WorldWideScience

Sample records for reliable biosensor applications

  1. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    Science.gov (United States)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  2. Photonic crystals: emerging biosensors and their promise for point-of-care applications.

    Science.gov (United States)

    Inan, Hakan; Poyraz, Muhammet; Inci, Fatih; Lifson, Mark A; Baday, Murat; Cunningham, Brian T; Demirci, Utkan

    2017-01-23

    Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.

  3. Recent Advances in Application of Biosensors in Tissue Engineering

    Science.gov (United States)

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  4. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  5. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  6. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    Science.gov (United States)

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  7. Development and Applications of Portable Biosensors.

    Science.gov (United States)

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.

  8. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    , environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part......The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...

  9. Functional Conducting Polymers in the Application of SPR Biosensors

    Directory of Open Access Journals (Sweden)

    Rapiphun Janmanee

    2012-01-01

    Full Text Available In recent years, conducting polymers have emerged as one of the most promising transducers for both chemical, sensors and biosensors owing to their unique electrical, electrochemical and optical properties that can be used to convert chemical information or biointeractions into electrical or optical signals, which can easily be detected by modern techniques. Different approaches to the application of conducting polymers in chemo- or biosensing applications have been extensively studied. In order to enhance the application of conducting polymers into the area of biosensors, one approach is to introduce functional groups, including carboxylic acid, amine, sulfonate, or thiol groups, into the conducting polymer chain and to form a so-called “self-doped” or by doping with negatively charged polyelectrolytes. The functional conducting polymers have been successfully utilized to immobilize enzymes for construction of biosensors. Recently, the combination of SPR and electrochemical, known as electrochemical-surface plasmon resonance (EC-SPR, spectroscopy, has been used for in situ investigation of optical and electrical properties of conducting polymer films. Moreover, EC-SPR spectroscopy has been applied for monitoring the interaction between biomolecules and electropolymerized conjugated polymer films in biosensor and immunosensor applications. In this paper, recent development and applications on EC-SPR in biosensors will be reviewed.

  10. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  11. Biomolecular logic systems: applications to biosensors and bioactuators

    Science.gov (United States)

    Katz, Evgeny

    2014-05-01

    The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.

  12. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  13. Biosensors for security and bioterrorism applications

    CERN Document Server

    Nikoleli, Georgia-Paraskevi

    2016-01-01

    This book offers comprehensive coverage of biomarker/biosensor interactions for the rapid detection of weapons of bioterrorism, as well as current research trends and future developments and applications. It will be useful to researchers in this field who are interested in new developments in the early detection of such. The authors have collected very valuable and, in some aspects indispensable experience in the area i.e. in the development and application of portable biosensors for the detection of potential hazards. Most efforts are centered on the development of immunochemical assays including flow-lateral systems and engineered antibodies and their fragments. In addition, new approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites and nutrients are elaborated. Some realized prototypes and concept devices applicable for the further use as a basis for the cooperation programs are also discussed. There is a particular focus on electrochemical and optical det...

  14. Development of biosensors and their application in metabolic engineering

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation...... for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding...

  15. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  16. Production and Application of Biosensors: A Brief Review

    Directory of Open Access Journals (Sweden)

    Pedro Emílio Amador Salomão

    2018-02-01

    Full Text Available In a modern world where efficiency, precision and time savings have been prioritized, a new frontier has been seen in the biosensors to be explored. A potential alternative to the current means of quantification and qualification, the biosensors have been gaining more and more prominence as they are devices of quantification and qualification cheaper and simple, when compared with the current techniques and with the advantage of being able to be used many times in the place where the sample is collected. According to its application is produced by different methods, in which it has in its basic constitution a sensor element of biological origin, an inorganic half-conductor used as a transducer and a signal processing device. In this article we show the scientific production involving biosensors, together with their synthesis method, which differs according to their application in order to detect the most varied analytes, chemical species and even living organisms.

  17. A Study of Wearable Bio-Sensor Technologies and Applications in Healthcare

    Directory of Open Access Journals (Sweden)

    Amir Mehmood

    2017-06-01

    Full Text Available In today’s world the rapid advancements in Micro-Electromechanical Systems (MEMS and Nano technology have improved almost all the aspects of daily life routine with the help of different smart devices such as smart phones, compact electronic devices etc. The prime example of these emerging developments is the development of wireless sensors for healthcare procedures. One kind of these sensors is wearable bio-sensors. In this paper, the technologies of two types of bio-sensors (ECG, EMG are investigated and also compared with traditional ECG, EMG equipment. We have taken SHIMMERTM wireless sensor platform as an example of wearable biosensors technology. We have investigated the systems developed for analysis techniques with SHIMMERTM ECG and EMG wearable bio-sensors and these biosensors are used in continuous remote monitoring. For example, applications in continuous health monitoring of elderly people, critical chronic patients and Fitness & Fatigue observations. Nevertheless, early fall detection in older adults and weak patients, treatment efficacy assessment. This study not only provides the basic concepts of wearable wireless bio-sensors networks (WBSN, but also provides basic knowledge of different sensor platforms available for patient’s remote monitoring. Also various healthcare applications by using bio-sensors are discussed and in last comparison with traditional ECG and EMG is presented.

  18. Fluorescence-based biosensors from concepts to applications

    CERN Document Server

    Morris, May C

    2013-01-01

    One of the major challenges of modern biology and medicine consists in finding means to visualize biomolecules in their natural environment with the greatest level of accuracy, so as to gain insight into their properties and behaviour in a physiological and pathological setting. This has been achieved thanks to the design of novel imaging agents, in particular to fluorescent biosensors. Fluorescence Biosensors comprise a large set of tools which are useful for fundamental purposes as well as for applications in biomedicine, drug discovery and biotechnology. These tools have been designed a

  19. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application

    Directory of Open Access Journals (Sweden)

    Keiichiro Yamanaka

    2016-10-01

    Full Text Available In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR. For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

  20. Application of Optical Biosensors in Small-Molecule Screening Activities

    Directory of Open Access Journals (Sweden)

    Wolfgang Knecht

    2012-03-01

    Full Text Available The last two decades have seen remarkable progress and improvements in optical biosensor systems such that those are currently seen as an important and value-adding component of modern drug screening activities. In particular the introduction of microplate-based biosensor systems holds the promise to match the required throughput without compromising on data quality thus representing a sought-after complement to traditional fluidic systems. This article aims to highlight the application of the two most prominent optical biosensor technologies, namely surface plasmon resonance (SPR and optical waveguide grating (OWG, in small-molecule screening and will present, review and discuss the advantages and disadvantages of different assay formats on these platforms. A particular focus will be on the specific advantages of the inhibition in solution assay (ISA format in contrast to traditional direct binding assays (DBA. Furthermore we will discuss different application areas for both fluidic as well as plate-based biosensor systems by considering the individual strength of the platforms.

  1. Lignin and silicate based hydrogels for biosensor applications

    Science.gov (United States)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  2. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biosensors and environmental health

    National Research Council Canada - National Science Library

    Preedy, Victor R; Patel, Vinood B

    2012-01-01

    ..., bacterial biosensors, antibody-based biosensors, enzymatic, amperometric and electrochemical aspects, quorum sensing, DNA-biosensors, cantilever biosensors, bioluminescence and other methods and applications...

  4. Investigation of thin polymer layers for biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Saftics, András; Agócs, Emil [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Fodor, Bálint [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Physics, Faculty of Science, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Patkó, Dániel; Petrik, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kolari, Kai; Aalto, Timo [VTT Technical Research Centre of Finland, PL 1000, Tietotie 3, 02044 Espoo (Finland); Fürjes, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Horvath, Robert [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kurunczi, Sándor, E-mail: kurunczi.sandor@ttk.mta.hu [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary)

    2013-09-15

    Novel biosensors made of polymers may offer advantages over conventional technology such as possibility of mass production and tunability of the material properties. With the ongoing work on the polymer photonic chip fabrication in our project, simple model samples were tested parallel for future immobilization and accessing conditions for applications in typical aqueous buffers. The model samples consist of a thin, high refractive index polyimide film on top of TEOS on Si wafer. These model samples were measured by in situ spectroscopic ellipsometry using different aqueous buffers. The experiments revealed a high drift in aqueous solutions; the drift in the ellipsometric parameters (delta, psi) can be evaluated and presented as changes in thickness and refractive index of the polyimide layer. The first molecular layer of immobilization is based on polyethyleneimine (PEI). The signal for the PEI adsorption was detected on a stable baseline, only after a long conditioning. The stability of polyimide films in aqueous buffer solutions should be improved toward the real biosensor application. Preliminary results are shown on the possibilities to protect the polyimide. Optical Waveguide Lightmode Spectroscopy (OWLS) has been used to demonstrate the shielding effect of the thin TiO{sub 2} adlayer in biosensor applications.

  5. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  6. Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor.

    Science.gov (United States)

    Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju

    2014-12-24

    We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.

  7. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  9. Applications of polymers for biomolecule immobilization in electrochemical biosensors

    International Nuclear Information System (INIS)

    Teles, F.R.R.; Fonseca, L.P.

    2008-01-01

    Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered 'smart' polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms

  10. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    International Nuclear Information System (INIS)

    Arya, Sunil K.; Saha, Shibu; Ramirez-Vick, Jaime E.; Gupta, Vinay; Bhansali, Shekhar; Singh, Surinder P.

    2012-01-01

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: ► This review highlights various approaches to synthesize ZnO nanostructures and thin films. ► Article highlights the importance of ZnO nanostructures as biosensor matrix. ► Article highlights the advances in various biosensors based on ZnO nanostructures. ► Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review

  11. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Sunil K., E-mail: sunilarya333@gmail.com [Bioelectronics Program, Institute of Microelectronics, A-Star 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Ramirez-Vick, Jaime E. [Engineering Science and Materials Department, University of Puerto Rico, Mayaguez, PR 00681 (United States); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Bhansali, Shekhar [Department of Electrical and Computer Engineering, Florida International University, Miami, FL (United States); Singh, Surinder P., E-mail: singh.uprm@gmail.com [National Physical Laboratory, Dr K.S. Krishnan Marg, New Delhi 110012 (India)

    2012-08-06

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: Black-Right-Pointing-Pointer This review highlights various approaches to synthesize ZnO nanostructures and thin films. Black-Right-Pointing-Pointer Article highlights the importance of ZnO nanostructures as biosensor matrix. Black-Right-Pointing-Pointer Article highlights the advances in various biosensors based on ZnO nanostructures. Black-Right-Pointing-Pointer Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes Zn

  12. Principles and Applications of Flow Injection Analysis in Biosensors

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    In practical applications biosensors are often forced to operate under less than optimal conditions. Because of their construction, and the physical processes and chemical reactions involved in their operation, compromise conditions are frequently required to synchronize all events taking place....... Therefore, and in order to implement functions such as periodic calibration, conditioning and possible regeneration of the biosensor, and, very importantly, to yield the freedom to select the optimum detection means, it is advantageous to use these devices in a flow-through mode, particularly by employing...... the flow injection (FI) approach. The capacity of FI, as offering itself as a complementary facility to augment the performance of biosensors, and in many cases as an attractive alternative, is demonstrated by reference to selected examples, comprising assays based on enzymatic procedures with optical...

  13. Biosensors based on cantilevers.

    Science.gov (United States)

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  14. Cholinesterase-based biosensors.

    Science.gov (United States)

    Štěpánková, Šárka; Vorčáková, Katarína

    2016-01-01

    Recently, cholinesterase-based biosensors are widely used for assaying anticholinergic compounds. Primarily biosensors based on enzyme inhibition are useful analytical tools for fast screening of inhibitors, such as organophosphates and carbamates. The present review is aimed at compilation of the most important facts about cholinesterase based biosensors, types of physico-chemical transduction, immobilization strategies and practical applications.

  15. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2013-08-01

    Full Text Available The enzyme acetylcholinesterase (AChE is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer, it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol /L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples.

  16. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, J. W.

    1996-01-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  17. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  18. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine

    Science.gov (United States)

    Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe

    2015-08-01

    The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.

  19. Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration

    Directory of Open Access Journals (Sweden)

    Lopez Gerardo A.

    2016-08-01

    Full Text Available Motivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.

  20. Features and application of wearable biosensors in medical care

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2015-01-01

    Full Text Available One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database. In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  1. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    Science.gov (United States)

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  2. Development of biosensor based on imaging ellipsometry and biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G., E-mail: gajin@imech.ac.c [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Meng, Y.H.; Liu, L.; Niu, Y.; Chen, S. [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Cai, Q.; Jiang, T.J. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-02-28

    So far, combined with a microfluidic reactor array system, an engineering system of biosensor based on imaging ellipsometry is installed for biomedical applications, such as antibody screen, hepatitis B markers detection, cancer markers spectrum and virus recognition, etc. Furthermore, the biosensor in total internal reflection (TIR) mode has be improved by a spectroscopic light, optimization settings of polarization and low noise CCD which brings an obvious improvement of 10 time increase in the sensitivity and SNR, and 50 times lower concentration in the detection limit with a throughput of 48 independent channels and the time resolution of 0.04 S.

  3. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  4. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    Science.gov (United States)

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  5. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    Science.gov (United States)

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  7. Biosensors and bioelectronics

    CERN Document Server

    Karunakaran, Chandran; Benjamin, Robson

    2015-01-01

    Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers. Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based re

  8. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Recent Development in Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Catalina Bosch Ojeda

    2007-06-01

    Full Text Available Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  10. Micropatterning of 3D Microenvironments for Living Biosensor Applications

    Directory of Open Access Journals (Sweden)

    William F. Hynes

    2014-02-01

    Full Text Available Micro-scale printing and patterning of living cells has multiple applications including tissue engineering, cell signaling assays, and the fabrication of cell-based biosensors. In this work, a molecular printing instrument, the Bioforce Nano eNabler, was modified to enable micron-scale “quill-pen” based printing of mammalian cells in a 3D hyaluronan/gelatin based hydrogel. Specifically, photo-initiated “thiol-ene” click chemistry was used to couple the thiol groups of thiolated hyaluronan/thiolated gelatin to the alkene groups of 4-arm polyethylene glycol (PEG-norbornene molecules. Rapid photopolymerization enabled direct printing and controlled curing of living cells within the hydrogel matrix. The resulting hydrogels were biocompatible with human adipose-derived stem cells, NIH-3T3 cells, and mouse embryonic stem cells. The utility of this printing approach was also explored for cell-based biosensors. Micro-printed cells expressing a redox sensitive variant of the green fluorescent protein (roGFP-R12 showed a measurable fluorescent response to addition of oxidizing and then reducing agents. This work represents a novel approach to micron-scale cell patterning, and its potential for living, cell-based biosensors.

  11. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    Science.gov (United States)

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.

  12. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    Science.gov (United States)

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biosensors and their applications in detection of organophosphorus pesticides in the environment.

    Science.gov (United States)

    Hassani, Shokoufeh; Momtaz, Saeideh; Vakhshiteh, Faezeh; Maghsoudi, Armin Salek; Ganjali, Mohammad Reza; Norouzi, Parviz; Abdollahi, Mohammad

    2017-01-01

    This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.

  14. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    Science.gov (United States)

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.

  15. Biosensors in Clinical Practice: Focus on Oncohematology

    Directory of Open Access Journals (Sweden)

    Agostino Cortelezzi

    2013-05-01

    Full Text Available Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.

  16. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Measurement and Simulation Techniques For Piezoresistive Microcantilever Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Aan Febriansyah

    2012-12-01

    Full Text Available Applications of microcantilevers as biosensors have been explored by many researchers for the applications in medicine, biological, chemistry, and environmental monitoring. This research discusses a design of measurement method and simuations for piezoresistive microcantilever as a biosensor, which consist of designing Wheatstone bridge circuit as object detector, simulation of resonance frequency shift based on Euler Bernoulli Beam equation, and microcantilever vibration simulation using COMSOL Multiphysics 3.5. The piezoresistive microcantilever used here is Seiko Instrument Technology (Japan product with length of 110 ?m, width of 50 ?m, and thickness of 1 ?m. Microcantilever mass is 12.815 ng, including the mass receptor. The sample object in this research is bacteria EColi. One bacteria mass is assumed to 0.3 pg. Simulation results show that the mass of one bacterium will cause the deflection of 0,03053 nm and resonance frequency value of 118,90 kHz. Moreover, four bacterium will cause the deflection of 0,03054 nm and resonance frequency value of 118,68 kHz. These datas indicate that the increasing of the bacteria mass increases the deflection value and reduces the value of resonance frequency.

  18. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    Science.gov (United States)

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  19. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    Science.gov (United States)

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. S-Layer Protein-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Bernhard Schuster

    2018-04-01

    Full Text Available The present paper highlights the application of bacterial surface (S- layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  2. S-Layer Protein-Based Biosensors.

    Science.gov (United States)

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  3. Nanochannels Photoelectrochemical Biosensor.

    Science.gov (United States)

    Zhang, Nan; Ruan, Yi-Fan; Zhang, Li-Bin; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-06

    Nanochannels have brought new opportunities for biosensor development. Herein, we present the novel concept of a nanochannels photoelectrochemical (PEC) biosensor based on the integration of a unique Cu x O-nanopyramid-islands (NPIs) photocathode, an anodic aluminum oxide (AAO) membrane, and alkaline phosphatase (ALP) catalytic chemistry. The Cu x O-NPIs photocathode possesses good performance, and further assembly with AAO yields a designed architecture composed of vertically aligned, highly ordered nanoarrays on top of the Cu x O-NPIs film. After biocatalytic precipitation (BCP) was stimulated within the channels, the biosensor was used for the successful detection of ALP activity. This study has not only provided a novel paradigm for an unconventional nanochannels PEC biosensor, which can be used for general bioanalytical purposes, but also indicated that the new concept of nanochannel-semiconductor heterostructures is a step toward innovative biomedical applications.

  4. Nanohybrids Near-Field Optical Microscopy: From Image Shift to Biosensor Application

    Directory of Open Access Journals (Sweden)

    Nayla El-Kork

    2016-01-01

    Full Text Available Near-Field Optical Microscopy is a valuable tool for the optical and topographic study of objects at a nanometric scale. Nanoparticles constitute important candidates for such type of investigations, as they bear an important weight for medical, biomedical, and biosensing applications. One, however, has to be careful as artifacts can be easily reproduced. In this study, we examined hybrid nanoparticles (or nanohybrids in the near-field, while in solution and attached to gold nanoplots. We found out that they can be used for wavelength modulable near-field biosensors within conditions of artifact free imaging. In detail, we refer to the use of topographic/optical image shift and the imaging of Local Surface Plasmon hot spots to validate the genuineness of the obtained images. In summary, this study demonstrates a new way of using simple easily achievable comparative methods to prove the authenticity of near-field images and presents nanohybrid biosensors as an application.

  5. Personalized USB Biosensor Module for Effective ECG Monitoring.

    Science.gov (United States)

    Sladojević, Srdjan; Arsenović, Marko; Lončar-Turukalo, Tatjana; Sladojević, Miroslava; Ćulibrk, Dubravko

    2016-01-01

    The burden of chronic disease and associated disability present a major threat to financial sustainability of healthcare delivery systems. The need for cost-effective early diagnosis and disease prevention is evident driving the development of personalized home health solutions. The proposed solution presents an easy to use ECG monitoring system. The core hardware component is a biosensor dongle with sensing probes at one end, and micro USB interface at the other end, offering reliable and unobtrusive sensing, preprocessing and storage. An additional component is a smart phone, providing both the biosensor's power supply and an intuitive user application for the real-time data reading. The system usage is simplified, with innovative solutions offering plug and play functionality avoiding additional driver installation. Personalized needs could be met with different sensor combinations enabling adequate monitoring in chronic disease, during physical activity and in the rehabilitation process.

  6. Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application.

    Science.gov (United States)

    Bidmanova, Sarka; Kotlanova, Marketa; Rataj, Tomas; Damborsky, Jiri; Trtilek, Martin; Prokop, Zbynek

    2016-10-15

    An advanced optical biosensor was developed based on the enzymatic reaction with halogenated aliphatic hydrocarbons that is accompanied by the fluorescence change of pH indicator. The device is applicable for the detection of halogenated contaminants in water samples with pH ranging from 4 to 10 and temperature ranging from 5 to 60°C. Main advantages of the developed biosensor are small size (60×30×190mm(3)) and portability, which together with short measurement time of 1min belong to crucial attributes of analytical technique useful for routine environmental monitoring. The biosensor was successfully applied for the detection of several important halogenated pollutants under laboratory conditions, e.g., 1,2-dichloroethane, 1,2,3-trichloropropane and γ-hexachlorocyclohexane, with the limits of detection of 2.7, 1.4 and 12.1mgL(-1), respectively. The continuous monitoring was demonstrated by repetitive injection of halogenated compound into measurement solution. Consequently, field trials under environmental settings were performed. The presence of 1,2-dichloroethane (10mgL(-1)) was proved unambiguously on one of three potentially contaminated sites in Czech Republic, and the same contaminant was monitored on contaminated locality in Serbia. Equipped by Global Positioning System, the biosensor was used for creation of a precise map of contamination. Concentrations determined by biosensor and by gas chromatograph coupled with mass spectrometer exhibited the correlation coefficient of 0.92, providing a good confidence for the routine use of the biosensor system in both field screening and monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Further In-vitro Characterization of an Implantable Biosensor for Ethanol Monitoring in the Brain

    Directory of Open Access Journals (Sweden)

    Gaia Rocchitta

    2013-07-01

    Full Text Available Ethyl alcohol may be considered one of the most widespread central nervous system (CNS depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats. The implanted biosensor, integrated in a low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF. In this paper we describe a further in-vitro characterization of the above-mentioned biosensor in terms of oxygen, pH and temperature dependence in order to complete its validation. With the aim of enhancing ethanol biosensor performance, different enzyme loadings were investigated in terms of apparent ethanol Michaelis-Menten kinetic parameters, viz. IMAX, KM and linear region slope, as well as ascorbic acid interference shielding. The responses of biosensors were studied over a period of 28 days. The overall findings of the present study confirm the original biosensor configuration to be the best of those investigated for in-vivo applications up to one week after implantation.

  8. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing.

    Science.gov (United States)

    Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří

    2016-05-03

    Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.

  9. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  10. Review of Micro/Nanotechnologies for Microbial Biosensors

    Directory of Open Access Journals (Sweden)

    Ji Won eLim

    2015-05-01

    Full Text Available A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory-regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.

  11. Electrochemical miRNA Biosensors: The Benefits of Nanotechnology

    Directory of Open Access Journals (Sweden)

    Mostafa Azimzadeh

    2017-02-01

    Full Text Available The importance of nanotechnology in medical technologies, especially biomedical diagnostics, is indubitable. By taking advantages of nanomaterials, many medical diagnostics methods have been developed so far, including electrochemical nanobiosensors. They have been used for quantification of different clinical biomarkers for detecting, screening, or follow up a disease. microRNAs (miRNAs are one of the most recent and reliable biomarkers used for biomedical diagnosis of various diseases including different cancer types. In addition, there are many electrochemical nanobiosensors explained in publications, patents, and/or a commercial device which have been fabricated for detection or quantification of valuable miRNAs. The aim of this article is to review the concept of medical diagnostics, biosensors, electrochemical biosensors and to emphasize the role of nanotechnology in nanobiosensor development and performance for application in microRNAs detection for biomedical diagnosis. We have also summarized recent ideas and advancements in the field of electrochemical nanobiosensors for miRNA detection, and the important breakthroughs are also explained.

  12. Biosensors a promising future in measurements

    International Nuclear Information System (INIS)

    Saleem, Muhammad

    2013-01-01

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors

  13. Biosensors based on β-galactosidase enzyme: Recent advances and perspectives.

    Science.gov (United States)

    Sharma, Shiv K; Leblanc, Roger M

    2017-10-15

    Many industries are striving for the development of more reliable and robust β-galactosidase biosensors that exhibit high response rate, increased detection limit and enriched useful lifetime. In a newfangled technological atmosphere, a trivial advantage or disadvantage of the developed biosensor may escort to the survival and extinction of the industry. Several alternative strategies to immobilize β-galactosidase enzyme for their utilization in biosensors have been developed in recent years in the quest of maximum utility by controlling the defects seen in the previous biosensors. The overwhelming call for on-line measurement of different sample constituents has directed science and industry to search for best practical solutions and biosensors are witnessed as the best prospect. The main objective of this paper is to serve as a narrow footbridge by comparing the literary works on the β-galactosidase biosensors, critically analyze their use in the construction of best biosensor by showing the pros and cons of the predicted methods for the practical use of biosensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant

    International Nuclear Information System (INIS)

    Paton, G.I.; Reid, B.J.; Semple, K.T.

    2009-01-01

    Despite numerous reviews suggesting that microbial biosensors could be used in many environmental applications, in reality they have failed to be used for which they were designed. In part this is because most of these sensors perform in an aqueous phase and a buffered medium, which is in contrast to the nature of genuine environmental systems. In this study, a range of non-exhaustive extraction techniques (NEETs) were assessed for (i) compatibility with a naphthalene responsive biosensor and (ii) correlation with naphthalene biodegradation. The NEETs removed a portion of the total soil naphthalene in the order of methanol > HPCD > βCD > water. To place the biosensor performance to NEETs in context, a biodegradation experiment was carried out using historically contaminated soils. By coupling the HPCD extraction with the biosensor, it was possible to assess the fraction of the naphthalene capable of undergoing microbial degradation in soil. - Exposure of microbial biosensors to cyclodextrin solutions allows the assessment of the degradable fraction of contaminants in soil.

  15. Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars

    Science.gov (United States)

    Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V.

    2016-02-01

    The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme adhesion on stainless steel electrodes. The developed GOx-SME-GA biosensors were characterized by good reproducibility of biosensor preparation (relative standard deviation (RSD)—18 %), improved signal reproducibility (RSD of glucose determination was 7 %), and good storage stability (29 % loss of activity after 18-day storage). A series of fruit juices and nectars was analyzed using GOx-SME-GA biosensor for determination of glucose concentration. The obtained results showed good correlation with the data of high-performance liquid chromatography (HPLC) ( R = 0.99).

  16. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  17. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    Science.gov (United States)

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sabury, Sina [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-04-01

    In the present work we report a facile method for fabrication of glucose oxidase immobilized on the partially reduced graphene–gold nanocomposite (PRGO–AuNPs/GOx) as a novel biosensor for determination of glucose concentration. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the morphology of PRGO and PRGO–AuNPs. Also, fast Fourier transformation infrared spectroscopy (FTIR) and UV–Vis spectroscopy were used to confirm formation of graphene and graphene–gold composite. Then, the electrochemical behavior of PRGO–AuNPs/GOx modified electrode was studied by cyclic voltammetry (CV). Our electrochemical studies, especially chronoamperometry (CA), showed that the PRGO–AuNPs/GOx modified electrode has excellent electrocatalytic activity towards the glucose. The limit of detection and sensitivity towards glucose were estimated as 0.06 μM and 15.04 mA mM{sup −1}, respectively. - Highlights: • PGRO–AuNPs modified electrode employed as a reliable scaffold for GODx immobilization. • AuNPs prevent stacking PRGO layers, thus improve the electrochemical behavior of biosensor. • GODx electron transfer was improved because of good interaction with PRGO–AuNP scaffold. • PRGO–AuNP/GODx modified biosensor showed excellent sensitivity towards glucose.

  19. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-01

    The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  1. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors

    NARCIS (Netherlands)

    Kros, A.; Hövell, W.F.M. van; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Amperometric biosensors for the recognition of glucose oxidase (GOx) based on poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated for the first time. The resulting biosensor has potential applications for long-term glucose measurements.

  2. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  3. Magneto-elastic biosensors: Influence of different thiols on pathogen capture efficiency

    International Nuclear Information System (INIS)

    Dalla Pozza, Márcia; Possan, André L.; Roesch-Ely, Mariana; Missell, Frank P.

    2017-01-01

    Magneto-elastic biosensors have mass sensitivity to biological species, offering reliability and reproducibility in the detection of pathogens such as Escherichia coli. In this work, amorphous ribbons of Metglas 2826MB3 were coated with layers of Cr and Au by DC magnetron sputtering and cut to 5 mm × 1 mm. The influence of different thiols on captured pathogens was studied. The compounds cystamine (CYS), cysteamine (CYSTE) and mercaptopropionic acid (MPA) were deposited on Au-covered surfaces, followed by antibodies. The roughness parameters Ra and Rq were determined using atomic force microscopy (AFM) and micrographs from scanning electron microscopy with a field emission gun (FESEM) were also utilized. Biosensors formed with MPA showed an increased efficiency for attracting E. coli compared to biosensors with CYS and CYSTE, but large standard deviations were observed, making reproducibility and reliability difficult for that biosensor. Sensors tested with CYSTE showed greater efficiency and a lower detection limit than sensors with CYS. The results indicated that the size of the carbon chain and the terminal grouping influence the effectiveness of immobilization on magneto-elastic biosensors. - Highlights: • Atomic force microscopy (AFM) and scanning electron microscopy with field emission gun (FESEM) were utilized. • Biosensor with cysteamine (CYSTE) gave lower detection limit for E.coli than mercaptopropionic acid (MPA) or cystamine (CYS)

  4. Magneto-elastic biosensors: Influence of different thiols on pathogen capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Pozza, Márcia; Possan, André L. [Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Roesch-Ely, Mariana [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Missell, Frank P., E-mail: fpmissel@ucs.br [Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil)

    2017-06-01

    Magneto-elastic biosensors have mass sensitivity to biological species, offering reliability and reproducibility in the detection of pathogens such as Escherichia coli. In this work, amorphous ribbons of Metglas 2826MB3 were coated with layers of Cr and Au by DC magnetron sputtering and cut to 5 mm × 1 mm. The influence of different thiols on captured pathogens was studied. The compounds cystamine (CYS), cysteamine (CYSTE) and mercaptopropionic acid (MPA) were deposited on Au-covered surfaces, followed by antibodies. The roughness parameters Ra and Rq were determined using atomic force microscopy (AFM) and micrographs from scanning electron microscopy with a field emission gun (FESEM) were also utilized. Biosensors formed with MPA showed an increased efficiency for attracting E. coli compared to biosensors with CYS and CYSTE, but large standard deviations were observed, making reproducibility and reliability difficult for that biosensor. Sensors tested with CYSTE showed greater efficiency and a lower detection limit than sensors with CYS. The results indicated that the size of the carbon chain and the terminal grouping influence the effectiveness of immobilization on magneto-elastic biosensors. - Highlights: • Atomic force microscopy (AFM) and scanning electron microscopy with field emission gun (FESEM) were utilized. • Biosensor with cysteamine (CYSTE) gave lower detection limit for E.coli than mercaptopropionic acid (MPA) or cystamine (CYS)

  5. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    Science.gov (United States)

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  6. Development of aptamers for in vivo and in vitro biosensor applications

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm

    block chemicals are now being sustainably produced in bacterial cell-factories. The development of new bacterial cell-factories is a difficult and expensive process, in part due to time required to screen for and optimize productions strains. A new promising way of reducing the development time...... is generating new and faster ways of screening and optimizing using biosensors. In this thesis we develop new functional biological recognition modules for biosensors. These DNA- and RNA-based recognition modules are called aptamers and are developed to interact with targets of choice. Aptamers are developed...... application) and small molecule food additives (for optimization production in cell factories). Additionally, the characterization an all-polymer physicochemical biosensor is presented for the detection of antibiotics in food products. These results have lead to the ongoing development of a high...

  7. Whole-Cell Fluorescent Biosensors for Bioavailability and Biodegradation of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    David Ryan

    2010-02-01

    Full Text Available Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ,to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs.

  8. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  9. Biosensors-on-chip: a topical review

    International Nuclear Information System (INIS)

    Chen, Sensen; Shamsi, Mohtashim H

    2017-01-01

    This review will examine the integration of two fields that are currently at the forefront of science, i.e. biosensors and microfluidics. As a lab-on-a-chip (LOC) technology, microfluidics has been enriched by the integration of various detection tools for analyte detection and quantitation. The application of such microfluidic platforms is greatly increased in the area of biosensors geared towards point-of-care diagnostics. Together, the merger of microfluidics and biosensors has generated miniaturized devices for sample processing and sensitive detection with quantitation. We believe that microfluidic biosensors (biosensors-on-chip) are essential for developing robust and cost effective point-of-care diagnostics. This review is relevant to a variety of disciplines, such as medical science, clinical diagnostics, LOC technologies including MEMs/NEMs, and analytical science. Specifically, this review will appeal to scientists working in the two overlapping fields of biosensors and microfluidics, and will also help new scientists to find their directions in developing point-of-care devices. (topical review)

  10. Introduction to biosensors from electric circuits to immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  11. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  12. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.

    Science.gov (United States)

    De Paepe, Brecht; Maertens, Jo; Vanholme, Bartel; De Mey, Marjan

    2018-05-18

    To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.

  13. A robust high-throughput fungal biosensor assay for the detection of estrogen activity.

    Science.gov (United States)

    Zutz, Christoph; Wagener, Karen; Yankova, Desislava; Eder, Stefanie; Möstl, Erich; Drillich, Marc; Rychli, Kathrin; Wagner, Martin; Strauss, Joseph

    2017-10-01

    Estrogenic active compounds are present in a variety of sources and may alter biological functions in vertebrates. Therefore, it is crucial to develop innovative analytical systems that allow us to screen a broad spectrum of matrices and deliver fast and reliable results. We present the adaptation and validation of a fungal biosensor for the detection of estrogen activity in cow derived samples and tested the clinical applicability for pregnancy diagnosis in 140 mares and 120 cows. As biosensor we used a previously engineered genetically modified strain of the filamentous fungus Aspergillus nidulans, which contains the human estrogen receptor alpha and a reporter construct, in which β-galactosidase gene expression is controlled by an estrogen-responsive-element. The estrogen response of the fungal biosensor was validated with blood, urine, feces, milk and saliva. All matrices were screened for estrogenic activity prior to and after chemical extraction and the results were compared to an enzyme immunoassay (EIA). The biosensor showed consistent results in milk, urine and feces, which were comparable to those of the EIA. In contrast to the EIA, no sample pre-treatment by chemical extraction was needed. For 17β-estradiol, the biosensor showed a limit of detection of 1ng/L. The validation of the biosensor for pregnancy diagnosis revealed a specificity of 100% and a sensitivity of more than 97%. In conclusion, we developed and validated a highly robust fungal biosensor for detection of estrogen activity, which is highly sensitive and economic as it allows analyzing in high-throughput formats without the necessity for organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    Science.gov (United States)

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  15. Micro- and nanogap based biosensors

    OpenAIRE

    Hammond, Jules L.

    2017-01-01

    Biosensors are used for the detection of a range of analytes for applications in healthcare, food production, environmental monitoring and biodefence. However, many biosensing platforms are large, expensive, require skilled operators or necessitate the analyte to be labelled. Direct electrochemical detection methods present a particularly attractive platform due to the simplified instrumentation when compared to other techniques such as fluorescence-based biosensors. With modern integrated ci...

  16. Microbially derived biosensors for diagnosis, monitoring and epidemiology.

    Science.gov (United States)

    Chang, Hung-Ju; Voyvodic, Peter L; Zúñiga, Ana; Bonnet, Jérôme

    2017-09-01

    Living cells have evolved to detect and process various signals and can self-replicate, presenting an attractive platform for engineering scalable and affordable biosensing devices. Microbes are perfect candidates: they are inexpensive and easy to manipulate and store. Recent advances in synthetic biology promise to streamline the engineering of microbial biosensors with unprecedented capabilities. Here we review the applications of microbially-derived biosensors with a focus on environmental monitoring and healthcare applications. We also identify critical challenges that need to be addressed in order to translate the potential of synthetic microbial biosensors into large-scale, real-world applications. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  18. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  19. Prospects of conducting polymers in biosensors

    International Nuclear Information System (INIS)

    Malhotra, Bansi D.; Chaubey, Asha; Singh, S.P.

    2006-01-01

    Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years

  20. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  1. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.

    Science.gov (United States)

    Liu, Xuan; Jiang, Hui

    2017-12-04

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.

  2. Clinical Assessment Applications of Ambulatory Biosensors

    Science.gov (United States)

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  3. Progress of new label-free techniques for biosensors: a review.

    Science.gov (United States)

    Sang, Shengbo; Wang, Yajun; Feng, Qiliang; Wei, Ye; Ji, Jianlong; Zhang, Wendong

    2016-01-01

    The detection techniques used in biosensors can be broadly classified into label-based and label-free. Label-based detection relies on the specific properties of labels for detecting a particular target. In contrast, label-free detection is suitable for the target molecules that are not labeled or the screening of analytes which are not easy to tag. Also, more types of label-free biosensors have emerged with developments in biotechnology. The latest developed techniques in label-free biosensors, such as field-effect transistors-based biosensors including carbon nanotube field-effect transistor biosensors, graphene field-effect transistor biosensors and silicon nanowire field-effect transistor biosensors, magnetoelastic biosensors, optical-based biosensors, surface stress-based biosensors and other type of biosensors based on the nanotechnology are discussed. The sensing principles, configurations, sensing performance, applications, advantages and restriction of different label-free based biosensors are considered and discussed in this review. Most concepts included in this survey could certainly be applied to the development of this kind of biosensor in the future.

  4. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil

    2016-05-01

    Full Text Available Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.

  5. Role of biomolecular logic systems in biosensors and bioactuators

    Science.gov (United States)

    Mailloux, Shay; Katz, Evgeny

    2014-09-01

    An overview of recent advances in biosensors and bioactuators based on biocomputing systems is presented. Biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce an output in the form of a YES/NO response. Compared to traditional single-analyte sensing devices, the biocomputing approach enables high-fidelity multianalyte biosensing, which is particularly beneficial for biomedical applications. Multisignal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert medical personnel of medical emergencies together with immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly as exemplified for liver injury. Wide-ranging applications of multianalyte digital biosensors in medicine, environmental monitoring, and homeland security are anticipated. "Smart" bioactuators, for signal-triggered drug release, for example, were designed by interfacing switchable electrodes with biocomputing systems. Integration of biosensing and bioactuating systems with biomolecular information processing systems advances the potential for further scientific innovations and various practical applications.

  6. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  7. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  8. SiPM as miniaturised optical biosensor for DNA-microarray applications

    Directory of Open Access Journals (Sweden)

    M.F. Santangelo

    2015-12-01

    Full Text Available A miniaturized optical biosensor for low-level fluorescence emitted by DNA strands labelled with CY5 is showed. Aim of this work is to demonstrate that a Si-based photodetector, having a low noise and a high sensitivity, can replace traditional detection systems in DNA-microarray applications. The photodetector used is a photomultiplier (SiPM, with 25 pixels. It exhibits a higher sensitivity than commercial optical readers and we experimentally found a detection limit for spotted dried samples of ∼1 nM. We measured the fluorescence signal in different operating conditions (angle of analysis, fluorophores concentrations, solution volumes and support. Once fixed the angle of analysis, for samples spotted on Al-TEOS slide dried, the system is proportional to the concentration of the analyte in the sample and is linear in the range 1 nM–1 μM. For solutions, the range of linearity ranges from 100 fM to 10 nM. The system potentialities and the device low costs suggest it as basic component for the design and fabrication of a cheap, easy and portable optical system. Keywords: Optical Biosensor, SiPM, DNA microarray, Fluorophore detection

  9. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  10. Nano technologies for Biosensor and Bio chip

    International Nuclear Information System (INIS)

    Kim, I.M.; Park, T.J.; Paskaleva, E.E.; Sun, F.; Seo, J.W.; Mehta, K.K.

    2015-01-01

    The bio sensing devices are characterized by their biological receptors, which have specificity to their corresponding analytes. These analytes are a vast and diverse group of biological molecules, DNAs, proteins (such as antibodies), fatty acids, or entire biological systems, such as pathogenic bacteria, viruses, cancerous cells, or other living organisms. A main challenge in the development of biosensor applications is the efficient recognition of a biological signal in a low signal-to-noise ratio environment, and its transduction into an electrochemical, optical, or other signals. The advent of nano material technology greatly increased the potential for achieving exquisite sensitivity of such devises, due to the innate high surface-to-volume ratio and high reactivity of the nano material. The second major challenge facing the biosensor application, that of sca lability, is addressed by multiplexing and miniaturizing of the biosensor devises into a bio chip. In recent years, biosensor and bio chip technologies have made significant progress by taking advantages of diverse kinds of nano materials that are derived from nano technology

  11. Development of electrochemical biosensors with various types of zeolites

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Soldatkin, O. O.; Pyeshkova, V. M.; Dudchenko, O. Y.; Akata Kurç, B.; Dzyadevych, S. V.

    2018-03-01

    In the work, different types of zeolites were used for the development of enzyme-based electrochemical biosensors. Zeolites were added to the biorecognition elements of the biosensors and served as additional components of the biomembranes or adsorbents for enzymes. Three types of biosensors (conductometric, amperometric and potentiometric) were studied. The developed biosensors were compared with the similar biosensors without zeolites. The biosensors contained the following enzymes: urease, glucose oxidase, glutamate oxidase, and acetylcholinesterase and were intended for the detection of urea, glucose, glutamate, and acetylcholine, respectively. Construction of the biosensors using the adsorption of enzymes on zeolites has several advantages: simplicity, good reproducibility, quickness, absence of toxic compounds. These benefits are particularly important for the standardization and further mass production of the biosensors. Furthermore, a biosensor for the sucrose determination contained a three-enzyme system (invertase/mutatorase/glucose oxidase), immobilized by a combination of adsorption on silicalite and cross-linking via glutaraldehyde; such combined immobilization demonstrated better results as compared with adsorption or cross-linking separately. The analysis of urea and sucrose concentrations in the real samples was carried out. The results, obtained with biosensors, had high correlation with the results of traditional analytical methods, thus the developed biosensors are promising for practical applications.

  12. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  13. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2012-11-01

    Full Text Available The capabilities of biosensors for bio-environmental monitoring have profound influences on medical, pharmaceutical, and environmental applications. This paper provides an overview on the background and applications of the state-of-the-art biosensors. Different types of biosensors are summarized and sensing mechanisms are discussed. A review of organic materials used in biosensors is given. Specifically, this review focuses on self-assembled monolayers (SAM due to their high sensitivity and high versatility. The kinetics, chemistry, and the immobilization strategies of biomolecules are discussed. Other representative organic materials, such as graphene, carbon nanotubes (CNTs, and conductive polymers are also introduced in this review.

  14. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  15. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    Science.gov (United States)

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  16. Biosensor technology for pesticides--a review.

    Science.gov (United States)

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  17. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Science.gov (United States)

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  18. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    Science.gov (United States)

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Biosensors: Future Analytical Tools

    Directory of Open Access Journals (Sweden)

    Vikas

    2007-02-01

    Full Text Available Biosensors offer considerable promises for attaining the analytic information in a faster, simpler and cheaper manner compared to conventional assays. Biosensing approach is rapidly advancing and applications ranging from metabolite, biological/ chemical warfare agent, food pathogens and adulterant detection to genetic screening and programmed drug delivery have been demonstrated. Innovative efforts, coupling micromachining and nanofabrication may lead to even more powerful devices that would accelerate the realization of large-scale and routine screening. With gradual increase in commercialization a wide range of new biosensors are thus expected to reach the market in the coming years.

  20. Application of the SSB biosensor to study in vitro transcription.

    Science.gov (United States)

    Cook, Alexander; Hari-Gupta, Yukti; Toseland, Christopher P

    2018-02-12

    Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    Directory of Open Access Journals (Sweden)

    Tuoyu Zhou

    2017-09-01

    Full Text Available With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA to water quality detection (e.g., COD, BOD. When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP, formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  2. Application of DNA Hybridization Biosensor as a Screening Method for the Detection of Genetically Modified Food Components

    Directory of Open Access Journals (Sweden)

    Marian Filipiak

    2008-03-01

    Full Text Available An electrochemical biosensor for the detection of genetically modified food components is presented. The biosensor was based on 21-mer single-stranded oligonucleotide (ssDNA probe specific to either 35S promoter or nos terminator, which are frequently present in transgenic DNA cassettes. ssDNA probe was covalently attached by 5’-phosphate end to amino group of cysteamine self-assembled monolayer (SAM on gold electrode surface with the use of activating reagents – water soluble 1-ethyl-3(3’- dimethylaminopropyl-carbodiimide (EDC and N-hydroxy-sulfosuccinimide (NHS. The hybridization reaction on the electrode surface was detected via methylene blue (MB presenting higher affinity to ssDNA probe than to DNA duplex. The electrode modification procedure was optimized using 19-mer oligoG and oligoC nucleotides. The biosensor enabled distinction between DNA samples isolated from soybean RoundupReady® (RR soybean and non-genetically modified soybean. The frequent introduction of investigated DNA sequences in other genetically modified organisms (GMOs give a broad perspectives for analytical application of the biosensor.

  3. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  4. Emerging synergy between nanotechnology and implantable biosensors: a review.

    Science.gov (United States)

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  5. Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor

    Directory of Open Access Journals (Sweden)

    Schuhmann Wolfgang

    2011-05-01

    Full Text Available Abstract Background The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task. Results A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast Hansenula polymorpha as biorecognition element. The construction of uricase (UOX producing yeast by over-expression of the uricase gene of H. polymorpha is described. Following a preliminary screening of the transformants with increased UOX activity in permeabilized yeast cells the optimal cultivation conditions for maximal UOX yield namely a 40-fold increase in UOX activity were determined. The UOX producing cells were coupled to horseradish peroxidase and immobilized on graphite electrodes by physical entrapment behind a dialysis membrane. A high urate selectivity with a detection limit of about 8 μM was found. Conclusion A strain of H. polymorpha overproducing UOX was constructed. A cheap urate selective microbial biosensor was developed.

  6. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    Directory of Open Access Journals (Sweden)

    Ramesh K. Jha

    2018-06-01

    Full Text Available Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators. Keywords: Whole cell biosensor, Aromatic catabolism, Transcription factor, PcaU, Shikimate

  7. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  8. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  9. Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning

    Directory of Open Access Journals (Sweden)

    Anna Zhu

    2013-10-01

    Full Text Available The growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for legislative actions on environmental pollution control and early warning. Optical biosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. This article reviews important advances in functional biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells that facilitate the increasing application of optical biosensors. This work further examines the significant improvements in optical biosensor instrumentation and their environmental applications. Innovative developments of optical biosensors for environmental pollution control and early warning are also discussed.

  10. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor.

    Science.gov (United States)

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2006-10-18

    The use of a laccase biosensor, under both batch and flow injection (FI) conditions, for a rapid and reliable amperometric estimation of the total content of polyphenolic compounds in wines is reported. The enzyme was immobilized by cross-linking with glutaraldehyde onto a glassy carbon electrode. Caffeic acid and gallic acid were selected as standard compounds to carry out such estimation. Experimental variables such as the enzyme loading, the applied potential, and the pH value were optimized, and different aspects regarding the operational stability of the laccase biosensor were evaluated. Using batch amperometry at -200 mV, the detection limits obtained were 2.6 x 10(-3) and 7.2 x 10(-4) mg L(-1) gallic acid and caffeic acid, respectively, which compares advantageously with previous biosensor designs. An extremely simple sample treatment consisting only of an appropriate dilution of wine sample with the supporting electrolyte solution (0.1 mol L(-1) citrate buffer of pH 5.0) was needed for the amperometric analysis of red, rosé, and white wines. Good correlations were found when the polyphenol indices obtained with the biosensor (in both the batch and FI modes) for different wine samples were plotted versus the results achieved with the classic Folin-Ciocalteu method. Application of the calibration transfer chemometric model (multiplicative fitting) allowed that the confidence intervals (for a significance level of 0.05) for the slope and intercept values of the amperometric index versus Folin-Ciocalteu index plots (r = 0.997) included the unit and zero values, respectively. This indicates that the laccase biosensor can be successfully used for the estimation of the polyphenol index in wines when compared with the Folin-Ciocalteu reference method.

  11. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    Science.gov (United States)

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  12. Potential application of hemoglobin as an alternative to peroxidase in a phenol biosensor

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Lee, Dong-Yun; Park, Sang-Hyun; Kwon, Young-Soo

    2008-01-01

    This work describes a new amperometric biosensor for detecting phenolic compounds. The sensor was designed by immobilizing Hemoglobin (Hb) in a sol-gel matrix onto a carbon electrode. Using the peroxidase activity of Hb, the phenolic compound can be reduced in the presence of H 2 O 2 . The biosensor's performance in phenolic compound detection was based on mediated electron transfer by Hb. The direct electron transfer of Hb can be avoided by use of the sol-gel matrix. The proposed biosensor presents a very sensitive response for phenolic compounds at an applied potential of 0.0 mV vs. Ag/AgCl. The parameters of the fabrication process for the electrode were optimized. Experimental conditions influencing the biosensor performance, such as pH and potential, were investigated and assessed. Various types of phenolic compounds were detected. Among them, using the optimized conditions, a linearity for the detection of the phenol was observed from 5 μM to 50 μM. Biosensor response levels after 30 days were at more than 80% of their initial response readings level. The response time of the biosensor was about 10 s

  13. Design of nanostructured-based glucose biosensors

    Science.gov (United States)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  14. Preparation of DNA biosensor application from fuel oil waste by functionalization and characterization of MWCNT

    Directory of Open Access Journals (Sweden)

    Ahmed Mishaal Mohammed

    2017-11-01

    Full Text Available The potential of using a multi-wall carbon nanotube (MWCNT synthesized from a fuel oil waste of power plants has discovered for the first time for DNA biosensors application. The MWCNT surface morphologies were examined by field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM. The thickness of the MWCNT was found 203nm and confirmed by FESEM. The electrochemical DNA biosensor was successfully developed using a MWCNT modified on SiO2 thin films. The capacitance measurements were performed to detect the sensitivity of DNA detection. The change in capacitance before and after immobilization of the DNA was measured in the frequency range of 1Hz to 1MHz. The results indicate that bare device exhibited the lowest capacitance value, which was 32.7μF. The capacitance value of the DNA immobilization increase to 52μF. The permittivity and conductivity also were examined to study the effect of the DNA immobilization toward the MWCNT modified surface. This present demonstrated that the MWCNT modified SiO2 a thin film was successfully fabricated for DNA biosensor detection. Keywords: Carbon nanotubes, Sensors, Thin films, Electrochemical DNA

  15. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    Science.gov (United States)

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  16. Fluorescence based fiber optic and planar waveguide biosensors. A review

    International Nuclear Information System (INIS)

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C.

    2016-01-01

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  17. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  18. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  19. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    Science.gov (United States)

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    Science.gov (United States)

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  1. Investigation of cleaning and regeneration methods for reliable construction of DNA cantilever biosensors

    DEFF Research Database (Denmark)

    Quan, Xueling; Yi, Sun; Heiskanen, Arto

    to clean and regenerate the sensing surface of cantilever biosensors. Perchloric acid potential sweep, potassium hydroxide-hydrogen peroxide, and piranha cleaning are investigated here. Peak-current potential differences from cyclic voltammetry, X-ray photo-electron spectroscopy and fluorescence detection...

  2. Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application

    International Nuclear Information System (INIS)

    Maniruzzaman, Mohammad; Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Highlights: ► An organic–inorganic hybrid nanocomposite was fabricated by blending TiO 2 nanoparticles and cellulose solution. ► The hybrid nanocomposite has advantages of biodegradability and bio-compatibility of cellulose and physical properties of TiO 2 . ► Enzyme glucose oxidase (GOx) was immobilized into the hybrid nanocomposite and covalent bonding between TiO 2 and GOx was confirmed by X-ray photoelectron analysis. ► Linear response of the glucose biosensor was obtained in the range of 1–10 mM. - Abstract: This paper investigates the fabrication of titanium dioxide (TiO 2 )–cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO 2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO 2 –cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO 2 –cellulose hybrid nanocomposite via covalent bonding between TiO 2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1–10 mM. This study demonstrates that TiO 2 –cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  3. Immobilization of HRP Enzyme on Layered Double Hydroxides for Biosensor Application

    Directory of Open Access Journals (Sweden)

    Zouhair M. Baccar

    2011-01-01

    Full Text Available We present a new biosensor for hydrogen peroxide (H2O2 detection. The biosensor was based on the immobilization of horseradish peroxidase (HRP enzyme on layered double hydroxides- (LDH- modified gold surface. The hydrotalcite LDH (Mg2Al was prepared by coprecipitation in constant pH and in ambient temperature. The immobilization of the peroxidase on layered hybrid materials was realized via electrostatic adsorption autoassembly process. The detection of hydrogen peroxide was successfully observed in PBS buffer with cyclic voltammetry and the chronoamperometry techniques. A limit detection of 9 μM of H2O2 was obtained with a good reproducibility. We investigate the sensitivity of our developed biosensor for H2O2 detection in raw milk.

  4. Recent Advances in Magnetic Microfluidic Biosensors

    Directory of Open Access Journals (Sweden)

    Ioanna Giouroudi

    2017-07-01

    Full Text Available The development of portable biosening devices for the detection of biological entities such as biomolecules, pathogens, and cells has become extremely significant over the past years. Scientific research, driven by the promise for miniaturization and integration of complex laboratory equipment on inexpensive, reliable, and accurate devices, has successfully shifted several analytical and diagnostic methods to the submillimeter scale. The miniaturization process was made possible with the birth of microfluidics, a technology that could confine, manipulate, and mix very small volumes of liquids on devices integrated on standard silicon technology chips. Such devices are then directly translating the presence of these entities into an electronic signal that can be read out with a portable instrumentation. For the aforementioned tasks, the use of magnetic markers (magnetic particles—MPs—functionalized with ligands in combination with the application of magnetic fields is being strongly investigated by research groups worldwide. The greatest merits of using magnetic fields are that they can be applied either externally or from integrated microconductors and they can be well-tuned by adjusting the applied current on the microconductors. Moreover, the magnetic markers can be manipulated inside microfluidic channels by high gradient magnetic fields that can in turn be detected by magnetic sensors. All the above make this technology an ideal candidate for the development of such microfluidic biosensors. In this review, focus is given only to very recent advances in biosensors that use microfluidics in combination with magnetic sensors and magnetic markers/nanoparticles.

  5. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  6. Photonic crystal-based optical biosensor: a brief investigation

    Science.gov (United States)

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  7. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Science.gov (United States)

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  8. Construction and characterization of novel stress-responsive Deinococcal biosensors

    International Nuclear Information System (INIS)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-01

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR 0 161, DR 0 589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection

  9. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this ..... each case, a few ml of methanol was added to sample, and then it was ...

  10. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  11. Development of a formaldehyde biosensor with application to synthetic methylotrophy.

    Science.gov (United States)

    Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory

    2018-01-01

    Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.

  12. Titanium dioxide-cellulose hybrid nanocomposite and its glucose biosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Maniruzzaman, Mohammad; Jang, Sang-Dong [Center for EAPap Actuator, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of); Kim, Jaehwan, E-mail: jaehwan@inha.ac.kr [Center for EAPap Actuator, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer An organic-inorganic hybrid nanocomposite was fabricated by blending TiO{sub 2} nanoparticles and cellulose solution. Black-Right-Pointing-Pointer The hybrid nanocomposite has advantages of biodegradability and bio-compatibility of cellulose and physical properties of TiO{sub 2}. Black-Right-Pointing-Pointer Enzyme glucose oxidase (GOx) was immobilized into the hybrid nanocomposite and covalent bonding between TiO{sub 2} and GOx was confirmed by X-ray photoelectron analysis. Black-Right-Pointing-Pointer Linear response of the glucose biosensor was obtained in the range of 1-10 mM. - Abstract: This paper investigates the fabrication of titanium dioxide (TiO{sub 2})-cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO{sub 2} nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO{sub 2}-cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO{sub 2}-cellulose hybrid nanocomposite via covalent bonding between TiO{sub 2} and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1-10 mM. This study demonstrates that TiO{sub 2}-cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  13. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides.

    Science.gov (United States)

    Cui, Hui-Fang; Wu, Wen-Wen; Li, Meng-Meng; Song, Xiaojie; Lv, Yuanxu; Zhang, Ting-Ting

    2018-01-15

    A highly stable electrochemical acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs) was developed simply by adsorption of AChE on chitosan (CS), TiO 2 sol-gel, and reduced graphene oxide (rGO) based multi-layered immobilization matrix (denoted as CS @ TiO 2 -CS/rGO). The biosensor fabrication conditions were optimized, and the fabrication process was probed and confirmed by scanning electron microscopy and electrochemical techniques. The matrix has a mesoporous nanostructure. Incorporation of CS and electrodeposition of a CS layer into/on the TiO 2 sol-gel makes the gel become mechanically strong. The catalytic activity of the AChE immobilized CS @ TiO 2 -CS/rGO/glassy carbon electrode to acetylthiocholine is significantly higher than those missing any one of the component in the matrix. The detection linear range of the biosensor to dichlorvos, a model OP compound, is from 0.036μM (7.9 ppb) to 22.6μM, with a limit of detection of 29nM (6.4 ppb) and a total detection time of about 25min. The biosensor is very reproducibly and stable both in detection and in storage, and can accurately detect the dichlorvos levels in cabbage juice samples, providing an efficient platform for immobilization of AChE, and a promisingly applicable OPs biosensor with high reliability, simplicity, and rapidness. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  15. Biosensors for Cell Analysis.

    Science.gov (United States)

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  16. The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method

    Science.gov (United States)

    Tikhomirov, V. G.; Gudkov, A. G.; Agasieva, S. V.; Gorlacheva, E. N.; Shashurin, V. D.; Zybin, A. A.; Evseenkov, A. S.; Parnes, Y. M.

    2017-11-01

    The numerical impact modeling of some external effects on the CVC of biosensors based on AlGaN/GaN heterostructures (HEMT) was carried out. The mathematical model was created that allowed to predict the behavior of the drain current depending on condition changes on the heterostructure surface in the gate region and to start the process of directed construction optimization of the biosensors based on AlGaN/GaN HEMT with the aim of improving their performance. The calculation of the drain current of the biosensor construction was carried out to confirm the reliability of the developed mathematical model and obtained results.

  17. Last Advances in Silicon-Based Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Adrián Fernández Gavela

    2016-02-01

    Full Text Available We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  18. Last Advances in Silicon-Based Optical Biosensors.

    Science.gov (United States)

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  19. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils

    International Nuclear Information System (INIS)

    Liu Pulin; Huang Qiaoyun; Chen Wenli

    2012-01-01

    The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment. - Highlights: ► A zinc-specific bacterial biosensor was developed. ► Four spiked soils were used to test the application of this biosensor. ► The bioavailable zinc in soil-water extracts decreased due to aging. ► The immobilization and speciation of zinc were highly dependent on the soil type. - The immobilization and bioavailability of zinc in soil were investigated as a function of soil type and aging by a newly constructed zinc-specific biosensor coupled with chemical analysis.

  20. Application of reliability methods in Ontario Hydro

    International Nuclear Information System (INIS)

    Jeppesen, R.; Ravishankar, T.J.

    1985-01-01

    Ontario Hydro have established a reliability program in support of its substantial nuclear program. Application of the reliability program to achieve both production and safety goals is described. The value of such a reliability program is evident in the record of Ontario Hydro's operating nuclear stations. The factors which have contributed to the success of the reliability program are identified as line management's commitment to reliability; selective and judicious application of reliability methods; establishing performance goals and monitoring the in-service performance; and collection, distribution, review and utilization of performance information to facilitate cost-effective achievement of goals and improvements. (orig.)

  1. Construction and characterization of novel stress-responsive Deinococcal biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Youg

    2012-01-15

    In this research, we constructed a recombinant whole-cell biosensor to detect mutagens (H2O2, mitomycin C, MNNG, bleomycin) using Deinococcus radiodurans and evaluated its possibility for actual application. We performed DNA microarray analysis and selected 10 candidate genes for biosensor recombinant plasmid construction. The expression of ddrA, ddrB, DR{sub 0}161, DR{sub 0}589, and pprA was highly increased after treatment of the target mutagens. Putative promoter region of the genes were used for LacZ-based biosensor plasmid construction by replacing groESL promoter of pRADZ3. Pormoter activity and specificity of the five recombinant LacZ-based biosensor strains harboring the recombinant plasmids was measured. The result indicated that the promoter region of ddrA is the most suitable promoter for the biosensor development. Red pigment-based biosensor plasmid was constructed by displacing lacZ with crtI. The sensor strain was constructed by transforming the sensor plasmid into crtI deleted mutant D. radiodurans strain. Finally, macroscopic detection of the target mutagens by the biosensor strain was evaluated. The strength of red pigment biosynthesis by this recombinant strain in response to the target mutagens was weaker than our expectation. Continuous damage to the sensor strain by the mutagens in the medium might be the main reason for this low red-pigment biosynthesis. Therefore, we propose that the LacZ-based biosensor is more effective than the biosensor using red pigment as indicator for the mutagen detection.

  2. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges.

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-03

    Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.

  3. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Science.gov (United States)

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  4. Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds.

    Science.gov (United States)

    Kobras, Carolin Martina; Mascher, Thorsten; Gebhard, Susanne

    2017-01-01

    Whole-cell biosensors, based on the visualization of a reporter strain's response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, i.e., the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. We here describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances. The system is based on the well-characterized promoter P liaI , which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple "spot-on-lawn" assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

  5. Nucleic Acids and Enzymes at Electrodes: Electrochemical Nanomedical Biosensors and Biofuel Cell Development

    DEFF Research Database (Denmark)

    Ferapontova, Elena

    Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice,...... perspectives of the biosensor research and such biotechnological applications as enzyme electrodes for sustainable energy production (6) will be discussed.......Starting from the development of the first electrochemical biosensor for glucose, as far as in 1962, the electrochemical biosensor research area underwent a dramatic evolution both in scientific and commercial directions. At present, electrochemical biosensors are widely used in medical practice......, by offering extremely sensitive and accurate yet simple, rapid, and inexpensive biosensing platforms (1). In this talk, I will discuss the developed at iNANO reagentless enzymatic biosensors, in which the enzyme is directly electronically coupled to the electrode (1-3), and advanced genosensor platforms...

  6. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ndangili, Peter M. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Waryo, Tesfaye T., E-mail: twaryo@uwc.ac.z [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Muchindu, Munkombwe; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Ngila, Catherine J. [School of Chemistry, University of KwaZulu-Natal, P. Bag X541001 Westville, Durban 4000 (South Africa); Iwuoha, Emmanuel I. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa)

    2010-05-30

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF{sub 6}) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H{sub 2}O{sub 2}) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF{sub 6}. A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H{sub 2}O{sub 2} was very fast (5 s) and it exhibited a detection limit of 30 muM (3sigma) and a linearity of up to 2 mM (R{sup 2} = 0.998). The relatively high apparent Michaelis-Menten constant value (K{sub M}{sup app}=1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H{sub 2}O{sub 2} content of a commercial tooth whitening gel with a very good recovery rate (97%).

  7. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    International Nuclear Information System (INIS)

    Ndangili, Peter M.; Waryo, Tesfaye T.; Muchindu, Munkombwe; Baker, Priscilla G.L.; Ngila, Catherine J.; Iwuoha, Emmanuel I.

    2010-01-01

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF 6 ) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H 2 O 2 ) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF 6 . A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H 2 O 2 was very fast (5 s) and it exhibited a detection limit of 30 μM (3σ) and a linearity of up to 2 mM (R 2 = 0.998). The relatively high apparent Michaelis-Menten constant value (K M app =1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H 2 O 2 content of a commercial tooth whitening gel with a very good recovery rate (97%).

  8. Application of toxicity monitor using nitrifying bacteria biosensor to sewerage systems.

    Science.gov (United States)

    Inui, T; Tanaka, Y; Okayas, Y; Tanaka, H

    2002-01-01

    Toxic substances may be included in wastewater influent and can damage biological processing of wastewater treatment, therefore continuous toxic-monitoring of wastewater influent is needed. This paper describes the potential toxic-monitoring applications of the toxicity monitor using a nitrifying bacteria biosensor to sewerage systems. The results of sensitivity tests show that aspects of wastewater do not affect the sensor sensitivity and confirm that the sensor can be applied to wastewater monitoring as it is. The monitor with a prototype of filtration system installed in a wastewater treatment plant is able to operate continuously for one month at least after the modification of filtration system and the optimization of operation conditions.

  9. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The development and application of FET-based biosensors

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    After having considered the general definition of biosensors, the specifications of one type are discussed here in more detail, namely the pH-sensitive ISFET, which is at present being clinically investigated for intravascular blood pH recording. Results, advantages and possible improvements will be

  11. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  12. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  13. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Taeksoo Ji

    2011-05-01

    Full Text Available The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a fabrication of biomaterials into nanostructures, (b alignment of the nanostructures and (c immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  14. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    Science.gov (United States)

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  16. A low cost color-based bacterial biosensor for measuring arsenic in groundwater.

    Science.gov (United States)

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2015-12-01

    Using arsenic (As) contaminated groundwater for drinking or irrigation has caused major health problems for humans around the world, raising a need to monitor As level efficiently and economically. This study developed a color-based bacterial biosensor which is easy-to-use and inexpensive for measuring As and could be complementary to current As detecting techniques. The arsR-lacZ recombinant gene cassette in nonpathogenic strain Escherichia coli DH5α was used in the color-based biosensor which could be observed by eyes or measured by spectrometer. The developed bacterial biosensor demonstrates a quantitative range from 10 to 500μgL(-1) of As in 3-h reaction time. Furthermore, the biosensor was able to successfully detect and estimate As concentration in groundwater sample by measuring optical density at 595nm (OD595). Among different storage methods used in this study, biosensor in liquid at 4°C showed the longest shelf life about 9d, and liquid storage at RT and cell pellet could also be stored for about 3-5d. In conclusion, this study showed that the As biosensor with reliable color signal and economical preservation methods is useful for rapid screening of As pollutant, providing the potential for large scale screening and better management strategies for environmental quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. On industrial application of structural reliability theory

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1998-01-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au)

  18. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    fluorescence signals by specific in vitro/in vivo fluorescent labeling, and consequently, the fluorescent molecules indicate the presence of target molecules. The resultant fluorescence signals may be simply counted by either microfluidic device-integrated confocal microscopy or total internal reflection fluorescence-based single-molecule imaging. We have developed a series of single-molecule counting-based biosensors which can be classified as separation-free and separation-assisted assays. As a proof-of-concept, we demonstrate the applications of single-molecule counting-based biosensors for sensitive detection of various target biomolecules such as DNAs, miRNAs, proteins, enzymes, and intact cells, which may function as the disease-related biomarkers. Moreover, we give a summary of future directions to expand the usability of single-molecule counting-based biosensors including (1) the development of more user-friendly and automated instruments, (2) the discovery of new fluorescent labels and labeling strategies, and (3) the introduction of new concepts for the design of novel biosensors. Due to their high sensitivity, good selectivity, rapidity, and simplicity, we believe that the single-molecule counting-based fluorescent biosensors will indubitably find wide applications in biological research, clinical diagnostics, and drug discovery.

  19. Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation.

    Science.gov (United States)

    Yang, Yuan; Wang, Yan-Zhai; Fang, Zhen; Yu, Yang-Yang; Yong, Yang-Chun

    2018-02-01

    Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.

  20. On industrial application of structural reliability theory

    Energy Technology Data Exchange (ETDEWEB)

    Thoft-Christensen, P

    1998-06-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au) 32 refs.

  1. Recent advancement in biosensors technology for animal and livestock health management.

    Science.gov (United States)

    Neethirajan, Suresh; Tuteja, Satish K; Huang, Sheng-Tung; Kelton, David

    2017-12-15

    The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.

    Science.gov (United States)

    Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu

    2017-11-15

    Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor

    International Nuclear Information System (INIS)

    Chen, Xiaodong; Li, Dawei; Li, Guohui; Luo, Lei; Ullah, Naseeb; Wei, Qufu; Huang, Fenglin

    2015-01-01

    Graphical abstract: (A) Formation mechanism of A-CZNF and (B) reaction principle and formation mechanism of A-CZUF biosensor. - Highlights: • We utilized the hydrophobic protein nanofibers to fabricate a laccase-based biosensor for the first time. • The composite containing gold nanoparticles was prepared by combining electrospinning and one-step reduction method, which is a novel nanomaterial. • It is noticeable that the laccase biosensor showed a high electrochemical response and electrochemical activity toward catechol. • The novel biosensor will offer a simple, convenient and high efficient method for detecting polyphenolic compounds in environment. - Abstract: A novel laccase biosensor based on a new composite of laccase–gold nanoparticles (Au NPs)-crosslinked zein ultrafine fibers (CZUF) has been fabricated for catechol determination in real solution samples. Firstly, crosslinked zein ultrafine fibers containing gold nanoparticles (A-CZUF) were prepared by combining electrospinning and one-step reduction method using poly(ethyleneimine) (PEI) as reducing and crosslinking agent. A smooth morphology and relative average distribution of A-CZUF were depicted by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that PEI molecules attached to the surface of the zein ultrafine fibers via the reaction of functional groups between PEI and glyoxal. The results obtained from ultraviolet visible spectroscopy (UV–vis spectroscopy), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) for A-CZUF confirmed the existence of Au NPS coated on the surface of CZUF. Square wave voltammetry (SWV) and cyclic voltammetry (CV) were used to detect the electrochemical performance of the proposed biosensor. The results demonstrated that this biosensor possessed a high sensitive detection to catechol, which was attributed to the direct electron transfer (DET

  4. The effect of a SiO2 layer on the performance of a ZnO-based SAW device for high sensitivity biosensor applications

    International Nuclear Information System (INIS)

    Chen, Xi; Liu, Dali; Chen, Jiansheng; Wang, Guolei

    2009-01-01

    The properties of ZnO/SiO 2 /Si surface acoustic wave (SAW) love mode biosensors are studied in this paper. This specific structure is very suitable for biosensors since the reactive ZnO surface offers the opportunity for effective bio–ZnO interfaces, and the development of sensors directly on Si substrates provides the chance for full integration with read-out and signal processing circuitry in the mature Si technology. However, investigations of the dependence of buffer layer SiO 2 on the performance of biosensors are very few. Therefore, the main interest of this paper is to find the relation between the properties of biosensors and the SiO 2 layer. Some important results are obtained by solving the coupled electromechanical field equations. It is found that the mass loading sensitivity can be further improved by adding the SiO 2 layer; furthermore, the maximal sensitivity of the biosensors can be obtained by adjusting the thicknesses of the two layers. Accordingly, consideration of the buffer layer is very important in the optimization of devices. On the other hand, it is found that the thickness of the piezoelectric guiding layer has an evident effect on the electromechanical coupling coefficient, while that of the SiO 2 layer has a tiny effect on it. Moreover, we find that the effect of initial stresses on the properties of biosensors depends on the distribution of acoustic flow power in the two layers. This analysis is meaningful for the manufacture and applications of the ZnO/SiO 2 /Si structure love wave biosensor

  5. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    International Nuclear Information System (INIS)

    Lawal, Abdulazeez T.

    2016-01-01

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  6. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Abdulazeez T., E-mail: abdul.lawal@yahoo.com

    2016-01-15

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  7. Energy harvesting for human wearable and implantable bio-sensors.

    Science.gov (United States)

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  8. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches.

    Science.gov (United States)

    Saxena, Urmila; Das, Asim Bikas

    2016-01-15

    Importance of cholesterol biosensors is already recognized in the clinical diagnosis of cardiac and brain vascular diseases as discernible from the enormous amount of research in this field. Nevertheless, the practical application of a majority of the fabricated cholesterol biosensors is ordinarily limited by their inadequate performance in terms of one or more analytical parameters including stability, sensitivity and detection limit. Nanoscale materials offer distinctive size tunable electronic, catalytic and optical properties which opened new opportunities for designing highly efficient biosensor devices. Incorporation of nanomaterials in biosensing devices has found to improve the electroactive surface, electronic conductivity and biocompatibility of the electrode surfaces which then improves the analytical performance of the biosensors. Here we have reviewed recent advances in nanomaterial-based cholesterol biosensors. Foremost, the diverse roles of nanomaterials in these sensor systems have been discussed. Later, we have exhaustively explored the strategies used for engineering cholesterol biosensors with nanotubes, nanoparticles and nanocomposites. Finally, this review concludes with future outlook signifying some challenges of these nanoengineered cholesterol sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk

    NARCIS (Netherlands)

    Haasnoot, W.; Cazemier, G.; Koets, M.; Amerongen, van A.

    2003-01-01

    The application of an optical biosensor (Biacore 3000), with four flow channels (Fcs), in combination with a mixture of four specific antibodies resulted in a competitive inhibition biosensor immunoassay (BIA) for the simultaneous detection of the five relevant aminoglycosides in reconstituted

  10. Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy.

    Science.gov (United States)

    Saleem, Waqas; Salinas, Carlos; Watkins, Brian; Garvey, Gavin; Sharma, Anjal C; Ghosh, Ritwik

    2016-12-15

    An antibody, specific to fibrinogen, has been covalently attached to graphene and deposited onto screen printed electrodes using a chitosan hydrogel binder to prepare an inexpensive electrochemical fibrinogen biosensor. Fourier Transform Infrared (FT-IR) spectroscopy has been utilized to confirm the presence of the antibody on the graphene scaffold. Electrochemical Impedance Spectroscopy (EIS) has been utilized to demonstrate that the biosensor responds in a selective manner to fibrinogen in aqueous media even in the presence of plasminogen, a potentially interfering molecule in the coagulopathy cascade. Furthermore, the biosensor was shown to reliably sense fibrinogen in the presence of high background serum albumin levels. Finally, we demonstrated detection of clinically relevant fibrinogen concentrations (938-44,542μg/dL) from human serum and human whole blood samples using this biosensor. This biosensor can potentially be used in a point-of-care device to detect the onset of coagulopathy and monitor response following therapeutic intervention in trauma patients. Thus this biosensor may improve the clinical management of patients with trauma-induced coagulopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Disposable electrochemical DNA biosensor for environmental ...

    Indian Academy of Sciences (India)

    been used due to its rapid, easy handling and cost effective responses for the toxicity assessment in real water ... in the application of DNA as biosensors as it is found ... used as a preclinical safety assessment tool to screen ... out the work.

  13. Graphene-Based Materials for Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Phitsini Suvarnaphaet

    2017-09-01

    Full Text Available The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO, reduced graphene oxide (RGO and graphene quantum dot (GQD. The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications.

  14. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  15. Biosensors and preparation thereof

    NARCIS (Netherlands)

    2008-01-01

    A low-temp. prepn. method for a biosensor device with a layer of reagent on the sensor surface is disclosed. During manufg. biol. interaction between the biosensor substrate and the reagent layer material is reduced, e.g. by cooling the biosensor substrate and depositing the reagent layer on the

  16. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  17. Novel trends in affinity biosensors: current challenges and perspectives

    International Nuclear Information System (INIS)

    Arugula, Mary A; Simonian, Aleksandr

    2014-01-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives. (topical review)

  18. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    Science.gov (United States)

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  19. Electroacoustic miniaturized DNA-biosensor.

    Science.gov (United States)

    Gamby, Jean; Lazerges, Mathieu; Pernelle, Christine; Perrot, Hubert; Girault, Hubert H; Tribollet, Bernard

    2007-11-01

    A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.

  20. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  1. Design for ASIC reliability for low-temperature applications

    Science.gov (United States)

    Chen, Yuan; Mojaradi, Mohammad; Westergard, Lynett; Billman, Curtis; Cozy, Scott; Burke, Gary; Kolawa, Elizabeth

    2005-01-01

    In this paper, we present a methodology to design for reliability for low temperature applications without requiring process improvement. The developed hot carrier aging lifetime projection model takes into account both the transistor substrate current profile and temperature profile to determine the minimum transistor size needed in order to meet reliability requirements. The methodology is applicable for automotive, military, and space applications, where there can be varying temperature ranges. A case study utilizing this methodology is given to design for reliability into a custom application-specific integrated circuit (ASIC) for a Mars exploration mission.

  2. RNA Detection Based on Graphene Field-Effect Transistor Biosensor

    Directory of Open Access Journals (Sweden)

    Meng Tian

    2018-01-01

    Full Text Available Graphene has attracted much attention in biosensing applications due to its unique properties. In this paper, the monolayer graphene was grown by chemical vapor deposition (CVD method. Using the graphene as the electric channel, we have fabricated a graphene field-effect transistor (G-FET biosensor that can be used for label-free detection of RNA. Compared with conventional method, the G-FET RNA biosensor can be run in low cost, be time-saving, and be miniaturized for RNA measurement. The sensors show high performance and achieve the RNA detection sensitivity as low as 0.1 fM, which is two orders of magnitude lower than the previously reports. Moreover, the G-FET biosensor can readily distinguish target RNA from noncomplementary RNA, showing high selectivity for RNA detection. The developed G-FET RNA biosensor with high sensitivity, fast analysis speed, and simple operation may provide a new feasible direction for RNA research and biosensing.

  3. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  4. Surface grafted polymer brushes: potential applications in dengue biosensors

    International Nuclear Information System (INIS)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco; Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de

    2013-01-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar + ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  5. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  6. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  7. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  8. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications

    Institute of Scientific and Technical Information of China (English)

    Zanzan; Zhu

    2017-01-01

    With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes(CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT-and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.

  9. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications

    Institute of Scientific and Technical Information of China (English)

    Zanzan Zhu

    2017-01-01

    With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes (CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT- and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.

  10. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    Science.gov (United States)

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise; Snoek, Tim; Kildegaard, Kanchana Rueksomtawin

    2016-01-01

    ,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications....... real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily...

  12. Development of a Bacterial Biosensor for Rapid Screening of Yeast p-Coumaric Acid Production

    DEFF Research Database (Denmark)

    Siedler, Solvej; Khatri, Narendar K.; Zsohar, Andrea

    2017-01-01

    device, rapidly sort droplets containing yeast cells producing high amounts of extracellular p-coumaric acid using the fluorescent E. coli biosensor signal. As additional biosensors become available, such approaches will find broad applications for screening of an extracellular product.......Transcription factor-based biosensors are used to identify producer strains, a critical bottleneck in cell factory engineering. Here, we address two challenges with this methodology: transplantation of heterologous transcriptional regulators into new hosts to generate functional biosensors...... and biosensing of the extracellular product concentration that accurately reflects the effective cell factory production capacity. We describe the effects of different translation initiation rates on the dynamic range of a p-coumaric acid biosensor based on the Bacillus subtilis transcriptional repressor Pad...

  13. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    Science.gov (United States)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  14. Future of biosensors: a personal view.

    Science.gov (United States)

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  15. Biosensors for the determination of environmental inhibitors of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Evtugyn, Gennadii A; Budnikov, Herman C [Kazan State University, Kazan (Russian Federation); Nikolskaya, Elena B [I.M. Sechenov Institute of Evolution Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    1999-12-31

    Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.

  16. Biosensors for the determination of environmental inhibitors of enzymes

    International Nuclear Information System (INIS)

    Evtugyn, Gennadii A; Budnikov, Herman C; Nikolskaya, Elena B

    1999-01-01

    Characteristic features of functioning and practical application of enzyme-based biosensors for the determination of environmental pollutants as enzyme inhibitors are considered with special emphasis on the influence of the methods used for the measurement of the rates of enzymic reactions, of enzyme immobilisation procedure and of the composition of the reaction medium on the analytical characteristics of inhibitor assays. The published data on the development of biosensors for detecting pesticides and heavy metals are surveyed. Special attention is given to the use of cholinesterase-based biosensors in environmental and analytical monitoring. The approaches to the estimation of kinetic parameters of inhibition are reviewed and the factors determining the selectivity and sensitivity of inhibitor assays in environmental objects are analysed. The bibliography includes 195 references.

  17. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    Science.gov (United States)

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Nanophotonic label-free biosensors for environmental monitoring.

    Science.gov (United States)

    Chocarro-Ruiz, Blanca; Fernández-Gavela, Adrián; Herranz, Sonia; Lechuga, Laura M

    2017-06-01

    The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Science.gov (United States)

    Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina

    2015-01-01

    A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409

  20. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Directory of Open Access Journals (Sweden)

    George Luka

    2015-12-01

    Full Text Available A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter, increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.

  1. NASA Applications and Lessons Learned in Reliability Engineering

    Science.gov (United States)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  2. Defining an additivity framework for mixture research in inducible whole-cell biosensors

    DEFF Research Database (Denmark)

    Martin-Betancor, K; Ritz, Christian; Fernández-Piñas, F

    2015-01-01

    A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differe......A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts...... for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability...... illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition...

  3. Flexible low-cost cardiovascular risk marker biosensor for point-of-care applications

    KAUST Repository

    Sivashankar, Shilpa

    2015-10-22

    The detection and quantification of protein on a laser written flexible substrate for point-of-care applications are described. A unique way of etching gold on polyethylene terephthalate (PET) substrate is demonstrated by reducing the damage that may be caused on PET sheets otherwise. On the basis of the quantity of the C-reactive protein (CRP) present in the sample, the risk of cardiac disease can be assessed. This hsCRP test is incorporated to detect the presence of CRP on a PET laser patterned biosensor. Concentrations of 1, 2, and 10 mg/l were chosen to assess the risk of cardiac diseases as per the limits set by the American Heart Association.

  4. Biosensors in immunology: the story so far

    NARCIS (Netherlands)

    Pathak, S.S.; Savelkoul, H.F.J.

    1997-01-01

    Optical biosensors are finding a range of applications in immunology. They enable biomolecular interactions to be characterized in real time without the need to label reactants, and, because individual binding steps can be visualized, are particularly suited to complex assays

  5. Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors

    International Nuclear Information System (INIS)

    Serban, Simona; El Murr, Nabil

    2006-01-01

    A generic amperometric bioassay based on the enzymatic oxidation catalysed by the stable NADH oxidase (NAox) from Thermus thermophilus has been developed for NADH measurements. The NAox uses O 2 as its natural electron acceptor and produces H 2 O 2 in a two-electron process. Electrochemical and spectrophotometric experiments showed that the NAox used in this work, presents a very good activity towards its substrate and, in contrary to previously mentioned NADH oxidases, does not require the addition of any exogenous flavin cofactor neither to promote nor to maintain its activity. In addition, the NAox used also works with artificial electron acceptors like ferrocene derivatives. O 2 was successfully replaced by redox mediators such as hydroxymethyl ferrocene (FcCH 2 OH) for the regeneration of the active enzyme. Combining the NAox with the mediator and the horseradish peroxidase we developed an original, high sensitive 'redox-flexible' NADH amperometric bioassay working in a large window of applied potentials in both oxidation and reduction modes. The biosensor has a continuous and complementary linearity range permitting to measure NADH concentrations starting from 5 x 10 -6 M in reduction until 2 x 10 3 M in oxidation. This redox-flexibility allows choosing the applied potential in order to avoid electrochemical interferences. The association of the 'redox-flexible' concept with NADH dependent enzymes opens a novel strategy for dehydrogenases based bioassays and biosensors. The great number of dehydrogenases available makes the concept applicable for numerous substrates to analyse. Moreover it allows the development of a wide range of biosensors on the basis of a generic platform. This gives several advantages over the previous manufacturing techniques and offers a general and flexible scheme for the fabrication of biosensors presenting high sensitivities, wide calibration ranges and less affected by electrochemical interferences

  6. Surface plasmon resonance based biosensor: A new platform for rapid diagnosis of livestock diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-12-01

    Full Text Available Surface plasmon resonance (SPR based biosensors are the most advanced and developed optical label-free biosensor technique used for powerful detection with vast applications in environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security as well in livestock sector. The livestock sector which contributes the largest economy of India, harbors many bacterial, viral, and fungal diseases impacting a great loss to the production and productive potential which is a major concern in both small and large ruminants. Hence, an accurate, sensitive, and rapid diagnosis is required for prevention of these above-mentioned diseases. SPR based biosensor assay may fulfill the above characteristics which lead to a greater platform for rapid diagnosis of different livestock diseases. Hence, this review may give a detail idea about the principle, recent development of SPR based biosensor techniques and its application in livestock sector.

  7. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    is currently the most common method for in vivo glutamate sampling. However, the recent development and improvement of enzyme-based amperometric glutamate biosensors makes them a promising alternative to microdialysis for in vivo applications, as well as valuable devices for in vitro applications in basic......, and different techniques have been developed to this end. This review presents and discusses these techniques, especially the recent progress in the field of glutamate biosensors, as well as the great potential of nanotechnology in glutamate sensing. Microdialysis coupled to analytical detection techniques...... neurobiological research. Another interesting group of biosensors for glutamate are fluorescence-based glutamate biosensors, which have unsurpassed spatio-temporal resolution and are therefore important tools for investigating glutamate dynamics during signaling. Adding to this list are biosensors based on nano...

  8. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    Science.gov (United States)

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  10. Biosensors and invasive monitoring in clinical applications

    CERN Document Server

    Córcoles, Emma P

    2013-01-01

    This volume examines the advances of invasive monitoring by means of biosensors and microdialysis. Physical and physiological parameters are commonly monitored in clinical settings using invasive techniques due to their positive outcome in patients’ diagnosis and treatment. Biochemical parameters, however, still rely on off-line measurements and require large pieces of equipment. Biosensing and sampling devices present excellent capabilities for their use in continuous monitoring of patients’ biochemical parameters. However, certain issues remain to be solved in order to ensure a more widespread use of these techniques in today’s medical practices.

  11. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Synthetic Receptor-Based Biosensor for Safety and Security Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a sensitive and specific biosensor worthy of field deployment for autonomous operations. The underlying technology will enable in situ...

  13. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    Science.gov (United States)

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  15. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  16. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    Science.gov (United States)

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  17. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics

    Science.gov (United States)

    Gui, Qingyuan; Lawson, Tom; Shan, Suyan; Yan, Lu; Liu, Yong

    2017-01-01

    Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies. PMID:28703749

  18. A reliability evaluation method for NPP safety DCS application software

    International Nuclear Information System (INIS)

    Li Yunjian; Zhang Lei; Liu Yuan

    2014-01-01

    In the field of nuclear power plant (NPP) digital i and c application, reliability evaluation for safety DCS application software is a key obstacle to be removed. In order to quantitatively evaluate reliability of NPP safety DCS application software, this paper propose a reliability evaluating method based on software development life cycle every stage's v and v defects density characteristics, by which the operating reliability level of the software can be predicted before its delivery, and helps to improve the reliability of NPP safety important software. (authors)

  19. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    Science.gov (United States)

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  20. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, A., E-mail: ali.hajian@fmf.uni-freiburg.de [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany); Ghodsi, J.; Afraz, A. [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65174, Hamedan (Iran, Islamic Republic of); Yurchenko, O. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Urban, G. [Freiburg Materials Research Center, FMF, University of Freiburg, Stefan-Meier-Str.21, 79104 Freiburg (Germany); Laboratory for Sensors, Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110 Freiburg (Germany)

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L{sup −1} and detection limit of 25 nmol L{sup −1}. The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  1. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor

    International Nuclear Information System (INIS)

    Hajian, A.; Ghodsi, J.; Afraz, A.; Yurchenko, O.; Urban, G.

    2016-01-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH = 7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13 μmol L −1 and detection limit of 25 nmol L −1 . The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. - Highlights: • A new methylparaben biosensor was constructed by modification of carbon paste electrode with hemoglobin and MWCNTs. • The electrochemical properties of the modified electrode and electrochemical behavior of the methylparaben on the electrode surface were studied. • The response of modified GCE was analyzed by voltammetry technique (CV and DPV). • The electrode was used to the determination of methylparaben in real samples • The performance of the fabricated biosensor was satisfactorily compared to the previously reported electrochemical sensors for methylparaben determination.

  2. A Conductive Porous Structured Chitosan-grafted Polyaniline Cryogel for use as a Sialic Acid Biosensor

    International Nuclear Information System (INIS)

    Fatoni, Amin; Numnuam, Apon; Kanatharana, Proespichaya; Limbut, Warakorn; Thavarungkul, Panote

    2014-01-01

    Highlights: • A novel chitosan grafted polyaniline cryogel was used as support for a highly stable and sensitive biosensor. • The use of two enzymes mediated with ferrocene showed a high selectivity for sialic acid. • The biosensor provided a rapid sialic acid detection in blood. - Abstract: A porous conductive supporting material base on chitosan grafted polyaniline (CPANI) cryogel was developed for the fabrication of a sialic acid biosensor. Two enzymes, N-acetylneuraminic acid aldolase (NAL) and pyruvate oxidase (PYO), were employed together with an electrochemical detector. The electron transfer was further enhanced by using multiwalled carbon nanotubes (MWCNTs) and mediated by ferrocene (Fc) entrapped in the cryogel pores wall. A sialic acid derived electroactive product was detected amperometrically in a flow injection system. The fabricated sialic acid biosensor provided excellent analytical performances with a wide linear range of 0.025 to 15.0 mM and a limit of detection of 18 μM. Under the low applied potential of 0.20 V versus a Ag/AgCl, common electroactive interfering compounds such as ascorbic acid, uric acid and pyruvic acid were not detected and they have no effect on the analysis of sialic acid. The fabricated sialic acid biosensor also demonstrated a high stability after up to 100 injections. The reliability of the biosensor to detect sialic acid in blood plasma was in good agreement (P > 0.05) with a standard periodic-resorcinol spectrophotometric method. This easy to prepare conductive and biocompatible porous structure should be a prospective supporting material for biosensor development

  3. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    Science.gov (United States)

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A new measurement of workload in Web application reliability assessment

    Directory of Open Access Journals (Sweden)

    CUI Xia

    2015-02-01

    Full Text Available Web application has been popular in various fields of social life.It becomes more and more important to study the reliability of Web application.In this paper the definition of Web application failure is firstly brought out,and then the definition of Web application reliability.By analyzing data in the IIS server logs and selecting corresponding usage and information delivery failure data,the paper study the feasibility of Web application reliability assessment from the perspective of Web software system based on IIS server logs.Because the usage for a Web site often has certain regularity,a new measurement of workload in Web application reliability assessment is raised.In this method,the unit is removed by weighted average technique;and the weights are assessed by setting objective function and optimization.Finally an experiment was raised for validation.The experiment result shows the assessment of Web application reliability base on the new workload is better.

  5. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors

    International Nuclear Information System (INIS)

    Liao, V.H.-C.; Chien, M.-T.; Tseng, Y.-Y.; Ou, K.-L.

    2006-01-01

    A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5α (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5α (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L -1 , 10 nmol L -1 , and 0.1 nmol L -1 , respectively, with 2 h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests. - Nonpathogenic GFP-based bacterial biosensor is applicable in determining the bioavailability of heavy metals in environmental samples

  6. Environmental Application of Reporter-Genes Based Biosensors for Chemical Contamination Screening

    Directory of Open Access Journals (Sweden)

    Matejczyk Marzena

    2014-12-01

    Full Text Available The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase, xylE (catechol 2,3-dioxygenase, gfp (green fluorescent proteins and its mutated forms, lux (prokaryotic luciferase, luc (eukaryotic luciferase, phoA (alkaline phosphatase, gusA and gurA (β-glucuronidase, antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments.

  7. Real-time detection of TDP1 activity using a fluorophore-quencher coupled DNA-biosensor

    DEFF Research Database (Denmark)

    Jensen, Pia Wrensted; Falconi, Mattia; Kristoffersen, Emil Laust

    2013-01-01

    structure of the biosensor. The specific action of TDP1 removes the quencher, thereby enabling optical detection of the fluorophore. Since the enzymatic action of TDP1 is the only “signal amplification” the increase in fluorescence may easily be followed in real-time and allows quantitative analyses of TDP1......Real-time detection of enzyme activities may present the easiest and most reliable way of obtaining quantitative analyses in biological samples. We present a new DNA-biosensor capable of detecting the activity of the potential anticancer drug target tyrosyl-DNA phosphodiesterase 1 (TDP1) in a very...... simple, high throughput, and real-time format. The biosensor is specific for Tdp1 even in complex biological samples, such as human cell extracts, and may consequently find future use in fundamental studies as well as a cancer predictive tool allowing fast analyses of diagnostic cell samples...

  8. Nanocomposite/Hybrid Materials of Electroactive Polymers With Inorganic Oxides for Biosensor Applications

    National Research Council Canada - National Science Library

    Wei, Yen

    2001-01-01

    As proposed, we have successfully synthesized new electroactive and electronically conductive polyaniline polymethacrylate-silica nanocomposites and fabricated biosensor devices, aimed for detecting...

  9. A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Li Yuanting

    2012-09-01

    Full Text Available Abstract Background Biosensors have attracted increasing attention as reliable analytical instruments in in situ monitoring of public health and environmental pollution. For enzyme-based biosensors, the stabilization of enzymatic activity on the biological recognition element is of great importance. It is generally acknowledged that an effective immobilization technique is a key step to achieve the construction quality of biosensors. Results A novel disposable biosensor was constructed by immobilizing laccase (Lac with silica spheres on the surface of multi-walled carbon nanotubes (MWCNTs-doped screen-printed electrode (SPE. Then, it was characterized in morphology and electrochemical properties by scanning electron microscopy (SEM and cyclic voltammetry (CV. The characterization results indicated that a high loading of Lac and a good electrocatalytic activity could be obtained, attributing to the porous structure, large specific area and good biocompatibility of silica spheres and MWCNTs. Furthermore, the electrochemical sensing properties of the constructed biosensor were investigated by choosing dopamine (DA as the typical model of phenolic compounds. It was shown that the biosensor displays a good linearity in the range from 1.3 to 85.5 μM with a detection limit of 0.42 μM (S/N = 3, and the Michaelis-Menten constant (Kmapp was calculated to be 3.78 μM. Conclusion The immobilization of Lac was successfully achieved with silica spheres to construct a disposable biosensor on the MWCNTs-doped SPE (MWCNTs/SPE. This biosensor could determine DA based on a non-oxidative mechanism in a rapid, selective and sensitive way. Besides, the developed biosensor could retain high enzymatic activity and possess good stability without cross-linking reagents. The proposed immobilization approach and the constructed biosensor offer a great potential for the fabrication of the enzyme-based biosensors and the analysis of phenolic compounds.

  10. Developing Biosensors in Developing Countries: South Africa as a Case Study.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice

    2016-02-02

    A mini-review of the reported biosensor research occurring in South Africa evidences a strong emphasis on electrochemical sensor research, guided by the opportunities this transduction platform holds for low-cost and robust sensing of numerous targets. Many of the reported publications centre on fundamental research into the signal transduction method, using model biorecognition elements, in line with international trends. Other research in this field is spread across several areas including: the application of nanotechnology; the identification and validation of biomarkers; development and testing of biorecognition agents (antibodies and aptamers) and design of electro-catalysts, most notably metallophthalocyanine. Biosensor targets commonly featured were pesticides and metals. Areas of regional import to sub-Saharan Africa, such as HIV/AIDs and tuberculosis diagnosis, are also apparent in a review of the available literature. Irrespective of the targets, the challenge to the effective deployment of such sensors remains shaped by social and economic realities such that the requirements thereof are for low-cost and universally easy to operate devices for field settings. While it is difficult to disentangle the intertwined roles of national policy, grant funding availability and, certainly, of global trends in shaping areas of emphasis in research, most notable is the strong role that nanotechnology, and to a certain extent biotechnology, plays in research regarding biosensor construction. Stronger emphasis on collaboration between scientists in theoretical modelling, nanomaterials application and or relevant stakeholders in the specific field (e.g., food or health monitoring) and researchers in biosensor design may help evolve focused research efforts towards development and deployment of low-cost biosensors.

  11. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  12. Nanohybrid-layered double hydroxides/urease materials: Synthesis and application to urea biosensors

    International Nuclear Information System (INIS)

    Vial, S.; Forano, C.; Shan, D.; Mousty, C.; Barhoumi, H.; Martelet, C.; Jaffrezic, N.

    2006-01-01

    Nanohybrid [ZnAl]-layered double hydroxides/urease were prepared for the first time using the coprecipitation of enzyme and inorganic matrix. By varying the respective amount of urease and LDH, we obtained hybrid materials with various amount and dispersion rate of active biomolecules. X-ray diffraction and infrared spectroscopy confirm the preservation of the structure of each partner while the morphology properties are in good agreement with the permeability study. These new nanohybrids were applied for the development of urea biosensors. Biosensor responses to urea additions were obtained using capacitance (C vs. V) measurements at urease-LDH biofilm deposited on an insulated semiconductor (IS) structure

  13. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  14. Electrochemistry, biosensors and microfluidics: a convergence of fields.

    Science.gov (United States)

    Rackus, Darius G; Shamsi, Mohtashim H; Wheeler, Aaron R

    2015-08-07

    Electrochemistry, biosensors and microfluidics are popular research topics that have attracted widespread attention from chemists, biologists, physicists, and engineers. Here, we introduce the basic concepts and recent histories of electrochemistry, biosensors, and microfluidics, and describe how they are combining to form new application-areas, including so-called "point-of-care" systems in which measurements traditionally performed in a laboratory are moved into the field. We propose that this review can serve both as a useful starting-point for researchers who are new to these topics, as well as being a compendium of the current state-of-the art for experts in these evolving areas.

  15. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review

    Science.gov (United States)

    Mungroo, Nawfal Adam; Neethirajan, Suresh

    2014-01-01

    Antibiotic resistance is emerging as a potential threat in the next decades. This is a global phenomenon whereby globalization is acting as a catalyst. Presently, the most common techniques used for the detection of antibiotics are biosensors, ELISA and liquid chromatography—mass spectrometry. Each of these techniques has its benefits as well as drawbacks. This review aims to evaluate different biosensing techniques and their working principles in order to accurately, quickly and practically detect antibiotics in chicken muscle and blood serum. The review is divided into three main sections, namely: a biosensors overview, a section on biosensor recognition and a section on biosensor transducing elements. The first segment provides a detailed overview on the different techniques available and their respective advantages and disadvantages. The second section consists of an evaluation of several analyte systems and their mechanisms. The last section of this review studies the working principles of biosensing transducing elements, focusing mainly on surface plasmon resonance (SPR) technology and its applications in industries. PMID:25587435

  16. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review

    Directory of Open Access Journals (Sweden)

    Nawfal Adam Mungroo

    2014-11-01

    Full Text Available Antibiotic resistance is emerging as a potential threat in the next decades. This is a global phenomenon whereby globalization is acting as a catalyst. Presently, the most common techniques used for the detection of antibiotics are biosensors, ELISA and liquid chromatography—mass spectrometry. Each of these techniques has its benefits as well as drawbacks. This review aims to evaluate different biosensing techniques and their working principles in order to accurately, quickly and practically detect antibiotics in chicken muscle and blood serum. The review is divided into three main sections, namely: a biosensors overview, a section on biosensor recognition and a section on biosensor transducing elements. The first segment provides a detailed overview on the different techniques available and their respective advantages and disadvantages. The second section consists of an evaluation of several analyte systems and their mechanisms. The last section of this review studies the working principles of biosensing transducing elements, focusing mainly on surface plasmon resonance (SPR technology and its applications in industries.

  17. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor

    International Nuclear Information System (INIS)

    Zaffino, R L; Mir, M; Samitier, J

    2014-01-01

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications. (paper)

  18. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor.

    Science.gov (United States)

    Jakhar, Seema; Pundir, C S

    2018-02-15

    The nanoparticles (NPs) aggregates of commercial urease from jack beans (Canavalia ensiformis) were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine dihydrochloride. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM), UV and Fourier transform infrared (FTIR) spectroscopy. The TEM images of urease NPs showed their size in the range, 18-100nm with an average of 51.2nm. The ENPs were more active and stable with a longer shelf life than native enzyme molecules. The ENPs were immobilized onto chitosan (CHIT) activated nitrocellulose (NC) membrane via glutaraldehyde coupling with 32.22% retention of initial activity of free ureaseNPs with a conjugation yield of 1.63mg/cm 2 . This NC membrane was mounted at the lower/sensitive end of the ammonium ion selective electrode (AISE) with O-ring and then electrode was connected to a digital pH meter to construct a potentiometric urea biosensor. The biosensor exhibited optimum response within 10s at pH 5.5and 40°C. The biosensor was employed for measurement of potentiometric determination of urea in sera of apparently healthy and persons suffering from kidney disorders. The biosensor displayed a low detection limit of 1µM/L with a wide working range of 2-80µM/L (0.002-0.08mM) and sensitivity of 23mV/decade. The analytical recovery of added urea in serum was 106.33%. The within and between-batch coefficient of variations (CVs) of present biosensor were 0.18% and 0.32% respectively. There was a good correlation (r = 0.99) between sera urea values obtained by reference method (Enzymic colorimetric kit method) and the present biosensor. The biosensor had negligible interference from Na + ,K + ,NH +4 and Ca 2+ but Mg 2+ ,Cu 2+ and ascorbic acid but had slight interference, which was overcome by specific ion selective electrode. The ENPs bound NC membrane was used maximally 8-9 times per day over a period of 180 days, when stored in 0.01M sodium

  19. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  20. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications

    International Nuclear Information System (INIS)

    Wu Baoyan; Hou Shihua; Yu Min; Qin Xia; Li, Sha; Chen Qiang

    2009-01-01

    A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA) 3 /Pt). The (PVS/PAA) 3 /Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 μM estimated at a signal-to-noise ratio of 3, a linear range of 1-10 mM, the sensitivity of 0.45 μA/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization

  1. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  2. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  3. Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L-lactate determination

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-06-01

    Full Text Available Aim. Development of amperometric biosensor based on L-lactate-cytochrome c-oxidoreductase (flavocytochrome b2, FC b2 for lactate determination. Methods. All experiments were performed using the amperometric method of detection. The methods of electrochemical polymerization and immobilization in glutaraldehyde vapors were used for FC b2 immobilization on the surface of electrodes. Results. The FC b2 preparation, which demonstrated the best operational characteristics after immobilization in poly (3,4-ethylen dioxythiophene, was selected. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The analysis of L-lactate in the model solutions and wine samples was carried outusing the developed biosensor. Conclusion. The FC b2-based biosensor due to its high stability can be effectively used for lactate determination in blood and other liquids containing no ethanol. After the selectivity optimization, the devise can be also applied for wine analysis.

  4. On the challenges of detecting whole Staphylococcus aureus cells with biosensors.

    Science.gov (United States)

    Templier, V; Roupioz, Y

    2017-11-01

    Due to the increasing number of nosocomial infections and multidrug-resistant bacterial strains, Staphylococcus aureus is now a major worldwide concern. Rapid detection and characterization of this bacterium has become an important issue for biomedical applications. Biosensors are increasingly appearing as low-cost, easy-to-operate and fast alternatives for rapid detection. In this review, we will introduce the main characteristics of S. aureus and will focus on the interest of biosensors for a faster detection of whole S. aureus cells. In particular, we will review the most promising strategies in the choice of ligand for the design of selective and efficient biosensors. Their specific characteristics as well as their advantages and/or disadvantages will also be commented. © 2017 The Society for Applied Microbiology.

  5. Laccase-based biosensor for the determination of polyphenol index in wine.

    Science.gov (United States)

    Di Fusco, Massimo; Tortolini, Cristina; Deriu, Daniela; Mazzei, Franco

    2010-04-15

    In this work we have developed and characterized the use of Laccases from Trametes versicolor (TvL) and Trametes hirsuta (ThL) as biocatalytic components of electrochemical biosensors for the determination of polyphenol index in wines. Polyazetidine prepolimer (PAP) was used as immobilizing agent, multi-walled and single-walled carbon nanotubes screen-printed electrodes as sensors (MWCNTs-SPE and SWCNTs-SPE) and gallic acid as standard substrate. The amperometric measurements were carried out by using a flow system at a fixed potential of -100 mV vs. silver/silver chloride electrode in Britton-Robinson buffer 0.1 mol L(-1), pH 5. The results were compared with those obtained with the Folin-Ciocalteau reference method. The results obtained in the analysis of twelve Italian wines put in evidence the better suitability of ThL-MWCNTs-based biosensor in the determination of the polyphenol index in wines. This biosensor shows fast and reliable amperometric responses to gallic acid with a linear range 0.1-18.0 mg L(-1) (r(2)=0.999). The influence of the interferences on both spectrophotometric and electrochemical measurements have been carefully evaluated. (c) 2009 Elsevier B.V. All rights reserved.

  6. Development of a Capillary-driven, Microfluidic, Nucleic Acid Biosensor

    Directory of Open Access Journals (Sweden)

    Fei HE

    2011-12-01

    Full Text Available An ideal point-of-care device would incorporate the simplicity and reliability of a lateral flow assay with a microfluidic device. Our system consists of self-priming microfluidics with sealed conjugate pads of reagent delivery and an absorbent pad for additional fluid draw. Using poly (methyl methacrylate (PMMA as a substrate, we have developed a single-step surface modification method which allows strong capillary flow within a sealed microchannel. Conjugate pads within the device held trapped complex consisting of the magnetic beads and nucleic-acid-probe-conjugated horseradish peroxidase (HRP. Magnetic beads were released when sample entered the chamber and hybridized with the complex. The complex was immobilized over a magnet while a luminol co-reactant stream containing H2O2 was merged with the channel. A plate reader was able to quantify the chemiluminescence signal. This new format of biosensor will allow for a smaller and more sensitive biosensor, as well as commercial-scale manufacturing and low materials cost.

  7. Introduction to biosensors.

    Science.gov (United States)

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Printed organo-functionalized graphene for biosensing applications.

    Science.gov (United States)

    Wisitsoraat, A; Mensing, J Ph; Karuwan, C; Sriprachuabwong, C; Jaruwongrungsee, K; Phokharatkul, D; Daniels, T M; Liewhiran, C; Tuantranont, A

    2017-01-15

    Graphene is a highly promising material for biosensors due to its excellent physical and chemical properties which facilitate electron transfer between the active locales of enzymes or other biomaterials and a transducer surface. Printing technology has recently emerged as a low-cost and practical method for fabrication of flexible and disposable electronics devices. The combination of these technologies is promising for the production and commercialization of low cost sensors. In this review, recent developments in organo-functionalized graphene and printed biosensor technologies are comprehensively covered. Firstly, various methods for printing graphene-based fluids on different substrates are discussed. Secondly, different graphene-based ink materials and preparation methods are described. Lastly, biosensing performances of printed or printable graphene-based electrochemical and field effect transistor sensors for some important analytes are elaborated. The reported printed graphene based sensors exhibit promising properties with good reliability suitable for commercial applications. Among most reports, only a few printed graphene-based biosensors including screen-printed oxidase-functionalized graphene biosensor have been demonstrated. The technology is still at early stage but rapidly growing and will earn great attention in the near future due to increasing demand of low-cost and disposable biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    Science.gov (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  10. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    Science.gov (United States)

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-01-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm2/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents. PMID:26052919

  11. Theoretical and Experimental Analysis of Adsorption in Surface-based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus

    The present Ph.D. dissertation concerns the application of surface plasmon resonance (SPR) spectroscopy, which is a surface-based biosensor technology, for studies of adsorption dynamics. The thesis contains both experimental and theoretical work. In the theoretical part we develop the theory...... cell of the surface-based biosensor, in addition to the sensor surface, is investigated. In the experimental part of the thesis we use a Biacore SPR sensor to study lipase adsorption on model substrate surfaces, as well as competitive adsorption of lipase and surfactants. A part of the experimental...

  12. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor

    Science.gov (United States)

    Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.

    2015-01-01

    Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177

  13. Electrochemical biosensors in pharmaceutical analysis

    OpenAIRE

    Gil, Eric de Souza; Melo, Giselle Rodrigues de

    2010-01-01

    Given the increasing demand for practical and low-cost analytical techniques, biosensors have attracted attention for use in the quality analysis of drugs, medicines, and other analytes of interest in the pharmaceutical area. Biosensors allow quantification not only of the active component in pharmaceutical formulations, but also the analysis of degradation products and metabolites in biological fluids. Thus, this article presents a brief review of biosensor use in pharmaceutical analysis, fo...

  14. Developing Biosensors in Developing Countries: South Africa as a Case Study

    Directory of Open Access Journals (Sweden)

    Ronen Fogel

    2016-02-01

    Full Text Available A mini-review of the reported biosensor research occurring in South Africa evidences a strong emphasis on electrochemical sensor research, guided by the opportunities this transduction platform holds for low-cost and robust sensing of numerous targets. Many of the reported publications centre on fundamental research into the signal transduction method, using model biorecognition elements, in line with international trends. Other research in this field is spread across several areas including: the application of nanotechnology; the identification and validation of biomarkers; development and testing of biorecognition agents (antibodies and aptamers and design of electro-catalysts, most notably metallophthalocyanine. Biosensor targets commonly featured were pesticides and metals. Areas  of regional import to sub-Saharan Africa, such as HIV/AIDs and tuberculosis diagnosis, are also apparent in a review of the available literature. Irrespective of the targets, the challenge to the effective deployment of such sensors remains shaped by social and economic realities such that the requirements thereof are for low-cost and universally easy to operate devices for field settings. While it is difficult to disentangle the intertwined roles of national policy, grant funding availability and, certainly, of global trends in shaping areas of emphasis in research, most notable is the strong role that nanotechnology, and to a certain extent biotechnology, plays in research regarding biosensor construction. Stronger emphasis on collaboration between scientists in theoretical modelling, nanomaterials application and or relevant stakeholders in the specific field (e.g., food or health monitoring and researchers in biosensor design may help evolve focused research efforts towards development and deployment of low-cost biosensors.

  15. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses.

    Science.gov (United States)

    Li, Jia; Macdonald, Joanne

    2016-09-15

    Lateral flow biosensors are a leading technology in point-of-care diagnostics due to their simplicity, rapidness and low cost. Their primacy in this arena continues through technological breakthroughs such as multiplexing: the detection of more than one biomarker in a single assay. Multiplexing capacity is critical for improving diagnostic efficiency, enhancing the diagnostic precision for specific diseases and reducing diagnostic cost. Here we review, for the first time, the various types and strategies employed for creating multiplexed lateral flow biosensors. These are classified into four main categories in terms of specific application or multiplexing level, namely linear, parameter, spatial and conceptual. We describe the practical applications and implications for each approach and compare their advantages and disadvantages. Importantly, multiplexing is still subject to limitations of the traditional lateral flow biosensor, such as sensitivity and specificity. However, by pushing the limitations of the traditional medium into the multiplex arena, several technological breakthroughs are emerging with novel solutions that further expand the utility of lateral flow biosensing for point-of-care applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  17. Design of Microcantilever-Based Biosensor with Digital Feedback Control Circuit

    Directory of Open Access Journals (Sweden)

    Jayu P. Kalambe

    2012-01-01

    Full Text Available This paper present the design of cantilever-based biosensors with new readout, which hold promises as fast and cheap “point of care” device as well as interesting research tools. The fabrication process and related issues of the cantilever based bio-sensor are discussed. Coventorware simulation is carried out to analyze the device behavior. A fully integrated control circuit has been designed to solve manufacturing challenge which will take care of positioning of the cantilever instead of creating nanometer gap between the electrodes. The control circuit will solve the manufacturing challenge faced by the readout methods where it is essential to maintain precise gap between the electrodes. The circuit can take care of variation obtained due to fabrication process and maintain the precise gap between the electrodes by electrostatic actuation. The control circuit consist of analog and digital modules. The reliability issues of the sensor are also discussed.

  18. Sensitivity analysis for improving nanomechanical photonic transducers biosensors

    International Nuclear Information System (INIS)

    Fariña, D; Álvarez, M; Márquez, S; Lechuga, L M; Dominguez, C

    2015-01-01

    The achievement of high sensitivity and highly integrated transducers is one of the main challenges in the development of high-throughput biosensors. The aim of this study is to improve the final sensitivity of an opto-mechanical device to be used as a reliable biosensor. We report the analysis of the mechanical and optical properties of optical waveguide microcantilever transducers, and their dependency on device design and dimensions. The selected layout (geometry) based on two butt-coupled misaligned waveguides displays better sensitivities than an aligned one. With this configuration, we find that an optimal microcantilever thickness range between 150 nm and 400 nm would increase both microcantilever bending during the biorecognition process and increase optical sensitivity to 4.8   ×   10 −2  nm −1 , an order of magnitude higher than other similar opto-mechanical devices. Moreover, the analysis shows that a single mode behaviour of the propagating radiation is required to avoid modal interference that could misinterpret the readout signal. (paper)

  19. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.

    Science.gov (United States)

    Li, Zedong; Li, Fei; Xing, Yue; Liu, Zhi; You, Minli; Li, Yingchun; Wen, Ting; Qu, Zhiguo; Ling Li, Xiao; Xu, Feng

    2017-12-15

    Paper-based microfluidic biosensors have recently attracted increasing attentions in point-of-care testing (POCT) territories benefiting from their affordable, accessible and eco-friendly features, where technologies for fabricating such biosensors are preferred to be equipment free, easy-to-operate and capable of rapid prototyping. In this work, we developed a pen-on-paper (PoP) strategy based on two custom-made pens, i.e., a wax pen and a conductive-ink pen, to fully write paper-based microfluidic biosensors through directly writing both microfluidic channels and electrodes. Particularly, the proposed wax pen is competent to realize one-step fabrication of wax channels on paper, as the melted wax penetrates into paper during writing process without any post-treatments. The practical applications of the fabricated paper-based microfluidic biosensors are demonstrated by both colorimetric detection of Salmonella typhimurium DNA with detection limit of 1nM and electrochemical measurement of glucose with detection limit of 1mM. The developed PoP strategy for making microfluidic biosensors on paper characterized by true simplicity, prominent portability and excellent capability for rapid prototyping shows promising prospect in POCT applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide.

    Science.gov (United States)

    Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua

    2016-08-15

    A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review.

    Science.gov (United States)

    Arduini, Fabiana; Cinti, Stefano; Scognamiglio, Viviana; Moscone, Danila; Palleschi, Giuseppe

    2017-03-22

    Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    Science.gov (United States)

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  3. Recycling microcavity optical biosensors.

    Science.gov (United States)

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  4. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    International Nuclear Information System (INIS)

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-01-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %_v_o_l), with a sensitivity of 9.13 μA/mM cm"2 (1574 μA/%_v_o_l cm"2) and a detection limit equal to 0.52 mM (0.003%_v_o_l). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  5. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Stefano, E-mail: stefano.cinti@uniroma2.it; Basso, Mattia; Moscone, Danila; Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %{sub vol}), with a sensitivity of 9.13 μA/mM cm{sup 2} (1574 μA/%{sub vol} cm{sup 2}) and a detection limit equal to 0.52 mM (0.003%{sub vol}). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  6. Application of Reliability in Breakwater Design

    DEFF Research Database (Denmark)

    Christiani, Erik

    methods to design certain types of breakwaters. Reliability analyses of the main armour and toe berm interaction is exemplified to show the effect of a multiple set of failure mechanisms. First the limit state equations of the main armour and toe interaction are derived from laboratory tests performed...... response, but in one area information has been lacking; bearing capacity has not been treated in depth in a probabilistic manner for breakwaters. Reliability analysis of conventional rubble mound breakwaters and conventional vertical breakwaters is exemplified for the purpose of establishing new ways...... by Bologna University. Thereafter a multiple system of failure for the interaction is established. Relevant stochastic parameters are characterized prior to the reliability evaluation. Application of reliability in crown wall design is illustrated by deriving relevant single foundation failure modes...

  7. Comprehensive distributed-parameters modeling and experimental validation of microcantilever-based biosensors with an application to ultrasmall biological species detection

    International Nuclear Information System (INIS)

    Faegh, Samira; Jalili, Nader

    2013-01-01

    Nanotechnological advancements have made a great contribution in developing label-free and highly sensitive biosensors. The detection of ultrasmall adsorbed masses has been enabled by such sensors which transduce molecular interaction into detectable physical quantities. More specifically, microcantilever-based biosensors have caught widespread attention for offering a label-free, highly sensitive and inexpensive platform for biodetection. Although there are a lot of studies investigating microcantilever-based sensors and their biological applications, a comprehensive mathematical modeling and experimental validation of such devices providing a closed form mathematical framework is still lacking. In almost all of the studies, a simple lumped-parameters model has been proposed. However, in order to have a precise biomechanical sensor, a comprehensive model is required being capable of describing all phenomena and dynamics of the biosensor. Therefore, in this study, an extensive distributed-parameters modeling framework is proposed for the piezoelectric microcantilever-based biosensor using different methodologies for the purpose of detecting an ultrasmall adsorbed mass over the microcantilever surface. An optimum modeling methodology is concluded and verified with the experiment. This study includes three main parts. In the first part, the Euler–Bernoulli beam theory is used to model the nonuniform piezoelectric microcantilever. Simulation results are obtained and presented. The same system is then modeled as a nonuniform rectangular plate. The simulation results are presented describing model's capability in the detection of an ultrasmall mass. Finally the last part presents the experimental validation verifying the modeling results. It was shown that plate modeling predicts the real situation with a degree of precision of 99.57% whereas modeling the system as an Euler–Bernoulli beam provides a 94.45% degree of precision. The detection of ultrasmall

  8. A New Laccase Based Biosensor for Tartrazine

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-12-01

    Full Text Available Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979 and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  9. A New Laccase Based Biosensor for Tartrazine.

    Science.gov (United States)

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  10. Biosensor for metal analysis and speciation

    Science.gov (United States)

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  11. Review of Industrial Applications of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect.......For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect....

  12. Improved Performance of the Potentiometric Biosensor for the Determination of Creatinine

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Rasmussen, Claus/Dallerup; Zachau-Christiansen, Birgit

    2007-01-01

    The development of potentiometric biosensors for the determination of creatinine is attractive because it is a frequently analysed species in clinical chemistry. Contemporary methods of analysing creatinine engage chemicals harmful to the environment and generate large volumes of waste disposals....... By introducing a membrane-based potentiometric biosensor with immobilised creatinine deaminase, the measurements can be performed by miniaturised portable devices that are easy to handle and allow rapid analysis at a minimum consumption of chemicals. Thus, the enzymatic creatinine biosensors was revisited...... performed by flow injection analysis (FIA) showed that the response time could be lowered to approx. 30 sec. using sample volumes of 30 L. Interferences were corrected for by application of the Nicolsky-Eisenman equation thus allowing determination of creatinine in matrices resembling those of clinical...

  13. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  14. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    Science.gov (United States)

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Molecular Approaches to Optical Biosensors

    National Research Council Canada - National Science Library

    Fierke, Carol

    1998-01-01

    The goal of this proposal was to develop methodologies for the optimization of field-deployable optical biosensors, in general, and, in particular, to optimize a carbonic anhydrase-based fiber optic zinc biosensor...

  16. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  17. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  18. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  19. Designing a reliable leak bio-detection system for natural gas pipelines

    International Nuclear Information System (INIS)

    Batzias, F.A.; Siontorou, C.G.; Spanidis, P.-M.P.

    2011-01-01

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.

  20. Designing a reliable leak bio-detection system for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Batzias, F.A., E-mail: fbatzi@unipi.gr [Univ. Piraeus, Dept. Industrial Management and Technology, Karaoli and Dimitriou 80, 18534 Piraeus (Greece); Siontorou, C.G., E-mail: csiontor@unipi.gr [Univ. Piraeus, Dept. Industrial Management and Technology, Karaoli and Dimitriou 80, 18534 Piraeus (Greece); Spanidis, P.-M.P., E-mail: pspani@asprofos.gr [Asprofos Engineering S.A, El. Venizelos 284, 17675 Kallithea (Greece)

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.

  1. Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Chien-Chung Chen

    2009-06-01

    Full Text Available Polyaniline (PANI, an attractive conductive polymer, has been successfully applied in fabricating various types of enzyme-based biosensors. In this study, we have employed mesoporous silica SBA-15 to stably entrap horseradish peroxidase (HRP, and then deposited the loaded SBA-15 on the PANI modified platinum electrode to construct a GA/SBA-15(HRP/PANI/Pt biosensor. The mesoporous structures and morphologies of SBA-15 with or without HRP were characterized. Enzymatic protein assays were employed to evaluate HRP immobilization efficiency. Our results demonstrated that the constructed biosensor displayed a fine linear correlation between cathodic response and H2O2 concentration in the range of 0.02 to 18.5 mM, with enhanced sensitivity. In particular, the current approach provided the PANI modified biosensor with improved stability for multiple measurements.

  2. Application of a mer-lux biosensor for estimating bioavailable mercury in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.; Turner, R. R.

    2000-01-01

    A previously described bioassay using a mer-lux gene fusion for detection of bioavailable mercury was applied for the estimation of the bioavailable fraction of mercury in soil. The bioavailable fraction is defined here as being part of the water leachable fraction. Due to masking of light emission...... responses. The utility of the mer-lux biosensor assay was tested by relating measurements of bioavailable and total mercury to the response of the soil microbial community to mercury exposure. Two different soil types (an agricultural and a beech forest soil) were spiked with 2.5 µg Hg(II) g-1 in microcosms...... in resistance or diversity. This study showed that the bioassay using the mer-lux biosensor is a useful and sensitive tool for estimation of bioavailable mercury in soil....

  3. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    International Nuclear Information System (INIS)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D; Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R; McLamore, Eric S; Calvo-Marzal, Percy

    2011-01-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 μA mM -1 cm -2 ), linear range (0.0037-12 mM), detection limit (3.7 μM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H 2 O 2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  4. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D [Weldon School of Biomedical Engineering, Purdue University (United States); Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R [Physiological Sensing Facility, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University (United States); McLamore, Eric S [Department of Agricultural and Biological Engineering, University of Florida (United States); Calvo-Marzal, Percy, E-mail: porterf@purdue.edu [Department of Chemistry, Purdue University (United States)

    2011-09-02

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 {+-} 0.5 {mu}A mM{sup -1} cm{sup -2}), linear range (0.0037-12 mM), detection limit (3.7 {mu}M), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H{sub 2}O{sub 2} response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  5. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Science.gov (United States)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  6. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    Science.gov (United States)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  7. Toxicity assessment using different bioassays and microbial biosensors.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection.

    Science.gov (United States)

    Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet

    2015-08-15

    A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Development of phage/antibody immobilized magnetostrictive biosensors

    Science.gov (United States)

    Fu, Liling

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of pathogens in a real-time manner accurately and quickly to guide prevention efforts and assay food and water quality. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices still face some challenges such as the difficulty to be employed in liquid and low Q value in practical applications. The objective of this research is to develop magnetostrictive sensors which include milli/microcantilever type (MSMC) and particle type (MSP). Compared to other AW devices, MSMC exhibits the following advantages: (1) wireless/remote driving and sensing; (2) easy to fabricate; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air). The fundamental study of the damping effect on MSMCs from the surrounding media including air and liquids were conducted to improve the Q value of MSMCs. The experiment results show that the Q value is dependent on the properties of surrounding media (e.g. viscosity, density), the geometry of the MSMCs, and the harmonic mode on the resonance behavior of MSMCs, etc. The phage-coated MSMC has high specificity and sensitivity even while used in water with a low concentration of targeted bacteria. Two currently developed phages, JRB7 and E2, respectively respond to Bacillus anthracis spores and Salmonella typhimurium, were employed as bio-recognition elements in this research. The phage-immobilized MSMC biosensors exhibited high performance and detection of limit was 5 x 104 cfu/ml for the MSMC in size of 1.4 x 0.8 x 0.035 mm. The MSMC-based biosensors were indicated as a very potential method for in-situ monitoring of the biological quality in water. The MSP combine antibody was used to detect Staphylococcus aureus in this experiment. The interface between MSPs and antibody was

  10. Autonomous electrochemical biosensors: A new vision to direct methanol fuel cells.

    Science.gov (United States)

    Sales, M Goreti F; Brandão, Lúcia

    2017-12-15

    A new approach to biosensing devices is demonstrated aiming an easier and simpler application in routine health care systems. Our methodology considered a new concept for the biosensor transducing event that allows to obtain, simultaneously, an equipment-free, user-friendly, cheap electrical biosensor. The use of the anode triple-phase boundary (TPB) layer of a passive direct methanol fuel cell (DMFC) as biosensor transducer is herein proposed. For that, the ionomer present in the anode catalytic layer of the DMFC is partially replaced by an ionomer with molecular recognition capability working as the biorecognition element of the biosensor. In this approach, fuel cell anode catalysts are modified with a molecularly imprinted polymer (plastic antibody) capable of protein recognition (ferritin is used as model protein), inserted in a suitable membrane electrode assembly (MEA) and tested, as initial proof-of-concept, in a non-passive fuel cell operation environment. The anchoring of the ionomer-based plastic antibody on the catalyst surface follows a simple one-step grafting from approach through radical polymerization. Such modification increases fuel cell performance due to the proton conductivity and macroporosity characteristics of the polymer on the TPB. Finally, the response and selectivity of the bioreceptor inside the fuel cell showed a clear and selective signal from the biosensor. Moreover, such pioneering transducing approach allowed amplification of the electrochemical response and increased biosensor sensitivity by 2 orders of magnitude when compared to a 3-electrodes configuration system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.

    Science.gov (United States)

    Xiu, Yu; Jang, Sungho; Jones, J Andrew; Zill, Nicholas A; Linhardt, Robert J; Yuan, Qipeng; Jung, Gyoo Yeol; Koffas, Mattheos A G

    2017-10-01

    The ability to design and construct combinatorial synthetic metabolic pathways has far exceeded our capacity for efficient screening and selection of the resulting microbial strains. The need for high-throughput rapid screening techniques is of upmost importance for the future of synthetic biology and metabolic engineering. Here we describe the development of an RNA riboswitch-based biosensor module with dual fluorescent reporters, and demonstrate a high-throughput flow cytometry-based screening method for identification of naringenin over producing Escherichia coli strains in co-culture. Our efforts helped identify a number of key operating parameters that affect biosensor performance, including the selection of promoter and linker elements within the sensor-actuator domain, and the effect of host strain, fermentation time, and growth medium on sensor dynamic range. The resulting biosensor demonstrates a high correlation between specific fluorescence of the biosensor strain and naringenin titer produced by the second member of the synthetic co-culture system. This technique represents a novel application for synthetic microbial co-cultures and can be expanded from naringenin to any metabolite if a suitable riboswitch is identified. The co-culture technique presented here can be applied to a variety of target metabolites in combination with the SELEX approach for aptamer design. Due to the compartmentalization of the two genetic constructs responsible for production and detection into separate cells and application as independent modules of a synthetic microbial co-culture we have subsequently reduced the need for re-optimization of the producer module when the biosensor is replaced or removed. Biotechnol. Bioeng. 2017;114: 2235-2244. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Science.gov (United States)

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  13. Development of miniaturized pH biosensors based on electrosynthesized polymer films.

    Science.gov (United States)

    Segut, Olivier; Lakard, Boris; Herlem, Guillaume; Rauch, Jean-Yves; Jeannot, Jean-Claude; Robert, Laurent; Fahys, Bernard

    2007-08-06

    A new type of pH biosensor was developed for biological applications. This biosensor was fabricated using silicon microsystem technology and consists in two platinum microelectrodes. The first microelectrode was coated by an electrosynthesized polymer and acted as the pH sensitive electrode when the second one was coated by a silver layer and was used as the reference electrode. Then, this potentiometric pH miniaturized biosensor based on electrosynthesized polypyrrole or electrosynthesized linear polyethylenimine films was tested. The potentiometric responses appeared reversible and linear to pH changes in the range from pH 4 to 9. More, the responses were fast (less than 1 min for all sensors), they were stable in time since PPy/PEI films were stable during more than 30 days, and no interference was observed. The influence of the polymer thickness was also studied.

  14. Simulation of Biosensor using FEM

    International Nuclear Information System (INIS)

    Sheeparamatti, B G; Hebbal, M S; Sheeparamatti, R B; Math, V B; Kadadevaramath, J S

    2006-01-01

    Bio-Micro Electro Mechanical Systems/Nano Electro Mechanical Systems include a wide variety of sensors, actuators, and complex micro/nano devices for biomedical applications. Recent advances in biosensors have shown that sensors based on bending of microfabricated cantilevers have potential advantages over earlier used detection methods. Thus, a simple cantilever beam can be used as a sensor for biomedical, chemical and environmental applications. Here, microfabricated multilayered cantilever beam is exposed to sensing environment. Lower layer being pure structural silicon or polymer and upper layer is of polymer with antigen/antibody immobilized in it. Obviously, it has an affinity towards its counterpart i.e. antibody/antigen. In the sensing environment, if counter elements exists, they get captured by this sensing beam head, and the cantilever beam deflects. This deflection can be sensed and the presence of counter elements in the environment can be predicted. In this work, a finite element model of a biosensor for sensing antibody/antigen reaction is developed and simulated using ANSYS/Multiphysics. The optimal dimensions of the microcantilever beam are selected based on permissible deflection range with the aid of MATLAB. In the model analysis, both weight and surface stress effects on the cantilever are considered. Approximate weights are taken into account because of counter elements, considering their molecular weight and possible number of elements required for sensing. The results obtained in terms of lateral deflection are presented

  15. Quality and reliability management and its applications

    CERN Document Server

    2016-01-01

    Integrating development processes, policies, and reliability predictions from the beginning of the product development lifecycle to ensure high levels of product performance and safety, this book helps companies overcome the challenges posed by increasingly complex systems in today’s competitive marketplace.   Examining both research on and practical aspects of product quality and reliability management with an emphasis on applications, the book features contributions written by active researchers and/or experienced practitioners in the field, so as to effectively bridge the gap between theory and practice and address new research challenges in reliability and quality management in practice.    Postgraduates, researchers and practitioners in the areas of reliability engineering and management, amongst others, will find the book to offer a state-of-the-art survey of quality and reliability management and practices.

  16. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Scognamiglio, Viviana; Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano; Buonasera, Katia; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Giardi, Maria Teresa

    2012-01-01

    Highlights: ► A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. ► The sensing system employ an array of biological recognition elements. ► Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. ► The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 μM and 4.5 μM, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 μM and 35 μM respectively, with an RSD% less than 5%.

  17. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    Science.gov (United States)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  18. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    International Nuclear Information System (INIS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-01-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K 3 [Fe(CN) 6 ]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM −1 cm −2 ) when working at a low working potential (0.15 V). The linear range was 0.5 mM–15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications. (paper)

  19. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    Science.gov (United States)

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  20. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  1. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    Science.gov (United States)

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water

    Science.gov (United States)

    Galatus, Ramona; Feier, Bogdan; Cristea, Cecilia; Cennamo, Nunzio; Zeni, Luigi

    2017-09-01

    The present work aims to provide a hybrid platform capable of complementary and sensitive detection of β-lactam antibiotics, ampicillin in particular. The use of an aptamer specific to ampicillin assures good selectivity and sensitivity for the detection of ampicillin from different matrice. This new approach is dedicated for a portable, remote sensing platform based on low-cost, small size and low-power consumption solution. The simple experimental hybrid platform integrates the results from the D-shape surface plasmon resonance plastic optical fiber (SPR-POF) and from the electrochemical (bio)sensor, for the analysis of ampicillin, delivering sensitive and reliable results. The SPR-POF already used in many previous applications is embedded in a new experimental setup with fluorescent fibers emitters, for broadband wavelength analysis, low-power consumption and low-heating capabilities of the sensing platform.

  3. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    Science.gov (United States)

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.

  4. Reliability of application of inspection procedures

    Energy Technology Data Exchange (ETDEWEB)

    Murgatroyd, R A

    1988-12-31

    This document deals with the reliability of application of inspection procedures. A method to ensure that the inspection of defects thanks to fracture mechanics is reliable is described. The Systematic Human Error Reduction and Prediction Analysis (SHERPA) methodology is applied to every task performed by the inspector to estimate the possibility of error. It appears that it is essential that inspection procedures should be sufficiently rigorous to avoid substantial errors, and that the selection procedures and the training period for inspectors should be optimised. (TEC). 3 refs.

  5. Reliability of application of inspection procedures

    International Nuclear Information System (INIS)

    Murgatroyd, R.A.

    1988-01-01

    This document deals with the reliability of application of inspection procedures. A method to ensure that the inspection of defects thanks to fracture mechanics is reliable is described. The Systematic Human Error Reduction and Prediction Analysis (SHERPA) methodology is applied to every task performed by the inspector to estimate the possibility of error. It appears that it is essential that inspection procedures should be sufficiently rigorous to avoid substantial errors, and that the selection procedures and the training period for inspectors should be optimised. (TEC)

  6. On Industrial Application of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real applications is much smaller than what one would expect. At the beginning most applications were in the design/analyses area especially...

  7. An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Saima Zaman

    2013-10-01

    Full Text Available Low-dimensional InN/InGaN quantum dots (QDs are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10−6 M to 1 × 10−3 M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications.

  8. An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis

    Science.gov (United States)

    Alvi, Naveed ul Hassan; Gómez, Victor J.; Rodriguez, Paul E.D. Soto; Kumar, Praveen; Zaman, Saima; Willander, Magnus; Nötzel, Richard

    2013-01-01

    Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10−6 M to 1 × 10−3 M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications. PMID:24132228

  9. The Development of Reproducible and Selective Uric Acid Biosensor by Using Electrodeposited Polytyramine as Matrix Polymer

    Directory of Open Access Journals (Sweden)

    Manihar Situmorang

    2017-11-01

    Full Text Available A versatile method for the construction of reproducible and high selective uric acid biosensor is explained. Electrodeposited polytyramine is used as biosensor matrixes due to its compatibility to immobilize enzyme uric oxidase in the membrane electrode. The precise control over the charge passed during deposition of polytyramine allows concomitant control over the thickness of the deposited enzyme layers onto the surface of the electrode. The uric acid biosensor showed a sensitive response to uric acid with a linear calibration curve lies in the concentration range of 0.1–2.5 mM, slope 0.066 µA mM-1, and the limit detection was 0.01 mM uric acid (S/N = 3. The biosensor shown excellent reproducibility, the variation between response curves for uric acid lies between RSD 1% at low concentrations and up to RSD 6% at saturation concentration. Uric acid biosensor is free from normal interference. The biosensor showed good stability and to be applicable to determine uric acid in real samples. Analysis of uric acid in the reference standard serum samples by the biosensor method are all agreed with the real value from supplier. Standard samples were also analyzed independently by two methods: the present biosensor method and the standard UV-Vis spectrophotometry method, gave a correlation coefficient of 0.994. This result confirms that the biosensor method meets the rigid demands expected for uric acid in real samples.

  10. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    Science.gov (United States)

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  11. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.

    Science.gov (United States)

    Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B

    2017-09-05

    Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.

  12. Triggered optical biosensor

    Science.gov (United States)

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  13. Optimization of Xenon Biosensors for Detection of Protein Interactions

    International Nuclear Information System (INIS)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  14. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  15. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    Science.gov (United States)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  16. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.

    Science.gov (United States)

    Song, Hyun Seok; Kwon, Oh Seok; Kim, Jae-Hong; Conde, João; Artzi, Natalie

    2017-03-15

    Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis.

    Science.gov (United States)

    Pemberton, R M; Pittson, R; Biddle, N; Hart, J P

    2009-01-01

    Microband glucose biosensors were fabricated by screen-printing a water-based carbon ink formulation containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, then insulating and sectioning through the thick (20mum) film to expose a 3mm-long working electrode edge. The performance of these biosensors for glucose analysis was investigated at 25 degrees C. Voltammetry in glucose-containing buffer solutions established that an operating potential of +0.4V vs. Ag/AgCl was suitable for analysis under both stirring and quiescent conditions. The influence of pH on biosensor performance was established and an operational pH of 8.0 was selected. Steady-state responses were obtained under quiescent conditions, suggesting a mixed mechanism predominated by radial diffusion, indicative of microelectrode behaviour. Calibration studies obtained with these biosensors showed steady-state currents that were linearly dependent on glucose concentration from the limit of detection (0.27mM) up to 2.0mM, with a precision for replicate biosensors of 6.2-10.7%. When applied to the determination of glucose in human serum, the concentration compared favourably to that determined by a spectroscopic method. These results have demonstrated a simple means of fabricating biosensors for glucose measurement and determination in situations where low-current real-time monitoring under quiescent conditions would be desirable.

  18. Biosensor for detection of dissolved chromium in potable water: A review.

    Science.gov (United States)

    Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G

    2017-08-15

    The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Science.gov (United States)

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  20. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  1. A Flexible Label-Free Biosensor Sensitive and Selective to TNF-a: Application for Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Abdoullatif BARAKET

    2014-05-01

    Full Text Available Tumor necrosis factor-a (TNF-a is a key pro-inflammatory cytokine that is characterized by elevated circulating levels for chronic heart failure (CHF and left ventricular assisted device (LVAD implantation patients, respectively. Therefore, a rapid and ease-of-use diagnostic tool is required to monitor LVAD patients at a high risk of mortality during early expression of an inflammatory storm. In this paper, we report on the quantitative electrochemical detection of human TNF-a with its corresponding antibody (Ab immobilized onto the functionalized biosensor surface. The label-free biosensor was fabricated on a gold surface that was deposited on a flexible polyimide (PI substrate. The interfacial properties of the functionalized flexible gold electrodes were evaluated by cyclic voltammetry (CV in the presence of Fe(CN64-/3- as the redox-active species. Afterwards, the electrochemical impedance spectroscopy (EIS technique was used to determine the TNF-a concentrations. EIS results confirmed that the developed flexible biosensor can accurately detect TNF-a with a good sensitivity in the dynamic range of 0.1 pg/mL to 0.5 ng/mL. Overall, the developed flexible biosensor was easy to fabricate and the results demonstrate a good selectivity in the presence of other cytokines such as interleukin: (IL-10 and (IL-1.

  2. More About Thin-Membrane Biosensor

    Science.gov (United States)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  3. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  4. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson,Vânia da Silva; Duran,Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  5. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  6. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications.

    Science.gov (United States)

    El Harrad, Loubna; Bourais, Ilhame; Mohammadi, Hasna; Amine, Aziz

    2018-01-09

    A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson's and Alzheimer's diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007-2017) on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.

  7. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Loubna El Harrad

    2018-01-01

    Full Text Available A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson’s and Alzheimer’s diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007–2017 on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.

  8. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  9. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  10. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  11. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2006-01-01

    /mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS...

  12. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    Science.gov (United States)

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  13. Designing a reliable leak bio-detection system for natural gas pipelines.

    Science.gov (United States)

    Batzias, F A; Siontorou, C G; Spanidis, P-M P

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  15. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine......, norepinephrine, 3,4-dihydroxy-phenylalanine (l-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application...... as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors...

  16. DEVELOPMENT OF A UREA BIOSENSOR BASED ON A POLYMERIC MEMBRANE INCLUDING ZEOLITE

    Directory of Open Access Journals (Sweden)

    M. L HAMLAOUI

    2008-06-01

    + -sensitive membrane is based on a zeolite-incorporated polymeric membrane biosensor (clinoptilolite. The sensitivity of ammonium  detection is sub-nernstian (32mV/pNH4 + but the ISFET presents a high selectivity, which is interesting for measurements in biological media. The grafting of urease to the NH4 +-sensitive membrane was permorfed by cross-linking with glutaraldehyde .The sensitivity of the urea ENFET is 15V/purea and this remains stable over 15 days with a detection limit of 3x10-5 M. Finally, in order to test feasibility of the urea biosensor for environmental applications, the remaining activity of the urease was determined after exposure to enzyme inhibiting heavy metals ions such as Hg(II.Using these urea biosensors, a detection limit of less than 5 x 10-8 M was obtained for Hg(II.

  17. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    Science.gov (United States)

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Preparation and electrochemical application of rutin biosensor for differential pulse voltammetric determination of NADH in the presence of acetaminophen

    Directory of Open Access Journals (Sweden)

    HAMID R. ZARE

    2010-10-01

    Full Text Available The electrocatalytic behavior of reduced nicotinamide adenine di-nucleotide (NADH was studied at the surface of a rutin biosensor, using various electrochemical methods. According to the results, the rutin biosensor had a strongly electrocatalytic effect on the oxidation of NADH with the overpotential being decreased by about 450 mV as compared to the process at a bare glassy carbon electrode, GCE. This value is significantly greater than the value of 220 mV that was reported for rutin embedded in a lipid-cast film. The kinetic parameters of the electron transfer coefficient, a, and the heterogeneous charge transfer rate constant, kh, for the electrocatalytic oxidation of NADH at the rutin biosensor were estimated. Furthermore, the linear dynamic range; sensitivity and limit of detection for NADH were evaluated using the differential pulse voltammetry method. The advantages of this biosensor for the determination of NADH are excellent catalytic activity and reproducibility, good detection limit and high exchange current density. The rutin biosensor could separate the oxidation peak potentials of NADH and acetaminophen present in the same solution while at a bare GCE, the peak potentials were indistinguishable.

  19. Nanobioengineering and Characterization of a Novel Estrogen Receptor Biosensor

    Directory of Open Access Journals (Sweden)

    Wilfrid Boireau

    2008-07-01

    Full Text Available We constructed an original supramolecular assembly on a surface of sensor composed of an innovative combination of an engineered cytochrome b5 and a modified nucleic acid bound to a synthetic lipid hemimembrane. The protein/DNA block, called (PDNA 2, was synthesized and purified before its immobilization onto a hybrid bilayer reconstituted on a gold surface. Surface plasmon resonance (SPR and atomic force microscopy (AFM were engaged in parallel on the same substrates in order to better understand dynamic events that occur at the surface of the biosensor. Good correlations were obtained in terms of specificity and reversibility. These findings allow us to present a first application of such biosensor in the study of the interaction processes between nuclear receptor and DNA.

  20. Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture.

    Science.gov (United States)

    Tric, Mircea; Lederle, Mario; Neuner, Lisa; Dolgowjasow, Igor; Wiedemann, Philipp; Wölfl, Stefan; Werner, Tobias

    2017-09-01

    Biosensors for continuous glucose monitoring in bioreactors could provide a valuable tool for optimizing culture conditions in biotechnological applications. We have developed an optical biosensor for long-term continuous glucose monitoring and demonstrated a tight glucose level control during cell culture in disposable bioreactors. The in-line sensor is based on a commercially available oxygen sensor that is coated with cross-linked glucose oxidase (GOD). The dynamic range of the sensor was tuned by a hydrophilic perforated diffusion membrane with an optimized permeability for glucose and oxygen. The biosensor was thoroughly characterized by experimental data and numerical simulations, which enabled insights into the internal concentration profile of the deactivating by-product hydrogen peroxide. The simulations were carried out with a one-dimensional biosensor model and revealed that, in addition to the internal hydrogen peroxide concentration, the turnover rate of the enzyme GOD plays a crucial role for biosensor stability. In the light of this finding, the glucose sensor was optimized to reach a long functional stability (>52 days) under continuous glucose monitoring conditions with a dynamic range of 0-20 mM and a response time of t 90  ≤ 10 min. In addition, we demonstrated that the sensor was sterilizable with beta and UV irradiation and only subjected to minor cross sensitivity to oxygen, when an oxygen reference sensor was applied. Graphical abstract Measuring setup of a glucose biosensor in a shake flask for continuous glucose monitoring in mammalian cell culture.

  1. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan

    International Nuclear Information System (INIS)

    Kang Xiaobin; Pang Guangchang; Liang Xinyi; Wang Meng; Liu Jing; Zhu Weiming

    2012-01-01

    Highlights: ► Glutaraldehyde was used as the bridge linking agent to covalently bonded thionine in chitosan, which is more stable and could effectively prevalent leakage of the electronic mediator. ► The effect of GNPs adsorbed HRP was first accurately characterized by bio-layer interferometry using the ForteBio Octer system. ► The application of self-assembly technology increases the biosensor stability. - Abstract: A novel hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan has been developed. Gold nanoparticles fixed with horseradish peroxidase were adsorbed on glassy carbon electrode by the chitosan which cross-linked with the electron mediator of horseradish peroxidase as the bridge linking agent. The assembly procedures were monitored by UV–visible spectral scanning, bio-layer interferometry, cyclic voltammetric and alternating current impedance. The chronoamperometry was used to measure hydrogen peroxide. The hydrogen peroxide biosensor linear range of detection is 1 × 10 −7 –1 × 10 −4 mol/L, detection limit up to 5.0 × 10 −8 mol/L. Moreover the stability, reproducibility and selectivity of the biosensor were also studied and the results confirmed that the biosensor exhibit fast response to hydrogen peroxide and possess high sensitivity, good reproducibility and long-term stability.

  2. Effects of Gold Nanoparticles on the Response of Phenol Biosensor Containing Photocurable Membrane with Tyrosinase

    Directory of Open Access Journals (Sweden)

    Ahmad Musa

    2008-10-01

    Full Text Available The role of incorporation of gold nanoparticles (50-130 nm in diameter into a series of photocurable methacrylic-acrylic based biosensor membranes containing tyrosinase on the response for phenol detection was investigated. Membranes with different hydrophilicities were prepared from 2-hydroxyethyl methacrylate and n-butyl acrylate via direct photocuring. A range of gold nanoparticles concentrations from 0.01 to 0.5 % (w/w was incorporated into these membranes during the photocuring process. The addition of gold nanoparticles to the biosensor membrane led to improvement in the response time by a reduction of approximately 5 folds to give response times of 5-10 s. The linear response range of the phenol biosensor was also extended from 24 to 90 mM of phenol. The hydrophilicities of the membrane matrices demonstrated strong influence on the biosensor response and appeared to control the effect of the gold nanoparticles. For less hydrophilic methacrylic-acrylic membranes, the addition of gold nanoparticles led to a poorer sensitivity and detection limit of the biosensor towards phenol. Therefore, for the application of gold nanoparticles in the enhancement of a phenol biosensor response, the nanoparticles should be immobilized in a hydrophilic matrix rather than a hydrophobic material.

  3. Nano-Calorimetry based point of care biosensor for metabolic disease management.

    Science.gov (United States)

    Kazura, Evan; Lubbers, Brad R; Dawson, Elliott; Phillips, John A; Baudenbacher, Franz

    2017-09-01

    Point of care (POC) diagnostics represents one of the fastest growing health care technology segments. Developments in microfabrication have led to the development of highly-sensitive nanocalorimeters ideal for directly measuring heat generated in POC biosensors. Here we present a novel nano-calorimeter-based biosensor design with differential sensing to eliminate common mode noise and capillary microfluidic channels for sample delivery to the thermoelectric sensor. The calorimeter has a resolution of 1.4 ± 0.2 nJ/(Hz) 1/2 utilizing a 27 junction bismuth/titanium thermopile, with a total Seebeck coefficient of 2160 μV/K. Sample is wicked to the calorimeter through a capillary channel making it suitable for monitoring blood obtained through a finger prick (performance in a model assay using catalase, achieving a threshold for hydrogen peroxide quantification of 50 μM. The potential for our device as a POC blood test for metabolic diseases is shown through the quantification of phenylalanine (Phe) in serum, an unmet necessary service in the management of Phenylketonuria (PKU). Pegylated phenylalanine ammonia-lyase (PEG-PAL) was utilized to react with Phe, but reliable detection was limited to <5 mM due to low enzymatic activity. The POC biosensor concept can be multiplexed and adapted to a large number of metabolic diseases utilizing different immobilized enzymes.

  4. A yeast co-culture-based biosensor for determination of waste water contamination levels.

    Science.gov (United States)

    Yudina, N Yu; Arlyapov, V A; Chepurnova, M A; Alferov, S V; Reshetilov, A N

    2015-10-01

    Artificial microbial co-cultures were formed to develop the receptor element of a biosensor for assessment of biological oxygen demand (BOD). The co-cultures possessed broad substrate specificities and enabled assays of water and fermentation products within a broad BOD range (2.4-80 mg/dm(3)) with a high correlation to the standard method (R = 0.9988). The use of the co-cultures of the yeasts Pichia angusta, Arxula adeninivorans and Debaryomyces hansenii immobilized in N-vinylpyrrolidone-modified poly(vinyl alcohol) enabled developing a BOD biosensor possessing the characteristics not inferior to those in the known biosensors. The results are indicative of a potential of using these co-cultures as the receptor element base in prototype models of instruments for broad application. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    Science.gov (United States)

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  6. Biosensor. Seitai sensa

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I [The Univ. of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1993-06-15

    Present state of the art of biosensors is described by taking taste sensors and odor sensors as examples. Bio-devices that response only to specific chemical substances are made using membranes that recognize particular molecules. Biosensors are constructed in combination of bio-devices with electronics devices that transduce the response of bio-devices to electric signals. Enzymes are used often as bio-devices to recognize molecules. They recognize strictly chemical substances and promote chemical reactions. Devices to measure electrochemically substances consumed or produced in the reactions serve as sensors. For taste sensors, inosinic acid or glutamic acid that is a component of taste, is recognized and measured. Combination of various bio-devices other than enzymes with various transducers makes it possible to produce biosensors based on a variety of principles. Odor sensors recognize odors by measuring frequency change of the electrode of quartz oscillator. The change occurs with weight change due to odorous substances absorbed on the oscillator electrode coated with lipids which exist in olfactory cells. 1 ref., 1 fig.

  7. Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea.

    Science.gov (United States)

    Ibrahim, Ahmed A; Ahmad, Rafiq; Umar, Ahmad; Al-Assiri, M S; Al-Salami, A E; Kumar, Rajesh; Ansari, S G; Baskoutas, S

    2017-12-15

    Herein, we demonstrate synthesis and application of two-dimensional (2D) rectangular ytterbium oxide (Yb 2 O 3 ) nanodisks via a facile hydrothermal method. The structural, morphological, compositional, crystallinity, and phase properties of as-synthesized nanodisks were carried out using several analytical techniques that showed well defined 2D rectangular nanodisks/sheet like morphologies. The average thickness and edge length of the nanosheet structures were 20 ± 5nm and 600 ± 50nm, respectively. To develop urea biosensor, glassy carbon electrodes (GCE) were modified with Yb 2 O 3 nanodisks, followed by urease immobilization and Nafion membrane covering (GCE/Yb 2 O 3 /Urease/Nafion). The fabricated biosensor showed sensitivity of 124.84μAmM -1 cm -2 , wide linear range of 0.05-19mM, detection limit down to ~ 2μM, and fast response time of ~ 3s. The developed biosensor was also used for the urea detection in water samples through spike-recovery experiments, which illustrates satisfactory recoveries. In addition, the obtained desirable selectivity towards specific interfering species, long-term stability, reproducibility, and repeatability further confirm the potency of as-fabricated urea biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor

    International Nuclear Information System (INIS)

    Jiang Hairong; Zhang Aifeng; Sun Yanan; Ru Xiaoning; Ge Dongtao; Shi Wei

    2012-01-01

    A novel glucose biosensor based on poly(1-(2-carboxyethyl)pyrrole) (PPyCOOH)/polypyrrole (PPy) composite nanowires was developed by immobilizing glucose oxidase (GOD) on the nanowires via covalent linkages. The PPyCOOH/PPy composite nanowires were fabricated by a facile two-step electrochemical synthesis route. First, PPy nanowires were synthesized in phosphate buffer solution using organic sulfonic acid, p-toluenesulfonate acid, as soft-template. Then, PPyCOOH/PPy composite nanowires were obtained by polymerizing 1-(2-carboxyethyl)pyrrole onto PPy nanowires via electrochemical method. Scanning electron microscopic, FT-IR spectra, X-ray photoelectron spectroscopy and cyclic voltammograms were used to characterize the structural and electrical behaviors of the composite nanowires. The PPyCOOH/PPy composite nanowires exhibited uniform diameter, high reactive site (-COOH), large specific surface, excellent electroactivity and good adhesion to electrode. The glucose biosensor was constructed by covalently coupling GOD to the composite nanowires. The biosensor response was rapid (5 s), highly sensitive (33.6 μA mM −1 cm −2 ) with a wide linear range (up to 10.0 mM) and low detection limit (0.63 μM); it also exhibited high stability and specificity to glucose. The attractive electrochemical and structural properties of PPyCOOH/PPy composite nanowires suggested potential application for electrocatalysis and biosensor.

  9. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection.

    Science.gov (United States)

    Wang, Xin; Gu, Mengjie; Toh, Tan Boon; Abdullah, Nurrul Lissa Binti; Chow, Edward Kai-Hua

    2018-02-01

    Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.

  10. In vitro evaluation of fluorescence glucose biosensor response.

    Science.gov (United States)

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-07-08

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  11. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    Directory of Open Access Journals (Sweden)

    Mamdouh Aloraefy

    2014-07-01

    Full Text Available Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor.

  12. StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity and specificity

    KAUST Repository

    Samodelov, S. L.; Beyer, H. M.; Guo, X.; Augustin, M.; Jia, K.-P.; Baz, Lina Abdulkareem Ali; Ebenho  h, O.; Beyer, P.; Weber, W.; Al-Babili, Salim; Zurbriggen, M. D.

    2016-01-01

    into the stereoselectivity of strigolactone perception. Given the high specificity, sensitivity, dynamic range of activity, modular construction, ease of implementation, and wide applicability, the biosensor StrigoQuant will be useful in unraveling multiple levels

  13. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Chris R. Bowen

    2011-05-01

    Full Text Available The adaptation of standard integrated circuit (IC technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  14. GOX-functionalized nanodiamond films for electrochemical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Pedro [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Departamento de Medicina, Universidad del Norte, Barranquilla (Colombia); Ram, Manoj K., E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Nanotechnology Research and Education Center, University of South Florida (United States); Gomez, Humberto [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Departamento de Medicina, Universidad del Norte, Barranquilla (Colombia); Kumar, Amrita [Department of Physiology, Emory University. Atlanta GA (United States); Bhethanabotla, Venkat [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Nanotechnology Research and Education Center, University of South Florida (United States)

    2011-07-20

    The importance of nanodiamond in biological and technological applications has been recognized recently, and applied in drug delivery, biochip, sensors and biosensors. Under this investigation, nanodiamond (ND) and nitrogen doped nanodiamond (NND) were deposited on n-type silicon films, and later functionalized with enzyme Glucose oxidase (GOX). The GOX functionalized doped and undoped ND films were characterized using combination of several techniques; i.e. FTIR spectroscopy, Raman spectroscopy, atomic force microscopy (AFM) and electrochemical techniques. ND/GOX and NND/GOX thin films on n-type silicon have been found to provide sensitive glucose sensor. GOX has been chosen as a model enzyme system to functionalize with ND at molecular level to understand the glucose biosensor. - Research highlights: {yields} Nanodiamond (ND) films were used as an enzyme electrode for glucose quantification. {yields} Electrochemical behavior of doped and intrinsic films was analyzed. {yields} Electrode demonstrates sensitivity to glucose concentration in dynamic condition. {yields} Linear behavior was observed upto 8mM before saturation condition.

  15. GOX-functionalized nanodiamond films for electrochemical biosensor

    International Nuclear Information System (INIS)

    Villalba, Pedro; Ram, Manoj K.; Gomez, Humberto; Kumar, Amrita; Bhethanabotla, Venkat; Kumar, Ashok

    2011-01-01

    The importance of nanodiamond in biological and technological applications has been recognized recently, and applied in drug delivery, biochip, sensors and biosensors. Under this investigation, nanodiamond (ND) and nitrogen doped nanodiamond (NND) were deposited on n-type silicon films, and later functionalized with enzyme Glucose oxidase (GOX). The GOX functionalized doped and undoped ND films were characterized using combination of several techniques; i.e. FTIR spectroscopy, Raman spectroscopy, atomic force microscopy (AFM) and electrochemical techniques. ND/GOX and NND/GOX thin films on n-type silicon have been found to provide sensitive glucose sensor. GOX has been chosen as a model enzyme system to functionalize with ND at molecular level to understand the glucose biosensor. - Research highlights: → Nanodiamond (ND) films were used as an enzyme electrode for glucose quantification. → Electrochemical behavior of doped and intrinsic films was analyzed. → Electrode demonstrates sensitivity to glucose concentration in dynamic condition. → Linear behavior was observed upto 8mM before saturation condition.

  16. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  17. Procedure for Application of Software Reliability Growth Models to NPP PSA

    International Nuclear Information System (INIS)

    Son, Han Seong; Kang, Hyun Gook; Chang, Seung Cheol

    2009-01-01

    As the use of software increases at nuclear power plants (NPPs), the necessity for including software reliability and/or safety into the NPP Probabilistic Safety Assessment (PSA) rises. This work proposes an application procedure of software reliability growth models (RGMs), which are most widely used to quantify software reliability, to NPP PSA. Through the proposed procedure, it can be determined if a software reliability growth model can be applied to the NPP PSA before its real application. The procedure proposed in this work is expected to be very helpful for incorporating software into NPP PSA

  18. Recent Progress in Lectin-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-12-01

    Full Text Available This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx and horseradish peroxidase (HRP on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.

  19. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  20. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Baby, Rakhi Raghavan; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  1. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    Science.gov (United States)

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  2. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  3. Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment

    Directory of Open Access Journals (Sweden)

    Chyuan Haur Kao

    2015-09-01

    Full Text Available Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications. Keywords: Multianalyte biosensor, CeO2 nanograin, EIS, CF4 plasma treatment, Membrane surface

  4. ZnO nanowire-based glucose biosensors with different coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. Black-Right-Pointing-Pointer Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. Black-Right-Pointing-Pointer Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis-Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 {mu}A cm{sup -2} mM{sup -1}) and the lowest Michaelis-Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  5. ZnO nanowire-based glucose biosensors with different coupling agents

    International Nuclear Information System (INIS)

    Jung, Juneui; Lim, Sangwoo

    2013-01-01

    Highlights: ► Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. ► Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. ► Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis–Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 μA cm −2 mM −1 ) and the lowest Michaelis–Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  6. Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications.

    Science.gov (United States)

    Zhang, Panpan; Zhao, Xinne; Zhang, Xuan; Lai, Yue; Wang, Xinting; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-05-28

    A novel β-phase polyvinylidene difluoride (PVDF) nanofibrous membrane decorated with multiwalled carbon nanotubes (MWCNTs) and platinum nanoparticles (PtNPs) was fabricated by an improved electrospinning technique. The morphology of the fabricated PVDF-MWCNT-PtNP nanofibrous membrane was observed by scanning electron microscopy, and the formation of high β-phase in the hybrid nanofibrous membrane was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry. The uniform dispersion of MWCNTs and PtNPs in the PVDF hybrid nanofibrous membrane and their interaction were explored by transmission electron microscopy and X-ray diffraction. For the first time, we utilized this created PVDF-MWCNT-PtNP nanofibrous membrane for biosensor and catalysis applications. The nonenzymatic amperometric biosensor with highly stable and sensitive, and selective detection of both H2O2 and glucose was successfully fabricated based on the electrospun PVDF-MWCNT-PtNP nanofibrous membrane. In addition, the catalysis of the hybrid nanofibrous membrane for oxygen reduction reaction was tested, and a good catalysis performance was found. We anticipate that the strategies utilized in this work will not only guide the further design of functional nanofiber-based biomaterials and biodevices but also extend the potential applications in energy storage, cytology, and tissue engineering.

  7. A New, Sensitive Marine Microalgal Recombinant Biosensor Using Luminescence Monitoring for Toxicity Testing of Antifouling Biocides

    Science.gov (United States)

    Sanchez-Ferandin, Sophie; Leroy, Fanny; Bouget, François-Yves

    2013-01-01

    In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC50) after only 2 days (diuron, 5.65 ± 0.44 μg/liter; Irgarol 1015, 0.76 ± 0.10 μg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds. PMID:23144143

  8. Increasing cell-device adherence using cultured insect cells for receptor-based biosensors

    Science.gov (United States)

    Terutsuki, Daigo; Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei

    2018-03-01

    Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell-device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell-device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs.

  9. StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity and specificity

    KAUST Repository

    Samodelov, S. L.

    2016-11-05

    Strigolactones are key regulators of plant development and interaction with symbiotic fungi; however, quantitative tools for strigolactone signaling analysis are lacking. We introduce a genetically encoded hormone biosensor used to analyze strigolactone-mediated processes, including the study of the components involved in the hormone perception/signaling complex and the structural specificity and sensitivity of natural and synthetic strigolactones in Arabidopsis, providing quantitative insights into the stereoselectivity of strigolactone perception. Given the high specificity, sensitivity, dynamic range of activity, modular construction, ease of implementation, and wide applicability, the biosensor StrigoQuant will be useful in unraveling multiple levels of strigolactone metabolic and signaling networks.

  10. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  11. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction.

    Science.gov (United States)

    Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying

    2017-12-15

    In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  13. An Amperometric Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory Phospholipase Group 2-IIA Using a Tri-Enzyme System

    Directory of Open Access Journals (Sweden)

    Nik Nurhanan Nik Mansor

    2018-02-01

    Full Text Available A tri-enzyme system consisting of choline kinase/choline oxidase/horseradish peroxidase was used in the rapid and specific determination of the biomarker for bacterial sepsis infection, secretory phospholipase Group 2-IIA (sPLA2-IIA. These enzymes were individually immobilized onto the acrylic microspheres via succinimide groups for the preparation of an electrochemical biosensor. The reaction of sPLA2-IIA with its substrate initiated a cascading enzymatic reaction in the tri-enzyme system that led to the final production of hydrogen peroxide, which presence was indicated by the redox characteristics of potassium ferricyanide, K3Fe(CN6. An amperometric biosensor based on enzyme conjugated acrylic microspheres and gold nanoparticles composite coated onto a carbon-paste screen printed electrode (SPE was fabricated and the current measurement was performed at a low potential of 0.20 V. This enzymatic biosensor gave a linear range 0.01–100 ng/mL (R2 = 0.98304 with a detection limit recorded at 5 × 10−3 ng/mL towards sPLA2-IIA. Moreover, the biosensor showed good reproducibility (relative standard deviation (RSD of 3.04% (n = 5. The biosensor response was reliable up to 25 days of storage at 4 °C. Analysis of human serum samples for sPLA2-IIA indicated that the biosensor has potential for rapid bacterial sepsis diagnosis in hospital emergency department.

  14. Evaluation of the magnetic properties of hybrids MnFe{sub 2}O{sub 4}/SiO{sub 2} /chitosan aiming its application as biosensors; Avaliacao das propriedades magneticas de hibridos MnFe{sub 2}O{sub 4}/SiO{sub 2}/quitosana visando sua aplicacao como biosensores

    Energy Technology Data Exchange (ETDEWEB)

    Leal, E.; Santos, P.T. A.; Costa, F.M., E-mail: elvialeal@gmail.com [Universidade Federal de Campina Grande (LabSMaC/UFCG), PB (Brazil). Laboratorio de Sintese de Materiais Ceramicos; Barbosa, D.C. [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Instituto de Quimica e Biotecnologia; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    Magnetic nanoparticles have potential application in biomedicine since their features allow a wide variety of applications, such as biosensors, drug carriers, destruction of tumor cells and magnetic separation of cells and proteins. Overlooking that, the proposal is to obtain the hybrid MnFe{sub 2}O{sub 4}/SiO{sub 2}/ chitosan, to evaluate it as its magnetic property, aiming to obtain a biocompatible hybrid for biological applications, such as, e.g., biosensors. The samples were analyzed by XRD, FTIR, SEM and magnetic measurements. The results revealed that the samples of pure MnFe{sub 2}O{sub 4}, silanized and with chitosan presented the formation of the spinel with crystallite sizes of 77, 80 and 79 nm, respectively. The FTIR spectra confirmed the presence of characteristic absorption bands of the spinel and groups present in silanol and chitosan, confirming the formation of the hybrid. The silane introduction kept the ferrimagnetic characteristic of the material and led to a slight increase in the saturation magnetization, going from 55 to 61 emu/g. (author)

  15. A global benchmark study using affinity-based biosensors

    DEFF Research Database (Denmark)

    Rich, Rebecca L; Papalia, Giuseppe A; Flynn, Peter J

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users...... the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used....

  16. Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface.

    Science.gov (United States)

    Qu, Ying; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Buhai; Wang, Xian; Fang, Huaifang; Zhang, Huijuan; Li, Chunya

    2013-06-15

    New graphene-silk peptide (Gr-SP) nanosheets were prepared and successfully fabricated with tyrosinase (Tyr) as a novel biosensor for the determination of phenolic compounds. The Gr-SP nanosheets were fully characterized with transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV/Vis and FTIR spectra. The developed biosensors were also characterized with scanning electronic microscopy and electrochemical impedance spectroscopy. Using bisphenol A (BPA) as a model substrate in the sensing system, a number of key factors including the volume of Gr-SP-Tyr solution, the applied potential, pH values, temperature, and the Tyr/Gr-SP ratio that influence the analytical performance of the biosensor were investigated. The biosensor gave a linear response on the concentration ranges of 0.001-16.91 μM for catechol with the sensitivity of 7634 mA M(-1)cm(-2), 0.0015-21.12 μM for phenol with the sensitivity of 4082 mA M(-1)cm(-2), and 0.002-5.48 μM for BPA with the sensitivity of 2511 mA M(-1)cm(-2). The low detection limits were estimated to be 0.23, 0.35 and 0.72 nM (S/N=3) for catechol, phenol and BPA, respectively. The biosensors also exhibit good repeatability and long-term stability. The practical application of the biosensor was also demonstrated by the determination of BPA leaching from commercial plastic drinking bottles. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof

    2016-06-08

    The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.

  18. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  19. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    Science.gov (United States)

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of Novel Piezoelectric Biosensor Using PZT Ceramic Resonator for Detection of Cancer Markers.

    Science.gov (United States)

    Su, Li; Fong, Chi-Chun; Cheung, Pik-Yuan; Yang, Mengsu

    2017-01-01

    A novel biosensor based on piezoelectric ceramic resonator was developed for direct detection of cancer markers in the study. For the first time, a commercially available PZT ceramic resonator with high resonance frequency was utilized as transducer for a piezoelectric biosensor. A dual ceramic resonators scheme was designed wherein two ceramic resonators were connected in parallel: one resonator was used as the sensing unit and the other as the control unit. This arrangement minimizes environmental influences including temperature fluctuation, while achieving the required frequency stability for biosensing applications. The detection of the cancer markers Prostate Specific Antigen (PSA) and α-Fetoprotein (AFP) was carried out through frequency change measurement. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small samples (1 μl), which is compatible with the requirements of clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and had the potential to be further developed into biosensor arrays with different specificities for simultaneous detection of multiple analytes.

  1. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    Science.gov (United States)

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  2. Biosensors in forensic sciences

    Directory of Open Access Journals (Sweden)

    Frederickx, C.

    2011-01-01

    Full Text Available A biosensor is a device that uses biological materials to detect and monitor the presence of specific chemicals in an area. Traditional methods of volatile detection used by law enforcement agencies and rescue teams typically consist of reliance on canine olfaction. This concept of using dogs to detect specific substances is quite old. However, dogs have some limitations such as cost of training and time of conditioning. Thus, the possibility of using other organisms as biosensors including rats, dolphins, honeybees, and parasitic wasps for detecting explosives, narcotics and cadavers has been developed. Insects have several advantages unshared by mammals. Insects are sensitive, cheap to produce and can be conditioned with impressive speed for a specific chemical-detection task. Moreover, insects might be a preferred sensing method in scenarios that are deemed too dangerous to use mammals. The purpose of this review is to provide an overview of the biosensors used in forensic sciences.

  3. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  4. A Detailed Model of Electroenzymatic Glutamate Biosensors To Aid in Sensor Optimization and in Applications in Vivo.

    Science.gov (United States)

    Clay, Mackenzie; Monbouquette, Harold G

    2018-02-21

    Simulations conducted with a detailed model of glutamate biosensor performance describe the observed sensor performance well, illustrate the limits of sensor performance, and suggest a path toward sensor optimization. Glutamate is the most important excitatory neurotransmitter in the brain, and electroenzymatic sensors have emerged as a useful tool for the monitoring of glutamate signaling in vivo. However, the utility of these sensors currently is limited by their sensitivity and response time. A mathematical model of a typical glutamate biosensor consisting of a Pt electrode coated with a permselective polymer film and a top layer of cross-linked glutamate oxidase has been constructed in terms of differential material balances on glutamate, H 2 O 2 , and O 2 in one spatial dimension. Simulations suggest that reducing thicknesses of the permselective polymer and enzyme layers can increase sensitivity ∼6-fold and reduce response time ∼7-fold, and thereby improve resolution of transient glutamate signals. At currently employed enzyme layer thicknesses, both intrinsic enzyme kinetics and enzyme deactivation likely are masked by mass transfer. However, O 2 -dependence studies show essentially no reduction in signal at the lowest anticipated O 2 concentrations for expected glutamate concentrations in the brain and that O 2 transport limitations in vitro are anticipated only at glutamate concentrations in the mM range. Finally, the limitations of current biosensors in monitoring glutamate transients is simulated and used to illustrate the need for optimized biosensors to report glutamate signaling accurately on a subsecond time scale. This work demonstrates how a detailed model can be used to guide optimization of electroenzymatic sensors similar to that for glutamate and to ensure appropriate interpretation of data gathered using such biosensors.

  5. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.

    Directory of Open Access Journals (Sweden)

    Ruchika Mohan

    Full Text Available BACKGROUND: Urinary tract infection (UTI is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both. CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for

  6. A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds.

    Science.gov (United States)

    Ozcan, Hakki Mevlut; Sagiroglu, Ayten

    2010-08-01

    In this study the biosensor was constructed by immobilizing tissue homogenate of banana peel onto a glassy carbon electrode surface. Effects of immobilization materials amounts, effects of pH, buffer concentration and temperature on biosensor response were studied. In addition, the detection ranges of 13 phenolic compounds were obtained with the help of the calibration graphs. Storage stability, repeatability of the biosensor, inhibitory effect and sample applications were also investigated. A typical calibration curve for the sensor revealed a linear range of 10-80 microM catechol. In reproducibility studies, variation coefficient and standard deviation were calculated as 2.69%, 1.44 x 10(-3) microM, respectively.

  7. Conductimetric Biosensor for the Detection of Uric Acid by Immobilization Uricase on Nata de Coco Membrane—Pt Electrode

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2011-01-01

    Full Text Available A conductimetric enzyme biosensor for uric acid detection has been developed. The uricase, as enzyme, is isolated from Candida utilis and immobilized on a nata de coco membrane-Pt electrode. The biosensor demonstrates a linear response to urate over the concentration range 1-6 ppm and has good selectivity properties. The response is affected by the membrane thickness and pH change in the range 7.5-9.5. The response time is three minutes in aqueous solutions and in human serum samples. Application of the biosensor to the determination of uric acid in human serum gave results that compared favourably with those obtained by medical laboratory. The operational stability of the biosensor was not less than three days and the relative error is smaller than 10%.

  8. Android integrated urea biosensor for public health awareness

    Directory of Open Access Journals (Sweden)

    Pranali P. Naik

    2015-03-01

    Full Text Available Integration of a biosensor with a wireless network on the Android 4.2.1 (Jelly Bean platform has been demonstrated. The present study reports an android integrated user friendly Flow injection analysis-Enzyme thermistor (FIA-ET urea biosensor system. This android-integrated biosensor system will facilitate enhanced consumer health and awareness alongside abridging the gap between the food testing laboratory and the concerned higher authorities. Data received from a flow injection mode urea biosensor has been exploited as an integration point among the analyst, the food consumer and the responsible higher authorities. Using the urea biosensor as an example, an alarm system has also been demonstrated both graphically and through text message on a mobile handset. The presented sensor integrated android system will also facilitate decision making support system in various fields of food quality monitoring and clinical analysis.

  9. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO4 nanostructures produced by convenient microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Liu, Hongying; Gu, Chunchuan; Li, Dujuan; Zhang, Mingzhen

    2015-01-01

    Graphical abstract: A non-enzymatic H 2 O 2 sensor with high selectivity and sensitivity based on rose-shaped FeMoO 4 synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO 4 is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO 4 nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO 4 within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H 2 O 2 ) was fabricated on the basis of the FeMoO 4 as electrocatalysis. The resulting FeMoO 4 exhibited high sensitivity and good stability for the detection of H 2 O 2 , which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO 4 . Amperometric response showed that the modified electrode had a good response for H 2 O 2 with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications

  10. Nano-arrays of SAM by dip-pen nanowriting (DPN) technique for futuristic bio-electronic and bio-sensor applications

    International Nuclear Information System (INIS)

    Agarwal, Pankaj B.; Kumar, A.; Saravanan, R.; Sharma, A.K.; Shekhar, Chandra

    2010-01-01

    Nano-arrays of bio-molecules have potential applications in many areas namely, bio-sensors, bio/molecular electronics and virus detection. Spot array, micro-contact printing and photolithography are used for micron size array fabrications while Dip-Pen Nanowriting (DPN) is employed for submicron/nano size arrays. We have fabricated nano-dots of 16-MHA (16-mercaptohexadecanoic acid) self-assembled monolayer (SAM) on gold substrate by DPN technique with different dwell time under varying relative humidity. These patterns were imaged in the same system in LFM (Lateral Force Microscopy) mode with fast scanning speed (5 Hz). The effect of humidity on size variation of nano-dots has been studied. During experiments, relative humidity (RH) was varied from 20% to 60%, while the temperature was kept constant ∼ 25 o C. The minimum measured diameter of the dot is ∼ 294 nm at RH = 20% for a dwell time of 2 s. The thickness of the 16-MHA dots, estimated in NanoRule image analysis software is ∼ 2 nm, which agrees well with the length of single MHA molecule (2.2 nm). The line profile has been used to estimate the size and thickness of dots. The obtained results will be useful in further development of nano-array based bio-sensors and bio-electronic devices.

  11. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline.

    Science.gov (United States)

    Lakard, Boris; Magnin, Delphine; Deschaume, Olivier; Vanlancker, Guilhem; Glinel, Karine; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M; Bertrand, Patrick; Yunus, Sami

    2011-06-15

    A potentiometric biosensor based on urease was developed for the quantitative determination of urea concentration in aqueous solutions for biomedical applications. The urease was either physisorbed onto an electrodeposited polyaniline film (PANI), or immobilized on a layer-by-layer film (LbL) assembled over the PANI film, that was obtained by the alternate deposition of charged polysaccharides (carboxymethylpullulan (CMP) and chitosan (CHI)). In the latter case, the urease (Urs) enzyme was either physically adsorbed or covalently grafted to the LbL film using carbodiimide coupling reaction. Potentiometric responses of the enzymatic biosensors were measured as a function of the urea concentration in aqueous solutions (from 10(-6) to 10(-1) mol L(-1) urea). Very high sensitivity and short response time were observed for the present biosensor. Moreover, a stability study showed a higher stability over time for the potentiometric response of the sensor with the enzyme-grafted LbL film, testifying for the protective nature of the polysaccharide coating and the interest of covalent grafting. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    Science.gov (United States)

    2015-07-21

    Hybrid Biosensor Jieun Lee1,2, Jaeman Jang1, Bongsik Choi1, Jinsu Yoon1, Jee-Yeon Kim3, Yang-Kyu Choi3, Dong Myong Kim1, Dae Hwan Kim1 & Sung-Jin Choi1...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response...of field-effect-transistor (FET)-based biosensors . The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential

  13. The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    International Nuclear Information System (INIS)

    Shariati, Mohsen

    2017-01-01

    The fabrication of ITO-capped WO 3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO 3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was 'label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO 3 nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics. (orig.)

  14. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    International Nuclear Information System (INIS)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  15. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  16. Functionalized carbon nanotubes and nanofibers for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Lin, Yuehe

    2008-07-30

    This review summarizes the recent advances of carbon nanotube (CNT) and carbon nanofiber (CNF)-based electrochemical biosensors with an emphasis on the applications of CNTs. Carbon nanotubes and carbon nanofibers have unique electric, electrocatalytic, and mechanical properties which make them efficient materials for the use in electrochemical biosensor development. In this article, the functionalization of CNTs for biosensors is simply discussed. The electrochemical biosensors based on CNT and their various applications, e.g., measurement of small biological molecules and environmental pollutants, detection of DNA, and immunosensing of disease biomarkers, are reviewed. Moreover, the development of carbon nanofiber-based electrochemical biosensors and their applications are outlined. Finally, some challenges are discussed in the conclusion.

  17. The Scanning TMR Microscope for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    Kunal N. Vyas

    2015-04-01

    Full Text Available We present a novel tunnel magnetoresistance (TMR scanning microscopeset-up capable of quantitatively imaging the magnetic stray field patterns of micron-sizedelements in 3D. By incorporating an Anderson loop measurement circuit for impedancematching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3Drastering a mounted TMR sensor over our magnetic barcodes, we are able to characterisethe complex domain structures by displaying the real component, the amplitude and thephase of the sensor’s impedance. The modular design, incorporating a TMR sensor withan optical microscope, renders this set-up a versatile platform for studying and imagingimmobilised magnetic carriers and barcodes currently employed in biosensor platforms,magnetotactic bacteria and other complex magnetic domain structures of micron-sizedentities. The quantitative nature of the instrument and its ability to produce vector maps ofmagnetic stray fields has the potential to provide significant advantages over other commonlyused scanning magnetometry techniques.

  18. Use of Enzymatic Biosensors as Quality Indices: A Synopsis of Present and Future Trends in The Food Industry Uso de Biosensores Enzimáticos como Indicadores de Calidad: Una Sinopsis del Presente y Futuro en la Industria Alimentaria

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2009-06-01

    Full Text Available Biosensors are an important alternative in the food industry to ensure the quality and safety of products and process controls with effective, fast and economical methods. Their technology is based on a specific biological recognition element in combination with a transducer for signal processing. The use of enzymatic biosensor technology in food processing, quality control and on-line processes is promising compared to conventional analytical techniques, as it offers great advantages due to size, cost, specificity, fast response, precision and sensitivity. This article reviews the development and use of some enzyme biosensors in the food industry, describes the most important application areas and analyzes the current situation and future possibilities. In conclusion, enzymatic biosensors are a tool with broad application in the development of quality systems, risk analysis and critical control points, and the extent of their use in the food industry is still largely limited by the short lifetime of biosensors, in response to which the use of thermophilic enzymes has been proposed.Los biosensores constituyen una importante alternativa en la industria de alimentos para garantizar la calidad e inocuidad de los productos y controlar los procesos con métodos eficaces, rápidos y económicos; su tecnología está basada en un elemento de reconocimiento biológico específico en combinación con un transductor para el procesamiento de la señal. El uso de técnicas de biosensores enzimáticos en procesamiento de alimentos, control de calidad y de procesos “on line”, es prometedor frente a las técnicas analíticas convencionales, ya que ofrecen grandes ventajas debido a su tamaño, costo, especificidad, respuesta rápida, precisión y sensibilidad. En este artículo se revisa el desarrollo y uso de algunos biosensores enzimáticos en la industria alimentaria, se describen las áreas de aplicación más importantes y se analiza su situaci

  19. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.

    Science.gov (United States)

    Newton, Adam J H; Wall, Mark J; Richardson, Magnus J E

    2017-03-01

    Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue

  20. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  1. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  2. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, G; Guix, M; Ambrosi, A; Merkoci, A [Nanobioelectronics and Biosensors Group, Catalan Institute of Nanotechnology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia (Spain); Ramirez Silva, M T [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, 09340 Mexico Distrito Federal (Mexico); Palomar Pardave, M E, E-mail: arben.merkoci.icn@uab.es [Departamento de Materiales, Universidad Autonoma Metropolitana, Azcapotzalco, 02200 Mexico Distrito Federal (Mexico)

    2010-06-18

    A stable and sensitive biosensor for phenol detection based on a screen printed electrode modified with tyrosinase, multiwall carbon nanotubes and glutaraldehyde is designed and applied in a flow injection analytical system. The proposed carbon nanotube matrix is easy to prepare and ensures a very good entrapment environment for the enzyme, being simpler and cheaper than other reported strategies. In addition, the proposed matrix allows for a very fast operation of the enzyme, that leads to a response time of 15 s. Several parameters such as the working potential, pH of the measuring solution, biosensor response time, detection limit, linear range of response and sensitivity are studied. The obtained detection limit for phenol was 0.14 x 10{sup -6} M. The biosensor keeps its activity during continuous FIA measurements at room temperature, showing a stable response (RSD 5%) within a two week working period at room temperature. The developed biosensor is being applied for phenol detection in seawater samples and seems to be a promising alternative for automatic control of seawater contamination. The developed detection system can be extended to other enzyme biosensors with interest for several other applications.

  3. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor

    International Nuclear Information System (INIS)

    Alarcon, G; Guix, M; Ambrosi, A; Merkoci, A; Ramirez Silva, M T; Palomar Pardave, M E

    2010-01-01

    A stable and sensitive biosensor for phenol detection based on a screen printed electrode modified with tyrosinase, multiwall carbon nanotubes and glutaraldehyde is designed and applied in a flow injection analytical system. The proposed carbon nanotube matrix is easy to prepare and ensures a very good entrapment environment for the enzyme, being simpler and cheaper than other reported strategies. In addition, the proposed matrix allows for a very fast operation of the enzyme, that leads to a response time of 15 s. Several parameters such as the working potential, pH of the measuring solution, biosensor response time, detection limit, linear range of response and sensitivity are studied. The obtained detection limit for phenol was 0.14 x 10 -6 M. The biosensor keeps its activity during continuous FIA measurements at room temperature, showing a stable response (RSD 5%) within a two week working period at room temperature. The developed biosensor is being applied for phenol detection in seawater samples and seems to be a promising alternative for automatic control of seawater contamination. The developed detection system can be extended to other enzyme biosensors with interest for several other applications.

  4. In situ measurement of nitrate in deep-sea sediments with a microscale biosensor

    DEFF Research Database (Denmark)

    Marzocchi, Ugo; Revsbech, Niels Peter; Glud, Ronnie

    around 2°C. By isolation of psychrotrophic nitrate-reducing and N2O producing bacteria from arctic environments and by application of a new procedure for making microscale ion-permeable membranes we have now succeeded in making biosensors that function reproducibly at low temperatures. It has thus been......When a bacteria-based nitrate biosensor with tip diameter down to 20 µm was invented about 12 years ago it became possible to measure detailed nitrate profiles in marine sediments, but functional tip membranes in the sensors were difficult to make, and the sensors did not work at temperatures below...

  5. Micro-and nanoelectromechanical biosensors

    CERN Document Server

    Nicu, Liviu

    2014-01-01

    Most books dedicated to the issues of bio-sensing are organized by the well-known scheme of a biosensor. In this book, the authors have deliberately decided to break away from the conventional way of treating biosensing research by uniquely addressing biomolecule immobilization methods on a solid surface, fluidics issues and biosensing-related transduction techniques, rather than focusing simply on the biosensor. The aim is to provide a contemporary snapshot of the biosensing landscape without neglecting the seminal references or products where needed, following the downscaling (from the micr

  6. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  7. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Ezzaldeen Younes Jomma

    2016-02-01

    Full Text Available In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability.

  8. Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application

    Czech Academy of Sciences Publication Activity Database

    Bidmanová, Š.; Kotlanova, M.; Rataj, Tomáš; Damborský, J.; Trtílek, M.; Prokop, Z.

    2016-01-01

    Roč. 84, oct (2016), s. 97-105 ISSN 0956-5663 Grant - others:GA MŠk(CZ) LO1214 Institutional support: RVO:67179843 Keywords : dehydrochlorinase * environmental monitoring * field-testing * haloalkane dehalogenase * Halogenated pollutant * optical biosensor Subject RIV: EH - Ecology, Behaviour Impact factor: 7.780, year: 2016

  9. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    Science.gov (United States)

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In Vitro Evaluation of Fluorescence Glucose Biosensor Response

    OpenAIRE

    Aloraefy, Mamdouh; Pfefer, T. Joshua; Ramella-Roman, Jessica C.; Sapsford, Kim E.

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensor...

  11. Biosensors in the small scale: methods and technology trends.

    Science.gov (United States)

    Senveli, Sukru U; Tigli, Onur

    2013-03-01

    This study presents a review on biosensors with an emphasis on recent developments in the field. A brief history accompanied by a detailed description of the biosensor concepts is followed by rising trends observed in contemporary micro- and nanoscale biosensors. Performance metrics to quantify and compare different detection mechanisms are presented. A comprehensive analysis on various types and subtypes of biosensors are given. The fields of interest within the scope of this review are label-free electrical, mechanical and optical biosensors as well as other emerging and popular technologies. Especially, the latter half of the last decade is reviewed for the types, methods and results of the most prominently researched detection mechanisms. Tables are provided for comparison of various competing technologies in the literature. The conclusion part summarises the noteworthy advantages and disadvantages of all biosensors reviewed in this study. Furthermore, future directions that the micro- and nanoscale biosensing technologies are expected to take are provided along with the immediate outlook.

  12. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials

    Directory of Open Access Journals (Sweden)

    Diana C. Vanegas

    2018-04-01

    Full Text Available In foods, high levels of biogenic amines (BA are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 µA/mM, a lower detection limit of 11.6 µM, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks.

  13. Fiber optic-based regenerable biosensor

    Science.gov (United States)

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  14. Software reliability for safety-critical applications

    International Nuclear Information System (INIS)

    Everett, B.; Musa, J.

    1994-01-01

    In this talk, the authors address the question open-quotes Can Software Reliability Engineering measurement and modeling techniques be applied to safety-critical applications?close quotes Quantitative techniques have long been applied in engineering hardware components of safety-critical applications. The authors have seen a growing acceptance and use of quantitative techniques in engineering software systems but a continuing reluctance in using such techniques in safety-critical applications. The general case posed against using quantitative techniques for software components runs along the following lines: safety-critical applications should be engineered such that catastrophic failures occur less frequently than one in a billion hours of operation; current software measurement/modeling techniques rely on using failure history data collected during testing; one would have to accumulate over a billion operational hours to verify failure rate objectives of about one per billion hours

  15. Rater reliability and construct validity of a mobile application for posture analysis.

    Science.gov (United States)

    Szucs, Kimberly A; Brown, Elena V Donoso

    2018-01-01

    [Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings.

  16. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection.

    Science.gov (United States)

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-03-24

    This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10(-8) M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved.

  17. Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC-MS validation.

    Science.gov (United States)

    Rodriguez-Mozaz, Sara; de Alda, Maria J López; Barceló, Damià

    2006-04-15

    This work describes the application of an optical biosensor (RIver ANALyser, RIANA) to the simultaneous analysis of three relevant environmental organic pollutants, namely, the pesticides atrazine and isoproturon and the estrogen estrone, in real water samples. This biosensor is based on an indirect inhibition immunoassay which takes place at a chemically modified optical transducer chip. The spatially resolved modification of the transducer surface allows the simultaneous determination of selected target analytes by means of "total internal reflection fluorescence" (TIRF). The performance of the immunosensor method developed was evaluated against a well accepted traditional method based on solid-phase extraction followed by liquid chromatography-mass spectrometry (LC-MS). The chromatographic method was superior in terms of linearity, sensitivity and accuracy, and the biosensor method in terms of repeatability, speed, cost and automation. The application of both methods in parallel to determine the occurrence and removal of atrazine, isoproturon and estrone throughout the treatment process (sand filtration, ozonation, activated carbon filtration and chlorination) in a waterworks showed an overestimation of results in the case of the biosensor, which was partially attributed to matrix and cross-reactivity effects, in spite of the addition of ovalbumin to the sample to minimize matrix interferences. Based on the comparative performance of both techniques, the biosensor emerges as a suitable tool for fast, simple and automated screening of water pollutants without sample pretreatment. To the author's knowledge, this is the first description of the application of the biosensor RIANA in the multi-analyte configuration to the regular monitoring of pollutants in a waterworks.

  18. Development of an electrochemical biosensor for vitamin B12 using D-phenylalanine nanotubes

    Science.gov (United States)

    Moazeni, Maryam; Karimzadeh, Fathallah; Kermanpur, Ahmad; Allafchian, Alireza

    2018-01-01

    In the past decades, biosensors are one of the most interesting topics among researchers and scientist. The biosensors are used in several applications such as determining food quality, control and diagnose clinical problems and metabolic control. Therefore, many efforts have been carried out to design and develop a new generation of these systems. On the other hand nanotechnology by improving the performance of sensors has created an excellent outlook. Using nanomaterials such as nanoparticles, nanotubes, nanowires, and nanorods in diagnostic tools has been significantly increased accuracy, sensitivity and improved detection limits in sensors. In this study, the one-dimensional morphology of the D-phenylalanine was assembled on the surface of the gold electrode. In the next step electrochemical performance of the modified electrode was investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pals Voltammograms (DPV). Finally, by measuring the different concentrations of vitamin B12, the detection limit of the biosensor was obtained 1.6 µM.

  19. Hybrid structures based on gold nanoparticles and semiconductor quantum dots for biosensor applications

    Directory of Open Access Journals (Sweden)

    Kurochkina M

    2018-04-01

    Full Text Available Margarita Kurochkina,1 Elena Konshina,1 Aleksandr Oseev,2 Soeren Hirsch3 1Centre of Information Optical Technologies, ITMO University, Saint Petersburg, Russia; 2Institute of Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; 3Department of Engineering, University of Applied Sciences Brandenburg, Brandenburg an der Havel, Germany Background: The luminescence amplification of semiconductor quantum dots (QD in the presence of self-assembled gold nanoparticles (Au NPs is one of way for creating biosensors with highly efficient transduction. Aims: The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. Methods: In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. Results: The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton–plasmon enhancement of the QDs’ photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA

  20. The ITO-capped WO{sub 3} nanowires biosensor based on field-effect transistor in label-free protein sensing

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, Mohsen [Sharif University of Technology, Institute for Nanoscience and Nanotechnology, Tehran (Iran, Islamic Republic of)

    2017-05-15

    The fabrication of ITO-capped WO{sub 3} nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO{sub 3} nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was 'label-free' and depended on bio-molecule's intrinsic charge. For nanowires synthesis, the vapor-liquid-solid mechanism was used. Nanowires were beyond a few hundred nanometers in lengths and around 15-20 nm in diameter, while the globe cap's size on the nanowires was around 15-25 nm. The indium tin oxide (ITO) played as catalyst in nanofabrication for WO{sub 3} nanowires growth and had outstanding role in bio-sensing especially for bio-molecule adherence. In applied electric field presence, the fabricated device showed the great potential to enhance medical diagnostics. (orig.)

  1. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Application of xCELLigence RTCA Biosensor Technology for Revealing the Profile and Window of Drug Responsiveness in Real Time

    Directory of Open Access Journals (Sweden)

    Dan Kho

    2015-04-01

    Full Text Available The xCELLigence technology is a real-time cellular biosensor, which measures the net adhesion of cells to high-density gold electrode arrays printed on custom-designed E-plates. The strength of cellular adhesion is influenced by a myriad of factors that include cell type, cell viability, growth, migration, spreading and proliferation. We therefore hypothesised that xCELLigence biosensor technology would provide a valuable platform for the measurement of drug responses in a multitude of different experimental, clinical or pharmacological contexts. In this manuscript, we demonstrate how xCELLigence technology has been invaluable in the identification of (1 not only if cells respond to a particular drug, but (2 the window of drug responsiveness. The latter aspect is often left to educated guess work in classical end-point assays, whereas biosensor technology reveals the temporal profile of the response in real time, which enables both acute responses and longer term responses to be profiled within the same assay. In our experience, the xCELLigence biosensor technology is suitable for highly targeted drug assessment and also low to medium throughput drug screening, which produces high content temporal data in real time.

  3. A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors.

    Science.gov (United States)

    González-Guerrero, Ana Belén; Alvarez, Mar; García Castaño, Andrés; Domínguez, Carlos; Lechuga, Laura M

    2013-03-01

    Reliable immobilization of bioreceptors over any sensor surface is the most crucial step for achieving high performance, selective and sensitive biosensor devices able to analyze human samples without the need of previous processing. With this aim, we have implemented an optimized scheme to covalently biofunctionalize the sensor area of a novel nanophotonic interferometric biosensor. The proposed method is based on the ex-situ silanization of the silicon nitride transducer surface by the use of a carboxyl water soluble silane, the carboxyethylsilanetriol sodium salt (CTES). The use of an organosilane stable in water entails advantages in comparison with usual trialkoxysilanes such as avoiding the generation of organic waste and leading to the assembly of compact monolayers due to the high dielectric constant of water. Additionally, cross-linking is prevented when the conditions (e.g. immersion time, concentration of silane) are optimized. This covalent strategy is followed by the bioreceptor linkage on the sensor area surface using two different approaches: an in-flow patterning and a microcontact printing using a biodeposition system. The performance of the different bioreceptor layers assembled is compared by the real-time and label-free immunosensing of the proteins BSA/mAb BSA, employed as a model molecular pair. Although the results demonstrated that both strategies provide the biosensor with a stable biological interface, the performance of the bioreceptor layer assembled by microcontact printing slightly improves the biosensing capabilities of the photonic biosensor. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Utilization of biosensors and chemical sensors for space applications

    Science.gov (United States)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  5. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  6. Antibody orientation on biosensor surfaces: a minireview

    NARCIS (Netherlands)

    Trilling, A.K.; Beekwilder, M.J.; Zuilhof, H.

    2013-01-01

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains – the immobilization

  7. Detection of protein-small molecule binding using a self-referencing external cavity laser biosensor.

    Science.gov (United States)

    Meng Zhang; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T

    2014-01-01

    High throughput screening of protein-small molecule binding interactions using label-free optical biosensors is challenging, as the detected signals are often similar in magnitude to experimental noise. Here, we describe a novel self-referencing external cavity laser (ECL) biosensor approach that achieves high resolution and high sensitivity, while eliminating thermal noise with sub-picometer wavelength accuracy. Using the self-referencing ECL biosensor, we demonstrate detection of binding between small molecules and a variety of immobilized protein targets with binding affinities or inhibition constants in the sub-nanomolar to low micromolar range. The demonstrated ability to perform detection in the presence of several interfering compounds opens the potential for increasing the throughput of the approach. As an example application, we performed a "needle-in-the-haystack" screen for inhibitors against carbonic anhydrase isozyme II (CA II), in which known inhibitors are clearly differentiated from inactive molecules within a compound library.

  8. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes

    DEFF Research Database (Denmark)

    Rozlosnik, Noemi

    2009-01-01

    production and they are suitable for biosensor applications. Conducting polymer-based electrochemical sensors have shown numerous advantages in a number of areas related to human health, such as the diagnosis of infectious diseases, genetic mutations, drug discovery, forensics and food technology, due...... developed methods associated with the application of PEDOT to diagnostic sensing....

  9. Effect of Diffusion Limitations on Multianalyte Determination from Biased Biosensor Response

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Lančinskas, Algirdas; Žilinskas, Antanas

    2014-01-01

    The optimization-based quantitative determination of multianalyte concentrations from biased biosensor responses is investigated under internal and external diffusion-limited conditions. A computational model of a biocatalytic amperometric biosensor utilizing a mono-enzyme-catalyzed (nonspecific) competitive conversion of two substrates was used to generate pseudo-experimental responses to mixtures of compounds. The influence of possible perturbations of the biosensor signal, due to a white noise- and temperature-induced trend, on the precision of the concentration determination has been investigated for different configurations of the biosensor operation. The optimization method was found to be suitable and accurate enough for the quantitative determination of the concentrations of the compounds from a given biosensor transient response. The computational experiments showed a complex dependence of the precision of the concentration estimation on the relative thickness of the outer diffusion layer, as well as on whether the biosensor operates under diffusion- or kinetics-limited conditions. When the biosensor response is affected by the induced exponential trend, the duration of the biosensor action can be optimized for increasing the accuracy of the quantitative analysis. PMID:24608006

  10. Engineering an NADPH/NADPRedox Biosensor in Yeast

    DEFF Research Database (Denmark)

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas Peter Boye

    2016-01-01

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biote......Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science...... in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon...... NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show...

  11. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    Directory of Open Access Journals (Sweden)

    Nazruddin Nazaruddin

    2007-06-01

    Full Text Available Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. Hasil pengukuran menunjukkan sensitivitas biosensor urea berbasis membran khitin adalah 19,11 mV/dekade, trayek pengukuran 10-4 – 10-8 M, limit deteksi 10-8 M, waktu respon 3,10–6,02 menit, dengan urutan kekuatan ion penggangu: NH4Cl > NaCl > CH3COONa > campuran garam > KCl > CaCl2 > asam askorbat. Kata kunci: biosensor, immobilisasi, khitin, urea

  12. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2016-11-01

    Full Text Available Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy, reduced graphene oxide (RGO, and gold nanoparticles (nanoAu biocomposite on a glassy carbon electrode (GCE. The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+ in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3 with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  13. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide

  14. Development of a microscale NOx- biosensor for the study of nitrogen cycling in marine sediment

    DEFF Research Database (Denmark)

    Marzocchi, Ugo

    application of this microscale biosensor is constrained mainly because of a short lifetime caused by the fragility of some of its components. Moreover a detailed study characterizing the ESC efficiency under different condition is still missing. The aims of this thesis are: (i) to contribute......-) microscale biosensor matches these requirements. In fact, it can be constructed with a tip diameter ranging between 25 and 100 µm. Its functioning is based on the reduction of NOx- to N2O by denitrifying bacteria and the subsequent detection of N2O by means of an amperometric microsensor. The sensitivity...... of the biosensor can be amplified by the electrophoretic sensitivity control system (ESC) which positively polarizes the inner side of the sensor against an external reference inserted into the analyzed medium, inducing the migration of NOx- anions into the bacterial chamber. However, nowadays the widespread...

  15. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles

    Science.gov (United States)

    Bertok, Tomas; Sediva, Alena; Katrlik, Jaroslav; Gemeiner, Pavol; Mikula, Milan; Nosko, Martin; Tkac, Jan

    2016-01-01

    We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinylalcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade-1 and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade-1 with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade-1. These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids. PMID:23601864

  16. Two-dimensional MoS2: A promising building block for biosensors.

    Science.gov (United States)

    Gan, Xiaorong; Zhao, Huimin; Quan, Xie

    2017-03-15

    Recently, two-dimensional (2D) layered nanomaterials have trigged intensive interest due to the intriguing physicochemical properties that stem from a quantum size effect connected with their ultra-thin structure. In particular, 2D molybdenum disulfide (MoS 2 ), as an emerging class of stable inorganic graphene analogs with intrinsic finite bandgap, would possibly complement or even surpass graphene in electronics and optoelectronics fields. In this review, we first discuss the historical development of ultrathin 2D nanomaterials. Then, we are concerned with 2D MoS 2 including its structure-property relationships, synthesis methods, characterization for the layer thickness, and biosensor applications over the past five years. Thereinto, we are highlighting recent advances in 2D MoS 2 -based biosensors, especially emphasize the preparation of sensing elements, roles of 2D MoS 2 , and assay strategies. Finally, on the basis of the current achievements on 2D MoS 2 and other ultrathin layered nanomaterials, perspectives on the challenges and opportunities for the exploration of 2D MoS 2 -based biosensors are put forward. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

    Science.gov (United States)

    Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V

    2017-05-15

    Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bioluminescent bacteria: lux genes as environmental biosensors

    Directory of Open Access Journals (Sweden)

    Nunes-Halldorson Vânia da Silva

    2003-01-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  19. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability.

    Science.gov (United States)

    Giménez-Gómez, Pablo; Gutiérrez-Capitán, Manuel; Capdevila, Fina; Puig-Pujol, Anna; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia

    2016-01-28

    L-lactic acid is monitored during malolactic fermentation process of wine and its evolution is strongly related with the quality of the final product. The analysis of L-lactic acid is carried out off-line in a laboratory. Therefore, there is a clear demand for analytical tools that enabled real-time monitoring of this process in field and biosensors have positioned as a feasible alternative in this regard. The development of an amperometric biosensor for L-lactate determination showing long-term stability is reported in this work. The biosensor architecture includes a thin-film gold electrochemical transducer selectively modified with an enzymatic membrane, based on a three-dimensional matrix of polypyrrole (PPy) entrapping lactate oxidase (LOX) and horseradish peroxidase (HRP) enzymes. The experimental conditions of the biosensor fabrication regarding the pyrrole polymerization and the enzymes entrapment are optimized. The biosensor response to L-lactate is linear in a concentration range of 1 × 10(-6)-1 × 10(-4) M, with a detection limit of 5.2 × 10(-7) M and a sensitivity of - (13500 ± 600) μA M(-1) cm(-2). The biosensor shows an excellent working stability, retaining more than 90% of its original sensitivity after 40 days. This is the determining factor that allowed for the application of this biosensor to monitor the malolactic fermentation of three red wines, showing a good agreement with the standard colorimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of a Transcription Factor-Based Lactam Biosensor

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoi......Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied...... a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î......´-valerolactam, and butyrolactam in a dose-dependent manner. The biosensor has sufficient specificity to discriminate against lactam biosynthetic intermediates and therefore could potentially be applied for high-throughput metabolic engineering for industrially important high titer lactam biosynthesis....

  1. Disposable chemical sensors and biosensors made on cellulose paper.

    Science.gov (United States)

    Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan

    2014-03-07

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.

  2. Development of RBDGG Solver and Its Application to System Reliability Analysis

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2010-01-01

    For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis

  3. A new PANI biosensor based on catalase for cyanide determination.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Aydin, Tuba

    2016-01-01

    Cyanide is one of the most widespread of compounds measured in environmental analysis due to their toxic effects on environment and health. We report a highly sensitive, reliable, selective amperometric sensor for determination of cyanide, using a polyaniline conductive polymer. The enzyme catalase was immobilized by electropolymerization. The steps during the immobilization were controlled by electrochemical impedance spectroscopy. Optimum pH, temperature, aniline concentration, enzyme concentration, and the number of scans obtained during electropolymerization, were investigated. In addition, the cyanide present in artificial waste water samples was determined. In the characterization studies of the biosensor, some parameters such as reproducibility and storage stability, were analyzed.

  4. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    their capability to work in biosensor devices. For example, Raman spectroscopy can be non-invasive and can provide 1 μm of spatial resolution in 1 second of collection time, well suited for sensing. Moreover, it may give information at the single cell and even approaching the single molecule scale. Here we present...... protein may be used as an efficient sensor in an organic environment via a biomimetic membrane model. The combination of both biomimetic membranes and protein membranes as a signal transduction medium has interesting applications in biology and medicine. It is crucial that the matrix where a protein...

  5. Spreeta-based biosensor immunoassays to detect fraudulent adulteration in milk and milk powder

    NARCIS (Netherlands)

    Haasnoot, W.; Marchesini, G.R.; Koopal, K.

    2006-01-01

    Biacore biosensors (Biacore AB, Uppsala, Sweden) have proven to be robust analytical tools for the automated immunochemical detection of different adulterants and contaminants in milk and milk powder. However, the significant cost of the instruments is a disincentive for their wide application in

  6. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    Science.gov (United States)

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway.

    Science.gov (United States)

    Bose, Debojit; Su, Yichi; Marcus, Assaf; Raulet, David H; Hammond, Ming C

    2016-12-22

    In mammalian cells, the second messenger (2'-5',3'-5') cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP), is produced by the cytosolic DNA sensor cGAMP synthase (cGAS), and subsequently bound by the stimulator of interferon genes (STING) to trigger interferon response. Thus, the cGAS-cGAMP-STING pathway plays a critical role in pathogen detection, as well as pathophysiological conditions including cancer and autoimmune disorders. However, studying and targeting this immune signaling pathway has been challenging due to the absence of tools for high-throughput analysis. We have engineered an RNA-based fluorescent biosensor that responds to 2',3'-cGAMP. The resulting "mix-and-go" cGAS activity assay shows excellent statistical reliability as a high-throughput screening (HTS) assay and distinguishes between direct and indirect cGAS inhibitors. Furthermore, the biosensor enables quantitation of 2',3'-cGAMP in mammalian cell lysates. We envision this biosensor-based assay as a resource to study the cGAS-cGAMP-STING pathway in the context of infectious diseases, cancer immunotherapy, and autoimmune diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Applications of majorization and Schur functions in reliability and life testing

    International Nuclear Information System (INIS)

    Proschan, F.

    1975-01-01

    This is an expository paper presenting basic definitions and properties of majorization and Schur functions, and displaying a variety of applications of these concepts in reliability prediction and modelling, and in reliability inference and life testing

  9. The procedure of ethanol determination in wine by enzyme amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. Development of the procedure of ethanol determination in wine by an enzyme amperometric biosensor. Methods. The amperometric biosensor method of ethanol analysis has been used in this work. Results. The paper presents comparative analysis of two methods of alcohol oxidase (AO immobilization for development of amperometric biosensor for ethanol determination in wine. The method of AO immobilization in glutaraldehyde vapour was chosen as optimal for this purpose. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The procedure of ethanol determination in wine by amperometric biosensor on the basis of platinum printed electrode SensLab and AO was optimized. The analysis of ethanol concentration in wine and must samples was carried out using the developed high-stable biosensor. A good correlation between the data obtained by the biosensor and densitometry methods was shown. Conclusion. The proposed method of ethanol analysis could be used in wine production

  10. Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications

    Science.gov (United States)

    Pellish, Jonathan

    2018-01-01

    This presentation describes the accelerating use of Commercial off the Shelf (COTS) parts in space applications. Component reliability and threats in the context of the mission, environment, application, and lifetime. Provides overview of traditional approaches applied to COTS parts in flight applications, and shows challenges and potential paths forward for COTS systems in flight applications it's all about data!

  11. Packaging of silicon sensors for microfluidic bio-analytical applications

    International Nuclear Information System (INIS)

    Wimberger-Friedl, Reinhold; Prins, Menno; Megens, Mischa; Dittmer, Wendy; Witz, Christiane de; Nellissen, Ton; Weekamp, Wim; Delft, Jan van; Ansems, Will; Iersel, Ben van

    2009-01-01

    A new industrial concept is presented for packaging biosensor chips in disposable microfluidic cartridges to enable medical diagnostic applications. The inorganic electronic substrates, such as silicon or glass, are integrated in a polymer package which provides the electrical and fluidic interconnections to the world and provides mechanical strength and protection for out-of-lab use. The demonstrated prototype consists of a molded interconnection device (MID), a silicon-based giant magneto-resistive (GMR) biosensor chip, a flex and a polymer fluidic part with integrated tubing. The various processes are compatible with mass manufacturing and run at a high yield. The devices show a reliable electrical interconnection between the sensor chip and readout electronics during extended wet operation. Sandwich immunoassays were carried out in the cartridges with surface functionalized sensor chips. Biological response curves were determined for different concentrations of parathyroid hormone (PTH) on the packaged biosensor, which demonstrates the functionality and biocompatibility of the devices. The new packaging concept provides a platform for easy further integration of electrical and fluidic functions, as for instance required for integrated molecular diagnostic devices in cost-effective mass manufacturing

  12. Novel graphene-based biosensor for early detection of Zika virus infection.

    Science.gov (United States)

    Afsahi, Savannah; Lerner, Mitchell B; Goldstein, Jason M; Lee, Joo; Tang, Xiaoling; Bagarozzi, Dennis A; Pan, Deng; Locascio, Lauren; Walker, Amy; Barron, Francie; Goldsmith, Brett R

    2018-02-15

    We have developed a cost-effective and portable graphene-enabled biosensor to detect Zika virus with a highly specific immobilized monoclonal antibody. Field Effect Biosensing (FEB) with monoclonal antibodies covalently linked to graphene enables real-time, quantitative detection of native Zika viral (ZIKV) antigens. The percent change in capacitance in response to doses of antigen (ZIKV NS1) coincides with levels of clinical significance with detection of antigen in buffer at concentrations as low as 450pM. Potential diagnostic applications were demonstrated by measuring Zika antigen in a simulated human serum. Selectivity was validated using Japanese Encephalitis NS1, a homologous and potentially cross-reactive viral antigen. Further, the graphene platform can simultaneously provide the advanced quantitative data of nonclinical biophysical kinetics tools, making it adaptable to both clinical research and possible diagnostic applications. The speed, sensitivity, and selectivity of this first-of-its-kind graphene-enabled Zika biosensor make it an ideal candidate for development as a medical diagnostic test. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions.

    Science.gov (United States)

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S

    2018-04-30

    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid

  14. Hydrogen peroxide biosensor based on titanium oxide

    Science.gov (United States)

    Halim, Nur Hamidah Abdul; Heng, Lee Yook; Hashim, Uda

    2015-09-01

    In this work, a biosensor utilizing modified titania, TiO2 particles using aminopropyl-triethoxy-silane, (APTS) for developing hydrogen peroxide biosensor is presented. The surface of Ti-APTS particles is used as a support for hemoglobin immobilization via covalent bonding. The performance of the biosensor is determined by differential pulse voltammetry. The linear response was observed at the reduction current of redox mediator probe [FeCN6]3-/4- at potential between 0.22 V to 0.24 V. The preliminary result for electrochemistry study on this modified electrode is reported. The preliminary linear range is obtained from 1×10-2 M to 1×10-8 M.

  15. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate

    Science.gov (United States)

    Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng

    2017-08-01

    We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor’s oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

  17. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    Science.gov (United States)

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fabrication of Biosensors Based on Nanostructured Conducting Polyaniline (NSPANI

    Directory of Open Access Journals (Sweden)

    Deepshikha SAINI

    2011-11-01

    Full Text Available In this study, glucose and hydrogen peroxide (H2O2 biosensors based on nanostructured conducting polyaniline (NSPANI (synthesized using sodiumdodecyl sulphate (SDS as structure directing agent were developed. Because of the large specific surface area, excellent conductivity of NSPANI, horseradish peroxidase (HRP and glucose oxidase (GOx could be easily immobilized with high loading and activity. In addition the small dimensions and the high surface-to-volume ratio of the NSCP allow the rapid transmission of electron and enhance current response. The linear dynamic range of optical glucose and H2O2 biosensors is 5–40 mM for glucose and 1–50 mM for H2O2, respectively where as the bulk PANI exhibits linearity between 5-20 mM/l. The miniature optical glucose biosensor also exhibits good reproducibility. The storage stability of optical glucose and H2O2 biosensors is two weeks for glucose and five days for H2O2. The high response value of NSPANI based biosensors as compared to bulk PANI based biosensor reflects higher enzymatic affinity of GOx/NSPANI and HRP/NSPANI with glucose and H2O2 due to biocompatibility, active surface area and high electron communication capability of nanobiopolymer film. In conclusion, the NSPANI based biosensors proposed herein have many advantages such as a low response time, high reproducibility, high sensitivity, stable and wide dynamic range.

  19. Development of a Pseudomonas aeruginosa Agmatine Biosensor

    Directory of Open Access Journals (Sweden)

    Adam Gilbertsen

    2014-10-01

    Full Text Available Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice.

  20. Addressing the problem of the relevance of reliability data to varied applications

    International Nuclear Information System (INIS)

    McIntyre, P.J.; Gibson, I.K.

    1989-01-01

    Reliability data is collected for many reasons on a wide range of components and applications. Sometimes data is collected for a specific purpose whilst in other situations data may be collected simply to provide an available pool of historical data. Data can also be extracted from information that was gathered without recognition that it could be adapted for use as reliability data at a later stage. It is not surprising that there should be significant differences in the strengths and weaknesses of data obtained in such different circumstances. This paper describes work undertaken to investigate how to make best use of available data to provide specific and reliable predictions of valve reliability for nuclear power station applications. (orig.)

  1. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

    Science.gov (United States)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-01

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme

  2. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  3. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor.

    Science.gov (United States)

    Liu, Lanhua; Zhou, Xiaohong; Lu, Yun; Shan, Didi; Xu, Bi; He, Miao; Shi, Hanchang; Qian, Yi

    2017-11-15

    The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E 2 ) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E 2 free to bind to fluorophore-labeled anti-E 2 monoclonal antibody. Unbound anti-E 2 antibody then binds to the immobilized E 2 -protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E 2 -protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi

    2018-01-01

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm...... increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on...

  5. Biosensor Regeneration: A Review of Common Techniques and Outcomes.

    Science.gov (United States)

    Goode, J A; Rushworth, J V H; Millner, P A

    2015-06-16

    Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.

  6. A Novel Conductive Poly(3,4-ethylenedioxythiophene-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles

    Directory of Open Access Journals (Sweden)

    Fangcheng Xu

    2016-03-01

    Full Text Available In this study, we have investigated the contribution of bovine serum albumin (BSA to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene (PEDOT film on a platinum (Pt electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP to construct a functional HRP/AuNPs/PEDOT(BSA/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility.

  7. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  8. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  9. The establish and application of equipment reliability database in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zheng Wei; Li He

    2006-03-01

    Take the case of Daya Bay Nuclear Power Plant, the collecting and handling of equipment reliability data, the calculation method of reliability parameters and the establish and application of reliability databases, etc. are discussed. The data source involved the design information of the equipment, the operation information, the maintenance information and periodically test record, etc. Equipment reliability database built on a base of the operation experience. It provided the valid tool for thoroughly and objectively recording the operation history and the present condition of various equipment of the plant; supervising the appearance of the equipment, especially the safety-related equipment, provided the very practical worth information for enhancing the safety and availability management of the equipment and insuring the safety and economic operation of the plant; and provided the essential data for the research and applications in safety management, reliability analysis, probabilistic safety assessment, reliability centered maintenance and economic management in nuclear power plant. (authors)

  10. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor.

    Science.gov (United States)

    Zhang, Yawen; Li, Yunqiu; Wu, Wenjian; Jiang, Yuren; Hu, Biru

    2014-10-15

    A glucose biosensor was developed via direct immobilization of glucose oxidase (GOD) by self-assembled cysteamine monolayer on Au electrode surface followed by coating chitosan on the surface of electrode. In this work, chitosan film was coated on the surface of GOD as a protection film to ensure the stability and biocompatibility of the constructed glucose biosensor. The different application ranges of sensors were fabricated by immobilizing varied layers of GOD. The modified surface film was characterized by a scanning electron microscope (SEM) and the fabrication process of the biosensor was confirmed through electrochemical impedance spectroscopy (EIS) of ferrocyanide. The performance of cyclic voltammetry (CV) in the absence and presence of 25 mM glucose and ferrocenemethanol showed a diffusion-controlled electrode process and reflected the different maximum currents between the different GOD layers. With the developed glucose biosensor, the detection limits of the two linear responses are 49.96 μM and 316.8 μM with the sensitivities of 8.91 μA mM(-1)cm(-2) and 2.93 μA mM(-1)cm(-2), respectively. In addition, good stability (up to 30 days) of the developed biosensor was observed. The advantages of this new method for sensors construction was convenient and different width ranges of detection can be obtained by modified varied layers of GOD. The sensor with two layers of enzyme displayed two current linear responses of glucose. The present work provided a simplicity and novelty method for producing biosensors, which may help design enzyme reactors and biosensors in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2010-04-01

    Full Text Available Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications.

  12. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO{sub 4} nanostructures produced by convenient microwave-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China); Gu, Chunchuan [Department of Clinical Laboratory, Hangzhou Cancer Hospital, Zhejiang, Hangzhou 310002 (China); Li, Dujuan; Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China)

    2015-04-15

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.

  13. Bactérias bioluminescentes: os genes lux como biosensores ambientais

    OpenAIRE

    Nunes-Halldorson, Vânia da Silva; Duran, Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  14. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  15. SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications

    Czech Academy of Sciences Publication Activity Database

    De Vos, D.; Girones, J.; Popelka, Štěpán; Schacht, E. H.; Baets, R.; Bienstman, P.

    2009-01-01

    Roč. 24, č. 8 (2009), s. 2528-2533 ISSN 0956-5663 Institutional research plan: CEZ:AV0Z40500505 Keywords : silicon-on-insulator * microring resonator * optical biosensor Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.429, year: 2009

  16. Application of subset simulation in reliability estimation of underground pipelines

    International Nuclear Information System (INIS)

    Tee, Kong Fah; Khan, Lutfor Rahman; Li, Hongshuang

    2014-01-01

    This paper presents a computational framework for implementing an advanced Monte Carlo simulation method, called Subset Simulation (SS) for time-dependent reliability prediction of underground flexible pipelines. The SS can provide better resolution for low failure probability level of rare failure events which are commonly encountered in pipeline engineering applications. Random samples of statistical variables are generated efficiently and used for computing probabilistic reliability model. It gains its efficiency by expressing a small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment and compared with direct Monte Carlo simulation (MCS) method. Reliability of a buried flexible steel pipe with time-dependent failure modes, namely, corrosion induced deflection, buckling, wall thrust and bending stress has been assessed in this study. The analysis indicates that corrosion induced excessive deflection is the most critical failure event whereas buckling is the least susceptible during the whole service life of the pipe. The study also shows that SS is robust method to estimate the reliability of buried pipelines and it is more efficient than MCS, especially in small failure probability prediction

  17. Development of electrochemical biosensors and solid-phase amplification methods for the detection of human papillomavirus genes

    OpenAIRE

    Civit Pitarch, Laia

    2012-01-01

    A rapid, accurate and reliable diagnosis is crucial for the identification of a disease, like cancer, where an early detection can improve patient survival outcomes. Cervical cancer is the third most commonly diagnosed and the fourth leading cause of cancer death in women. It is well known that persistent infections with high-risk human papillomaviruses (HPV) are the primary cause of cervical cancer. Electrochemical DNA biosensors have received important attention owing to their characterist...

  18. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Amit R. [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); Saurakhiya, Neelam; Deva, Dinesh [DST Unit on Nanosciences, Kanpur, 208016 (India); Sharma, Ashutosh [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); DST Unit on Nanosciences, Kanpur, 208016 (India); Verma, Nishith, E-mail: nishith@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India); Center for Environmental Science and Engineering, Kanpur 208016 (India)

    2013-10-15

    This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. - Graphical abstract: A novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode is synthesized for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers are grown on activated carbon microfibers by

  19. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications

    International Nuclear Information System (INIS)

    Hood, Amit R.; Saurakhiya, Neelam; Deva, Dinesh; Sharma, Ashutosh; Verma, Nishith

    2013-01-01

    This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes. - Graphical abstract: A novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode is synthesized for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers are grown on activated carbon microfibers by

  20. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    Science.gov (United States)

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.