and 4 in the identification of the imminent mandibular growth peak. Variable durations of each of the CVM stages 2, 3, and 4 were seen. The overall diagnostic accuracy values for the CVM stages 2, 3, and 4 were 0.70, 0.76, and 0.77, respectively. These low values appeared to be due to false positive cases. Secular trends in conjunction with the use of a discrete staging system. In most of the Burlington Growth Study sample, the lateral head film at age 15 was missing. None of the CVM stages 2, 3, and 4 reached a satisfactorily diagnostic reliability in the identification of imminent mandibular growth peak.

  4. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  5. DNA barcodes and molecular diagnostics to distinguish an introduced and native Laricobius (Coleoptera: Derodontidae) species in eastern North America

    Science.gov (United States)

    G.A. Davis; N.P. Havill; Z.N. Adelman; A. Caccone; L.T. Kok; S.M. Salom

    2011-01-01

    Molecular diagnostics based on DNA barcodes can be powerful identification tools in the absence of distinctive morphological characters for distinguishing between closely related species. A specific example is distinguishing the endemic species Laricobius rubidus from Laricobius nigrinus, a biological control agent of hemlock...

  6. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    Directory of Open Access Journals (Sweden)

    Sukumar Biswas

    2016-01-01

    Full Text Available Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR assay and the other loop-mediated isothermal amplification (LAMP assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS, and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise.

  7. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    Science.gov (United States)

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  8. Bamboo tea: reduction of taxonomic complexity and application of DNA diagnostics based on rbcL and matK sequence data

    Science.gov (United States)

    Häser, Annette

    2016-01-01

    Background Names used in ingredient lists of food products are trivial and in their nature rarely precise. The most recent scientific interpretation of the term bamboo (Bambusoideae, Poaceae) comprises over 1,600 distinct species. In the European Union only few of these exotic species are well known sources for food ingredients (i.e., bamboo sprouts) and are thus not considered novel foods, which would require safety assessments before marketing of corresponding products. In contrast, the use of bamboo leaves and their taxonomic origin is mostly unclear. However, products containing bamboo leaves are currently marketed. Methods We analysed bamboo species and tea products containing bamboo leaves using anatomical leaf characters and DNA sequence data. To reduce taxonomic complexity associated with the term bamboo, we used a phylogenetic framework to trace the origin of DNA from commercially available bamboo leaves within the bambusoid subfamily. For authentication purposes, we introduced a simple PCR based test distinguishing genuine bamboo from other leaf components and assessed the diagnostic potential of rbcL and matK to resolve taxonomic entities within the bamboo subfamily and tribes. Results Based on anatomical and DNA data we were able to trace the taxonomic origin of bamboo leaves used in products to the genera Phyllostachys and Pseudosasa from the temperate “woody” bamboo tribe (Arundinarieae). Currently available rbcL and matK sequence data allow the character based diagnosis of 80% of represented bamboo genera. We detected adulteration by carnation in four of eight tea products and, after adapting our objectives, could trace the taxonomic origin of the adulterant to Dianthus chinensis (Caryophyllaceae), a well known traditional Chinese medicine with counter indications for pregnant women. PMID:27957401

  9. Magnetophoresis of flexible DNA-based dumbbell structures

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  10. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  11. Inter-rater reliability of diagnostic criteria for sacroiliac joint-, disc- and facet joint pain.

    Science.gov (United States)

    van Tilburg, Cornelis W J; Groeneweg, Johannes G; Stronks, Dirk L; Huygen, Frank J P M

    2017-01-01

    Several diagnostic criteria sets are described in the literature to identify low back pain subtypes, but very little is known about the inter-rater reliability of these criteria. We conducted a study to determine the reliability of diagnostic tests that point towards SI joint-, disc- or facet joint pain. Inter-rater reliability study alongside three randomized clinical trials. Multidisciplinary pain center of general hospital. Patients aged 18 or more with medical history and physical examination suggestive of sacroiliac joint-, disc- and facet joint pain on lumbar level. Making use of nowadays most common used diagnostic criteria, a physical examination is taken independently by three physicians (two pain physicians and one orthopedic surgeon). Inter-rater reliability (Kappa (κ) measure of agreement) and significance (p) between raters are presented. Strengths of agreement, indicated with κ values above 0,20, are presented in order of agreement. One hundred patients were included. None of the parameters from the physical investigation had κ values of more than 0.21 (fair) in all pairs of raters. Between two raters (C and D), there was an almost perfect agreement on three parameters, more specifically ``Abnormal sensory and motor examination, hyperactive or diminished reflexes'', ``Sitting exam shows no reflex, motor or sensory signs in the legs'' and ``Straight leg raising (Laségue) negative between 30 and 70 degrees of flexion''. The ``Drop test positive'' parameters had moderate strength of agreement between raters A and D and fair strength between raters A and B. The ``Digital interspinous pressure test positive'' had moderate strength of agreement between raters C and D and fair strength of agreement between raters A and B as well as raters B and C. Three other parameters had a fair strength of agreement between two raters, all other parameters had a slight or poor strength of agreement. Inter-rater reliability, confidence intervals and significance of

  12. Exploitation of FTA cartridges for the sampling, long-term storage, and DNA-based analyses of plant-parasitic nematodes.

    Science.gov (United States)

    Marek, Martin; Zouhar, Miloslav; Douda, Ondřej; Maňasová, Marie; Ryšánek, Pavel

    2014-03-01

    The use of DNA-based analyses in molecular plant nematology research has dramatically increased over recent decades. Therefore, the development and adaptation of simple, robust, and cost-effective DNA purification procedures are required to address these contemporary challenges. The solid-phase-based approach developed by Flinders Technology Associates (FTA) has been shown to be a powerful technology for the preparation of DNA from different biological materials, including blood, saliva, plant tissues, and various human and plant microbial pathogens. In this work, we demonstrate, for the first time, that this FTA-based technology is a valuable, low-cost, and time-saving approach for the sampling, long-term archiving, and molecular analysis of plant-parasitic nematodes. Despite the complex structure and anatomical organization of the multicellular bodies of nematodes, we report the successful and reliable DNA-based analysis of nematode high-copy and low-copy genes using the FTA technology. This was achieved by applying nematodes to the FTA cards either in the form of a suspension of individuals, as intact or pestle-crushed nematodes, or by the direct mechanical printing of nematode-infested plant tissues. We further demonstrate that the FTA method is also suitable for the so-called "one-nematode-assay", in which the target DNA is typically analyzed from a single individual nematode. More surprisingly, a time-course experiment showed that nematode DNA can be detected specifically in the FTA-captured samples many years after initial sampling occurs. Collectively, our data clearly demonstrate the applicability and the robustness of this FTA-based approach for molecular research and diagnostics concerning phytonematodes; this research includes economically important species such as the stem nematode (Ditylenchus dipsaci), the sugar beet nematode (Heterodera schachtii), and the Northern root-knot nematode (Meloidogyne hapla).

  13. Reliability of rapid diagnostic tests in diagnosing pregnancy-associated malaria in north-eastern Tanzania

    DEFF Research Database (Denmark)

    Minja, Daniel T.; Schmiegelow, Christentze; Oesterholt, Mayke

    2012-01-01

    dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. Results: From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442...... (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs...... in diagnosing PAM was evaluated using microscopy and PCR. Methods: A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate...

  14. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    Science.gov (United States)

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  15. Reliability and diagnostic accuracy of history and physical examination for diagnosing glenoid labral tears.

    Science.gov (United States)

    Walsworth, Matthew K; Doukas, William C; Murphy, Kevin P; Mielcarek, Billie J; Michener, Lori A

    2008-01-01

    Glenoid labral tears provide a diagnostic challenge. Combinations of items in the patient history and physical examination will provide stronger diagnostic accuracy to suggest the presence or absence of glenoid labral tear than will individual items. Cohort study (diagnosis); Level of evidence, 1. History and examination findings in patients with shoulder pain (N = 55) were compared with arthroscopic findings to determine diagnostic accuracy and intertester reliability. The intertester reliability of the crank, anterior slide, and active compression tests was 0.20 to 0.24. A combined history of popping or catching and positive crank or anterior slide results yielded specificities of 0.91 and 1.00 and positive likelihood ratios of 3.0 and infinity, respectively. A positive anterior slide result combined with either a positive active compression or crank result yielded specificities of 0.91 and positive likelihood ratio of 2.75 and 3.75, respectively. Requiring only a single positive finding in the combination of popping or catching and the anterior slide or crank yielded sensitivities of 0.82 and 0.89 and negative likelihood ratios of 0.31 and 0.33, respectively. The diagnostic accuracy of individual tests in previous studies is quite variable, which may be explained in part by the modest reliability of these tests. The combination of popping or catching with a positive crank or anterior slide result or a positive anterior slide result with a positive active compression or crank test result suggests the presence of a labral tear. The combined absence of popping or catching and a negative anterior slide or crank result suggests the absence of a labral tear.

  16. Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics.

    Science.gov (United States)

    van Ginkel, Joost H; van den Broek, Daan A; van Kuik, Joyce; Linders, Dorothé; de Weger, Roel; Willems, Stefan M; Huibers, Manon M H

    2017-10-01

    In current molecular cancer diagnostics, using blood samples of cancer patients for the detection of genetic alterations in plasma (cell-free) circulating tumor DNA (ctDNA) is an emerging practice. Since ctDNA levels in blood are low, highly sensitive Droplet Digital PCR (ddPCR) can be used for detecting rare mutational targets. In order to perform ddPCR on blood samples, a standardized procedure for processing and analyzing blood samples is necessary to facilitate implementation into clinical practice. Therefore, we assessed the technical sample workup procedure for ddPCR on blood plasma samples. Blood samples from healthy individuals, as well as lung cancer patients were analyzed. We compared different methods and protocols for sample collection, storage, centrifugation, isolation, and quantification. Cell-free DNA (cfDNA) concentrations of several wild-type targets and BRAF and EGFR-mutant ctDNA concentrations quantified by ddPCR were primary outcome measurements. Highest cfDNA concentrations were measured in blood collected in serum tubes. No significant differences in cfDNA concentrations were detected between various time points of up to 24 h until centrifugation. Highest cfDNA concentrations were detected after DNA isolation with the Quick cfDNA Serum & Plasma Kit, while plasma isolation using the QIAamp Circulating Nucleic Acid Kit yielded the most consistent results. DdPCR results on cfDNA are highly dependent on multiple factors during preanalytical sample workup, which need to be addressed during the development of this diagnostic tool for cancer diagnostics in the future. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Comparative Analytical Utility of DNA Derived from Alternative Human Specimens for Molecular Autopsy and Diagnostics

    Science.gov (United States)

    Klassen, Tara L.; von Rüden, Eva-Lotta; Drabek, Janice; Noebels, Jeffrey L.; Goldman, Alica M.

    2013-01-01

    Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card–based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms. PMID:22796560

  18. DNA methylation-based classification of central nervous system tumours

    DEFF Research Database (Denmark)

    Capper, David; Jones, David T.W.; Sill, Martin

    2018-01-01

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variabil......Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter......-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show...

  19. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee

    2015-01-01

    BACKGROUND: Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types...... 1000-fold above the potential detection limit. CONCLUSION: Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay...... of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence...

  20. Laser mass spectrometry for DNA fingerprinting for forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Tang, K.; Taranenko, N.I.; Allman, S.L.; Chang, L.Y.

    1994-12-31

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.

  1. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....

  2. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  3. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer

    DNA extractions and intermediate or bad with the crude extractions, while TaKaRa ExTaq HS only performed well with the purest extractions of fecal samples and intermediate with semi-automated magnetic beads based extracted fecal samples. In conclusion, our data shows that exchanging the DNA polymerase......Diagnostic analyses of foodborne pathogens are increasingly based on molecular methods such as PCR, which can improve the sensitivity and reduce the analysis time. The core of PCR is the enzyme performing the reaction: the DNA polymerase. Changing the polymerase can influence the sensitivity...... commercially available polymerases and four master mixes in two validated PCR assays, for Campylobacter and Salmonella, respectively, to develop more sensitive, robust and cost effective assays. The polymerases were screened on purified DNA and the five best performing, for each PCR assay, were then applied...

  4. MOLECULAR DIAGNOSTICS OF YERSINIA RUCKERI

    Directory of Open Access Journals (Sweden)

    Yu. Rud

    2014-06-01

    Full Text Available Purpose. The analysis of nucleotide sequences of the 16S rDNA gene of virulent strains of Yersinia ruckeri and to develop the method of molecular diagnostic of enteric redmouth disease. Methodology. By the method of CLUSTALW algorithm in MEGA software version 6.0 the nucleotide sequences of the 16S rDNA gene of virulent strains of Yersinia ruckeri were analysed. For development of molecular diagnostic of Y. ruckeri the method of polymerase chain reaction (PCR was used. Primer selection was carried out in software VectorNTI11 and on-line-service BLAST. The PCR products were investigated by the methods of sequencing and nucleotide analysis. Findings. Based on PCR assay the method of molecular diagnostic of enteric redmouth disease agent, bacterium Y. ruckeri was developed. It was shown that specific oligonucleotide primers generated PCR products in size of 600 base pairs. PCR products were investigated by the sequencing that showed right targeting of primers in reaction. Originality. Among high-conservative gene of 16S rDNA of Y. ruckeri the fragment of DNA was determined to which the specific primers for rapid diagnostic of virulent strains were selected. Practical Value. Rapid diagnostic of yersiniosis will allow to identify an agent of this infectious disease, bacterium Y. ruckeri, and to provide the prophylactic or medical measures in the fish farming of Ukraine.

  5. DNA methylation-based classification of central nervous system tumours.

    Science.gov (United States)

    Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M

    2018-03-22

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

  6. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  7. BLOG 2.0: a software system for character-based species classification with DNA Barcode sequences. What it does, how to use it

    NARCIS (Netherlands)

    Weitschek, E.; Velzen, van R.; Felici, G.; Bertolazzi, P.

    2013-01-01

    BLOG (Barcoding with LOGic) is a diagnostic and character-based DNA Barcode analysis method. Its aim is to classify specimens to species based on DNA Barcode sequences and on a supervised machine learning approach, using classification rules that compactly characterize species in terms of DNA

  8. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR

    Directory of Open Access Journals (Sweden)

    Van Esbroeck Marjan

    2011-03-01

    Full Text Available Abstract Background This study describes the use of malaria rapid diagnostic tests (RDTs as a source of DNA for Plasmodium species-specific real-time PCR. Methods First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag Plasmodium falciparum/Pan test were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four Plasmodium species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples. Results Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of P. falciparum (n = 60, Plasmodium vivax (n = 10, Plasmodium ovale (n = 10 and Plasmodium malariae (n = 10. Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20 gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests. Conclusions RDTs are a reliable source of DNA for Plasmodium real-time PCR. This study demonstrates the

  9. Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    DEFF Research Database (Denmark)

    Winkel, Bo G; Hollegaard, Mads V; Olesen, Morten S

    2011-01-01

    BACKGROUND: The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.We wanted...

  10. Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples.

    Science.gov (United States)

    Osmundson, Todd W; Eyre, Catherine A; Hayden, Katherine M; Dhillon, Jaskirn; Garbelotto, Matteo M

    2013-01-01

    The ubiquity, high diversity and often-cryptic manifestations of fungi and oomycetes frequently necessitate molecular tools for detecting and identifying them in the environment. In applications including DNA barcoding, pathogen detection from plant samples, and genotyping for population genetics and epidemiology, rapid and dependable DNA extraction methods scalable from one to hundreds of samples are desirable. We evaluated several rapid extraction methods (NaOH, Rapid one-step extraction (ROSE), Chelex 100, proteinase K) for their ability to obtain DNA of quantity and quality suitable for the following applications: PCR amplification of the multicopy barcoding locus ITS1/5.8S/ITS2 from various fungal cultures and sporocarps; single-copy microsatellite amplification from cultures of the phytopathogenic oomycete Phytophthora ramorum; probe-based P. ramorum detection from leaves. Several methods were effective for most of the applications, with NaOH extraction favored in terms of success rate, cost, speed and simplicity. Frozen dilutions of ROSE and NaOH extracts maintained PCR viability for over 32 months. DNA from rapid extractions performed poorly compared to CTAB/phenol-chloroform extracts for TaqMan diagnostics from tanoak leaves, suggesting that incomplete removal of PCR inhibitors is an issue for sensitive diagnostic procedures, especially from plants with recalcitrant leaf chemistry. NaOH extracts exhibited lower yield and size than CTAB/phenol-chloroform extracts; however, NaOH extraction facilitated obtaining clean sequence data from sporocarps contaminated by other fungi, perhaps due to dilution resulting from low DNA yield. We conclude that conventional extractions are often unnecessary for routine DNA sequencing or genotyping of fungi and oomycetes, and recommend simpler strategies where source materials and intended applications warrant such use. © 2012 Blackwell Publishing Ltd.

  11. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  12. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  13. Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics

    NARCIS (Netherlands)

    van Ginkel, Joost H.; van den Broek, Daan A.; van Kuik, Joyce; Linders, Dorothé; de Weger, Roel; Willems, Stefan M.; Huibers, Manon M.H.

    2017-01-01

    In current molecular cancer diagnostics, using blood samples of cancer patients for the detection of genetic alterations in plasma (cell-free) circulating tumor DNA (ctDNA) is an emerging practice. Since ctDNA levels in blood are low, highly sensitive Droplet Digital PCR (ddPCR) can be used for

  14. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients.

    Science.gov (United States)

    Ponomaryova, Anastasia A; Rykova, Elena Yu; Cherdyntseva, Nadezda V; Skvortsova, Tatiana E; Dobrodeev, Alexey Yu; Zav'yalov, Alexander A; Bryzgalov, Leonid O; Tuzikov, Sergey A; Vlassov, Valentin V; Laktionov, Pavel P

    2013-09-01

    To date, aberrant DNA methylation has been shown to be one of the most common and early causes of malignant cell transformation and tumors of different localizations, including lung cancer. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA circulating in the blood (cirDNA) is a convenient tumor-associated DNA marker that can be used as a minimally invasive diagnostic test. In the current study, we investigated the methylation status in blood samples of 32 healthy donors and 60 lung cancer patients before and after treatment with neoadjuvant chemotherapy followed by total tumor resection. Using quantitative methylation-specific PCR, we found that the index of methylation (IM), calculated as IM = 100 × [copy number of methylated/(copy number of methylated + unmethylated gene)], for the RASSF1A and RARB2 genes in the cirDNA isolated from blood plasma and cell-surface-bound cirDNA was elevated 2- to 3-fold in lung cancer patients compared with healthy donors. Random forest classification tree model based on these variables combined (RARB2 and RASSF1A IM in both plasma and cell-surface-bound cirDNA) lead to NSCLC patients' and healthy subjects' differentiation with 87% sensitivity and 75% specificity. An association of increased IM values with an advanced stage of non-small-cell lung cancer was found for RARB2 but not for RASSF1A. Chemotherapy and total tumor resection resulted in a significant decrease in the IM for RARB2 and RASSF1A, in both cirDNA fractions, comparable to the IM level of healthy subjects. Importantly, a rise in the IM for RARB2 was detected in patients within the follow-up period, which manifested in disease relapse at 9 months, confirmed with instrumental and pathologic methods. Our data indicate that quantitative analysis of the methylation status of the RARB2 and RASSF1A tumor suppressor genes in both cirDNA fractions is a useful tool for lung cancer diagnostics, evaluation of cancer

  15. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  16. Selection and reporting of statistical methods to assess reliability of a diagnostic test: Conformity to recommended methods in a peer-reviewed journal

    International Nuclear Information System (INIS)

    Park, Ji Eun; Sung, Yu Sub; Han, Kyung Hwa

    2017-01-01

    To evaluate the frequency and adequacy of statistical analyses in a general radiology journal when reporting a reliability analysis for a diagnostic test. Sixty-three studies of diagnostic test accuracy (DTA) and 36 studies reporting reliability analyses published in the Korean Journal of Radiology between 2012 and 2016 were analyzed. Studies were judged using the methodological guidelines of the Radiological Society of North America-Quantitative Imaging Biomarkers Alliance (RSNA-QIBA), and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) initiative. DTA studies were evaluated by nine editorial board members of the journal. Reliability studies were evaluated by study reviewers experienced with reliability analysis. Thirty-one (49.2%) of the 63 DTA studies did not include a reliability analysis when deemed necessary. Among the 36 reliability studies, proper statistical methods were used in all (5/5) studies dealing with dichotomous/nominal data, 46.7% (7/15) of studies dealing with ordinal data, and 95.2% (20/21) of studies dealing with continuous data. Statistical methods were described in sufficient detail regarding weighted kappa in 28.6% (2/7) of studies and regarding the model and assumptions of intraclass correlation coefficient in 35.3% (6/17) and 29.4% (5/17) of studies, respectively. Reliability parameters were used as if they were agreement parameters in 23.1% (3/13) of studies. Reproducibility and repeatability were used incorrectly in 20% (3/15) of studies. Greater attention to the importance of reporting reliability, thorough description of the related statistical methods, efforts not to neglect agreement parameters, and better use of relevant terminology is necessary

  17. Selection and reporting of statistical methods to assess reliability of a diagnostic test: Conformity to recommended methods in a peer-reviewed journal

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Sung, Yu Sub [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Han, Kyung Hwa [Dept. of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2017-11-15

    To evaluate the frequency and adequacy of statistical analyses in a general radiology journal when reporting a reliability analysis for a diagnostic test. Sixty-three studies of diagnostic test accuracy (DTA) and 36 studies reporting reliability analyses published in the Korean Journal of Radiology between 2012 and 2016 were analyzed. Studies were judged using the methodological guidelines of the Radiological Society of North America-Quantitative Imaging Biomarkers Alliance (RSNA-QIBA), and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) initiative. DTA studies were evaluated by nine editorial board members of the journal. Reliability studies were evaluated by study reviewers experienced with reliability analysis. Thirty-one (49.2%) of the 63 DTA studies did not include a reliability analysis when deemed necessary. Among the 36 reliability studies, proper statistical methods were used in all (5/5) studies dealing with dichotomous/nominal data, 46.7% (7/15) of studies dealing with ordinal data, and 95.2% (20/21) of studies dealing with continuous data. Statistical methods were described in sufficient detail regarding weighted kappa in 28.6% (2/7) of studies and regarding the model and assumptions of intraclass correlation coefficient in 35.3% (6/17) and 29.4% (5/17) of studies, respectively. Reliability parameters were used as if they were agreement parameters in 23.1% (3/13) of studies. Reproducibility and repeatability were used incorrectly in 20% (3/15) of studies. Greater attention to the importance of reporting reliability, thorough description of the related statistical methods, efforts not to neglect agreement parameters, and better use of relevant terminology is necessary.

  18. The health preoccupation diagnostic interview: inter-rater reliability of a structured interview for diagnostic assessment of DSM-5 somatic symptom disorder and illness anxiety disorder.

    Science.gov (United States)

    Axelsson, Erland; Andersson, Erik; Ljótsson, Brjánn; Wallhed Finn, Daniel; Hedman, Erik

    2016-06-01

    Somatic symptom disorder (SSD) and illness anxiety disorder (IAD) are two new diagnoses introduced in the DSM-5. There is a need for reliable instruments to facilitate the assessment of these disorders. We therefore developed a structured diagnostic interview, the Health Preoccupation Diagnostic Interview (HPDI), which we hypothesized would reliably differentiate between SSD, IAD, and no diagnosis. Persons with clinically significant health anxiety (n = 52) and healthy controls (n = 52) were interviewed using the HPDI. Diagnoses were then compared with those made by an independent assessor, who listened to audio recordings of the interviews. Ratings generally indicated moderate to almost perfect inter-rater agreement, as illustrated by an overall Cohen's κ of .85. Disagreements primarily concerned (a) the severity of somatic symptoms, (b) the differential diagnosis of panic disorder, and (c) SSD specifiers. We conclude that the HPDI can be used to reliably diagnose DSM-5 SSD and IAD.

  19. Rapid colorimetric detection of p53 protein function using DNA-gold nanoconjugates with applications for drug discovery and cancer diagnostics.

    Science.gov (United States)

    Assah, Enock; Goh, Walter; Zheng, Xin Ting; Lim, Ting Xiang; Li, Jun; Lane, David; Ghadessy, Farid; Tan, Yen Nee

    2018-05-05

    The tumor suppressor protein p53 plays a central role in preventing cancer through interaction with DNA response elements (REs) to regulate target gene expression in cells. Due to its significance in cancer biology, relentless efforts have been directed toward understanding p53-DNA interactions for the development of cancer therapeutics and diagnostics. In this paper, we report a rapid, label-free and versatile colorimetric assay to detect wildtype p53 DNA-binding function in complex solutions. The assay design is based on a concept that alters interparticle-distances between RE-AuNPs from a crosslinking effect induced through tetramerization of wildtype p53 protein (p53-WT) upon binding to canonical DNA motifs modified on gold nanoparticles (RE-AuNPs). This leads to a visible solution color change from red to blue, which is quantifiable by the UV- visible absorption spectra with a detection limit of 5 nM. Contrastingly, no color change was observed for the binding-deficient p53 mutants and non-specific proteins due to their inability to crosslink RE-AuNPs. Based on this sensing principle, we further demonstrate its utility for fast detection of drug-induced DNA binding function to cancer-associated Y220C mutant p53 protein using well-established reactivating compounds. By exploiting the dominant-negative property of mutant p53 over p53-WT and interactions with RE-AuNPs, this assay is configurable to detect low numbers of mutant p53 expressing cells in miniscule sample fractions obtained from typical core needle biopsy-sized tissues without signal attrition, alluding to the potential for biopsy sampling in cancer diagnostics or for defining cancer margins. This nanogold enabled colorimetric assay provides a facile yet robust method for studying important parameters influencing p53-DNA interactions with great promises for clinically pertinent applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Optimal, Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2002-01-01

    Reliability based code calibration is considered in this paper. It is described how the results of FORM based reliability analysis may be related to the partial safety factors and characteristic values. The code calibration problem is presented in a decision theoretical form and it is discussed how...... of reliability based code calibration of LRFD based design codes....

  1. The usage and current approaches of cell free fetal DNA (cffDNA as a prenatal diagnostic method in fetal aneuploidy screening

    Directory of Open Access Journals (Sweden)

    Hülya Erbaba

    2015-12-01

    Full Text Available Prenatal diagnosis of invasive and noninvasive tests can be done in a way (NIPT, but because of the invasive methods have risks of infection and abortion, diagnosing non-invasive procedure increasing day by day. One of the widespread cell free fetal DNA in maternal blood test (cffDNA that is increasing in clinical use has been drawing attention. The incidence of aneuploidy chromosomal anomaly of the kind in which all live births; Trisomy 21 (Down Syndrome 1/800, trisomy 13 (Patau syndrome 1 /10,000, trisomy 18 (Edwards syndrome is a form of 1/6000. Because of the high mortality and morbidity, it is vital that congenital anomalies should be diagnosed in prenatal period. Aneuploidy testing for high-risk pregnant women after the 10th week of pregnancy in terms of the blood sample is taken and free fetal DNA in maternal plasma is based on the measurement of the relative amount. Knowledge of the current criteria for use by healthcare professionals in the field test will allow the exclusion of maternal and fetal risks. In this study, it is aimed to demonstrate current international approaches related to the positive and negative sides of non-invasive that is one of the prenatal diagnostic methods of cffDNA test. J Clin Exp Invest 2015; 6 (4: 414-417

  2. A dynamic bead-based microarray for parallel DNA detection

    International Nuclear Information System (INIS)

    Sochol, R D; Lin, L; Casavant, B P; Dueck, M E; Lee, L P

    2011-01-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm 2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening

  3. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier.

    Science.gov (United States)

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Rao, A R

    2016-11-05

    DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  5. DNA Diagnostics: Optical or by Electronics?

    KAUST Repository

    Khan, Hadayat Ullah; Knoll, Wolfgang

    2016-01-01

    In this paper, we very briefly review DNA biosensors based on optical and electrical detection principles, referring mainly to our past work applying both techniques but here using nearly identical sensor chip surface architectures, i.e., capture

  6. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    International Nuclear Information System (INIS)

    Shelton, R; O'Brien, D; Nelson, J; Kamperschroer, J

    2007-01-01

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the deployed

  7. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; O' Brien, D; Nelson, J; Kamperschroer, J

    2007-05-07

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the

  8. Power supply system on HT-7 tokamak for diagnostic neutral beam based on PLC

    International Nuclear Information System (INIS)

    Zhang Jian; Liu Baohua; Ding Tonghai; Du Shaowu

    2006-01-01

    A power supply system for diagnostic neutral beam on the HT-7 Tokamak was developed. Its logic control system based on S7-300 PLC was described. The experimental results show that the system is easy to operate and its performance is reliable. (authors)

  9. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    Science.gov (United States)

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reliability of diagnostic imaging techniques in suspected acute appendicitis: proposed diagnostic protocol

    International Nuclear Information System (INIS)

    Cura del, J. L.; Oleaga, L.; Grande, D.; Vela, A. C.; Ibanez, A. M.

    2001-01-01

    To study the utility of ultrasound and computed tomography (CT) in case of suspected appendicitis. To determine the diagnostic yield in terms of different clinical contexts and patient characteristics. to assess the costs and benefits of introducing these techniques and propose a protocol for their use. Negative appendectomies, complications and length of hospital stay in a group of 152 patients with suspected appendicitis who underwent ultrasound and CT were compared with those of 180 patients who underwent appendectomy during the same time period, but had not been selected for the first group: these patients costs for each group were calculated. In the first group, the diagnostic value of the clinical signs was also evaluated. The reliability of the clinical signs was limited, while the results with ultrasound and CT were excellent. The incidence of negative appendectomy was 9.6% in the study group and 12.2% in the control group. Moreover, there were fewer complications and a shorter hospital stay in the first group. Among men, however, the rate of negative appendectomy was lower in the control group. The cost of using ultrasound and CT in the management of appendicitis was only slightly higher than that of the control group. Although ultrasound and CT are not necessary in cases in which the probability of appendicitis is low or in men presenting clear clinical evidence, the use of these techniques is indicated in the remaining cases in which appendicitis is suspected. In children, ultrasound is the technique of choice. In all other patients, if negative results are obtained with one of the two techniques, the other should be performed. (Author) 49 refs

  11. Specific PCR-based detection of Alternaria helianthi

    DEFF Research Database (Denmark)

    Udayashankar, A.C.; Nayaka, S. Chandra; Archana, B.

    2012-01-01

    Alternaria helianthi is an important seed-borne pathogenic fungus responsible for blight disease in sunflower. The current detection methods, which are based on culture and morphological identification, are time-consuming, laborious and are not always reliable. A PCR-based diagnostic method...... tested. The detection limit of the PCR method was of 10 pg from template DNA. The primers could also detect the pathogen in infected sunflower seed. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification...

  12. Diagnostic value of stool DNA testing for multiple markers of colorectal cancer and advanced adenoma: a meta-analysis.

    Science.gov (United States)

    Yang, Hua; Xia, Bing-Qing; Jiang, Bo; Wang, Guozhen; Yang, Yi-Peng; Chen, Hao; Li, Bing-Sheng; Xu, An-Gao; Huang, Yun-Bo; Wang, Xin-Ying

    2013-08-01

    The diagnostic value of stool DNA (sDNA) testing for colorectal neoplasms remains controversial. To compensate for the lack of large-scale unbiased population studies, a meta-analysis was performed to evaluate the diagnostic value of sDNA testing for multiple markers of colorectal cancer (CRC) and advanced adenoma. The PubMed, Science Direct, Biosis Review, Cochrane Library and Embase databases were systematically searched in January 2012 without time restriction. Meta-analysis was performed using a random-effects model using sensitivity, specificity, diagnostic OR (DOR), summary ROC curves, area under the curve (AUC), and 95% CIs as effect measures. Heterogeneity was measured using the χ(2) test and Q statistic; subgroup analysis was also conducted. A total of 20 studies comprising 5876 individuals were eligible. There was no heterogeneity for CRC, but adenoma and advanced adenoma harboured considerable heterogeneity influenced by risk classification and various detection markers. Stratification analysis according to risk classification showed that multiple markers had a high DOR for the high-risk subgroups of both CRC (sensitivity 0.759 [95% CI 0.711 to 0.804]; specificity 0.883 [95% CI 0.846 to 0.913]; AUC 0.906) and advanced adenoma (sensitivity 0.683 [95% CI 0.584 to 0.771]; specificity 0.918 [95% CI 0.866 to 0.954]; AUC 0.946) but not for the average-risk subgroups of either. In the methylation subgroup, sDNA testing had significantly higher DOR for CRC (sensitivity 0.753 [95% CI 0.685 to 0.812]; specificity 0.913 [95% CI 0.860 to 0.950]; AUC 0.918) and advanced adenoma (sensitivity 0.623 [95% CI 0.527 to 0.712]; specificity 0.926 [95% CI 0.882 to 0.958]; AUC 0.910) compared with the mutation subgroup. There was no significant heterogeneity among studies for subgroup analysis. sDNA testing for multiple markers had strong diagnostic significance for CRC and advanced adenoma in high-risk subjects. Methylation makers had more diagnostic value than mutation

  13. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Directory of Open Access Journals (Sweden)

    Jason D Thompson

    Full Text Available Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  14. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Science.gov (United States)

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  15. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  16. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants

    Directory of Open Access Journals (Sweden)

    Yang Moon-Sik

    2004-09-01

    Full Text Available Abstract Background DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. Results We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1. After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. Conclusion This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  17. The reliability of the Brazilian version of the Composite International Diagnostic Interview (CIDI 2.1

    Directory of Open Access Journals (Sweden)

    Quintana M.I.

    2004-01-01

    Full Text Available The objective of the present study was to determine the reliability of the Brazilian version of the Composite International Diagnostic Interview 2.1 (CIDI 2.1 in clinical psychiatry. The CIDI 2.1 was translated into Portuguese using WHO guidelines and reliability was studied using the inter-rater reliability method. The study sample consisted of 186 subjects from psychiatric hospitals and clinics, primary care centers and community services. The interviewers consisted of a group of 13 lay and three non-lay interviewers submitted to the CIDI training. The average interview time was 2 h and 30 min. General reliability ranged from kappa 0.50 to 1. For lifetime diagnoses the reliability ranged from kappa 0.77 (Bipolar Affective Disorder to 1 (Substance-Related Disorder, Alcohol-Related Disorder, Eating Disorders. Previous year reliability ranged from kappa 0.66 (Obsessive-Compulsive Disorder to 1 (Dissociative Disorders, Maniac Disorders, Eating Disorders. The poorest reliability rate was found for Mild Depressive Episode (kappa = 0.50 during the previous year. Training proved to be a fundamental factor for maintaining good reliability. Technical knowledge of the questionnaire compensated for the lack of psychiatric knowledge of the lay personnel. Inter-rater reliability was good to excellent for persons in psychiatric practice.

  18. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  19. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  20. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  1. Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes

    DEFF Research Database (Denmark)

    Bohlin, J; Skjerve, E; Ussery, David

    2008-01-01

    with here are mainly used to examine similarities between archaeal and bacterial DNA from different genomes. These methods compare observed genomic frequencies of fixed-sized oligonucleotides with expected values, which can be determined by genomic nucleotide content, smaller oligonucleotide frequencies......, or be based on specific statistical distributions. Advantages with these statistical methods include measurements of phylogenetic relationship with relatively small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/conserved DNA, and homology searches. Our aim was to explore...... the reliability and best suited applications for some popular methods, which include relative oligonucleotide frequencies (ROF), di- to hexanucleotide zero'th order Markov methods (ZOM) and 2.order Markov chain Method (MCM). Tests were performed on distant homology searches with large DNA sequences, detection...

  2. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  3. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase chain reaction.

    Science.gov (United States)

    Focke, Felix; Haase, Ilka; Fischer, Markus

    2011-01-26

    Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.

  4. The diagnostic value of circulating cell free DNA quantification in non-small cell lung cancer: A systematic review with meta-analysis.

    Science.gov (United States)

    Jiang, Tao; Zhai, Changyun; Su, Chunxia; Ren, Shengxiang; Zhou, Caicun

    2016-10-01

    The aim of the current study was to assess the diagnostic value of circulating cell free DNA (cfDNA) quantification in discriminating non-small cell lung cancer (NSCLC) from healthy individuals. An electronic search was conducted on PubMed, EMBASE, Web of Science, and Cochrane Library. Eligible studies regarding to examine the diagnostic value of cfDNA in the detection of NSCLC were extracted and analyzed. We identified 15 eligible studies with a total of 2125 patients. The pooled results for quantification of cfDNA in lung cancer screening in the included studies were as follows: sensitivity, 81% (95% confidence interval (CI), 76%-84%); specificity, 85% (95% CI, 77%-91%); diagnostic odds ratio, 23.87 (95% CI, 13.37-42.61); and areas under the summary receiver operating characteristic curves were 0.89 (95% CI, 0.86-0.92). Subgroup analyses according to the time of sample collection, sample materials, test method, reference gene and cutoff value did not improve sensitivity, but specificity could be significantly improved when we only included the studies using cfDNA sample before surgery or antitumor treatment and real-time PCR to detect cfDNA and human β-actin as a reference gene. Quantification of cfDNA was a promising and effective biomarker for discriminating NSCLC from healthy individuals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Improvement in the amine glass platform by bubbling method for a DNA microarray.

    Science.gov (United States)

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.

  6. Inverse Reliability Task: Artificial Neural Networks and Reliability-Based Optimization Approaches

    OpenAIRE

    Lehký , David; Slowik , Ondřej; Novák , Drahomír

    2014-01-01

    Part 7: Genetic Algorithms; International audience; The paper presents two alternative approaches to solve inverse reliability task – to determine the design parameters to achieve desired target reliabilities. The first approach is based on utilization of artificial neural networks and small-sample simulation Latin hypercube sampling. The second approach considers inverse reliability task as reliability-based optimization task using double-loop method and also small-sample simulation. Efficie...

  7. A COMPUTERIZED DIAGNOSTIC COMPLEX FOR RELIABILITY TESTING OF ELECTRIC MACHINES

    Directory of Open Access Journals (Sweden)

    O.О. Somka

    2015-06-01

    Full Text Available Purpose. To develop a diagnostic complex meeting the criteria and requirements for carrying out accelerated reliability test and realizing the basic modes of electric machines operation and performance of the posed problems necessary in the process of such test. Methodology. To determine and forecast the indices of electric machines reliability in accordance with the statistic data of repair plants we have conditionally divided them into structural parts that are most likely to fail. We have preliminarily assessed the state of each of these parts, which includes revelation of faults and deviations of technical and geometric parameters. We have determined the analyzed electric machine controlled parameters used for assessment of quantitative characteristics of reliability of these parts and electric machines on the whole. Results. As a result of the research, we have substantiated the structure of a computerized complex for electric machines reliability test. It allows us to change thermal and vibration actions without violation of the physics of the processes of aging and wearing of the basic structural parts and elements material. The above mentioned makes it possible to considerably reduce time spent on carrying out electric machines reliability tests and improve trustworthiness of the data obtained as a result of their performance. Originality. A special feature of determination of the controlled parameters consists in removal of vibration components in the idle mode and after disconnection of the analyzed electric machine from the power supply with the aim of singling out the vibration electromagnetic component, fixing the degree of sparking and bend of the shaft by means of phototechnique and local determination of structural parts temperature provided by corresponding location of thermal sensors. Practical value. We have offered a scheme of location of thermal and vibration sensors, which allows improvement of parameters measuring accuracy

  8. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    Science.gov (United States)

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  10. Reliability of measuring abductor hallucis muscle parameters using two different diagnostic ultrasound machines

    Directory of Open Access Journals (Sweden)

    Cameron Alyse FM

    2009-11-01

    Full Text Available Abstract Background Diagnostic ultrasound provides a method of analysing soft tissue structures of the musculoskeletal system effectively and reliably. The aim of this study was to evaluate within and between session reliability of measuring muscle dorso-plantar thickness, medio-lateral length and cross-sectional area, of the abductor hallucis muscle using two different ultrasound machines, a higher end Philips HD11 Ultrasound machine and clinically orientated Chison 8300 Deluxe Digital Portable Ultrasound System. Methods The abductor hallucis muscle of both the left and right feet of thirty asymptomatic participants was imaged and then measured using both ultrasound machines. Interclass correlation coefficients (ICC with 95% confidence intervals (CI were used to calculate both within and between session intra-tester reliability. Standard error of the measurement (SEM calculations were undertaken to assess difference between the actual measured score across trials and the smallest real difference (SRD was calculated from the SEM to indicate the degree of change that would exceed the expected trial to trial variability. Results The ICCs, SEM and SRD for dorso-plantar thickness and medial-lateral length were shown to have excellent to high within and between-session reliability for both ultrasound machines. The between-session reliability indices for cross-sectional area were acceptable for both ultrasound machines. Conclusion The results of the current study suggest that regardless of the type ultrasound machine, intra-tester reliability for the measurement the abductor hallucis muscle parameters is very high.

  11. Test-retest reliability of the proposed DSM-5 eating disorder diagnostic criteria

    Science.gov (United States)

    Sysko, Robyn; Roberto, Christina A.; Barnes, Rachel D.; Grilo, Carlos M.; Attia, Evelyn; Walsh, B. Timothy

    2012-01-01

    The proposed DSM-5 classification scheme for eating disorders includes both major and minor changes to the existing DSM-IV diagnostic criteria. It is not known what effect these modifications will have on the ability to make reliable diagnoses. Two studies were conducted to evaluate the short-term test-retest reliability of the proposed DSM-5 eating disorder diagnoses: anorexia nervosa, bulimia nervosa, binge eating disorder, and feeding and eating conditions not elsewhere classified. Participants completed two independent telephone interviews with research assessors (n=70 Study 1; n=55 Study 2). Fair to substantial agreements (κ= 0.80 and 0.54) were observed across eating disorder diagnoses in Study 1 and Study 2, respectively. Acceptable rates of agreement were identified for the individual eating disorder diagnoses, including DSM-5 anorexia nervosa (κ’s of 0.81 to 0.97), bulimia nervosa (κ=0.84), binge eating disorder (κ’s of 0.75 and 0.61), and feeding and eating disorders not elsewhere classified (κ’s of 0.70 and 0.46). Further, improved short-term test-retest reliability was noted when using the DSM-5, in comparison to DSM-IV, criteria for binge eating disorder. Thus, these studies found that trained interviewers can reliably diagnose eating disorders using the proposed DSM-5 criteria; however, additional data from general practice settings and community samples are needed. PMID:22401974

  12. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    Science.gov (United States)

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  13. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  14. Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers.

    Science.gov (United States)

    Rantalainen, Mattias; Klevebring, Daniel; Lindberg, Johan; Ivansson, Emma; Rosin, Gustaf; Kis, Lorand; Celebioglu, Fuat; Fredriksson, Irma; Czene, Kamila; Frisell, Jan; Hartman, Johan; Bergh, Jonas; Grönberg, Henrik

    2016-11-30

    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkers.

  15. Generation of a reliable full-length cDNA of infectiousTembusu virus using a PCR-based protocol.

    Science.gov (United States)

    Liang, Te; Liu, Xiaoxiao; Cui, Shulin; Qu, Shenghua; Wang, Dan; Liu, Ning; Wang, Fumin; Ning, Kang; Zhang, Bing; Zhang, Dabing

    2016-02-02

    Full-length cDNA of Tembusu virus (TMUV) cloned in a plasmid has been found instable in bacterial hosts. Using a PCR-based protocol, we generated a stable full-length cDNA of TMUV. Different cDNA fragments of TMUV were amplified by reverse transcription (RT)-PCR, and cloned into plasmids. Fragmented cDNAs were amplified and assembled by fusion PCR to produce a full-length cDNA using the recombinant plasmids as templates. Subsequently, a full-length RNA was transcribed from the full-length cDNA in vitro and transfected into BHK-21 cells; infectious viral particles were rescued successfully. Following several passages in BKH-21 cells, the rescued virus was compared with the parental virus by genetic marker checks, growth curve determinations and animal experiments. These assays clearly demonstrated the genetic and biological stabilities of the rescued virus. The present work will be useful for future investigations on the molecular mechanisms involved in replication and pathogenesis of TMUV. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Zhang, Shenli; Tan, Iain B; Sapari, Nur S; Grabsch, Heike I; Okines, Alicia; Smyth, Elizabeth C; Aoyama, Toru; Hewitt, Lindsay C; Inam, Imran; Bottomley, Dan; Nankivell, Matthew; Stenning, Sally P; Cunningham, David; Wotherspoon, Andrew; Tsuburaya, Akira; Yoshikawa, Takaki; Soong, Richie; Tan, Patrick

    2015-05-01

    DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investigated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1 (rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel electrophoresis, we also examined TYMS 5' untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and TYMS 5' untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%-47.5%; exact binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%-14.3%) of cases, respectively, whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution. Independent repeated assays should be performed on all cases to assess potential discrepancies. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Reliable discrimination of 10 ungulate species using high resolution melting analysis of faecal DNA.

    Directory of Open Access Journals (Sweden)

    Ana Ramón-Laca

    Full Text Available Identifying species occupying an area is essential for many ecological and conservation studies. Faecal DNA is a potentially powerful method for identifying cryptic mammalian species. In New Zealand, 10 species of ungulate (Order: Artiodactyla have established wild populations and are managed as pests because of their impacts on native ecosystems. However, identifying the ungulate species present within a management area based on pellet morphology is unreliable. We present a method that enables reliable identification of 10 ungulate species (red deer, sika deer, rusa deer, fallow deer, sambar deer, white-tailed deer, Himalayan tahr, Alpine chamois, feral sheep, and feral goat from swabs of faecal pellets. A high resolution melting (HRM assay, targeting a fragment of the 12S rRNA gene, was developed. Species-specific primers were designed and combined in a multiplex PCR resulting in fragments of different length and therefore different melting behaviour for each species. The method was developed using tissue from each of the 10 species, and was validated in blind trials. Our protocol enabled species to be determined for 94% of faecal pellet swabs collected during routine monitoring by the New Zealand Department of Conservation. Our HRM method enables high-throughput and cost-effective species identification from low DNA template samples, and could readily be adapted to discriminate other mammalian species from faecal DNA.

  18. Activity and longevity of antibody in paper-based blood typing diagnostics

    Science.gov (United States)

    Henderson, Clare A.; McLiesh, Heather; Then, Whui L.; Garnier, Gil

    2018-05-01

    Paper-based diagnostics provide a low-cost, reliable and easy to use mode of blood typing. The shelf-life of such products, however, can be limited due to the reduced activity of reagent antibodies sorbed on the paper cellulose fibres. This study explores the effects of ageing on antibody activity for periods up to twelve months on paper and in solution under different ageing and drying conditions - air-dried, lyophilised and kept as a liquid. Paper kept wet with undiluted antibody is shown to have the longest shelf-life and the clearest negatives. Antibody diluted with bovine serum albumin (BSA) protects against the lyophilisation process, however, beyond nine months ageing, false positives are seen. Paper with air-dried antibodies is not suitable for use after one month ageing. These results inform preparation and storage conditions for the development of long shelf-life blood grouping paper-based diagnostics.

  19. Activity and Longevity of Antibody in Paper-Based Blood Typing Diagnostics

    Directory of Open Access Journals (Sweden)

    Clare A. Henderson

    2018-05-01

    Full Text Available Paper-based diagnostics provide a low-cost, reliable and easy to use mode of blood typing. The shelf-life of such products, however, can be limited due to the reduced activity of reagent antibodies sorbed on the paper cellulose fibers. This study explores the effects of aging on antibody activity for periods up to 12 months on paper and in solution under different aging and drying conditions—air-dried, lyophilized, and kept as a liquid. Paper kept wet with undiluted antibody is shown to have the longest shelf-life and the clearest negatives. Antibody diluted with bovine serum albumin (BSA protects against the lyophilization process, however, beyond 9 months aging, false positives are seen. Paper with air-dried antibodies is not suitable for use after 1 month aging. These results inform preparation and storage conditions for the development of long shelf-life blood grouping paper-based diagnostics.

  20. A Comparative Study for Detection of EGFR Mutations in Plasma Cell-Free DNA in Korean Clinical Diagnostic Laboratories

    Directory of Open Access Journals (Sweden)

    Yoonjung Kim

    2018-01-01

    Full Text Available Liquid biopsies to genotype the epidermal growth factor receptor (EGFR for targeted therapy have been implemented in clinical decision-making in the field of lung cancer, but harmonization of detection methods is still scarce among clinical laboratories. We performed a pilot external quality assurance (EQA scheme to harmonize circulating tumor DNA testing among laboratories. For EQA, we created materials containing different levels of spiked cell-free DNA (cfDNA in normal plasma. The limit of detection (LOD of the cobas® EGFR Mutation Test v2 (Roche Molecular Systems was also evaluated. From November 2016 to June 2017, seven clinical diagnostic laboratories participated in the EQA program. The majority (98.94% of results obtained using the cobas assay and next-generation sequencing (NGS were acceptable. Quantitative results from the cobas assay were positively correlated with allele frequencies derived from digital droplet PCR measurements and showed good reproducibility among laboratories. The LOD of the cobas assay was 5~27 copies/mL for p.E746_A750del (exon 19 deletion, 35~70 copies/mL for p.L858R, 18~36 copies/mL for p.T790M, and 15~31 copies/mL for p.A767_V769dup (exon 20 insertion. Deep sequencing of materials (>100,000X depth of coverage resulted in detection of low-level targets present at frequencies of 0.06~0.13%. Our results indicate that the cobas assay is a reliable and rapid method for detecting EGFR mutations in plasma cfDNA. Careful interpretation is particularly important for p.T790M detection in the setting of relapse. Individual laboratories should optimize NGS performance to maximize clinical utility.

  1. Principles of DNA architectonics: design of DNA-based nanoobjects

    International Nuclear Information System (INIS)

    Vinogradova, O A; Pyshnyi, D V

    2012-01-01

    The methods of preparation of monomeric DNA blocks that serve as key building units for the construction of complex DNA objects are described. Examples are given of the formation of DNA blocks based on native and modified oligonucleotide components using hydrogen bonding and nucleic acid-specific types of bonding and also some affinity interactions with RNA, proteins, ligands. The static discrete and periodic two- and three-dimensional DNA objects reported to date are described systematically. Methods used to prove the structures of DNA objects and the prospects for practical application of nanostructures based on DNA and its analogues in biology, medicine and biophysics are considered. The bibliography includes 195 references.

  2. Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.

    Science.gov (United States)

    Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu

    2016-08-02

    Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.

  3. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    Science.gov (United States)

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  4. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis.

    Science.gov (United States)

    Lange, Berit; Roberts, Teri; Cohn, Jennifer; Greenman, Jamie; Camp, Johannes; Ishizaki, Azumi; Messac, Luke; Tuaillon, Edouard; van de Perre, Philippe; Pichler, Christine; Denkinger, Claudia M; Easterbrook, Philippa

    2017-11-01

    . Varying storage conditions resulted in a decrease in accuracy for quantification but not for reported positivity. These findings show a high level of diagnostic performance for the use of DBS for HBV-DNA and HCV-RNA detection. However, this was based on a limited number and quality of studies. There is a need for development of standardized protocols by manufacturers on the use of DBS with their assays, as well as for larger studies on use of DBS conducted in different settings and with varying storage conditions.

  5. Molecular diagnostics based on clustering dynamics of magnetic nanobeads

    DEFF Research Database (Denmark)

    Donolato, Marco; Bejhed, Rebecca S.; de la Torre, Teresa Zardán Gómez

    2014-01-01

    transmission modulation caused by the AC magnetic field-stimulated reversible formation and disruption of elongated MNB supra-structures during a cycle of the uniaxial applied magnetic field. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition...

  6. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics.

    Science.gov (United States)

    Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F

    2016-01-21

    Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.

  7. Reliability of a Skin Diagnostic Device in Assessing Hydration and Erythema.

    Science.gov (United States)

    Huimin, Koh; Rowledge, Alexandra M; Borzdynski, Caroline J; Miller, Charne; Frescos, Nicoletta; McKenzie, Gayle; Perry, Elizabeth; McGuiness, William

    2017-10-01

    To examine the reliability of a skin diagnostic device, the SD202 (Courage+Khazaka GmBH, Cologne, Germany), in assessing hydration and erythema of periwound skin and pressure injury-prone areas. Intrarater reliabilities from 3 cross-sectional and prospective studies are reported. Patients attending an outpatient, nurse-led wound dressing clinic (n = 16), a podiatrist-led high-risk foot clinic (n = 17), and residents (n = 38) at a single residential aged-care facility. Skin hydration and erythema levels assessed using the SD202. High internal consistency was maintained for consecutive skin hydration and erythema measures at a single point on the venous leg ulcer periwound (α > .996 and α > .970 for hydration and erythema, respectively) and for the pressure-prone areas of the sacrum (α > .916), right (α > .994) and left (α > .967) ischium, right (α > .989) and left (α > .916) trochanter, right (α > .985) and left (α > .992) calcaneus, and right (α > .991) and left (α > .990) lateral malleolus. High consistency was also found for the measures obtained at 4 different locations around the periwound for the venous leg ulcer (α > .935 and α > .870 for hydration and erythema, respectively). In diabetic foot ulcer assessment, acceptable internal consistency of hydration measures around the periwound was observed (α > .634). Internal consistency of erythema measures was variable, ranging from low to high reliability, particularly among predebridement measures. Using the protocols outlined in this study, the SD202 demonstrates high reliability for assessing skin hydration and erythema levels. It is possible that the SD202 can be used in clinical practice as an appropriate tool for skin hydration and erythema assessment.

  8. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value.

    Science.gov (United States)

    Berlth, Felix; Bollschweiler, Elfriede; Drebber, Uta; Hoelscher, Arnulf H; Moenig, Stefan

    2014-05-21

    Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient characteristics, disease specific criteria and overall outcome. It is still controversial as to which classification system imparts the most reliable information, and therefore, the choice of system may vary in clinical routine. In addition to the most common classification systems, such as the Laurén and the World Health Organization (WHO) classifications, other authors have tried to characterize and classify gastric cancer based on the microscopic morphology and in reference to the clinical outcome of the patients. In more than 50 years of systematic classification of the pathohistological characteristics of gastric cancer, there is no sole classification system that is consistently used worldwide in diagnostics and research. However, several national guidelines for the treatment of gastric cancer refer to the Laurén or the WHO classifications regarding therapeutic decision-making, which underlines the importance of a reliable classification system for gastric cancer. The latest results from gastric cancer studies indicate that it might be useful to integrate DNA- and RNA-based features of gastric cancer into the classification systems to establish prognostic relevance. This article reviews the diagnostic relevance and the prognostic value of different pathohistological classification systems in gastric cancer.

  9. Laser mass spectrometry for DNA fingerprinting for forensic applications

    Science.gov (United States)

    Chen, C. H. Winston; Tang, Kai; Taranenko, N. I.; Allman, S. L.; Ch'ang, L. Y.

    1994-10-01

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual's DNA structure is identical within all tissues oftheir body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et aL2 found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. Take the Huntington gene as an example, there are CAG trinucleotide repeats. For normal people, the number of CAG repeats is usually between 10 and 40. Since people have chromosomes in pairs, the possibility oftwo individuals having the same VNTR in the Huntington gene is less than one percent, ifwe assume equal distribution for various repeats. When several allels containing VNTR are analyzed for the number of repeats, the possibility of two individuals being exactly identical becomes very unlikely. Thus, DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endornuclease sites can provide the basis for identification.

  10. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Chia-Chen Chang

    2012-06-01

    Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  11. Diagnostic devices for isothermal nucleic acid amplification.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  12. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  13. Prostate-based biofluids for the detection of prostate cancer: A comparative study of the diagnostic performance of cell-sourced RNA biomarkers

    Directory of Open Access Journals (Sweden)

    Matthew J. Roberts

    2016-09-01

    Conclusion: PEUW contains prostatic material, but has limited diagnostic accuracy when considering cell-derived DNA analysis. PCA3-based markers in ejaculate are comparable to serum PSA and digital rectal examination–urine markers.

  14. Web-based phenotyping for Tourette Syndrome: Reliability of common co-morbid diagnoses.

    Science.gov (United States)

    Darrow, Sabrina M; Illmann, Cornelia; Gauvin, Caitlin; Osiecki, Lisa; Egan, Crystelle A; Greenberg, Erica; Eckfield, Monika; Hirschtritt, Matthew E; Pauls, David L; Batterson, James R; Berlin, Cheston M; Malaty, Irene A; Woods, Douglas W; Scharf, Jeremiah M; Mathews, Carol A

    2015-08-30

    Collecting phenotypic data necessary for genetic analyses of neuropsychiatric disorders is time consuming and costly. Development of web-based phenotype assessments would greatly improve the efficiency and cost-effectiveness of genetic research. However, evaluating the reliability of this approach compared to standard, in-depth clinical interviews is essential. The current study replicates and extends a preliminary report on the utility of a web-based screen for Tourette Syndrome (TS) and common comorbid diagnoses (obsessive compulsive disorder (OCD) and attention deficit/hyperactivity disorder (ADHD)). A subset of individuals who completed a web-based phenotyping assessment for a TS genetic study was invited to participate in semi-structured diagnostic clinical interviews. The data from these interviews were used to determine participants' diagnostic status for TS, OCD, and ADHD using best estimate procedures, which then served as the gold standard to compare diagnoses assigned using web-based screen data. The results show high rates of agreement for TS. Kappas for OCD and ADHD diagnoses were also high and together demonstrate the utility of this self-report data in comparison previous diagnoses from clinicians and dimensional assessment methods. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    Science.gov (United States)

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Reliability assessment of fiber optic communication lines depending on external factors and diagnostic errors

    Science.gov (United States)

    Bogachkov, I. V.; Lutchenko, S. S.

    2018-05-01

    The article deals with the method for the assessment of the fiber optic communication lines (FOCL) reliability taking into account the effect of the optical fiber tension, the temperature influence and the built-in diagnostic equipment errors of the first kind. The reliability is assessed in terms of the availability factor using the theory of Markov chains and probabilistic mathematical modeling. To obtain a mathematical model, the following steps are performed: the FOCL state is defined and validated; the state graph and system transitions are described; the system transition of states that occur at a certain point is specified; the real and the observed time of system presence in the considered states are identified. According to the permissible value of the availability factor, it is possible to determine the limiting frequency of FOCL maintenance.

  17. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Juan C Ramírez

    2017-12-01

    Full Text Available Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs, TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA, comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  18. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    Science.gov (United States)

    Ramírez, Juan C; Torres, Carolina; Curto, María de Los A; Schijman, Alejandro G

    2017-12-01

    Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs), TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA), comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  19. Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures.

    Directory of Open Access Journals (Sweden)

    Mingjie Tang

    Full Text Available DNA oligonucleotides with a 5-base mutation at the 3'-terminus were investigated by terahertz (THz spectroscopy in a marker-free manner. The four single-stranded oligonucleotides with 17nt have been detected with specificity on a microfluidic chip, and corroborated by spectral measurements with split-ring resonators. The number of hydrogen bonds formed between the oligonucleotide and its surrounding water molecules, deemed a key contribution to the THz absorption of biological solutions, was explored by molecular dynamics simulations to explain the experimental findings. Our work underlies the feasibility of THz spectroscopy combined with microstructures for marker-free detection of DNA, which may form the basis of a prospective diagnostic tool for studying genic mutation.

  20. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    International Nuclear Information System (INIS)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor

  1. DNA barcoding for species assignment: the case of Mediterranean marine fishes.

    Directory of Open Access Journals (Sweden)

    Monica Landi

    Full Text Available DNA barcoding enhances the prospects for species-level identifications globally using a standardized and authenticated DNA-based approach. Reference libraries comprising validated DNA barcodes (COI constitute robust datasets for testing query sequences, providing considerable utility to identify marine fish and other organisms. Here we test the feasibility of using DNA barcoding to assign species to tissue samples from fish collected in the central Mediterranean Sea, a major contributor to the European marine ichthyofaunal diversity.A dataset of 1278 DNA barcodes, representing 218 marine fish species, was used to test the utility of DNA barcodes to assign species from query sequences. We tested query sequences against 1 a reference library of ranked DNA barcodes from the neighbouring North East Atlantic, and 2 the public databases BOLD and GenBank. In the first case, a reference library comprising DNA barcodes with reliability grades for 146 fish species was used as diagnostic dataset to screen 486 query DNA sequences from fish specimens collected in the central basin of the Mediterranean Sea. Of all query sequences suitable for comparisons 98% were unambiguously confirmed through complete match with reference DNA barcodes. In the second case, it was possible to assign species to 83% (BOLD-IDS and 72% (GenBank of the sequences from the Mediterranean. Relatively high intraspecific genetic distances were found in 7 species (2.2%-18.74%, most of them of high commercial relevance, suggesting possible cryptic species.We emphasize the discriminatory power of COI barcodes and their application to cases requiring species level resolution starting from query sequences. Results highlight the value of public reference libraries of reliability grade-annotated DNA barcodes, to identify species from different geographical origins. The ability to assign species with high precision from DNA samples of disparate quality and origin has major utility in several

  2. Non liquid nitrogen-based-method for isolation of DNA from ...

    African Journals Online (AJOL)

    A simple, efficient, reliable and cost-effective method for isolation of total genomic DNA from fungi, suitable for polymerase chain reaction (PCR) amplification and other molecular applications was described. The main advantages of the method are: (1) does not require the use of liquid nitrogen for preparation of fungi DNA; ...

  3. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, Rick [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hampton, Nigel [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Perkel, Josh [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hernandez, JC [Univ. de Los Andes, Merida (Venezuela); Elledge, Stacy [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); del Valle, Yamille [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Grimaldo, Jose [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Deku, Kodzo [Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  4. Empiric reliability of diagnostic and prognostic estimations of physical standards of children, going in for sports.

    Directory of Open Access Journals (Sweden)

    Zaporozhanov V.A.

    2012-12-01

    Full Text Available In the conditions of sporting-pedagogical practices objective estimation of potential possibilities gettings busy already on the initial stages of long-term preparation examined as one of issues of the day. The proper quantitative information allows to individualize preparation of gettings in obedience to requirements to the guided processes busy. Research purpose - logically and metrical to rotin expedience of metrical method of calculations of reliability of results of the control measurings, in-use for diagnostics of psychophysical fitness and prognosis of growth of trade gettings busy in the select type of sport. Material and methods. Analysed the results of the control measurings on four indexes of psychophysical preparedness and estimation of experts of fitness 24th gettings busy composition of children of gymnastic school. The results of initial and final inspection of gymnasts on the same control tests processed the method of mathematical statistics. Expected the metrical estimations of reliability of measurings is stability, co-ordination and informing of control information for current diagnostics and prognosis of sporting possibilities inspected. Results. Expedience of the use in these aims of metrical operations of calculation of complex estimation of the psychophysical state of gettings busy is metrology grounded. Conclusions. Research results confirm expedience of calculation of complex estimation of psychophysical features gettings busy for diagnostics of fitness in the select type of sport and trade prognosis on the subsequent stages of preparation.

  5. Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet.

    Science.gov (United States)

    Wedrowicz, Faye; Karsa, Mawar; Mosse, Jennifer; Hogan, Fiona E

    2013-07-01

    The koala, an Australian icon, has been added to the threatened species list. Rationale for the listing includes proposed declines in population size, threats to populations (e.g. disease) and loss and fragmentation of habitat. There is now an urgent need to obtain accurate data to assess the status of koala populations in Australia, to ensure the long-term viability of this species. Advances in genetic techniques have enabled DNA analysis to study and inform the management of wild populations; however, sampling of individual koalas is difficult in tall, often remote, eucalypt forest. The collection of faecal pellets (scats) from the forest floor presents an opportunistic sampling strategy, where DNA can be collected without capturing or even sighting an individual. Obtaining DNA via noninvasive sampling can be used to rapidly sample a large proportion of a population; however, DNA from noninvasively collected samples is often degraded. Factors influencing DNA quality and quantity include environmental exposure, diet and methods of sample collection, storage and DNA isolation. Reduced DNA quality and quantity can introduce genotyping errors and provide inaccurate DNA profiles, reducing confidence in the ability of such data to inform management/conservation strategies. Here, we present a protocol that produces a reliable individual koala genotype from a single faecal pellet and highlight the importance of optimizing DNA isolation and analysis for the species of interest. This method could readily be adapted for genetic studies of mammals other than koalas, particularly those whose diet contains high proportions of volatile materials that are likely to induce DNA damage. © 2013 John Wiley & Sons Ltd.

  6. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  7. HLA class I sequence-based typing using DNA recovered from frozen plasma.

    Science.gov (United States)

    Cotton, Laura A; Abdur Rahman, Manal; Ng, Carmond; Le, Anh Q; Milloy, M-J; Mo, Theresa; Brumme, Zabrina L

    2012-08-31

    We describe a rapid, reliable and cost-effective method for intermediate-to-high-resolution sequence-based HLA class I typing using frozen plasma as a source of genomic DNA. The plasma samples investigated had a median age of 8.5 years. Total nucleic acids were isolated from matched frozen PBMC (~2.5 million) and plasma (500 μl) samples from a panel of 25 individuals using commercial silica-based kits. Extractions yielded median [IQR] nucleic acid concentrations of 85.7 [47.0-130.0]ng/μl and 2.2 [1.7-2.6]ng/μl from PBMC and plasma, respectively. Following extraction, ~1000 base pair regions spanning exons 2 and 3 of HLA-A, -B and -C were amplified independently via nested PCR using universal, locus-specific primers and sequenced directly. Chromatogram analysis was performed using commercial DNA sequence analysis software and allele interpretation was performed using a free web-based tool. HLA-A, -B and -C amplification rates were 100% and chromatograms were of uniformly high quality with clearly distinguishable mixed bases regardless of DNA source. Concordance between PBMC and plasma-derived HLA types was 100% at the allele and protein levels. At the nucleotide level, a single partially discordant base (resulting from a failure to call both peaks in a mixed base) was observed out of >46,975 bases sequenced (>99.9% concordance). This protocol has previously been used to perform HLA class I typing from a variety of genomic DNA sources including PBMC, whole blood, granulocyte pellets and serum, from specimens up to 30 years old. This method provides comparable specificity to conventional sequence-based approaches and could be applied in situations where cell samples are unavailable or DNA quantities are limiting. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. DNA-Based Applications in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2010-01-01

    Full Text Available Biological molecules such as deoxyribonucleic acid (DNA have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.

  9. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wi...

  10. Validation of a DNA IQ-based extraction method for TECAN robotic liquid handling workstations for processing casework.

    Science.gov (United States)

    Frégeau, Chantal J; Lett, C Marc; Fourney, Ron M

    2010-10-01

    A semi-automated DNA extraction process for casework samples based on the Promega DNA IQ™ system was optimized and validated on TECAN Genesis 150/8 and Freedom EVO robotic liquid handling stations configured with fixed tips and a TECAN TE-Shake™ unit. The use of an orbital shaker during the extraction process promoted efficiency with respect to DNA capture, magnetic bead/DNA complex washes and DNA elution. Validation studies determined the reliability and limitations of this shaker-based process. Reproducibility with regards to DNA yields for the tested robotic workstations proved to be excellent and not significantly different than that offered by the manual phenol/chloroform extraction. DNA extraction of animal:human blood mixtures contaminated with soil demonstrated that a human profile was detectable even in the presence of abundant animal blood. For exhibits containing small amounts of biological material, concordance studies confirmed that DNA yields for this shaker-based extraction process are equivalent or greater to those observed with phenol/chloroform extraction as well as our original validated automated magnetic bead percolation-based extraction process. Our data further supports the increasing use of robotics for the processing of casework samples. Crown Copyright © 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Quantification of Circulating Free DNA as a Diagnostic Marker in Gall Bladder Cancer.

    Science.gov (United States)

    Kumari, Swati; Tewari, Shikha; Husain, Nuzhat; Agarwal, Akash; Pandey, Anshuman; Singhal, Ashish; Lohani, Mohtashim

    2017-01-01

    Gall bladder Carcinoma (GBC) is the fifth most common cancer of the digestive tract and frequently diagnosed in late stage of disease. Estimation of circulating free DNA (cfDNA) in serum has been applied as a "liquid biopsy" in several deep seated malignancies. Its value in diagnosis of gall bladder carcinoma has not been studied. The present study was designed to assess the role of cfDNA in the diagnosis of GBC and correlate levels with the TNM stage. Serum was collected from 34 patients with GBC and 39 age and sex matched controls including 22 cholecystitis and 17 healthy individuals. Serum cfDNA levels were measured through quantitative polymerase chain reaction (qPCR) by amplification of β-globin gene. Performance of the assay was calculated through the receiver operating characteristic (ROC) curve. The cfDNA level was significantly lower in healthy controls and cholecystitis (89.32 ± 59.76 ng/ml, 174.21 ± 99.93 ng/ml) compared to GBC (1245.91 ± 892.46 ng/ml, p = <0.001). The cfDNA level was significantly associated with TNM stage, lymph node involvement and jaundice (0.002, 0.027, and 0.041, respectively). Area under curve of ROC analysis for cancer group versus healthy and cholecystitis group was 1.00 and 0.983 with sensitivity of 100 %, 88.24 % and specificity of 100 % respectively. Quantitative analysis of cfDNA may distinguish cholecystitis and gall bladder carcinoma and may serve as new diagnostic, noninvasive marker adjunct to imaging for the diagnosis of GBC.

  12. SYBR green-based detection of Leishmania infantum DNA using peripheral blood samples.

    Science.gov (United States)

    Ghasemian, Mehrdad; Gharavi, Mohammad Javad; Akhlaghi, Lame; Mohebali, Mehdi; Meamar, Ahmad Reza; Aryan, Ehsan; Oormazdi, Hormozd; Ghayour, Zahra

    2016-03-01

    Parasitological methods for the diagnosis of visceral leishmaniasis (VL) require invasive sampling procedures. The aim of this study was to detect Leishmania infantum (L. infantum) DNA by real time-PCR method in peripheral blood of symptomatic VL patient and compared its performance with nested PCR, an established molecular method with very high diagnostic indices. 47 parasitologically confirmed VL patients diagnosed by direct agglutination test (DAT > 3200), bone marrow aspiration and presented characteristic clinical features (fever, hepatosplenomegaly, and anemia) and 40 controls (non-endemic healthy control-30, Malaria-2, Toxoplasma gondii-2, Mycobacterium tuberculosis-2, HBV-1, HCV-1, HSV-1 and CMV-1) were enrolled in this study. SYBR-green based real time-PCR and nested PCR was performed to amplify the Kinetoplast DNA minicircle gene using the DNA extracted from Buffy coat. From among 47 patients, 45 (95.7 %) were positive by both nested-PCR and real time-PCR. These results indicate that real time-PCR was not only as sensitive as a nested-PCR assay for detection of Leishmania kDNA in clinical sample, but also more rapid. The advantage of real time-PCR based methods over nested-PCR is simple to perform, more faster in which nested-PCR requires post-PCR processing and reducing contamination risk.

  13. DNA Nanobiosensors: An Outlook on Signal Readout Strategies

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2017-01-01

    Full Text Available A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.

  14. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  15. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  16. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  17. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions

    Directory of Open Access Journals (Sweden)

    Wiemels Joseph

    2008-09-01

    Full Text Available Abstract Background Epigenetics is the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. One of the most commonly studied epigenetic alterations is cytosine methylation, which is a well recognized mechanism of epigenetic gene silencing and often occurs at tumor suppressor gene loci in human cancer. Arrays are now being used to study DNA methylation at a large number of loci; for example, the Illumina GoldenGate platform assesses DNA methylation at 1505 loci associated with over 800 cancer-related genes. Model-based cluster analysis is often used to identify DNA methylation subgroups in data, but it is unclear how to cluster DNA methylation data from arrays in a scalable and reliable manner. Results We propose a novel model-based recursive-partitioning algorithm to navigate clusters in a beta mixture model. We present simulations that show that the method is more reliable than competing nonparametric clustering approaches, and is at least as reliable as conventional mixture model methods. We also show that our proposed method is more computationally efficient than conventional mixture model approaches. We demonstrate our method on the normal tissue samples and show that the clusters are associated with tissue type as well as age. Conclusion Our proposed recursively-partitioned mixture model is an effective and computationally efficient method for clustering DNA methylation data.

  18. Nuclear/Nucleolar morphometry and DNA image cytometry as a combined diagnostic tool in pathology of prostatic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kavantzas, N.; Agapitos, E.; Lazaris, A. C.; Pavlopulos, P.M.; Sofikitis, N.; Davaris, P. [National University of Athens, Dept. of Pathology, Medical School, Athens (Greece)

    2001-12-01

    Paraffin tissue sections from 50 patients with prostate adenocarcinoma were used to study nuclear and nucleolar morphometric features by image analysis. The results were compared to DNA ploidy and Gleason grade. In the examined histological samples nuclear and nucleolar areas were positively interrelated. It was also noticed that the higher the percentage of nucleolated nuclei, the bigger the nuclear and nucleolar areas. The morphometric characteristics did not differ significantly among the four grades of the examined specimens. In well-differentiated carcinomas the DNA index was lower than in the rest at a statistically significant level. Hypodiploid carcinomas were found to possess significantly bigger nuclear areas than any other DNA index group. Morphonuclear evidence of anaplasia and DNA aneuploidy may be used as diagnostic tools in prostate cancer in addition to Gleason grade.

  19. Nuclear/Nucleolar morphometry and DNA image cytometry as a combined diagnostic tool in pathology of prostatic carcinoma

    International Nuclear Information System (INIS)

    Kavantzas, N.; Agapitos, E.; Lazaris, A. C.; Pavlopulos, P.M.; Sofikitis, N.; Davaris, P.

    2001-01-01

    Paraffin tissue sections from 50 patients with prostate adenocarcinoma were used to study nuclear and nucleolar morphometric features by image analysis. The results were compared to DNA ploidy and Gleason grade. In the examined histological samples nuclear and nucleolar areas were positively interrelated. It was also noticed that the higher the percentage of nucleolated nuclei, the bigger the nuclear and nucleolar areas. The morphometric characteristics did not differ significantly among the four grades of the examined specimens. In well-differentiated carcinomas the DNA index was lower than in the rest at a statistically significant level. Hypodiploid carcinomas were found to possess significantly bigger nuclear areas than any other DNA index group. Morphonuclear evidence of anaplasia and DNA aneuploidy may be used as diagnostic tools in prostate cancer in addition to Gleason grade

  20. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    Science.gov (United States)

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and

  1. Simulation-based diagnostics and control for nuclear power plants. Final report, April 15, 1992--April 14, 1995

    International Nuclear Information System (INIS)

    Lee, J.C.

    1995-07-01

    The objective of the project was to develop and test a simulation-based diagnostics and control guidance system that can be used to diagnose and manage off-normal transient events in nuclear power plants. The research has focused on developing two diagnostic approaches suitable for detection and identification of faults involving multiple components, subject to uncertainties in system modeling and observations. The first approach is based on a fuzzy logic framework that can diagnose binary failures using a single-failure diagnostic knowledge base. Construction of the binary-failure knowledge base is accomplished through the use of macroscopic conservation relationships and a fuzzy inference structure is developed to determine the magnitude of faults and the associated certainty. In the second diagnostic approach, an adaptive Kalman filter algorithm is derived to yield information on the type and magnitude of feasible component transitions that can account for system observations. To obtain the likelihood of feasible component failures or degradations, a general probabilistic formulation is developed where statistical distributions associated with component reliability data are explicitly represented. Testing of the diagnostic algorithms has been performed through the analysis of simulated transient events for light water reactor systems. Preliminary studies have been conducted to develop Monte Carlo algorithms for flexible control of transient events

  2. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses

    Directory of Open Access Journals (Sweden)

    Adeel Afzal

    2017-02-01

    Full Text Available Viruses are pathogenic microorganisms that can inhabit and replicate in human bodies causing a number of widespread infectious diseases such as influenza, gastroenteritis, hepatitis, meningitis, pneumonia, acquired immune deficiency syndrome (AIDS etc. A majority of these viral diseases are contagious and can spread from infected to healthy human beings. The most important step in the treatment of these contagious diseases and to prevent their unwanted spread is to timely detect the disease-causing viruses. Gravimetric viral diagnostics based on quartz crystal microbalance (QCM transducers and natural or synthetic receptors are miniaturized sensing platforms that can selectively recognize and quantify harmful virus species. Herein, a review of the label-free QCM virus sensors for clinical diagnostics and point of care (POC applications is presented with major emphasis on the nature and performance of different receptors ranging from the natural or synthetic antibodies to selective macromolecular materials such as DNA and aptamers. A performance comparison of different receptors is provided and their limitations are discussed.

  3. DNA Charge Transport: From Chemical Principles to the Cell

    Science.gov (United States)

    Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.

    2016-01-01

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  4. DNA fingerprinting based on simple sequence repeat (SSR ...

    African Journals Online (AJOL)

    New varieties of sugarcane are protected using morphological descriptors, which have limitations in identifying morphologically similar cultivars. Development of a reliable DNA fingerprint system for identification of new varieties would contribute greatly to the breeding of these species. Microsatellite markers are tools with ...

  5. Metallic Nanostructures Based on DNA Nanoshapes

    Directory of Open Access Journals (Sweden)

    Boxuan Shen

    2016-08-01

    Full Text Available Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  6. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    Science.gov (United States)

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Diagnostic reliability of the cervical vertebral maturation method and standing height in the identification of the mandibular growth spurt.

    Science.gov (United States)

    Perinetti, Giuseppe; Contardo, Luca; Castaldo, Attilio; McNamara, James A; Franchi, Lorenzo

    2016-07-01

    To evaluate the capability of both cervical vertebral maturation (CVM) stages 3 and 4 (CS3-4 interval) and the peak in standing height to identify the mandibular growth spurt throughout diagnostic reliability analysis. A previous longitudinal data set derived from 24 untreated growing subjects (15 females and nine males,) detailed elsewhere were reanalyzed. Mandibular growth was defined as annual increments in Condylion (Co)-Gnathion (Gn) (total mandibular length) and Co-Gonion Intersection (Goi) (ramus height) and their arithmetic mean (mean mandibular growth [mMG]). Subsequently, individual annual increments in standing height, Co-Gn, Co-Goi, and mMG were arranged according to annual age intervals, with the first and last intervals defined as 7-8 years and 15-16 years, respectively. An analysis was performed to establish the diagnostic reliability of the CS3-4 interval or the peak in standing height in the identification of the maximum individual increments of each Co-Gn, Co-Goi, and mMG measurement at each annual age interval. CS3-4 and standing height peak show similar but variable accuracy across annual age intervals, registering values between 0.61 (standing height peak, Co-Gn) and 0.95 (standing height peak and CS3-4, mMG). Generally, satisfactory diagnostic reliability was seen when the mandibular growth spurt was identified on the basis of the Co-Goi and mMG increments. Both CVM interval CS3-4 and peak in standing height may be used in routine clinical practice to enhance efficiency of treatments requiring identification of the mandibular growth spurt.

  8. Development of web-based reliability data base platform

    International Nuclear Information System (INIS)

    Hwang, Seok Won; Lee, Chang Ju; Sung, Key Yong

    2004-01-01

    Probabilistic safety assessment (PSA) is a systematic technique which estimates the degree of risk impacts to the public due to an accident scenario. Estimating the occurrence frequencies and consequences of potential scenarios requires a thorough analysis of the accident details and all fundamental parameters. The robustness of PSA to check weaknesses in a design and operation will allow a better informed and balanced decision to be reached. The fundamental parameters for PSA, such as the component failure rates, should be estimated under the condition of steady collection of the evidence throughout the operational period. However, since any single plant data does not sufficiently enough to provide an adequate PSA result, in actual, the whole operating data was commonly used to estimate the reliability parameters for the same type of components. The reliability data of any component type consists of two categories; the generic that is based on the operating experiences of whole plants, and the plant-specific that is based on the operation of a specific plant of interest. The generic data is highly essential for new or recently-built nuclear power plants (NPPs). Generally, the reliability data base may be categorized into the component reliability, initiating event frequencies, human performance, and so on. Among these data, the component reliability seems a key element because it has the most abundant population. Therefore, the component reliability data is essential for taking a part in the quantification of accident sequences because it becomes an input of various basic events which consists of the fault tree

  9. Diagnostic reliability of 3.0-T MRI for detecting osseous abnormalities of the temporomandibular joint.

    Science.gov (United States)

    Sawada, Kunihiko; Amemiya, Toshihiko; Hirai, Shigenori; Hayashi, Yusuke; Suzuki, Toshihiro; Honda, Masahiko; Sisounthone, Johnny; Matsumoto, Kunihito; Honda, Kazuya

    2018-01-01

    We compared the diagnostic reliability of 3.0-T magnetic resonance imaging (MRI) for detection of osseous abnormalities of the temporomandibular joint (TMJ) with that of the gold standard, cone-beam computed tomography (CBCT). Fifty-six TMJs were imaged with CBCT and MRI, and images of condyles and fossae were independently assessed for the presence of osseous abnormalities. The accuracy, sensitivity, and specificity of 3.0-T MRI were 0.88, 1.0, and 0.73, respectively, in condyle evaluation and 0.91, 0.75, and 0.95 in fossa evaluation. The McNemar test showed no significant difference (P > 0.05) between MRI and CBCT in the evaluation of osseous abnormalities in condyles and fossae. The present results indicate that 3.0-T MRI is equal to CBCT in the diagnostic evaluation of osseous abnormalities of the mandibular condyle.

  10. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2014-10-01

    Full Text Available Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.

  11. Molecular phylogenetic analysis of Enterobius vermicularis and development of an 18S ribosomal DNA-targeted diagnostic PCR.

    Science.gov (United States)

    Zelck, Ulrike E; Bialek, Ralf; Weiss, Michael

    2011-04-01

    We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed.

  12. Processing of free radical damaged DNA bases

    International Nuclear Information System (INIS)

    Wallace, S.

    2003-01-01

    Free radicals produced during the radiolysis of water gives rise to a plethora of DNA damages including single strand breaks, sites of base loss and a wide variety of purine and pyrimidine base lesions. All these damages are processed in cells by base excision repair. The oxidative DNA glycosylases which catalyze the first step in the removal of a base damage during base excision repair evolved primarily to protect the cells from the deleterious mutagenic effects of single free radical-induced DNA lesions arising during oxidative metabolism. This is evidenced by the high spontaneous mutation rate in bacterial mutants lacking the oxidative DNA glycosylases. However, when a low LET photon transverses the DNA molecule, a burst of free radicals is produced during the radiolysis of water that leads to the formation of clustered damages in the DNA molecule, that are recognized by the oxidative DNA glycosylases. When substrates containing two closely opposed sugar damages or base and sugar damages are incubated with the oxidative DNA glycosylases in vitro, one strand is readily incised by the lyase activity of the DNA glycosylase. Whether or not the second strand is incised depends on the distance between the strand break resulting from the incised first strand and the remaining DNA lesion on the other strand. If the lesions are more than two or three base pairs apart, the second strand is readily cleaved by the DNA glycosylase, giving rise to a double strand break. Even if the entire base excision repair system is reconstituted in vitro, whether or not a double strand break ensues depends solely upon the ability of the DNA glycosylase to cleave the second strand. These data predicted that cells deficient in the oxidative DNA glycosylases would be radioresistant while those that overproduce an oxidative DNA glycosylase would be radiosensitive. This prediction was indeed borne in Escherichia coli that is, mutants lacking the oxidative DNA glycosylases are radioresistant

  13. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  14. Improving the Conservation of Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library.

    Directory of Open Access Journals (Sweden)

    Alessia Cariani

    Full Text Available Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental change because of their K-selected reproductive strategy. Accurate data from scientific surveys and landings are essential to assess conservation status and to develop robust protection and management plans. Currently available data are often incomplete or incorrect as a result of inaccurate species identifications, due to a high level of morphological stasis, especially among closely related taxa. Moreover, several diagnostic characters clearly visible in adult specimens are less evident in juveniles. Here we present results generated by the ELASMOMED Consortium, a regional network aiming to sample and DNA-barcode the Mediterranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode reference library. This library will support and improve the molecular taxonomy of this group and the effectiveness of management and conservation measures. We successfully barcoded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera, including four endemic and several threatened ones. Morphological misidentifications were found across most orders, further confirming the need for a comprehensive DNA barcoding library as a valuable tool for the reliable identification of specimens in support of taxonomist who are reviewing current identification keys. Despite low intraspecific variation among their barcode sequences and reduced samples size, five species showed preliminary evidence of phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific features in otherwise taxonomically problematic groups for biodiversity management and conservation actions.

  15. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study.

    Science.gov (United States)

    Fredericks, Jamie D; Ringrose, Trevor J; Dicken, Anthony; Williams, Anna; Bennett, Phil

    2015-03-01

    Extracting viable DNA from many forensic sample types can be very challenging, as environmental conditions may be far from optimal with regard to DNA preservation. Consequently, skeletal tissue can often be an invaluable source of DNA. The bone matrix provides a hardened material that encapsulates DNA, acting as a barrier to environmental insults that would otherwise be detrimental to its integrity. However, like all forensic samples, DNA in bone can still become degraded in extreme conditions, such as intense heat. Extracting DNA from bone can be laborious and time-consuming. Thus, a lot of time and money can be wasted processing samples that do not ultimately yield viable DNA. We describe the use of colorimetry as a novel diagnostic tool that can assist DNA analysis from heat-treated bone. This study focuses on characterizing changes in the material and physical properties of heated bone, and their correlation with digitally measured color variation. The results demonstrate that the color of bone, which serves as an indicator of the chemical processes that have occurred, can be correlated with the success or failure of subsequent DNA amplification. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand.

    Science.gov (United States)

    Reis, António M C; Mills, Wilbur K; Ramachandran, Ilangovan; Friedberg, Errol C; Thompson, David; Queimado, Lurdes

    2012-01-01

    Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.

  17. [Single-molecule detection and characterization of DNA replication based on DNA origami].

    Science.gov (United States)

    Wang, Qi; Fan, Youjie; Li, Bin

    2014-08-01

    To investigate single-molecule detection and characterization of DNA replication. Single-stranded DNA (ssDNA) as the template of DNA replication was attached to DNA origami by a hybridization reaction based on the complementary base-pairing principle. DNA replication catalyzed by E.coli DNA polymerase I Klenow Fragment (KF) was detected using atomic force microscopy (AFM). The height variations between the ssDNA and the double-stranded DNA (dsDNA), the distribution of KF during DNA replication and biotin-streptavidin (BA) complexes on the DNA strand after replication were detected. Agarose gel electrophoresis was employed to analyze the changes in the DNA after replication. The designed ssDNA could be anchored on the target positions of over 50% of the DNA origami. The KF was capable of binding to the ssDNA fixed on DNA origami and performing its catalytic activities, and was finally dissociated from the DNA after replication. The height of DNA strand increased by about 0.7 nm after replication. The addition of streptavidin also resulted in an DNA height increase to about 4.9 nm due to the formation of BA complexes on the biotinylated dsDNA. The resulting dsDNA and BA complex were subsequently confirmed by agarose gel electrophoresis. The combination of AFM and DNA origami allows detection and characterization of DNA replication at the single molecule level, and this approach provides better insights into the mechanism of DNA polymerase and the factors affecting DNA replication.

  18. Self-adapted thermocouple-diagnostic complex

    International Nuclear Information System (INIS)

    Alekseev, S.V.; Grankovskij, K.Eh.; Olejnikov, P.P.; Prijmak, S.V.; Shikalov, V.F.

    2003-01-01

    A self-adapted thermocouple-diagnostic complex (STDC) for obtaining the reliable data on the coolant temperature in the reactors of NPP is described. The STDC in based on the thermal pulse monitoring of a thermocouple in the measuring channel of a reactor. Measurement method and STDC composition are substantiated. It is shown that introduction of the developed STDC ensures realization of precise and reliable temperature monitoring in the reactors of all types [ru

  19. Veterinary Molecular Diagnostics

    NARCIS (Netherlands)

    Roest, H.I.J.; Engelsma, M.Y.; Weesendorp, E.; Bossers, A.; Elbers, A.R.W.

    2017-01-01

    In veterinary molecular diagnostics, samples originating from animals are tested. Developments in the farm animals sector and in our societal attitude towards pet animals have resulted in an increased demand for fast and reliable diagnostic techniques. Molecular diagnostics perfectly matches this

  20. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Science.gov (United States)

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  1. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  2. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    Science.gov (United States)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  3. Molecular Phylogenetic Analysis of Enterobius vermicularis and Development of an 18S Ribosomal DNA-Targeted Diagnostic PCR▿

    Science.gov (United States)

    Zelck, Ulrike E.; Bialek, Ralf; Weiß, Michael

    2011-01-01

    We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed. PMID:21248085

  4. Molecular systematic of three species of Oithona (Copepoda, Cyclopoida from the Atlantic Ocean: comparative analysis using 28S rDNA.

    Directory of Open Access Journals (Sweden)

    Georgina D Cepeda

    Full Text Available Species of Oithona (Copepoda, Cyclopoida are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them.

  5. Study of methodology diversification in diagnostics

    International Nuclear Information System (INIS)

    Suda, Kazunori; Yonekawa, Tsuyoshi; Yoshikawa, Shinji; Hasegawa, Makoto

    1999-03-01

    There are several research activities to enhance safety and reliability of nuclear power plant operation and maintenance. We are developing a concept of an autonomous operation system where the role of operators is replaced with artificial intelligence. The purpose of the study described in this report is to develop a operator support system in abnormal plant situations. Conventionally, diagnostic modules based on individual methodology such as expert system have been developed and verified. In this report, methodology diversification is considered to integrate diagnostic modules which performance are confirmed using information processing technique. Technical issues to be considered in diagnostic methodology diversification are; 1)reliability of input data, 2)diversification of knowledge models, algorithms and reasoning schemes, 3)mutual complement and robustness. The diagnostic module utilizing the different approaches defined along with strategy of diversification was evaluated using fast breeder plant simulator. As a result, we confirmed that any singular diagnostic module can not meet accuracy criteria for the entire set of anomaly events. In contrast with this, we confirmed that every abnormality could be precisely diagnosed by a mutual combination. In other words, legitimacy of approach selected by strategy of diversification was shown, and methodology diversification attained clear efficiency for abnormal diagnosis. It has been also confirmed that the diversified diagnostic system implemented in this study is able to maintain its accuracy even in case that encountered scale of abnormality is different from reference cases embedded in the knowledge base. (author)

  6. Construction of a fuzzy and all Boolean logic gates based on DNA

    DEFF Research Database (Denmark)

    M. Zadegan, Reza; Jepsen, Mette D E; Hildebrandt, Lasse

    2015-01-01

    to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive...... DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics....

  7. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    OpenAIRE

    B. V. Savchinskiy

    2010-01-01

    On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  8. Case-Based Fault Diagnostic System

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Nowadays, case-based fault diagnostic (CBFD) systems have become important and widely applied problem solving technologies. They are based on the assumption that “similar faults have similar diagnosis”. On the other hand, CBFD systems still suffer from some limitations. Common ones of them are: (1) failure of CBFD to have the needed diagnosis for the new faults that have no similar cases in the case library. (2) Limited memorization when increasing the number of stored cases in the library. The proposed research introduces incorporating the neural network into the case based system to enable the system to diagnose all the faults. Neural networks have proved their success in the classification and diagnosis problems. The suggested system uses the neural network to diagnose the new faults (cases) that cannot be diagnosed by the traditional CBR diagnostic system. Besides, the proposed system can use the another neural network to control adding and deleting the cases in the library to manage the size of the cases in the case library. However, the suggested system has improved the performance of the case based fault diagnostic system when applied for the motor rolling bearing as a case of study

  9. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  10. Design of character-based DNA barcode motif for species identification: A computational approach and its validation in fishes.

    Science.gov (United States)

    Chakraborty, Mohua; Dhar, Bishal; Ghosh, Sankar Kumar

    2017-11-01

    The DNA barcodes are generally interpreted using distance-based and character-based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance-based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character-based approach more accurately defines this using a unique set of nucleotide characters. The character-based analysis of full-length barcode has some inherent limitations, like sequencing of the full-length barcode, use of a sparse-data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154-bp fragment, from the transversion-rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species-specific barcode motifs for 109 species by the character-based method, which successfully identifies the correct species using a pattern-matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species-specific mini-barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini-barcode approach will greatly benefit the field-based system of rapid species identification. © 2017 John Wiley & Sons Ltd.

  11. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms.

    Science.gov (United States)

    Dentinger, Bryn T M; Margaritescu, Simona; Moncalvo, Jean-Marc

    2010-07-01

    We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field. © 2009 Blackwell Publishing Ltd.

  12. A reliable and reproducible technique for DNA fingerprinting in biorepositories: a pilot study from BioBIM.

    Science.gov (United States)

    Palmirotta, Raffaele; De Marchis, Maria Laura; Ludovici, Giorgia; Ialongo, Cristiano; Leone, Barbara; Lopez, Nadia; Valente, Maria Giovanna; Spila, Antonella; Ferroni, Patrizia; Della-Morte, David; Guadagni, Fiorella

    2013-12-17

    Standard operating procedures (SOPs) optimization for nucleic acid extraction from stored samples is of crucial importance in a biological repository, considering the large number of collected samples and their future downstream molecular and biological applications. However, the validity of molecular studies using stored specimens depends not only on the integrity of the biological samples, but also on the procedures that ensure the traceability of the same sample, certifying its uniqueness, and ensuring the identification of potential sample contaminations. With this aim, we have developed a rapid, reliable, low-cost, and simple DNA fingerprinting tool for a routine use in quality control of biorepositories samples. The method consists of a double ALU insertion/deletion genotyping panel suitable for uniqueness, identification of sample contaminations, and gender validation. Preliminary data suggest that this easy-to-use DNA fingerprinting protocol could routinely provide assurances of DNA identity and quality in a biorepository setting.

  13. Non-invasive diagnostics of the maxillary and frontal sinuses based on diode laser gas spectroscopy.

    Science.gov (United States)

    Lewander, Märta; Lindberg, Sven; Svensson, Tomas; Siemund, Roger; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Suspected, but objectively absent, rhinosinusitis constitutes a major cause of visits to the doctor, high health care costs, and the over-prescription of antibiotics, contributing to the serious problem of resistant bacteria. This situation is largely due to a lack of reliable and widely applicable diagnostic methods. A novel method for the diagnosis of rhinosinusitis based on non-intrusive diode laser gas spectroscopy is presented. The technique is based on light absorption by free gas (oxygen and water vapour) inside the sinuses, and has the potential to be a complementary diagnostic tool in primary health care. The method was evaluated on 40 patients with suspected sinus problems, referred to the diagnostic radiology clinic for low-dose computed tomography (CT), which was used as the reference technique. The data obtained with the new laser-based method correlated well with the grading of opacification and ventilation using CT. The sensitivity and specificity were estimated to be 93% and 61%, respectively, for the maxillary sinuses, and 94% and 86%, respectively, for the frontal sinuses. Good reproducibility was shown. The laser-based technique presents real-time clinical data that correlate well to CT findings, while being non-intrusive and avoiding the use of ionizing radiation.

  14. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  15. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human.

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-02-16

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation.

  16. Comparative Study of Seven Commercial Kits for Human DNA Extraction from Urine Samples Suitable for DNA Biomarker-Based Public Health Studies

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H. C.; De Keersmaecker, Sigrid C. J.

    2014-01-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at −20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies. PMID:25365790

  17. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies.

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H C; De Keersmaecker, Sigrid C J

    2014-12-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at -20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies.

  18. An indicator cell assay for blood-based diagnostics.

    Directory of Open Access Journals (Sweden)

    Samuel A Danziger

    Full Text Available We have established proof of principle for the Indicator Cell Assay Platform™ (iCAP™, a broadly applicable tool for blood-based diagnostics that uses specifically-selected, standardized cells as biosensors, relying on their innate ability to integrate and respond to diverse signals present in patients' blood. To develop an assay, indicator cells are exposed in vitro to serum from case or control subjects and their global differential response patterns are used to train reliable, disease classifiers based on a small number of features. In a feasibility study, the iCAP detected pre-symptomatic disease in a murine model of amyotrophic lateral sclerosis (ALS with 94% accuracy (p-Value = 3.81E-6 and correctly identified samples from a murine Huntington's disease model as non-carriers of ALS. Beyond the mouse model, in a preliminary human disease study, the iCAP detected early stage Alzheimer's disease with 72% cross-validated accuracy (p-Value = 3.10E-3. For both assays, iCAP features were enriched for disease-related genes, supporting the assay's relevance for disease research.

  19. Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis.

    Science.gov (United States)

    Diwakar, N; Sperandio, M; Sherriff, M; Brown, A; Odell, E W

    2005-04-01

    Oral squamous carcinomas appear heterogeneous on DNA ploidy analysis. However, this may be partly a result of sample dilution or the detection limit of techniques. The aim of this study was to determine whether oral squamous carcinomas are heterogeneous for ploidy status using image-based ploidy analysis and to determine whether ploidy status correlates with histological parameters. Multiple samples from 42 oral squamous carcinomas were analysed for DNA ploidy using an image-based system and scored for histological parameters. 22 were uniformly aneuploid, 1 uniformly tetraploid and 3 uniformly diploid. 16 appeared heterogeneous but only 8 appeared to be genuinely heterogeneous when minor ploidy histogram peaks were taken into account. Ploidy was closely related to nuclear pleomorphism but not differentiation. Sample variation, detection limits and diagnostic criteria account for much of the ploidy heterogeneity observed. Confident diagnosis of diploid status in an oral squamous cell carcinoma requires a minimum of 5 samples.

  20. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  1. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    Directory of Open Access Journals (Sweden)

    B. V. Savchinskiy

    2010-03-01

    Full Text Available On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  2. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants.

    Science.gov (United States)

    Otti, G; Bouvaine, S; Kimata, B; Mkamillo, G; Kumar, P L; Tomlins, K; Maruthi, M N

    2016-05-01

    To develop a multiplex TaqMan-based real-time PCR assay (qPCR) for the simultaneous detection and quantification of both RNA and DNA viruses affecting cassava (Manihot esculenta) in eastern Africa. The diagnostic assay was developed for two RNA viruses; Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) and two predominant DNA viruses; African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), which cause the economically important cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) respectively. Our method, developed by analysing PCR products of viruses, was highly sensitive to detect target viruses from very low quantities of 4-10 femtograms. Multiplexing did not diminish sensitivity or accuracy compared to uniplex alternatives. The assay reliably detected and quantified four cassava viruses in field samples where CBSV and UCBSV synergy was observed in majority of mixed-infected varieties. We have developed a high-throughput qPCR diagnostic assay capable of specific and sensitive quantification of predominant DNA and RNA viruses of cassava in eastern Africa. The qPCR methods are a great improvement on the existing methods and can be used for monitoring virus spread as well as for accurate evaluation of the cassava varieties for virus resistance. © 2016 The Society for Applied Microbiology.

  3. Detection of HBV Covalently Closed Circular DNA

    Directory of Open Access Journals (Sweden)

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  4. Electronic transport in methylated fragments of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail: umbertofulco@gmail.com; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  5. Electronic transport in methylated fragments of DNA

    International Nuclear Information System (INIS)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-01-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics

  6. Music-based Autism Diagnostics (MUSAD) - A newly developed diagnostic measure for adults with intellectual developmental disabilities suspected of autism.

    Science.gov (United States)

    Bergmann, Thomas; Sappok, Tanja; Diefenbacher, Albert; Dames, Sibylle; Heinrich, Manuel; Ziegler, Matthias; Dziobek, Isabel

    2015-01-01

    The MUSAD was developed as a diagnostic observational instrument in an interactional music framework. It is based on the ICD-10/DSM-5 criteria for autism spectrum disorder (ASD) and was designed to assess adults on a lower level of functioning, including individuals with severe language impairments. This study aimed to evaluate the psychometric properties of the newly developed instrument. Calculations were based on a consecutive clinical sample of N=76 adults with intellectual and developmental disabilities (IDD) suspected of ASD. Objectivity, test-retest reliability, and construct validity were calculated and a confirmatory factor analysis was applied to verify a reduced and optimized test version. The structural model showed a good fit, while internal consistency of the subscales was excellent (ω>.92). Item difficulties ranged between .04≤pi≤.82 and item-total correlation from .21 to .85. Objectivity was assessed by comparing the scorings of two external raters based on a subsample of n=12; interrater agreement was .71 (ICC 2, 1). Reliability was calculated for four test repetitions: the average ICC (3, 1) was .69. Convergent ASD measures correlated significantly with the MUSAD, while the discriminant Modified Overt Aggression Scale (MOAS) showed no significant overlap. Confirmation of factorial structure and acceptable psychometric properties suggest that the MUSAD is a promising new instrument for diagnosing ASD in adults with IDD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Reliability and Validity of Prototype Diagnosis for Adolescent Psychopathology.

    Science.gov (United States)

    Haggerty, Greg; Zodan, Jennifer; Mehra, Ashwin; Zubair, Ayyan; Ghosh, Krishnendu; Siefert, Caleb J; Sinclair, Samuel J; DeFife, Jared

    2016-04-01

    The current study investigated the interrater reliability and validity of prototype ratings of 5 common adolescent psychiatric disorders: attention-deficit/hyperactivity disorder, conduct disorder, major depressive disorder, generalized anxiety disorder, and posttraumatic stress disorder. One hundred fifty-seven adolescent inpatient participants consented to participate in this study. We compared ratings from 2 inpatient clinicians, blinded to each other's ratings and patient measures, after their separate initial diagnostic interview to assess interrater reliability. Prototype ratings completed by clinicians after their initial diagnostic interview with adolescent inpatients and outpatients were compared with patient-reported behavior problems and parents' report of their child's behavioral problems. Prototype ratings demonstrated good interrater reliability. Clinicians' prototype ratings showed predicted relationships with patient-reported behavior problems and parent-reported behavior problems. Prototype matching seems to be a possible alternative for psychiatric diagnosis. Prototype ratings showed good interrater reliability based on clinicians unique experiences with the patient (as opposed to video-/audio-recorded material) with no training.

  8. Diagnostic methods and techniques in cervical cancer prevention Part II: Molecular diagnostics of HPV infection

    Directory of Open Access Journals (Sweden)

    Adriana Vince,

    2010-02-01

    Full Text Available Clinical diagnostics of HPV infection is based on analytically andclinically validated assays for qualitative detection of HPV DNAfrom high risk genotypes. New generation of HPV DNA assayscombines qualitative detection of 12 high-risk HPV genotypeswith HPV-16 and HPV-18 genotyping. New generation of HPVmolecular assays designed to increase clinical specificity of moleculartesting is based on detection of mRNA for E6 and E7.

  9. The engineering of JET diagnostics

    International Nuclear Information System (INIS)

    Walker, C.I.; Dillon, S.F.; Hammond, N.P.; Hancock, C.J.; Lam, N.; McCarron, E.J.; Prior, P.C.S.; Reid, J.; Sanders, S.; Tellier, X.; Tiscornia, A.J.; Whitfield, G.A.H.; Wilson, C.H.; Wilson, D.J.

    1995-01-01

    There are some 62 identifiably different diagnostic systems on JET. 22 were installed new at the last, Pumped Divertor, shutdown and a further 22 which were modified, upgraded or repositioned. This paper describes some of the engineering aspects peculiar to the renewed diagnostic systems, reviews their construction and installation and gives an overview of the design of presently installed diagnostic equipment at the Torus. Examples are considered that illustrate the breakdown into a categorisation based on their installation method. This is useful for discussion of many of the associated engineering problems of method and quality control of manufacture, vulnerability, access for installation and maintenance and ultimately system safety and reliability. The function and measured plasma parameter of specific diagnostics is covered in other papers and is not attempted here, neither is a full catalogue of Diagnostics on JET. (orig.)

  10. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  11. Mapping of 34 minisatellite loci resolved by two-dimensional DNA typing

    DEFF Research Database (Denmark)

    Børglum, Anders; Nyegaard, Mette; Kvistgaard, AB

    1997-01-01

    Two-dimensional (2-D) DNA typing is based on electrophoretic separation of genomic DNA fragments in two dimensions according to independent criteria (size and base-pair sequence), followed by hybridization analysis using multilocus probes. The technique allows simultaneous visualization of several...... could be deduced, showing no evidence of clustering. In the analysis of spot patterns, use was made of a computerized image analysis system specifically designed for 2-D DNA typing. Since experimental variations between different separation patterns were automatically corrected for with this program......, rapid and reliable scorings could be obtained. The results presented demonstrate the availability of reliable genetic information throughout the 2-D separation pattern. Adding the use of semiautomated computerized pattern analysis, this study further substantiates the applicability of 2-D DNA typing...

  12. DNA interaction with platinum-based cytostatics revealed by DNA sequencing.

    Science.gov (United States)

    Smerkova, Kristyna; Vaculovic, Tomas; Vaculovicova, Marketa; Kynicky, Jindrich; Brtnicky, Martin; Eckschlager, Tomas; Stiborova, Marie; Hubalek, Jaromir; Adam, Vojtech

    2017-12-15

    The main mechanism of action of platinum-based cytostatic drugs - cisplatin, oxaliplatin and carboplatin - is the formation of DNA cross-links, which restricts the transcription due to the disability of DNA to enter the active site of the polymerase. The polymerase chain reaction (PCR) was employed as a simplified model of the amplification process in the cell nucleus. PCR with fluorescently labelled dideoxynucleotides commonly employed for DNA sequencing was used to monitor the effect of platinum-based cytostatics on DNA in terms of decrease in labeling efficiency dependent on a presence of the DNA-drug cross-link. It was found that significantly different amounts of the drugs - cisplatin (0.21 μg/mL), oxaliplatin (5.23 μg/mL), and carboplatin (71.11 μg/mL) - were required to cause the same quenching effect (50%) on the fluorescent labelling of 50 μg/mL of DNA. Moreover, it was found that even though the amounts of the drugs was applied to the reaction mixture differing by several orders of magnitude, the amount of incorporated platinum, quantified by inductively coupled plasma mass spectrometry, was in all cases at the level of tenths of μg per 5 μg of DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Use of capillary GC-MS for identification of radiation-induced DNA base damage: Implications for base-excision repair of DNA

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    Application of GC-MS to characterization of radiation-induced base products of DNA and DNa base-amino acid crosslinks is presented. Samples of γ-irradiated DNa were hydrolyzed with formic acid, trimethylsilylated and subjected to GC-MS analysis using a fused silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC-properties and easily interpretable mass spectra. The complementary use of t-butyldimetylsilyl derivatives was also demonstrated. Moreover, the usefulness of this method for identification of radiation-induced DNA base-amino acid crosslinks was shown using γ-irradiated mixtures of thymine and tyrosine or phenylalanine. Because of the excellent resolving power of capillary GC and the instant and highly sensitive identification by MS, GC-MS is suggested as a suitable technique for identification of altered bases removed from DNA by base-excision repair enzymes

  14. Charge transport through DNA based electronic barriers

    Science.gov (United States)

    Patil, Sunil R.; Chawda, Vivek; Qi, Jianqing; Anantram, M. P.; Sinha, Niraj

    2018-05-01

    We report charge transport in electronic 'barriers' constructed by sequence engineering in DNA. Considering the ionization potentials of Thymine-Adenine (AT) and Guanine-Cytosine (GC) base pairs, we treat AT as 'barriers'. The effect of DNA conformation (A and B form) on charge transport is also investigated. Particularly, the effect of width of 'barriers' on hole transport is investigated. Density functional theory (DFT) calculations are performed on energy minimized DNA structures to obtain the electronic Hamiltonian. The quantum transport calculations are performed using the Landauer-Buttiker framework. Our main findings are contrary to previous studies. We find that a longer A-DNA with more AT base pairs can conduct better than shorter A-DNA with a smaller number of AT base pairs. We also find that some sequences of A-DNA can conduct better than a corresponding B-DNA with the same sequence. The counterions mediated charge transport and long range interactions are speculated to be responsible for counter-intuitive length and AT content dependence of conductance of A-DNA.

  15. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients.

    Directory of Open Access Journals (Sweden)

    Julia Stadler

    Full Text Available Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent "gold standard". Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution, at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients.

  16. Not All Next Generation Sequencing Diagnostics are Created Equal: Understanding the Nuances of Solid Tumor Assay Design for Somatic Mutation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Phillip N., E-mail: pgray@ambrygen.com; Dunlop, Charles L.M.; Elliott, Aaron M. [Ambry Genetics, 15 Argonaut, Aliso Viejo, CA 92656 (United States)

    2015-07-17

    The molecular characterization of tumors using next generation sequencing (NGS) is an emerging diagnostic tool that is quickly becoming an integral part of clinical decision making. Cancer genomic profiling involves significant challenges including DNA quality and quantity, tumor heterogeneity, and the need to detect a wide variety of complex genetic mutations. Most available comprehensive diagnostic tests rely on primer based amplification or probe based capture methods coupled with NGS to detect hotspot mutation sites or whole regions implicated in disease. These tumor panels utilize highly customized bioinformatics pipelines to perform the difficult task of accurately calling cancer relevant alterations such as single nucleotide variations, small indels or large genomic alterations from the NGS data. In this review, we will discuss the challenges of solid tumor assay design/analysis and report a case study that highlights the need to include complementary technologies (i.e., arrays) and germline analysis in tumor testing to reliably identify copy number alterations and actionable variants.

  17. Characterization and Diagnostics for Photovoltaic Modules and Arrays

    DEFF Research Database (Denmark)

    Spataru, Sergiu

    part of this work were developed based on two well-known module characterization techniques, namely current-voltage (I-V) characterization, and electroluminescence imaging. he I-V based module diagnostic methods were developed by combining the strengths of light I-V and dark I-V characterization......, characterization and diagnostic methods are increasingly important in identifying and understanding the failures and degradation modes affecting PV modules and arrays, as well as developing relevant tools and tests for assessing the reliability and lifetime of PV modules. This thesis investigates diagnostic...... methods for characterizing and detecting degradation modes in crystalline silicon photovoltaic modules and arrays, and is structured into two parts. The first part of this work is focused on developing PV module characterization and diagnostic methods for use in module diagnostics and failure...

  18. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification

    International Nuclear Information System (INIS)

    Diao, Wei; Tang, Min; Ding, Xiaojuan; Zhang, Ye; Yang, Jianru; Cheng, Wenbin; Mo, Fei; Wen, Bo; Xu, Lulu; Yan, Yurong

    2016-01-01

    The authors describe an electrochemical sensing strategy for highly sensitive and specific detection of target (analyte) DNA based on an amplification scheme mediated by a multicomponent nucleic acid enzyme (MNAzyme). MNAzymes were formed by multicomponent complexes which produce amplified “output” signals in response to specific “input” signal. In the presence of target nucleic acid, multiple partial enzymes (partzymes) oligonucleotides are assembled to form active MNAzymes. These can cleave H0 substrate into two pieces, thereby releasing the activated MNAzyme to undergo an additional cycle of amplification. Here, the two pieces contain a biotin-tagged sequence and a byproduct. The biotin-tagged sequences are specifically captured by the detection probes immobilized on the gold electrode. By employing streptavidinylated alkaline phosphatase as an enzyme label, an electrochemical signal is obtained. The electrode, if operated at a working potential of 0.25 V (vs. Ag/AgCl) in solution of pH 7.5, covers the 100 pM to 0.25 μM DNA concentration range, with a 79 pM detection limit. In our perception, the strategy introduced here has a wider potential in that it may be applied to molecular diagnostics and pathogen detection. (author)

  19. Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR.

    Science.gov (United States)

    Nielsen, Martin K; Peterson, David S; Monrad, Jesper; Thamsborg, Stig M; Olsen, Susanne N; Kaplan, Ray M

    2008-03-01

    Strongylus vulgaris is an important strongyle nematode with high pathogenic potential infecting horses world-wide. Several decades of intensive anthelmintic use has virtually eliminated clinical disease caused by S. vulgaris, but has also caused high levels of anthelmintic resistance in equine small strongyle (cyathostomin) nematodes. Recommendations aimed at limiting the development of anthelmintic resistance by reducing treatment intensity raises a simultaneous demand for reliable and accurate diagnostic tools for detecting important parasitic pathogens. Presently, the only means available to differentiate among strongyle species in a faecal sample is by identifying individual L3 larvae following a two week coproculture procedure. The aim of the present study is to overcome this diagnostic obstacle by developing a fluorescence-based quantitative PCR assay capable of identifying S. vulgaris eggs in faecal samples from horses. Species-specific primers and a TaqMan probe were designed by alignment of published ribosomal DNA sequences of the second internal transcribed spacer of cyathostomin and Strongylus spp. nematodes. The assay was tested for specificity and optimized using genomic DNA extracted from identified male worms of Strongylus and cyathostomin species. In addition, eggs were collected from adult female worms and used to evaluate the quantitative potential of the assay. Statistically significant linear relationships were found between egg numbers and cycle of threshold (Ct) values. PCR results were unaffected by the presence of cyathostomin DNA in the sample and there was no indication of PCR inhibition by faecal sources. A field evaluation on faecal samples obtained from four Danish horse farms revealed a good agreement with the traditional larval culture (kappa-value=0.78), but with a significantly higher performance of the PCR assay. An association between Ct values and S. vulgaris larval counts was statistically significant. The present assay can

  20. Histogram score contributes for reliability of DNA content estimatives in Brachiaria spp Notas do histograma contribuem para a confiabilidade das estimativas do conteúdo de DNA de Brachiaria spp

    Directory of Open Access Journals (Sweden)

    Ana Luiza de Oliveira Timbó

    2012-12-01

    Full Text Available Flow cytometry allows to estimate the DNA content of a large number of plants quickly. However, inadequate protocols can compromise the reliability of these estimates leading to variations in the values of DNA content the same species. The objective of this study was to propose an efficient protocol to estimate the DNA content of Brachiaria spp. genotypes with different ploidy levels using flow cytometry. We evaluated four genotypes (B. ruziziensis diploid and artificially tetraploidized; a tetraploid B. brizantha and a natural triploid hybrid, three buffer solutions (MgSO4, Galbraith and Tris-HCl and three species as internal reference standards (Raphanus sativus, Solanum lycopersicum e Pisum sativum. The variables measured were: histogram score (1-5, coefficient of variation and estimation of DNA content. The best combination for the analysis of Brachiaria spp. DNA content was the use of MgSO4 buffer with R. sativus as a internal reference standard. Genome sizes expressed in picograms of DNA are presented for all genotypes and the importance of the histogram score on the results reliability of DNA content analyses were discussed.A citometria de fluxo permite estimar o conteúdo de DNA de um grande número de plantas rapidamente. No entanto, protocolos inadequados podem comprometer a confiabilidade dessas estimativas, levando a variações nos valores de conteúdo de DNA para uma mesma espécie. Neste trabalho, objetivou-se propor um protocolo eficiente para a estimativa do conteúdo de DNA de genótipos de Brachiaria spp. com diferentes níveis de ploidia, utilizando a citometria de fluxo. Foram avaliados quatro genótipos (B. ruziziensis, diploide e tetraploidizada artificialmente; B. brizantha tetraploide e um híbrido natural triploide, 3 soluções tampões (MgSO4, Galbraith e Tris-HCl e três espécies como padrões de referência interno (Raphanus sativus, Solanum lycopersicum e Pisum sativum. As variáveis mensuradas foram: nota do

  1. A novel reliable method of DNA extraction from olive oil suitable for molecular traceability.

    Science.gov (United States)

    Raieta, Katia; Muccillo, Livio; Colantuoni, Vittorio

    2015-04-01

    Extra virgin olive oil production has a worldwide economic impact. The use of this brand, however, is of great concern to Institutions and private industries because of the increasing number of fraud and adulteration attempts to the market products. Here, we present a novel, reliable and not expensive method for extracting the DNA from commercial virgin and extra virgin olive oils. The DNA is stable overtime and amenable for molecular analyses; in fact, by carrying out simple sequence repeats (SSRs) markers analysis, we characterise the genetic profile of monovarietal olive oils. By comparing the oil-derived pattern with that of the corresponding tree, we can unambiguously identify four cultivars from Samnium, a region of Southern Italy, and distinguish them from reference and more widely used varieties. Through a parentage statistical analysis, we also identify the putative pollinators, establishing an unprecedented and powerful tool for olive oil traceability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. DNA barcoding of recently diverged species: relative performance of matching methods.

    Directory of Open Access Journals (Sweden)

    Robin van Velzen

    Full Text Available Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a 'barcode gap' and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based, nearest neighbor and BLAST (similarity-based, and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75% than for older species (∼97% (P<0.00001. Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001. The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2% as well as empirical data (93.1%, indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification.

  3. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    Science.gov (United States)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  4. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  5. DNA-informed breeding of rosaceous crops: promises, progress and prospects

    Science.gov (United States)

    Peace, Cameron P

    2017-01-01

    Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185

  6. Validating DNA barcodes: A non-destructive extraction protocol enables simultaneous vouchering of DNA and morphological vouchers

    Science.gov (United States)

    Morphology-based keys support accurate identification of many taxa. However, identification can be difficult for taxa that are not well studied, very small, members of cryptic species complexes, or represented by immature stages. For such cases, DNA barcodes may provide diagnostic characters. Ecolog...

  7. DNA based radiological dosimetry technology

    International Nuclear Information System (INIS)

    Diaz Quijada, Gerardo A.; Roy, Emmanuel; Veres, Teodor; Dumoulin, Michel M.; Vachon, Caroline; Blagoeva, Rosita; Pierre, Martin

    2008-01-01

    Full text: The purpose of this project is to develop a personal and wearable dosimeter using a highly-innovative approach based on the specific recognition of DNA damage with a polymer hybrid. Our biosensor will be sensitive to breaks in nucleic acid macromolecules and relevant to mixed-field radiation. The dosimeter proposed will be small, field deployable and will sense damages for all radiation types at the DNA level. The generalized concept for the novel-based radiological dosimeter: 1) Single or double stranded oligonucleotide is immobilized on surface; 2) Single stranded has higher cross-section for fragmentation; 3) Double stranded is more biological relevant; 4) Radiation induces fragmentation; 5) Ultra-sensitive detection of fragments provides radiation dose. Successful efforts have been made towards a proof-of-concept personal wearable DNA-based dosimeter that is appropriate for mixed-field radiation. The covalent immobilization of oligonucleotides on large areas of plastic surfaces has been demonstrated and corroborated spectroscopically. The surface concentration of DNA was determined to be 8 x 1010 molecules/cm 2 from a Ce(IV) catalyzed hydrolysis study of a fluorescently labelled oligonucleotide. Current efforts are being directed at studying radiation induced fragmentation of DNA followed by its ultra-sensitive detection via a novel method. In addition, proof-of-concept wearable personal devices and a detection platform are presently being fabricated. (author)

  8. Reliability-based sensitivity of mechanical components with arbitrary distribution parameters

    International Nuclear Information System (INIS)

    Zhang, Yi Min; Yang, Zhou; Wen, Bang Chun; He, Xiang Dong; Liu, Qiaoling

    2010-01-01

    This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Techniques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical components were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical components

  9. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  10. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  11. Improvement in the amine glass platform by bubbling method for a DNA microarray

    Directory of Open Access Journals (Sweden)

    Jee SH

    2015-10-01

    Full Text Available Seung Hyun Jee,1 Jong Won Kim,2 Ji Hyeong Lee,2 Young Soo Yoon11Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi, Republic of Korea; 2Genomics Clinical Research Institute, LabGenomics Co., Ltd., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of KoreaAbstract: A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. Keywords: DNA microarray, glass platform, bubbling method, self-assambled monolayer

  12. Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform

    NARCIS (Netherlands)

    Alonso, Rodrigo; Defesche, Joep C.; Tejedor, Diego; Castillo, Sergio; Stef, Marianne; Mata, Nelva; Gomez-Enterria, Pilar; Martinez-Faedo, Ceferino; Forga, Lluis; Mata, Pedro

    2009-01-01

    The aim of this study was to validate the Lipochip genetic diagnostic platform by assessing effectiveness, sensitivity, specificity and costs for the identification of patients with familial hypercholesterolemia (FH) in Spain. This platform includes the use of a DNA micro array, the detection of

  13. Development of a diagnostic test set to assess agreement in breast pathology: practical application of the Guidelines for Reporting Reliability and Agreement Studies (GRRAS).

    Science.gov (United States)

    Oster, Natalia V; Carney, Patricia A; Allison, Kimberly H; Weaver, Donald L; Reisch, Lisa M; Longton, Gary; Onega, Tracy; Pepe, Margaret; Geller, Berta M; Nelson, Heidi D; Ross, Tyler R; Tosteson, Aanna N A; Elmore, Joann G

    2013-02-05

    Diagnostic test sets are a valuable research tool that contributes importantly to the validity and reliability of studies that assess agreement in breast pathology. In order to fully understand the strengths and weaknesses of any agreement and reliability study, however, the methods should be fully reported. In this paper we provide a step-by-step description of the methods used to create four complex test sets for a study of diagnostic agreement among pathologists interpreting breast biopsy specimens. We use the newly developed Guidelines for Reporting Reliability and Agreement Studies (GRRAS) as a basis to report these methods. Breast tissue biopsies were selected from the National Cancer Institute-funded Breast Cancer Surveillance Consortium sites. We used a random sampling stratified according to woman's age (40-49 vs. ≥50), parenchymal breast density (low vs. high) and interpretation of the original pathologist. A 3-member panel of expert breast pathologists first independently interpreted each case using five primary diagnostic categories (non-proliferative changes, proliferative changes without atypia, atypical ductal hyperplasia, ductal carcinoma in situ, and invasive carcinoma). When the experts did not unanimously agree on a case diagnosis a modified Delphi method was used to determine the reference standard consensus diagnosis. The final test cases were stratified and randomly assigned into one of four unique test sets. We found GRRAS recommendations to be very useful in reporting diagnostic test set development and recommend inclusion of two additional criteria: 1) characterizing the study population and 2) describing the methods for reference diagnosis, when applicable.

  14. An Optimized Protocol for DNA Extraction from Wheat Seeds and Loop-Mediated Isothermal Amplification (LAMP to Detect Fusarium graminearum Contamination of Wheat Grain

    Directory of Open Access Journals (Sweden)

    Mohamed Moslem

    2011-06-01

    Full Text Available A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  15. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... tasks, namely finite element analyses, sensitivity analyses, reliability analyses and application of an optimization algorithm. In the paper it is shown how these four tasks can be linked effectively and how existing information on design variables, Lagrange multipliers and the Hessian matrix can...

  16. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems...... on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R......&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all...

  17. Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Based Diagnostics for Mobile Health Care.

    Science.gov (United States)

    Priye, Aashish; Wong, Season; Bi, Yuanpeng; Carpio, Miguel; Chang, Jamison; Coen, Mauricio; Cope, Danielle; Harris, Jacob; Johnson, James; Keller, Alexandra; Lim, Richard; Lu, Stanley; Millard, Alex; Pangelinan, Adriano; Patel, Neal; Smith, Luke; Chan, Kamfai; Ugaz, Victor M

    2016-05-03

    We introduce a portable biochemical analysis platform for rapid field deployment of nucleic acid-based diagnostics using consumer-class quadcopter drones. This approach exploits the ability to isothermally perform the polymerase chain reaction (PCR) with a single heater, enabling the system to be operated using standard 5 V USB sources that power mobile devices (via battery, solar, or hand crank action). Time-resolved fluorescence detection and quantification is achieved using a smartphone camera and integrated image analysis app. Standard sample preparation is enabled by leveraging the drone's motors as centrifuges via 3D printed snap-on attachments. These advancements make it possible to build a complete DNA/RNA analysis system at a cost of ∼$50 ($US). Our instrument is rugged and versatile, enabling pinpoint deployment of sophisticated diagnostics to distributed field sites. This capability is demonstrated by successful in-flight replication of Staphylococcus aureus and λ-phage DNA targets in under 20 min. The ability to perform rapid in-flight assays with smartphone connectivity eliminates delays between sample collection and analysis so that test results can be delivered in minutes, suggesting new possibilities for drone-based systems to function in broader and more sophisticated roles beyond cargo transport and imaging.

  18. A fluorescence sedimentation assay for dsDNA antibodies

    DEFF Research Database (Denmark)

    Duus, K; Draborg, A H; Güven, E

    2017-01-01

    The Farr assay is a radioimmunoassay (RIA) for dsDNA antibodies, based on antibody precipitation using ammonium sulphate and quantification using radio-labelled dsDNA. The RIA-Farr assay offers outstanding clinical specificity and sensitivity for systemic lupus erythematosus (SLE) compared to other...... on precipitation with polyethylene glycol (PEG) and fluorescence of EvaGreen intercalated in dsDNA as detection principle. As dsDNA antibodies are quantified using fluorescence, the disadvantages of working with radioactivity are eliminated. The Fluoro-Farr assay was developed and validated, and the diagnostic...

  19. Reactor noise diagnostics based on multivariate autoregressive modeling: Application to LOFT [Loss-of-Fluid-Test] reactor process noise

    International Nuclear Information System (INIS)

    Gloeckler, O.; Upadhyaya, B.R.

    1987-01-01

    Multivariate noise analysis of power reactor operating signals is useful for plant diagnostics, for isolating process and sensor anomalies, and for automated plant monitoring. In order to develop a reliable procedure, the previously established techniques for empirical modeling of fluctuation signals in power reactors have been improved. Application of the complete algorithm to operational data from the Loss-of-Fluid-Test (LOFT) Reactor showed that earlier conjectures (based on physical modeling) regarding the perturbation sources in a Pressurized Water Reactor (PWR) affecting coolant temperature and neutron power fluctuations can be systematically explained. This advanced methodology has important implication regarding plant diagnostics, and system or sensor anomaly isolation. 6 refs., 24 figs

  20. Diagnostic accuracy of tablet-based software for the detection of concussion.

    Science.gov (United States)

    Yang, Suosuo; Flores, Benjamin; Magal, Rotem; Harris, Kyrsti; Gross, Jonathan; Ewbank, Amy; Davenport, Sasha; Ormachea, Pablo; Nasser, Waleed; Le, Weidong; Peacock, W Frank; Katz, Yael; Eagleman, David M

    2017-01-01

    Despite the high prevalence of traumatic brain injuries (TBI), there are few rapid and straightforward tests to improve its assessment. To this end, we developed a tablet-based software battery ("BrainCheck") for concussion detection that is well suited to sports, emergency department, and clinical settings. This article is a study of the diagnostic accuracy of BrainCheck. We administered BrainCheck to 30 TBI patients and 30 pain-matched controls at a hospital Emergency Department (ED), and 538 healthy individuals at 10 control test sites. We compared the results of the tablet-based assessment against physician diagnoses derived from brain scans, clinical examination, and the SCAT3 test, a traditional measure of TBI. We found consistent distributions of normative data and high test-retest reliability. Based on these assessments, we defined a composite score that distinguishes TBI from non-TBI individuals with high sensitivity (83%) and specificity (87%). We conclude that our testing application provides a rapid, portable testing method for TBI.

  1. Diagnostic accuracy of tablet-based software for the detection of concussion.

    Directory of Open Access Journals (Sweden)

    Suosuo Yang

    Full Text Available Despite the high prevalence of traumatic brain injuries (TBI, there are few rapid and straightforward tests to improve its assessment. To this end, we developed a tablet-based software battery ("BrainCheck" for concussion detection that is well suited to sports, emergency department, and clinical settings. This article is a study of the diagnostic accuracy of BrainCheck. We administered BrainCheck to 30 TBI patients and 30 pain-matched controls at a hospital Emergency Department (ED, and 538 healthy individuals at 10 control test sites. We compared the results of the tablet-based assessment against physician diagnoses derived from brain scans, clinical examination, and the SCAT3 test, a traditional measure of TBI. We found consistent distributions of normative data and high test-retest reliability. Based on these assessments, we defined a composite score that distinguishes TBI from non-TBI individuals with high sensitivity (83% and specificity (87%. We conclude that our testing application provides a rapid, portable testing method for TBI.

  2. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    Science.gov (United States)

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  3. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    OpenAIRE

    Hai An; Ling Zhou; Hui Sun

    2016-01-01

    Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...

  4. Performance analysis of automated evaluation of Crithidia luciliae-based indirect immunofluorescence tests in a routine setting - strengths and weaknesses.

    Science.gov (United States)

    Hormann, Wymke; Hahn, Melanie; Gerlach, Stefan; Hochstrate, Nicola; Affeldt, Kai; Giesen, Joyce; Fechner, Kai; Damoiseaux, Jan G M C

    2017-11-27

    Antibodies directed against dsDNA are a highly specific diagnostic marker for the presence of systemic lupus erythematosus and of particular importance in its diagnosis. To assess anti-dsDNA antibodies, the Crithidia luciliae-based indirect immunofluorescence test (CLIFT) is one of the assays considered to be the best choice. To overcome the drawback of subjective result interpretation that inheres indirect immunofluorescence assays in general, automated systems have been introduced into the market during the last years. Among these systems is the EUROPattern Suite, an advanced automated fluorescence microscope equipped with different software packages, capable of automated pattern interpretation and result suggestion for ANA, ANCA and CLIFT analysis. We analyzed the performance of the EUROPattern Suite with its automated fluorescence interpretation for CLIFT in a routine setting, reflecting the everyday life of a diagnostic laboratory. Three hundred and twelve consecutive samples were collected, sent to the Central Diagnostic Laboratory of the Maastricht University Medical Centre with a request for anti-dsDNA analysis over a period of 7 months. Agreement between EUROPattern assay analysis and the visual read was 93.3%. Sensitivity and specificity were 94.1% and 93.2%, respectively. The EUROPattern Suite performed reliably and greatly supported result interpretation. Automated image acquisition is readily performed and automated image classification gives a reliable recommendation for assay evaluation to the operator. The EUROPattern Suite optimizes workflow and contributes to standardization between different operators or laboratories.

  5. Rapid and Accurate Behavioral Health Diagnostic Screening: Initial Validation Study of a Web-Based, Self-Report Tool (the SAGE-SR).

    Science.gov (United States)

    Brodey, Benjamin; Purcell, Susan E; Rhea, Karen; Maier, Philip; First, Michael; Zweede, Lisa; Sinisterra, Manuela; Nunn, M Brad; Austin, Marie-Paule; Brodey, Inger S

    2018-03-23

    The Structured Clinical Interview for DSM (SCID) is considered the gold standard assessment for accurate, reliable psychiatric diagnoses; however, because of its length, complexity, and training required, the SCID is rarely used outside of research. This paper aims to describe the development and initial validation of a Web-based, self-report screening instrument (the Screening Assessment for Guiding Evaluation-Self-Report, SAGE-SR) based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and the SCID-5-Clinician Version (CV) intended to make accurate, broad-based behavioral health diagnostic screening more accessible within clinical care. First, study staff drafted approximately 1200 self-report items representing individual granular symptoms in the diagnostic criteria for the 8 primary SCID-CV modules. An expert panel iteratively reviewed, critiqued, and revised items. The resulting items were iteratively administered and revised through 3 rounds of cognitive interviewing with community mental health center participants. In the first 2 rounds, the SCID was also administered to participants to directly compare their Likert self-report and SCID responses. A second expert panel evaluated the final pool of items from cognitive interviewing and criteria in the DSM-5 to construct the SAGE-SR, a computerized adaptive instrument that uses branching logic from a screener section to administer appropriate follow-up questions to refine the differential diagnoses. The SAGE-SR was administered to healthy controls and outpatient mental health clinic clients to assess test duration and test-retest reliability. Cutoff scores for screening into follow-up diagnostic sections and criteria for inclusion of diagnoses in the differential diagnosis were evaluated. The expert panel reduced the initial 1200 test items to 664 items that panel members agreed collectively represented the SCID items from the 8 targeted modules and DSM criteria for the covered

  6. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    Science.gov (United States)

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  7. Multicenter validation of cancer gene panel-based next-generation sequencing for translational research and molecular diagnostics.

    Science.gov (United States)

    Hirsch, B; Endris, V; Lassmann, S; Weichert, W; Pfarr, N; Schirmacher, P; Kovaleva, V; Werner, M; Bonzheim, I; Fend, F; Sperveslage, J; Kaulich, K; Zacher, A; Reifenberger, G; Köhrer, K; Stepanow, S; Lerke, S; Mayr, T; Aust, D E; Baretton, G; Weidner, S; Jung, A; Kirchner, T; Hansmann, M L; Burbat, L; von der Wall, E; Dietel, M; Hummel, M

    2018-04-01

    The simultaneous detection of multiple somatic mutations in the context of molecular diagnostics of cancer is frequently performed by means of amplicon-based targeted next-generation sequencing (NGS). However, only few studies are available comparing multicenter testing of different NGS platforms and gene panels. Therefore, seven partner sites of the German Cancer Consortium (DKTK) performed a multicenter interlaboratory trial for targeted NGS using the same formalin-fixed, paraffin-embedded (FFPE) specimen of molecularly pre-characterized tumors (n = 15; each n = 5 cases of Breast, Lung, and Colon carcinoma) and a colorectal cancer cell line DNA dilution series. Detailed information regarding pre-characterized mutations was not disclosed to the partners. Commercially available and custom-designed cancer gene panels were used for library preparation and subsequent sequencing on several devices of two NGS different platforms. For every case, centrally extracted DNA and FFPE tissue sections for local processing were delivered to each partner site to be sequenced with the commercial gene panel and local bioinformatics. For cancer-specific panel-based sequencing, only centrally extracted DNA was analyzed at seven sequencing sites. Subsequently, local data were compiled and bioinformatics was performed centrally. We were able to demonstrate that all pre-characterized mutations were re-identified correctly, irrespective of NGS platform or gene panel used. However, locally processed FFPE tissue sections disclosed that the DNA extraction method can affect the detection of mutations with a trend in favor of magnetic bead-based DNA extraction methods. In conclusion, targeted NGS is a very robust method for simultaneous detection of various mutations in FFPE tissue specimens if certain pre-analytical conditions are carefully considered.

  8. Knowledge based diagnostics in nuclear power plants

    International Nuclear Information System (INIS)

    Baldeweg, F.; Fiedler, U.; Weiss, F.P.; Werner, M.

    1987-01-01

    In this paper a special process diagnostic system (PDS) is presented. It must be seen as the result of a long term work on computerized process surveillance and control; it includes a model based system for noise analysis of mechanical vibrations, which has recently been enhanced by using of knowledge based technique (expert systems). The paper discusses the process diagnostic frame concept and emphasize the vibration analysis expert system

  9. ROLE OF DNA METHYLATION AS A DIAGNOSTIC BIOMARKER OF SPORADIC BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Wirsma Arif Harahap

    2017-02-01

    all methylation profiles fit within the same molecular subtype. Specific gene methylation profiles are identified for basal-like, luminal A and HER2-overexpressing breast cancers. A number of studies have analyzed the methylation status of BRCA1, a key player in TNBC. One study demonstrated that BRCA1 promoter was methylated in TNBC.  It was discovered that the sensitivity of TNBC cell lines to PARP inhibitors was increased when BRCA1 was methylated. Concurrently, BRCA1 methylation quantity was higher in patients with complete response than in those who are non-responders of neoadjuvant chemotherapy. Epigenetics is now the cutting edge of cancer research.  Advances in this field will have major implications in diagnosis, prevention, treatment of cancer, and formulation of new epigenetically targeted cancer drugs.   Keywords: breast cancer, epigenetic, DNA methylation, BRCA1, diagnostic marker

  10. Development of a reliable simulation-based test for diagnostic abdominal ultrasound with a pass/fail standard usable for mastery learning

    DEFF Research Database (Denmark)

    Østergaard, Mia L; Nielsen, Kristina R; Albrecht-Beste, Elisabeth

    2018-01-01

    training can benefit from competency-based education based on reliable tests. • This simulation-based test can differentiate between competency levels of ultrasound examiners. • This test is suitable for competency-based education, e.g. mastery learning. • We provide a pass/fail standard without false...... from The European Federation of Societies for Ultrasound in Medicine and Biology. Four groups of experience levels were constructed: Novices (medical students), trainees (first-year radiology residents), intermediates (third- to fourth-year radiology residents) and advanced (physicians with ultrasound...

  11. Reliability data bases: the current picture

    International Nuclear Information System (INIS)

    Fragola, J.R.

    1985-01-01

    The paper addresses specific advances in nuclear power plant reliability data base development, a critical review of a select set of relevant data bases and suggested future data bases and suggested future data development needs required for risk assessment techniques to reach full potential

  12. Disparities in the diagnostic process of Duchenne and Becker muscular dystrophy.

    Science.gov (United States)

    Holtzer, Caleb; Meaney, F John; Andrews, Jennifer; Ciafaloni, Emma; Fox, Deborah J; James, Katherine A; Lu, Zhenqiang; Miller, Lisa; Pandya, Shree; Ouyang, Lijing; Cunniff, Christopher

    2011-11-01

    To determine whether sociodemographic factors are associated with delays at specific steps in the diagnostic process of Duchenne and Becker muscular dystrophy. We examined abstracted medical records for 540 males from population-based surveillance sites in Arizona, Colorado, Georgia, Iowa, and western New York. We used linear regressions to model the association of three sociodemographic characteristics with age at initial medical evaluation, first creatine kinase measurement, and earliest DNA analysis while controlling for changes in the diagnostic process over time. The analytical dataset included 375 males with information on family history of Duchenne and Becker muscular dystrophy, neighborhood poverty levels, and race/ethnicity. Black and Hispanic race/ethnicity predicted older ages at initial evaluation, creatine kinase measurement, and DNA testing (P Becker muscular dystrophy predicted younger ages at initial evaluation, creatine kinase measurement and DNA testing (P Becker muscular dystrophy are evident even after adjustment for family history of Duchenne and Becker muscular dystrophy and changes in the diagnostic process over time. Black and Hispanic children are initially evaluated at older ages than white children, and the gap widens at later steps in the diagnostic process.

  13. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  14. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  15. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  16. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  17. DNA origami nanorobot fiber optic genosensor to TMV.

    Science.gov (United States)

    Torelli, Emanuela; Manzano, Marisa; Srivastava, Sachin K; Marks, Robert S

    2018-01-15

    In the quest of greater sensitivity and specificity of diagnostic systems, one continually searches for alternative DNA hybridization methods, enabling greater versatility and where possible field-enabled detection of target analytes. We present, herein, a hybrid molecular self-assembled scaffolded DNA origami entity, intimately immobilized via capture probes linked to aminopropyltriethoxysilane, onto a glass optical fiber end-face transducer, thus producing a novel biosensor. Immobilized DNA nanorobots with a switchable flap can then be actuated by a specific target DNA present in a sample, by exposing a hemin/G-quadruplex DNAzyme, which then catalyzes the generation of chemiluminescence, once the specific fiber probes are immersed in a luminol-based solution. Integrating organic nanorobots to inorganic fiber optics creates a hybrid system that we demonstrate as a proof-of-principle can be utilized in specific DNA sequence detection. This system has potential applications in a wide range of fields, including point-of-care diagnostics or cellular in vivo biosensing when using ultrathin fiber optic probes for research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    DEFF Research Database (Denmark)

    Ishengoma, Deus S; Lwitiho, Sudi; Madebe, Rashid A

    2011-01-01

    was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs....... continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study...

  19. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  20. Tyramine Hydrochloride Based Label-Free System for Operating Various DNA Logic Gates and a DNA Caliper for Base Number Measurements.

    Science.gov (United States)

    Fan, Daoqing; Zhu, Xiaoqing; Dong, Shaojun; Wang, Erkang

    2017-07-05

    DNA is believed to be a promising candidate for molecular logic computation, and the fluorogenic/colorimetric substrates of G-quadruplex DNAzyme (G4zyme) are broadly used as label-free output reporters of DNA logic circuits. Herein, for the first time, tyramine-HCl (a fluorogenic substrate of G4zyme) is applied to DNA logic computation and a series of label-free DNA-input logic gates, including elementary AND, OR, and INHIBIT logic gates, as well as a two to one encoder, are constructed. Furthermore, a DNA caliper that can measure the base number of target DNA as low as three bases is also fabricated. This DNA caliper can also perform concatenated AND-AND logic computation to fulfil the requirements of sophisticated logic computing. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  2. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  3. Double positivity for HPV-DNA/p16ink4a is the biomarker with strongest diagnostic accuracy and prognostic value for human papillomavirus related oropharyngeal cancer patients.

    Science.gov (United States)

    Mena, Marisa; Taberna, Miren; Tous, Sara; Marquez, Sandra; Clavero, Omar; Quiros, Beatriz; Lloveras, Belen; Alejo, Maria; Leon, Xavier; Quer, Miquel; Bagué, Silvia; Mesia, Ricard; Nogués, Julio; Gomà, Montserrat; Aguila, Anton; Bonfill, Teresa; Blazquez, Carmen; Guix, Marta; Hijano, Rafael; Torres, Montserrat; Holzinger, Dana; Pawlita, Michael; Pavon, Miguel Angel; Bravo, Ignacio G; de Sanjosé, Silvia; Bosch, Francesc Xavier; Alemany, Laia

    2018-03-01

    The etiologic role of human papillomaviruses (HPV) in oropharyngeal cancer (OPC) is well established. Nevertheless, information on survival differences by anatomic sub-site or treatment remains scarce, and it is still unclear the HPV-relatedness definition with best diagnostic accuracy and prognostic value. We conducted a retrospective cohort study of all patients diagnosed with a primary OPC in four Catalonian hospitals from 1990 to 2013. Formalin-fixed, paraffin-embedded cancer tissues were subjected to histopathological evaluation, DNA quality control, HPV-DNA detection, and p16 INK4a /pRb/p53/Cyclin-D1 immunohistochemistry. HPV-DNA positive and a random sample of HPV-DNA negative cases were subjected to HPV-E6*I mRNA detection. Demographic, tobacco/alcohol use, clinical and follow-up data were collected. Multivariate models were used to evaluate factors associated with HPV positivity as defined by four different HPV-relatedness definitions. Proportional-hazards models were used to compare the risk of death and recurrence among HPV-related and non-related OPC. 788 patients yielded a valid HPV-DNA result. The percentage of positive cases was 10.9%, 10.2%, 8.5% and 7.4% for p16 INK4a , HPV-DNA, HPV-DNA/HPV-E6*I mRNA, and HPV-DNA/p16 INK4a , respectively. Being non-smoker or non-drinker was consistently associated across HPV-relatedness definitions with HPV positivity. A suggestion of survival differences between anatomic sub-sites and treatments was observed. Double positivity for HPV-DNA/p16 INK4a showed strongest diagnostic accuracy and prognostic value. Double positivity for HPV-DNA/p16 INK4a , a test that can be easily implemented in the clinical practice, has optimal diagnostic accuracy and prognostic value. Our results have strong clinical implications for patients' classification and handling and also suggest that not all the HPV-related OPC behave similarly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics

    Science.gov (United States)

    Sowers, T. Shane; Kopasakis, George; Simon, Donald L.

    2008-01-01

    The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance, there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight, and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.

  5. Graphene nanodevices for DNA sequencing

    NARCIS (Netherlands)

    Heerema, S.J.; Dekker, C.

    2016-01-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with

  6. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  7. An integrated reliability-based design optimization of offshore towers

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, Halil [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)], E-mail: h.karadeniz@tudelft.nl; Togan, Vedat [Department of Civil Engineering, Karadeniz Technical University, Trabzon (Turkey); Vrouwenvelder, Ton [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)

    2009-10-15

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  8. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  9. DNA-based techniques for authentication of processed food and food supplements.

    Science.gov (United States)

    Lo, Yat-Tung; Shaw, Pang-Chui

    2018-02-01

    Authentication of food or food supplements with medicinal values is important to avoid adverse toxic effects, provide consumer rights, as well as for certification purpose. Compared to morphological and spectrometric techniques, molecular authentication is found to be accurate, sensitive and reliable. However, DNA degradation and inclusion of inhibitors may lead to failure in PCR amplification. This paper reviews on the existing DNA extraction and PCR protocols, and the use of small size DNA markers with sufficient discriminative power for molecular authentication. Various emerging new molecular techniques such as isothermal amplification for on-site diagnosis, next-generation sequencing for high-throughput species identification, high resolution melting analysis for quick species differentiation, DNA array techniques for rapid detection and quantitative determination in food products are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  11. Evaluation of Genetic Variations in Maize Seedlings Exposed to Electric Field Based on Protein and DNA Markers

    Directory of Open Access Journals (Sweden)

    Asma A. AL-Huqail

    2015-01-01

    Full Text Available The current study analyzed proteins and nuclear DNA of electric fields (ELF exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, isozymes, random amplified polymorphic DNA (RAPD, and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100% based on zymograms number, relative front (Rf, and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08% based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38% and tail moment unit (5.36 at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors.

  12. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.

  13. Comparison of Pre-Analytical FFPE Sample Preparation Methods and Their Impact on Massively Parallel Sequencing in Routine Diagnostics

    Science.gov (United States)

    Heydt, Carina; Fassunke, Jana; Künstlinger, Helen; Ihle, Michaela Angelika; König, Katharina; Heukamp, Lukas Carl; Schildhaus, Hans-Ulrich; Odenthal, Margarete; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2014-01-01

    Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3–24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for

  14. Comparison of pre-analytical FFPE sample preparation methods and their impact on massively parallel sequencing in routine diagnostics.

    Directory of Open Access Journals (Sweden)

    Carina Heydt

    Full Text Available Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3-24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA. No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can

  15. Electronic DNA detection and diagnostics

    NARCIS (Netherlands)

    De, Arpita

    2013-01-01

    The Nanopill project is an ambitious undertaking with the objective to develop an early-warning cancer diagnostic pill that is ingested by the patient. The Nanopill collects intestinal fluid as the pill travels down the intestinal tract, and tests for the presence of a free floating hyper-methylated

  16. A Quantitative Tool for Producing DNA-Based Diagnostic Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tom J. Whitaker

    2008-07-11

    The purpose of this project was to develop a precise, quantitative method to analyze oligodeoxynucleotides (ODNs) on an array to enable a systematic approach to quality control issues affecting DNA microarrays. Two types of ODN's were tested; ODN's formed by photolithography and ODN's printed onto microarrays. Initial work in Phase I, performed in conjunction with Affymetrix, Inc. who has a patent on a photolithographic in situ technique for creating DNA arrays, was very promising but did seem to indicate that the atomization process was not complete. Soon after Phase II work was under way, Affymetrix had further developed fluorescent methods and indicated they were no longer interested in our resonance ionization technique. This was communicated to the program manager and it was decided that the project would continue and be focused on printed ODNs. The method being tested is called SIRIS, Sputter-Initiated Resonance Ionization Spectroscopy. SIRIS has been shown to be a highly sensitive, selective, and quantitative tool for atomic species. This project was aimed at determining if an ODN could be labeled in such a way that SIRIS could be used to measure the label and thus provide quantitative measurements of the ODN on an array. One of the largest problems in this study has been developing a method that allows us to know the amount of an ODN on a surface independent of the SIRIS measurement. Even though we could accurately determine the amount of ODN deposited on a surface, the amount that actually attached to the surface is very difficult to measure (hence the need for a quantitative tool). A double-labeling procedure was developed in which 33P and Pt were both used to label ODNs. The radioactive 33P could be measured by a proportional counter that maps the counts in one dimension. This gave a good measurement of the amount of ODN remaining on a surface after immobilization and washing. A second label, Pt, was attached to guanine nucleotides in the

  17. Towards diagnostic metagenomics of Campylobacter in fecal samples

    DEFF Research Database (Denmark)

    Andersen, Sandra Christine; Kiil, Kristoffer; Harder, Christoffer Bugge

    2017-01-01

    The development of diagnostic metagenomics is driven by the need for universal, culture-independent methods for detection and characterization of pathogens to substitute the time-consuming, organism-specific, and often culture-based laboratory procedures for epidemiological source-tracing. Some...... of the challenges in diagnostic metagenomics are, that it requires a great next-generation sequencing depth and unautomated data analysis. DNA from human fecal samples spiked with 7.75 × 101-7.75 × 107 colony forming unit (CFU)/ml Campylobacter jejuni and chicken fecal samples spiked with 1 × 102-1 × 106 CFU...... Campylobacter in all the clinical samples. Sensitivity in diagnostic metagenomics is improving and has reached a clinically relevant level. There are still challenges to overcome before real-time diagnostic metagenomics can replace quantitative polymerase chain reaction (qPCR) or culture-based surveillance...

  18. A universal DNA-based protein detection system.

    Science.gov (United States)

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  19. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    Science.gov (United States)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  20. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods

    Directory of Open Access Journals (Sweden)

    Sedlackova Tatiana

    2013-02-01

    Full Text Available Abstract Background Specific applications and modern technologies, like non-invasive prenatal testing, non-invasive cancer diagnostic and next generation sequencing, are currently in the focus of researchers worldwide. These have common characteristics in use of highly fragmented DNA molecules for analysis. Hence, for the performance of molecular methods, DNA concentration is a crucial parameter; we compared the influence of different levels of DNA fragmentation on the accuracy of DNA concentration measurements. Results In our comparison, the performance of the currently most commonly used methods for DNA concentration measurement (spectrophotometric, fluorometric and qPCR based were tested on artificially fragmented DNA samples. In our comparison, unfragmented and three specifically fragmented DNA samples were used. According to our results, the level of fragmentation did not influence the accuracy of spectrophotometric measurements of DNA concentration, while other methods, fluorometric as well as qPCR-based, were significantly influenced and a decrease in measured concentration was observed with more intensive DNA fragmentation. Conclusions Our study has confirmed that the level of fragmentation of DNA has significant impact on accuracy of DNA concentration measurement with two of three mostly used methods (PicoGreen and qPCR. Only spectrophotometric measurement was not influenced by the level of fragmentation, but sensitivity of this method was lowest among the three tested. Therefore if it is possible the DNA quantification should be performed with use of equally fragmented control DNA.

  1. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    Science.gov (United States)

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.

  2. Reliability Assessment and Reliability-Based Inspection and Maintenance of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and deal with the deterioration in structures such as offshore wind turbines (OWT). Reliability based methods such as Risk Based Inspection (RBI) planning may represent a proper methodology to opt...

  3. Diagnostic imaging, a 'parallel' discipline. Can current technology provide a reliable digital diagnostic radiology department

    International Nuclear Information System (INIS)

    Moore, C.J.; Eddleston, B.

    1985-01-01

    Only recently has any detailed criticism been voiced about the practicalities of the introduction of generalised, digital, imaging complexes in diagnostic radiology. Although attendant technological problems are highlighted the authors argue that the fundamental causes of current difficulties are not in the generation but in the processing, filing and subsequent retrieval for display of digital image records. In the real world, looking at images is a parallel process of some complexity and so it is perhaps untimely to expect versatile handling of vast image data bases by existing computer hardware and software which, by their current nature, perform tasks serially. (author)

  4. Study of microtip-based extraction and purification of DNA from human samples for portable devices

    Science.gov (United States)

    Fotouhi, Gareth

    DNA sample preparation is essential for genetic analysis. However, rapid and easy-to-use methods are a major challenge to obtaining genetic information. Furthermore, DNA sample preparation technology must follow the growing need for point-of-care (POC) diagnostics. The current use of centrifuges, large robots, and laboratory-intensive protocols has to be minimized to meet the global challenge of limited access healthcare by bringing the lab to patients through POC devices. To address these challenges, a novel extraction method of genomic DNA from human samples is presented by using heat-cured polyethyleneimine-coated microtips generating a high electric field. The microtip extraction method is based on recent work using an electric field and capillary action integrated into an automated device. The main challenges to the method are: (1) to obtain a stable microtip surface for the controlled capture and release of DNA and (2) to improve the recovery of DNA from samples with a high concentration of inhibitors, such as human samples. The present study addresses these challenges by investigating the heat curing of polyethyleneimine (PEI) coated on the surface of the microtip. Heat-cured PEI-coated microtips are shown to control the capture and release of DNA. Protocols are developed for the extraction and purification of DNA from human samples. Heat-cured PEI-coated microtip methods of DNA sample preparation are used to extract genomic DNA from human samples. It is discovered through experiment that heat curing of a PEI layer on a gold-coated surface below 150°C could inhibit the signal of polymerase chain reaction (PCR). Below 150°C, the PEI layer is not completely cured and dissolved off the gold-coated surface. Dissolved PEI binds with DNA to inhibit PCR. Heat curing of a PEI layer above 150°C on a gold-coated surface prevents inhibition to PCR and gel electrophoresis. In comparison to gold-coated microtips, the 225°C-cured PEI-coated microtips improve the

  5. Smart Cup: A Minimally-Instrumented, Smartphone-Based Point-of-Care Molecular Diagnostic Device.

    Science.gov (United States)

    Liao, Shih-Chuan; Peng, Jing; Mauk, Michael G; Awasthi, Sita; Song, Jinzhao; Friedman, Harvey; Bau, Haim H; Liu, Changchun

    2016-06-28

    Nucleic acid amplification-based diagnostics offer rapid, sensitive, and specific means for detecting and monitoring the progression of infectious diseases. However, this method typically requires extensive sample preparation, expensive instruments, and trained personnel. All of which hinder its use in resource-limited settings, where many infectious diseases are endemic. Here, we report on a simple, inexpensive, minimally-instrumented, smart cup platform for rapid, quantitative molecular diagnostics of pathogens at the point of care. Our smart cup takes advantage of water-triggered, exothermic chemical reaction to supply heat for the nucleic acid-based, isothermal amplification. The amplification temperature is regulated with a phase-change material (PCM). The PCM maintains the amplification reactor at a constant temperature, typically, 60-65°C, when ambient temperatures range from 12 to 35°C. To eliminate the need for an optical detector and minimize cost, we use the smartphone's flashlight to excite the fluorescent dye and the phone camera to record real-time fluorescence emission during the amplification process. The smartphone can concurrently monitor multiple amplification reactors and analyze the recorded data. Our smart cup's utility was demonstrated by amplifying and quantifying herpes simplex virus type 2 (HSV-2) with LAMP assay in our custom-made microfluidic diagnostic chip. We have consistently detected as few as 100 copies of HSV-2 viral DNA per sample. Our system does not require any lab facilities and is suitable for use at home, in the field, and in the clinic, as well as in resource-poor settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.

  6. Component fragility data base for reliability and probability studies

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassier, M.; Pepper, S.

    1989-01-01

    Safety-related equipment in a nuclear plant plays a vital role in its proper operation and control, and failure of such equipment due to an earthquake may pose a risk to the safe operation of the plant. Therefore, in order to assess the overall reliability of a plant, the reliability of performance of the equipment should be studied first. The success of a reliability or a probability study depends to a great extent on the data base. To meet this demand, Brookhaven National Laboratory (BNL) has formed a test data base relating the seismic capacity of equipment specimens to the earthquake levels. Subsequently, the test data have been analyzed for use in reliability and probability studies. This paper describes the data base and discusses the analysis methods. The final results that can be directly used in plant reliability and probability studies are also presented in this paper

  7. The Methodological Aspect of the Diagnostics of Objects in Economics

    Directory of Open Access Journals (Sweden)

    Grynko Pavlo О.

    2017-12-01

    Full Text Available The article on the basis of morphological analysis defines the concept of «diagnostics in economics». The differences of diagnostics in economics, economic diagnostics, and analysis in economics were analyzed. The types, functions, principles of diagnostics in economics in modern conditions have been substantiated. The interrelationship of diagnostics with other functions of management in economics has been concretized. The logic and contents of stages of the diagnostic technology in economics have been clarified. The reliability of diagnostics in economics is determined by analytical tools, which are applicable in its implementation. Recommendations of analytical tools for realization of diagnostics in economics have been substantiated. A structural-logical scheme of diagnostics in economics, firming its scientific base and providing objectivity in practical implementation has been proposed.

  8. Statistical reliability assessment of software-based systems

    International Nuclear Information System (INIS)

    Korhonen, J.; Pulkkinen, U.; Haapanen, P.

    1997-01-01

    Plant vendors nowadays propose software-based systems even for the most critical safety functions. The reliability estimation of safety critical software-based systems is difficult since the conventional modeling techniques do not necessarily apply to the analysis of these systems, and the quantification seems to be impossible. Due to lack of operational experience and due to the nature of software faults, the conventional reliability estimation methods can not be applied. New methods are therefore needed for the safety assessment of software-based systems. In the research project Programmable automation systems in nuclear power plants (OHA), financed together by the Finnish Centre for Radiation and Nuclear Safety (STUK), the Ministry of Trade and Industry and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. This volume in the OHA-report series deals with the statistical reliability assessment of software based systems on the basis of dynamic test results and qualitative evidence from the system design process. Other reports to be published later on in OHA-report series will handle the diversity requirements in safety critical software-based systems, generation of test data from operational profiles and handling of programmable automation in plant PSA-studies. (orig.) (25 refs.)

  9. Evaluation of mobile ad hoc network reliability using propagation-based link reliability model

    International Nuclear Information System (INIS)

    Padmavathy, N.; Chaturvedi, Sanjay K.

    2013-01-01

    A wireless mobile ad hoc network (MANET) is a collection of solely independent nodes (that can move randomly around the area of deployment) making the topology highly dynamic; nodes communicate with each other by forming a single hop/multi-hop network and maintain connectivity in decentralized manner. MANET is modelled using geometric random graphs rather than random graphs because the link existence in MANET is a function of the geometric distance between the nodes and the transmission range of the nodes. Among many factors that contribute to the MANET reliability, the reliability of these networks also depends on the robustness of the link between the mobile nodes of the network. Recently, the reliability of such networks has been evaluated for imperfect nodes (transceivers) with binary model of communication links based on the transmission range of the mobile nodes and the distance between them. However, in reality, the probability of successful communication decreases as the signal strength deteriorates due to noise, fading or interference effects even up to the nodes' transmission range. Hence, in this paper, using a propagation-based link reliability model rather than a binary-model with nodes following a known failure distribution to evaluate the network reliability (2TR m , ATR m and AoTR m ) of MANET through Monte Carlo Simulation is proposed. The method is illustrated with an application and some imperative results are also presented

  10. Some theoretical problems of magnetic diagnostics in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1993-12-01

    The main problem of magnetic diagnostics is discussed here: which plasma characteristics can be determined from magnetic measurements in tokamaks and stellarators. The reasons are elucidated why diamagnetic measurements are reliable and easily interpreted. We discuss also the capabilities of diagnostics based on the measurements of poloidal fields outside the plasma. This article is based on a lecture delivered at the Third International School on Plasma Physics and Controlled Fusion, held 15-22 June 1993 at St. Petersburg - Kizhi, Russia. (author)

  11. Some theoretical problems of magnetic diagnostics in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    1993-12-01

    The main problem of magnetic diagnostics is discussed here: which plasma characteristics can be determined from magnetic measurements in tokamaks and stellarators. The reasons are elucidated why diamagnetic measurements are reliable and easily interpreted. We discuss also the capabilities of diagnostics based on the measurements of poloidal fields outside the plasma. This article is based on a lecture delivered at the Third International School on Plasma Physics and Controlled Fusion, held 15-22 June 1993 at St. Petersburg - Kizhi, Russia. (author).

  12. Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production

    Science.gov (United States)

    Chung, Sharon A.; Taylor, Kimberly E.; Graham, Robert R.; Nititham, Joanne; Lee, Annette T.; Ortmann, Ward A.; Jacob, Chaim O.; Alarcón-Riquelme, Marta E.; Tsao, Betty P.; Harley, John B.; Gaffney, Patrick M.; Moser, Kathy L.; Petri, Michelle; Demirci, F. Yesim; Kamboh, M. Ilyas; Manzi, Susan; Gregersen, Peter K.; Langefeld, Carl D.; Behrens, Timothy W.; Criswell, Lindsey A.

    2011-01-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE. PMID

  13. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production.

    Directory of Open Access Journals (Sweden)

    Sharon A Chung

    2011-03-01

    Full Text Available Systemic lupus erythematosus (SLE is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811 and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906 SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20 compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04, with p(heterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE.

  14. Application of Metric-based Software Reliability Analysis to Example Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Smidts, Carol

    2008-07-01

    The software reliability of TELLERFAST ATM software is analyzed by using two metric-based software reliability analysis methods, a state transition diagram-based method and a test coverage-based method. The procedures for the software reliability analysis by using the two methods and the analysis results are provided in this report. It is found that the two methods have a relation of complementary cooperation, and therefore further researches on combining the two methods to reflect the benefit of the complementary cooperative effect to the software reliability analysis are recommended

  15. Biofunctionalization of ZnO nanowires for DNA sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Ulrich Christian; Gnauck, Martin; Ronning, Carsten [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Moeller, Robert; Rudolph, Bettina; Fritzsche, Wolfgang [Institut fuer Photonische Technologien e.V., Albert-Einstein-Strasse 9, D-07745 Jena (Germany)

    2011-07-01

    In recent years, DNA detecting systems have received a growing interest due to promising fields of application like DNA diagnostics, gene analysis, virus detection or forensic applications. Nanowire-based DNA biosensor allows both miniaturization and easy continuous monitoring of a detection signal by electrical means. The label free detection scheme based on electrochemical changes of the surface potential during immobilization of specific DNA probes was heretofore mainly studied for silicon. In this work a surface decoration process with bifunctional molecules known as silanization was applied to VLS-grown ZnO nanowires which both feature a large sensitivity for surface modification, are biocompatible and easy to synthesize as well. Successfully bound DNA was proved by fluorescence microscopy. Dielectrophoresis (DEP) was chosen and optimized for quickly contacting the ZnO nanowires. Furthermore, electrical signal characterization was performed in preparation for DNA sensory applications.

  16. Graphene-based nanoprobes for molecular diagnostics.

    Science.gov (United States)

    Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping

    2015-10-07

    In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.

  17. A DNA based method to detect the grapevine root-rotting fungus Roesleria subterranea in soil and root samples

    Directory of Open Access Journals (Sweden)

    S. Neuhauser

    2009-05-01

    Full Text Available Roesleria subterranea causes root rot in grapevine and fruit trees. The fungus has long been underestimated as a weak parasite, but during the last years it has been reported to cause severe damages in German vineyards. Direct, observation-based detection of the parasite is time consuming and destructive, as large parts of the rootstocks have to be uprooted and screened for the tiny, stipitate, hypogeous ascomata of R. subterranea. To facilitate rapid detection in vineyards, protocols to extract DNA from soil samples and grapevine roots, and R.-subterranea-specific PCR primers were designed. Twelve DNA-extraction protocols for soil samples were tested in small-scale experiments, and selected parameters were optimised. A protocol based on ball-mill homogenization, DNA extraction with SDS, skim milk, chloroform, and isopropanol, and subsequent purifi cation of the raw extracts with PVPP-spin-columns was most effective. This DNA extraction protocol was found to be suitable for a wide range of soil-types including clay, loam and humic-rich soils. For DNA extraction from grapevine roots a CTAB-based protocol was more reliable for various grapevine rootstock varieties. Roesleria-subterranea-specific primers for the ITS1-5.8S-ITS2 rDNA region were developed and tested for their specifi city to DNA extracts from eleven R. subterranea strains isolated from grapevine and fruit trees. No cross reactions were detected with DNA extracts from 44 different species of fungi isolated from vineyard soils. The sensitivity of the species-specifi c primers in combination with the DNA extraction method for soil was high: as little as 100 fg μl-1 R.-subterranea-DNA was suffi cient for a detection in soil samples and plant material. Given that specifi c primers are available, the presented method will also allow quick and large-scale testing for other root pathogens.

  18. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

    Science.gov (United States)

    Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang

    2017-11-01

    An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

  19. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing; #8208; Xing; Lay, Kori T.; Yuen, Philip K.; David, Sheila S.; Rokas, Antonis; Eichman, Brandt F. (UCD); (Vanderbilt)

    2017-10-20

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.

  20. Reliability assessment using Bayesian networks. Case study on quantative reliability estimation of a software-based motor protection relay

    International Nuclear Information System (INIS)

    Helminen, A.; Pulkkinen, U.

    2003-06-01

    In this report a quantitative reliability assessment of motor protection relay SPAM 150 C has been carried out. The assessment focuses to the methodological analysis of the quantitative reliability assessment using the software-based motor protection relay as a case study. The assessment method is based on Bayesian networks and tries to take the full advantage of the previous work done in a project called Programmable Automation System Safety Integrity assessment (PASSI). From the results and experiences achieved during the work it is justified to claim that the assessment method presented in the work enables a flexible use of qualitative and quantitative elements of reliability related evidence in a single reliability assessment. At the same time the assessment method is a concurrent way of reasoning one's beliefs and references about the reliability of the system. Full advantage of the assessment method is taken when using the method as a way to cultivate the information related to the reliability of software-based systems. The method can also be used as a communicational instrument in a licensing process of software-based systems. (orig.)

  1. Reliability-based performance simulation for optimized pavement maintenance

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Le, Thanh-Son

    2011-01-01

    Roadway pavement maintenance is essential for driver safety and highway infrastructure efficiency. However, regular preventive maintenance and rehabilitation (M and R) activities are extremely costly. Unfortunately, the funds available for the M and R of highway pavement are often given lower priority compared to other national development policies, therefore, available funds must be allocated wisely. Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regression parameters is employed to assess reliability-based performance. A numerical example of a highway pavement project is illustrated to demonstrate the efficacy of the proposed MOPSO algorithms. The analytical results show that the proposed approach can help decision makers to optimize roadway maintenance plans. - Highlights: →A novel algorithm using multi-objective particle swarm optimization technique. → Evaluation of the cost-reliability tradeoff in a flexible maintenance strategy. → A probabilistic model for regression parameters is employed to assess reliability-based performance. → The proposed approach can help decision makers to optimize roadway maintenance plans.

  2. Reliability-based performance simulation for optimized pavement maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jui-Sheng, E-mail: jschou@mail.ntust.edu.tw [Department of Construction Engineering, National Taiwan University of Science and Technology (Taiwan Tech), 43 Sec. 4, Keelung Rd., Taipei 106, Taiwan (China); Le, Thanh-Son [Department of Construction Engineering, National Taiwan University of Science and Technology (Taiwan Tech), 43 Sec. 4, Keelung Rd., Taipei 106, Taiwan (China)

    2011-10-15

    Roadway pavement maintenance is essential for driver safety and highway infrastructure efficiency. However, regular preventive maintenance and rehabilitation (M and R) activities are extremely costly. Unfortunately, the funds available for the M and R of highway pavement are often given lower priority compared to other national development policies, therefore, available funds must be allocated wisely. Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regression parameters is employed to assess reliability-based performance. A numerical example of a highway pavement project is illustrated to demonstrate the efficacy of the proposed MOPSO algorithms. The analytical results show that the proposed approach can help decision makers to optimize roadway maintenance plans. - Highlights: > A novel algorithm using multi-objective particle swarm optimization technique. > Evaluation of the cost-reliability tradeoff in a flexible maintenance strategy. > A probabilistic model for regression parameters is employed to assess reliability-based performance. > The proposed approach can help decision makers to optimize roadway maintenance plans.

  3. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    Science.gov (United States)

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  4. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  5. Diagnostic tests based on human basophils

    DEFF Research Database (Denmark)

    Kleine-Tebbe, Jörg; Erdmann, Stephan; Knol, Edward F

    2006-01-01

    -maximal responses, termed 'intrinsic sensitivity'. These variables give rise to shifts in the dose-response curves which, in a diagnostic setting where only a single antigen concentration is employed, may produce false-negative data. Thus, in order to meaningfully utilize the current basophil activation tests....... Diagnostic studies using CD63 or CD203c in hymenoptera, food and drug allergy are critically discussed. Basophil-based tests are indicated for allergy testing in selected cases but should only be performed by experienced laboratories....

  6. DNA Sensors for Malaria Diagnosis

    DEFF Research Database (Denmark)

    Hede, Marianne Smedegaard; Fjelstrup, Søren; Knudsen, Birgitta R.

    2015-01-01

    In the field of malaria diagnosis much effort is put into the development of faster and easier alternatives to the gold standard, blood smear microscopy. Nucleic acid amplification based techniques pose some of the most promising upcoming diagnostic tools due to their potential for high sensitivity......, robustness and user-friendliness. In the current review, we will discuss some of the different DNA-based sensor systems under development for the diagnosis of malaria....

  7. Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues

    Science.gov (United States)

    Knudsen, Beatrice S.; Allen, April N.; McLerran, Dale F.; Vessella, Robert L.; Karademos, Jonathan; Davies, Joan E.; Maqsodi, Botoul; McMaster, Gary K.; Kristal, Alan R.

    2008-01-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93–100%) than for qPCR (82.4–95%). Correlations between qPCRFROZEN, the gold standard, and bDNAFFPE ranged from 0.60 to 0.94, similar to those from qPCRFROZEN and qPCRFFPE. Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management. PMID:18276773

  8. Effects of questionnaire-based diagnosis and training on inter-rater reliability among practitioners of traditional Chinese medicine.

    Science.gov (United States)

    Mist, Scott; Ritenbaugh, Cheryl; Aickin, Mikel

    2009-07-01

    To investigate whether a training process that focused on a questionnaire-based diagnosis in Traditional Chinese Medicine (TCM), and developing diagnostic consensus, would improve the agreement of TCM diagnoses among 10 TCM practitioners evaluating patients with temporomandibular joint disorder (TMJD). Evaluation of a diagnostic training program at the Department of Family and Community Medicine, University of Arizona, Tucson, Arizona, and the Oregon College of Oriental Medicine, Portland, Oregon. Screened participants for a study of TCM for TMJD. PRACTITIONERS: Ten (10) licensed acupuncturists with a minimum of 5 years licensure and education in Chinese herbs. A training session using a questionnaire-based diagnostic form was conducted, followed by waves of diagnostic sessions. Between sessions, practitioners discussed the results of the previous round of participants with a focus on reducing variability in primary diagnosis and severity rating of each diagnosis: 3 waves of 5 patients were assessed by 4 practitioner pairs for a total of 120 diagnoses. At 18 months, practitioners completed a recalibration exercise with a similar format with a total of 32 diagnoses. These diagnoses were then examined with respect to the rate of agreement among the 10 practitioners using inter-rater correlations and kappas. The inter-rater correlation with respect to the TCM diagnoses among the 10 practitioners increased from 0.112 to 0.618 with training. Statistically significant improvements were found between the baseline and 18 month exercises (p reliability of TCM diagnosis may be improved through a training process and a questionnaire-based diagnosis process. The improvements varied by diagnosis, with the greatest congruence among primary and more severe diagnoses. Future TCM studies should consider including calibration training to improve the validity of results.

  9. Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Janvier Sylvestre N’cho

    2016-05-01

    Full Text Available A power transformer outage has a dramatic financial consequence not only for electric power systems utilities but also for interconnected customers. The service reliability of this important asset largely depends upon the condition of the oil-paper insulation. Therefore, by keeping the qualities of oil-paper insulation system in pristine condition, the maintenance planners can reduce the decline rate of internal faults. Accurate diagnostic methods for analyzing the condition of transformers are therefore essential. Currently, there are various electrical and physicochemical diagnostic techniques available for insulation condition monitoring of power transformers. This paper is aimed at the description, analysis and interpretation of modern physicochemical diagnostics techniques for assessing insulation condition in aged transformers. Since fields and laboratory experiences have shown that transformer oil contains about 70% of diagnostic information, the physicochemical analyses of oil samples can therefore be extremely useful in monitoring the condition of power transformers.

  10. DNA probes for distinguishing Psychodopygus wellcomei from Psychodopygus complexus (Diptera: Psychodidae

    Directory of Open Access Journals (Sweden)

    P. D. Ready

    1991-03-01

    Full Text Available Genomic DNA fragments from males of Psychodopygus wellcomei were isolated and shown to be useful as sensitive diagnostic probles for positively separting individuals of this species from those of Ps. complexus. These two members of the Ps. squamiventris series are found sympatrically in foci of cutaneous leishmaniasis in the hill forests of southern Pará State. Of the two species, only Ps. welcomei is thought to be an important vector of Leishmania braziliensis sensu stricto, buth this is based on circumstantial evidence because of the difficulties of identifying female sandflies wothin the series. The diagnostic probes were isolated from a library of Ps. wellcomei built by ligationg short fragments of Sau 3A-resistricted, genomic DNA into the plasmid vector PUC 18. Differential screening of 1316 library clones with total genomic DNA of Ps. Wellcomei and Ps. complexus identified 5 recombinants, with cross-hybridizing inserts of repetitive DNA, that showed strong specificity for Ps. wellcomei. As little as 0.4% of the DNA extracted from an individual sandfly (=ca. 0.5 namograms was specifically detected. The diagnostic probes were used to identify as Ps. wellcomei a wild-caught female sandfly found infected with L. braziliensis s.s., providing only the second positive association between these two species.

  11. SHOX2 gene methylation as a diagnostic marker of lung cancer

    International Nuclear Information System (INIS)

    Konecny, M.; Markus, J.; Dolesova, L.; Waczulikova, I.; Majer, I.; Novosadova, H.

    2016-01-01

    Purpose: In the actual study we have detected in the group of patients with mailgnant and also non-malignant disease the presence of DNA methylation of SHOX2 gene. The basic aim was to evaluate the reliability of detection of SHOX2 methylation in blood plasma as a potential alternative to used bronchial lavage. Further, we also determine the correlation of test results with samples of lavage and blood plasma. Materials and methods: The specimens were achieved of each patient from bronchial lavage and also peripheral blood and from january to december 2014 we analysed 69 parallel samples. DNA from bronchial lavage was purified with commercial kit Epi pro Lung BL DNA preparation kit (Epigenomics) and samples from peripheral blood using Epi pro Colon Plasma Quick kit (Epigenomics). Quantitative PCR analysis was accomplished using Epi pro Lung BL real-time PCR kit (Epigenomics) on the ABI 7500 Fast real-time PCR instrument (Life Technologies). Methylation results were performed with ΔΔCT method. Statistical characteristics of patients and other clinical data we analysed by methods of bi variant and descriptive statistics, like hood ratio by Cohen kappa and significance of observed differences by Maxwell and McNemar chi-quadrant test. Results: Altogether we analysed 69 parallel samples and methylation of SHOX2 gene was identified in 63,8% of samples. Overall the methylation was detected in 31 out of 37 lavage and 20 out of 31 blood samples. Diagnostic performance of the model with bio marker of SHOX2 methylation in lavage samples was determined at the level of 89,19% sensitivity and 84,62% specificity, on the other hand model with bio marker of SHOX2 methylation in plasma samples showed 80,65% sensitivity and 78,57% specificity. Conclusion: Generally, we established that methylation analysis of SHOX2 gene in bronchial lavage samples represents a reliable test, which may be used as an additional marker in the lung cancer diagnostics. Test of blood plasma features

  12. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples.

    Science.gov (United States)

    Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham Bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi

    2016-12-14

    The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations.

  13. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  14. Human reliability analysis during PSA at Trillo NPP: main characteristics and analysis of diagnostic errors

    International Nuclear Information System (INIS)

    Barquin, M.A.; Gomez, F.

    1998-01-01

    The design difference between Trillo NPP and other Spanish nuclear power plants (basic Westinghouse and General Electric designs) were made clear in the Human Reliability Analysis of the Probabilistic Safety Analysis (PSA) for Trillo NPP. The object of this paper is to describe the most significant characteristics of the Human Reliability Analysis carried out in the PSA, with special emphasis on the possible diagnostic errors and their consequences, based on the characteristics in the Emergency Operations Manual for Trillo NPP. - In the case of human errors before the initiating event (type 1), the existence of four redundancies in most of the plant safety systems, means that the impact of this type or error on the final results of the PSA is insignificant. However, in the case common cause errors, especially in certain calibration errors, some actions are significant in the final equation for core damage - The number of human actions that the operator has to carry out during the accidents (type 3) modelled, is relatively small in comparison with this value in other PSAs. This is basically due to the high level of automation at Rillo NPP - The Plant Operations Manual cannot be strictly considered to be a symptoms-based procedure. The operation Group must select the chapter from the Operations Manual to be followed, after having diagnosed the perturbing event, using for this purpose and Emergency and Anomaly Decision Tree (M.O.3.0.1) based on the different indications, alarms and symptoms present in the plant after the perturbing event. For this reason, it was decided to analyse the possible diagnosis errors. In the bibliography on diagnosis and commission errors available at the present time, there is no precise methodology for the analysis of this type of error and its incorporation into PSAs. The method used in the PSA for Trillo y NPP to evaluate this type of interaction, is to develop a Diagnosis Error Table, the object of which is to identify the situations in

  15. Development, reliability, and validity of the Posttraumatic Stress Disorder Interview for Vietnamese refugees: a diagnostic instrument for Vietnamese refugees.

    Science.gov (United States)

    Dao, Tam K; Poritz, Julia M P; Moody, Rachel P; Szeto, Kim

    2012-08-01

    The Posttraumatic Stress Disorder Interview for Vietnamese Refugees (PTSD-IVR) was created specifically to assess for the presence of current and lifetime history of premigration, migration, encampment, and postmigration traumas in Vietnamese refugees. The purpose of the present study was to describe the development of and investigate the interrater and test-retest reliability of the PTSD-IVR and its validity in relation to the diagnoses obtained from the Longitudinal, Expert, and All Data (LEAD; Spitzer, 1983) standard. Clinicians conducted the diagnosis process with 127 Vietnamese refugees using the LEAD standard and the PTSD-IVR. Assessment of the reliability and validity of the PTSD-IVR yielded good to excellent AUC (area under the receiver operating characteristic curve; .86, .87) and κ values (.66, .74) indicating the reliability of the PTSD-IVR and the agreement between the LEAD procedure and the PTSD-IVR. The results of the present study suggest that the PTSD-IVR performs successfully as a diagnostic instrument specifically created for Vietnamese refugees in their native language. Copyright © 2012 International Society for Traumatic Stress Studies.

  16. Lithium Battery Transient Response as a Diagnostic Tool

    Science.gov (United States)

    Denisov, E.; Nigmatullin, R.; Evdokimov, Y.; Timergalina, G.

    2018-05-01

    Lithium batteries are currently used as the main energy storage for electronic devices. Progress in the field of portable electronic devices is significantly determined by the improvement of their weight/dimensional characteristics and specific capacity. In addition to the high reliability required of lithium batteries, in some critical applications proper diagnostics are required. Corresponding techniques allow prediction and prevention of operation interruption and avoidance of expensive battery replacement, and also provide additional benefits. Many effective diagnostic methods have been suggested; however, most of them require expensive experimental equipment, as well as interruption or strong perturbation of the operating mode. In the framework of this investigation, a simple diagnostic method based on analysis of transient processes is proposed. The transient response is considered as a reaction to an applied load variation that typically corresponds to normal operating conditions for most real applications. The transient response contains the same information as the impedance characteristic for the system operating in linear mode. Taking into account the large number of publications describing the impedance response associated with diagnostic methods, it can be assumed that the transient response contains a sufficient amount of information for creation of effective diagnostic systems. The proposed experimental installation is based on a controlled load, providing current variation, measuring equipment, and data processing electronics. It is proposed to use the second exponent parameters U 2 and β to estimate the state of charge for secondary lithium batteries. The proposed method improves the accuracy and reliability of a set of quantitative parameters associated with electrochemical energy sources.

  17. Interactive Reliability-Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Pedersen, Claus

    In order to introduce the basic concepts within the field of reliability-based structural optimization problems, this chapter is devoted to a brief outline of the basic theories. Therefore, this chapter is of a more formal nature and used as a basis for the remaining parts of the thesis. In section...... 2.2 a general non-linear optimization problem and corresponding terminology are presented whereupon optimality conditions and the standard form of an iterative optimization algorithm are outlined. Subsequently, the special properties and characteristics concerning structural optimization problems...... are treated in section 2.3. With respect to the reliability evalutation, the basic theory behind a reliability analysis and estimation of probability of failure by the First-Order Reliability Method (FORM) and the iterative Rackwitz-Fiessler (RF) algorithm are considered in section 2.5 in which...

  18. Single DNA imaging and length quantification through a mobile phone microscope

    Science.gov (United States)

    Wei, Qingshan; Luo, Wei; Chiang, Samuel; Kappel, Tara; Mejia, Crystal; Tseng, Derek; Chan, Raymond Yan L.; Yan, Eddie; Qi, Hangfei; Shabbir, Faizan; Ozkan, Haydar; Feng, Steve; Ozcan, Aydogan

    2016-03-01

    The development of sensitive optical microscopy methods for the detection of single DNA molecules has become an active research area which cultivates various promising applications including point-of-care (POC) genetic testing and diagnostics. Direct visualization of individual DNA molecules usually relies on sophisticated optical microscopes that are mostly available in well-equipped laboratories. For POC DNA testing/detection, there is an increasing need for the development of new single DNA imaging and sensing methods that are field-portable, cost-effective, and accessible for diagnostic applications in resource-limited or field-settings. For this aim, we developed a mobile-phone integrated fluorescence microscopy platform that allows imaging and sizing of single DNA molecules that are stretched on a chip. This handheld device contains an opto-mechanical attachment integrated onto a smartphone camera module, which creates a high signal-to-noise ratio dark-field imaging condition by using an oblique illumination/excitation configuration. Using this device, we demonstrated imaging of individual linearly stretched λ DNA molecules (48 kilobase-pair, kbp) over 2 mm2 field-of-view. We further developed a robust computational algorithm and a smartphone app that allowed the users to quickly quantify the length of each DNA fragment imaged using this mobile interface. The cellphone based device was tested by five different DNA samples (5, 10, 20, 40, and 48 kbp), and a sizing accuracy of <1 kbp was demonstrated for DNA strands longer than 10 kbp. This mobile DNA imaging and sizing platform can be very useful for various diagnostic applications including the detection of disease-specific genes and quantification of copy-number-variations at POC settings.

  19. Fetal Cell Based Prenatal Diagnosis: Perspectives on the Present and Future

    Directory of Open Access Journals (Sweden)

    Morris Fiddler

    2014-09-01

    Full Text Available The ability to capture and analyze fetal cells from maternal circulation or other sources during pregnancy has been a goal of prenatal diagnostics for over thirty years. The vision of replacing invasive prenatal diagnostic procedures with the prospect of having the entire fetal genome in hand non-invasively for chromosomal and molecular studies for both clinical and research use has brought many investigators and innovations into the effort. While the object of this desire, however, has remained elusive, the aspiration for this approach to non-invasive prenatal diagnosis remains and the inquiry has continued. With the advent of screening by cell-free DNA analysis, the standards for fetal cell based prenatal diagnostics have been sharpened. Relevant aspects of the history and the current status of investigations to meet the goal of having an accessible and reliable strategy for capturing and analyzing fetal cells during pregnancy are reviewed.

  20. Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.

    Science.gov (United States)

    Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong

    2008-11-01

    We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.

  1. Controlling charge current through a DNA based molecular transistor

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir; Fathizadeh, S.; Ziaei, J.

    2017-01-05

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I–V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive. - Highlights: • Modeling a DNA based molecular transistor and studying its transport properties. • Choosing the appropriate DNA sequence using the quantum chaos tools. • Choosing the functional interval for voltages via the inverse participation ratio tool. • Detecting the rectifier and negative differential resistance behavior of DNA.

  2. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  3. Reliability of microprocessor-based relay protection devices: Myths and reality

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2009-01-01

    Full Text Available The article examines four basic theses about the ostensibly extremely high reliability of microprocessor-based relay protection (MP touted by supporters of MP. Through detailed analysis based on many references it is shown that the basis of these theses are widespread myths, and actually MP reliability is lower than the reliability of electromechanical and electronic protective relays on discrete components.

  4. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  5. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.

    Science.gov (United States)

    Volk, Alexander E; Kubisch, Christian

    2017-10-01

    The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.

  6. Prioritic directions of inculcation of diagnostic equipment at NPP

    International Nuclear Information System (INIS)

    Morozov, V.I.

    2000-01-01

    The diagnostic provision creates the conditions for increasing the safety and reliability of the NPP functioning, technical service and maintenance by the actual state. With an account of the large number of the NPP equipment elements, limitedness of financial resources, different technical-economical effect from diagnostics determination of the priority directions for introduction of technical diagnostic means into the operational practice is one of the main factors. The method for determining the above-mentioned priorities is proposed. The main aspects of the method and mathematical models, based on the logical-probabilistic modeling, are presented. The essence of the method consists in ranging the technical-economical effect from introduction of various factors of the diagnostic equipment [ru

  7. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    Science.gov (United States)

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  8. The Impact of Gas Turbine Component Leakage Fault on GPA Performance Diagnostics

    Directory of Open Access Journals (Sweden)

    E. L. Ntantis

    2016-01-01

    Full Text Available The leakage analysis is a key factor in determining energy loss from a gas turbine. Once the components assembly fails, air leakage through the opening increases resulting in a performance loss. Therefore, the performance efficiency of the engine cannot be reliably determined, without good estimates and analysis of leakage faults. Consequently, the implementation of a leakage fault within a gas turbine engine model is necessary for any performance diagnostic technique that can expand its diagnostics capabilities for more accurate predictions. This paper explores the impact of gas turbine component leakage fault on GPA (Gas Path Analysis Performance Diagnostics. The analysis is demonstrated with a test case where gas turbine performance simulation and diagnostics code TURBOMATCH is used to build a performance model of a model engine similar to Rolls-Royce Trent 500 turbofan engine, and carry out the diagnostic analysis with the presence of different component fault cases. Conclusively, to improve the reliability of the diagnostic results, a leakage fault analysis of the implemented faults is made. The diagnostic tool used to deal with the analysis of the gas turbine component implemented faults is a model-based method utilizing a non-linear GPA.

  9. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  10. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  11. Can and should value-based pricing be applied to molecular diagnostics?

    Science.gov (United States)

    Garau, Martina; Towse, Adrian; Garrison, Louis; Housman, Laura; Ossa, Diego

    2013-01-01

    Current pricing and reimbursement systems for diagnostics are not efficient. Prices for diagnostics are often driven by administrative practices and expected production cost. The purpose of the paper is to discuss how a value-based pricing framework being used to ensure efficient use and price of medicines could also be applied to diagnostics. Diagnostics not only facilitates health gain and cost savings, but also information to guide patients' decisions on interventions and their future 'behaviors'. For value assessment processes we recommend a two-part approach. Companion diagnostics introduced at the launch of the drug should be assessed through new drug assessment processes considering a broad range of value elements and a balanced analysis of diagnostic impacts. A separate diagnostic-dedicated committee using value-based pricing principles should review other diagnostics lying outside the companion diagnostics-and-drug 'at-launch' situation.

  12. Recent progress on DNA based walkers.

    Science.gov (United States)

    Pan, Jing; Li, Feiran; Cha, Tae-Gon; Chen, Haorong; Choi, Jong Hyun

    2015-08-01

    DNA based synthetic molecular walkers are reminiscent of biological protein motors. They are powered by hybridization with fuel strands, environment induced conformational transitions, and covalent chemistry of oligonucleotides. Recent developments in experimental techniques enable direct observation of individual walkers with high temporal and spatial resolution. The functionalities of state-of-the-art DNA walker systems can thus be analyzed for various applications. Herein we review recent progress on DNA walker principles and characterization methods, and evaluate various aspects of their functions for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A method for release and multiple strand amplification of small quantities of DNA from endospores of the fastidious bacterium Pasteuria penetrans.

    Science.gov (United States)

    Mauchline, T H; Mohan, S; Davies, K G; Schaff, J E; Opperman, C H; Kerry, B R; Hirsch, P R

    2010-05-01

    To establish a reliable protocol to extract DNA from Pasteuria penetrans endospores for use as template in multiple strand amplification, thus providing sufficient material for genetic analyses. To develop a highly sensitive PCR-based diagnostic tool for P. penetrans. An optimized method to decontaminate endospores, release and purify DNA enabled multiple strand amplification. DNA purity was assessed by cloning and sequencing gyrB and 16S rRNA gene fragments obtained from PCR using generic primers. Samples indicated to be 100%P. penetrans by the gyrB assay were estimated at 46% using the 16S rRNA gene. No bias was detected on cloning and sequencing 12 housekeeping and sporulation gene fragments from amplified DNA. The detection limit by PCR with Pasteuria-specific 16S rRNA gene primers following multiple strand amplification of DNA extracted using the method was a single endospore. Generation of large quantities DNA will facilitate genomic sequencing of P. penetrans. Apparent differences in sample purity are explained by variations in 16S rRNA gene copy number in Eubacteria leading to exaggerated estimations of sample contamination. Detection of single endospores will facilitate investigations of P. penetrans molecular ecology. These methods will advance studies on P. penetrans and facilitate research on other obligate and fastidious micro-organisms where it is currently impractical to obtain DNA in sufficient quantity and quality.

  14. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Efficient approach for reliability-based optimization based on weighted importance sampling approach

    International Nuclear Information System (INIS)

    Yuan, Xiukai; Lu, Zhenzhou

    2014-01-01

    An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology

  16. Novel Readout Method for Molecular Diagnostic Assays Based on Optical Measurements of Magnetic Nanobead Dynamics

    DEFF Research Database (Denmark)

    Donolato, Marco; Antunes, Paula Soares Martins; Bejhed, Rebecca S.

    2015-01-01

    behavior. We prove that the optical transmission spectra are highly sensitive to the formation of permanent MNB clusters and, thereby to the target analyte concentration. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition and isothermal rolling...

  17. Intelligent model-based diagnostics for vehicle health management

    Science.gov (United States)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  18. Reliability-based Assessment of Fatigue Life for Bridges

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2012-01-01

    The reliability level for bridges is discussed based on a comparison of the reliability levels proposed and used by e.g. JCSS, ISO, NKB and Eurocodes. The influence of reserve capacity by which failure of a specific detail does not lead to structural collapse is investigated. The results show...

  19. Correlation of DNA Ploidy with Progression of Cervical Cancer

    International Nuclear Information System (INIS)

    Singh, M.; Kalra, N.; Shukla, Y.; Mehrotra, S.; Singh, U.

    2008-01-01

    The majority of squamous cell carcinomas of cervix are preceded by visible changes in the cervix, most often detected by cervical smear. As cervical cancer is preceded by long precancerous stages, identification of the high-risk population through detection of DNA ploidy may be of importance in effective management of this disease. Here we attempted to correlate aneuploidy DNA patterns and their influence on biological behavior of flow-cytometry analysis of DNA ploidy which was carried out in cytologically diagnosed cases of mild (79), moderate (36), and severe (12) dysplasia, as well as “atypical squamous cells of unknown significance (ASCUS)” (57) along with controls (69), in order to understand its importance in malignant progression of disease. Cytologically diagnosed dysplasias, which were employed for DNA ploidy studies, 39 mild, 28 moderate, and 11 severe dysplasia cases were found to be aneuploidy. Out of the 69 control subjects, 6 cases showed aneuploidy pattern and the rest 63 subjects were diploid. An aneuploidy pattern was observed in 8 out of 57 cases of cytologically evaluated ASCUS. The results of the followup studies showed that aberrant DNA content reliably predicts the occurrence of squamous cell carcinoma in cervical smear. Flow cytometric analysis of DNA ploidy may provide a strategic diagnostic tool for early detection of carcinoma cervix. Therefore, it is a concept of an HPV screening with reflex cytology in combination with DNA flow cytometry to detect progressive lesions with the greatest possible sensitivity and specificity.

  20. Reliability evaluation of microgrid considering incentive-based demand response

    Science.gov (United States)

    Huang, Ting-Cheng; Zhang, Yong-Jun

    2017-07-01

    Incentive-based demand response (IBDR) can guide customers to adjust their behaviour of electricity and curtail load actively. Meanwhile, distributed generation (DG) and energy storage system (ESS) can provide time for the implementation of IBDR. The paper focus on the reliability evaluation of microgrid considering IBDR. Firstly, the mechanism of IBDR and its impact on power supply reliability are analysed. Secondly, the IBDR dispatch model considering customer’s comprehensive assessment and the customer response model are developed. Thirdly, the reliability evaluation method considering IBDR based on Monte Carlo simulation is proposed. Finally, the validity of the above models and method is studied through numerical tests on modified RBTS Bus6 test system. Simulation results demonstrated that IBDR can improve the reliability of microgrid.

  1. Current and future developments in nucleic acid-based diagnostics

    International Nuclear Information System (INIS)

    Viljoen, G.J.; Romito, M.; Kara, P.D.

    2005-01-01

    The detection and characterization of specific nucleic acids of medico-veterinary pathogens have proven invaluable for diagnostic purposes. Apart from hybridization and sequencing techniques, polymerase chain reaction (PCR) and numerous other methods have contributed significantly to this process. The integration of amplification and signal detection systems, including on-line real-time devices, have increased speed and sensitivity and greatly facilitated the quantification of target nucleic acids. They have also allowed for sequence characterization using melting or hybridization curves. Rugged portable real-time instruments for field use and robotic devices for processing samples are already available commercially. Various stem-loop DNA probes have been designed to have greater specificity for target recognition during real-time PCR. Various DNA fingerprinting techniques or post amplification sequencing are used to type pathogenic strains. Characterization according to DNA sequence is becoming more readily available as automated sequencers become more widely used. Reverse hybridization and to a greater degree DNA micro-arrays, are being used for genotyping related organisms and can allow for the detection of a large variety of different pathogens simultaneously. Non-radioactive labelling of DNA, especially using fluorophores and the principles of fluorescence resonance energy transfer, is now widely used, especially in real-time detection devices. Other detection methods include the use of surface plasmon resonance and MALDI-TOF mass spectrometry. In addition to these technological advances, contributions by bioinformatics and the description of unique signatures of DNA sequences from pathogens will contribute to the development of further assays for monitoring presence of pathogens. An important goal will be the development of robust devices capable of sensitively and specifically detecting a broad spectrum of pathogens that will be applicable for point

  2. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  3. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  4. Reliability analysis for new technology-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Charpentier, Dominique [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2011-02-15

    The reliability analysis of new technology-based transmitters has to deal with specific issues: various interactions between both material elements and functions, undefined behaviours under faulty conditions, several transmitted data, and little reliability feedback. To handle these particularities, a '3-step' model is proposed, based on goal tree-success tree (GTST) approaches to represent both the functional and material aspects, and includes the faults and failures as a third part for supporting reliability analyses. The behavioural aspects are provided by relationship matrices, also denoted master logic diagrams (MLD), with stochastic values which represent direct relationships between system elements. Relationship analyses are then proposed to assess the effect of any fault or failure on any material element or function. Taking these relationships into account, the probabilities of malfunction and failure modes are evaluated according to time. Furthermore, uncertainty analyses tend to show that even if the input data and system behaviour are not well known, these previous results can be obtained in a relatively precise way. An illustration is provided by a case study on an infrared gas transmitter. These properties make the proposed model and corresponding reliability analyses especially suitable for intelligent transmitters (or 'smart sensors').

  5. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Evidence-based diagnostics: adult septic arthritis.

    Science.gov (United States)

    Carpenter, Christopher R; Schuur, Jeremiah D; Everett, Worth W; Pines, Jesse M

    2011-08-01

    Acutely swollen or painful joints are common complaints in the emergency department (ED). Septic arthritis in adults is a challenging diagnosis, but prompt differentiation of a bacterial etiology is crucial to minimize morbidity and mortality. The objective was to perform a systematic review describing the diagnostic characteristics of history, physical examination, and bedside laboratory tests for nongonococcal septic arthritis. A secondary objective was to quantify test and treatment thresholds using derived estimates of sensitivity and specificity, as well as best-evidence diagnostic and treatment risks and anticipated benefits from appropriate therapy. Two electronic search engines (PUBMED and EMBASE) were used in conjunction with a selected bibliography and scientific abstract hand search. Inclusion criteria included adult trials of patients presenting with monoarticular complaints if they reported sufficient detail to reconstruct partial or complete 2 × 2 contingency tables for experimental diagnostic test characteristics using an acceptable criterion standard. Evidence was rated by two investigators using the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS). When more than one similarly designed trial existed for a diagnostic test, meta-analysis was conducted using a random effects model. Interval likelihood ratios (LRs) were computed when possible. To illustrate one method to quantify theoretical points in the probability of disease whereby clinicians might cease testing altogether and either withhold treatment (test threshold) or initiate definitive therapy in lieu of further diagnostics (treatment threshold), an interactive spreadsheet was designed and sample calculations were provided based on research estimates of diagnostic accuracy, diagnostic risk, and therapeutic risk/benefits. The prevalence of nongonococcal septic arthritis in ED patients with a single acutely painful joint is approximately 27% (95% confidence interval [CI] = 17

  7. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  8. A patch-clamp ASIC for nanopore-based DNA analysis.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj; Pedrotti, Kenneth D; Dunbar, William B

    2013-06-01

    In this paper, a fully integrated high-sensitivity patch-clamp system is proposed for single-molecule deoxyribonucleic acid (DNA) analysis using a nanopore sensor. This system is composed of two main blocks for amplification and compensation. The amplification block is composed of three stages: 1) a headstage, 2) a voltage-gain difference amplifier, and 3) a track-and-hold circuit, that amplify a minute ionic current variation sensed by the nanopore while the compensation block avoids the headstage saturation caused by the input parasitic capacitances during sensing. By employing design techniques novel for this application, such as an instrumentation--amplifier topology and a compensation switch, we minimize the deleterious effects of the input-offset voltage and the input parasitic capacitances while attaining hardware simplicity. This system is fabricated in a 0.35 μm 4M2P CMOS process and is demonstrated using an α-hemolysin protein nanopore for detection of individual molecules of single-stranded DNA that pass through the 1.5 nm-diameter pore. In future work, the refined system will functionalize single and multiple solid-state nanopores formed in integrated microfluidic devices for advanced DNA analysis, in scientific and diagnostic applications.

  9. DNA-based random number generation in security circuitry.

    Science.gov (United States)

    Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C

    2010-06-01

    DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.

  10. Automation of diagnostic genetic testing: mutation detection by cyclic minisequencing.

    Science.gov (United States)

    Alagrund, Katariina; Orpana, Arto K

    2014-01-01

    The rising role of nucleic acid testing in clinical decision making is creating a need for efficient and automated diagnostic nucleic acid test platforms. Clinical use of nucleic acid testing sets demands for shorter turnaround times (TATs), lower production costs and robust, reliable methods that can easily adopt new test panels and is able to run rare tests in random access principle. Here we present a novel home-brew laboratory automation platform for diagnostic mutation testing. This platform is based on the cyclic minisequecing (cMS) and two color near-infrared (NIR) detection. Pipetting is automated using Tecan Freedom EVO pipetting robots and all assays are performed in 384-well micro plate format. The automation platform includes a data processing system, controlling all procedures, and automated patient result reporting to the hospital information system. We have found automated cMS a reliable, inexpensive and robust method for nucleic acid testing for a wide variety of diagnostic tests. The platform is currently in clinical use for over 80 mutations or polymorphisms. Additionally to tests performed from blood samples, the system performs also epigenetic test for the methylation of the MGMT gene promoter, and companion diagnostic tests for analysis of KRAS and BRAF gene mutations from formalin fixed and paraffin embedded tumor samples. Automation of genetic test reporting is found reliable and efficient decreasing the work load of academic personnel.

  11. Fast, reliable sexing of prosimian DNA

    DEFF Research Database (Denmark)

    Fredsted, Tina; Villesen, Palle

    2004-01-01

    to identify conserved regions in the amelogenin gene. Using these conserved regions, we can target species that have no sequence information. We designed a single, conserved primer pair that is useful for fast and reliable molecular sexing of prosimian primates. A single PCR yields two fragments in males...

  12. Some aspects of diagnostic systems perspective

    International Nuclear Information System (INIS)

    Korosec, D.

    1998-01-01

    The integrity and safety of all nuclear power plant systems and components is guaranteed by the high requirements to quality assurance during all phases of design, fabrication, construction and operation. Many of the countries operating nuclear facilities, introduced advanced, sophisticated diagnostic systems for continuous monitoring safety important process parameters. The licensee should perform an assessment of the existing diagnostic systems, often supplied by the original design, their reliability and the need for the introduction of the additional monitoring/diagnostic systems. The operating experience should be taken into account and the assessment of the further needs. On this field has to be made on the results of PSA studies. In addition to the cost benefit analysis the evaluation of the new diagnostic systems in the light of nuclear safety should be also made. Experience, gained from the utilities, which have already installed this kind of the equipment should be very useful. Introducing new diagnostic systems will require often a safety assessment of the necessary modifications. Licensing process should be based on the existing nuclear legislation with certain additional requirements. (author)

  13. A heuristic-based approach for reliability importance assessment of energy producers

    International Nuclear Information System (INIS)

    Akhavein, A.; Fotuhi Firuzabad, M.

    2011-01-01

    Reliability of energy supply is one of the most important issues of service quality. On one hand, customers usually have different expectations for service reliability and price. On the other hand, providing different level of reliability at load points is a challenge for system operators. In order to take reasonable decisions and obviate reliability implementation difficulties, market players need to know impacts of their assets on system and load-point reliabilities. One tool to specify reliability impacts of assets is the criticality or reliability importance measure by which system components can be ranked based on their effect on reliability. Conventional methods for determination of reliability importance are essentially on the basis of risk sensitivity analysis and hence, impose prohibitive calculation burden in large power systems. An approach is proposed in this paper to determine reliability importance of energy producers from perspective of consumers or distribution companies in a composite generation and transmission system. In the presented method, while avoiding immense computational burden, the energy producers are ranked based on their rating, unavailability and impact on power flows in the lines connecting to the considered load points. Study results on the IEEE reliability test system show successful application of the proposed method. - Research highlights: → Required reliability level at load points is a concern in modern power systems. → It is important to assess reliability importance of energy producers or generators. → Generators can be ranked based on their impacts on power flow to a selected area. → Ranking of generators is an efficient tool to assess their reliability importance.

  14. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    Science.gov (United States)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  15. Reliability of physical examination tests for the diagnosis of knee disorders: Evidence from a systematic review.

    Science.gov (United States)

    Décary, Simon; Ouellet, Philippe; Vendittoli, Pascal-André; Desmeules, François

    2016-12-01

    Clinicians often rely on physical examination tests to guide them in the diagnostic process of knee disorders. However, reliability of these tests is often overlooked and may influence the consistency of results and overall diagnostic validity. Therefore, the objective of this study was to systematically review evidence on the reliability of physical examination tests for the diagnosis of knee disorders. A structured literature search was conducted in databases up to January 2016. Included studies needed to report reliability measures of at least one physical test for any knee disorder. Methodological quality was evaluated using the QAREL checklist. A qualitative synthesis of the evidence was performed. Thirty-three studies were included with a mean QAREL score of 5.5 ± 0.5. Based on low to moderate quality evidence, the Thessaly test for meniscal injuries reached moderate inter-rater reliability (k = 0.54). Based on moderate to excellent quality evidence, the Lachman for anterior cruciate ligament injuries reached moderate to excellent inter-rater reliability (k = 0.42 to 0.81). Based on low to moderate quality evidence, the Tibiofemoral Crepitus, Joint Line and Patellofemoral Pain/Tenderness, Bony Enlargement and Joint Pain on Movement tests for knee osteoarthritis reached fair to excellent inter-rater reliability (k = 0.29 to 0.93). Based on low to moderate quality evidence, the Lateral Glide, Lateral Tilt, Lateral Pull and Quality of Movement tests for patellofemoral pain reached moderate to good inter-rater reliability (k = 0.49 to 0.73). Many physical tests appear to reach good inter-rater reliability, but this is based on low-quality and conflicting evidence. High-quality research is required to evaluate the reliability of knee physical examination tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  17. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  18. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays.

    Science.gov (United States)

    Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L

    2018-04-12

    Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Evaluation of Four Automated Protocols for Extraction of DNA from FTA Cards

    OpenAIRE

    Stangegaard, Michael; Børsting, Claus; Ferrero-Miliani, Laura; Frank-Hansen, Rune; Poulsen, Lena; Hansen, Anders J; Morling, Niels

    2013-01-01

    Extraction of DNA using magnetic bead-based techniques on automated DNA extraction instruments provides a fast, reliable, and reproducible method for DNA extraction from various matrices. Here, we have compared the yield and quality of DNA extracted from FTA cards using four automated extraction protocols on three different instruments. The extraction processes were repeated up to six times with the same pieces of FTA cards. The sample material on the FTA cards was either blood or buccal cell...

  20. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  1. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    Science.gov (United States)

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  2. Technology Issues of Burning Plasma Diagnostics

    International Nuclear Information System (INIS)

    Kaye, A. S.

    2008-01-01

    The ITER Tokamak will require many diagnostics both for safe and reliable operation of the machine and for understanding of the physics underlying the performance. The design of these diagnostics raises many challenging technical issues not faced on smaller machines. These arise partly from the increase demands on established diagnostics arising from the increased size, higher magnetic field, large heating power, and in particular the dramatically longer pulse duration of ITER, which make issue such as power loading on first wall components more challenging. The demands on reliability and availability of the machine in order to achieve the objectives within the agreed time schedule also place severe additional demands on the design, quality assurance and maintainability of diagnostics. ITER will produce many orders of magnitude more neutrons than previous Tokamaks and will be a licensed nuclear facility. This has important implications for the traceability, quality assurance and availability of safety critical diagnostics, and for the control of the design and procurement of all diagnostics. The high neutron flux/fluence also constrains the design of diagnostics, which must offer shielding consistent with the allowable dose rates on critical components of the Tokamak, and themselves be tolerant of the radiation level at the diagnostic. This paper presents an overview of the more critical issues for ITER diagnostics

  3. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  4. Overview of data acquisition system for SST-1 diagnostics

    International Nuclear Information System (INIS)

    Sharma, Manika; Mansuri, Imran; Raval, Tushar; Sharma, A.L; Pradhan, S.

    2016-01-01

    Highlights: • An account of architecture and data acquisition activities of SST-1 data acquisition system (DAS) for SST-1 diagnostics and subsystems. • PXI based Data acquisition system and CAMAC based Data acquisition system for slow and fast plasma diagnostics. • SST-1 DAS interface and its communication with SST-1 central control system. Integration of SST-1 DAS with timing system. • SST-1 DAS data archival and data analysis. - Abstract: The recent first phase operations of SST-1 in short pulse mode have provided an excellent opportunity for the essential initial tests and benchmark of the SST-1 Data Acquisition System. This paper describes the SST-1 Data Acquisition systems (DAS), which with its heterogeneous composition and distributed architecture, aims to cover a wide range of slow to fast channels interfaced with a large set of diagnostics. The DAS also provides the essential user interface for data acquisition to cater both on and off-line data usage. The central archiving and retrieval service is based on a dual step architecture involving a combination of Network Attached Server (NAS) and a Storage Area Network (SAN). SST-1 Data Acquisition Systems have been reliably operated in the SST-1 experimental campaigns. At present different distributed DAS caters the need of around 130 channels from different SST-1 diagnostics and its subsystems. PXI based DAS and CAMAC based DAS have been chosen to cater the need, with sampling rates varying from 10Ksamples/sec to 1Msamples/sec. For these large sets of channels acquiring from individual diagnostics and subsystems has been a combined setup, subjected to a gradual phase of optimization and tests resulting into a series of improvisations over the recent operations. In order to facilitate a reliable data acquisition, the model further integrates the objects of the systems with the Central Control System of SST-1 using the TCP/IP communication. The associated DAS software essentially addresses the

  5. Overview of data acquisition system for SST-1 diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Manika, E-mail: bithi@ipr.res.in; Mansuri, Imran; Raval, Tushar; Sharma, A.L; Pradhan, S.

    2016-11-15

    Highlights: • An account of architecture and data acquisition activities of SST-1 data acquisition system (DAS) for SST-1 diagnostics and subsystems. • PXI based Data acquisition system and CAMAC based Data acquisition system for slow and fast plasma diagnostics. • SST-1 DAS interface and its communication with SST-1 central control system. Integration of SST-1 DAS with timing system. • SST-1 DAS data archival and data analysis. - Abstract: The recent first phase operations of SST-1 in short pulse mode have provided an excellent opportunity for the essential initial tests and benchmark of the SST-1 Data Acquisition System. This paper describes the SST-1 Data Acquisition systems (DAS), which with its heterogeneous composition and distributed architecture, aims to cover a wide range of slow to fast channels interfaced with a large set of diagnostics. The DAS also provides the essential user interface for data acquisition to cater both on and off-line data usage. The central archiving and retrieval service is based on a dual step architecture involving a combination of Network Attached Server (NAS) and a Storage Area Network (SAN). SST-1 Data Acquisition Systems have been reliably operated in the SST-1 experimental campaigns. At present different distributed DAS caters the need of around 130 channels from different SST-1 diagnostics and its subsystems. PXI based DAS and CAMAC based DAS have been chosen to cater the need, with sampling rates varying from 10Ksamples/sec to 1Msamples/sec. For these large sets of channels acquiring from individual diagnostics and subsystems has been a combined setup, subjected to a gradual phase of optimization and tests resulting into a series of improvisations over the recent operations. In order to facilitate a reliable data acquisition, the model further integrates the objects of the systems with the Central Control System of SST-1 using the TCP/IP communication. The associated DAS software essentially addresses the

  6. Diagnostic planning in JT-60 project

    International Nuclear Information System (INIS)

    Matoba, Tohru; Suzuki, Yasuo; Funahashi, Akimasa; Itagaki, Tokiyoshi

    1977-08-01

    The diagnostic plans of JT-60 were made along with design of the main machine. Basic requirements of the diagnostic program are (1) multiple measurement of respective plasma parameters, (2) efficient usage of the discharge, (3) capable data acquisition system, (4) high reliability of the diagnostic equipments, and (5) systematic development of new diagnostic techniques. Dimensions of the diagnostic ports were determined in detailed design of the vacuum vessel, anticipating the possible diagnostic methods. The proposed diagnostic systems and the plans are shown in table and figures respectively. Problems in the diagnostics are also described. (auth.)

  7. A sensitive method to extract DNA from biological traces present on ammunition for the purpose of genetic profiling.

    Science.gov (United States)

    Dieltjes, Patrick; Mieremet, René; Zuniga, Sofia; Kraaijenbrink, Thirsa; Pijpe, Jeroen; de Knijff, Peter

    2011-07-01

    Exploring technological limits is a common practice in forensic DNA research. Reliable genetic profiling based on only a few cells isolated from trace material retrieved from a crime scene is nowadays more and more the rule rather than the exception. On many crime scenes, cartridges, bullets, and casings (jointly abbreviated as CBCs) are regularly found, and even after firing, these potentially carry trace amounts of biological material. Since 2003, the Forensic Laboratory for DNA Research is routinely involved in the forensic investigation of CBCs in the Netherlands. Reliable DNA profiles were frequently obtained from CBCs and used to match suspects, victims, or other crime scene-related DNA traces. In this paper, we describe the sensitive method developed by us to extract DNA from CBCs. Using PCR-based genotyping of autosomal short tandem repeats, we were able to obtain reliable and reproducible DNA profiles in 163 out of 616 criminal cases (26.5%) and in 283 out of 4,085 individual CBC items (6.9%) during the period January 2003-December 2009. We discuss practical aspects of the method and the sometimes unexpected effects of using cell lysis buffer on the subsequent investigation of striation patterns on CBCs.

  8. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  9. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics.

    Science.gov (United States)

    Mishra, Saswat; Saadat, Darius; Kwon, Ohjin; Lee, Yongkuk; Choi, Woon-Seop; Kim, Jong-Hoon; Yeo, Woon-Hong

    2016-07-15

    There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A reliable genetic technique for sex determination of giant panda (Ailuropoda melanoleuca) from non-invasively collected hair samples

    NARCIS (Netherlands)

    Durnin, Matthew E.; Palsboll, Per J.; Ryder, Oliver A.; McCullough, Dale R.

    Extractions from non-invasive hair samples usually yield low amounts of highly degraded DNA. Previously developed mammal molecular sexing methods were not designed with such sub-optimal conditions in mind. We developed a simple and reliable PCR-based sexing method aimed at degraded, low yield DNA

  11. Interface Layering Phenomena in Capacitance Detection of DNA with Biochips

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2007-02-01

    Full Text Available Reliable DNA detection is of great importance for the development of the Lab-on-chip technology. The effort of the most recent projects on this field is to integrate all necessary operations, such as sample preparation (mixing, PCR amplification together with the sensor user for DNA detection. Among the different ways to sense the DNA hybridization, fluorescence based detection has been favored by the market. However, fluorescence based approaches require that the DNA targets are labeled by means of chromophores. As an alternative label-free DNA detection method, capacitance detection was recently proposed by different authors. While this effect has been successfully demonstrated by several groups, the model used for data analysis is far too simple to describe the real behavior of a DNA sensor. The aim of the present paper is to propose a different electrochemical model to describe DNA capacitance detection.

  12. Research Review: Test-retest reliability of standardized diagnostic interviews to assess child and adolescent psychiatric disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    Duncan, Laura; Comeau, Jinette; Wang, Li; Vitoroulis, Irene; Boyle, Michael H; Bennett, Kathryn

    2018-02-19

    A better understanding of factors contributing to the observed variability in estimates of test-retest reliability in published studies on standardized diagnostic interviews (SDI) is needed. The objectives of this systematic review and meta-analysis were to estimate the pooled test-retest reliability for parent and youth assessments of seven common disorders, and to examine sources of between-study heterogeneity in reliability. Following a systematic review of the literature, multilevel random effects meta-analyses were used to analyse 202 reliability estimates (Cohen's kappa = ҡ) from 31 eligible studies and 5,369 assessments of 3,344 children and youth. Pooled reliability was moderate at ҡ = .58 (CI 95% 0.53-0.63) and between-study heterogeneity was substantial (Q = 2,063 (df = 201), p reliability varied across informants for specific types of psychiatric disorder (ҡ = .53-.69 for parent vs. ҡ = .39-.68 for youth) with estimates significantly higher for parents on attention deficit hyperactivity disorder, oppositional defiant disorder and the broad groupings of externalizing and any disorder. Reliability was also significantly higher in studies with indicators of poor or fair study methodology quality (sample size reliability of SDIs and the usefulness of these tools in both clinical and research contexts. Potential remedies include the introduction of standardized study and reporting requirements for reliability studies, and exploration of other approaches to assessing and classifying child and adolescent psychiatric disorder. © 2018 Association for Child and Adolescent Mental Health.

  13. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    Science.gov (United States)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  14. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    Science.gov (United States)

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  15. A simple method for purification of herpesvirus DNA

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Normann, Preben

    1992-01-01

    A rapid and reliable method for purification of herpesvirus DNA from cell cultures is described. The method is based on the isolation of virus particles and/or nucleocapsids by differential centrifugation and exploits the solubilizing and denaturing capabilities of cesium trifluoroacetate during...

  16. Oxidative DNA base modifications as factors in carcinogenesis

    International Nuclear Information System (INIS)

    Olinski, R.; Jaruga, P.; Zastawny, T.H.

    1998-01-01

    Reactive oxygen species can cause extensive DNA modifications including modified bases. Some of the DNA base damage has been found to possess premutagenic properties. Therefore, if not repaired, it can contribute to carcinogenesis. We have found elevated amounts of modified bases in cancerous and precancerous tissues as compared with normal tissues. Most of the agents used in anticancer therapy are paradoxically responsible for induction of secondary malignancies and some of them may generate free radicals. The results of our experiments provide evidence that exposure of cancer patients to therapeutic doses of ionizing radiation and anticancer drugs cause base modifications in genomic DNA of lymphocytes. Some of these base damages could lead to mutagenesis in critical genes and ultimately to secondary cancers such as leukemias. This may point to an important role of oxidative base damage in cancer initiation. Alternatively, the increased level of the modified base products may contribute to genetic instability and metastatic potential of tumor cells. (author)

  17. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  18. Mixed DNA/Oligo(ethylene glycol) Functionalized Gold Surface Improve DNA Hybridization in Complex Media

    International Nuclear Information System (INIS)

    Lee, C.; Gamble, L.; Grainger, D.; Castner, D.

    2006-01-01

    Reliable, direct 'sample-to-answer' capture of nucleic acid targets from complex media would greatly improve existing capabilities of DNA microarrays and biosensors. This goal has proven elusive for many current nucleic acid detection technologies attempting to produce assay results directly from complex real-world samples, including food, tissue, and environmental materials. In this study, we have investigated mixed self-assembled thiolated single-strand DNA (ssDNA) monolayers containing a short thiolated oligo(ethylene glycol) (OEG) surface diluent on gold surfaces to improve the specific capture of DNA targets from complex media. Both surface composition and orientation of these mixed DNA monolayers were characterized with x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). XPS results from sequentially adsorbed ssDNA/OEG monolayers on gold indicate that thiolated OEG diluent molecules first incorporate into the thiolated ssDNA monolayer and, upon longer OEG exposures, competitively displace adsorbed ssDNA molecules from the gold surface. NEXAFS polarization dependence results (followed by monitoring the N 1s→π* transition) indicate that adsorbed thiolated ssDNA nucleotide base-ring structures in the mixed ssDNA monolayers are oriented more parallel to the gold surface compared to DNA bases in pure ssDNA monolayers. This supports ssDNA oligomer reorientation towards a more upright position upon OEG mixed adlayer incorporation. DNA target hybridization on mixed ssDNA probe/OEG monolayers was monitored by surface plasmon resonance (SPR). Improvements in specific target capture for these ssDNA probe surfaces due to incorporation of the OEG diluent were demonstrated using two model biosensing assays, DNA target capture from complete bovine serum and from salmon genomic DNA mixtures. SPR results demonstrate that OEG incorporation into the ssDNA adlayer improves surface resistance to both nonspecific DNA and protein

  19. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...

  20. Developing a new diagnostic algorithm for human papilloma virus associated oropharyngeal carcinoma: an investigation of HPV DNA assays.

    Science.gov (United States)

    Cohen, Natasha; Gupta, Michael; Doerwald-Munoz, Lilian; Jang, Dan; Young, James Edward Massey; Archibald, Stuart; Jackson, Bernard; Lee, Jenny; Chernesky, Max

    2017-02-13

    Human papilloma virus (HPV) has been implicated in the development of a large proportion of oropharyngeal squamous cell carcinoma (OPSCC). Current techniques used to diagnose HPV etiology require histopathologic analysis. We aim to investigate the diagnostic accuracy of a new application non-histopathologic diagnostic tests to help assist diagnosis of HPV-related oropharyngeal tumors. Patients with OPSCC with nodal metastasis were consecutively recruited from a multidisciplinary cancer clinic. Appropriate samples were collected and analyzed. The various tests examined included COBAS® 4800, Cervista® HR and Genotyping. These tests were compared to p16 staining, which was used as the diagnostic standard. StataIC 14.2 was used to perform analysis, including sensitivity, specificity and receiver operator characteristic [ROC] curves. The COBAS® FNA (area under ROC 0.863) and saliva (area under ROC 0.847) samples performed well in diagnosing HPV positive and negative tumors. Samples tested with Cervista® did not corroborate p16 status reliably. We were able to increase the diagnostic yield of the COBAS® FNA samples by applying the results of the saliva test to negative FNA samples which correctly identified 11 additional p16 positive tumors (area under ROC 0.915). Surrogate testing for HPV using alternate methods is feasible and closely predicts the results of standard diagnostic methods. In the future, these could minimize invasive procedures for diagnosing HPV-related oropharyngeal cancer, but also help to diagnose and treat patients with unknown primaries.

  1. A nuclear DNA-based species determination and DNA quantification assay for common poultry species.

    Science.gov (United States)

    Ng, J; Satkoski, J; Premasuthan, A; Kanthaswamy, S

    2014-12-01

    DNA testing for food authentication and quality control requires sensitive species-specific quantification of nuclear DNA from complex and unknown biological sources. We have developed a multiplex assay based on TaqMan® real-time quantitative PCR (qPCR) for species-specific detection and quantification of chicken (Gallus gallus), duck (Anas platyrhynchos), and turkey (Meleagris gallopavo) nuclear DNA. The multiplex assay is able to accurately detect very low quantities of species-specific DNA from single or multispecies sample mixtures; its minimum effective quantification range is 5 to 50 pg of starting DNA material. In addition to its use in food fraudulence cases, we have validated the assay using simulated forensic sample conditions to demonstrate its utility in forensic investigations. Despite treatment with potent inhibitors such as hematin and humic acid, and degradation of template DNA by DNase, the assay was still able to robustly detect and quantify DNA from each of the three poultry species in mixed samples. The efficient species determination and accurate DNA quantification will help reduce fraudulent food labeling and facilitate downstream DNA analysis for genetic identification and traceability.

  2. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer

    DEFF Research Database (Denmark)

    Haldrup, Christa; Mundbjerg, Kamilla; Vestergaard, Else Marie

    2013-01-01

    Purpose Diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, causing overtreatment of indolent PC and risk of delayed treatment of aggressive PC. Here, we identify six novel candidate DNA methylation markers for PC with promising diagnostic and prognostic potential. Methods...... Microarray-based screening and bisulfite sequencing of 20 nonmalignant and 29 PC tissue specimens were used to identify new candidate DNA hypermethylation markers for PC. Diagnostic and prognostic potential was evaluated in 35 nonmalignant prostate tissue samples, 293 radical prostatectomy (RP) samples...... into low- and high-methylation subgroups, was trained in cohort 1 (HR, 1.91; 95% CI, 1.26 to 2.90) and validated in cohort 2 (HR, 2.33; 95% CI, 1.31 to 4.13). Conclusion We identified six novel candidate DNA methylation markers for PC. C1orf114 hypermethylation and a three-gene methylation signature were...

  3. Microfluidic diagnostics for low-resource settings

    Science.gov (United States)

    Hawkins, Kenneth R.; Weigl, Bernhard H.

    2010-02-01

    Diagnostics for low-resource settings need to be foremost inexpensive, but also accurate, reliable, rugged and suited to the contexts of the developing world. Diagnostics for global health, based on minimally-instrumented, microfluidicsbased platforms employing low-cost disposables, has become a very active research area recently-thanks, in part, to new funding from the Bill & Melinda Gates Foundation, the National Institutes of Health, and other sources. This has led to a number of interesting prototype devices that are now in advanced development or clinical validation. These devices include disposables and instruments that perform multiplexed PCR-based assays for enteric, febrile, and vaginal diseases, as well as immunoassays for diseases such as malaria, HIV, and various sexually transmitted diseases. More recently, instrument-free diagnostic disposables based on isothermal nucleic-acid amplification have been developed. Regardless of platform, however, the search for truly low-cost manufacturing methods that would enable affordable systems (at volume, in the appropriate context) remains a significant challenge. Here we give an overview of existing platform development efforts, present some original research in this area at PATH, and reiterate a call to action for more.

  4. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  5. Raman spectroscopy for DNA quantification in cell nucleus.

    Science.gov (United States)

    Okotrub, K A; Surovtsev, N V; Semeshin, V F; Omelyanchuk, L V

    2015-01-01

    Here we demonstrate the feasibility of a novel approach to quantify DNA in cell nuclei. This approach is based on spectroscopy analysis of Raman light scattering, and avoids the problem of nonstoichiometric binding of dyes to DNA, as it directly measures the signal from DNA. Quantitative analysis of nuclear DNA contribution to Raman spectrum could be reliably performed using intensity of a phosphate mode at 1096 cm(-1) . When compared to the known DNA standards from cells of different animals, our results matched those values at error of 10%. We therefore suggest that this approach will be useful to expand the list of DNA standards, to properly adjust the duration of hydrolysis in Feulgen staining, to assay the applicability of fuchsines for DNA quantification, as well as to measure DNA content in cells with complex hydrolysis patterns, when Feulgen densitometry is inappropriate. © 2014 International Society for Advancement of Cytometry.

  6. Teaching Chinese psychiatrists to make reliable dissociative disorder diagnoses.

    Science.gov (United States)

    Fan, Qing; Yu, Junhan; Ross, Colin A; Keyes, Benjamin B; Dai, Yunfei; Zhang, Tianhong; Wang, Lanlan; Xiao, Zeping

    2011-09-01

    The aim of the study was to assess the outcome of an educational effort by two North American experts in dissociative disorders to teach Chinese psychiatrists to make reliable dissociative disorder diagnoses. In the final phase of the educational effort, 569 patients at Shanghai Mental Health Center completed the Chinese version of the Dissociative Experiences Scale (DES). Patients were then randomly selected in different proportions according to their DES scores: 96 selected patients were then assessed with the Dissociative Disorders Interview Schedule (DDIS) and clinical diagnostic interviews based on DSM-IV criteria. According to the clinical diagnostic interviews, 28 (4.9%) patients were diagnosed as having dissociative disorders. Agreement between the American experts and Chinese psychiatrists for presence or absence of a dissociative disorder was 0.75 using Cohen's kappa. Dissociative disorders can be diagnosed in China with good inter-rater reliability. The authors describe the steps taken to achieve this outcome.

  7. Quantitative Single-letter Sequencing: a method for simultaneously monitoring numerous known allelic variants in single DNA samples

    Directory of Open Access Journals (Sweden)

    Duborjal Hervé

    2008-02-01

    Full Text Available Abstract Background Pathogens such as fungi, bacteria and especially viruses, are highly variable even within an individual host, intensifying the difficulty of distinguishing and accurately quantifying numerous allelic variants co-existing in a single nucleic acid sample. The majority of currently available techniques are based on real-time PCR or primer extension and often require multiplexing adjustments that impose a practical limitation of the number of alleles that can be monitored simultaneously at a single locus. Results Here, we describe a novel method that allows the simultaneous quantification of numerous allelic variants in a single reaction tube and without multiplexing. Quantitative Single-letter Sequencing (QSS begins with a single PCR amplification step using a pair of primers flanking the polymorphic region of interest. Next, PCR products are submitted to single-letter sequencing with a fluorescently-labelled primer located upstream of the polymorphic region. The resulting monochromatic electropherogram shows numerous specific diagnostic peaks, attributable to specific variants, signifying their presence/absence in the DNA sample. Moreover, peak fluorescence can be quantified and used to estimate the frequency of the corresponding variant in the DNA population. Using engineered allelic markers in the genome of Cauliflower mosaic virus, we reliably monitored six different viral genotypes in DNA extracted from infected plants. Evaluation of the intrinsic variance of this method, as applied to both artificial plasmid DNA mixes and viral genome populations, demonstrates that QSS is a robust and reliable method of detection and quantification for variants with a relative frequency of between 0.05 and 1. Conclusion This simple method is easily transferable to many other biological systems and questions, including those involving high throughput analysis, and can be performed in any laboratory since it does not require specialized

  8. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  9. Ultraviolet enhancement of DNA base release by bleomycin

    International Nuclear Information System (INIS)

    Kakinuma, J.; Tanabe, M.; Orii, H.

    1984-01-01

    The effect of UV irradiation on base-releasing activity of bleomycin was studied on bleomycin A 2 -DNA reaction mixture in the presence of Fe(II) and 2-mercaptoethanol. This effect was measured by the release of free bases from calf thymus DNA with high-performance liquid chromatography. UV irradiation enhanced DNA base-releasing activity of bleomycin and simultaneously caused disappearance of fluorescence emission maximum at 355 nm assigned to bithiazole rings and increase in the intensity of a peak at 400 nm. UV irradiation at 295 nm, the UV absorption maximum of bleomycin, is the most effective in releasing free bases and in changing fluorescence emission patterns. From these results, we suggest that some alterations in the bithiazole group of bleomycin molecule were initiated by UV irradiation and contributed to increased base-releasing activity of bleomycin through a yet unexplained mechanism, presumably through bleomycin dimer formation. (orig.)

  10. Advanced microarray technologies for clinical diagnostics

    NARCIS (Netherlands)

    Pierik, Anke

    2011-01-01

    DNA microarrays become increasingly important in the field of clinical diagnostics. These microarrays, also called DNA chips, are small solid substrates, typically having a maximum surface area of a few cm2, onto which many spots are arrayed in a pre-determined pattern. Each of these spots contains

  11. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  12. Silver(I)-Mediated Base Pairs in DNA Sequences Containing 7-Deazaguanine/Cytosine: towards DNA with Entirely Metallated Watson-Crick Base Pairs.

    Science.gov (United States)

    Méndez-Arriaga, José M; Maldonado, Carmen R; Dobado, José A; Galindo, Miguel A

    2018-03-26

    DNA sequences comprising noncanonical 7-deazaguanine ( 7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-Ag I -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of Ag I ions, 7C G-C and 7C A-T Watson-Crick base pairs ( 7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-Ag I -C and 7C A-Ag I -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Recent advances in control and diagnostics development and application

    International Nuclear Information System (INIS)

    Monson, L.R.; King, R.W.; Lindsay, R.W.; Staffon, J.D.

    1989-01-01

    The power industry is undergoing rapid technological advances and cultural changes. Technologies are advancing and evolving so rapidly that the industry is hard pressed to keep up and take full advantage of the many developments now in progress. Recent advantages in state-of-the-art computer technology are making in-roads in the form of advanced computer control, expert systems, on-line performance monitoring and diagnostics. Validation and verification schemes are being developed which provide increased confidence in the correctness and reliability of both computer hardware and software. Our challenge in the nuclear community is to effectively apply these new technologies to improve the operation, safety, and reliability of our plants. This presentation discusses two areas of development that are essential to advanced control strategies: application of diagnostic systems to improve fault-tolerance, and model-based graphic displays. 4 refs., 4 figs

  14. Test-Retest Reliability of the Preschool Age Psychiatric Assessment (PAPA)

    Science.gov (United States)

    Egger, Helen Link; Erkanli, Alaattin; Keeler, Gordon; Potts, Edward; Walter, Barbara Keith; Angold, Adrian

    2006-01-01

    Objective: To examine the test-retest reliability of a new interviewer-based psychiatric diagnostic measure (the Preschool Age Psychiatric Assessment) for use with parents of preschoolers 2 to 5 years old. Method: A total of 1,073 parents of children attending a large pediatric clinic completed the Child Behavior Checklist 1 1/2-5. For 18 months,…

  15. A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors.

    Science.gov (United States)

    Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-06-01

    Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    Science.gov (United States)

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reliability studies of diagnostic methods in Indian traditional Ayurveda medicine

    DEFF Research Database (Denmark)

    Kurande, Vrinda Hitendra; Waagepetersen, Rasmus; Toft, Egon

    2013-01-01

    as prakriti classification), method development (pulse diagnosis), quality assurance for diagnosis and treatment and in the conduct of clinical studies. Several reliability studies are conducted in western medicine. The investigation of the reliability of traditional Chinese, Japanese and Sasang medicine...

  18. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  19. Tomographic capabilities of the new GEM based SXR diagnostic of WEST

    Science.gov (United States)

    Jardin, A.; Mazon, D.; O'Mullane, M.; Mlynar, J.; Loffelmann, V.; Imrisek, M.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.; Bourdelle, C.; Malard, P.

    2016-07-01

    The tokamak WEST (Tungsten Environment in Steady-State Tokamak) will start operating by the end of 2016 as a test bed for the ITER divertor components in long pulse operation. In this context, radiative cooling of heavy impurities like tungsten (W) in the Soft X-ray (SXR) range [0.1 keV; 20 keV] is a critical issue for the plasma core performances. Thus reliable tools are required to monitor the local impurity density and avoid W accumulation. The WEST SXR diagnostic will be equipped with two new GEM (Gas Electron Multiplier) based poloidal cameras allowing to perform 2D tomographic reconstructions in tunable energy bands. In this paper tomographic capabilities of the Minimum Fisher Information (MFI) algorithm developed for Tore Supra and upgraded for WEST are investigated, in particular through a set of emissivity phantoms and the standard WEST scenario including reconstruction errors, influence of noise as well as computational time.

  20. Systematic Review of the Diagnostic Accuracy and Therapeutic Effectiveness of Sacroiliac Joint Interventions.

    Science.gov (United States)

    Simopoulos, Thomas T; Manchikanti, Laxmaiah; Gupta, Sanjeeva; Aydin, Steve M; Kim, Chong Hwan; Solanki, Daneshvari; Nampiaparampil, Devi E; Singh, Vijay; Staats, Peter S; Hirsch, Joshua A

    2015-01-01

    The sacroiliac joint is well known as a cause of low back and lower extremity pain. Prevalence estimates are 10% to 25% in patients with persistent axial low back pain without disc herniation, discogenic pain, or radiculitis based on multiple diagnostic studies and systematic reviews. However, at present there are no definitive management options for treating sacroiliac joint pain. To evaluate the diagnostic accuracy and therapeutic effectiveness of sacroiliac joint interventions. A systematic review of the diagnostic accuracy and therapeutic effectiveness of sacroiliac joint interventions. The available literature on diagnostic and therapeutic sacroiliac joint interventions was reviewed. The quality assessment criteria utilized were the Quality Appraisal of Reliability Studies (QAREL) checklist for diagnostic accuracy studies, Cochrane review criteria to assess sources of risk of bias, and Interventional Pain Management Techniques-Quality Appraisal of Reliability and Risk of Bias Assessment (IPM-QRB) criteria for randomized therapeutic trials and Interventional Pain Management Techniques-Quality Appraisal of Reliability and Risk of Bias Assessment for Nonrandomized Studies (IPM-QRBNR) for observational therapeutic assessments. The level of evidence was based on a best evidence synthesis with modified grading of qualitative evidence from Level I to Level V. Data sources included relevant literature published from 1966 through March 2015 that were identified through searches of PubMed and EMBASE, manual searches of the bibliographies of known primary and review articles, and all other sources. For the diagnostic accuracy assessment, and for the therapeutic modalities, the primary outcome measure of pain relief and improvement in functional status were utilized. A total of 11 diagnostic accuracy studies and 14 therapeutic studies were included. The evidence for diagnostic accuracy is Level II for dual diagnostic blocks with at least 70% pain relief as the criterion

  1. Hereditary neuropathies: systematization and diagnostics (clinical case of hereditary motor and sensor neuropathy of the IA type

    Directory of Open Access Journals (Sweden)

    Kolokolova A.M.

    2016-09-01

    Full Text Available Aim: to study the value of routine methods (clinical symptoms, electrophysiological findings and results of DNA analysis in diagnostics of hereditary motor sensory neuropathy type IA in outpatient clinics. Material and Methods. The review of foreign literature is represented. The phenotypic polymorphism, genetic heterogeneity and the difficulties of diagnostics are identified. A family with hereditary motor sensory neuropathy of lAtype is presented, which was diagnosed on the base of available methods in outpatient practice (clinical symptoms, genealogical method, electro-physiological findings and DNA analysis results. Results. Routine algorithm (consistent valuation of clinical symptoms, neurophysiologic findings and the results of DNA analysis helped to verify the diagnosis of hereditary motor sensory neuropathy of lAtype in outpatient practice after more than 20 years of the onset of the disease. Conclusion. The neurologists of outpatient clinics and other specialists must be informed about the availability of diagnostics of hereditary diseases of nervous system.

  2. Convergence diagnostics for Eigenvalue problems with linear regression model

    International Nuclear Information System (INIS)

    Shi, Bo; Petrovic, Bojan

    2011-01-01

    Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)

  3. Evaluation by latent class analysis of a magnetic capture based DNA extraction followed by real-time qPCR as a new diagnostic method for detection of Echinococcus multilocularis in definitive hosts.

    Science.gov (United States)

    Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke

    2016-10-30

    A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nova target diagnostics control system

    International Nuclear Information System (INIS)

    Severyn, J.R.

    1985-01-01

    During the past year the Nova target diagnostics control system was finished and put in service. The diagnostics loft constructed to the north of the target room provides the environmental conditions required to collect reliable target diagnostic data. These improvements include equipment cooling and isolation of the power source with strict control of instrumentation grounds to eliminate data corruption due to electromagnetic pulses from the laser power-conditioning system or from target implosion effects

  5. Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Shan Wei

    2018-05-01

    Full Text Available Real-time sequencing of short DNA reads has a wide variety of clinical and research applications including screening for mutations, target sequences and aneuploidy. We recently demonstrated that MinION, a nanopore-based DNA sequencing device the size of a USB drive, could be used for short-read DNA sequencing. In this study, an ultra-rapid multiplex library preparation and sequencing method for the MinION is presented and applied to accurately test normal diploid and aneuploidy samples’ genomic DNA in under three hours, including library preparation and sequencing. This novel method shows great promise as a clinical diagnostic test for applications requiring rapid short-read DNA sequencing.

  6. DNA Based Electrochromic and Photovoltaic Cells

    Science.gov (United States)

    2012-01-01

    using deoxyribonucleic acid complex as an electron blocking layer App. Phys. Lett. 88 (2006) 171109. 23. F.H.C. Crick , J.D. Watson . The complementary...9550-09-1-0647 final 01-09-2009 ; 30-11-2011 DNA Based Electrochromic and Photovoltaic Cells FA 9550-09-1-0647 Pawlicka, Agnieszka, J. Instituto de...Available. DNA is an abundant natural product with very good biodegradation properties and can be used to obtain gel polymer electrolytes (GPEs) with high

  7. Nucleic acid-based diagnostics for infectious diseases in public health affairs.

    Science.gov (United States)

    Yu, Albert Cheung-Hoi; Vatcher, Greg; Yue, Xin; Dong, Yan; Li, Mao Hua; Tam, Patrick H K; Tsang, Parker Y L; Wong, April K Y; Hui, Michael H K; Yang, Bin; Tang, Hao; Lau, Lok-Ting

    2012-06-01

    Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.

  8. Rethinking the Reliability of Eyewitness Memory.

    Science.gov (United States)

    Wixted, John T; Mickes, Laura; Fisher, Ronald P

    2018-05-01

    Although certain pockets within the broad field of academic psychology have come to appreciate that eyewitness memory is more reliable than was once believed, the prevailing view, by far, is that eyewitness memory is unreliable-a blanket assessment that increasingly pervades the legal system. On the surface, this verdict seems unavoidable: Research convincingly shows that memory is malleable, and eyewitness misidentifications are known to have played a role in most of the DNA exonerations of the innocent. However, we argue here that, like DNA evidence and other kinds of scientifically validated forensic evidence, eyewitness memory is reliable if it is not contaminated and if proper testing procedures are used. This conclusion applies to eyewitness memory broadly conceived, whether the test involves recognition (from a police lineup) or recall (during a police interview). From this perspective, eyewitness memory has been wrongfully convicted of mistakes that are better construed as having been committed by other actors in the legal system, not by the eyewitnesses themselves. Eyewitnesses typically provide reliable evidence on an initial, uncontaminated memory test, and this is true even for most of the wrongful convictions that were later reversed by DNA evidence.

  9. The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

    International Nuclear Information System (INIS)

    Chen, Chung H.

    2004-01-01

    The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

  10. Biotechnology in diagnostics

    International Nuclear Information System (INIS)

    Koprowski, H.; Ferrone, S.; Albertini, A.

    1985-01-01

    In recent years much progress has been made in the area of biotechnology. The cellular and molecular cloning methodology to develop monoclonal antibodies and DNA probes have been extensively utilized in basic and clinical research. These investigations have provided the necessary information to apply these reagents to diagnostic problems. The RIA 85 meeting focused on the application of monoclonal antibodies and DNA probes in laboratory medicine. The papers presented at this meeting clearly indicate that biotechnology has already had a significant impact on clinical medicine. (Auth.)

  11. A novel PCR-based marker for identifying Ns chromosomes in wheat-Psathyrostachys huashanica Keng derivative lines

    Directory of Open Access Journals (Sweden)

    J. Wang

    2013-10-01

    Full Text Available Psathyrostachys huashanica Keng is an endangered species that is endemic to China, which provides an important gene pool for wheat improvement. We developed a quick and reliable PCR-based diagnostic assay to accurately and efficiently detect P. huashanica DNA sequences from introgression lines, which was based on a species-specific marker derived from genomic DNA. The 900-bp PCR-amplified band used as a P. huashanica-specific RAPD marker was tested with 21 different plant species and was converted into a sequence-characterized amplified region (SCAR marker by cloning and sequencing the selected fragments (pHs11. This SCAR marker, which was designated as RHS23, could clearly distinguish the presence of P. huashanica DNA repetitive sequences in wheat-P. huashanica derivative lines. The specificity of the marker was validated using 21 different plant species and a complete set of wheat-P. huashanica disomic addition lines (1Ns–7Ns, 2n=44=22II. This specific sequence targeted the Ns genome of P. huashanica and it was present in all the seven P. huashanica chromosomes. Therefore, this SCAR marker is specific for P. huashanica chromosomes and may be used in the identification of alien repetitive sequences in large gene pools. This diagnostic PCR assay for screening the target genetic material may play a key role in marker-assisted selective breeding programs.

  12. The Spanish version of the 2010 American College of Rheumatology Preliminary Diagnostic Criteria for fibromyalgia: reliability and validity assessment.

    Science.gov (United States)

    Casanueva, Benigno; García-Fructuoso, Ferrán; Belenguer, Rafael; Alegre, Cayetano; Moreno-Muelas, José V; Hernández, José L; Pina, Tinitario; González-Gay, Miguel Á

    2016-01-01

    To investigate the reliability and validity of the Spanish version of the 2010 American College of Rheumatology (ACR) Preliminary Diagnostic Criteria for Fibromyalgia (FM) in patients with chronic pain. The 2010 ACR Preliminary Diagnostic Criteria for FM were adapted to a Spanish version following the guidelines of the Rheumatology Spanish Society Study Group of FM. Based on the 1990 ACR classi cation criteria for FM, patients with chronic pain were initially divided into two groups: a FM group and another group of non-FM individuals. Patients from the FM group were evaluated by tender points (TP) examination, Fibromyalgia Impact Questionnaire (FIQ), Widespread Pain Index (WPI), and Symptom Severity Scale (SSS). The non-FM (control) group included patients with rheumatoid arthritis (RA) and osteoarthritis (OA). They were evaluated by WPI and SSS. We included 1,169 patients divided into two groups: FM group (n=803; 777 women and 26 men) and non-FM group (n= 366; 147 patients with RA, and 219 with OA). The median value of TP and FIQ in the FM group was 16 and 74 respectively. The preliminary 2010 ACR criteria were met by 665 (82.8%) FM patients and by 112 (30.6%) patients from the non-FM group (pFIQ (p<0.0001), WPI (p<0.0001) and SSS (p<0.0001) were observed when FM patients fulfilling the 2010 ACR criteria were compared with the remaining FM patients who did not fulfill these criteria. Sensitivity of the Spanish version of the 2010 ACR criteria was 85.6% (95%CI: 83.1-88.1), speci city 73.2% (95%CI: 68.4-78), positive predictive value 87.7% (95%CI: 85.3-90.1) and negative predictive value 69.4% (95%CI: 64.5-74.2). Our results indicate that the 2010 ACR Preliminary Diagnostic Criteria for FM may be useful to establish a diagnosis of FM in Spanish individuals with chronic pain.

  13. Mitochondrial DNA-based identification of some forensically important blowflies in Thailand.

    Science.gov (United States)

    Preativatanyou, Kanok; Sirisup, Nantana; Payungporn, Sunchai; Poovorawan, Yong; Thavara, Usavadee; Tawatsin, Apiwat; Sungpradit, Sivapong; Siriyasatien, Padet

    2010-10-10

    Accurate identification of insects collected from death scenes provides not only specific developmental data assisting forensic entomologists to determine the postmortem interval more precisely but also other kinds of forensic evidence. However, morphological identification can be complicated due to the similarity among species, especially in the early larval stages. To simplify and make the species identification more practical and reliable, DNA-based identification is preferentially considered. In this study, we demonstrate the application of partial mitochondrial cytochrome oxidase I (COI) and cytochrome oxidase II (COII) sequences for differentiation of forensically important blowflies in Thailand; Chrysomya megacephala, Chrysomya rufifacies and Lucilia cuprina by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The PCR yields a single 1324bp-sized amplicon in all blowfly specimens, followed by direct DNA sequencing. Taq(α)I and VspI predicted from the sequencing data provide different RFLP profiles among these three species. Sequence analysis reveals no significant intraspecific divergence in blowfly specimens captured from different geographical regions in Thailand. Accordingly, neighbor-joining tree using Kimura's 2-parameter model illustrates reciprocal monophyly between species. Thus, these approaches serve as promising tools for molecular identification of these three common forensically important blowfly species in Thailand. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Reliability of clinical ICD-10 schizophrenia diagnoses

    DEFF Research Database (Denmark)

    Jakobsen, Klaus D; Frederiksen, Julie N; Hansen, Thomas

    2005-01-01

    Concern has been expressed as to the reliability of clinical ICD-10 diagnosis of schizophrenia. This study was designed to assess the diagnostic reliability of the clinical ICD-10 diagnosis of schizophrenia in a random sample of Danish in- and outpatients with a history of psychosis. A sample...... value (87%) of ICD-10 schizophrenia and an overall good agreement between clinical and OPCRIT-derived diagnoses (kappa=0.60). An even higher positive predictive value was obtained when diagnoses were amalgamated into a diagnostic entity of schizophrenia-spectrum disorders (98%). Near perfect agreement...... was seen between OPCRIT-derived ICD-10 and DSM-IV diagnoses (kappa=0.87). Thus, this study demonstrates high reliability of the clinical diagnosis of schizophrenia and even more so of the diagnosis of schizophrenia-spectrum disorder....

  15. Cable Diagnostic Focused Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  16. Bayesian based Diagnostic Model for Condition based Maintenance of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Asgarpour, Masoud; Sørensen, John Dalsgaard

    2018-01-01

    Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing...... sufficient preventive actions. This paper presents an applied and generic diagnostic model for fault detection and condition based maintenance of offshore wind components. The diagnostic model is based on two probabilistic matrices; first, a confidence matrix, representing the probability of detection using...... for a wind turbine component based on vibration, temperature, and oil particle fault detection methods. The last part of the paper will have a discussion of the case study results and present conclusions....

  17. The Reliability and Validity of the Panic Disorder Self-Report: A New Diagnostic Screening Measure of Panic Disorder

    Science.gov (United States)

    Newman, Michelle G.; Holmes, Marilyn; Zuellig, Andrea R.; Kachin, Kevin E.; Behar, Evelyn

    2006-01-01

    This study examined the Panic Disorder Self-Report (PDSR), a new self-report diagnostic measure of panic disorder based on the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1994). PDSR diagnoses were compared with structured interview diagnoses of individuals with generalized anxiety…

  18. Reliability research to nuclear power plant operators based on several methods

    International Nuclear Information System (INIS)

    Fang Xiang; Li Fu; Zhao Bingquan

    2009-01-01

    The paper utilizes many kinds of international reliability research methods, and summarizes the review of reliability research of Chinese nuclear power plant operators in past over ten years based on the simulator platform of nuclear power plant. The paper shows the necessity and feasibility of the research to nuclear power plant operators from many angles including human cognition reliability, fuzzy mathematics model and psychological research model, etc. It will be good to the safe operation of nuclear power plant based on many kinds of research methods to the reliability research of nuclear power plant operators. (authors)

  19. How stable are the mutagenic tautomers of DNA bases?

    Directory of Open Access Journals (Sweden)

    Brovarets’ O. O.

    2010-02-01

    Full Text Available Aim. To determine the lifetime of the mutagenic tautomers of DNA base pairs through the investigation of the physicochemical mechanisms of their intramolecular proton transfer. Methods. Non-empirical quantum chemistry, the analysis of the electron density by means of Bader’s atom in molecules (AIM theory and physicochemical kinetics were used. Results. Physicochemical character of the transition state of the intramolecular tautomerisation of DNA bases was investigated, the lifetime of mutagenic tautomers was calculated. Conclusions. The lifetime of the DNA bases mutagenic tautomers by 3–10 orders exceeds typical time of DNA replication in the cell (~103 s. This fact confirms that the postulate, on which the Watson-Crick tautomeric hypothesis of spontaneous transitions grounds, is adequate. The absence of intramolecular H-bonds in the canonical and mutagenic tautomeric forms determine their high stability

  20. Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

    NARCIS (Netherlands)

    Dongre, C.; van Weerd, J.; van Weeghel, R.; Martinez-Vazquez, R.; Osellame, R.; Cerullo, G.; Besselink, G.A.J.; van den Vlekkert, H.H.; Hoekstra, Hugo; Pollnau, Markus

    Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically

  1. Multidimensional Diagnostic Criteria for Chronic Pain: Introduction to the ACTTION-American Pain Society Pain Taxonomy (AAPT).

    Science.gov (United States)

    Dworkin, Robert H; Bruehl, Stephen; Fillingim, Roger B; Loeser, John D; Terman, Gregory W; Turk, Dennis C

    2016-09-01

    A variety of approaches have been used to develop diagnostic criteria for chronic pain. The published evidence of the reliability and validity of existing diagnostic criteria is limited, and these criteria have typically not been used in clinical practice. The availability of a widely accepted, consistently applied, and evidence-based taxonomy of diagnostic criteria would improve the quality of clinical research on chronic pain and would be of great value in clinical practice. To address the need for evidence-based diagnostic criteria for the major chronic pain conditions, the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the US Food and Drug Administration and the American Pain Society (APS) have collaborated on the development of the ACTTION-APS Pain Taxonomy (AAPT). AAPT provides a multidimensional framework that is applied systematically in the development of diagnostic criteria. This article (1) describes the background and rationale for AAPT; (2) presents the AAPT taxonomy and the specific conditions for which diagnostic criteria have been developed (to be published separately); (3) briefly reviews the 5 dimensions that constitute the AAPT multidimensional framework and describes the 7 accompanying articles that discuss these dimensions and other important issues involving AAPT; and (4) provides an overview of next steps, specifically, the general processes by which the initial set of diagnostic criteria (for which the evidence base has been drawn from the literature, systematic reviews, and secondary analyses of existing databases) will undergo additional assessments of reliability and validity. To address the need for evidence-based diagnostic criteria for the major chronic pain conditions, the AAPT provides a multidimensional framework that is applied systematically in the development of diagnostic criteria. The long-term objective of AAPT is to advance

  2. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA

    OpenAIRE

    Khodakov, Dmitriy A.; Khodakova, Anastasia S.; Huang, David M.; Linacre, Adrian; Ellis, Amanda V.

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within doubl...

  3. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  4. Development of biometric DNA ink for authentication security.

    Science.gov (United States)

    Hashiyada, Masaki

    2004-10-01

    Among the various types of biometric personal identification systems, DNA provides the most reliable personal identification. It is intrinsically digital and unchangeable while the person is alive, and even after his/her death. Increasing the number of DNA loci examined can enhance the power of discrimination. This report describes the development of DNA ink, which contains synthetic DNA mixed with printing inks. Single-stranded DNA fragments encoding a personalized set of short tandem repeats (STR) were synthesized. The sequence was defined as follows. First, a decimal DNA personal identification (DNA-ID) was established based on the number of STRs in the locus. Next, this DNA-ID was encrypted using a binary, 160-bit algorithm, using a hashing function to protect privacy. Since this function is irreversible, no one can recover the original information from the encrypted code. Finally, the bit series generated above is transformed into base sequences, and double-stranded DNA fragments are amplified by the polymerase chain reaction (PCR) to protect against physical attacks. Synthesized DNA was detected successfully after samples printed in DNA ink were subjected to several resistance tests used to assess the stability of printing inks. Endurance test results showed that this DNA ink would be suitable for practical use as a printing ink and was resistant to 40 hours of ultraviolet exposure, performance commensurate with that of photogravure ink. Copyright 2004 Tohoku University Medical Press

  5. Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform.

    Science.gov (United States)

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-10-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Effects of sampling conditions on DNA-based estimates of American black bear abundance

    Science.gov (United States)

    Laufenberg, Jared S.; Van Manen, Frank T.; Clark, Joseph D.

    2013-01-01

    DNA-based capture-mark-recapture techniques are commonly used to estimate American black bear (Ursus americanus) population abundance (N). Although the technique is well established, many questions remain regarding study design. In particular, relationships among N, capture probability of heterogeneity mixtures A and B (pA and pB, respectively, or p, collectively), the proportion of each mixture (π), number of capture occasions (k), and probability of obtaining reliable estimates of N are not fully understood. We investigated these relationships using 1) an empirical dataset of DNA samples for which true N was unknown and 2) simulated datasets with known properties that represented a broader array of sampling conditions. For the empirical data analysis, we used the full closed population with heterogeneity data type in Program MARK to estimate N for a black bear population in Great Smoky Mountains National Park, Tennessee. We systematically reduced the number of those samples used in the analysis to evaluate the effect that changes in capture probabilities may have on parameter estimates. Model-averaged N for females and males were 161 (95% CI = 114–272) and 100 (95% CI = 74–167), respectively (pooled N = 261, 95% CI = 192–419), and the average weekly p was 0.09 for females and 0.12 for males. When we reduced the number of samples of the empirical data, support for heterogeneity models decreased. For the simulation analysis, we generated capture data with individual heterogeneity covering a range of sampling conditions commonly encountered in DNA-based capture-mark-recapture studies and examined the relationships between those conditions and accuracy (i.e., probability of obtaining an estimated N that is within 20% of true N), coverage (i.e., probability that 95% confidence interval includes true N), and precision (i.e., probability of obtaining a coefficient of variation ≤20%) of estimates using logistic regression. The capture probability

  7. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells.

    OpenAIRE

    Belyavsky, A; Vinogradova, T; Rajewsky, K

    1989-01-01

    A procedure for the construction of general cDNA libraries is described which is based on the amplification of total cDNA in vitro. The first cDNA strand is synthesized from total RNA using an oligo(dT)-containing primer. After oligo(dG) tailing the total cDNA is amplified by PCR using two primers complementary to oligo(dA) and oligo(dG) ends of the cDNA. For insertion of the cDNA into a vector a controlled trimming of the 3' ends of the cDNA by Klenow enzyme was used. Starting from 10 J558L ...

  8. Current status and future perspectives on molecular and serological methods in diagnostic mycology.

    Science.gov (United States)

    Lau, Anna; Chen, Sharon; Sleiman, Sue; Sorrell, Tania

    2009-11-01

    Invasive fungal infections are an important cause of infectious morbidity. Nonculture-based methods are increasingly used for rapid, accurate diagnosis to improve patient outcomes. New and existing DNA amplification platforms have high sensitivity and specificity for direct detection and identification of fungi in clinical specimens. Since laboratories are increasingly reliant on DNA sequencing for fungal identification, measures to improve sequence interpretation should support validation of reference isolates and quality control in public gene repositories. Novel technologies (e.g., isothermal and PNA FISH methods), platforms enabling high-throughput analyses (e.g., DNA microarrays and Luminex xMAP) and/or commercial PCR assays warrant further evaluation for routine diagnostic use. Notwithstanding the advantages of molecular tests, serological assays remain clinically useful for patient management. The serum Aspergillus galactomannan test has been incorporated into diagnostic algorithms of invasive aspergillosis. Both the galactomannan and the serum beta-D-glucan test have value for diagnosing infection and monitoring therapeutic response.

  9. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer?

    Science.gov (United States)

    Halliday, C L; Kidd, S E; Sorrell, T C; Chen, S C-A

    2015-04-01

    Rapid, accurate diagnostic laboratory tests are needed to improve clinical outcomes of invasive fungal disease (IFD). Traditional direct microscopy, culture and histological techniques constitute the 'gold standard' against which newer tests are judged. Molecular diagnostic methods, whether broad-range or fungal-specific, have great potential to enhance sensitivity and speed of IFD diagnosis, but have varying specificities. The use of PCR-based assays, DNA sequencing, and other molecular methods including those incorporating proteomic approaches such as matrix-assisted laser desorption ionisation-time of flight mass spectroscopy (MALDI-TOF MS) have shown promising results. These are used mainly to complement conventional methods since they require standardisation before widespread implementation can be recommended. None are incorporated into diagnostic criteria for defining IFD. Commercial assays may assist standardisation. This review provides an update of molecular-based diagnostic approaches applicable to biological specimens and fungal cultures in microbiology laboratories. We focus on the most common pathogens, Candida and Aspergillus, and the mucormycetes. The position of molecular-based approaches in the detection of azole and echinocandin antifungal resistance is also discussed.

  10. Two Family B DNA Polymerases From Aeropyrum pernix, Based on Revised Translational Frames

    Directory of Open Access Journals (Sweden)

    Katsuya Daimon

    2018-04-01

    Full Text Available Living organisms are divided into three domains, Bacteria, Eukarya, and Archaea. Comparative studies in the three domains have provided useful information to understand the evolution of the DNA replication machinery. DNA polymerase is the central enzyme of DNA replication. The presence of multiple family B DNA polymerases is unique in Crenarchaeota, as compared with other archaeal phyla, which have a single enzyme each for family B (PolB and family D (PolD. We analyzed PolB1 and PolB3 in the hyperthermophilic crenarchaeon, Aeropyrum pernix, and found that they are larger proteins than those predicted from the coding regions in our previous study and from public database annotations. The recombinant larger PolBs exhibited the same DNA polymerase activities as previously reported. However, the larger PolB3 showed remarkably higher thermostability, which made this enzyme applicable to PCR. In addition, the high tolerance to salt and heparin suggests that PolB3 will be useful for amplification from the samples with contaminants, and therefore it has a great potential for diagnostic use in the medical and environmental field.

  11. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  12. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA.

    Science.gov (United States)

    Piaggio, Antoinette J; Engeman, Richard M; Hopken, Matthew W; Humphrey, John S; Keacher, Kandy L; Bruce, William E; Avery, Michael L

    2014-03-01

    Recent studies have demonstrated that detection of environmental DNA (eDNA) from aquatic vertebrates in water bodies is possible. The Burmese python, Python bivittatus, is a semi-aquatic, invasive species in Florida where its elusive nature and cryptic coloration make its detection difficult. Our goal was to develop a diagnostic PCR to detect P. bivittatus from water-borne eDNA, which could assist managers in monitoring this invasive species. First, we used captive P. bivittatus to determine whether reptilian DNA could be isolated and amplified from water samples. We also evaluated the efficacy of two DNA isolation methods and two DNA extraction kits commonly used in eDNA preparation. A fragment of the mitochondrial cytochrome b gene from P. bivittatus was detected in all water samples isolated with the sodium acetate precipitate and the QIAamp DNA Micro Kit. Next, we designed P. bivittatus-specific primers and assessed the degradation rate of eDNA in water. Our primers did not amplify DNA from closely related species, and we found that P. bivittatus DNA was consistently detectable up to 96 h. Finally, we sampled water from six field sites in south Florida. Samples from five sites, where P. bivittatus has been observed, tested positive for eDNA. The final site was negative and had no prior documented evidence of P. bivittatus. This study shows P. bivittatus eDNA can be isolated from water samples; thus, this method is a new and promising technique for the management of invasive reptiles. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. PCR-based detection of a rare linear DNA in cell culture

    Directory of Open Access Journals (Sweden)

    Saveliev Sergei V.

    2002-01-01

    Full Text Available The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  14. PCR-based detection of a rare linear DNA in cell culture.

    Science.gov (United States)

    Saveliev, Sergei V.

    2002-11-11

    The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.

  15. Review: Diagnostic accuracy of PCR-based detection tests for Helicobacter Pylori in stool samples.

    Science.gov (United States)

    Khadangi, Fatemeh; Yassi, Maryam; Kerachian, Mohammad Amin

    2017-12-01

    Although different methods have been established to detect Helicobacter pylori (H. pylori) infection, identifying infected patients is an ongoing challenge. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for stool PCR test in the diagnosis of H. pylori infection. In this study, a systematic review and meta-analysis were carried out on various sources, including MEDLINE, Web of Sciences, and the Cochrane Library from April 1, 1999, to May 1, 2016. This meta-analysis adheres to the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses report (PRISMA Statement). The clinical value of DNA stool PCR test was based on the pooled false positive, false negative, true positive, and true negative of different genes. Twenty-six of 328 studies identified met the eligibility criteria. Stool PCR test had a performance of 71% (95% CI: 68-73) sensitivity, 96% (95% CI: 94-97) specificity, and 65.6 (95% CI: 30.2-142.5) diagnostic odds ratio (DOR) in diagnosis of H. pylori. The DOR of genes which showed the highest performance of stool PCR tests was as follows: 23S rRNA 152.5 (95% CI: 55.5-418.9), 16S rRNA 67.9 (95%CI: 6.4-714.3), and glmM 68.1 (95%CI: 20.1-231.7). The sensitivity and specificity of stool PCR test are relatively in the same spectrum of other diagnostic methods for the detection of H. pylori infection. In descending order of significance, the most diagnostic candidate genes using PCR detection were 23S rRNA, 16S rRNA, and glmM. PCR for 23S rRNA gene which has the highest performance could be applicable to detect H. pylori infection. © 2017 John Wiley & Sons Ltd.

  16. Advances in nucleic acid-based diagnostics of bacterial infections

    DEFF Research Database (Denmark)

    Barken, Kim Bundvig; Haagensen, Janus Anders Juul; Tolker-Nielsen, Tim

    2007-01-01

    Methods for rapid detection of infectious bacteria and antimicrobial-resistant pathogens have evolved significantly over the last decade. Many of the new procedures are nucleic acid-based and replace conventional diagnostic methods like culturing which is time consuming especially with fastidious...... of these pathogens is important to isolate patients and prevent further spreading of the diseases. Newly developed diagnostic procedures are superior with respect to turnaround time, sensitivity and specificity. Methods like multiplex real time PCR and different array-based technologies offer the possibility...

  17. Improved chaos-based video steganography using DNA alphabets

    Directory of Open Access Journals (Sweden)

    Nirmalya Kar

    2018-03-01

    Full Text Available DNA based steganography plays a vital role in the field of privacy and secure communication. Here, we propose a DNA properties-based mechanism to send data hidden inside a video file. Initially, the video file is converted into image frames. Random frames are then selected and data is hidden in these at random locations by using the Least Significant Bit substitution method. We analyze the proposed architecture in terms of peak signal-to-noise ratio as well as mean squared error measured between the original and steganographic files averaged over all video frames. The results show minimal degradation of the steganographic video file. Keywords: Chaotic map, DNA, Linear congruential generator, Video steganography, Least significant bit

  18. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    Science.gov (United States)

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  19. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-11-15

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  20. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Patel, Kiran; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-01-01

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  1. DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing.

    Science.gov (United States)

    Schürch, Anita C; van Soolingen, Dick

    2012-06-01

    Current typing methods for Mycobacterium tuberculosis complex evolved from simple phenotypic approaches like phage typing and drug susceptibility profiling to DNA-based strain typing methods, such as IS6110-restriction fragment length polymorphisms (RFLP) and variable number of tandem repeats (VNTR) typing. Examples of the usefulness of molecular typing are source case finding and epidemiological linkage of tuberculosis (TB) cases, international transmission of MDR/XDR-TB, the discrimination between endogenous reactivation and exogenous re-infection as a cause of relapses after curative treatment of tuberculosis, the evidence of multiple M. tuberculosis infections, and the disclosure of laboratory cross-contaminations. Simultaneously, phylogenetic analyses were developed based on single nucleotide polymorphisms (SNPs), genomic deletions usually referred to as regions of difference (RDs) and spoligotyping which served both strain typing and phylogenetic analysis. National and international initiatives that rely on the application of these typing methods have brought significant insight into the molecular epidemiology of tuberculosis. However, current DNA fingerprinting methods have important limitations. They can often not distinguish between genetically closely related strains and the turn-over of these markers is variable. Moreover, the suitability of most DNA typing methods for phylogenetic reconstruction is limited as they show a high propensity of convergent evolution or misinfer genetic distances. In order to fully explore the possibilities of genotyping in the molecular epidemiology of tuberculosis and to study the phylogeny of the causative bacteria reliably, the application of whole-genome sequencing (WGS) analysis for all M. tuberculosis isolates is the optimal, although currently still a costly solution. In the last years WGS for typing of pathogens has been explored and yielded important additional information on strain diversity in comparison to the

  2. DNA nanomaterials for preclinical imaging and drug delivery.

    Science.gov (United States)

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Electron paramagnetic relaxation studies of free radicals in. gamma. -irradiated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M; Yoshi, G [Hokkaido Univ., Sapporo (Japan)

    1980-01-01

    Using the continuous microwave power saturation method the T/sub 1/ spin-lattice relaxation time and T/sub 2/ spin-spin relaxation time for DNA radicals (measured at 297/sup 0/K) are reported. Identical experiments carried out on thymidine-5'-monophosphate sodium salt (TMP) and deoxycytidine-5'-monophosphate sodium salt (dCMP) are also reported. Irradiated DNA produces TMP radicals on the base moiety and dCMP radicals on the sugar moiety. Comparing the relaxation times of DNA with those of TMP and dCMP provided a reliable analysis of the nature of DNA radicals.

  4. Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Masoud Asgarpour

    2018-01-01

    Full Text Available Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for electricity produced by offshore wind and can be significantly reduced if existing corrective actions are performed as efficiently as possible and if future corrective actions are avoided by performing sufficient preventive actions. This paper presents an applied and generic diagnostic model for fault detection and condition based maintenance of offshore wind components. The diagnostic model is based on two probabilistic matrices; first, a confidence matrix, representing the probability of detection using each fault detection method, and second, a diagnosis matrix, representing the individual outcome of each fault detection method. Once the confidence and diagnosis matrices of a component are defined, the individual diagnoses of each fault detection method are combined into a final verdict on the fault state of that component. Furthermore, this paper introduces a Bayesian updating model based on observations collected by inspections to decrease the uncertainty of initial confidence matrix. The framework and implementation of the presented diagnostic model are further explained within a case study for a wind turbine component based on vibration, temperature, and oil particle fault detection methods. The last part of the paper will have a discussion of the case study results and present conclusions.

  5. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  6. Improved Efficiency and Reliability of NGS Amplicon Sequencing Data Analysis for Genetic Diagnostic Procedures Using AGSA Software

    Directory of Open Access Journals (Sweden)

    Axel Poulet

    2016-01-01

    Full Text Available Screening for BRCA mutations in women with familial risk of breast or ovarian cancer is an ideal situation for high-throughput sequencing, providing large amounts of low cost data. However, 454, Roche, and Ion Torrent, Thermo Fisher, technologies produce homopolymer-associated indel errors, complicating their use in routine diagnostics. We developed software, named AGSA, which helps to detect false positive mutations in homopolymeric sequences. Seventy-two familial breast cancer cases were analysed in parallel by amplicon 454 pyrosequencing and Sanger dideoxy sequencing for genetic variations of the BRCA genes. All 565 variants detected by dideoxy sequencing were also detected by pyrosequencing. Furthermore, pyrosequencing detected 42 variants that were missed with Sanger technique. Six amplicons contained homopolymer tracts in the coding sequence that were systematically misread by the software supplied by Roche. Read data plotted as histograms by AGSA software aided the analysis considerably and allowed validation of the majority of homopolymers. As an optimisation, additional 250 patients were analysed using microfluidic amplification of regions of interest (Access Array Fluidigm of the BRCA genes, followed by 454 sequencing and AGSA analysis. AGSA complements a complete line of high-throughput diagnostic sequence analysis, reducing time and costs while increasing reliability, notably for homopolymer tracts.

  7. Diagnostic nerve ultrasonography

    International Nuclear Information System (INIS)

    Baeumer, T.; Grimm, A.; Schelle, T.

    2017-01-01

    For the diagnostics of nerve lesions an imaging method is necessary to visualize peripheral nerves and their surrounding structures for an etiological classification. Clinical neurological and electrophysiological investigations provide functional information about nerve lesions. The information provided by a standard magnetic resonance imaging (MRI) examination is inadequate for peripheral nerve diagnostics; however, MRI neurography is suitable but on the other hand a resource and time-consuming method. Using ultrasonography for peripheral nerve diagnostics. With ultrasonography reliable diagnostics of entrapment neuropathies and traumatic nerve lesions are possible. The use of ultrasonography for neuropathies shows that a differentiation between different forms is possible. Nerve ultrasonography is an established diagnostic tool. In addition to the clinical examination and clinical electrophysiology, structural information can be obtained, which results in a clear improvement in the diagnostics. Ultrasonography has become an integral part of the diagnostic work-up of peripheral nerve lesions in neurophysiological departments. Nerve ultrasonography is recommended for the diagnostic work-up of peripheral nerve lesions in addition to clinical and electrophysiological investigations. It should be used in the clinical work-up of entrapment neuropathies, traumatic nerve lesions and spacy-occupying lesions of nerves. (orig.) [de

  8. DNA hybridization sensor based on pentacene thin film transistor.

    Science.gov (United States)

    Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang

    2011-01-15

    A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Molecular characterization of the rDNA-ITS sequence and a PCR diagnostic technique for Pileolaria terebinthi, the cause of pistachio rust

    Directory of Open Access Journals (Sweden)

    Hossein ALAEI

    2013-01-01

    Full Text Available Eleven samples of the most important pistachio rust (caused by Pileolaria terebinthi (DC. Cast.,, which causes disease on Beneh (Pistacia atlantica Desf. subsp. mutica (Fisch. & Mey. Rech. F and Kasoor (Pistacia khinjuk Stocks., were collected from herbarium specimens and pistachio fields at the Pistachio Research Institute in Rafsanjan, Iran. The complete sequences of ribosomal DNA internal transcribed spacers ITS1 and ITS2 (rDNA ITS from the samples were determined and analysed. In general, very little rDNA ITS sequence variation was observed between rDNA ITS sequences of P. terebinthi samples. The length of the PCR fragments was 621 bp (for ITS1F-ITS4 and 1177 bp (for ITS1F-rust1, and consisted of 67 bp at the 3 ́ end of 18S rDNA, 93 bp of ITS1 region, 154 bp of 5.8S rDNA, 246 bp of the ITS2 region, 57 bp (for ITS1F-ITS4 and 613 bp (for ITS1F-rust1 at the 5 ́ end of the 28S rDNA. Restriction fragment length polymorphisms (RFLPs of the rDNA-ITS region were used to identify Pileolaria terebinthi. Three strong bands of 105, 134 and 381 bp and five bands of 105, 134, 200, 301 and 437 bp are observed for the fragment of “ITS1F-ITS4” and “ITS1F-rust1”, respectively. A PCR-RFLP diagnostic technique provided effective identification of the species by a unique pattern with the specific restriction enzyme XapI (ApoI.

  10. Development trends for diagnostic systems in nuclear power plants

    International Nuclear Information System (INIS)

    Kunze, U.; Pohl, U.

    1998-01-01

    Monitoring systems used in nuclear power plants have made remarkable progress over the past four or five years. Development has followed the trends and changes in philosophy for the purpose of monitoring systems in nuclear power plants: They are no longer expected to fulfill only safety tasks, the plant personnel require information on which to base condition-oriented maintenance. A new generation of monitoring and diagnostic systems has been developed by Siemens recently. This new generation, called Series '95, is PC-based. An overview is given for the KUeS '95 loose parts diagnostic system, the SUeS '95 vibration monitoring system, the FLUeS leak detection system and the SIPLUG valve diagnostics system. The objectives behind the development of these new systems are both safety-related and economic. The new systems improve the reliability and quality of monitoring techniques and incorporate better detection and diagnostic capabilities. Progress has also been made in automation of the systems so as to reduce routine work, give higher sensitivity for the monitoring task and reduce the scope of maintenance. (author)

  11. DNA imaging and quantification using chemi-luminescent probes

    International Nuclear Information System (INIS)

    Dorner, G.; Redjdal, N.; Laniece, P.; Siebert, R.; Tricoire, H.; Valentin, L.

    1999-01-01

    During this interdisciplinary study we have developed an ultra sensitive and reliable imaging system of DNA labelled by chemiluminescence. Based on a liquid nitrogen cooled CCD, the system achieves sensitivities down to 10 fg/mm 2 labelled DNA over a surface area of 25 x 25 cm 2 with a sub-millimeter resolution. Commercially available chemi-luminescent - and enhancer molecules are compared and their reaction conditions optimized for best signal-to-noise ratios. Double labelling was performed to verify quantification with radioactive probes. (authors)

  12. Triple-helix molecular switch-based aptasensors and DNA sensors.

    Science.gov (United States)

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics

    Science.gov (United States)

    Jiang, Li; Mancuso, Matthew; Lu, Zhengda; Akar, Gunkut; Cesarman, Ethel; Erickson, David

    2014-02-01

    Nucleic acid-based diagnostic techniques such as polymerase chain reaction (PCR) are used extensively in medical diagnostics due to their high sensitivity, specificity and quantification capability. In settings with limited infrastructure and unreliable electricity, however, access to such devices is often limited due to the highly specialized and energy-intensive nature of the thermal cycling process required for nucleic acid amplification. Here we integrate solar heating with microfluidics to eliminate thermal cycling power requirements as well as create a simple device infrastructure for PCR. Tests are completed in less than 30 min, and power consumption is reduced to 80 mW, enabling a standard 5.5 Wh iPhone battery to provide 70 h of power to this system. Additionally, we demonstrate a complete sample-to-answer diagnostic strategy by analyzing human skin biopsies infected with Kaposi's Sarcoma herpesvirus (KSHV/HHV-8) through the combination of solar thermal PCR, HotSHOT DNA extraction and smartphone-based fluorescence detection. We believe that exploiting the ubiquity of solar thermal energy as demonstrated here could facilitate broad availability of nucleic acid-based diagnostics in resource-limited areas.

  14. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  15. The quest for a general and reliable fungal DNA barcode

    NARCIS (Netherlands)

    Robert, V.; Szöke, S.; Eberhardt, U.; Cardinali, G.; Meyer, W.; Seifert, K.A.; Levesques, A.; Lewis, C.T.

    2011-01-01

    DNA sequences are key elements for both identification and classification of living organisms. Mainly for historical reasons, a limited number of genes are currently used for this purpose. From a mathematical point of view, any DNA segment, at any location, even outside of coding regions and even if

  16. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Inter-observer agreement, diagnostic sensitivity and specificity of animal-based indicators of young lamb welfare

    DEFF Research Database (Denmark)

    Phythian, C. J.; Toft, N.; Cripps, P. J.

    2013-01-01

    A scientific literature review and consensus of expert opinion used the welfare definitions provided by the Farm Animal Welfare Council (FAWC) Five Freedoms as the framework for selecting a set of animal-based indicators that were sensitive to the current on-farm welfare issues of young lambs (aged...... fill posture, body condition and eye condition. The diagnostic performance of some indicators was influenced by the composition of the study population, and it would be useful to test the indicators on lambs with a greater level of outcomes associated with poor welfare. The findings presented...... in this paper could be applied in the selection of valid, reliable and feasible indicators used for the purposes of on-farm assessments of lamb welfare....

  18. Novel primer specific false terminations during DNA sequencing reactions: danger of inaccuracy of mutation analysis in molecular diagnostics

    Science.gov (United States)

    Anwar, R; Booth, A; Churchill, A J; Markham, A F

    1996-01-01

    The determination of nucleotide sequence is fundamental to the identification and molecular analysis of genes. Direct sequencing of PCR products is now becoming a commonplace procedure for haplotype analysis, and for defining mutations and polymorphism within genes, particularly for diagnostic purposes. A previously unrecognised phenomenon, primer related variability, observed in sequence data generated using Taq cycle sequencing and T7 Sequenase sequencing, is reported. This suggests that caution is necessary when interpreting DNA sequence data. This is particularly important in situations where treatment may be dependent on the accuracy of the molecular diagnosis. Images PMID:16696096

  19. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  20. DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species.

    Science.gov (United States)

    Hassold, Sonja; Lowry, Porter P; Bauert, Martin R; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex

    2016-01-01

    Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world's most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods.

  1. 800,000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    Science.gov (United States)

    Binladen, Jonas; Gilbert, M Thomas P; Willerslev, Eske

    2007-02-22

    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451-454), report the recovery of 'authentic' mammoth DNA from an 800,000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely in samples, which are recovered from warm environments and are relatively old (e.g. more than 100,000 years), these findings come as a great surprise. Here, we show that problems exist with the methodological approaches used in the study. First, the nested PCR technique as reported is nonsensical--one of the second round 'nested' primers falls outside the amplicon of the first round PCR. More worryingly, the binding region of one of the first round primers (Elcytb320R) falls within the short 43 base pair reported mammoth sequence, specifically covering two of the three reportedly diagnostic Elephas polymorphisms. Finally, we demonstrate using a simple BLAST search in GenBank that the claimed 'uniquely derived character state' for mammoths is in fact also found within modern elephants.

  2. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  3. Reliability-based assessment of polyethylene pipe creep lifetime

    International Nuclear Information System (INIS)

    Khelif, Rabia; Chateauneuf, Alaa; Chaoui, Kamel

    2007-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature

  4. Reliability-based assessment of polyethylene pipe creep lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Khelif, Rabia [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere Cedex (France); LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: rabia.khelif@ifma.fr; Chateauneuf, Alaa [LGC-University Blaise Pascal, Campus des Cezeaux, BP 206, 63174 Aubiere Cedex (France)], E-mail: alaa.chateauneuf@polytech.univ-bpclermont.fr; Chaoui, Kamel [LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: chaoui@univ-annaba.org

    2007-12-15

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature.

  5. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method

    DEFF Research Database (Denmark)

    Malorny, B.; Hoorfar, Jeffrey; Hugas, M.

    2003-01-01

    A collaborative study involving four European laboratories was conducted to investigate the diagnostic accuracy of a Salmonella specific PCR-based method, which was evaluated within the European FOOD-PCR project (http://www.pcr.dk). Each laboratory analysed by the PCR a set of independent obtained...... presumably naturally contaminated samples and compared the results with the microbiological culture method. The PCR-based method comprised a preenrichment step in buffered peptone water followed by a thermal cell lysis using a closed tube resin-based method. Artificially contaminated minced beef and whole......-based diagnostic methods and is currently proposed as international standard document....

  6. Reliability-based trajectory optimization using nonintrusive polynomial chaos for Mars entry mission

    Science.gov (United States)

    Huang, Yuechen; Li, Haiyang

    2018-06-01

    This paper presents the reliability-based sequential optimization (RBSO) method to settle the trajectory optimization problem with parametric uncertainties in entry dynamics for Mars entry mission. First, the deterministic entry trajectory optimization model is reviewed, and then the reliability-based optimization model is formulated. In addition, the modified sequential optimization method, in which the nonintrusive polynomial chaos expansion (PCE) method and the most probable point (MPP) searching method are employed, is proposed to solve the reliability-based optimization problem efficiently. The nonintrusive PCE method contributes to the transformation between the stochastic optimization (SO) and the deterministic optimization (DO) and to the approximation of trajectory solution efficiently. The MPP method, which is used for assessing the reliability of constraints satisfaction only up to the necessary level, is employed to further improve the computational efficiency. The cycle including SO, reliability assessment and constraints update is repeated in the RBSO until the reliability requirements of constraints satisfaction are satisfied. Finally, the RBSO is compared with the traditional DO and the traditional sequential optimization based on Monte Carlo (MC) simulation in a specific Mars entry mission to demonstrate the effectiveness and the efficiency of the proposed method.

  7. Are the classic diagnostic methods in mycology still state of the art?

    Science.gov (United States)

    Wiegand, Cornelia; Bauer, Andrea; Brasch, Jochen; Nenoff, Pietro; Schaller, Martin; Mayser, Peter; Hipler, Uta-Christina; Elsner, Peter

    2016-05-01

    The diagnostic workup of cutaneous fungal infections is traditionally based on microscopic KOH preparations as well as culturing of the causative organism from sample material. Another possible option is the detection of fungal elements by dermatohistology. If performed correctly, these methods are generally suitable for the diagnosis of mycoses. However, the advent of personalized medicine and the tasks arising therefrom require new procedures marked by simplicity, specificity, and swiftness. The additional use of DNA-based molecular techniques further enhances sensitivity and diagnostic specificity, and reduces the diagnostic interval to 24-48 hours, compared to weeks required for conventional mycological methods. Given the steady evolution in the field of personalized medicine, simple analytical PCR-based systems are conceivable, which allow for instant diagnosis of dermatophytes in the dermatology office (point-of-care tests). © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  8. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    Science.gov (United States)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  9. High-speed DNA-based rolling motors powered by RNase H

    Science.gov (United States)

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.

    2016-01-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152

  10. Detection of Target ssDNA Using a Microfabricated Hall Magnetometer with Correlated Optical Readout

    Directory of Open Access Journals (Sweden)

    Steven M. Hira

    2012-01-01

    Full Text Available Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs, is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead target DNA in the presence of 36 μM nontarget (noncomplementary DNA (<10 ppm target DNA using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC diagnostics and subsequent medical care.

  11. A new method of diagnostics for the magnetospheric plasma

    International Nuclear Information System (INIS)

    Etcheto, Jacqueline; Petit, Michel

    1977-01-01

    A new diagnostic technique for magnetospheric plasma, based on in situ excitation of the plasma resonances, has been used for the first time on board the Geos satellite. The preliminary results are very gratifying: electron density and magnetic field intensity are derived reliably and accurately from the resonances observed; hopefully, temperature and electric field will be deduced from the data as well [fr

  12. Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics.

    Science.gov (United States)

    Donolato, Marco; Antunes, Paula; Bejhed, Rebecca S; Zardán Gómez de la Torre, Teresa; Østerberg, Frederik W; Strömberg, Mattias; Nilsson, Mats; Strømme, Maria; Svedlindh, Peter; Hansen, Mikkel F; Vavassori, Paolo

    2015-02-03

    We demonstrate detection of DNA coils formed from a Vibrio cholerae DNA target at picomolar concentrations using a novel optomagnetic approach exploiting the dynamic behavior and optical anisotropy of magnetic nanobead (MNB) assemblies. We establish that the complex second harmonic optical transmission spectra of MNB suspensions measured upon application of a weak uniaxial AC magnetic field correlate well with the rotation dynamics of the individual MNBs. Adding a target analyte to the solution leads to the formation of permanent MNB clusters, namely, to the suppression of the dynamic MNB behavior. We prove that the optical transmission spectra are highly sensitive to the formation of permanent MNB clusters and, thereby to the target analyte concentration. As a specific clinically relevant diagnostic case, we detect DNA coils formed via padlock probe recognition and isothermal rolling circle amplification and benchmark against a commercial equipment. The results demonstrate the fast optomagnetic readout of rolling circle products from bacterial DNA utilizing the dynamic properties of MNBs in a miniaturized and low-cost platform requiring only a transparent window in the chip.

  13. Design of Korean nuclear reliability data-base network using a two-stage Bayesian concept

    International Nuclear Information System (INIS)

    Kim, T.W.; Jeong, K.S.; Chae, S.K.

    1987-01-01

    In an analysis of probabilistic risk, safety, and reliability of a nuclear power plant, the reliability data base (DB) must be established first. As the importance of the reliability data base increases, event reporting systems such as the US Nuclear Regulatory Commission's Licensee Event Report and the International Atomic Energy Agency's Incident Reporting System have been developed. In Korea, however, the systematic reliability data base is not yet available. Therefore, foreign data bases have been directly quoted in reliability analyses of Korean plants. In order to develop a reliability data base for Korean plants, the problem is which methodology is to be used, and the application limits of the selected method must be solved and clarified. After starting the commercial operation of Korea Nuclear Unit-1 (KNU-1) in 1978, six nuclear power plants have begun operation. Of these, only KNU-3 is a Canada Deuterium Uranium pressurized heavy-water reactor, and the others are all pressurized water reactors. This paper describes the proposed reliability data-base network (KNRDS) for Korean nuclear power plants in the context of two-stage Bayesian (TSB) procedure of Kaplan. It describes the concept of TSB to obtain the Korean-specific plant reliability data base, which is updated with the incorporation of both the reported generic reliability data and the operation experiences of similar plants

  14. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    Science.gov (United States)

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  16. Coronary Heart Disease Preoperative Gesture Interactive Diagnostic System Based on Augmented Reality.

    Science.gov (United States)

    Zou, Yi-Bo; Chen, Yi-Min; Gao, Ming-Ke; Liu, Quan; Jiang, Si-Yu; Lu, Jia-Hui; Huang, Chen; Li, Ze-Yu; Zhang, Dian-Hua

    2017-08-01

    Coronary heart disease preoperative diagnosis plays an important role in the treatment of vascular interventional surgery. Actually, most doctors are used to diagnosing the position of the vascular stenosis and then empirically estimating vascular stenosis by selective coronary angiography images instead of using mouse, keyboard and computer during preoperative diagnosis. The invasive diagnostic modality is short of intuitive and natural interaction and the results are not accurate enough. Aiming at above problems, the coronary heart disease preoperative gesture interactive diagnostic system based on Augmented Reality is proposed. The system uses Leap Motion Controller to capture hand gesture video sequences and extract the features which that are the position and orientation vector of the gesture motion trajectory and the change of the hand shape. The training planet is determined by K-means algorithm and then the effect of gesture training is improved by multi-features and multi-observation sequences for gesture training. The reusability of gesture is improved by establishing the state transition model. The algorithm efficiency is improved by gesture prejudgment which is used by threshold discriminating before recognition. The integrity of the trajectory is preserved and the gesture motion space is extended by employing space rotation transformation of gesture manipulation plane. Ultimately, the gesture recognition based on SRT-HMM is realized. The diagnosis and measurement of the vascular stenosis are intuitively and naturally realized by operating and measuring the coronary artery model with augmented reality and gesture interaction techniques. All of the gesture recognition experiments show the distinguish ability and generalization ability of the algorithm and gesture interaction experiments prove the availability and reliability of the system.

  17. Delirium diagnosis defined by cluster analysis of symptoms versus diagnosis by DSM and ICD criteria: diagnostic accuracy study.

    Science.gov (United States)

    Sepulveda, Esteban; Franco, José G; Trzepacz, Paula T; Gaviria, Ana M; Meagher, David J; Palma, José; Viñuelas, Eva; Grau, Imma; Vilella, Elisabet; de Pablo, Joan

    2016-05-26

    Information on validity and reliability of delirium criteria is necessary for clinicians, researchers, and further developments of DSM or ICD. We compare four DSM and ICD delirium diagnostic criteria versions, which were developed by consensus of experts, with a phenomenology-based natural diagnosis delineated using cluster analysis of delirium features in a sample with a high prevalence of dementia. We also measured inter-rater reliability of each system when applied by two evaluators from distinct disciplines. Cross-sectional analysis of 200 consecutive patients admitted to a skilled nursing facility, independently assessed within 24-48 h after admission with the Delirium Rating Scale-Revised-98 (DRS-R98) and for DSM-III-R, DSM-IV, DSM-5, and ICD-10 criteria for delirium. Cluster analysis (CA) delineated natural delirium and nondelirium reference groups using DRS-R98 items and then diagnostic systems' performance were evaluated against the CA-defined groups using logistic regression and crosstabs for discriminant analysis (sensitivity, specificity, percentage of subjects correctly classified by each diagnostic system and their individual criteria, and performance for each system when excluding each individual criterion are reported). Kappa Index (K) was used to report inter-rater reliability for delirium diagnostic systems and their individual criteria. 117 (58.5 %) patients had preexisting dementia according to the Informant Questionnaire on Cognitive Decline in the Elderly. CA delineated 49 delirium subjects and 151 nondelirium. Against these CA groups, delirium diagnosis accuracy was highest using DSM-III-R (87.5 %) followed closely by DSM-IV (86.0 %), ICD-10 (85.5 %) and DSM-5 (84.5 %). ICD-10 had the highest specificity (96.0 %) but lowest sensitivity (53.1 %). DSM-III-R had the best sensitivity (81.6 %) and the best sensitivity-specificity balance. DSM-5 had the highest inter-rater reliability (K =0.73) while DSM-III-R criteria were the least

  18. An Intuitionistic Fuzzy Methodology for Component-Based Software Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Grigore, Albeanu; Popenţiuvlǎdicescu, Florin

    2012-01-01

    Component-based software development is the current methodology facilitating agility in project management, software reuse in design and implementation, promoting quality and productivity, and increasing the reliability and performability. This paper illustrates the usage of intuitionistic fuzzy...... degree approach in modelling the quality of entities in imprecise software reliability computing in order to optimize management results. Intuitionistic fuzzy optimization algorithms are proposed to be used for complex software systems reliability optimization under various constraints....

  19. Molecular diagnostics for the sigatoka disease complex of banana.

    Science.gov (United States)

    Arzanlou, Mahdi; Abeln, Edwin C A; Kema, Gert H J; Waalwijk, Cees; Carlier, Jean; Vries, Ineke de; Guzmán, Mauricio; Crous, Pedro W

    2007-09-01

    ABSTRACT The Sigatoka disease complex of banana involves three related ascomycetous fungi, Mycosphaerella fijiensis, M. musicola, and M. eumusae. The exact distribution of these three species and their disease epidemiology remain unclear, because their symptoms and life cycles are rather similar. Disease diagnosis in the Mycosphaerella complex of banana is based on the presence of host symptoms and fungal fruiting structures, which hamper preventive management strategies. In the present study, we have developed rapid and robust species-specific molecular-based diagnostic tools for detection and quantification of M. fijiensis, M. musicola, and M. eumusae. Conventional species-specific polymerase chain reaction (PCR) primers were developed based on the actin gene that detected DNA at as little as 100, 1, and 10 pg/mul from M. fijiensis, M. musicola, and M. eumusae, respectively. Furthermore, TaqMan real-time quantitative PCR assays were developed based on the beta-tubulin gene and detected quantities of DNA as low as 1 pg/mul for each Mycosphaerella sp. from pure cultures and DNA at 1.6 pg/mul per milligram of dry leaf tissue for M. fijiensis that was validated using naturally infected banana leaves.

  20. Use of FTA® classic cards for epigenetic analysis of sperm DNA.

    Science.gov (United States)

    Serra, Olga; Frazzi, Raffaele; Perotti, Alessio; Barusi, Lorenzo; Buschini, Annamaria

    2018-02-01

    FTA® technologies provide the most reliable method for DNA extraction. Although FTA technologies have been widely used for genetic analysis, there is no literature on their use for epigenetic analysis yet. We present for the first time, a simple method for quantitative methylation assessment based on sperm cells stored on Whatman FTA classic cards. Specifically, elution of seminal DNA from FTA classic cards was successfully tested with an elution buffer and an incubation step in a thermocycler. The eluted DNA was bisulfite converted, amplified by PCR, and a region of interest was pyrosequenced.