WorldWideScience

Sample records for relevant length scales

  1. Laser scattering in large-scale-length plasmas relevant to National Ignition Facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Afeyan, B.B.

    1996-10-01

    We have used homogeneous plasmas of high density (up to 1.3 X 10 21 electrons per cm 3 ) and temperature (∼ 3 keV) with large density scale lengths (∼2 mm) to approximate conditions within National Ignition Facility (NIF) hohlraums. Within these plasmas we have studied the dependence of stimulated Raman (SRS) and Brillouin (SBS) scattering on beam smoothing and plasma conditions at the relevant laser intensity (3ω, 2 X 10 15 Wcm 2 ). Both SBS and SRS are reduced by the use of smoothing by spectral dispersion (SSD)

  2. Length scale for configurational entropy in microemulsions

    NARCIS (Netherlands)

    Reiss, H.; Kegel, W.K.; Groenewold, J.

    1996-01-01

    In this paper we study the length scale that must be used in evaluating the mixing entropy in a microemulsion. The central idea involves the choice of a length scale in configuration space that is consistent with the physical definition of entropy in phase space. We show that this scale may be

  3. Drug delivery across length scales.

    Science.gov (United States)

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  4. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  5. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  6. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    thin disk density scale length, hR, is rather short (2.7 ± 0.1 kpc). Key words. ... The 2MASS near infrared data provide, for the first time, deep star counts on a ... peaks allows to adjust the spatial extinction law in the model. ... probability that fi.

  7. Effective Debye length in closed nanoscopic systems: a competition between two length scales.

    Science.gov (United States)

    Tessier, Frédéric; Slater, Gary W

    2006-02-01

    The Poisson-Boltzmann equation (PBE) is widely employed in fields where the thermal motion of free ions is relevant, in particular in situations involving electrolytes in the vicinity of charged surfaces. The applications of this non-linear differential equation usually concern open systems (in osmotic equilibrium with an electrolyte reservoir, a semi-grand canonical ensemble), while solutions for closed systems (where the number of ions is fixed, a canonical ensemble) are either not appropriately distinguished from the former or are dismissed as a numerical calculation exercise. We consider herein the PBE for a confined, symmetric, univalent electrolyte and quantify how, in addition to the Debye length, its solution also depends on a second length scale, which embodies the contribution of ions by the surface (which may be significant in high surface-to-volume ratio micro- or nanofluidic capillaries). We thus establish that there are four distinct regimes for such systems, corresponding to the limits of the two parameters. We also show how the PBE in this case can be formulated in a familiar way by simply replacing the traditional Debye length by an effective Debye length, the value of which is obtained numerically from conservation conditions. But we also show that a simple expression for the value of the effective Debye length, obtained within a crude approximation, remains accurate even as the system size is reduced to nanoscopic dimensions, and well beyond the validity range typically associated with the solution of the PBE.

  8. Length Scales in Bayesian Automatic Adaptive Quadrature

    Directory of Open Access Journals (Sweden)

    Adam Gh.

    2016-01-01

    Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.

  9. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    Science.gov (United States)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  10. Intermediate length scale dynamics of polyisobutylene

    International Nuclear Information System (INIS)

    Farago, B.; Arbe, A.; Colmenero, J.; Faust, R.; Buchenau, U.; Richter, D.

    2002-01-01

    We report on a neutron spin echo investigation of the intermediate scale dynamics of polyisobutylene studying both the self-motion and the collective motion. The momentum transfer (Q) dependences of the self-correlation times are found to follow a Q -2/β law in agreement with the picture of Gaussian dynamics. In the full Q range of observation, their temperature dependence is weaker than the rheological shift factor. The same is true for the stress relaxation time as seen in sound wave absorption. The collective times show both temperature dependences; at the structure factor peak, they follow the temperature dependence of the viscosity, but below the peak, one finds the stress relaxation behavior

  11. Length scale of secondary stresses in fracture and fatigue

    International Nuclear Information System (INIS)

    Dong, P.

    2008-01-01

    In an attempt to provide a consistent framework for the analysis and treatment of secondary stresses associated with welding and thermal loading in the context of fracture mechanics, this paper starts with an effective stress characterization procedure by introducing a length-scale concept. With it, a traction-based stress separation procedure is then presented to provide a consistent characterization of stresses from various sources based on their length scale. Their relative contributions to fracture driving force are then quantified in terms of their characteristic length scales. Special attention is given to the implications of the length-scale argument on both analysis and treatment of welding residual stresses in fracture assessment. A series of examples is provided to demonstrate how the present developments can be applied for treating not only secondary stresses but also externally applied stresses, as well as their combined effects on the structural integrity of engineering components

  12. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  13. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    Science.gov (United States)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  14. Hydrodynamics of long-scale-length plasmas. Summary

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1984-01-01

    A summary is given relating to the importance of long-scale-length plasmas to laser fusion. Some experiments are listed in which long-scale-length plasmas have been produced and studied. This talk presents SAGE simulations of most of these experiments with the emphasis being placed on understanding the hydrodynamic conditions rather than the parametric/plasma-physics processes themselves which are not modeled by SAGE. However, interpretation of the experiments can often depend on a good understanding of the hydrodynamics, including optical ray tracing

  15. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  16. A multiple length scale description of the mechanism of elastomer stretching

    DEFF Research Database (Denmark)

    Neuefeind, J.; Skov, Anne Ladegaard; Daniels, J. E.

    2016-01-01

    Conventionally, the stretching of rubber is modeled exclusively by rotations of segments of the embedded polymer chains; i.e. changes in entropy. However models have not been tested on all relevant length scales due to a lack of appropriate probes. Here we present a universal X-ray based method f...

  17. Length and time scales of atmospheric moisture recycling

    Directory of Open Access Journals (Sweden)

    R. J. van der Ent

    2011-03-01

    Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.

  18. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  19. Progress in Long Scale Length Laser-Plasma Interactions

    International Nuclear Information System (INIS)

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S.; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M.

    2003-01-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 x 10 15 W cm -2 . The targets were filled with 1 atm of CO 2 producing of up to 7 mm long homogeneously heated plasmas with densities of n e = 6 x 10 20 cm -3 and temperatures of T e = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ∼1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length (∼2 mm). increasing to 12% for ∼7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths

  20. Invariant length scale in relativistic kinematics: lessons from Dirichlet branes

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Pfeiffer, Hendryk

    2004-01-01

    Dirac-Born-Infeld theory is shown to possess a hidden invariance associated with its maximal electric field strength. The local Lorentz symmetry O(1,n) on a Dirichlet-n-brane is thereby enhanced to an O(1,n)xO(1,n) gauge group, encoding both an invariant velocity and acceleration (or length) scale. The presence of this enlarged gauge group predicts consequences for the kinematics of observers on Dirichlet branes, with admissible accelerations being bounded from above. An important lesson is that the introduction of a fundamental length scale into relativistic kinematics does not enforce a deformation of Lorentz boosts, as one might assume naively. The exhibited structures further show that Moffat's non-symmetric gravitational theory qualifies as a candidate for a consistent Born-Infeld type gravity with regulated solutions

  1. The length and time scales of water's glass transitions

    Science.gov (United States)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  2. The length and time scales of water's glass transitions.

    Science.gov (United States)

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  3. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  4. Transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of {lambda}{sub D} is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  5. Transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  6. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  7. Critical point phenomena: universal physics at large length scales

    International Nuclear Information System (INIS)

    Bruce, A.; Wallace, D.

    1993-01-01

    This article is concerned with the behaviour of a physical system at, or close to, a critical point (ebullition, ferromagnetism..): study of the phenomena displayed in the critical region (Ising model, order parameter, correlation length); description of the configurations (patterns) formed by the microscopic degrees of freedom near a critical point, essential concepts of the renormalization group (coarse-graining, system flow, fixed-point and scale-invariance); how these concepts knit together to form the renormalization group method; and what kind of problems may be resolved by the renormalization group method. 12 figs., 1 ref

  8. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  9. Cosmogenesis and the origin of the fundamental length scale

    International Nuclear Information System (INIS)

    Brout, R.; Englert, F.; Frere, J.M.; Gunzig, E.; Nardone, P.; Truffin, C.

    1980-01-01

    The creation of the universe is regarded as a self-consistent process in which matter is engendered by the space-time varying cosmological gravitational field and vice versa. Abundant production can occur only if the mass of the particles so created is of the order of the Planck mass (= ksup(-1/2)). We conjecture that this is the origin of the fundamental length scale in field theory, as it is encountered, for example, in present efforts towards grand unification. The region of particle production is steady state in character. It ceases when the produced particles decay. The geometry of this steady state is characteristic of a de Sitter space. It permits one to estimate the number of ordinary particles presently observed, N. We find log N = O (mtausub(decay)) = O(g -2 ) = O(10 2 ), with the usual estimate of g = O(10 -1 ) at the Planck length scale. This is not inconsistent with the experimental estimate N approx. = O(10 90 ). After production, cosmological history gives way to the more conventional scheme of free expansion. The present paper is a self-contained account of our view of cosmological history and the production of matter in a varying gravitational field. Special care has been taken to describe the vacuum correctly in the present context and to perform the necessary subtractions of zero-point effects. (orig.)

  10. Nature of the spin-glass phase at experimental length scales

    International Nuclear Information System (INIS)

    Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D

    2010-01-01

    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations

  11. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  12. Relevant energy scale of color confinement from lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2009-01-01

    We propose a new lattice framework to extract the relevant gluonic energy scale of QCD phenomena which is based on a 'cut' on link variables in momentum space. This framework is expected to be broadly applicable to all lattice QCD calculations. Using this framework, we quantitatively determine the relevant energy scale of color confinement, through the analyses of the quark-antiquark potential and meson masses. The relevant energy scale of color confinement is found to be below 1.5 GeV in the Landau gauge. In fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the relevant low-energy region is cut, the quark-antiquark potential is approximately reduced to a Coulomb-like potential, and each meson becomes a quasifree quark pair. As an analytical model calculation, we also investigate the dependence of the Richardson potential on the cut, and find the consistent behavior with the lattice result.

  13. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.; Chae, R. S.; Bihannic, I.; Michot, L.; Guttmann, P.; Thieme, J.; Schneider, G.; Monteiro, P. J. M.; Levitz, P.

    2012-01-01

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a

  14. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...

  15. Physics on smallest scales. An introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Goethe Univ., Frankfurt am Main; Nicolini, Piero; Bleicher, Marcus

    2012-02-01

    Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: - the existence of additional space dimensions - the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non- commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. (orig.)

  16. Length Scales of the Neutral Wind Profile over Homogeneous Terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    The wind speed profile for the neutral boundary layer is derived for a number of mixing-length parameterizations, which account for the height of the boundary layer. The wind speed profiles show good agreement with the reanalysis of the Leipzig wind profile (950 m high) and with combined cup–soni...

  17. Length scales for the Navier-Stokes equations on a rotating sphere

    International Nuclear Information System (INIS)

    Kyrychko, Yuliya N.; Bartuccelli, Michele V.

    2004-01-01

    In this Letter we obtain the dissipative length scale for the Navier-Stokes equations on a two-dimensional rotating sphere S 2 . This system is a fundamental model of the large scale atmospheric dynamics. Using the equations of motion in their vorticity form, we construct the ladder inequalities from which a set of time-averaged length scales is obtained

  18. Length scales in glass-forming liquids and related systems: a review

    International Nuclear Information System (INIS)

    Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth

    2016-01-01

    The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed. (review article)

  19. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  20. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  1. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  2. Self-assembling block copolymer systems involving competing length scales : A route toward responsive materials

    NARCIS (Netherlands)

    Nap, R; Erukhimovich, [No Value; ten Brinke, G; Erukhimovich, Igor

    2004-01-01

    The phase behavior of block copolymers melts involving competing length scales, i.e., able to microphase separate on two different length scales, is theoretically investigated using a self-consistent field approach. The specific block copolymers studied consist of a linear A-block linked to an

  3. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  4. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  5. Determination of Longitudinal Electron Bunch Lengths on Picosecond Time Scales

    CERN Document Server

    Martínez, C; Calviño, F

    1999-01-01

    At CERN (European Laboratory for Particle Physics) the CLIC (Compact Linear Collider) study is pursuing the design of an electron-positron high-energy linear collider using an innovative concept for the RF (Radio Frequency) power production, the socalled two-beam acceleration scheme. In order to keep the length of the collider in a reasonable range while being able of accelerating electrons and positrons up to 5 TeV, the normal-conducting accelerating structures should operate at very high frequency (in this case 30 GHz). The RF power necessary to feed the accelerating cavities is provided by a second electron beam, the drive beam, running parallel to the main beam. The CLIC Test Facility (CTF) was build with the main aim of studying and demonstrating the feasibility of the two beam acceleration scheme and technology. It is composed of two beams, the drive beam that will generate the 30 GHz RF power and the main beam which will be accelerated by this power. In order to have a good efficiency for the power gen...

  6. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  7. On the calculation of length scales for turbulent heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    Turbulence length scale calculation methods were critically reviewed for their usefulness in boundary layer heat transfer correlations. Merits and deficiencies in each calculation method were presented. A rigorous method for calculating an energy-based integral scale was introduced. The method uses the variance of the streamwise velocity and a measured dissipation spectrum to calculate the length scale. Advantages and disadvantages of the new method were discussed. A principal advantage is the capability to decisively calculate length scales in a low-Reynolds-number turbulent boundary layer. The calculation method was tested with data from grid-generated, free-shear-layer, and wall-bounded turbulence. In each case, the method proved successful. The length scale is well behaved in turbulent boundary layers with momentum thickness Reynolds numbers from 400 to 2,100 and in flows with turbulent Reynolds numbers as low as 90.

  8. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  9. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  10. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    Science.gov (United States)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  11. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    Science.gov (United States)

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    Science.gov (United States)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  13. Empirical scaling of the length of the longest increasing subsequences of random walks

    Science.gov (United States)

    Mendonça, J. Ricardo G.

    2017-02-01

    We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.

  14. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    International Nuclear Information System (INIS)

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-01

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  15. Wind direction variations in the natural wind – A new length scale

    DEFF Research Database (Denmark)

    Johansson, Jens; Christensen, Silas Sverre

    2018-01-01

    During an observation period of e.g. 10min, the wind direction will differ from its mean direction for short periods of time, and a body of air will pass by from that direction before the direction changes once again. The present paper introduces a new length scale which we have labeled the angular...... length scale. This length scale expresses the average size of the body of air passing by from any deviation of wind direction away from the mean direction. Using metrological observations from two different sites under varying conditions we have shown that the size of the body of air relative to the mean...... size decreases linearly with the deviation from the mean wind direction when the deviation is normalized with the standard deviation of the wind direction. It is shown that this linear variation is independent of the standard deviation of the wind direction, and that the two full-scale data sets follow...

  16. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  17. Long-time data storage: relevant time scales

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    2011-01-01

    Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is

  18. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  19. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  20. Scaling of localization length of a quasi 1D system with longitudinal boundary roughness

    International Nuclear Information System (INIS)

    Abhijit Kar Gupta; Sen, A.K.

    1994-08-01

    We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs

  1. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    Science.gov (United States)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  2. Length-scale effect due to periodic variation of geometrically necessary dislocation densities

    DEFF Research Database (Denmark)

    Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.

    2013-01-01

    Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... of high spatial resolution diffraction methods in a scanning electron microscope give a much more quantitative understanding of plastic deformation at small length scales. Specifically, geometrically necessary dislocation densities (GND) can now be measured and provide detailed information about...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...

  3. Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer

    International Nuclear Information System (INIS)

    Metzger, M.

    2006-01-01

    Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling

  4. Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba

    Directory of Open Access Journals (Sweden)

    Oriol Sacristan-Soriano

    2011-11-01

    Full Text Available Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km, with two zones within each region (less than 50 km, two locations within each zone (less than 5 km, and two sites within each location (less than 500 m. We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a. Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites.

  5. Natural Length Scales of Ecological Systems: Applications at Community and Ecosystem Levels

    Directory of Open Access Journals (Sweden)

    Craig R. Johnson

    2009-06-01

    Full Text Available The characteristic, or natural, length scales of a spatially dynamic ecological landscape are the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent development of techniques to determine the characteristic length scales (CLSs of real ecological systems, I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz. (i determining the optimum scales to monitor ecological systems, (ii interpreting change in ecological communities, and (iii ascertaining connectivity between species in complex ecologies. In summarizing the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its deterministic dynamics at a system level. Using several different spatially explicit individual-based models, I then explore predictions of the underlying theory of CLSs in the context of interpreting change and ascertaining connectivity among species in ecological systems. Analysis of these models support predictions that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale. Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances where there are temporal changes in community structure but not in the long-term dynamic, from that where changes in community structure reflect some kind of fundamental shift in dynamics. In this context, CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states

  6. Long-Time Data Storage: Relevant Time Scales

    Directory of Open Access Journals (Sweden)

    Miko C. Elwenspoek

    2011-02-01

    Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.

  7. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  8. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  9. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    As the channel length is reduced from one transistor generation to the next, ... As CMOS technology continues to scale, metal gate electrodes need to be intro .... in the z-direction, q is the electron charge, h is the Planck's constant, Ψ(x, z) is the.

  10. Length-scale dependent ensemble-averaged conductance of a 1D disordered conductor: Conductance minimum

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.; Pradhan, P.

    1993-07-01

    Exact numerical calculation of ensemble averaged length-scale dependent conductance for the 1D Anderson model is shown to support an earlier conjecture for a conductance minimum. Numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics. (author). 8 refs, 2 figs

  11. Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure

    NARCIS (Netherlands)

    Detsi, Eric; Punzhin, Sergey; Rao, Jiancun; Onck, Patrick R.; De Hosson, Jeff Th. M.

    We have synthesized nanoporous Au with a dual microscopic length scale by exploiting the crystal structure of the alloy precursor. The synthesized mesoscopic material is characterized by stacked Au layers of submicrometer thickness. In addition, each layer displays nanoporosity through the entire

  12. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  13. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    Science.gov (United States)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  14. Scale and time dependence of serial correlations in word-length time series of written texts

    Science.gov (United States)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  15. Length scale hierarchy and spatiotemporal change of alluvial morphologies over the Selenga River delta, Russia

    Science.gov (United States)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Ma, H.; Czapiga, M. J.; Il'icheva, E.; Pavlov, M.; Parker, G.

    2017-12-01

    The movement of water and sediment in natural channels creates various types of alluvial morphologies that span length scales from dunes to deltas. The behavior of these morphologies is controlled microscopically by hydrodynamic conditions and bed material size, and macroscopically by hydrologic and geological settings. Alluvial morphologies can be modeled as either diffusive or kinematic waves, in accordance with their respective boundary conditions. Recently, it has been shown that the difference between these two dynamic behaviors of alluvial morphologies can be characterized by the backwater number, which is a dimensionless value normalizing the length scale of a morphological feature to its local hydrodynamic condition. Application of the backwater number has proven useful for evaluating the size of morphologies, including deltas (e.g., by assessing the preferential avulsion location of a lobe), and for comparing bedform types across different fluvial systems. Yet two critical questions emerge when applying the backwater number: First, how do different types of alluvial morphologies compare within a single deltaic system, where there is a hydrodynamic transition from uniform to non-uniform flow? Second, how do different types of morphologies evolve temporally within a system as a function of changing water discharge? This study addresses these questions by compiling and analyzing field data from the Selenga River delta, Russia, which include measurements of flow velocity, channel geometry, bed material grain size, and channel slope, as well as length scales of various morphologies, including dunes, island bars, meanders, bifurcations, and delta lobes. Data analyses reveal that the length scale of morphologies decrease and the backwater number increases as flow transitions from uniform to non-uniform conditions progressing downstream. It is shown that the evaluated length scale hierarchy and planform distribution of different morphologies can be used to

  16. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    Science.gov (United States)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  17. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    Science.gov (United States)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  18. Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship

    International Nuclear Information System (INIS)

    Kim, Wontae; Oh, John J.

    2008-01-01

    We derive the formula of the black hole entropy with a minimal length of the Planck size by counting quantum modes of scalar fields in the vicinity of the black hole horizon, taking into account the generalized uncertainty principle (GUP). This formula is applied to some intriguing examples of black holes - the Schwarzschild black hole, the Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a result, it is shown that the GUP parameter can be determined by imposing the black hole entropy-area relationship, which has a Planck length scale and a universal form within the near-horizon expansion

  19. Numerical scalings of the decay lengths in the scrape-off layer

    DEFF Research Database (Denmark)

    Militello, F.; Naulin, V; Nielsen, Anders Henry

    2013-01-01

    Numerical simulations of L-mode turbulence in the scrape-off layer (SOL) are used to construct power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at the outer mid-plane. Most of the results obtained are in qualitative agreement with the experimental...... observations despite the known limitation of the model. Quantitative agreement is also obtained for some exponents. In particular, an almost linear inverse dependence of the heat flux decay length with the plasma current is recovered. The relative simplicity of the theoretical model used allows one to gain...

  20. Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-01-01

    Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (L n ≥ 500 μm) at the quarter-critical density (N qc ) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L n approaching ∼400 μm have been created; (2) the density scale length at N qc scales as L n (μm)≃(R DPP ×I 1/4 /2); and (3) the electron temperature T e at N qc scales as T e (keV)≃0.95×√(I), with the incident intensity (I) measured in 10 14 W/cm 2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R DPP ) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f hot is found to have a similar behavior for both configurations: a rapid growth [f hot ≃f c ×(G c /4) 6 for G c hot ≃f c ×(G c /4) 1.2 for G c ≥ 4, with the common wave gain is defined as G c =3 × 10 −2 ×I qc L n λ 0 /T e , where the laser intensity contributing to common-wave gain I qc , L n , T e at N qc , and the laser wavelength λ 0 are, respectively, measured in [10 14 W/cm 2 ], [μm], [keV], and [μm]. The saturation level f c is observed to be f c ≃ 10 –2 at around

  1. Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models

    International Nuclear Information System (INIS)

    Diver, D A; Laing, E W

    2015-01-01

    The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)

  2. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.

    Science.gov (United States)

    Engel, Benjamin D; Ludington, William B; Marshall, Wallace F

    2009-10-05

    The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.

  3. Stability of icosahedral quasicrystals in a simple model with two-length scales

    International Nuclear Information System (INIS)

    Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2017-01-01

    The phase behaviour of a free energy functional with two length scales is examined by comparing the free energy of different candidate phases including three-dimensional icosahedral quasicrystals. Accurate free energy of the quasicrystals has been obtained using the recently developed projection method. The results reveal that the icosahedral quasicrystal and body-centred-cubic spherical phase are the stable ordered phases of the model. Furthermore, the difference between the results obtained from the projection method and the one-mode approximation has been analyzed in detail. The present study extends previous results on two-dimensional systems, demonstrating that the interactions between density waves at two length scales can stabilize two- and three-dimensional quasicrystals. (paper)

  4. The length-scale dependence of strain in networks by SANS

    CERN Document Server

    Pyckhout-Hintzen, W; Heinrich, M; Richter, D; Westermann, S; Straube, E

    2002-01-01

    We present a SANS study of the length-scale dependence of chain deformation by means of a suitable labeling in dense, cross-linked elastomers of the HDH-type. This length scale is controlled by the size of the label as well as the cross-link density. The results are compared to long homopolymers. The data are analyzed by means of the tube model of topology in rubber elasticity in combination with the random-phase approximation (RPA) to account for interchain correlations. Chain degradation during cross linking is treated by the standard RPA approach for polydisperse multicomponent systems. A transition from locally freely fluctuating to tube-constrained segmental motion was observed. (orig.)

  5. Activity-dependent self-regulation of viscous length scales in biological systems

    Science.gov (United States)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  6. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    Science.gov (United States)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  7. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    Science.gov (United States)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  8. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    Science.gov (United States)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  9. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  10. LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*

    Science.gov (United States)

    Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.

    2010-11-01

    The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.

  11. Many-body localization transition: Schmidt gap, entanglement length, and scaling

    Science.gov (United States)

    Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl

    2018-05-01

    Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.

  12. Differential scaling patterns of vertebrae and the evolution of neck length in mammals.

    Science.gov (United States)

    Arnold, Patrick; Amson, Eli; Fischer, Martin S

    2017-06-01

    Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length.

    Science.gov (United States)

    Meier, Andrea R; Schmuck, Ute; Meloro, Carlo; Clauss, Marcus; Hofmann, Reinhold R

    2016-03-01

    Various morphological measures demonstrate convergent evolution in ruminants with their natural diet, in particular with respect to the browser/grazer dichotomy. Here, we report quantitative macroanatomical measures of the tongue (length and width of specific parts) of 65 ruminant species and relate them to either body mass (BM) or total tongue length, and to the percentage of grass in the natural diet (%grass). Models without and with accounting for the phylogenetic structures of the dataset were used, and models were ranked using Akaike's Information Criterion. Scaling relationships followed geometric principles, that is, length measures scaled with BM to the power of 0.33. Models that used tongue length rather than BM as a body size proxy were consistently ranked better, indicating that using size proxies that are less susceptible to a wider variety of factors (such as BM that fluctuates with body condition) should be attempted whenever possible. The proportion of the freely mobile tongue tip of the total tongue (and hence also the corpus length) was negatively correlated to %grass, in accordance with concepts that the feeding mechanism of browsers requires more mobile tongues. It should be noted that some nonbrowsers, such as cattle, use a peculiar mechanism for grazing that also requires long, mobile tongues, but they appear to be exceptions. A larger corpus width with increasing %grass corresponds to differences in snout shape with broader snouts in grazers. The Torus linguae is longer with increasing %grass, a finding that still warrants functional interpretation. This study shows that tongue measures covary with diet in ruminants. In contrast, the shape of the tongue (straight or "hourglass-shaped" as measured by the ratio of the widest and smallest corpus width) is unrelated to diet and is influenced strongly by phylogeny. © 2015 Wiley Periodicals, Inc.

  14. Characterization of long-scale-length plasmas produced from plastic foam targets for laser plasma instability (LPI) research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2017-10-01

    We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.

  15. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  16. An experimental verification of the compensation of length change of line scales caused by ambient air pressure

    International Nuclear Information System (INIS)

    Takahashi, Akira; Miwa, Nobuharu

    2010-01-01

    Line scales are used as a working standard of length for the calibration of optical measuring instruments such as profile projectors, measuring microscopes and video measuring systems. The authors have developed a one-dimensional calibration system for line scales to obtain a lower uncertainty of measurement. The scale calibration system, named Standard Scale Calibrator SSC-05, employs a vacuum interferometer system for length measurement, a 633 nm iodine-stabilized He–Ne laser to calibrate the oscillating frequency of the interferometer laser light source and an Abbe's error compensation structure. To reduce the uncertainty of measurement, the uncertainty factors of the line scale and ambient conditions should not be neglected. Using the length calibration system, the expansion and contraction of a line scale due to changes in ambient air pressure were observed and the measured scale length was corrected into the length under standard atmospheric pressure, 1013.25 hPa. Utilizing a natural rapid change in the air pressure caused by a tropical storm (typhoon), we carried out an experiment on the length measurement of a 1000 mm long line scale made of glass ceramic with a low coefficient of thermal expansion. Using a compensation formula for the length change caused by changes in ambient air pressure, the length change of the 1000 mm long line scale was compensated with a standard deviation of less than 1 nm

  17. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  18. Scaling of the critical free length for progressive unfolding of self-bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)

    2014-05-19

    Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.

  19. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  20. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    Science.gov (United States)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover

  1. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  2. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  3. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    Science.gov (United States)

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  4. Correlation of optical emission and turbulent length scale in a coaxial jet diffusion flame

    OpenAIRE

    松山, 新吾; Matsuyama, Shingo

    2014-01-01

    This article investigates the correlation between optical emission and turbulent length scale in a coaxial jet diffusion flame. To simulate the H2O emission from an H2/O2 diffusion flame, radiative transfer is calculated on flame data obtained by numerical simulation. H2O emission characteristics are examined for a one-dimensional opposed-flow diffusion flame. The results indicate that H2O emission intensity is linearly dependent on flame thickness. The simulation of H2O emission is then exte...

  5. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  6. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Science.gov (United States)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  7. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    Science.gov (United States)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  8. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  9. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  10. Collective dynamics of glass-forming polymers at intermediate length scales

    International Nuclear Information System (INIS)

    Colmenero, J.; Alvarez, F.; Arbe, A.

    2015-01-01

    Deep understanding of the complex dynamics taking place in glass-forming systems could potentially be gained by exploiting the information provided by the collective response monitored by coherent neutron scattering. We have revisited the question of the characterization of the collective response of polyisobutylene at intermediate length scales observed by neutron spin echo (NSE) experiments. The model, generalized for sub-linear diffusion - as it is the case of glass-forming polymers - has been successfully applied by using the information on the total self-motions available from MD-simulations properly validated by direct comparison with experimental results. From the fits of the coherent NSE data, the collective time at Q → 0 has been extracted that agrees very well with compiled results from different experimental techniques directly accessing such relaxation time. We show that a unique temperature dependence governs both, the Q → 0 and Q → ∞ asymptotic characteristic times. The generalized model also gives account for the modulation of the apparent activation energy of the collective times with the static structure factor. It mainly results from changes of the short-range order at inter-molecular length scales

  11. Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

    International Nuclear Information System (INIS)

    Constantinides, G; Silva, E C C M; Blackman, G S; Vliet, K J Van

    2007-01-01

    Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 μm. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent

  12. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  13. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    Science.gov (United States)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and

  14. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    Science.gov (United States)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  15. Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures.

    Science.gov (United States)

    Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander

    2017-07-25

    Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.

  16. Statistical theory and transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-06-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)

  17. An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales

    Science.gov (United States)

    David Eiriksson; Michael Whitson; Charles H. Luce; Hans Peter Marshall; John Bradford; Shawn G. Benner; Thomas Black; Hank Hetrick; James P. McNamara

    2013-01-01

    Lateral downslope flow in snow during snowmelt and rain-on-snow (ROS) events is a well-known phenomenon, yet its relevance to water redistribution at hillslope and catchment scales is not well understood. We used dye tracers, geophysical methods, and hydrometric measurements to describe the snow properties that promote lateral flow, assess the relative velocities of...

  18. Hierarchical self-assembly of two-length-scale multiblock copolymers

    International Nuclear Information System (INIS)

    Brinke, Gerrit ten; Loos, Katja; Vukovic, Ivana; Du Sart, Gerrit Gobius

    2011-01-01

    The self-assembly in diblock copolymer-based supramolecules, obtained by hydrogen bonding short side chains to one of the blocks, as well as in two-length-scale linear terpolymers results in hierarchical structure formation. The orientation of the different domains, e.g. layers in the case of a lamellar-in-lamellar structure, is determined by the molecular architecture, graft-like versus linear, and the relative magnitude of the interactions involved. In both cases parallel and perpendicular arrangements have been observed. The comb-shaped supramolecules approach is ideally suited for the preparation of nanoporous structures. A bicontinuous morphology with the supramolecular comb block forming the channels was finally achieved by extending the original approach to suitable triblock copolymer-based supramolecules.

  19. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    Science.gov (United States)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  20. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  1. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    Energy Technology Data Exchange (ETDEWEB)

    Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Yang, Z. J. [Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02129 (United States)

    2016-11-15

    Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  2. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  3. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  4. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    1996-07-07

    We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

  5. Mass and charge transfer on various relevant scales in polymer electrolyte fuel cells[Dissertation 16991

    Energy Technology Data Exchange (ETDEWEB)

    Freunberger, S. A.

    2007-07-01

    This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt

  6. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    Science.gov (United States)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  7. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    Science.gov (United States)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  8. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  9. Integrating experimental and simulation length and time scales in mechanistic studies of friction

    International Nuclear Information System (INIS)

    Sawyer, W G; Perry, S S; Phillpot, S R; Sinnott, S B

    2008-01-01

    Friction is ubiquitous in all aspects of everyday life and has consequently been under study for centuries. Classical theories of friction have been developed and used to successfully solve numerous tribological problems. However, modern applications that involve advanced materials operating under extreme environments can lead to situations where classical theories of friction are insufficient to describe the physical responses of sliding interfaces. Here, we review integrated experimental and computational studies of atomic-scale friction and wear at solid-solid interfaces across length and time scales. The influence of structural orientation in the case of carbon nanotube bundles, and molecular orientation in the case of polymer films of polytetrafluoroethylene and polyethylene, on friction and wear are discussed. In addition, while friction in solids is generally considered to be athermal, under certain conditions thermally activated friction is observed for polymers, carbon nanotubes and graphite. The conditions under which these transitions occur, and their proposed origins, are discussed. Lastly, a discussion of future directions is presented

  10. Quantifying Contributions to Transport in Ionic Polymers Across Multiple Length Scales

    Science.gov (United States)

    Madsen, Louis

    Self-organized polymer membranes conduct mobile species (ions, water, alcohols, etc.) according to a hierarchy of structural motifs that span sub-nm to >10 μm in length scale. In order to comprehensively understand such materials, our group combines multiple types of NMR dynamics and transport measurements (spectroscopy, diffusometry, relaxometry, imaging) with structural information from scattering and microscopy as well as with theories of porous media,1 electrolytic transport, and oriented matter.2 In this presentation, I will discuss quantitative separation of the phenomena that govern transport in polymer membranes, from intermolecular interactions (<= 2 nm),3 to locally ordered polymer nanochannels (a few to 10s of nm),2 to larger polymer domain structures (10s of nm and larger).1 Using this multi-scale information, we seek to give informed feedback on the design of polymer membranes for use in, e . g . , efficient batteries, fuel cells, and mechanical actuators. References: [1] J. Hou, J. Li, D. Mountz, M. Hull, and L. A. Madsen. Journal of Membrane Science448, 292-298 (2013). [2] J. Li, J. K. Park, R. B. Moore, and L. A. Madsen. Nature Materials 10, 507-511 (2011). [3] M. D. Lingwood, Z. Zhang, B. E. Kidd, K. B. McCreary, J. Hou, and L. A. Madsen. Chemical Communications 49, 4283 - 4285 (2013).

  11. Large-scale parent–child comparison confirms a strong paternal influence on telomere length

    OpenAIRE

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2009-01-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent–child pairs in different age groups and between grandparent–grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, P

  12. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  13. Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration

    International Nuclear Information System (INIS)

    Scott, G G; Brenner, C M; Clarke, R J; Green, J S; Heathcote, R I; Rusby, D R; McKenna, P; Neely, D; Bagnoud, V; Zielbauer, B; Gonzalez-Izquierdo, B; Powell, H W

    2017-01-01

    It is shown for the first time that the spatial and temporal distribution of laser accelerated protons can be used as a diagnostic of Weibel instability presence and evolution in the rear surface scale lengths of a solid density target. Numerical modelling shows that when a fast electron beam is injected into a decreasing density gradient on the target rear side, a magnetic instability is seeded with an evolution which is strongly dependent on the density scale length. This is manifested in the acceleration of a filamented proton beam, where the degree of filamentation is also found to be dependent on the target rear scale length. Furthermore, the energy dependent spatial distribution of the accelerated proton beam is shown to provide information on the instability evolution on the picosecond timescale over which the protons are accelerated. Experimentally, this is investigated by using a controlled prepulse to introduce a target rear scale length, which is varied by altering the time delay with respect to the main pulse, and similar trends are measured. This work is particularly pertinent to applications using laser pulse durations of tens of picoseconds, or where a micron level density scale length is present on the rear of a solid target, such as proton-driven fast ignition, as the resultant instability may affect the uniformity of fuel energy coupling. (paper)

  14. Comparison of friction and wear of articular cartilage on different length scales.

    Science.gov (United States)

    Kienle, Sandra; Boettcher, Kathrin; Wiegleb, Lorenz; Urban, Joanna; Burgkart, Rainer; Lieleg, Oliver; Hugel, Thorsten

    2015-09-18

    The exceptional tribological properties of articular cartilage are still far from being fully understood. Articular cartilage is able to withstand high loads and provide exceptionally low friction. Although the regeneration abilities of the tissue are very limited, it can last for many decades. These biomechanical properties are realized by an interplay of different lubrication and wear protection mechanisms. The deterioration of cartilage due to aging or injury leads to the development of osteoarthritis. A current treatment strategy focuses on supplementing the intra-articular fluid with a saline solution containing hyaluronic acid. In the work presented here, we investigated how changing the lubricating fluid affects friction and wear of articular cartilage, focusing on the boundary and mixed lubrication as well as interstitial fluid pressurization mechanisms. Different length and time scales were probed by atomic force microscopy, tribology and profilometry. We compared aqueous solutions with different NaCl concentrations to a viscosupplement containing hyaluronic acid (HA). In particular, we found that the presence of ions changes the frictional behavior and the wear resistance. In contrast, hyaluronic acid showed no significant impact on the friction coefficient, but considerably reduced wear. This study confirms the previous notion that friction and wear are not necessarily correlated in articular cartilage tribology and that the main role of HA might be to provide wear protection for the articular surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  16. Bifurcation and phase diagram of turbulence constituted from three different scale-length modes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Kitazawa, A.; Yagi, M. [Kyushu Univ., Research Inst. for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-04-01

    Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)

  17. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  18. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Anthony B., E-mail: acosta@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Green, Jason R., E-mail: jason.green@umb.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125 (United States)

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  19. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  20. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    International Nuclear Information System (INIS)

    Costa, Anthony B.; Green, Jason R.

    2013-01-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N 2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra

  1. Comparison of the Effects of the Different Methods for Computing the Slope Length Factor at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Fu Suhua

    2013-09-01

    Full Text Available The slope length factor is one of the parameters of the Universal Soil Loss Equation (USLE and the Revised Universal Soil Loss Equation (RUSLE and is sometimes calculated based on a digital elevation model (DEM. The methods for calculating the slope length factor are important because the values obtained may depend on the methods used for calculation. The purpose of this study was to compare the difference in spatial distribution of the slope length factor between the different methods at a watershed scale. One method used the uniform slope length factor equation (USLFE where the effects of slope irregularities (such as slope gradient, etc. on soil erosion by water were not considered. The other method used segmented slope length factor equation(SSLFE which considered the effects of slope irregularities on soil erosion by water. The Arc Macro Language (AML Version 4 program for the revised universal soil loss equation(RUSLE.which uses the USLFE, was chosen to calculate the slope length factor. In a parallel analysis, the AML code of RUSLE Version 4 was modified according to the SSLFE to calculate the slope length factor. Two watersheds with different slope and gully densities were chosen. The results show that the slope length factor and soil loss using the USLFE method were lower than those using the SSLFE method, especially on downslopes watershed with more frequent steep slopes and higher gully densities. In addition, the slope length factor and soil loss calculated by the USLFE showed less spatial variation.

  2. A multi-scale relevance vector regression approach for daily urban water demand forecasting

    Science.gov (United States)

    Bai, Yun; Wang, Pu; Li, Chuan; Xie, Jingjing; Wang, Yin

    2014-09-01

    Water is one of the most important resources for economic and social developments. Daily water demand forecasting is an effective measure for scheduling urban water facilities. This work proposes a multi-scale relevance vector regression (MSRVR) approach to forecast daily urban water demand. The approach uses the stationary wavelet transform to decompose historical time series of daily water supplies into different scales. At each scale, the wavelet coefficients are used to train a machine-learning model using the relevance vector regression (RVR) method. The estimated coefficients of the RVR outputs for all of the scales are employed to reconstruct the forecasting result through the inverse wavelet transform. To better facilitate the MSRVR forecasting, the chaos features of the daily water supply series are analyzed to determine the input variables of the RVR model. In addition, an adaptive chaos particle swarm optimization algorithm is used to find the optimal combination of the RVR model parameters. The MSRVR approach is evaluated using real data collected from two waterworks and is compared with recently reported methods. The results show that the proposed MSRVR method can forecast daily urban water demand much more precisely in terms of the normalized root-mean-square error, correlation coefficient, and mean absolute percentage error criteria.

  3. Organisationally relevant variables and Keyes's Mental Health Continuum Scale: An exploratory study

    Directory of Open Access Journals (Sweden)

    Deo J.W. Strümpfer

    2009-09-01

    Full Text Available In an exploratory study on a sample of convenience (n = 165, 11 self-report variables with presumed organisational  relevance were  related,  as  predictors,  to  the  three  subscores  and  summed  score of  the Keyes  (2005a, 2005b; 2007 Mental Health Continuum  scale  (long  form. Keyes's  scale was administered five to seven days after the first set of scales. The predictor scores were reduced to three factorial scores, labelled positive orientation, negative orientation and positive striving. When classified thus, the predictor variables showed significant and meaningful relationships with some or all of the Keyes subscores and the total score, although few reached medium effect sizes.

  4. Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales

    Science.gov (United States)

    Walters, Brandan D.; Stegemann, Jan P.

    2013-01-01

    Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608

  5. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  6. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  7. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  8. Accelerating Relevance Vector Machine for Large-Scale Data on Spark

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2017-01-01

    Full Text Available Relevance vector machine (RVM is a machine learning algorithm based on a sparse Bayesian framework, which performs well when running classification and regression tasks on small-scale datasets. However, RVM also has certain drawbacks which restricts its practical applications such as (1 slow training process, (2 poor performance on training large-scale datasets. In order to solve these problem, we propose Discrete AdaBoost RVM (DAB-RVM which incorporate ensemble learning in RVM at first. This method performs well with large-scale low-dimensional datasets. However, as the number of features increases, the training time of DAB-RVM increases as well. To avoid this phenomenon, we utilize the sufficient training samples of large-scale datasets and propose all features boosting RVM (AFB-RVM, which modifies the way of obtaining weak classifiers. In our experiments we study the differences between various boosting techniques with RVM, demonstrating the performance of the proposed approaches on Spark. As a result of this paper, two proposed approaches on Spark for different types of large-scale datasets are available.

  9. Large-scale parent-child comparison confirms a strong paternal influence on telomere length.

    Science.gov (United States)

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2010-03-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent-child pairs in different age groups and between grandparent-grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, Pfather-son: r=0.465, Pfather-daughter: r=0.484, Pmothers, the correlations were weaker (mother-child: r=0.148, P=0.098; mother-son: r=0.080, P=0.561; mother-daughter: r=0.297, P=0.013). A positive telomere length correlation was also observed for grandparent-grandchild pairs (r=0.272, P=0.013). Our findings indicate that fathers contribute significantly stronger to the telomere length of the offspring compared with mothers (P=0.012), but we cannot exclude a maternal influence on the daughter's telomeres. Interestingly, the father-child correlations diminished with increasing age (P=0.022), suggesting that nonheritable factors have an impact on telomere length dynamics during life.

  10. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  11. Psychometric properties and clinical relevance of the adolescent sleep hygiene scale in Dutch adolescents.

    Science.gov (United States)

    de Bruin, Eduard J; van Kampen, Ris K A; van Kooten, Tamar; Meijer, Anne Marie

    2014-07-01

    This study investigated reliability, validity, and clinical relevance of the Adolescent Sleep Hygiene Scale (ASHS) in Dutch adolescents. The Dutch translation of the ASHS was administered to 186 normal-sleeping adolescents and 112 adolescents with insomnia. Their sleep variables were measured using sleep logs and questionnaires. From the insomnia group, scores were also obtained after six weeks of cognitive behavioral therapy for insomnia (n=58) or waiting list (n=22). The full scale of the ASHS had acceptable internal consistency. The results showed moderate to strong correlations of the ASHS (domains) with sleep quality, sleep duration and chronic sleep reduction. Furthermore, the Dutch ASHS was able to discriminate between normal sleepers and adolescents with insomnia, and scores of adolescents with insomnia improved after treatment. These findings confirm the importance of sleep hygiene in adolescent sleep, and contribute to the validity of the ASHS and its applicability in research and clinical practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of hydration and experimental length scale on themechanical response of human skin in vivo, using optical coherence tomography

    NARCIS (Netherlands)

    Hendriks, F.M.; Brokken, D.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    Human skin is a complex tissue consisting of different layers. To gain better insight into the mechanical behaviour of different skin layers, the mechanical response was studied with experiments of various length scales. Also, the influence of (superficial) hydration on the mechanical response is

  13. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  14. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  15. Manufacturing test of large scale hollow capsule and long length cladding in the large scale oxide dispersion strengthened (ODS) martensitic steel

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Fujiwara, Masayuki

    2004-04-01

    Mass production capability of oxide dispersion strengthened (ODS) martensitic steel cladding (9Cr) has being evaluated in the Phase II of the Feasibility Studies on Commercialized Fast Reactor Cycle System. The cost for manufacturing mother tube (raw materials powder production, mechanical alloying (MA) by ball mill, canning, hot extrusion, and machining) is a dominant factor in the total cost for manufacturing ODS ferritic steel cladding. In this study, the large-sale 9Cr-ODS martensitic steel mother tube which is made with a large-scale hollow capsule, and long length claddings were manufactured, and the applicability of these processes was evaluated. Following results were obtained in this study. (1) Manufacturing the large scale mother tube in the dimension of 32 mm OD, 21 mm ID, and 2 m length has been successfully carried out using large scale hollow capsule. This mother tube has a high degree of accuracy in size. (2) The chemical composition and the micro structure of the manufactured mother tube are similar to the existing mother tube manufactured by a small scale can. And the remarkable difference between the bottom and top sides in the manufactured mother tube has not been observed. (3) The long length cladding has been successfully manufactured from the large scale mother tube which was made using a large scale hollow capsule. (4) For reducing the manufacturing cost of the ODS steel claddings, manufacturing process of the mother tubes using a large scale hollow capsules is promising. (author)

  16. User and stakeholder involvement for relevant, reliable and robust local-scale climate projections in Norway

    Science.gov (United States)

    Neby, Simon; Sobolowski, Stefan

    2017-04-01

    How can users and stakeholders be actively involved with providing input to and using output from local-scale climate projections? How can the scientific community better understand the needs of local actors? And how should communication and cooperation efforts be organized? These are critical questions we aim to answer in a climate services project funded by the Norwegian Research Council (R3: Relevant, Reliable and Robust local-scale climate projections for Norway). The project takes into consideration not only the scientific issues in establishing useful local-scale climate projections, but also addresses the "usability gap" between climate information and decision-making. The lack of effective communication between scientists and user communities often result in outputs and products that are not matched with decision-relevant climate information. In the R3 project, the scientific participants actively engage with a range of users that have quite different information needs: municipalities, infrastructure developers, agriculture, energy producers, insurance companies, and more. In this particular presentation, we present our experiences concerning three specific issues that relate to the stakeholder-science interface: 1) Preferences are not clear-cut and pre-defined. In practice, this means that stakeholders often do not have precise information about their needs, nor precise information about how, where and whether their needs can be voiced. Similarly, science communities tend to presuppose that stakeholders are interested and have well-articulated needs, which is hardly the case. Collectively, that means that there is a need for an approach that guides the articulation and prioritization of preferences in a manner that integrates both scientific and stakeholder perspectives and takes the integrity of both perspectives seriously. 2) Technologies are unclear. Although information may be produced and used, past experiences, trial and error processes and pragmatic

  17. A micromechanical approach of suffusion based on a length scale analysis of the grain detachment and grain transport processes.

    Science.gov (United States)

    Wautier, Antoine; Bonelli, Stéphane; Nicot, François

    2017-06-01

    Suffusion is the selective erosion of the finest particles of a soil subjected to an internal flow. Among the four types of internal erosion and piping identified today, suffusion is the least understood. Indeed, there is a lack of micromechanical approaches for identifying the critical microstructural parameters responsible for this process. Based on a discrete element modeling of non cohesive granular assemblies, specific micromechanical tools are developed in a unified framework to account for the two first steps of suffusion, namely the grain detachment and the grain transport processes. Thanks to the use of an enhanced force chain definition and autocorrelation functions the typical lengths scales associated with grain detachment are characterized. From the definition of transport paths based on a graph description of the pore space the typical lengths scales associated with grain transport are recovered. For a uniform grain size distribution, a separation of scales between these two processes exists for the finest particles of a soil

  18. Physics on the smallest scales: an introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus

    2012-01-01

    Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the Large Hadron Collider), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010, we have explored some phenomenological implications of the potential existence of a minimal length. In this paper, we review the idea and formalism of a quantum gravity-induced minimal length in the generalized uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity-induced minimal length. This paper is intended for graduate students and non-specialists interested in quantum gravity. (paper)

  19. Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

    KAUST Repository

    Brisard, S.

    2012-01-30

    Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hun-dred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

  20. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    Science.gov (United States)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-05-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  1. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    Science.gov (United States)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic

  2. Linking electricity and water models to assess electricity choices at water-relevant scales

    International Nuclear Information System (INIS)

    Sattler, S; Rogers, J; Macknick, J; Lopez, A; Yates, D; Flores-Lopez, F

    2012-01-01

    Hydrology/water management and electricity generation projections have been modeled separately, but there has been little effort in intentionally and explicitly linking the two sides of the water–energy nexus. This paper describes a platform for assessing power plant cooling water withdrawals and consumption under different electricity pathways at geographic and time scales appropriate for both electricity and hydrology/water management. This platform uses estimates of regional electricity generation by the Regional Energy Deployment System (ReEDS) as input to a hydrologic and water management model—the Water Evaluation and Planning (WEAP) system. In WEAP, this electricity use represents thermoelectric cooling water withdrawals and consumption within the broader, regional water resource context. Here we describe linking the electricity and water models, including translating electricity generation results from ReEDS-relevant geographies to the water-relevant geographies of WEAP. The result of this analysis is water use by the electric sector at the regional watershed level, which is used to examine the water resource implications of these electricity pathways. (letter)

  3. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  4. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  5. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    Science.gov (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  6. Web-Scale Discovery Services Retrieve Relevant Results in Health Sciences Topics Including MEDLINE Content

    Directory of Open Access Journals (Sweden)

    Elizabeth Margaret Stovold

    2017-06-01

    Full Text Available A Review of: Hanneke, R., & O’Brien, K. K. (2016. Comparison of three web-scale discovery services for health sciences research. Journal of the Medical Library Association, 104(2, 109-117. http://dx.doi.org/10.3163/1536-5050.104.2.004 Abstract Objective – To compare the results of health sciences search queries in three web-scale discovery (WSD services for relevance, duplicate detection, and retrieval of MEDLINE content. Design – Comparative evaluation and bibliometric study. Setting – Six university libraries in the United States of America. Subjects – Three commercial WSD services: Primo, Summon, and EBSCO Discovery Service (EDS. Methods – The authors collected data at six universities, including their own. They tested each of the three WSDs at two data collection sites. However, since one of the sites was using a legacy version of Summon that was due to be upgraded, data collected for Summon at this site were considered obsolete and excluded from the analysis. The authors generated three questions for each of six major health disciplines, then designed simple keyword searches to mimic typical student search behaviours. They captured the first 20 results from each query run at each test site, to represent the first “page” of results, giving a total of 2,086 total search results. These were independently assessed for relevance to the topic. Authors resolved disagreements by discussion, and calculated a kappa inter-observer score. They retained duplicate records within the results so that the duplicate detection by the WSDs could be compared. They assessed MEDLINE coverage by the WSDs in several ways. Using precise strategies to generate a relevant set of articles, they conducted one search from each of the six disciplines in PubMed so that they could compare retrieval of MEDLINE content. These results were cross-checked against the first 20 results from the corresponding query in the WSDs. To aid investigation of overall

  7. Validation of the Spanish-language version of the Relevant Outcome Scale for Alzheimer's Disease.

    Science.gov (United States)

    Carnero Pardo, C; López Alcalde, S; Espinosa García, M; Sánchez Magro, I

    2017-09-01

    The Relevant Outcome Scale for Alzheimer's Disease (ROSA) is a useful tool for evaluating and monitoring dementia patients. This study aims to evaluate the validity and reliability of the Spanish version of ROSA. Spanish multicentre study involving 39 researchers and including 237 patients with Alzheimer disease (78 mild, 79 moderate, and 80 severe). The patients were tested with the following: Mini-Mental State Examination (MMSE), Fototest, Neuropsychiatric Inventory (NPI), Blessed dementia scale, and a Spanish-language version of ROSA. A subsample of 40 subjects was retested in the 14 days following the initial evaluation. The construct validity was evaluated with the Spearman correlation coefficient (r), internal consistency with Cronbach's alpha (alpha), and test-retest reliability with the intraclass correlation coefficient (ICC). ROSA requires 13.8±7.4minutes to administer and its results show a significant association with the clinical stage of AD (mild, 116.7±23.1; moderate, 92.9±19.8; and severe, 64.3±22.6), and with results on the MMSE (r=0.68), Fototest (r=0.63), NPI (r=0.53), and Blessed dementia scale (r=-0.80). ROSA shows high internal consistency (alpha=0.90) and excellent test-retest reliability (ICC0.97). The Spanish version of ROSA is a brief, valid, and reliable tool permitting overall evaluation of patients with dementia. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    Science.gov (United States)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  9. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  10. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    Science.gov (United States)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  11. Introduction of the Abbreviated Westmead Post-Traumatic Amnesia Scale and Impact on Length of Stay

    NARCIS (Netherlands)

    Watson, C. E.; Clous, E. A.; Jaeger, M.; D'Amours, S. K.

    2017-01-01

    Mild traumatic brain injury is a common presentation to Emergency Departments. Early identification of patients with cognitive deficits and provision of discharge advice are important. The Abbreviated Westmead Post-traumatic Amnesia Scale provides an early and efficient assessment of post-traumatic

  12. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    Science.gov (United States)

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  13. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    Science.gov (United States)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  14. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...... by quasi phase matching is found. The equivalent formula for the intensity of maximum conversion, the crossing of which changes the one-period nonlinear phase shift of the fundamental abruptly by p , corrects earlier estimates [Opt.Lett. 23, 506 (1998)] by a factor of 5.3. We find the crystal lengths...... that are necessary to obtain an optimal flat phase versus intensity response on either side of this separatrix intensity....

  15. The role of discharge variation in scaling of drainage area and food chain length in rivers

    Science.gov (United States)

    Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.

    2010-01-01

    Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

  16. Gate length scaling trends of drive current enhancement in CMOSFETs with dual stress overlayers and embedded-SiGe

    International Nuclear Information System (INIS)

    Flachowsky, S.; Wei, A.; Herrmann, T.; Illgen, R.; Horstmann, M.; Richter, R.; Salz, H.; Klix, W.; Stenzel, R.

    2008-01-01

    Strain engineering in MOSFETs using tensile nitride overlayer (TOL) films, compressive nitride overlayer (COL) films, and embedded-SiGe (eSiGe) is studied by extensive device experiments and numerical simulations. The scaling behavior was analyzed by gate length reduction down to 40 nm and it was found that drive current strongly depends on the device dimensions. The reduction of drain-current enhancement for short-channel devices can be attributed to two competing factors: shorter gate length devices have increased longitudinal and vertical stress components which should result in improved drain-currents. However, there is a larger degradation from external resistance as the gate length decreases, due to a larger voltage dropped across the external resistance. Adding an eSiGe stressor reduces the external resistance in the p-MOSFET, to the extent that the drive current improvement from COL continues to increase even down the shortest gate length studied. This is due to the reduced resistivity of SiGe itself and the SiGe valence band offset relative to Si, leading to a smaller silicide-active contact resistance. It demonstrates the advantage of combining eSiGe and COL, not only for increased stress, but also for parasitic resistance reduction to enable better COL drive current benefit

  17. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    Science.gov (United States)

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  18. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  19. Looking for a relevant potential evapotranspiration model at the watershed scale

    Science.gov (United States)

    Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Anctil, F.; Andréassian, V.

    2003-04-01

    In this paper, we try to identify the most relevant approach to calculate Potential Evapotranspiration (PET) for use in a daily watershed model, to try to bring an answer to the following question: "how can we use commonly available atmospheric parameters to represent the evaporative demand at the catchment scale?". Hydrologists generally see the Penman model as the ideal model regarding to its good adequacy with lysimeter measurements and its physically-based formulation. However, in real-world engineering situations, where meteorological stations are scarce, hydrologists are often constrained to use other PET formulae with less data requirements or/and long-term average of PET values (the rationale being that PET is an inherently conservative variable). We chose to test 28 commonly used PET models coupled with 4 different daily watershed models. For each test, we compare both PET input options: actual data and long-term average data. The comparison is made in terms of streamflow simulation efficiency, over a large sample of 308 watersheds. The watersheds are located in France, Australia and the United States of America and represent varied climates. Strikingly, we find no systematic improvements of the watershed model efficiencies when using actual PET series instead of long-term averages. This suggests either that watershed models may not conveniently use the climatic information contained in PET values or that formulae are only awkward indicators of the real PET which watershed models need.

  20. The Sensitivity of Income Polarization - Time, length of accounting periods, equivalence scales, and income definitions

    DEFF Research Database (Denmark)

    Azhar, Hussain

    This study looks at polarization and its components’ sensitivity to assumptions about equivalence scales, income definition, ethical income distribution parameters, and the income accounting period. A representative sample of Danish individual incomes from 1984 to 2002 is utilised. Results show...... that polarization has increased over time, regardless of the applied measure, when the last part of the period is compared to the first part of the period. Primary causes being increased inequality (alienation) and faster income growth among high incomes relative to those in the middle of the distribution....... Increasing the accounting period confirms the reduction in inequality found for shorter periods, but polarization is virtually unchanged, because income group identification increases. Applying different equivalence scales does not change polarization ranking for different years, but identification ranks...

  1. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  2. Laboratory scale electroplating and processing of long lengths of an in situ Cu-Nb3Sn superconductors

    International Nuclear Information System (INIS)

    LeHuy, H.; Germain, L.; Roberge, R.; Foner, S.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    A laboratory scale continuous tin electroplating system is described and used to evaluate the effect of various parameters of the alkaline and acid baths plating process. Tin electroplating is shown to be simple and reliable. With an 8 m immersion length production speeds of the order of 1 m min -1 are possible in an alkaline bath at 80degC. An acid bath gives satisfactory tinning deposits with a production speed of up to 3 m min -1 at room temperature. (author)

  3. PIV measurements of the turbulence integral length scale on cold combustion flow field of tangential firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-fei; Xie, Jing-xing; Gong, Zhi-jun; Li, Bao-wei [Inner Mongolia Univ. of Science and Technology, Baotou (China). Inner Mongolia Key Lab. for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Lab.

    2013-07-01

    The process of the pulverized coal combustion in tangential firing boiler has prominent significance on improving boiler operation efficiency and reducing NO{sub X} emission. This paper aims at researching complex turbulent vortex coherent structure formed by the four corners jets in the burner zone, a cold experimental model of tangential firing boiler has been built. And by employing spatial correlation analysis method and PIV (Particle Image Velocimetry) technique, the law of Vortex scale distribution on the three typical horizontal layers of the model based on the turbulent Integral Length Scale (ILS) has been researched. According to the correlation analysis of ILS and the temporal average velocity, it can be seen that the turbulent vortex scale distribution in the burner zone of the model is affected by both jet velocity and the position of wind layers, and is not linear with the variation of jet velocity. The vortex scale distribution of the upper primary air is significantly different from the others. Therefore, studying the ILS of turbulent vortex integral scale is instructive to high efficiency cleaning combustion of pulverized coal in theory.

  4. Organismal climatology: analyzing environmental variability at scales relevant to physiological stress.

    Science.gov (United States)

    Helmuth, Brian; Broitman, Bernardo R; Yamane, Lauren; Gilman, Sarah E; Mach, Katharine; Mislan, K A S; Denny, Mark W

    2010-03-15

    Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species' range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a 'climatology' of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales.

  5. Characterizing the reinforcement mechanisms in multiwall nanotube/polycarbonate composites across different length and time scales

    Science.gov (United States)

    Duncan, Renee Kelly

    The enthusiasm and interest in the potential properties of nanotube (NT)/polymer composites are based on several factors, including the potential for unsurpassed enhancements in mechanical properties together with electrical, thermal and optical properties. Using multiwall nanotubes (MWNTs) grown to a long aspect ratio, the study found that fragmentation tests can be completed in a similar manner to traditional fiber composites. It was found that the fragmentation length does not depend on the angle of the nanotube to the loading direction hence the ISS does not change with the orientation angle of the nanotube in the composite. A critical aspect ratio of 100 and 300 for untreated nanotubes (ARNT) and treated nanotubes (EPNT), respectively was also measured. For nanotubes that are well dispersed in the polycarbonate, it was observed at a critical angle of 60° that there was a change in failure mechanism from pullout to fracture of the nanotubes due to bending shear. Because the tensile strength of a MWNT is unknown a cumulative distribution was used to characterize the relative interfacial shear strength as a function of nanotube chemical modification. The second goal of this thesis is to use Dynamic Mechanical Thermal Analysis (DMTA) with controlled aspect ratios of multiwall nanotubes (MWNT) to isolate and quantify the effects of the interfacial region on modulus enhancements in nanotube-reinforced composites. One major finding of this study was that the shortest aspect ratio showed a significantly broadened relaxation spectrum than the longer aspect ratio nanotubes, despite the longer aspect ratio nanotubes being more percolated at the given weight percent. There is also a direct correlation between the free space parameter of the short aspect ratio nantoubes network and broadening of the relaxation spectrum, concluded to be a result of increased interaction of the interfacial polymer. The study found agreement with the premise that at a constant filler weight

  6. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  7. Confinement and the Glass Transition Temperature in Supported Polymer Films: Molecular Weight, Repeat Unit Modification, and Cooperativity Length Scale Investigations

    Science.gov (United States)

    Mundra, Manish K.

    2005-03-01

    It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.

  8. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    Science.gov (United States)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  9. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  11. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    Science.gov (United States)

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  12. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  13. Global Mechanical Response and Its Relation to Deformation and Failure Modes at Various Length Scales Under Shock Impact in Alumina AD995 Armor Ceramic

    National Research Council Canada - National Science Library

    Dandekar, D. P; McCauley, J. W; Green, W. H; Bourne, N. K; Chen, M. W

    2008-01-01

    ... maps relating the experimentally measured global mechanical response of a material through matured shock wave diagnostics to the nature of concurrent deformation and damage generated at varying length scales under shock wave loading.

  14. More reasons to be straightforward: findings and norms for two scales relevant to social anxiety.

    Science.gov (United States)

    Rodebaugh, Thomas L; Heimberg, Richard G; Brown, Patrick J; Fernandez, Katya C; Blanco, Carlos; Schneier, Franklin R; Liebowitz, Michael R

    2011-06-01

    The validity of both the Social Interaction Anxiety Scale and Brief Fear of Negative Evaluation scale has been well-supported, yet the scales have a small number of reverse-scored items that may detract from the validity of their total scores. The current study investigates two characteristics of participants that may be associated with compromised validity of these items: higher age and lower levels of education. In community and clinical samples, the validity of each scale's reverse-scored items was moderated by age, years of education, or both. The straightforward items did not show this pattern. To encourage the use of the straightforward items of these scales, we provide normative data from the same samples as well as two large student samples. We contend that although response bias can be a substantial problem, the reverse-scored questions of these scales do not solve that problem and instead decrease overall validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Science.gov (United States)

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S

    2017-02-01

    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  16. Relative strength of second harmonic and 3/2 omega emissions from long-scale-length laser produced plasmas

    International Nuclear Information System (INIS)

    Sinha, B.K.; Kumbhare, S.R.

    1988-01-01

    Experiments were conducted on the planar slab targets of carbon, aluminum, and copper, using a 1.0641 μm laser, at laser intensities varying from 2 x 10/sup 12/ to 1 x 10/sup 14/ W/cm/sup 2/. The laser had a fluorescent linewidth of 4.5 A. Spectral profiles of parametrically modulated second harmonic as well as 3/2/ω/sub 0/ emissions have been measured for the long-scale-length plasmas so generated. Relative strengths of three emissions with respect to peak signal intensity and spectral energy content as a function of laser intensity are graphically reported. Results are discussed on the basis of two plasmon and parametric decay instabilities

  17. Sizing Up the Milky Way: A Bayesian Mixture Model Meta-analysis of Photometric Scale Length Measurements

    Science.gov (United States)

    Licquia, Timothy C.; Newman, Jeffrey A.

    2016-11-01

    The exponential scale length (L d ) of the Milky Way’s (MW’s) disk is a critical parameter for describing the global physical size of our Galaxy, important both for interpreting other Galactic measurements and helping us to understand how our Galaxy fits into extragalactic contexts. Unfortunately, current estimates span a wide range of values and are often statistically incompatible with one another. Here, we perform a Bayesian meta-analysis to determine an improved, aggregate estimate for L d , utilizing a mixture-model approach to account for the possibility that any one measurement has not properly accounted for all statistical or systematic errors. Within this machinery, we explore a variety of ways of modeling the nature of problematic measurements, and then employ a Bayesian model averaging technique to derive net posterior distributions that incorporate any model-selection uncertainty. Our meta-analysis combines 29 different (15 visible and 14 infrared) photometric measurements of L d available in the literature; these involve a broad assortment of observational data sets, MW models and assumptions, and methodologies, all tabulated herein. Analyzing the visible and infrared measurements separately yields estimates for L d of {2.71}-0.20+0.22 kpc and {2.51}-0.13+0.15 kpc, respectively, whereas considering them all combined yields 2.64 ± 0.13 kpc. The ratio between the visible and infrared scale lengths determined here is very similar to that measured in external spiral galaxies. We use these results to update the model of the Galactic disk from our previous work, constraining its stellar mass to be {4.8}-1.1+1.5× {10}10 M ⊙, and the MW’s total stellar mass to be {5.7}-1.1+1.5× {10}10 M ⊙.

  18. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  19. Application of soft x-ray laser interferometry to study large-scale-length, high-density plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Barbee, T.W., Jr.; Cauble, R.

    1996-01-01

    We have employed a Mach-Zehnder interferometer, using a Ne-like Y x- ray laser at 155 Angstrom as the probe source, to study large-scale- length, high-density colliding plasmas and exploding foils. The measured density profile of counter-streaming high-density colliding plasmas falls in between the calculated profiles using collisionless and fluid approximations with the radiation hydrodynamic code LASNEX. We have also performed simultaneous measured the local gain and electron density of Y x-ray laser amplifier. Measured gains in the amplifier were found to be between 10 and 20 cm -1 , similar to predictions and indicating that refraction is the major cause of signal loss in long line focus lasers. Images showed that high gain was produced in spots with dimensions of ∼ 10 μm, which we believe is caused by intensity variations in the optical drive laser. Measured density variations were smooth on the 10-μm scale so that temperature variations were likely the cause of the localized gain regions. We are now using the interferometry technique as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy-density physics experiments. 11 refs., 6 figs

  20. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    International Nuclear Information System (INIS)

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance

  1. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  2. Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales

    International Nuclear Information System (INIS)

    Roa, J.J.; Jiménez-Piqué, E.; Martínez, R.; Ramírez, G.; Tarragó, J.M.

    2014-01-01

    In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection

  3. Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

    Science.gov (United States)

    Raschke, Markus

    2015-03-01

    To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

  4. Contact damage and fracture micromechanisms of multilayered TiN/CrN coatings at micro- and nano-length scales

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); Martínez, R. [Centro de Ingeniería Avanzada de Superfícies, Asociación de la Industria Navarra — AIN, Crta. Pamplona, 1, Edificio AIN, 31191 Cordovilla (Spain); Ramírez, G. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Avda. Bases de Manresa 1, 08243 Manresa (Spain); Tarragó, J.M. [CIEFMA — Departament de Ciència dels Materials i Eng. Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Universitat Politècnica de Catalunya, C. Pasqual i Vila 15, 08028 Barcelona (Spain); and others

    2014-11-28

    In this study, systematic nanomechanical and micromechanical studies have been conducted in three multilayer TiN/CrN systems with different bilayer periods (8, 19 and 25 nm). Additionally, experimental work has been performed on corresponding TiN and CrN single layers, for comparison purposes. The investigation includes the use of different indenter tip geometries as well as contact loading conditions (i.e. indentation/scratch) such to induce different stress field and damage scenarios within the films. The surface and subsurface damage under the different indentation imprints and scratch tracks have been observed by atomic force microscopy, field emission scanning electron microscopy and focused ion beam. Multilayer TiN/CrN coated systems are found to exhibit higher adhesion strength (under sliding contact load) and cracking resistance (under spherical indentation) than those coated with reference TiN and CrN monolayers. The main reason behind these findings is the effective development of microstructurally-driven deformation and cracking resistant micromechanisms: rotation of columnar grains (and associated distortion of bilayer period) and crack deflection of interlayer thickness length scale, respectively. - Highlights: • Nanomechanical and micromechanical study in TiN/CrN systems • TiN/CrN coated systems exhibit higher adhesion strength and cracking resistance. • Main deformation and cracking micromechanisms: columnar grain rotation and crack deflection.

  5. Detection of different-time-scale signals in the length of day variation based on EEMD analysis technique

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2016-05-01

    Full Text Available Scientists pay great attention to different-time-scale signals in the length of day (LOD variations ΔLOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potential excitations of ocean and atmosphere. In this study, based on the ensemble empirical mode decomposition (EEMD, we analyzed the latest time series of ΔLOD data spanning from January 1962 to March 2015. We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms, 1.0 month and 0.19 ms, 0.5 yr and 0.22 ms, 1.0 yr and 0.18 ms, 2.28 yr and 0.03 ms, 5.48 yr and 0.05 ms, respectively, in coincidence with the results of predecessors. In addition, some signals that were previously not definitely observed by predecessors were detected in this study, with periods and amplitudes of 9.13 d and 0.12 ms, 13.69 yr and 0.10 ms, respectively. The mechanisms of the LOD fluctuations of these two signals are still open.

  6. Quantifying Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction.

    Science.gov (United States)

    Ryu, Jaeyune; Wuttig, Anna; Surendranath, Yogesh

    2018-05-15

    We quantify changes in the interfacial pH local to the electrochemical double layer during electrocatalysis, using a concurrent non-faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis-2-butene-1,4-diol to form a mixture of 1,4-butanediol and n-butanol with a selectivity that is linearly dependent on the bulk solution pH. We show that kinetic branching occurs from a common surface-bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH within molecular length scales of the surface. We use the pH-dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and find that the local pH can vary dramatically, > 3 units, relative to the bulk value even at modest current densities in well-buffered electrolytes. This work highlights the key role that interfacial pH variation plays in modulating inner-sphere electrocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  8. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  9. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  10. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  11. Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations

    Science.gov (United States)

    Rolph, Rebecca J.; Mahoney, Andrew R.; Walsh, John; Loring, Philip A.

    2018-05-01

    Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. The indices include the number of false freeze-ups defined by transient exceedances of ice concentration prior to a corresponding exceedance that persists, false break-ups, timing of freeze-up and break-up, length of the open water duration, number of days when the winds preclude hunting via boat (wind speed threshold exceedances), the number of wind events conducive to geomorphological work or damage to infrastructure from ocean waves, and the number of these wind events with on- and along-shore components promoting water setup along the coastline. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices. The two primary large-scale datasets are the Historical Sea Ice Atlas for Alaska and the atmospheric output from a regional climate model used to downscale the ERA-Interim atmospheric reanalysis. We illustrate the variability and trends of these indices by application to the rural Alaska communities of Kotzebue, Shishmaref, and Utqiaġvik (previously Barrow), although the same procedure and metrics can be applied to other coastal communities. Over the 1979-2014 time period, there has been a marked increase in the number of combined false freeze-ups and false break-ups as well as the number of days too windy for hunting via boat for all three communities, especially Utqiaġvik. At Utqiaġvik, there has been an approximate tripling of the number of wind events conducive to coastline erosion from 1979 to 2014. We have also found a delay in freeze-up and earlier break-up, leading to a lengthened open water period for all of the communities examined.

  12. Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations

    Directory of Open Access Journals (Sweden)

    R. J. Rolph

    2018-05-01

    Full Text Available Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. The indices include the number of false freeze-ups defined by transient exceedances of ice concentration prior to a corresponding exceedance that persists, false break-ups, timing of freeze-up and break-up, length of the open water duration, number of days when the winds preclude hunting via boat (wind speed threshold exceedances, the number of wind events conducive to geomorphological work or damage to infrastructure from ocean waves, and the number of these wind events with on- and along-shore components promoting water setup along the coastline. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices. The two primary large-scale datasets are the Historical Sea Ice Atlas for Alaska and the atmospheric output from a regional climate model used to downscale the ERA-Interim atmospheric reanalysis. We illustrate the variability and trends of these indices by application to the rural Alaska communities of Kotzebue, Shishmaref, and Utqiaġvik (previously Barrow, although the same procedure and metrics can be applied to other coastal communities. Over the 1979–2014 time period, there has been a marked increase in the number of combined false freeze-ups and false break-ups as well as the number of days too windy for hunting via boat for all three communities, especially Utqiaġvik. At Utqiaġvik, there has been an approximate tripling of the number of wind events conducive to coastline erosion from 1979 to 2014. We have also found a delay in freeze-up and earlier break-up, leading to a lengthened open water period for all of the communities examined.

  13. Making continental-scale environmental programs relevant locally for educators with Project BudBurst

    Science.gov (United States)

    Goehring, L.; Henderson, S.; Wasser, L.; Newman, S. J.; Ward, D.

    2012-12-01

    Project BudBurst is a national citizen science initiative designed to engage non professionals in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide excellent opportunities for educators and their students to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch, this on-line program has engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent, and in contemplating the meaning of such data in their local environments. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst educational resources and share lessons learned from educators in implementing the program in formal and informal education settings. Lesson plans and tips from educators will be highlighted. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.

  14. Optimization of Kα bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length

    International Nuclear Information System (INIS)

    Ziener, Ch.; Uschmann, I.; Stobrawa, G.; Reich, Ch.; Gibbon, P.; Feurer, T.; Morak, A.; Duesterer, S.; Schwoerer, H.; Foerster, E.; Sauerbrey, R.

    2002-01-01

    The conversion efficiency of a 90 fs high-power laser pulse focused onto a solid target into x-ray Kα line emission was measured. By using three different elements as target material (Si, Ti, and Co), interesting candidates for fast x-ray diffraction applications were selected. The Kα output was measured with toroidally bent crystal monochromators combined with a GaAsP Schottky diode. Optimization was performed for different laser intensities as well as for different density scale lengths of a preformed plasma. These different scale lengths were realized by prepulses of different intensities and delay times with respect to the main pulse. Whereas the Kα yield varied by a factor of 1.8 for different laser intensities, the variation of the density scale length could provide a gain factor up to 4.6 for the Kα output

  15. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  16. Manufacturing and testing of relevant scale mockup based on monoblock concept

    International Nuclear Information System (INIS)

    Di Pietro, E.; Orsini, A.; Sacchetti, M.; Libera, S.; Cardella, A.; Vieider, G.

    1993-01-01

    The results obtained from small-scale mockups manufactured on the monoblock design concept have proven that the solution appears promising for a conventional divertor operating with heat fluxes in the range 10 to 15 MW/m 2 with a thermal fatigue cycle exceeding 1000 cycles at full power. The divertor mock-up consists of six half meter-long armored tubes obtained by brazing CFC to TZM molybdenum alloy. Two types of CFC were used to investigate the advantages of 3-d CFCs with respect to more conventional and cheaper 2-d CFC. The brazing process utilizes three variants of a process developed in laboratory trials and based on selected combinations of active braze filler/CFC surface conditioning procedures. The supporting structure is based on the sliding support concept intended to assure a compromise between the requested thermal stability of the component and the buildup of secondary stresses deriving from mechanical constraints. The FE thermal and thermal mechanical analysis of the divertor mockup structure is reported and the critical areas of sliding support are highlighted for comparison with experimental results. The main results of NDE and experimental high heat flux tests are reported and discussed

  17. Poleward energy transport: is the standard definition physically relevant at all time scales?

    Science.gov (United States)

    Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi

    2018-03-01

    Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.

  18. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  19. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  20. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  1. New Approaches in the Engineering and Characterization of Macromolecular Interfaces Across the Length Scales: Applications to Hydrophobic and Stimulus Responsive Polymers

    NARCIS (Netherlands)

    Song, Jing

    2007-01-01

    The aim of the present Thesis is to enhance characterization and surface engineering approaches to test and control physico-chemical changes on modified hydrophobic (LDPE and PDMS) and stimulus-responsive (PFS) polymers across different length scales. [Here LDPE denotes low density polyethylene,

  2. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    -correlation lengths for sub-daily extreme precipitation besides having too low intensities. Especially the wrong spatial correlation structure is disturbing from an urban hydrological point of view as short-term extremes will cover too much ground if derived directly from bias corrected regional climate model output...... of precipitation are compared and used to rank climate models with respect to performance metrics. The four different observational data sets themselves are compared at daily temporal scale with respect to climate indices for mean and extreme precipitation. Data density seems to be a crucial parameter for good...... happening in summer and most of the daily extremes in fall. This behaviour is in good accordance with reality where short term extremes originate in convective precipitation cells that occur when it is very warm and longer term extremes originate in frontal systems that dominate the fall and winter seasons...

  3. Defining ecologically relevant scales for spatial protection with long-term data on an endangered seabird and local prey availability.

    Science.gov (United States)

    Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R

    2017-12-01

    Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without

  4. Investigating self-esteem in individuals with schizophrenia: relevance of the Self-Esteem Rating Scale-Short Form.

    Science.gov (United States)

    Lecomte, Tania; Corbière, Marc; Laisné, François

    2006-06-30

    Studies investigating self-esteem in individuals with severe mental illness, either as a treatment goal, outcome or correlate to other variables, have increased over the past few years. One of the main difficulties in assessing self-esteem is the assessment itself, often measuring global and stable self-esteem as in the Rosenberg Self-Esteem Scale, or requiring extensive training and long interviews. The present article aims at demonstrating the relevance of the French and English versions of the Self-Esteem Rating Scale-Short Form with individuals with severe mental illness. The instrument's reliability and validity were investigated in a sample of 250 French Canadian college students, 247 British college students and three samples of English- or French-speaking individuals with severe mental illness (N=254, N=150 and N=171). Confirmatory factor analysis revealed that a shorter version of the instrument (20 items), with a positive and a negative self-esteem factor, had a great validity for all the samples studied. The Self-Esteem Rating Scale-Short Form, with its positive and negative self-esteem subscales, appears to be a valid and reliable self-esteem measure for individuals with mental health problems. Limitations of this study and future directions are discussed.

  5. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    Science.gov (United States)

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.

  6. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m...

  7. Characterisation of heat transfer and flame length in a semi-scale industrial furnace equipped with HiTAC burner

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Nehme, W.; Biswas, A.K.; Yang, W.; Blasiak, W.; Bertin, D. [Royal Institute of Technology, Stockholm (Sweden)

    2010-09-15

    This paper investigates the effects of multiple burner nozzles on the combustion characteristics, such as flame volume, heat transfer and NOx emission in a high temperature air combustion (HiTAC) industrial furnace. Experiments were carried out in one semi-industrial furnace located in Kungliga Tekniska Hogskolan (Stockholm, Sweden). Three different types of burners were tested, including both regenerative and recuperative types. Variable flame temperature and oxygen concentration were applied in experiments. Heat transfer characteristics of HiTAC are studied in this paper, and the influences of a variety of inertial fuel/air jets are investigated for both flame length and NOx emission. One improved correlation between chemical flame length and flame Froude number is established for HiTAC with manifold nozzles. NOx emission is also correlated to the flame Froude number. The HiTAC recirculation system effects on flame shape, NOx emission and heat transfer were also examined.

  8. Short Is Beautiful: Dimensionality and Measurement Invariance in Two Length of the Basic Psychological Need Satisfaction at Work Scale

    Directory of Open Access Journals (Sweden)

    Mårten Eriksson

    2018-06-01

    Full Text Available Self-determination theory proposes that all humans have three intrinsic psychological needs: the needs for Autonomy, Competence, and Relatedness. These needs take different forms in different areas of life. The present study examines the psychometric properties of a Swedish version of the Basic Psychological Need Satisfaction at Work (BPNS-W scale. The fit of 10-factor structures previously suggested for related versions of the scale were compared. Cross-sectional data from 1,200 participants were examined in a confirmatory factor analysis framework. Both the original 21-item version and a reduced 12-item version of the BPNS-W were examined. The General Health Questionnaire was used for validation. The results supported a three-factor solution with correlated error variances for the reversed items. Invariance testing of the long and short scales gave best support to the short scale, for which partial scalar invariance was achieved. The external validity of the short scale was supported by a hierarchical regression analysis in which each need made a unique contribution in predicting psychological well-being. In conclusion, the results corroborate a three-factor structure of BPNS-W. Although not perfect the short scale should, it is argued, be preferred over the long version. Directions for the future development of the scale are discussed.

  9. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    International Nuclear Information System (INIS)

    Jiang, L.; Li, J.K.; Liu, G.; Wang, R.H.; Chen, B.A.; Zhang, J.Y.; Sun, J.; Yang, M.X.; Yang, G.; Yang, J.; Cao, X.Z.

    2015-01-01

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al 2 Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al 2 Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al 2 Cu particles were precipitated and intragranular θ′-Al 2 Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying effect and the

  10. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, J.K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, R.H. [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Chen, B.A.; Zhang, J.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun, J., E-mail: junsun@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, M.X.; Yang, G. [Central Iron and Steel Research Institute, Beijing 100081 (China); Yang, J.; Cao, X.Z. [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-06-18

    Heat-treatable Al alloys containing Al–2.5 wt% Cu (Al–Cu) and Al–2.5 wt% Cu–0.3 wt% Sc (Al–Cu–Sc) with different grain length scales, i.e., average grain size >10 μm ( defined coarse grained, CG), 1–2 μm (fine grained, FG), and <1 μm (ultrafine grained, UFG), were prepared by equal-channel angular pressing (ECAP). The length scale and Sc microalloying effects and their interplay on the precipitation behavior and mechanical properties of the Al–Cu alloys were systematically investigated. In the Al–Cu alloys, intergranular θ-Al{sub 2}Cu precipitation gradually dominated by sacrificing the intragranular θ′-Al{sub 2}Cu precipitation with reducing the length scale. Especially in the UFG regime, only intergranular θ-Al{sub 2}Cu particles were precipitated and intragranular θ′-Al{sub 2}Cu precipitation was completely disappeared. This led to a remarkable reduction in yield strength and ductility due to insufficient dislocation storage capacity. The minor Sc addition resulted in a microalloying effect in the Al–Cu alloy, which, however, is strongly dependent on the length scale. The smaller is the grain size, the more active is the microalloying effect that promotes the intragranular precipitation while reduces the intergranular precipitation. Correspondingly, compared with their Sc-free counterparts, the yield strength of post-aged CG, FG, and UFG Al–Cu alloys with Sc addition increased by ~36 MPa, ~56 MPa, and ~150 MPa, simultaneously in tensile elongation by ~20%, ~30%, and 280%, respectively. The grain size-induced evolutions in vacancy concentration/distribution and number density of vacancy-solute/solute–solute clusters and their influences on precipitation nucleation and kinetics have been comprehensively considered to rationalize the length scale-dependent Sc microalloying mechanisms using positron annihilation lifetime spectrum and three dimension atom probe. The increase in ductility was analyzed in the light of Sc microalloying

  11. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    Science.gov (United States)

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Criterion Noise in Ratings-Based Recognition: Evidence from the Effects of Response Scale Length on Recognition Accuracy

    Science.gov (United States)

    Benjamin, Aaron S.; Tullis, Jonathan G.; Lee, Ji Hae

    2013-01-01

    Rating scales are a standard measurement tool in psychological research. However, research has suggested that the cognitive burden involved in maintaining the criteria used to parcel subjective evidence into ratings introduces "decision noise" and affects estimates of performance in the underlying task. There has been debate over whether…

  13. Gate length scaling effect on high-electron mobility transistors devices using AlGaN/GaN and AlInN/AlN/GaN heterostructures.

    Science.gov (United States)

    Liao, S Y; Lu, C C; Chang, T; Huang, C F; Cheng, C H; Chang, L B

    2014-08-01

    Compared to AlGaN/GaN HEMT with 0.15 μm T-gate length, the AlInN/AlN/GaN one exhibits much higher current density and transconductance of 1558 mA/mm at Vd = 2 V and 330 mS/mm, respectively. The high extrinsic ft and fmax of 82 GHz and 70 GHz are extracted from AlInN/AlN/GaN HEMT. Besides, we find that the transconductance roll-off is significant in AlGaN/GaN, but largely improved in AlInN/AlN/GaN HEMT, suggesting that the high carrier density and lattice-matched epitaxial heterostructure is important to reach both large RF output power and high operation frequency, especially for an aggressively gate length scaling.

  14. Multidimensional scaling analysis identifies pathological and prognostically relevant profiles of circulating T-cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Rissiek, Anne; Schulze, Christian; Bacher, Ulrike; Schieferdecker, Aneta; Thiele, Benjamin; Jacholkowski, Anita; Flammiger, Anna; Horn, Christiane; Haag, Friedrich; Tiegs, Gisa; Zirlik, Katja; Trepel, Martin; Tolosa, Eva; Binder, Mascha

    2014-11-15

    Antitumor immunity in chronic lymphocytic leukemia (CLL) is hampered by highly dysfunctional T-cells. Although certain T-cell subsets have been reported to be of prognostic significance in this disease, their interplay is complex and it remains incompletely understood which of these subsets significantly drive CLL progression. Here, we determined immunological profiles of 24 circulating T-cell subsets from 79 untreated individuals by multiparametric flow cytometry. This screening cohort included healthy donors, patients with monoclonal B-cell lymphocytosis (MBL), Rai 0 CLL and advanced CLL. We applied multidimensional scaling analysis as rigorous and unbiased statistical tool to globally assess the composition of the circulating T-cell environment and to generate T-cell scores reflecting its integrity. These scores allowed clear distinction between advanced CLL and healthy controls, whereas both MBL and Rai 0 CLL showed intermediate scores mirroring the biological continuum of CLL and its precursor stages. T-cell stimulation and suppression assays as well as longitudinal T-cell profiling showed an increasingly suppressive regulatory function initiating at the MBL stage. Effector function was impaired only after transition to CLL and partially recovered after chemoimmunotherapy. In an independent validation cohort of 52 untreated CLL cases, aberrant T-cell profiles were significantly associated with shorter time to treatment independently of other prognostic parameters. Random forest modeling predicted regulatory T-cell, gamma/delta and NKT-cells, as well as exhaustion of the CD8+ subset as potential drivers of progression. Our data illustrate a pathological T-cell environment in MBL that evolves toward a more and more suppressive and prognostically relevant profile across the disease stages. © 2014 UICC.

  15. Effects of laser wavelength and density scale length on absorption of ultrashort intense lasers on solid-density targets

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eiichi, Takahashi; Tatsuya, Aota; Yuji, Matsumoto; Isao, Okuda; Yoshiro, Owadano [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2004-07-01

    The interaction of intense laser pulses with overdense plasmas has attracted much interest for the fast igniter concept in inertial fusion energy. Hot electron temperatures and electron energy spectra in the course of interaction between intense laser pulse and overdense plasmas are reexamined from a viewpoint of the difference in laser wavelength. The hot electron temperature measured by a particle-in-cell simulation is scaled by I rather than I{lambda}{sup 2} at the interaction with overdense plasmas with fixed ions, where I and {lambda} are the laser intensity and wavelength, respectively. (authors)

  16. Search for Screened Interactions Associated with Dark Energy below the 100 μm Length Scale.

    Science.gov (United States)

    Rider, Alexander D; Moore, David C; Blakemore, Charles P; Louis, Maxime; Lu, Marie; Gratta, Giorgio

    2016-09-02

    We present the results of a search for unknown interactions that couple to mass between an optically levitated microsphere and a gold-coated silicon cantilever. The scale and geometry of the apparatus enable a search for new forces that appear at distances below 100  μm and which would have evaded previous searches due to screening mechanisms. The data are consistent with electrostatic backgrounds and place upper limits on the strength of new interactions at 5.6×10^{4} in the region of parameter space where the self-coupling Λ≳5  meV and the microspheres are not fully screened.

  17. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  18. Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects

    Science.gov (United States)

    Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.

  19. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  20. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  1. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  2. DETERMINATION OF RELEVANT FEATURES OF A SCALE MODEL FOR A 55 000 DWT BULK CARRIER NECESSARY TO STUDY THE SHIP MANEUVERABILITY

    Directory of Open Access Journals (Sweden)

    ALECU TOMA

    2016-06-01

    Full Text Available The study method of a ship behavior based on practical tests on scale models is widely used both leading scientists and engineers, architects and researchers in the naval field. In this paper we propose to determine the parameters of a ship handling characteristics relevant to study the 55,000 dwt bulk carrier using a scale model. Scientific background for practical experimentation of this techniques necessary to built a scale model ship consists in applying the principles of similarity or "similitude". The scale model achieved by applying the laws of similarity must allow, through approximations available in certain circumstances, finding relevant parameters needed to simplify and solve the Navier-Stokes equations. These parameters are necessary for modeling the interaction between hull of the real ship and the fluid motion.

  3. The positive mental health instrument: development and validation of a culturally relevant scale in a multi-ethnic asian population

    Directory of Open Access Journals (Sweden)

    Vaingankar Janhavi

    2011-10-01

    Full Text Available Abstract Background Instruments to measure mental health and well-being are largely developed and often used within Western populations and this compromises their validity in other cultures. A previous qualitative study in Singapore demonstrated the relevance of spiritual and religious practices to mental health, a dimension currently not included in exiting multi-dimensional measures. The objective of this study was to develop a self-administered measure that covers all key and culturally appropriate domains of mental health, which can be applied to compare levels of mental health across different age, gender and ethnic groups. We present the item reduction and validation of the Positive Mental Health (PMH instrument in a community-based adult sample in Singapore. Methods Surveys were conducted among adult (21-65 years residents belonging to Chinese, Malay and Indian ethnicities. Exploratory and confirmatory factor analysis (EFA, CFA were conducted and items were reduced using item response theory tests (IRT. The final version of the PMH instrument was tested for internal consistency and criterion validity. Items were tested for differential item functioning (DIF to check if items functioned in the same way across all subgroups. Results: EFA and CFA identified six first-order factor structure (General coping, Personal growth and autonomy, Spirituality, Interpersonal skills, Emotional support, and Global affect under one higher-order dimension of Positive Mental Health (RMSEA = 0.05, CFI = 0.96, TLI = 0.96. A 47-item self-administered multi-dimensional instrument with a six-point Likert response scale was constructed. The slope estimates and strength of the relation to the theta for all items in each six PMH subscales were high (range:1.39 to 5.69, suggesting good discrimination properties. The threshold estimates for the instrument ranged from -3.45 to 1.61 indicating that the instrument covers entire spectrums for the six dimensions. The

  4. The Effect of Map Scale on the Determination of the Coastline Length and the Area of Islands in the Adriatic Sea - the Example of the Island of Rab

    Directory of Open Access Journals (Sweden)

    Nada Vučetić

    2006-12-01

    Full Text Available The procedure to determine the coastline length and the area of the island of Rab from the maps at the scales 1:25 000, 1:50 000, 1:100 000, 1:200 000, 1:300 000, 1:500 000, 1:1 000 000 and 1:2 000 000 is described. The map sheets at the scales 1:25 000, 1:100 000 and 1:200 000 were obtained already in a georeferenced raster format, and the others were scanned and georeferenced. This was followed by a manual vectorization of the coastline and a transformation of all coordinates into the 5th zone of the Gauss-Krüger projection. The length of the coastline and the area of the island were calculated in the Gauss-Krüger projection taking into account the deformations of the projection. The results are given in tables and represented graphically.

  5. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  6. Spanish validation of the adult Attention Deficit/Hyperactivity Disorder Rating Scale (ADHD-RS): relevance of clinical subtypes.

    Science.gov (United States)

    Richarte, Vanesa; Corrales, Montserrat; Pozuelo, Marian; Serra-Pla, Juanfran; Ibáñez, Pol; Calvo, Eva; Corominas, Margarida; Bosch, Rosa; Casas, Miquel; Ramos-Quiroga, Josep Antoni

    : sensitivity (81.9%), specificity (87.3%), PPV (78.6%), NPV (89.4%), kappa coefficient .88 and AUC .94, and 21 point is the best cut-off for ADHD predominantly inattentive presentation: sensitivity (70.2%), specificity (76.1%), PPV (71.7%), NPV (74.8%), kappa coefficient .88 and AUC .94. In this study, the Spanish version of the ADHD-RS is a valid scale to discriminate between ADHD adults and controls. The new proposed score strategy suggests the relevance of clinical presentations in the different cut-offs selected. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Geomagnetic field and length-of-day fluctuations at decadal and subdecadal time scales. A plea for looking beyond the atmosphere for partners in Earth's rotation

    Science.gov (United States)

    Demetrescu, C.; Dobrica, V.; Stefan, C.

    2017-12-01

    A rich scientific literature is linking length-of-day (LOD) fluctuations to geomagnetic field and flow oscillations in the fluid outer core. We demostrate that the temporal evolution of the geomagnetic field shows the existence of several oscillations at decadal, inter-decadal, and sub-centennial time scales that superimpose on a so-called inter-centennial constituent. We show that while the subcentennial oscillations of the geomagnetic field, produced by torsional oscillations in the core, could be linked to oscillations of LOD at a similar time scale, the oscillations at decadal and sub-decadal time scales, of external origin, can be found in LOD too. We discuss these issues from the perspective of long time-span main field models (gufm1 - Jackson et al., 2000; COV-OBS - Gillet et al., 2013) that are used to retrieve time series of geomagnetic elements in a 2.5x2.5° network. The decadal and sub-decadal constituents of the time series of annual values in LOD and geomagnetic field were separated in the cyclic component of a Hodrick-Prescott filtering applied to data, and shown to highly correlate to variations of external sources such as the magnetospheric ring current.

  8. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    International Nuclear Information System (INIS)

    Zhang, Yongfeng

    2016-01-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  9. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Laboratory

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significant progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.

  10. Unifying Pore Network Modeling, Continuous Time Random Walk (CTRW) Theory and Experiment to Describe Impact of Spatial Heterogeneities on Solute Dispersion at Multiple Length-scales

    Science.gov (United States)

    Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.

    2009-04-01

    This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of

  11. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  12. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy

    2017-01-09

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  13. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

    CERN Document Server

    Castro, C

    2004-01-01

    We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...

  14. Vortex matter beyond SANS. Neutron studies of vortex structures covering a length scale of 0.01 ti 10 μm

    International Nuclear Information System (INIS)

    Reimann, Tommy

    2017-01-01

    This thesis is concerned with different generic types of vortex matter arising in the intermediate state of the type-I superconductor lead, the intermediate mixed state of the type-II superconductor niobium, and the helimagnetic phase of the compound manganese silicide. It is demonstrated and explained how a combination of i) the radiographic techniques neutron grating interferometry and neutron diffractive imaging with ii) scattering methods such as small-angle-neutron scattering and ultra-small-angle neutron scattering can provide novel insight into the bulk behavior of these vortex systems. By means of the used scattering methods, detailed information on the morphology of the vortex phases covering a length scale of 0.01 to 10 μm are obtained, while the radiographic approaches additionally map the spatial distribution of vortices within the sample. In particular, this thesis focuses on the strong influences of demagnetization, geometric barriers and pinning on the vortex configuration.

  15. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  16. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  17. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  18. The Use of System Codes in Scaling Studies: Relevant Techniques for Qualifying NPP Nodalizations for Particular Scenarios

    Directory of Open Access Journals (Sweden)

    V. Martinez-Quiroga

    2014-01-01

    Full Text Available System codes along with necessary nodalizations are valuable tools for thermal hydraulic safety analysis. Qualifying both codes and nodalizations is an essential step prior to their use in any significant study involving code calculations. Since most existing experimental data come from tests performed on the small scale, any qualification process must therefore address scale considerations. This paper describes the methodology developed at the Technical University of Catalonia in order to contribute to the qualification of Nuclear Power Plant nodalizations by means of scale disquisitions. The techniques that are presented include the so-called Kv-scaled calculation approach as well as the use of “hybrid nodalizations” and “scaled-up nodalizations.” These methods have revealed themselves to be very helpful in producing the required qualification and in promoting further improvements in nodalization. The paper explains both the concepts and the general guidelines of the method, while an accompanying paper will complete the presentation of the methodology as well as showing the results of the analysis of scaling discrepancies that appeared during the posttest simulations of PKL-LSTF counterpart tests performed on the PKL-III and ROSA-2 OECD/NEA Projects. Both articles together produce the complete description of the methodology that has been developed in the framework of the use of NPP nodalizations in the support to plant operation and control.

  19. Predictors of extended length of stay, discharge to inpatient rehab, and hospital readmission following elective lumbar spine surgery: introduction of the Carolina-Semmes Grading Scale.

    Science.gov (United States)

    McGirt, Matthew J; Parker, Scott L; Chotai, Silky; Pfortmiller, Deborah; Sorenson, Jeffrey M; Foley, Kevin; Asher, Anthony L

    2017-10-01

    OBJECTIVE Extended hospital length of stay (LOS), unplanned hospital readmission, and need for inpatient rehabilitation after elective spine surgery contribute significantly to the variation in surgical health care costs. As novel payment models shift the risk of cost overruns from payers to providers, understanding patient-level risk of LOS, readmission, and inpatient rehabilitation is critical. The authors set out to develop a grading scale that effectively stratifies risk of these costly events after elective surgery for degenerative lumbar pathologies. METHODS The Quality and Outcomes Database (QOD) registry prospectively enrolls patients undergoing surgery for degenerative lumbar spine disease. This registry was queried for patients who had undergone elective 1- to 3-level lumbar surgery for degenerative spine pathology. The association between preoperative patient variables and extended postoperative hospital LOS (LOS ≥ 7 days), discharge status (inpatient facility vs home), and 90-day hospital readmission was assessed using stepwise multivariate logistic regression. The Carolina-Semmes grading scale was constructed using the independent predictors for LOS (0-12 points), discharge to inpatient facility (0-18 points), and 90-day readmission (0-6 points), and its performance was assessed using the QOD data set. The performance of the grading scale was then confirmed separately after using it in 2 separate neurosurgery practice sites (Carolina Neurosurgery & Spine Associates [CNSA] and Semmes Murphey Clinic). RESULTS A total of 6921 patients were analyzed. Overall, 290 (4.2%) patients required extended LOS, 654 (9.4%) required inpatient facility care/rehabilitation on hospital discharge, and 474 (6.8%) were readmitted to the hospital within 90 days postdischarge. Variables that remained as independently associated with these unplanned events in multivariate analysis included age ≥ 70 years, American Society of Anesthesiologists Physical Classification System

  20. A study of small-scale foliation in lengths of core enclosing fault zones in borehole WD-3, Permit Area D, Lac du Bonnet Batholith

    Energy Technology Data Exchange (ETDEWEB)

    Ejeckam, R. B.

    1992-12-01

    Small-scale foliation measurements in lengths of core from borehole WD-3 of Permit Area D of the Lac du Bonnet Batholith have defined five major mean orientation sets. They strike NW, N and NE. The orientations (strike to the left of the dip direction/dip) of these sets are as follows: Set I - 028/74 deg; II - 001/66 deg; III - 100/58 deg; IV - 076/83 deg; and V - 210/40 deg. The small-scale foliations were defined by different mineral types such as biotite crystals, plagioclase, mineral banding and quartz lenses. Well-developed biotite foliation is commonly present whenever well-developed plagioclase foliation exists, but as the strength of development weakens, the preferred orientations of plagioclase foliation do not correspond to those of biotite. It is also noted that the foliations appear to strike in directions orthogonal to the fractures in the fracture zones in the same depth interval. No significant change in foliation orientation was observed in Zones I to IV. Set V, however, whose mean orientation is 210/40 deg, is absent from the Zone IV interval, ranging from 872 to 905 m. (auth)

  1. Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    KAUST Repository

    Utzat, Hendrik

    2017-04-24

    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particular the separation dynamics within molecularly intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devices of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PCBM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometer length scale. Laser spectroscopic studies show that these changes in morphology correlate quantitatively with the changes in charge separation dynamics on the nanosecond time scale and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly intermixed polymer-fullerene phase is observed, photoexcitation results in a ∼ 30% charge loss from geminate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ∼4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase, making the fullerene domains accessible for electron escape.

  2. Scaling of adult body weight to height across sex and race/ethnic groups: relevance to BMI.

    Science.gov (United States)

    Heymsfield, Steven B; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Schuna, John M; Hong, Sangmo; Choi, Woong

    2014-12-01

    Body mass index (BMI) is formulated on the assumption that body weight (BW) scales to height with a power of 2 (BW∝height(2)), independent of sex and race-ethnicity. Powers differing from 2 are observed in studies of selected samples, thus raising the question if BMI is a generalizable metric that makes BW independent of height across populations. The objectives were to test the hypothesis that adult BW scales to height with a power of 2 independent of sex and race-ethnicity and to advance an understanding of BMI as a measure of shape by extending allometric analyses to waist circumference (WC). We conducted cross-sectional subject evaluations, including body composition, from the NHANES and the Korean NHANES (KNHANES). Variations of the allometric model (Y = αX(β)) were used to establish height scaling powers (β ± SE) across non-Hispanic white and black, Mexican American, and Korean men and women. Exploratory analyses in population samples established age and adiposity as important independent determinants of height scaling powers (i.e., β). After age and adiposity in the next series of analyses were controlled for, BW scaling powers were nonsignificantly different between race/ethnic groups within each sex group; WC findings were similar in women, whereas small but significant between-race differences were observed in the men. Sex differences in β values were nonsignificant except for BW in non-Hispanic blacks and WC in Koreans (P ethnic groups, an observation that makes BMI a generalizable height-independent measure of shape across most populations. WC also follows generalizable scaling rules, a finding that has implications for defining body shape in populations who differ in stature. © 2014 American Society for Nutrition.

  3. Is the Narcissistic Personality Inventory Still Relevant? A Test of Independent Grandiosity and Entitlement Scales in the Assessment of Narcissism

    Science.gov (United States)

    Miller, Joshua D.; Price, Joanna; Campbell, W. Keith

    2012-01-01

    Some scholars have called for the replacement of the Narcissistic Personality Inventory (NPI) with more narrow scales measuring grandiosity and entitlement instead. In the current study, the authors examined the relations among the NPI and measures of grandiosity and entitlement, as well as in relation to a measure of the Five-Factor Model (FFM).…

  4. Fenton chemistry-based detemplation of an industrially relevant microcrystalline beta zeolite. Optimization and scaling-up studies

    NARCIS (Netherlands)

    Ortiz-Iniesta, Maria Jesus; Melian-Cabrera, Ignacio

    A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while 'CP,

  5. Low Oxygen Water (LOW) variability in the Benguela system: key processes and forcing scales relevant to forecasting

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2006-09-01

    Full Text Available or mortality of rock lobster in the southern Benguela; Medium term (2 month) forecasting of the intensification of the remote forcing of ETSA derived LOW which has a bearing on the Namibian hake fishery These two scales are discussed in detail in the companion...

  6. Relevance of G8 scale in referring elderly patients with aortic stenosis requiring a TAVI for a geriatric consultation.

    Science.gov (United States)

    de Thézy, Albane; Lafargue, Aurélie; d'Arailh, Lydie; Dijos, Marina; Leroux, Lionel; Salles, Nathalie; Rainfray, Muriel

    2017-12-01

    Aortic stenosis (AS) may soon become a significant public health issue. Referring elderly suffering from aortic stenosis for a transcatheter aortic valve implantation (TAVI) versus surgical valve replacement might be difficult and requires a multidisciplinary staff. G8 is a geriatric screening scale for frailty, validated in oncogeriatry. We study sensibility and specificity of G8 used by cardiologists in comparison to a comprehensive geriatric assessment (CGA) performed by geriatrician. Prospective study, from February to July 2015, in Bordeaux university Hospital, France. Every elderly admitted for a TAVI had a G8 scale performed by cardiologist and CGA by a geriatrician in blind. Comorbidities were assessed using Cumulative Illness Rating Scale in his geriatric version (CIRS-G). CGA was abnormal if: MMSE value in comparison to gold-standard CGA. 49 patients were included (55.1% women, mean age 84.8 years old). Nearly half of the patients (48.96%) had multiple comorbidities (CIRS G score >3 for at least three items excluding the cardiology item). 38 CGA were abnormal (77.55%) and 41 G8 (83.67%). G8 had a sensibility of 100% (IC 95% [0.9-1]), a specificity of 72.7% (IC 95% [0.43-0.9]), a positive predictive value of 92.6% and a negative prospective value of 100% (IC: 95%). G8 scale seems to be an efficient geriatric screening tool for frailty in elderly undergoing TAVI in comparison to CGA. Simple and useful, G8 scale could be performed by cardiologists in older patients with AS for identifying patients with a geriatric risk profile in consultation before surgery. Further studies with bigger samples are needed to confirm these results.

  7. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  8. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  9. Length Scales and Types of Heterogeneities Along the Deep Subduction Interface: Insights From an Exhumed Subduction Complex on Syros Island, Greece

    Science.gov (United States)

    Kotowski, A. J.; Behr, W. M.; Tong, X.; Lavier, L.

    2017-12-01

    The rheology of the deep subduction interface strongly influences the occurrence, recurrence, and migration of episodic tremor and slow slip (ETS) events. To better understand the environment of deep ETS, we characterize the length scales and types of rheological heterogeneities that decorate the deep interface using an exhumed subduction complex. The Cycladic Blueschist Unit on Syros, Greece, records Eocene subduction to 60 km, partial exhumation along the top of the slab, and final exhumation along Miocene detachment faults. The CBU reached 450-580˚C and 14-16 kbar, PT conditions similar to where ETS occurs in several modern subduction zones. Rheological heterogeneity is preserved in a range of rock types on Syros, with the most prominent type being brittle pods embedded within a viscous matrix. Prograde, blueschist-facies metabasalts show strong deformation fabrics characteristic of viscous flow; cm- to m-scale eclogitic lenses are embedded within them as massive, veined pods, foliated pods rotated with respect to the blueschist fabric, and attenuated, foliation-parallel lenses. Similar relationships are observed in blueschist-facies metasediments interpreted to have deformed during early exhumation. In these rocks, metabasalts form lenses ranging in size from m- to 10s of m and are distributed at the m-scale throughout the metasedimentary matrix. Several of the metamafic lenses, and the matrix rocks immediately adjacent to them, preserve multiple generations of dilational veins and shear fractures filled with quartz and high pressure minerals. These observations suggest that coupled brittle-viscous deformation under high fluid pressures may characterize the subduction interface in the deep tremor source region. To test this further, we modeled the behavior of an elasto-plastic pod in a viscous shear zone under high fluid pressures. Our models show that local stress concentrations around the pod are large enough to generate transient dilational shear at seismic

  10. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    Science.gov (United States)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  11. Investigation of the structure of human dental tissue at multiple length scales using high energy synchrotron X-ray SAXS/WAXS

    Science.gov (United States)

    Sui, Tan; Landini, Gabriel; Korsunsky, Alexander M.

    2011-10-01

    High energy (>50keV) synchrotron X-ray scattering experiments were carried out on beamline I12 JEEP at the Diamond Light Source (DLS, Oxford, UK). Although a complete human tooth could be studied, in the present study attention was focused on coupons from the region of the Dentin-Enamel Junction (DEJ). Simultaneous high energy SAXS/WAXS measurements were carried out. Quantitative analysis of the results allows multiple length scale characterization of the nano-crystalline structure of dental tissues. SAXS patterns analysis provide insight into the mean thickness and orientation of hydroxyapatite particles, while WAXS (XRD) patterns allow the determination of the crystallographic unit cell parameters of the hydroxyapatite phase. It was found that the average particle thickness determined from SAXS interpretation varies as a function of position in the vicinity of the DEJ. Most mineral particles are randomly orientated within dentin, although preferred orientation emerges and becomes stronger on approach to the enamel. Within the enamel, texture is stronger than anywhere in the dentin, and the determination of lattice parameters can be accomplished by Pawley refinement of the multiple peak diffraction pattern. The results demonstrate the feasibility of using high energy synchrotron X-ray beams for the characterization of human dental tissues. This opens up the opportunity of studying thick samples (e.g., complete teeth) in complex sample environments (e.g., under saline solution). This opens new avenues for the application of high energy synchrotron X-ray scattering to dental research.

  12. Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    Science.gov (United States)

    Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.

    2017-11-01

    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

  13. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration.

    Science.gov (United States)

    Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok

    2017-01-01

    A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method ( r -values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson's correlation test. The mean extents of low-attenuation area (LAA), E1 (holes may be useful for understanding the dynamic collapse of emphysema and its functional relation.

  14. Characteristic length scale of the magnon accumulation in Fe{sub 3}O{sub 4}/Pt bilayer structures by incoherent thermal excitation

    Energy Technology Data Exchange (ETDEWEB)

    Anadón, A., E-mail: anadonb@unizar.es; Lucas, I.; Morellón, L. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Ramos, R. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Algarabel, P. A. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Ibarra, M. R.; Aguirre, M. H. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías avanzadas, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2016-07-04

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe{sub 3}O{sub 4}/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  15. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination

    International Nuclear Information System (INIS)

    Vandebroek, Louis; Van Hees, May; Delvaux, Bruno; Spaargaren, Otto; Thiry, Yves

    2012-01-01

    The extent of radiocaesium retention in soil is important to quantify the risk of further foodchain contamination. The Radiocaesium Interception Potential (RIP –, Nature 335, 247–249) is an intrinsic soil parameter which can be used to categorize soils or minerals in terms of their capacity to selectively adsorb radiocaesium. In this study, we measured RIP for a large soil collection (88 soil samples) representative of major FAO soil reference groups on a worldwide scale and tested the possibility to predict the RIP on the basis of other easily accessible or measurable soil data. We also compared RIP values with those obtained from separate chemical extraction experiments. The range of measured RIP values (1.8–13300 mmol kg −1 ) was shown to include nearly all possible cases of agricultural soil contamination. Only Podzols, Andosols and Ferralsols were clearly characterized by a very low RIP ( −1 ). On a worldwide scale, RIP was in fact slightly related to soil reference type or other simple major physicochemical parameters such as clay percentage or organic matter. Conversely our results indicated a link between the RIP and radiocaesium extractability across very different soils. We showed that, with the proposed scale of RIP values, a simple acid extraction method can provide an operational result highly predictive of potential RIP despite very contrasting soil properties. The RIP could be estimated from the empirical equation: RIP = (−31.701 ∗ log(AER) + 58.886) 2 where AER is the fraction of acid-extractable radiocaesium. - Highlights: ► The Radiocaesium Interception Potential (RIP) is an intrinsic soil parameter. ► We measured RIP of 88 different soils representative of major FAO reference groups. ► The range of RIP (1.8–13 343 μmol g −1 ) extended over four orders of magnitude. ► Nearly all possible cases of agricultural soils contamination were represented. ► A simple acid extraction method could be used to predict potential RIP.

  16. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    Science.gov (United States)

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  17. Identifying Relevant Anti-Science Perceptions to Improve Science-Based Communication: The Negative Perceptions of Science Scale

    Directory of Open Access Journals (Sweden)

    Melanie Morgan

    2018-04-01

    Full Text Available Science communicators and scholars have struggled to understand what appears to be increasingly frequent endorsement of a wide range of anti-science beliefs and a corresponding reduction of trust in science. A common explanation for this issue is a lack of science literacy/knowledge among the general public (Funk et al. 2015. However, other possible explanations have been advanced, including conflict with alternative belief systems and other contextual factors, and even cultural factors (Gauchat 2008; Kahan 2015 that are not necessarily due to knowledge deficits. One of the challenges is that there are limited tools available to measure a range of possible underlying negative perceptions of science that could provide a more nuanced framework within which to improve communication around important scientific topics. This project describes two studies detailing the development and validation of the Negative Perceptions of Science Scale (NPSS, a multi-dimensional instrument that taps into several distinct sets of negative science perceptions: Science as Corrupt, Science as Complex, Science as Heretical, and Science as Limited. Evidence for the reliability and validity of the NPSS is described. The sub-dimensions of the NPSS are associated with a range of specific anti-science beliefs across a broad set of topic areas above and beyond that explained by demographics (including education, sex, age, and income, political, and religious ideology. Implications for these findings for improving science communication and science-related message tailoring are discussed.

  18. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations.

    Science.gov (United States)

    Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-05-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.

  19. The relevance of large scale environmental research infrastructures from the point of view of Ethics: the case of EMSO

    Science.gov (United States)

    Favali, Paolo; Beranzoli, Laura; Best, Mairi; Franceschini, PierLuigi; Materia, Paola; Peppoloni, Silvia; Picard, John

    2014-05-01

    EMSO (European Multidisciplinary Seafloor and Water Column Observatory) is a large-scale European Research Infrastructure (RI). It is a geographically distributed infrastructure composed of several deep-seafloor and water-column observatories, which will be deployed at key sites in European waters, spanning from the Arctic, through the Atlantic and Mediterranean, to the Black Sea, with the basic scientific objective of real-time, long-term monitoring of environmental processes related to the interaction between the geosphere, biosphere and hydrosphere. EMSO is one of the environmental RIs on the ESFRI roadmap. The ESRFI Roadmap identifies new RIs of pan-European importance that correspond to the long term needs of European research communities. EMSO will be the sub-sea segment of the EU's large-scale Earth Observation program, Copernicus (previously known as GMES - Global Monitoring for Environment and Security) and will significantly enhance the observational capabilities of European member states. An open data policy compliant with the recommendations being developed within the GEOSS initiative (Global Earth Observation System of Systems) will allow for shared use of the infrastructure and the exchange of scientific information and knowledge. The processes that occur in the oceans have a direct impact on human societies, therefore it is crucial to improve our understanding of how they operate and interact. To encompass the breadth of these major processes, sustained and integrated observations are required that appreciate the interconnectedness of atmospheric, surface ocean, biological pump, deep-sea, and solid-Earth dynamics and that can address: • natural and anthropogenic change; • interactions between ecosystem services, biodiversity, biogeochemistry, physics, and climate; • impacts of exploration and extraction of energy, minerals, and living resources; • geo-hazard early warning capability for earthquakes, tsunamis, gas-hydrate release, and slope

  20. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration

    Directory of Open Access Journals (Sweden)

    Oh SY

    2017-07-01

    Full Text Available Sang Young Oh,1,* Minho Lee,1,* Joon Beom Seo,1,* Namkug Kim,1,2,* Sang Min Lee,1 Jae Seung Lee,3 Yeon Mok Oh3 1Department of Radiology, 2Department of Convergence Medicine, 3Department of Pulmonology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT. Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942. The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA, E1 (<1.5 mm, E2 (<7 mm, E3 (<15 mm, and E4 (≥15 mm were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT ­parameters (r=−0.53, −0.43, −0.48, and −0.25, with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and

  1. Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Pedro

    2018-04-16

    concluded successfully, resulting in: 1) the successful fabrication, processing, and characterization of large-grained samples with various orientations (up to and including single crystals) having stoichiometric and hyper-stoichiometric O/U ratios; 2) formulation, calibration, and validation of a crystal plasticity constitutive model to describe the creep deformation of UO2 at the sub-grain length scale (single crystal level) at intermediate temperatures; 3) the successful calibration of a crystal plasticity constitutive model to describe the elasto-plastic deformation of microcantilever beams, also at moderate temperatures. Samples were prepared from natural uranium oxide powder of production-quality provided by Areva. The powder was pressed in a die to a pressure of 100 MPa to produce green pellets with no sintering aids, lubricants, or any other additives. The green pellets were then heated up to 1700 °C under ultra-high purity argon atmosphere (~1 ppm O2). The atmosphere was then changed to 79% Argon, 21% O2 and the temperature was held at 1700 °C for 2 hours to sinter the pellets under oxidative conditions [1] that are known to increase grain growth kinetics in UO2 [2]. Samples were then cooled down under Ar-4%H2 atmosphere to reduce the samples back to stoichiometric UO2. For macro-scale procedures, testing of UO2 samples with large grains was performed at 1200 °C using a modified load frame capable of applying dead-weight loads to ensure constant stress conditions, while displacement of the sample produced by the applied load was measured with high precision micrometers to obtain strains. Stress steps were used during testing and the strains were monitored to measured creep strain rates under steady state for each level of stress used, so that stress exponents could be obtained. The results of the mechanical testing, along with sample geometry and crystal orientation of the grains in the samples, as well as post-test sample characterization were used to formulate

  2. Assessing therapy-relevant cognitive capacities in young people: development and psychometric evaluation of the self-reflection and insight scale for youth.

    Science.gov (United States)

    Sauter, Floor M; Heyne, David; Blöte, Anke W; van Widenfelt, Brigit M; Westenberg, P Michiel

    2010-05-01

    The effectiveness of cognitive-behaviour therapy with young people may be influenced by a young person's capacity for self-reflection and insight. Clinicians who assess clients' proficiencies in these cognitive capacities can better tailor cognitive and behavioural techniques to the client, facilitating engagement and enhancing treatment outcome. It is therefore important that sound instruments for assessing self-reflection and insight in young people are available. The aim of the current study was to translate and adapt the Self-Reflection and Insight Scale (SRIS) for use with a child and adolescent population (Study 1), and to evaluate the psychometric properties of the resulting measure, the Self-Reflection and Insight Scale for Youth (SRIS-Y; Study 2). In Study 1 (n=145), the comprehensibility of the SRIS-Y was assessed in a community sample of children and adolescents. Study 2 (n=215) then explored the reliability and structural, convergent, and divergent validity of the SRIS-Y. The SRIS-Y was found to be comprehensible to young people, and had good reliability and structural validity. It appears that the SRIS-Y is a sound instrument for assessing therapy-relevant cognitive capacities in young people, of potential benefit in both research and clinical contexts. Future research foci include the predictive validity of the instrument.

  3. Effects of magnetic order on the superconducting length scales and critical fields in single crystal ErNi2B2C

    DEFF Research Database (Denmark)

    Gammel, P.L.; Barber, B.P.; Ramirez, A.P.

    1999-01-01

    The flux line form factor in small angle neutron scattering and transport data determines the superconducting length scares and critical fields in single crystal ErNi2B2C. For H parallel to c, the coherence length xi increases and the penetration depth lambda decreases when crossing T-N = 6.0 K......, the Neel transition. The critical fields show corresponding anomalies near T-N. For H perpendicular to c, the fourfold modulation of the upper critical field H-c2 is strongly temperature dependent, changing sign near T-N, and can be modeled using the anisotropy of the sublattice magnetization....

  4. Reducing the item number to obtain the same-length self-assessment scales: a systematic approach using result of graphical loglinear rasch models

    DEFF Research Database (Denmark)

    Nielsen, Tine; Kreiner, Svend

    2011-01-01

    The Revised Danish Learning Styles Inventory (R-D-LSI) (Nielsen 2005), which is an adaptation of Sternberg- Wagner Thinking Styles Inventory (Sternberg, 1997), comprises 14 subscales, each measuring a separate learning style. Of these 14 subscales, 9 are eight items long and 5 are seven items long...... Inventory (D-SA-LSI) comprising 14 subscales each with an item length of seven. The systematic approach to item reduction based on results of GLLRM will be presented and exemplified by its application to the R-D-LSI....

  5. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  6. Relevant criteria for testing the quality of turbulence models

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, J.D.

    2007-01-01

    Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approx. 10......% smaller than the IEC model, for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3sec and 10sec pre-averaging of wind speed data are relevant for MW-size wind...... turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60m the gust factor increases with wind speed. For heights larger the 60-80m, present assumptions on the value of the gust factor are significantly conservative, both for 3...

  7. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.

    Science.gov (United States)

    Aoki, Koh; Yano, Kentaro; Suzuki, Ayako; Kawamura, Shingo; Sakurai, Nozomu; Suda, Kunihiro; Kurabayashi, Atsushi; Suzuki, Tatsuya; Tsugane, Taneaki; Watanabe, Manabu; Ooga, Kazuhide; Torii, Maiko; Narita, Takanori; Shin-I, Tadasu; Kohara, Yuji; Yamamoto, Naoki; Takahashi, Hideki; Watanabe, Yuichiro; Egusa, Mayumi; Kodama, Motoichiro; Ichinose, Yuki; Kikuchi, Mari; Fukushima, Sumire; Okabe, Akiko; Arie, Tsutomu; Sato, Yuko; Yazawa, Katsumi; Satoh, Shinobu; Omura, Toshikazu; Ezura, Hiroshi; Shibata, Daisuke

    2010-03-30

    The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional

  8. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum cultivar Micro-Tom, a reference system for the Solanaceae genomics

    Directory of Open Access Journals (Sweden)

    Kikuchi Mari

    2010-03-01

    Full Text Available Abstract Background The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. Results To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706 was estimated to be 0.061%. Conclusion The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the

  9. High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US

    Science.gov (United States)

    Kaiser, Jennifer; Jacob, Daniel J.; Zhu, Lei; Travis, Katherine R.; Fisher, Jenny A.; González Abad, Gonzalo; Zhang, Lin; Zhang, Xuesong; Fried, Alan; Crounse, John D.; St. Clair, Jason M.; Wisthaler, Armin

    2018-04-01

    Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Bottom-up isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield isoprene oxidation product, provide top-down information to evaluate isoprene emission inventories through inverse analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution to interpret observations over the southeast US in August-September 2013. It takes advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. We find in our inversion that isoprene emissions from the widely used MEGAN v2.1 inventory are biased high over the southeast US by 40 % on average, although the broad-scale distributions are correct including maximum emissions in Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks of southeast

  10. Generation and analysis of large-scale expressed sequence tags (ESTs from a full-length enriched cDNA library of porcine backfat tissue

    Directory of Open Access Journals (Sweden)

    Lee Hae-Young

    2006-02-01

    Full Text Available Abstract Background Genome research in farm animals will expand our basic knowledge of the genetic control of complex traits, and the results will be applied in the livestock industry to improve meat quality and productivity, as well as to reduce the incidence of disease. A combination of quantitative trait locus mapping and microarray analysis is a useful approach to reduce the overall effort needed to identify genes associated with quantitative traits of interest. Results We constructed a full-length enriched cDNA library from porcine backfat tissue. The estimated average size of the cDNA inserts was 1.7 kb, and the cDNA fullness ratio was 70%. In total, we deposited 16,110 high-quality sequences in the dbEST division of GenBank (accession numbers: DT319652-DT335761. For all the expressed sequence tags (ESTs, approximately 10.9 Mb of porcine sequence were generated with an average length of 674 bp per EST (range: 200–952 bp. Clustering and assembly of these ESTs resulted in a total of 5,008 unique sequences with 1,776 contigs (35.46% and 3,232 singleton (65.54% ESTs. From a total of 5,008 unique sequences, 3,154 (62.98% were similar to other sequences, and 1,854 (37.02% were identified as having no hit or low identity (Sus scrofa. Gene ontology (GO annotation of unique sequences showed that approximately 31.7, 32.3, and 30.8% were assigned molecular function, biological process, and cellular component GO terms, respectively. A total of 1,854 putative novel transcripts resulted after comparison and filtering with the TIGR SsGI; these included a large percentage of singletons (80.64% and a small proportion of contigs (13.36%. Conclusion The sequence data generated in this study will provide valuable information for studying expression profiles using EST-based microarrays and assist in the condensation of current pig TCs into clusters representing longer stretches of cDNA sequences. The isolation of genes expressed in backfat tissue is the

  11. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    Science.gov (United States)

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.

  12. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    Science.gov (United States)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  13. Experimental validation of 3D reconstructed pin-power distributions in full-scale BWR fuel assemblies with partial length rods

    Energy Technology Data Exchange (ETDEWEB)

    Giust, F. D. [Axpo Kernenergie, Parkstrasse 23, CH-5401 Baden (Switzerland); Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Grimm, P. [Paul Scherrer Inst., CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Inst., CH-5232 Villigen (Switzerland); Swiss Federal Inst. of Technology (EPFL), CH-1015 Lausanne (Switzerland)

    2012-07-01

    Total fission rate measurements have been performed on full-size BWR fuel assemblies of type SVEA-96 Optima2 in the framework of Phase III of the LWR-PROTEUS experimental program at the Paul Scherrer Inst.. This paper presents comparisons of calculated, nodal reconstructed, pin-wise total-fission rate distributions with experimental results. Radial comparisons have been performed for the three sections of the assembly (96, 92 and 84 fuel pins), while three-dimensional effects have been investigated at pellet-level for the two transition regions, i.e. the tips of the short (1/3) and long (2/3) partial length rods. The test zone has been modeled using two different code systems: HELIOS/PRESTO-2 and CASMO-5/SIMULATE-5. The first is presently used for core monitoring and design at the Leibstadt Nuclear Power Plant (KKL). The second represents the most recent generation of the widely applied CASMO/SIMULATE system. For representing the PROTEUS test-zone boundaries, Partial Current Ratios (PCRs) - derived from a 3D MCNPX model of the entire reactor - have been applied to the PRESTO-2 and SIMULATE-5 models in the form of 2- and 5-group diagonal albedo matrices, respectively. The MCNPX results have also served as a reference, high-order transport solution in the calculation/experiment comparisons. It is shown that the performance of the nodal methodologies in predicting the global distribution of the total-fission rate is very satisfactory. Considering the various radial comparisons, the standard deviations of the calculated/experimental (C/E) distributions do not exceed 1.9% for any of the three methodologies - PRESTO-2, SIMULATE-5 and MCNPX. For the three-dimensional comparisons at pellet-level, the corresponding standard deviations are 2.7%, 2.0% and 2.1%, respectively. (authors)

  14. Validity of a scale of neighbourhood informal social control relevant to pre-schoolers’ physical activity: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Ester Cerin

    2017-12-01

    Full Text Available Childhood physical activity (PA is important for health across the lifespan. Time pre-schoolers spend outdoors, which has been associated with more PA, is likely influenced by parents’ perception of neighbourhood informal social control relevant to pre-schoolers' PA, defined as the willingness of neighbours to intervene to ensure social order and a safe community environment for young children's active play. To advance measurement of this construct, we assessed factorial and construct validities of the PA-related neighbourhood informal social control scale for parents of pre-schoolers (PANISC-PP. In 2013–2014, Hong Kong primary caregivers (n=394 of 3–5 year-old children completed a socio-demographic questionnaire, the preliminary version of the PANISC-PP, and self-report measures of theoretical neighbourhood correlates of PA-related neighbourhood informal social control (perceived signs of physical and social disorder, community cohesion, perceived stranger danger, risk of unintentional injury and traffic safety. The fit of the data to an a priori measurement model of the PANISC-PP was examined using confirmatory factor analyses. As the a priori model showed inadequate fit to the data, the factor structure was re-specified based on theoretical considerations. The final measurement models of the PANISC-PP showed acceptable fit to the data and consisted of three correlated latent factors: “General informal supervision”, “Civic engagement for the creation of a better neighbourhood environment” and “Educating and assisting neighbourhood children”. The internal reliability of the subscales was good (Cronbach's α values 0.82–0.89. Generalised additive mixed models indicated that all subscales were positively associated with community cohesion and scores on the subscale “Educating and assisting neighbourhood children” were related in the expected direction to all indicators of traffic and personal safety, supporting construct

  15. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  16. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  17. Penicillin-mediated changes in viable benthic diatom assemblages – insights about the relevance of bacteria across spatial and seasonal scales.

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    environment) and seasonal (post-monsoon, pre-monsoon, monsoon) scales. Penicillin treatment resulted in bacterial suppression and a reduction in diatoms at the intertidal and mangrove sites having stable pennate-dominated assemblages. Diatom response...

  18. Dialogue concerning the survival of the one great world system: a study of the post-war scientific and theological perception of time scales as a relevant moral category in analyzing the dilemmas of the nuclear age

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, D.J.F.

    1985-01-01

    This thesis seeks to extend the search for the moral implications inherent in the development, possession, and the threatened use of physical/astrophysical processes and in current understandings of the evolution of the physical universe. The nature of normal/theological discussion will not be a primary concern although clearly some residual position that such discussion is meaningful is presupposed. Neither is the nature of science or the scientific method at issue. It is assumed that both theology and science have long since negotiated the confidence crises of adolescence, and have mustered the requisite self-esteem regarding their respective disciplines. The aim of this work is to present the concept of time scales as a relevant moral category. It investigates the use of this concept and its relationship to the other categories developed in the relevant scientific literature. The question is raised as to the validity of and the future of the concept of time scales as a common moral ground.

  19. Dialogue concerning the survival of the one great world system: a study of the post-war scientific and theological perception of time scales as a relevant moral category in analyzing the dilemmas of the nuclear age

    International Nuclear Information System (INIS)

    Cummins, D.J.F.

    1985-01-01

    This thesis seeks to extend the search for the moral implications inherent in the development, possession, and the threatened use of physical/astrophysical processes and in current understandings of the evolution of the physical universe. The nature of normal/theological discussion will not be a primary concern although clearly some residual position that such discussion is meaningful is presupposed. Neither is the nature of science or the scientific method at issue. It is assumed that both theology and science have long since negotiated the confidence crises of adolescence, and have mustered the requisite self-esteem regarding their respective disciplines. The aim of this work is to present the concept of time scales as a relevant moral category. It investigates the use of this concept and its relationship to the other categories developed in the relevant scientific literature. The question is raised as to the validity of and the future of the concept of time scales as a common moral ground

  20. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  1. Turbulence closure for mixing length theories

    Science.gov (United States)

    Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.

    2018-05-01

    We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.

  2. First results of U3Si2 production and its relevance in the power scale-up of IPEN research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Souza, J.A.B.; Frajndlich, E.U.C.; Durazzo, M.; Perrotta, J.A.

    1997-01-01

    The own supply of LEU U 3 Si 2 is crucial for IPEN, since the whole scale-up of IPEN MTR IEA-Rlm reactor will rely on it. The Brazilian request for radioisotopes production is fully linked with the already made power scale-up from 2 to 5 MW for this reactor. IPEN now depends on fuel element material upgrading from U 3 O 8 towards LEU U 3 Si 2 . The fuel plate productive technology from the powdered material is already well established, only needing simple making of minor adjustments, but to reach the stage of producing U 3 Si 2 we need a fully settled chemical pilot plant in order to reach a LEU UF 4 productive routine. Complementing this process, it was also needed to scale down the previous practice of uranium magnesiothermic reduction to around a sub-critical safe uranium mass of approximately 3000g. To complete the metallurgical processing, it is being developed the production of U 3 Si 2 in a vacuum induction furnace. Some experiments to get this intermetallic, using natural uranium, have already been carried out in order to build up a general idea of the future process of LEU U 3 Si 2 . These experiments are described in this paper and also some of the initial characterization results, such as the qualification pattern of the ingot. It is also discussed some new features of inhomogeneity of solidified phases that may be deleterious to future production routine. (author)

  3. Childhood adversity, social support, and telomere length among perinatal women.

    Science.gov (United States)

    Mitchell, Amanda M; Kowalsky, Jennifer M; Epel, Elissa S; Lin, Jue; Christian, Lisa M

    2018-01-01

    Adverse perinatal health outcomes are heightened among women with psychosocial risk factors, including childhood adversity and a lack of social support. Biological aging could be one pathway by which such outcomes occur. However, data examining links between psychosocial factors and indicators of biological aging among perinatal women are limited. The current study examined the associations of childhood socioeconomic status (SES), childhood trauma, and current social support with telomere length in peripheral blood mononuclear cells (PBMCs) in a sample of 81 women assessed in early, mid, and late pregnancy as well as 7-11 weeks postpartum. Childhood SES was defined as perceived childhood social class and parental educational attainment. Measures included the Childhood Trauma Questionnaire, Center for Epidemiologic Studies-Depression Scale, Multidimensional Scale of Perceived Social Support, and average telomere length in PBMCs. Per a linear mixed model, telomere length did not change across pregnancy and postpartum visits; thus, subsequent analyses defined telomere length as the average across all available timepoints. ANCOVAs showed group differences by perceived childhood social class, maternal and paternal educational attainment, and current family social support, with lower values corresponding with shorter telomeres, after adjustment for possible confounds. No effects of childhood trauma or social support from significant others or friends on telomere length were observed. Findings demonstrate that while current SES was not related to telomeres, low childhood SES, independent of current SES, and low family social support were distinct risk factors for cellular aging in women. These data have relevance for understanding potential mechanisms by which early life deprivation of socioeconomic and relationship resources affect maternal health. In turn, this has potential significance for intergenerational transmission of telomere length. The predictive value of

  4. Cross-scale modelling of alien and native vascular plant species richness in Great Britain: where is geodiversity information most relevant?

    Science.gov (United States)

    Bailey, Joseph; Field, Richard; Boyd, Doreen

    2016-04-01

    We assess the scale-dependency of the relationship between biodiversity and novel geodiversity information by studying spatial patterns of native and alien (archaeophytes and neophytes) vascular plant species richness at varying spatial scales across Great Britain. Instead of using a compound geodiversity metric, we study individual geodiversity components (GDCs) to advance our understanding of which aspects of 'geodiversity' are most important and at what scale. Terrestrial native (n = 1,490) and alien (n = 1,331) vascular plant species richness was modelled across the island of Great Britain at two grain sizes and several extent radii. Various GDCs (landforms, hydrology, geology) were compiled from existing national datasets and automatically extracted landform coverage information (e.g. hollows, valleys, peaks), the latter using a digital elevation model (DEM) and geomorphometric techniques. More traditional predictors of species richness (climate, widely-used topography metrics, land cover diversity, and human population) were also incorporated. Boosted Regression Tree (BRT) models were produced at all grain sizes and extents for each species group and the dominant predictors were assessed. Models with and without geodiversity data were compared. Overarching patterns indicated a clear dominance of geodiversity information at the smallest study extent (12.5km radius) and finest grain size (1x1km), which substantially decreased for each increase in extent as the contribution of climatic variables increased. The contribution of GDCs to biodiversity models was chiefly driven by landform information from geomorphometry, but hydrology (rivers and lakes), and to a lesser extent materials (soil, superficial deposits, and geology), were important, also. GDCs added significantly to vascular plant biodiversity models in Great Britain, independently of widely-used topographic metrics, particularly for native species. The wider consideration of geodiversity alongside

  5. Analysing the length of care episode after hip fracture: a nonparametric and a parametric Bayesian approach.

    Science.gov (United States)

    Riihimäki, Jaakko; Sund, Reijo; Vehtari, Aki

    2010-06-01

    Effective utilisation of limited resources is a challenge for health care providers. Accurate and relevant information extracted from the length of stay distributions is useful for management purposes. Patient care episodes can be reconstructed from the comprehensive health registers, and in this paper we develop a Bayesian approach to analyse the length of care episode after a fractured hip. We model the large scale data with a flexible nonparametric multilayer perceptron network and with a parametric Weibull mixture model. To assess the performances of the models, we estimate expected utilities using predictive density as a utility measure. Since the model parameters cannot be directly compared, we focus on observables, and estimate the relevances of patient explanatory variables in predicting the length of stay. To demonstrate how the use of the nonparametric flexible model is advantageous for this complex health care data, we also study joint effects of variables in predictions, and visualise nonlinearities and interactions found in the data.

  6. Non-equilibrium dynamics of disordered systems: understanding the broad continuum of relevant time scales via a strong-disorder RG in configuration space

    International Nuclear Information System (INIS)

    Monthus, Cecile; Garel, Thomas

    2008-01-01

    We show that an appropriate description of the non-equilibrium dynamics of disordered systems is obtained through a strong disorder renormalization procedure in configuration space that we define for any master equation with transitions rates W(C→C') between configurations. The idea is to eliminate iteratively the configuration with the highest exit rate W out (C)+Σ C' W(C→C') to obtain renormalized transition rates between the remaining configurations. The multiplicative structure of the new generated transition rates suggests that for a very broad class of disordered systems, the distribution of renormalized exit barriers defined as B out (C)≡-ln W out (C) will become broader and broader upon iteration, so that the strong disorder renormalization procedure should become asymptotically exact at large time scales. We have checked numerically this scenario for the non-equilibrium dynamics of a directed polymer in a two-dimensional random medium

  7. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. [University of Tubingen, Tubingen (Germany). Inst. of Geoscience

    2008-11-15

    Two fly ash samples from a black coal-fired power plant (Bexbach, Germany) were investigated for their magnetic properties, particle structure, grain-size distribution and chemical composition. Grain-size distribution was determined on bulk samples and on magnetic extracts. Magnetic susceptibility of different grain-size fractions was analyzed with respect to the according amount of fractions, high- and low-temperature dependence of magnetic susceptibility and thermal demagnetization of IRM identified magnetite and hematite as magnetic phases. Magnetic spherules were quantitatively extracted from bulk fly ash samples and examined using SEM/EDX analysis. Particle morphology and grain-size analysis on the magnetically extracted material were studied. Individual spherule types were identified and internal structures of selected polished particles were investigated by SEM and EDX analyses. Main element contents of the internal structures which consist of 'magnetite' crystals and 'glassy' matrix were systematically determined and statistically assessed. The chemical data of the micro-scale structures in the magnetic spherules were compared with XRF data from bulk material, revealing the relative element distribution in composed magnetic spherules. Comparison of the bulk sample grain-size (0.5-300 {mu}m) and grain-size spectra from magnetic extracts (1-186.5 {mu}m) shows that strongly magnetic particles mainly occur in the fine fractions of < 63 {mu}m. This study comprises a comprehensive characterization of coal-fired power plant fly ash, using magnetic, chemical, and microscopic methods. The results can serve as reference data for a variety of environmental magnetic studies.

  8. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  9. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...... accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when...

  10. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  11. Abridgment of nano and micro length scale mechanical properties of novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys using object oriented finite element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ankur [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826 (United States); Kumar, Vinod [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India); Nair, Jitin [Department of Materials and Metallurgical Engineering, National Institute of Foundry and Forge Technology, Ranchi 834003 (India); Bansal, Ankit [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Tata Steel Ltd., Jamshedpur, Jharkhand 831001 (India); Balani, Kantesh, E-mail: kbalani@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2015-06-15

    Highlights: • Dual phase (α + β) Mg–9Li–7Al–1Sn (LAT971) and Mg–9Li–5Al–3Sn–1Zn (LATZ9531) alloys. • Effective elastic modulus estimated from finite element method (FEM). • Correlation of nanoscale mechanical data with microstress distribution. • Precipitates of Mg–Al–Li act as stress relaxer and Mg–Li–Sn as stress concentrator. • Higher local heterogeneous stress distribution (∼0.6–5.7 GPa) in LATZ9531 alloys. - Abstract: In the recent years, magnesium–lithium (Mg–Li) alloys have attracted considerable attention/interest due to their high strength-to-density ratio and damping characteristic; and have found potential use in structural and biomedical applications. Here the mechanical behavior of novel Mg–9 wt.% Li–7 wt.% Al–1 wt.% Sn (LAT971) and Mg–9 wt.% Li–5 wt.% Al–3 wt.% Sn–1 wt.% Zn (LATZ9531) alloys is reported. Both, as cast and thermomechanically processed alloys have been studied which possess dual phase microstructure. Nanoindentation data have been utilized to envisage the elastic modulus of alloy via various micromechanics models (such as rule of mixtures, Voigt–Reuss, Cox model, Halpin–Tsai and Guth model) in order to estimate the elastic modulus. Object oriented finite element modeling (FEM) has been performed to predict stress distribution under tensile and compressive strain state. Close match between Halpin–Tsai model and FEM results show the abridgment of nano length scale property to evolution of microscopic stress distribution in novel LAT971 and LATZ9531 Mg–Li–Al based alloys.

  12. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  13. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  14. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  15. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  16. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  17. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  18. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  19. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  20. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  1. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  2. Odd Length Contraction

    Science.gov (United States)

    Smarandache, Florentin

    2013-09-01

    Let's denote by VE the speed of the Earth and byVR the speed of the rocket. Both travel in the same direction on parallel trajectories. We consider the Earth as a moving (at a constant speed VE -VR) spacecraft of almost spherical form, whose radius is r and thus the diameter 2r, and the rocket as standing still. The non-proper length of Earth's diameter, as measured by the astronaut is: L = 2 r√{ 1 -|/VE -VR|2 c2 } rocket! Also, let's assume that the astronaut is laying down in the direction of motion. Therefore, he would also shrink, or he would die!

  3. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  4. Summary of coherent neutron scattering length

    International Nuclear Information System (INIS)

    Rauch, H.

    1981-07-01

    Experimental values of neutron-nuclei bound scattering lengths for some 354 isotopes and elements and the various spin-states are compiled in a uniform way together with their error bars as quoted in the original literature. Recommended values are also given. The definitions of the relevant quantities presented in the data tables and the basic principles of measurements are explained in the introductory chapters. The data is also available on a magnetic tape

  5. Extending electronic length frequency analysis in R

    DEFF Research Database (Denmark)

    Taylor, M. H.; Mildenberger, Tobias K.

    2017-01-01

    VBGF (soVBGF) requires a more intensive search due to two additional parameters. This work describes the implementation of two optimisation approaches ("simulated annealing" and "genetic algorithm") for growth function fitting using the open-source software "R." Using a generated LFQ data set......Electronic length frequency analysis (ELEFAN) is a system of stock assessment methods using length-frequency (LFQ) data. One step is the estimation of growth from the progression of LFQ modes through time using the von Bertalanffy growth function (VBGF). The option to fit a seasonally oscillating...... of the asymptotic length parameter (L-infinity) are found to have significant effects on parameter estimation error. An outlook provides context as to the significance of the R-based implementation for further testing and development, as well as the general relevance of the method for data-limited stock assessment....

  6. Length and area

    CERN Document Server

    Rada, Tibor

    1948-01-01

    Radó's colloquium is a systematic treatment of Lebesgue theory, with an emphasis on the work of Morrey and of Radó and his students, especially in two dimensions. At the time, there were important current problems surrounding Lebesgue's theory for parameterized and unparameterized surfaces, which the book addresses. The exposition begins with reviews of Lebesgue integration and relevant topics in topology, including Fréchet equivalence, the approximation of monotone maps by homeomorphisms, Peano spaces, and a discussion of the topological index of maps into the plane. After a development of fu

  7. Nostalgia's place among self-relevant emotions.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Wildschut, Tim; Sedikides, Constantine

    2017-07-24

    How is nostalgia positioned among self-relevant emotions? We tested, in six studies, which self-relevant emotions are perceived as most similar versus least similar to nostalgia, and what underlies these similarities/differences. We used multidimensional scaling to chart the perceived similarities/differences among self-relevant emotions, resulting in two-dimensional models. The results were revealing. Nostalgia is positioned among self-relevant emotions characterised by positive valence, an approach orientation, and low arousal. Nostalgia most resembles pride and self-compassion, and least resembles embarrassment and shame. Our research pioneered the integration of nostalgia among self-relevant emotions.

  8. Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available BACKGROUND: Cotton (Gossypium hirsutum L. is one of the world's most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR, which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. CONCLUSIONS/SIGNIFICANCE: These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence

  9. Length expectation values in quantum Regge calculus

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework

  10. Minimal length uncertainty relation and ultraviolet regularization

    Science.gov (United States)

    Kempf, Achim; Mangano, Gianpiero

    1997-06-01

    Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.

  11. Making Deferred Taxes Relevant

    NARCIS (Netherlands)

    Brouwer, Arjan; Naarding, Ewout

    2018-01-01

    We analyse the conceptual problems in current accounting for deferred taxes and provide solutions derived from the literature in order to make International Financial Reporting Standards (IFRS) deferred tax numbers value-relevant. In our view, the empirical results concerning the value relevance of

  12. Parsimonious relevance models

    NARCIS (Netherlands)

    Meij, E.; Weerkamp, W.; Balog, K.; de Rijke, M.; Myang, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We describe a method for applying parsimonious language models to re-estimate the term probabilities assigned by relevance models. We apply our method to six topic sets from test collections in five different genres. Our parsimonious relevance models (i) improve retrieval effectiveness in terms of

  13. Pragmatic inferences and self-relevant judgments

    DEFF Research Database (Denmark)

    Puente-Diaz, Rogelio; Cavazos Arroyo, Judith; Brem, Alexander

    2016-01-01

    Three studies examined the influence of type of scale on self-relevant judgments and the moderating role of age, prevention, focus, and need for cogni- tion. Participants were randomly assigned to a bipolar or a unipolar scale condition in all three studies. Results from study 1 with a representa...

  14. Functionally relevant microsatellites in sugarcane unigenes

    Directory of Open Access Journals (Sweden)

    Singh Nagendra K

    2010-11-01

    Full Text Available Abstract Background Unigene sequences constitute a rich source of functionally relevant microsatellites. The present study was undertaken to mine the microsatellites in the available unigene sequences of sugarcane for understanding their constitution in the expressed genic component of its complex polyploid/aneuploid genome, assessing their functional significance in silico, determining the extent of allelic diversity at the microsatellite loci and for evaluating their utility in large-scale genotyping applications in sugarcane. Results The average frequency of perfect microsatellite was 1/10.9 kb, while it was 1/44.3 kb for the long and hypervariable class I repeats. GC-rich trinucleotides coding for alanine and the GA-rich dinucleotides were the most abundant microsatellite classes. Out of 15,594 unigenes mined in the study, 767 contained microsatellite repeats and for 672 of these putative functions were determined in silico. The microsatellite repeats were found in the functional domains of proteins encoded by 364 unigenes. Its significance was assessed by establishing the structure-function relationship for the beta-amylase and protein kinase encoding unigenes having repeats in the catalytic domains. A total of 726 allelic variants (7.42 alleles per locus with different repeat lengths were captured precisely for a set of 47 fluorescent dye labeled primers in 36 sugarcane genotypes and five cereal species using the automated fragment analysis system, which suggested the utility of designed primers for rapid, large-scale and high-throughput genotyping applications in sugarcane. Pair-wise similarity ranging from 0.33 to 0.84 with an average of 0.40 revealed a broad genetic base of the Indian varieties in respect of functionally relevant regions of the large and complex sugarcane genome. Conclusion Microsatellite repeats were present in 4.92% of sugarcane unigenes, for most (87.6% of which functions were determined in silico. High level of

  15. Culturally Relevant Cyberbullying Prevention

    OpenAIRE

    Phillips, Gregory John

    2017-01-01

    In this action research study, I, along with a student intervention committee of 14 members, developed a cyberbullying intervention for a large urban high school on the west coast. This high school contained a predominantly African American student population. I aimed to discover culturally relevant cyberbullying prevention strategies for African American students. The intervention committee selected video safety messages featuring African American actors as the most culturally relevant cyber...

  16. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  17. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  18. Scaling: From quanta to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Novak, E-mail: rohatgi@bnl.go [703 New Mark Esplanade, Rockville, MD 20850 (United States)

    2010-08-15

    This paper has three objectives. The first objective is to show how the Einstein-de Broglie equation (EdB) can be extended to model and scale, via fractional scaling, both conservative and dissipative processes ranging in scale from quanta to nuclear reactors. The paper also discusses how and why a single equation and associated fractional scaling method generate for each process of change the corresponding scaling criterion. The versatility and capability of fractional scaling are demonstrated by applying it to: (a) particle dynamics, (b) conservative (Bernoulli) and dissipative (hydraulic jump) flows, (c) viscous and turbulent flows through rough and smooth pipes, and (d) momentum diffusion in a semi-infinite medium. The capability of fractional scaling to scale a process over a vast range of temporal and spatial scales is demonstrated by applying it to fluctuating processes. The application shows that the modeling of fluctuations in fluid mechanics is analogous to that in relativistic quantum field theory. Thus, Kolmogorov dissipation frequency and length are the analogs of the characteristic time and length of quantum fluctuations. The paper briefly discusses the applicability of the fractional scaling approach (FSA) to nanotechnology and biology. It also notes the analogy between FSA and the approach used to scale polymers. These applications demonstrate the power of scaling as well as the validity of Pierre-Gilles de Gennes' ideas concerning scaling, analogies and simplicity. They also demonstrate the usefulness and efficiency of his approach to solving scientific problems. The second objective is to note and discuss the benefits of applying FSA to NPP technology. The third objective is to present a state of the art assessment of thermal-hydraulics (T/H) capabilities and needs relevant to NPP.

  19. Scaling: From quanta to nuclear reactors

    International Nuclear Information System (INIS)

    Zuber, Novak

    2010-01-01

    This paper has three objectives. The first objective is to show how the Einstein-de Broglie equation (EdB) can be extended to model and scale, via fractional scaling, both conservative and dissipative processes ranging in scale from quanta to nuclear reactors. The paper also discusses how and why a single equation and associated fractional scaling method generate for each process of change the corresponding scaling criterion. The versatility and capability of fractional scaling are demonstrated by applying it to: (a) particle dynamics, (b) conservative (Bernoulli) and dissipative (hydraulic jump) flows, (c) viscous and turbulent flows through rough and smooth pipes, and (d) momentum diffusion in a semi-infinite medium. The capability of fractional scaling to scale a process over a vast range of temporal and spatial scales is demonstrated by applying it to fluctuating processes. The application shows that the modeling of fluctuations in fluid mechanics is analogous to that in relativistic quantum field theory. Thus, Kolmogorov dissipation frequency and length are the analogs of the characteristic time and length of quantum fluctuations. The paper briefly discusses the applicability of the fractional scaling approach (FSA) to nanotechnology and biology. It also notes the analogy between FSA and the approach used to scale polymers. These applications demonstrate the power of scaling as well as the validity of Pierre-Gilles de Gennes' ideas concerning scaling, analogies and simplicity. They also demonstrate the usefulness and efficiency of his approach to solving scientific problems. The second objective is to note and discuss the benefits of applying FSA to NPP technology. The third objective is to present a state of the art assessment of thermal-hydraulics (T/H) capabilities and needs relevant to NPP.

  20. The Limits to Relevance

    Science.gov (United States)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  1. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  2. Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard

    2008-01-01

    Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...... 10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3  s and 10  s preaveraging of wind speed data are relevant for megawatt......-size wind turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60  m, the gust factor increases with wind speed. For heights larger than 60-80  m, present assumptions on the value of the gust factor are significantly...

  3. Is Information Still Relevant?

    Science.gov (United States)

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  4. Clinical Relevance of Adipokines

    Directory of Open Access Journals (Sweden)

    Matthias Blüher

    2012-10-01

    Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

  5. Information Needs/Relevance

    OpenAIRE

    Wildemuth, Barbara M.

    2009-01-01

    A user's interaction with a DL is often initiated as the result of the user experiencing an information need of some kind. Aspects of that experience and how it might affect the user's interactions with the DL are discussed in this module. In addition, users continuously make decisions about and evaluations of the materials retrieved from a DL, relative to their information needs. Relevance judgments, and their relationship to the user's information needs, are discussed in this module. Draft

  6. Femtosecond structural dynamics on the atomic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang

    2014-03-15

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in their development. I performed the first study in our compact FED system. I studied the optical and structural response of alkali halides to intense UV excitation conditions, i.e. above the damage threshold of the samples which required the application of a single-shot scheme. In order to gain a better understanding of the ablation process that follows fs optical excitation in alkali halides, I applied a variety of different techniques. Optical reflectivity, femtosecond electron diffraction, ion detection and crater measurements revealed the existence of a cold ablation process that occurs well below the threshold for plasma formation and even that for the melting point of the salts. This atypical cold explosion owes to the presence of highly localized excitonic states and reflects the repulsive nature of initial electronic correlations at play. In the case of REGAE, we performed the first time-resolved experiment following the fs laser heating dynamics and partial melting of polycrystalline gold films. This experiment was crucial to test the overall synchronization of our REGAE machine. We were able to observe a clear dynamics under single-shot photo-excitation conditions and found time zero within 1 picosecond. Further electron pulse characterization will involve the implementation of ponderomotive scattering. I have already constructed the required modular setup and performed all preliminary ASTRA N-body simulations.

  7. Length scale and manufacturability in density-based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen; Sigmund, Ole

    2016-01-01

    Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can...... provide competitive designs in terms of cost, materials and functionality under a wide set of constraints. However, the optimized topologies are often considered as conceptual due to loosely defined topologies and the need of postprocessing. Subsequent amendments can affect the optimized design...

  8. Femtosecond structural dynamics on the atomic length scale

    International Nuclear Information System (INIS)

    Zhang, Dongfang

    2014-03-01

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm 2 ) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO 2 and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in their development. I performed the first study in our compact FED system. I studied the optical and structural response of alkali halides to intense UV excitation conditions, i.e. above the damage threshold of the samples which required the application of a single-shot scheme. In order to gain a better understanding of the ablation process that follows fs optical excitation in alkali halides, I applied a variety of different techniques. Optical reflectivity, femtosecond electron diffraction, ion detection and crater measurements revealed the existence of a cold ablation process that occurs well below the threshold for plasma formation and even that for the melting point of the salts. This atypical cold explosion owes to the presence of highly localized excitonic states and reflects the repulsive nature of initial electronic correlations at play. In the case of REGAE, we performed the first time-resolved experiment following the fs laser heating dynamics and partial melting of polycrystalline gold films. This experiment was crucial to test the overall synchronization of our REGAE machine. We were able to observe a clear dynamics under single-shot photo-excitation conditions and found time zero within 1 picosecond. Further electron pulse characterization will involve the implementation of ponderomotive scattering. I have already constructed the required modular setup and performed all preliminary ASTRA N-body simulations.

  9. Materials specificity, quantum length scales, and stopping powers

    International Nuclear Information System (INIS)

    Trickey, S.B.; Wu, Jin Z.; Sabin, John R.

    1994-01-01

    Standard arguments, based primarily on behavior at high projectile energies and classical notions of thickness as a continuous parameter, assert that stopping powers are only modestly affected by target chemistry and aggregation and by sample thickness if the thickness is ''sufficiently small'' (and channeling is avoided). Sufficient thinness usually is defined in terms of freedom from multiple scattering and from projectile charge-state changes. The growing technological importance of extremely thin material layers (e.g. microelectronics) has motivated re-examination of both the thickness and aggregation-state assertions. We give arguments to show that both are inadequate and reappraise recent computations in confirmation. A particular focus is the proper definition of thickness for an ultrathin film of ν atomic planes (ν=1, 2, 3,.s). ((orig.))

  10. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  11. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Chemical diversity is generated by the interaction of well- ... protein folding; protein aggregation; solvation; water; hydration; hydrophobic effect; nucleation; nanoscale self-assembly. 67 ...... tempered metadynamics: A smoothly converging and.

  12. Interplay between multiple length and time scales in complex ...

    Indian Academy of Sciences (India)

    Administrator

    sity is generated by the interaction of well-defined components, electrons and .... est in liquid state dynamics and solvation. Protein folding and aggregation are regarded as among the ..... molecular simulation perspective, free energy land.

  13. Does length or neighborhood size cause the word length effect?

    Science.gov (United States)

    Jalbert, Annie; Neath, Ian; Surprenant, Aimée M

    2011-10-01

    Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory.

  14. Keeping disease at arm's length

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    2015-01-01

    active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...... and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving...... emphasis to disease. The article is based on ethnographic fieldwork and uses vignettes of four participants to show how they each keep diseases at arm’s length....

  15. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  16. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  17. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  18. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  19. Summary of neutron scattering lengths

    International Nuclear Information System (INIS)

    Koester, L.

    1981-12-01

    All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)

  20. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  1. The length of the glaciers in the world

    DEFF Research Database (Denmark)

    Machguth, Horst; Huss, M.; Huss, M.

    2014-01-01

    a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼ 200000 glaciers around the globe. The evaluation...... highlights accurately calculated glacier length where DEM quality is good (East 10 Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers...... are longer than 10km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier...

  2. Diet, nutrition and telomere length.

    Science.gov (United States)

    Paul, Ligi

    2011-10-01

    The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Tube Length and Water Flow

    Directory of Open Access Journals (Sweden)

    Ben Ruktantichoke

    2011-06-01

    Full Text Available In this study water flowed through a straight horizontal plastic tube placed at the bottom of a large tank of water. The effect of changing the length of tubing on the velocity of flow was investigated. It was found that the Hagen-Poiseuille Equation is valid when the effect of water entering the tube is accounted for.

  4. Finite length Taylor Couette flow

    Science.gov (United States)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  5. An Assessment of the Length and Variability of Mercury's Magnetotail

    Science.gov (United States)

    Milan, S. E.; Slavin, J. A.

    2011-01-01

    We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere. from which we can deduce the length of the magnetotail The length of the magnetotail is shown to be highly variable. with open field lines stretching between 15R(sub H) and 8S0R(sub H) downstream of the planet (median 150R(sub H)). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.

  6. [Relevant public health enteropathogens].

    Science.gov (United States)

    Riveros, Maribel; Ochoa, Theresa J

    2015-01-01

    Diarrhea remains the third leading cause of death in children under five years, despite recent advances in the management and prevention of this disease. It is caused by multiple pathogens, however, the prevalence of each varies by age group, geographical area and the scenario where cases (community vs hospital) are recorded. The most relevant pathogens in public health are those associated with the highest burden of disease, severity, complications and mortality. In our country, norovirus, Campylobacter and diarrheagenic E. coli are the most prevalent pathogens at the community level in children. In this paper we review the local epidemiology and potential areas of development in five selected pathogens: rotavirus, norovirus, Shiga toxin-producing E. coli (STEC), Shigella and Salmonella. Of these, rotavirus is the most important in the pediatric population and the main agent responsible for child mortality from diarrhea. The introduction of rotavirus vaccination in Peru will have a significant impact on disease burden and mortality from diarrhea. However, surveillance studies are needed to determine the impact of vaccination and changes in the epidemiology of diarrhea in Peru following the introduction of new vaccines, as well as antibiotic resistance surveillance of clinical relevant bacteria.

  7. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  8. Other relevant biological papers

    International Nuclear Information System (INIS)

    Shimizu, M.

    1989-01-01

    A considerable number of CRESP-relevant papers concerning deep-sea biology and radioecology have been published. It is the purpose of this study to call attention to them. They fall into three general categories. The first is papers of general interest. They are mentioned only briefly, and include text references to the global bibliography at the end of the volume. The second are papers that are not only mentioned and referenced, but for various reasons are described in abstract form. The last is a list of papers compiled by H.S.J. Roe specifically for this volume. They are listed in bibliographic form, and are also included in the global bibliography at the end of the volume

  9. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  10. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  11. πK-scattering lengths

    International Nuclear Information System (INIS)

    Volkov, M.K.; Osipov, A.A.

    1983-01-01

    The msub(π)asub(0)sup(1/2)=0.1, msub(π)asub(0)sup(3/2)=-0.1, msub(π)asub(0)sup((-))=0.07, msub(π)sup(3)asub(1)sup(1/2)=0.018, msub(π)sup(3)asub(1)aup(3/2)=0.002, msub(π)sup(3)asub(1)sup((-))=0.0044, msub(π)sup(5)asub(2)sup(1/2)=2.4x10sup(-4) and msub(π)sup(5)asub(2)sup(3/2)=-1.2x10sup(-4) scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interaction. The decay form factors of (rho, epsilon, S*) → 2π, (K tilde, K*) → Kπ are used. The q 2 -terms of the quark box diagrams are taken into account. It is shown that the q 2 -terms of the box diagrams give the main contribution to the s-wave scattering lengths. The diagrams with the intermediate vector mesons begin to play the essential role at calculation of the p- and d-wave scattering lengths

  12. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  13. User perspectives on relevance criteria

    DEFF Research Database (Denmark)

    Maglaughlin, Kelly L.; Sonnenwald, Diane H.

    2002-01-01

    , partially relevant, or not relevant to their information need; and explained their decisions in an interview. Analysis revealed 29 criteria, discussed positively and negatively, that were used by the participants when selecting passages that contributed or detracted from a document's relevance......This study investigates the use of criteria to assess relevant, partially relevant, and not-relevant documents. Study participants identified passages within 20 document representations that they used to make relevance judgments; judged each document representation as a whole to be relevant...... matter, thought catalyst), full text (e.g., audience, novelty, type, possible content, utility), journal/publisher (e.g., novelty, main focus, perceived quality), and personal (e.g., competition, time requirements). Results further indicate that multiple criteria are used when making relevant, partially...

  14. Finite length thermal equilibria of a pure electron plasma column

    International Nuclear Information System (INIS)

    Prasad, S.A.; O'Neil, T.M.

    1979-01-01

    The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length

  15. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  16. Ramp injector scale effects on supersonic combustion

    Science.gov (United States)

    Trebs, Adam

    The combustion field downstream of a 10 degree compression ramp injector has been studied experimentally using wall static pressure measurement, OH-PLIF, and 2 kHz intensified video filtered for OH emission at 320 nm. Nominal test section entrance conditions were Mach 2, 131 kPa static pressure, and 756K stagnation temperature. The experiment was equipped with a variable length inlet duct that facilitated varying the boundary layer development length while the injector shock structure in relation to the combustor geometry remained nearly fixed. As the boundary within an engine varies with flight condition and does not scale linearly with the physical scale of the engine, the boundary layer scale relative to mixing structures of the engine becomes relevant to the problem of engine scaling and general engine performance. By varying the boundary layer thickness from 40% of the ramp height to 150% of the ramp height, changes in the combustion flowfield downstream of the injector could be diagnosed. It was found that flame shape changed, the persistence of the vortex cores was reduced, and combustion efficiency rose as the incident boundary layer grew.

  17. Lienard--Wiechert's potentials and the relativistic length conception

    Energy Technology Data Exchange (ETDEWEB)

    Strel' tsov, V N

    1974-12-31

    ABS>The concept of the distance (used in electrodynamics, based on the Lignard--Wiechert's potentials) which gives evidence for the conception of the relativistic length (as a space part of half difference of two 4-vectors describing the light signal distribution along some scale in the forward and backward direction) different from the conventional conception is outlined. (auth)

  18. Inflation of the screening length induced by Bjerrum pairs

    NARCIS (Netherlands)

    Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities

  19. Dorsal Phalloplasty to Preserve Penis Length after Penile Prosthesis Implantation

    Directory of Open Access Journals (Sweden)

    Osama Shaeer

    2017-03-01

    Full Text Available Objectives: Following penile prosthesis implantation (PPI, patients may complain of a decrease in visible penis length. A dorsal phalloplasty defines the penopubic junction by tacking pubic skin to the pubis, revealing the base of the penis. This study aimed to evaluate the efficacy of a dorsal phalloplasty in increasing the visible penis length following PPI. Methods: An inflatable penile prosthesis was implanted in 13 patients with severe erectile dysfunction (ED at the Kamal Shaeer Hospital, Cairo, Egypt, from January 2013 to May 2014. During the surgery, nonabsorbable tacking sutures were used to pin the pubic skin to the pubis through the same penoscrotal incision. Intraoperative penis length was measured before and after the dorsal phalloplasty. Overall patient satisfaction was measured on a 5-point rating scale and patients were requested to subjectively compare their postoperative penis length with memories of their penis length before the onset of ED. Results: Intraoperatively, the dorsal phalloplasty increased the visible length of the erect penis by an average of 25.6%. The average length before and after tacking was 10.2 ± 2.9 cm and 13.7 ± 2.8 cm, respectively (P <0.002. Postoperatively, seven patients (53.8% reported a longer penis, five patients (38.5% reported no change in length and one patient (7.7% reported a slightly shorter penis. The mean overall patient satisfaction score was 4.9 ± 0.3. None of the patients developed postoperative complications. Conclusion: A dorsal phalloplasty during PPI is an effective method of increasing visible penis length, therefore minimising the impression of a shorter penis after implantation.

  20. Fluctuation measurements at c/ωpe spatial scales in a tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.; Tan, I.H.; Prager, S.C.

    1994-07-01

    Magnetic and electrostatic fluctuations have been measured at the short scale length of the collisionless skin depth (c/ω pe using small magnetic and electrostatic probes in the Tokapole II tokamak. For certain conditions and at high frequency (MHz range) the amplitude is observed to increase as wavelength is decreased toward the c/ω pe scale. Wavelength dependence is inferred from measurements with probes of varying sizes. The amplitude of the turbulence at the c/ω pe scale is smaller than the dominant low frequency turbulence, and is thus not relevant to transport in Tokapole II. Comparison with theoretical treatments of c/ω pe turbulence is discussed

  1. Clinical relevance of findings in trials of CBT for depression

    NARCIS (Netherlands)

    Lepping, P.; Whittington, R.; Sambhi, R.S.; Lane, S.; Poole, R.; Leucht, S.; Cuijpers, P.; McCabe, R.; Waheed, W.

    2017-01-01

    Cognitive behavioural therapy (CBT) is beneficial in depression. Symptom scores can be translated into Clinical Global Impression (CGI) scale scores to indicate clinical relevance. We aimed to assess the clinical relevance of findings of randomised controlled trials (RCTs) of CBT in depression. We

  2. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  3. The Relevance of Indigenous Knowledge for Small-Scale Farming ...

    African Journals Online (AJOL)

    Based on the study findings, it was evident that the local communities had an extensive base of IK and understanding of their environment, and they were able to put appropriate managerial skills and adaptive strategies to crop and animal farming. The findings also showed that IK was location specific, and farmers ...

  4. Burnout among physiotherapists and length of service

    Directory of Open Access Journals (Sweden)

    Zbigniew Śliwiński

    2014-04-01

    Full Text Available Objectives: The aim of this study was to identify factors that contribute to the development of burnout among physiotherapists with different length of service in physiotherapy. Material and Methods: The following research tools were used to study burnout: the Life Satisfaction Questionnaire (LSQ, based on FLZ (Fragebogen zur Lebenszufriedenheit by Frahrenberg, Myrtek, Schumacher, and Brähler; the Burnout Scale Inventory (BSI by Steuden and Okła; and an ad hoc questionnaire to collect socio-demographic data. The survey was anonymous and voluntary and involved a group of 200 active physiotherapists working in Poland. Results: A statistical analysis revealed significant differences in overall life satisfaction between length-of-service groups (p = 0.03. Physiotherapists with more than 15 years of service reported greater satisfaction than those with less than 5 years and between 5 and 15 years of service. The results suggest that burnout in those with 5-15 years of service is higher in physiotherapists working in health care centers and increases with age and greater financial satisfaction, while it decreases with greater satisfaction with friend and family relations and greater satisfaction with one's work and profession. In those with more than 15 years of service, burnout increases in the case of working in a setting other than a health care or educational center and decreases with greater satisfaction with one's work and profession. Conclusions: Job satisfaction and a satisfying family life prevent burnout among physiotherapists with 5-15 years of service in the profession. Financial satisfaction, age and being employed in health care may cause burnout among physiotherapists with 5-15 years of service. Physiotherapists with more than 15 years of service experience more burnout if they work in a setting other than a health care or educational center and less burnout if they are satisfied with their profession.

  5. High-throughput telomere length quantification by FISH and its application to human population studies.

    Science.gov (United States)

    Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A

    2007-03-27

    A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.

  6. Profiles of Dialogue for Relevance

    Directory of Open Access Journals (Sweden)

    Douglas Walton

    2016-12-01

    Full Text Available This paper uses argument diagrams, argumentation schemes, and some tools from formal argumentation systems developed in artificial intelligence to build a graph-theoretic model of relevance shown to be applicable (with some extensions as a practical method for helping a third party judge issues of relevance or irrelevance of an argument in real examples. Examples used to illustrate how the method works are drawn from disputes about relevance in natural language discourse, including a criminal trial and a parliamentary debate.

  7. s -wave scattering length of a Gaussian potential

    Science.gov (United States)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  8. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities.

    Science.gov (United States)

    Gräf, Christian; Thüring, André; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman

    2013-03-11

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

  9. Correlation between length and tilt of lipid tails

    Science.gov (United States)

    Kopelevich, Dmitry I.; Nagle, John F.

    2015-10-01

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  10. Intrinsic pinning in superconductors with extremely small coherence lengths

    International Nuclear Information System (INIS)

    Schimmele, L.; Kronmueller, H.; Teichler, H.

    1988-01-01

    By means of a Ginsburg-Landau-type theory which takes into account the discrete lattice structure the variation of the energy ('Peierls potential') of an isolated flux line is calculated when shifted relatively to the crystal lattice. In particular, a primitive cubic lattice is considered with a straight flux line, aligned parallel to a cubic axis. The resulting Peierls potential may lead to intrinsic pinning if the coherence length is smaller than about two nearest neighbour distances. The coherence lengths at low temperatures determined for the recently discovered high T c superconductors of the YBa 2 Cu 3 O 7 class come very close to this value so that intrinsic pinning might possibly be relevant for these superconductors. (author)

  11. What is the Entanglement Length in a Polymer Melt?

    International Nuclear Information System (INIS)

    Grest, Gary S.; Kremer, Kurt; Putz, Mathias

    1999-01-01

    We present the results of molecular dynamics simulations of very long model polymer chains analyzed by various experimentally relevant techniques. The segment motion of the chains is found to be in very good agreement with the reptation model. We also calculated the plateau modulus G 0 N . The predictions of the entanglement length N e from G 0 N and from the mean square displacement of the chain segments disagree by a factor of about 2.2(2), indicating an error in the prefactor in the standard formula for G 0 N . We show that recent neutron spin echo measurements were carried out for chain lengths which are too small to allow for a correct determination of N e

  12. Relevance theory: pragmatics and cognition.

    Science.gov (United States)

    Wearing, Catherine J

    2015-01-01

    Relevance Theory is a cognitively oriented theory of pragmatics, i.e., a theory of language use. It builds on the seminal work of H.P. Grice(1) to develop a pragmatic theory which is at once philosophically sensitive and empirically plausible (in both psychological and evolutionary terms). This entry reviews the central commitments and chief contributions of Relevance Theory, including its Gricean commitment to the centrality of intention-reading and inference in communication; the cognitively grounded notion of relevance which provides the mechanism for explaining pragmatic interpretation as an intention-driven, inferential process; and several key applications of the theory (lexical pragmatics, metaphor and irony, procedural meaning). Relevance Theory is an important contribution to our understanding of the pragmatics of communication. © 2014 John Wiley & Sons, Ltd.

  13. Dynamic scaling in natural swarms

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Creato, Chiara; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2017-09-01

    Collective behaviour in biological systems presents theoretical challenges beyond the borders of classical statistical physics. The lack of concepts such as scaling and renormalization is particularly problematic, as it forces us to negotiate details whose relevance is often hard to assess. In an attempt to improve this situation, we present here experimental evidence of the emergence of dynamic scaling laws in natural swarms of midges. We find that spatio-temporal correlation functions in different swarms can be rescaled by using a single characteristic time, which grows with the correlation length with a dynamical critical exponent z ~ 1, a value not found in any other standard statistical model. To check whether out-of-equilibrium effects may be responsible for this anomalous exponent, we run simulations of the simplest model of self-propelled particles and find z ~ 2, suggesting that natural swarms belong to a novel dynamic universality class. This conclusion is strengthened by experimental evidence of the presence of non-dissipative modes in the relaxation, indicating that previously overlooked inertial effects are needed to describe swarm dynamics. The absence of a purely dissipative regime suggests that natural swarms undergo a near-critical censorship of hydrodynamics.

  14. Clinical relevance in anesthesia journals

    DEFF Research Database (Denmark)

    Lauritsen, Jakob; Møller, Ann M

    2006-01-01

    The purpose of this review is to present the latest knowledge and research on the definition and distribution of clinically relevant articles in anesthesia journals. It will also discuss the importance of the chosen methodology and outcome of articles.......The purpose of this review is to present the latest knowledge and research on the definition and distribution of clinically relevant articles in anesthesia journals. It will also discuss the importance of the chosen methodology and outcome of articles....

  15. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  16. Length dependent properties of SNS microbridges

    International Nuclear Information System (INIS)

    Sauvageau, J.E.; Jain, R.K.; Li, K.; Lukens, J.E.; Ono, R.H.

    1985-01-01

    Using an in-situ, self-aligned deposition scheme, arrays of variable length SNS junctions in the range of 0.05 μm to 1 μm have been fabricated. Arrays of SNS microbridges of lead-copper and niobium-copper fabricated using this technique have been used to study the length dependence, at constant temperature, of the critical current I and bridge resistance R /SUB d/ . For bridges with lengths pounds greater than the normal metal coherence length xi /SUB n/ (T), the dependence of I /SUB c/ on L is consistent with an exponential dependence on the reduced length l=L/xi /SUB n/ (T). For shorter bridges, deviations from this behavior is seen. It was also found that the bridge resistance R /SUB d/ does not vary linearly with the geometric bridge length but appears to approach a finite value as L→O

  17. A numerical investigation of the interplay between fireline length, geometry, and rate of spread

    Science.gov (United States)

    J. M. Canfield; R. R. Linn; J. A. Sauer; M. Finney; J. Forthofer

    2014-01-01

    The current study focuses on coupled dynamics and resultant geometry of fireline segments of various ignition lengths. As an example, for ignition lines of length scales typical for field experiments, fireline curvature is the result of a competition between the head fire and the flanks of the fire. A number of physical features (i.e. buoyancy and wind field divergence...

  18. AMPLIFIED FRAGMENT LENGTH POLYMORPHISM ANALYSIS OF MYCOBACTERIUM AVIUM COMPLEX ISOLATES RECOVERED FROM SOUTHERN CALIFORNIA

    Science.gov (United States)

    Fine-scale genotyping methods are necessary in order to identify possible sources of human exposure to opportunistic pathogens belonging to the Mycobacterium avium complex (MAC). In this study, amplified fragment length polymorphism (AFLP) analysis was evaluated for fingerprintin...

  19. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  20. Dither Cavity Length Controller with Iodine Locking

    Directory of Open Access Journals (Sweden)

    Lawson Marty

    2016-01-01

    Full Text Available A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  1. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa; Mochrie, S. G. J.; Peppin, S. S. L.; Wettlaufer, J. S.

    2011-01-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  2. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  3. Proofs of Contracted Length Non-covariance

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1994-01-01

    Different proofs of contracted length non covariance are discussed. The way based on the establishment of interval inconstancy (dependence on velocity) seems to be the most convincing one. It is stressed that the known non covariance of the electromagnetic field energy and momentum of a moving charge ('the problem 4/3') is a direct consequence of contracted length non covariance. 8 refs

  4. The length of the male urethra

    Directory of Open Access Journals (Sweden)

    Tobias. S. Kohler

    2008-08-01

    Full Text Available PURPOSE: Catheter-based medical devices are an important component of the urologic armamentarium. To our knowledge, there is no population-based data regarding normal male urethral length. We evaluated the length of the urethra in men with normal genitourinary anatomy undergoing either Foley catheter removal or standard cystoscopy. MATERIALS AND METHODS: Male urethral length was obtained in 109 men. After study permission was obtained, the subject's penis was placed on a gentle stretch and the catheter was marked at the tip of the penis. The catheter was then removed and the distance from the mark to the beginning of the re-inflated balloon was measured. Alternatively, urethral length was measured at the time of cystoscopy, on removal of the cystoscope. Data on age, weight, and height was obtained in patients when possible. RESULTS: The mean urethral length was 22.3 cm with a standard deviation of 2.4 cm. Urethral length varied between 15 cm and 29 cm. No statistically significant correlation was found between urethral length and height, weight, body mass index (BMI, or age. CONCLUSIONS: Literature documenting the length of the normal male adult urethra is scarce. Our data adds to basic anatomic information of the male urethra and may be used to optimize genitourinary device design.

  5. Analysis of ureteral length in adult cadavers

    Directory of Open Access Journals (Sweden)

    Hugo F. F. Novaes

    2013-04-01

    Full Text Available Introduction In some occasions, correlations between human structures can help planning surgical intra-abdominal interventions. The previous determination of ureteral length helps pre-operatory planning of surgeries, reduces costs of auxiliary exams, the correct choice of double-J catheter with low morbidity and fewer symptoms, and an adequate adhesion to treatment. Objective To evaluate ureteral length in adult cadavers and to analyze its correlation with anthropometric measures. Materials and Methods: From April 2009 to January 2012 we determined ureteral length of adult cadavers submitted to necropsy and obtained the following measures: height, distance from shoulder to wrist, elbow-wrist, xiphoid appendix-umbilicus, umbilicus-pubis, xiphoid appendix-pubis and between iliac spines. We analyzed the correlations between ureteral length and those anthropometric measures. Results We dissected 115 ureters from 115 adult corpses from April 2009 to January 2012. Median ureteral length didn't vary between sexes or according to height. It was observed no correlation among ureteral length and all considered anthropometric measures in all analyzed subgroups and in general population. There were no significant differences between right and left ureteral measures. Conclusions There is no difference of ureteral length in relation to height or gender (male or female. There is no significant correlation among ureteral length and the considered anthropometric measures.

  6. Influence of mandibular length on mouth opening

    NARCIS (Netherlands)

    Dijkstra, PU; Hof, AL; Stegenga, B; De Bont, LGM

    Theoretically, mouth opening not only reflects the mobility of the temporomandibular joints (TMJs) but also the mandibular length. Clinically, the exact relationship between mouth opening, mandibular length, and mobility of TMJs is unclear. To study this relationship 91 healthy subjects, 59 women

  7. Scale dependence of the average potential around the maximum in Φ4 theories

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1992-04-01

    The average potential describes the physics at a length scale k - 1 by averaging out the degrees of freedom with characteristic moments larger than k. The dependence on k can be described by differential evolution equations. We solve these equations for the nonconvex part of the potential around the origin in φ 4 theories, in the phase with spontaneous symmetry breaking. The average potential is real and approaches the convex effective potential in the limit k → 0. Our calculation is relevant for processes for which the shape of the potential at a given scale is important, such as tunneling phenomena or inflation. (orig.)

  8. Economic issues of broiler production length

    Directory of Open Access Journals (Sweden)

    Szőllősi László

    2014-01-01

    Full Text Available The length of broiler production cycle is also an important factor when profitability is measured. This paper is to determine the effects of different market ages and down-time period, overall broiler production cycle length on performance and economic parameters based on Hungarian production and financial circumstances. A deterministic model was constructed to manage the function-like correlations of age-related daily weight gain, daily feed intake and daily mortality data. The results show that broiler production cycle length has a significant effect on production and economic performance. Cycle length is determined by the length of down-time and grow-out periods. If down-time period is reduced by one day, an average net income of EUR 0.55 per m2 is realizable. However, the production period is not directly proportional either with emerging costs or obtainable revenues. Profit maximization is attainable if the production period is 41-42 days.

  9. Roentgenologic investigations for the anterior tooth length

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Pyo; Ahn, Hyung Kyu [College of Dentistry, Seoul National University , Seoul (Korea, Republic of)

    1972-11-15

    The author measured the length of crown, root and tooth on the films which was taken by intraoral bisecting technic with mesh plate on the films. The films were taken from the dry skulls, dentiform, same patients who had to be removed their upper incisors, and the other patients who admitted for dental care. From this serial experiment the results were made as follows: 1. By using the film and mesh plate in the oral cavity, the real tooth length can be measured easily on the film surfaces. 2. The film distortion in the oral cavity can be avoided when taking the film using the mesh plate and film together. 3. When measuring the film, length of crown was elongated and length of root was shortened. 4. When using the well-trained bisecting technic, the real tooth length can be measured directly on the intraoral film.

  10. Screening length in dusty plasma crystals

    International Nuclear Information System (INIS)

    Nikolaev, V S; Timofeev, A V

    2016-01-01

    Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)

  11. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  12. Shippingport: A relevant decommissioning project

    International Nuclear Information System (INIS)

    Crimi, F.P.

    1988-01-01

    Because of Shippingport's low electrical power rating (72 MWe), there has been some misunderstanding on the relevancy of the Shippingport Station Decommissioning Project (SSDP) to a modern 1175 MWe commercial pressurized water reactor (PWR) power station. This paper provides a comparison of the major components of the reactor plant of the 72 MWe Shippingport Atomic Power Station and an 1175 MWe nuclear plant and the relevancy of the Shippingport decommissioning as a demonstration project for the nuclear industry. For the purpose of this comparison, Portland General Electric Company's 1175 MWe Trojan Nuclear Plant at Rainier, Oregon, has been used as the reference nuclear power plant. 2 refs., 2 figs., 1 tab

  13. Zero-point length, extra-dimensions and string T-duality

    OpenAIRE

    Spallucci, Euro; Fontanini, Michele

    2005-01-01

    In this paper, we are going to put in a single consistent framework apparently unrelated pieces of information, i.e. zero-point length, extra-dimensions, string T-duality. More in details we are going to introduce a modified Kaluza-Klein theory interpolating between (high-energy) string theory and (low-energy) quantum field theory. In our model zero-point length is a four dimensional ``virtual memory'' of compact extra-dimensions length scale. Such a scale turns out to be determined by T-dual...

  14. Kidney Length in Normal Korean Children

    International Nuclear Information System (INIS)

    Kim, In One; Cheon, Jung Eun; Lee, Young Seok; Lee, Sun Wha; Kim, Ok Hwa; Kim, Ji Hye; Kim, Hong Dae; Sim, Jung Suk

    2010-01-01

    Renal length offers important information to detect or follow-up various renal diseases. The purpose of this study was to determine the kidney length of normal Korean children in relation to age, height, weight, body surface area (BSA), and body mass index (BMI). Children between 1 month and 15 years of age without urological abnormality were recruited. Children below 3rd percentile and over 97th percentile for height or weight were excluded. Both renal lengths were measured in the prone position three times and then averaged by experienced radiologists. The mean length and standard deviation for each age group was obtained, and regression equation was calculated between renal length and age, weight, height, BSA, and BMI, respectively. Renal length was measured in 550 children. Renal length grows rapidly until 24 month, while the growth rate is reduced thereafter. The regression equation for age is: renal length (mm) = 45.953 + 1.064 x age (month, ≤ 24 months) (R2 = 0.720) or 62.173 + 0.203 x age (months, > 24 months) (R2 = 0.711). The regression equation for height is: renal length (mm) = 24.494 + 0.457 x height (cm) (R2 = 0.894). The regression equation for weight is: renal length (mm) = 38.342 + 2.117 x weight (kg, ≤18 kg) (R2 = 0.852) or 64.498 + 0.646 x weight (kg, > 18 kg) (R2 = 0.651). The regression equation for BSA is: renal length (mm) = 31.622 + 61.363 x BSA (m2, ≤ 0.7) (R2 = 0.857) or 52.717 + 29.959 x BSA (m2, > 0.7) (R2 = 0.715). The regression equation for BMI is: renal length (mm) = 44.474 + 1.163 x BMI (R2 = 0.079). This study provides data on the normal renal length and its association with age, weight, height, BSA and BMI. The results of this study will guide the detection and follow-up of renal diseases in Korean children

  15. Multiplexed electrospray scaling for liquid fuel injection

    International Nuclear Information System (INIS)

    Waits, C Mike; Hanrahan, Brendan; Lee, Ivan

    2010-01-01

    Evaporation and space-charge requirements are evaluated to understand the effect of device scaling and fuel preheating for a liquid fuel injector using a multiplexed electrospray (MES) configuration in compact combustion applications. This work reveals the influence of the droplet diameter, droplet velocity and droplet surface temperature as well as the surrounding gas temperature on the size and performance of microfabricated MES. Measurements from MES devices are used in the model to accurately account for the droplet diameter versus flow rate relationship, the minimum droplet diameter and the relevant droplet velocities. A maximum extractor electrode to ground electrode distance of 3.1 mm required to overcome space-charge forces is found to be independent of voltage or droplet velocity for large levels of multiplexing. This maximum distance also becomes the required evaporation length scale which imposes minimum fuel pre-heating requirements for large flow densities. Required fuel preheating is therefore evaluated for both ethanol and 1-butanol with combustor parameters relevant to fuel reformation, thermoelectric conversion, thermophotovoltaic conversion and thermionic conversion

  16. Dramatic lives and relevant becomings

    DEFF Research Database (Denmark)

    Henriksen, Ann-Karina; Miller, Jody

    2012-01-01

    of marginality into positions of relevance. The analysis builds on empirical data from Copenhagen, Denmark, gained through ethnographic fieldwork with the participation of 20 female informants aged 13–22. The theoretical contribution proposes viewing conflicts as multi-linear, multi-causal and non...

  17. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  18. Penile length and circumference: an Indian study.

    Science.gov (United States)

    Promodu, K; Shanmughadas, K V; Bhat, S; Nair, K R

    2007-01-01

    Apprehension about the normal size of penis is a major concern for men. Aim of the present investigation is to estimate the penile length and circumference of Indian males and to compare the results with the data from other countries. Results will help in counseling the patients worried about the penile size and seeking penis enlargement surgery. Penile length in flaccid and stretched conditions and circumference were measured in a group of 301 physically normal men. Erected length and circumference were measured for 93 subjects. Mean flaccid length was found to be 8.21 cm, mean stretched length 10.88 cm and circumference 9.14 cm. Mean erected length was found to be 13.01 cm and erected circumference was 11.46 cm. Penile dimensions are found to be correlated with anthropometric parameters. Insight into the normative data of penile size of Indian males obtained. There are significant differences in the mean penile length and circumference of Indian sample compared to the data reported from other countries. Study need to be continued with a large sample to establish a normative data applicable to the general population.

  19. Scaling strength distributions in quasi-brittle materials from micro-to macro-scales: A computational approach to modeling Nature-inspired structural ceramics

    International Nuclear Information System (INIS)

    Genet, Martin; Couegnat, Guillaume; Tomsia, Antoni P.; Ritchie, Robert O.

    2014-01-01

    This paper presents an approach to predict the strength distribution of quasi-brittle materials across multiple length-scales, with emphasis on Nature-inspired ceramic structures. It permits the computation of the failure probability of any structure under any mechanical load, solely based on considerations of the microstructure and its failure properties by naturally incorporating the statistical and size-dependent aspects of failure. We overcome the intrinsic limitations of single periodic unit-based approaches by computing the successive failures of the material components and associated stress redistributions on arbitrary numbers of periodic units. For large size samples, the microscopic cells are replaced by a homogenized continuum with equivalent stochastic and damaged constitutive behavior. After establishing the predictive capabilities of the method, and illustrating its potential relevance to several engineering problems, we employ it in the study of the shape and scaling of strength distributions across differing length-scales for a particular quasi-brittle system. We find that the strength distributions display a Weibull form for samples of size approaching the periodic unit; however, these distributions become closer to normal with further increase in sample size before finally reverting to a Weibull form for macroscopic sized samples. In terms of scaling, we find that the weakest link scaling applies only to microscopic, and not macroscopic scale, samples. These findings are discussed in relation to failure patterns computed at different size-scales. (authors)

  20. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  1. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  2. Bunch Length Measurements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; /SLAC; Lumpkin, A.; /Argonne; Sannibale, F.; /LBL, Berkeley; Mok, W.; /Unlisted

    2007-11-28

    A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.

  3. Mobile Stride Length Estimation With Deep Convolutional Neural Networks.

    Science.gov (United States)

    Hannink, Julius; Kautz, Thomas; Pasluosta, Cristian F; Barth, Jens; Schulein, Samuel; GaBmann, Karl-Gunter; Klucken, Jochen; Eskofier, Bjoern M

    2018-03-01

    Accurate estimation of spatial gait characteristics is critical to assess motor impairments resulting from neurological or musculoskeletal disease. Currently, however, methodological constraints limit clinical applicability of state-of-the-art double integration approaches to gait patterns with a clear zero-velocity phase. We describe a novel approach to stride length estimation that uses deep convolutional neural networks to map stride-specific inertial sensor data to the resulting stride length. The model is trained on a publicly available and clinically relevant benchmark dataset consisting of 1220 strides from 101 geriatric patients. Evaluation is done in a tenfold cross validation and for three different stride definitions. Even though best results are achieved with strides defined from midstance to midstance with average accuracy and precision of , performance does not strongly depend on stride definition. The achieved precision outperforms state-of-the-art methods evaluated on the same benchmark dataset by . Due to the independence of stride definition, the proposed method is not subject to the methodological constrains that limit applicability of state-of-the-art double integration methods. Furthermore, it was possible to improve precision on the benchmark dataset. With more precise mobile stride length estimation, new insights to the progression of neurological disease or early indications might be gained. Due to the independence of stride definition, previously uncharted diseases in terms of mobile gait analysis can now be investigated by retraining and applying the proposed method.

  4. Relevance in the science classroom: A multidimensional analysis

    Science.gov (United States)

    Hartwell, Matthew F.

    While perceived relevance is considered a fundamental component of adaptive learning, the experience of relevance and its conceptual definition have not been well described. The mixed-methods research presented in this dissertation aimed to clarify the conceptual meaning of relevance by focusing on its phenomenological experience from the students' perspective. Following a critical literature review, I propose an identity-based model of perceived relevance that includes three components: a contextual target, an identity target, and a connection type, or lens. An empirical investigation of this model that consisted of two general phases was implemented in four 9th grade-biology classrooms. Participants in Phase 1 (N = 118) completed a series of four open-ended writing activities focused on eliciting perceived personal connections to academic content. Exploratory qualitative content analysis of a 25% random sample of the student responses was used to identify the main meaning-units of the proposed model as well as different dimensions of student relevance perceptions. These meaning-units and dimensions provided the basis for the construction of a conceptual mapping sentence capturing students' perceived relevance, which was then applied in a confirmatory analysis to all other student responses. Participants in Phase 2 (N = 139) completed a closed survey designed based on the mapping sentence to assess their perceived relevance of a biology unit. The survey also included scales assessing other domain-level motivational processes. Exploratory factor analysis and non-metric multidimensional scaling indicated a coherent conceptual structure, which included a primary interpretive relevance dimension. Comparison of the conceptual structure across various groups (randomly-split sample, gender, academic level, domain-general motivational profiles) provided support for its ubiquity and insight into variation in the experience of perceived relevance among students of different

  5. Appearance of a Minimal Length in $e^+ e^-$ Annihilation

    CERN Document Server

    Dymnikova, Irina; Ulbricht, Jürgen

    2014-01-01

    Experimental data reveal with a 5$\\sigma$ significance the existence of a characteristic minimal length $l_e$= 1.57 × 10$^{−17}$ cm at the scale E = 1.253 TeV in the annihilation reaction $e^+e^- \\to \\gamma\\gamma(\\gamma)$ . Nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratio g=2 . Its internal structure includes a rotating equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives some idea about the physical origin of a minimal length in annihilation.

  6. The benefits of longer fuel cycle lengths

    International Nuclear Information System (INIS)

    Kesler, D.C.

    1986-01-01

    Longer fuel cycle lengths have been found to increase generation and improve outage management. A study at Duke Power Company has shown that longer fuel cycles offer both increased scheduling flexibility and increased capacity factors

  7. Atomic frequency-time-length standards

    International Nuclear Information System (INIS)

    Gheorghiu, O.C.; Mandache, C.

    1987-01-01

    The principles of operative of atomic frequency-time-length standards and their principle characteristics are described. The role of quartz crystal oscillators which are sloved to active or passive standards is presented. (authors)

  8. The analysis of projected fission track lengths

    International Nuclear Information System (INIS)

    Laslett, G.M.; Galbraith, R.F.; Green, P.F.

    1994-01-01

    This article deals with the question of how features of the thermal history can be estimated from projected track length measurements, i.e. lengths of the remaining parts of tracks that have intersected a surface, projected onto that surface. The appropriate mathematical theory is described and used to provide a sound basis both for understanding the nature of projected length measurements and for analysing observed data. The estimation of thermal history parameters corresponding to the current temperature, the maximum palaeotemperature and the time since cooling, is studied using laboratory data and simulations. In general the information contained in projected track lengths and angles is fairly limited, compared, for example, with that from a much smaller number of confined tracks, though we identify some circumstances when such measurements may be useful. Also it is not straightforward to extract the information and simple ad hoc estimation methods are generally inadequate. (author)

  9. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.

  10. Impedance of finite length resistive cylinder

    Directory of Open Access Journals (Sweden)

    S. Krinsky

    2004-11-01

    Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  11. Characteristic length of the knotting probability revisited

    International Nuclear Information System (INIS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-01-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(−N/N K ), where the estimates of parameter N K are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius r ex , i.e. the screening length of double-stranded DNA. (paper)

  12. Chord length distribution for a compound capsule

    International Nuclear Information System (INIS)

    Pitřík, Pavel

    2017-01-01

    Chord length distribution is a factor important in the calculation of ionisation chamber responses. This article describes Monte Carlo calculations of the chord length distribution for a non-convex compound capsule. A Monte Carlo code was set up for generation of random chords and calculation of their lengths based on the input number of generations and cavity dimensions. The code was written in JavaScript and can be executed in the majority of HTML viewers. The plot of occurrence of cords of different lengths has 3 peaks. It was found that the compound capsule cavity cannot be simply replaced with a spherical cavity of a triangular design. Furthermore, the compound capsule cavity is directionally dependent, which must be taken into account in calculations involving non-isotropic fields of primary particles in the beam, unless equilibrium of the secondary charged particles is attained. (orig.)

  13. Study on the Connecting Length of CFRP

    Science.gov (United States)

    Liu, Xiongfei; Li, Yue; Li, Zhanguo

    2018-05-01

    The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.

  14. Fragment Length of Circulating Tumor DNA.

    Science.gov (United States)

    Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay

    2016-07-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.

  15. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  16. Length and coverage of inhibitory decision rules

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  17. The SME gauge sector with minimum length

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Louzada, H.L.C. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)

    2017-12-15

    We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory. (orig.)

  18. The SME gauge sector with minimum length

    Science.gov (United States)

    Belich, H.; Louzada, H. L. C.

    2017-12-01

    We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory.

  19. The Improved Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, Mert; Van Leemput, Koen

    The concept of sparse Bayesian learning has received much attention in the machine learning literature as a means of achieving parsimonious representations of features used in regression and classification. It is an important family of algorithms for sparse signal recovery and compressed sensing....... Hence in its current form it is reminiscent of a greedy forward feature selection algorithm. In this report, we aim to solve the problems of the original RVoxM algorithm in the spirit of [7] (FastRVM).We call the new algorithm Improved Relevance Voxel Machine (IRVoxM). Our contributions...... and enables basis selection from overcomplete dictionaries. One of the trailblazers of Bayesian learning is MacKay who already worked on the topic in his PhD thesis in 1992 [1]. Later on Tipping and Bishop developed the concept of sparse Bayesian learning [2, 3] and Tipping published the Relevance Vector...

  20. Early life adversity and telomere length: a meta-analysis.

    Science.gov (United States)

    Ridout, K K; Levandowski, M; Ridout, S J; Gantz, L; Goonan, K; Palermo, D; Price, L H; Tyrka, A R

    2018-04-01

    Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen's d effect size=-0.35; 95% CI, -0.46 to -0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case-control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

  1. Umbilical cord length in singleton gestations: a Finnish population-based retrospective register study.

    Science.gov (United States)

    Georgiadis, L; Keski-Nisula, L; Harju, M; Räisänen, S; Georgiadis, S; Hannila, M-L; Heinonen, S

    2014-04-01

    Many complications of pregnancy and delivery are associated with umbilical cord length. It is important to examine the variation in length, in order to identify normal and abnormal conditions. Moreover, the factors influencing cord growth and development are not precisely known. The main objectives were to provide updated reference charts for umbilical cord length in singleton pregnancies and to evaluate potential factors affecting cord length. Birth register data of 47,284 singleton pregnant women delivering in Kuopio University Hospital, Finland was collected prospectively. Gender-specific centile charts for cord length from 22 to 44 gestational weeks were obtained using generalized additive models for location, scale, and shape (GAMLSS). Gestational, fetal, and maternal factors were studied for their potential influence on cord length with single variable analysis and stepwise multiple linear regression analysis. Cord length increased according to gestational age, while the growth decelerated post-term. Birth weight, placental weight, pregravid maternal body mass index, parity, and maternal age correlated to cord length. Gestational diabetes and previous miscarriages were associated with longer cords, while female gender and placental abruption were associated with shorter cords. Girls had shorter cords throughout gestation although there was substantial variation in length in both genders. Cord length associated significantly with birth weight, placental weight, and gestational age. Significantly shorter cords were found in women with placental abruption. This important finding requires further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  3. Optical scattering lengths in large liquid-scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J. [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Lachenmaier, T.; Traunsteiner, C. [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching (Germany); Undagoitia, T. Marrodan [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Physik-Institut, Universitaet Zuerich, Winterthurstr. 189, CH-8057 Zuerich (Switzerland)

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  4. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    Science.gov (United States)

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  5. Convective mixing length and the galactic carbon to oxygen ratio

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    We have studied chemical evolution models, assuming instantaneous recycling, and considering: a) the effects of mass loss both in massive stars and in intermediate mass stars, and b) the initial mass function of the solar neighbourhood (Serrano 1978). From these models we have derived the yields of carbon and oxygen. It is concluded that the condition C/O approximately 0.58 in the solar neighbourhood can only be satisfied if, during advanced stages of stellar evolution of intermediate mass stars, the ratio of the convective mixing length to the pressure scale height is > approximately 2.

  6. length-weight relationhip of freshwater wild fish species

    African Journals Online (AJOL)

    Dr Naeem

    2012-06-21

    Jun 21, 2012 ... Length-weight (LWR) and length-length relationships (LLR) were determined for a freshwater catfish ... Key words: Mystus bleekeri, length-weight relationship, length-length relationship, predictive equations. INTRODUCTION. Mystus bleekeri (freshwater catfish Day, 1877), locally ..... fish farmers, Aquacult.

  7. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.

    Science.gov (United States)

    Regis, Koy W; Meik, Jesse M

    2017-01-01

    The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.

  8. Other relevant papers in physical oceanography

    International Nuclear Information System (INIS)

    Nyffeler, F.

    1989-01-01

    During the past few years, significant progress has occurred in the field of physical oceanography partly as a consequence of developing cooperation and international participation in well-coordinated ocean research programmes. Although these programs were not designed specifically to address CRESP problems, many have proved to be directly relevant to CRESP objectives. For example, MODE, POLYMODE, and Tourbillon were intensive site-specific experiments that included studies of dispersion processes throughout the water column. NOAMP and GME were also site specific, involved the entire water column, and even stressed near-bottom and suspended-sediment processes. Others, (e.g., WOCE) are larger in scope and include extensive observations of the general circulation of entire ocean basins. As a whole, they contribute immensely to improving the data base for exchange and transport processes and thereby for the verification and validation of both regional-scale and general-circulation ocean models. That, in turn, is directly relevant to radiological assessments. Selected papers deriving from experiments such as these are discussed and referenced below

  9. CEPF Western Ghats Special Series: Length-weight and length-length relationship of three species of snakehead fish, Channa diplogramma, C. marulius and C. striata from the riverine reaches of Lake Vembanad, Kerala, India.

    Directory of Open Access Journals (Sweden)

    A. Ali

    2013-09-01

    Full Text Available The length-weight relationship (LWR and length-length relationships (LLR of three snakehead fishes, Channa diplogramma, C. marulius and C. striata, exploited by small-scale fishers in the riverine reaches of Lake Vembanad, Kerala were studied using the allometric growth equation Y = aXb. Our analysis shows that the LWR of C. diplogramma and C. marulius is nonisometric with exponents much smaller than the cubic value (b = 3, while that of C. striata is isometric. Channa marulius showed a definite change in LWR with size, with smaller fish growing with positive allometric exponents (b greater than 3 and larger individuals having negative allometric relationship (b less than 3, indicating a possible age-related change in growth pattern. In the case of LLR, all three snakehead species showed non-isometric growth patterns. The caudal fin did not grow substantially with increasing fish length.

  10. Factors that influence femoral neck length. Analysis of 1543 patients with advanced osteoarthritis of the hip

    NARCIS (Netherlands)

    Prins, Wybren; Kollen, Boudewijn J.; Ettema, Harmen B.; Verheyen, Cees C. P. M.

    2013-01-01

    Background and purpose: There is little known about the relationship between patient characteristic and the variance in geometrical properties of the femoral neck. The length of the femoral neck is relevant when considering a femoral neck preserving hip replacement. Based on surgical experience we

  11. Length-weight relationships for 13 fish species from the Gulf of ...

    African Journals Online (AJOL)

    Length-weight relationships (LWR) were estimated for 13 fish species which are of economic relevance in the commercial fisheries of the Gulf of Gabes (southern Tunisia). A total of 2403 fish specimens were sampled with several fishing gears from October 2008 to September 2009. The sample size ranged from 65 ...

  12. Microdosing: Concept, application and relevance

    Directory of Open Access Journals (Sweden)

    Tushar Tewari

    2010-01-01

    Full Text Available The use of microdose pharmacokinetic studies as an essential tool in drug development is still to catch on. While this approach promises potential cost savings and a quantum leap in efficiencies of the drug development process, major hurdles still need to be overcome before the technique becomes commonplace and part of routine practice. Clear regulations in Europe and the USA have had an enabling effect. The lack of enabling provisions for microdosing studies in Indian regulation, despite low risk and manifest relevance for the local drug development industry, is inconsistent with the country′s aspirations to be among the leaders in pharmaceutical research.

  13. Explaining the length threshold of polyglutamine aggregation

    International Nuclear Information System (INIS)

    De Los Rios, Paolo; Hafner, Marc; Pastore, Annalisa

    2012-01-01

    The existence of a length threshold, of about 35 residues, above which polyglutamine repeats can give rise to aggregation and to pathologies, is one of the hallmarks of polyglutamine neurodegenerative diseases such as Huntington’s disease. The reason why such a minimal length exists at all has remained one of the main open issues in research on the molecular origins of such classes of diseases. Following the seminal proposals of Perutz, most research has focused on the hunt for a special structure, attainable only above the minimal length, able to trigger aggregation. Such a structure has remained elusive and there is growing evidence that it might not exist at all. Here we review some basic polymer and statistical physics facts and show that the existence of a threshold is compatible with the modulation that the repeat length imposes on the association and dissociation rates of polyglutamine polypeptides to and from oligomers. In particular, their dramatically different functional dependence on the length rationalizes the very presence of a threshold and hints at the cellular processes that might be at play, in vivo, to prevent aggregation and the consequent onset of the disease. (paper)

  14. Explaining the length threshold of polyglutamine aggregation

    Science.gov (United States)

    De Los Rios, Paolo; Hafner, Marc; Pastore, Annalisa

    2012-06-01

    The existence of a length threshold, of about 35 residues, above which polyglutamine repeats can give rise to aggregation and to pathologies, is one of the hallmarks of polyglutamine neurodegenerative diseases such as Huntington’s disease. The reason why such a minimal length exists at all has remained one of the main open issues in research on the molecular origins of such classes of diseases. Following the seminal proposals of Perutz, most research has focused on the hunt for a special structure, attainable only above the minimal length, able to trigger aggregation. Such a structure has remained elusive and there is growing evidence that it might not exist at all. Here we review some basic polymer and statistical physics facts and show that the existence of a threshold is compatible with the modulation that the repeat length imposes on the association and dissociation rates of polyglutamine polypeptides to and from oligomers. In particular, their dramatically different functional dependence on the length rationalizes the very presence of a threshold and hints at the cellular processes that might be at play, in vivo, to prevent aggregation and the consequent onset of the disease.

  15. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  16. Length bias correction in gene ontology enrichment analysis using logistic regression.

    Science.gov (United States)

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  17. Nuclear reactor with scrammable part length rod

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A new part length rod is provided. It may be used to control xenon induced power oscillations but to contribute to shutdown reactivity when a rapid shutdown of the reactor is required. The part length rod consists of a control rod with three regions. The lower control region is a longer weaker active portion separated from an upper stronger shorter poison section by an intermediate section which is a relative non-absorber of neutrons. The combination of the longer weaker control section with the upper high worth poison section permits the part length rod of this to be scrammed into the core when a reactor shutdown is required but also permits the control rod to be used as a tool to control power distribution in both the axial and radial directions during normal operation

  18. Resonance effects in neutron scattering lengths

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, J.E.

    1989-06-01

    The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-/angstrom/ wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs.

  19. Aminophylline increases seizure length during electroconvulsive therapy.

    Science.gov (United States)

    Stern, L; Dannon, P N; Hirschmann, S; Schriber, S; Amytal, D; Dolberg, O T; Grunhaus, L

    1999-12-01

    Electroconvulsive therapy (ECT) is considered to be one of the most effective treatments for patients with major depression and persistent psychosis. Seizure characteristics probably determine the therapeutic effect of ECT; as a consequence, short seizures are accepted as one of the factors of poor outcome. During most ECT courses seizure threshold increases and seizure duration decreases. Methylxanthine preparations, caffeine, and theophylline have been used to prolong seizure duration. The use of aminophylline, more readily available than caffeine, has not been well documented. The objective of this study was to test the effects of aminophylline on seizure length. Fourteen drug-free patients with diagnoses of affective disorder or psychotic episode receiving ECT participated in this study. Seizure length was assessed clinically and per EEG. Statistical comparisons were done using paired t tests. A significant increase (p < 0.04) in seizure length was achieved and maintained on three subsequent treatments with aminophylline. No adverse events were noted from the addition of aminophylline.

  20. Resonance effects in neutron scattering lengths

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1989-01-01

    The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-angstrom wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs

  1. Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2017-01-01

    Full Text Available Aerodynamic roughness is very important to urban meteorological and climate studies. Radar remote sensing is considered to be an effective means for aerodynamic roughness retrieval because radar backscattering is sensitive to the surface roughness and geometric structure of a given target. In this paper, a methodology for aerodynamic roughness length estimation using SAR data in urban areas is introduced. The scale and orientation characteristics of backscattering of various targets in urban areas were firstly extracted and analyzed, which showed great potential of SAR data for urban roughness elements characterization. Then the ground truth aerodynamic roughness was calculated from wind gradient data acquired by the meteorological tower using fitting and iterative method. And then the optimal dimension of the upwind sector for the aerodynamic roughness calculation was determined through a correlation analysis between backscattering extracted from SAR data at various upwind sector areas and the aerodynamic roughness calculated from the meteorological tower data. Finally a quantitative relationship was set up to retrieve the aerodynamic roughness length from SAR data. Experiments based on ALOS PALSAR and COSMO-SkyMed data from 2006 to 2011 prove that the proposed methodology can provide accurate roughness length estimations for the spatial and temporal analysis of urban surface.

  2. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.

    Science.gov (United States)

    Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan

    2015-09-22

    This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.

  3. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  4. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  5. Stride length: measuring its instantaneous value

    International Nuclear Information System (INIS)

    Campiglio, G C; Mazzeo, J R

    2007-01-01

    Human gait has been studied from different viewpoints: kinematics, dynamics, sensibility and others. Many of its characteristics still remain open to research, both for normal gait and for pathological gait. Objective measures of some of its most significant spatial/temporal parameters are important in this context. Stride length, one of these parameters, is defined as the distance between two consecutive contacts of one foot with ground. On this work we present a device designed to provide automatic measures of stride length. Its features make it particularly appropriate for the evaluation of pathological gait

  6. Word length, set size, and lexical factors: Re-examining what causes the word length effect.

    Science.gov (United States)

    Guitard, Dominic; Gabel, Andrew J; Saint-Aubin, Jean; Surprenant, Aimée M; Neath, Ian

    2018-04-19

    The word length effect, better recall of lists of short (fewer syllables) than long (more syllables) words has been termed a benchmark effect of working memory. Despite this, experiments on the word length effect can yield quite different results depending on set size and stimulus properties. Seven experiments are reported that address these 2 issues. Experiment 1 replicated the finding of a preserved word length effect under concurrent articulation for large stimulus sets, which contrasts with the abolition of the word length effect by concurrent articulation for small stimulus sets. Experiment 2, however, demonstrated that when the short and long words are equated on more dimensions, concurrent articulation abolishes the word length effect for large stimulus sets. Experiment 3 shows a standard word length effect when output time is equated, but Experiments 4-6 show no word length effect when short and long words are equated on increasingly more dimensions that previous demonstrations have overlooked. Finally, Experiment 7 compared recall of a small and large neighborhood words that were equated on all the dimensions used in Experiment 6 (except for those directly related to neighborhood size) and a neighborhood size effect was still observed. We conclude that lexical factors, rather than word length per se, are better predictors of when the word length effect will occur. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Sighting optics including an optical element having a first focal length and a second focal length

    Science.gov (United States)

    Crandall, David Lynn [Idaho Falls, ID

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  8. Cutting Whole Length or Partial Length of Internal Anal Sphincter in Managementof Fissure in Ano

    Directory of Open Access Journals (Sweden)

    Furat Shani Aoda

    2017-12-01

    Full Text Available A chronic anal fissure is a common painful perianal condition.The main operative procedure to treat this painful condition is a lateral internal sphincteretomy (LIS.The aim of study is to compare the outcome and complications of closed LIS up to the dentate line (whole length of internal sphincter or up to the fissure apex (partial length of internal sphincter in the treatment of anal fissure.It is a prospective comparativestudy including 100 patients with chronic fissure in ano. All patients assigned to undergo closed LIS. Those patients were randomly divided into two groups: 50 patients underwent LIS to the level of dentate line (whole length and other 50 patients underwent LIS to the level of fissure apex (partial length. Patients were followed up weekly in the 1st month, twice monthly in the second month then monthly   for next 2 months and finally after 1 year. There was satisfactory relief of pain in all patients in both groups & complete healing of the fissure occurred. Regarding post operative incontinence no major degree of incontinence occur in both group but minor degree of incontinence persists In 7 patients after whole length LIS after one year. In conclusion, both whole length & partial length LIS associated with improvement of pain, good chance of healing but whole length LIS associated with more chance of long term  flatus incontinence. Hence,we recommend partial length LIS as treatment forchronic anal fissure.

  9. Beyond Mixing-length Theory: A Step Toward 321D

    Science.gov (United States)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav

    2015-08-01

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier-Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier-Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier-Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.

  10. BEYOND MIXING-LENGTH THEORY: A STEP TOWARD 321D

    International Nuclear Information System (INIS)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav

    2015-01-01

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier–Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier–Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier–Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated

  11. A STUDY OF CORRELATION OF FOOT LENGTH AND GESTATIONAL MATURITY IN NEONATES

    Directory of Open Access Journals (Sweden)

    M. Bhuvaneswari

    2018-03-01

    Full Text Available BACKGROUND Gestational age estimation at birth can be done by clinical estimation through careful history of LMP, ultrasonic estimation of gestational age, date of first recorded foetal activity “quickening” first felt at approximately 16-18 weeks, Date of first recorded foetal heart sounds. MATERIALS AND METHODS A study sample of 800 live newborns were selected by simple random sampling technique born at GVR hospital and Government General Hospital, Kurnool from April 2015 to May 2016. Data was collected using standard proforma meeting the objectives of the study. a Gestational age assessment was done using modified Bellard’s score and b Foot length was measured using sliding calipers which is having an accuracy of a millimeter. Following instruments are used: 1 Sliding calipers for measuring foot length, 2 Flexible, non-stretchable measuring tape for head circumference, 3 Infantometer for measuring crown heel length, 4 Electronic weighing scale for measuring weight. RESULTS The foot length of preterm neonates ranged from 4.5-7.8 cm with the mean foot length of 6.1571 cm and 6.6964 cm for preterm SGA and AGA, respectively. The foot length of term neonates ranged from 5.4-8.7 cm with a mean foot length of 7.0471 cm, 7.5703 cm, 8.0391 cm for term SGA, AGA, LGA respectively. The foot length for post term neonates ranged from 6.7-8.8 cm, with a mean foot length of 7.5688 cm, 8.0170 cm and 8.2667 cm for post term SGA, AGA and LGA, respectively. This shows that foot length increases as the gestational age increases. CONCLUSION Foot length can be correlated significantly with the gestational age, birth weight, head circumference and crown heel length.

  12. Other relevant numerical modelling papers

    International Nuclear Information System (INIS)

    Chartier, M.

    1989-01-01

    The ocean modelling is a rapidly evolving science and a large number of results have been published. Several categories of papers are of particular interest for this review: the papers published by the international atomic institutions, such as the NEA (for the CRESP or Subseabed Programs), the IAEA (for example the Safety Series, the Technical Report Series or the TECDOC), and the ICRP, and the papers concerned by more fundamental research, which are published in specific scientific literature. This paper aims to list some of the most relevant publications for the CRESP purposes. It means by no way to be exhaustive, but informative on the incontestable progress recently achieved in that field. One should note that some of these papers are so recent that their final version has not yet been published

  13. Industrial relevance of thermophilic Archaea.

    Science.gov (United States)

    Egorova, Ksenia; Antranikian, Garabed

    2005-12-01

    The dramatic increase of newly isolated extremophilic microorganisms, analysis of their genomes and investigations of their enzymes by academic and industrial laboratories demonstrate the great potential of extremophiles in industrial (white) biotechnology. Enzymes derived from extremophiles (extremozymes) are superior to the traditional catalysts because they can perform industrial processes even under harsh conditions, under which conventional proteins are completely denatured. In particular, enzymes from thermophilic and hyperthermophilic Archaea have industrial relevance. Despite intensive investigations, our knowledge of the structure-function relationships of their enzymes is still limited. Information concerning the molecular properties of their enzymes and genes has to be obtained to be able to understand the mechanisms that are responsible for catalytic activity and stability at the boiling point of water.

  14. The Relevance of Hegel's Logic

    Directory of Open Access Journals (Sweden)

    John W Burbidge

    2007-12-01

    Full Text Available Hegel defines his Logic as the science that thinks about thinking.nbsp; But when we interpret that work as outlining what happens when we reason we are vulnerable to Fregersquo;s charge of psychologism.nbsp; I use Hegelrsquo;s tripartite distinction among understanding, dialectical and speculative reason as operations of pure thought to suggest how thinking can work with objective concepts.nbsp; In the last analysis, however, our ability to move from the subjective contingency of representations and ideas to the pure concepts we think develops from mechanical memory, which separates sign from sense so hat we can focus simply on the latter.nbsp; By becoming aware of the connections that underlie our thinking processes we may be able to both move beyond the abstractions of symbolic logic and clarify what informal logicians call relevance.

  15. Neutron scattering lengths of 3He

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Akopian, G.G.; Wierzbicki, J.; Govorov, A.M.; Pikelner, L.B.; Sharapov, E.I.

    1976-01-01

    The total neutron scattering cross-section of 3 He has been measured in the neutron energy range from 20 meV to 2 eV. Together with the known value of coherent scattering amplitude it leads to the two sts of n 3 He scattering lengths

  16. Phonological length, phonetic duration and aphasia

    NARCIS (Netherlands)

    Gilbers, D.G.; Bastiaanse, Y.R.M.; van der Linde, K.J.

    1997-01-01

    This study discusses an error type that is expected to occur in aphasics suffering from a phonological disorder, i.e. Wernicke's and conduction aphasics, but not in aphasics suffering from a phonetic disorder, i.e. Broca's aphasics. The critical notion is 'phonological length'. It will be argued

  17. Information-theoretic lengths of Jacobi polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)

    2010-07-30

    The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.

  18. Context quantization by minimum adaptive code length

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Wu, Xiaolin

    2007-01-01

    Context quantization is a technique to deal with the issue of context dilution in high-order conditional entropy coding. We investigate the problem of context quantizer design under the criterion of minimum adaptive code length. A property of such context quantizers is derived for binary symbols....

  19. Asymptotic Translation Length in the Curve Complex

    OpenAIRE

    Valdivia, Aaron D.

    2013-01-01

    We show that when the genus and punctures of a surface are directly proportional by some rational number the minimal asymptotic translation length in the curve complex has behavior inverse to the square of the Euler characteristic. We also show that when the genus is fixed and the number of punctures varies the behavior is inverse to the Euler characteristic.

  20. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik

    2003-01-01

    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...

  1. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  2. 23 CFR 658.13 - Length.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Length. 658.13 Section 658.13 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE... Network or in transit between these highways and terminals or service locations pursuant to § 658.19. (b...

  3. Link lengths and their growth powers

    International Nuclear Information System (INIS)

    Huh, Youngsik; No, Sungjong; Oh, Seungsang; Rawdon, Eric J

    2015-01-01

    For a certain infinite family F of knots or links, we study the growth power ratios of their stick number, lattice stick number, minimum lattice length and minimum ropelength compared with their minimum crossing number c(K) for every K∈F. It is known that the stick number and lattice stick number grow between the (1/2) and linear power of the crossing number, and minimum lattice length and minimum ropelength grow with at least the (3/4) power of crossing number (which is called the four-thirds power law). Furthermore, the minimal lattice length and minimum ropelength grow at most as O (c(K)[ln(c(K))] 5 ), but it is unknown whether any family exhibits superlinear growth. For any real number r between (1/2) and 1, we give an infinite family of non-splittable prime links in which the stick number and lattice stick number grow exactly as the rth power of crossing number. Furthermore for any real number r between (3/4) and 1, we give another infinite family of non-splittable prime links in which the minimum lattice length and minimum ropelength grow exactly as the rth power of crossing number. (paper)

  4. Exciton diffusion length in narrow bandgap polymers

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Azimi, H.; Morana, M.; Blom, P.W.M.; Loi, M.A.

    2012-01-01

    We developed a new method to accurately extract the singlet exciton diffusion length in organic semiconductors by blending them with a low concentration of methanofullerene[6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The dependence of photoluminescence (PL) decay time on the fullerene

  5. Correlation between length and tilt of lipid tails

    Energy Technology Data Exchange (ETDEWEB)

    Kopelevich, Dmitry I., E-mail: dkopelevich@che.ufl.edu [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Nagle, John F., E-mail: nagle@cmu.edu [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2015-10-21

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κ{sub θ} to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  6. Predictors of length of stay in a ward for demented elderly: gender differences.

    Science.gov (United States)

    Ono, Toshiyuki; Tamai, Akira; Takeuchi, Daisuke; Tamai, Yuzuru; Iseki, Hidenori; Fukushima, Hiromi; Kasahara, Sumie

    2010-09-01

    In our previous studies, we found both gender differences among care recipients and predictors that influenced outcomes after discharge from a ward for demented elderly. Here, we investigate predictors that influence the length of stay for each sex. We studied the data of 390 patients with dementia who were hospitalized in a ward for demented elderly between 1 April 2000 and 31 March 2008, and treated until 31 March 2009. The patients were divided into groups classified by gender. We analyzed the gender differences of characteristics and evaluated the predictors that influenced the length of stay in the ward for demented elderly using Cox's proportional hazards model. A model using the initial scores of the Revised Hasegawa Dementia Scale (HDS-R), Assessment Scale for Symptoms of Dementia (ASSD) and Nishimura's activity of daily living scale (N-ADL), which were examined on admission, was named Model 1. In Model 1, we checked the effect of each patient's characteristics, except for complications and destinations, on their length of stay. Model 2 used the final scores of HDS-R, ASSD and N-ADL including complications and destinations. There was a clear gender difference in the length of stay. The length of stay of women was longer than that of men. It was difficult to predict the length of stay in Model 1. Age was the only predictor in women and no predictor was identified in men. In Model 2, complications and the final HDS-R and N-ADL scores were predictors of the length of stay in men. Age, complications and destinations were predictors of the length of stay in women. It was observed that there were gender differences among predictors of the length of stay. However, it was difficult to predict the length of stay on admission. Retrospectively, the length of stay was determined by physical and psychological conditions, not by the social variables in men. In women, it was supposed that the caregiver's wish to give care at home reduced the length of stay. Besides

  7. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  8. Modelling of rate effects at multiple scales

    DEFF Research Database (Denmark)

    Pedersen, R.R.; Simone, A.; Sluys, L. J.

    2008-01-01

    , the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of  a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from  the micro-scale.......At the macro- and meso-scales a rate dependent constitutive model is used in which visco-elasticity is coupled to visco-plasticity and damage. A viscous length scale effect is introduced to control the size of the fracture process zone. By comparison of the widths of the fracture process zone...

  9. Clinical relevance of findings in trials of CBT for depression.

    Science.gov (United States)

    Lepping, P; Whittington, R; Sambhi, R S; Lane, S; Poole, R; Leucht, S; Cuijpers, P; McCabe, R; Waheed, W

    2017-09-01

    Cognitive behavioural therapy (CBT) is beneficial in depression. Symptom scores can be translated into Clinical Global Impression (CGI) scale scores to indicate clinical relevance. We aimed to assess the clinical relevance of findings of randomised controlled trials (RCTs) of CBT in depression. We identified RCTs of CBT that used the Hamilton Rating Scale for Depression (HAMD). HAMD scores were translated into Clinical Global Impression - Change scale (CGI-I) scores to measure clinical relevance. One hundred and seventy datasets from 82 studies were included. The mean percentage HAMD change for treatment arms was 53.66%, and 29.81% for control arms, a statistically significant difference. Combined active therapies showed the biggest improvement on CGI-I score, followed by CBT alone. All active treatments had better than expected HAMD percentage reduction and CGI-I scores. CBT has a clinically relevant effect in depression, with a notional CGI-I score of 2.2, indicating a significant clinical response. The non-specific or placebo effect of being in a psychotherapy trial was a 29% reduction of HAMD. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  11. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view.

    Science.gov (United States)

    Dieter, Hermann H

    2010-03-01

    "Non-relevant metabolites" are those degradation products of plant protection products (PPPs), which are devoid of the targeted toxicities of the PPP and devoid of genotoxicity. Most often, "non-relevant metabolites" have a high affinity to the aquatic environment, are very mobile within this environment, and, usually, are also persistent. Therefore, from the point of drinking water hygiene, they must be characterized as "relevant for drinking water" like many other hydrophilic/polar environmental contaminants of different origins. "Non-relevant metabolites" may therefore penetrate to water sources used for abstraction of drinking water and may thus ultimately be present in drinking water. The presence of "non-relevant metabolites" and similar trace compounds in the water cycle may endanger drinking water quality on a long-term scale. During oxidative drinking water treatment, "non-relevant metabolites" may also serve as the starting material for toxicologically relevant transformation products similar to processes observed by drinking water disinfection with chlorine. This hypothesis was recently confirmed by the detection of the formation of N-nitroso-dimethylamine from ozone and dimethylsulfamide, a "non-relevant metabolite" of the fungicide tolylfluanide. In order to keep drinking water preferably free of "non-relevant metabolites", the German drinking water advisory board of the Federal Ministry of Health supports limiting their penetration into raw and drinking water to the functionally (agriculturally) unavoidable extent. On this background, the German Federal Environment Agency (UBA) recently has recommended two health related indication values (HRIV) to assess "non-relevant metabolites" from the view of drinking water hygiene. Considering the sometimes incomplete toxicological data base for some "non-relevant metabolites", HRIV also have the role of health related precautionary values. Depending on the completeness and quality of the toxicological

  12. Vygotsky's Crisis: Argument, context, relevance.

    Science.gov (United States)

    Hyman, Ludmila

    2012-06-01

    Vygotsky's The Historical Significance of the Crisis in Psychology (1926-1927) is an important text in the history and philosophy of psychology that has only become available to scholars in 1982 in Russian, and in 1997 in English. The goal of this paper is to introduce Vygotsky's conception of psychology to a wider audience. I argue that Vygotsky's argument about the "crisis" in psychology and its resolution can be fully understood only in the context of his social and political thinking. Vygotsky shared the enthusiasm, widespread among Russian leftist intelligentsia in the 1920s, that Soviet society had launched an unprecedented social experiment: The socialist revolution opened the way for establishing social conditions that would let the individual flourish. For Vygotsky, this meant that "a new man" of the future would become "the first and only species in biology that would create itself." He envisioned psychology as a science that would serve this humanist teleology. I propose that The Crisis is relevant today insofar as it helps us define a fundamental problem: How can we systematically account for the development of knowledge in psychology? I evaluate how Vygotsky addresses this problem as a historian of the crisis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Relevance of equilibrium in multifragmentation

    International Nuclear Information System (INIS)

    Furuta, Takuya; Ono, Akira

    2009-01-01

    The relevance of equilibrium in a multifragmentation reaction of very central 40 Ca + 40 Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80≤t≤300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables

  14. String matching with variable length gaps

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel

    2012-01-01

    primitive in computational biology applications. Let m and n be the lengths of P and T, respectively, and let k be the number of strings in P. We present a new algorithm achieving time O(nlogk+m+α) and space O(m+A), where A is the sum of the lower bounds of the lengths of the gaps in P and α is the total...... number of occurrences of the strings in P within T. Compared to the previous results this bound essentially achieves the best known time and space complexities simultaneously. Consequently, our algorithm obtains the best known bounds for almost all combinations of m, n, k, A, and α. Our algorithm...

  15. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  16. Investigations on quantum mechanics with minimal length

    International Nuclear Information System (INIS)

    Chargui, Yassine

    2009-01-01

    We consider a modified quantum mechanics where the coordinates and momenta are assumed to satisfy a non-standard commutation relation of the form( X i , P j ) = iℎ(δ ij (1+βP 2 )+β'P i P j ). Such an algebra results in a generalized uncertainty relation which leads to the existence of a minimal observable length. Moreover, it incorporates an UV/IR mixing and non commutative position space. We analyse the possible representations in terms of differential operators. The latter are used to study the low energy effects of the minimal length by considering different quantum systems : the harmonic oscillator, the Klein-Gordon oscillator, the spinless Salpeter Coulomb problem, and the Dirac equation with a linear confining potential. We also discuss whether such effects are observable in precision measurements on a relativistic electron trapped in strong magnetic field.

  17. Aberrant leukocyte telomere length in Birdshot Uveitis.

    Science.gov (United States)

    Vazirpanah, Nadia; Verhagen, Fleurieke H; Rothova, Anna; Missotten, Tom O A R; van Velthoven, Mirjam; Den Hollander, Anneke I; Hoyng, Carel B; Radstake, Timothy R D J; Broen, Jasper C A; Kuiper, Jonas J W

    2017-01-01

    Birdshot Uveitis (BU) is an archetypical chronic inflammatory eye disease, with poor visual prognosis, that provides an excellent model for studying chronic inflammation. BU typically affects patients in the fifth decade of life. This suggests that it may represent an age-related chronic inflammatory disease, which has been linked to increased erosion of telomere length of leukocytes. To study this in detail, we exploited a sensitive standardized quantitative real-time polymerase chain reaction to determine the peripheral blood leukocyte telomere length (LTL) in 91 genotyped Dutch BU patients and 150 unaffected Dutch controls. Although LTL erosion rates were very similar between BU patients and healthy controls, we observed that BU patients displayed longer LTL, with a median of log (LTL) = 4.87 (= 74131 base pair) compared to 4.31 (= 20417 base pair) in unaffected controls (PRTEL1. These findings suggest that BU is accompanied by significantly longer LTL.

  18. A SIMPLE POLYMERASE CHAIN REACTION/RESTRICTION FRAGMENT LENGTH POLYMORPHISM ASSAY CAPABLE OF IDENTIFYING MEDICALLY RELEVANT FILAMENTOUS FUNGI

    Science.gov (United States)

    The accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on buildign surfaces. In order to accurately reflect the organisms responsible for these maladies it is of...

  19. Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach

    Science.gov (United States)

    Dorrestijn, Jesse; Kahn, Brian H.; Teixeira, João; Irion, Fredrick W.

    2018-05-01

    Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific humidity (q) in the atmosphere. A higher spatial resolution nadir retrieval at 13.5 km complements previous Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields additional insight into scaling behavior. While this method is approximate and some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of interest. Scaling exponents are shown to fluctuate between β = -1 and -3 at scales ≥ 500 km, while at scales ≤ 500 km they are typically near β ≈ -2, with q slightly lower than T at the smallest scales observed. In the extratropics, the large-scale β is near -3. Within the tropics, however, the large-scale β for T is closer to -1 as small-scale moist convective processes dominate. In the tropics, q exhibits large-scale β between -2 and -3. The values of β are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over numerous flight observational segments. The instantaneous variance scaling methodology is relevant for cloud parameterization development and the assessment of time variability of scaling exponents.

  20. Generation of Length Distribution, Length Diagram, Fibrogram, and Statistical Characteristics by Weight of Cotton Blends

    Directory of Open Access Journals (Sweden)

    B. Azzouz

    2007-01-01

    Full Text Available The textile fibre mixture as a multicomponent blend of variable fibres imposes regarding the proper method to predict the characteristics of the final blend. The length diagram and the fibrogram of cotton are generated. Then the length distribution, the length diagram, and the fibrogram of a blend of different categories of cotton are determined. The length distributions by weight of five different categories of cotton (Egyptian, USA (Pima, Brazilian, USA (Upland, and Uzbekistani are measured by AFIS. From these distributions, the length distribution, the length diagram, and the fibrogram by weight of four binary blends are expressed. The length parameters of these cotton blends are calculated and their variations are plotted against the mass fraction x of one component in the blend .These calculated parameters are compared to those of real blends. Finally, the selection of the optimal blends using the linear programming method, based on the hypothesis that the cotton blend parameters vary linearly in function of the components rations, is proved insufficient.