WorldWideScience

Sample records for relevant cortical areas

  1. Cortical areas involved in Arabic number reading.

    Science.gov (United States)

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p area (Brodmann area 37; p areas.

  2. Attention Increases Spike Count Correlations between Visual Cortical Areas

    Science.gov (United States)

    Cohen, Marlene R.

    2016-01-01

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously

  3. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    Science.gov (United States)

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary

  4. Localization of cortical areas activated by thinking.

    Science.gov (United States)

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and

  5. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  6. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  7. Localization of cortical areas activated by thinking

    DEFF Research Database (Denmark)

    Roland, P E; Friberg, L

    1985-01-01

    midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All r......These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work...... communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined...

  8. Lateralization of cortical negative motor areas.

    Science.gov (United States)

    Borggraefe, Ingo; Catarino, Claudia B; Rémi, Jan; Vollmar, Christian; Peraud, Aurelia; Winkler, Peter A; Noachtar, Soheyl

    2016-10-01

    The lateral and mesial aspects of the central and frontal cortex were studied by direct electrical stimulation of the cortex in epilepsy surgery candidates in order to determine the localization of unilateral and bilateral negative motor responses. Results of electrical cortical stimulation were examined in epilepsy surgery candidates in whom invasive electrodes were implanted. The exact localization of subdural electrodes was defined by fusion of 3-dimensional reconstructed MRI and CT images in 13 patients and by analysis of plane skull X-rays and intraoperative visual localization of the electrodes in another 7 patients. Results of electrical stimulation of the cortex were evaluated in a total of 128 patients in whom invasive electrodes were implanted for planning resective epilepsy surgery. Twenty patients, in whom negative motor responses were obtained, were included in the study. Bilateral upper limb negative motor responses were more often elicited from stimulation of the mesial frontal cortex whereas stimulation of the lateral central cortex leads to contralateral upper limb negative motor responses (pfrontal gyrus whereas contralateral negative motor responses localized predominantly in the anterior part of the precentral gyrus (pgyrus and the mesial fronto-central cortex showing functional differences with regard to unilateral and bilateral upper limb representation. The lateral fronto-central negative motor area serves predominantly contralateral upper limb motor control whereas the mesial frontal negative motor area represents bilateral upper limb movement control. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  10. [Cortical Areas for Controlling Voluntary Movements].

    Science.gov (United States)

    Nakayama, Yoshihisa; Hoshi, Eiji

    2017-04-01

    The primary motor cortex is located in Brodmann area 4 at the most posterior part of the frontal lobe. The primary motor cortex corresponds to an output stage of motor signals, sending motor commands to the brain stem and spinal cord. Brodmann area 6 is rostral to Brodmann area 4, where multiple higher-order motor areas are located. The premotor area, which is located in the lateral part, is involved in planning and executing action based on sensory signals. The premotor area contributes to the reaching for and grasping of an object to achieve a behavioral goal. The supplementary motor area, which occupies the mesial aspect, is involved in planning and executing actions based on internalized or memorized signals. The supplementary motor area plays a central role in bimanual movements, organizing multiple movements, and switching from a routine to a controlled behavior. Thus, Brodmann areas 4 and 6 are considered as central motor areas in the cerebral cortex, in which the idea of an action is transformed to an actual movement in a variety of contexts.

  11. Relating normalization to neuronal populations across cortical areas.

    Science.gov (United States)

    Ruff, Douglas A; Alberts, Joshua J; Cohen, Marlene R

    2016-09-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. Copyright © 2016 the American Physiological Society.

  12. Human cortical areas involved in perception of surface glossiness.

    Science.gov (United States)

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2014-09-01

    Glossiness is the visual appearance of an object's surface as defined by its surface reflectance properties. Despite its ecological importance, little is known about the neural substrates underlying its perception. In this study, we performed the first human neuroimaging experiments that directly investigated where the processing of glossiness resides in the visual cortex. First, we investigated the cortical regions that were more activated by observing high glossiness compared with low glossiness, where the effects of simple luminance and luminance contrast were dissociated by controlling the illumination conditions (Experiment 1). As cortical regions that may be related to the processing of glossiness, V2, V3, hV4, VO-1, VO-2, collateral sulcus (CoS), LO-1, and V3A/B were identified, which also showed significant correlation with the perceived level of glossiness. This result is consistent with the recent monkey studies that identified selective neural response to glossiness in the ventral visual pathway, except for V3A/B in the dorsal visual pathway, whose involvement in the processing of glossiness could be specific to the human visual system. Second, we investigated the cortical regions that were modulated by selective attention to glossiness (Experiment 2). The visual areas that showed higher activation to attention to glossiness than that to either form or orientation were identified as right hV4, right VO-2, and right V3A/B, which were commonly identified in Experiment 1. The results indicate that these commonly identified visual areas in the human visual cortex may play important roles in glossiness perception. Copyright © 2014. Published by Elsevier Inc.

  13. Task relevance modulates the cortical representation of feature conjunctions in the target template.

    Science.gov (United States)

    Reeder, Reshanne R; Hanke, Michael; Pollmann, Stefan

    2017-07-03

    Little is known about the cortical regions involved in representing task-related content in preparation for visual task performance. Here we used representational similarity analysis (RSA) to investigate the BOLD response pattern similarity between task relevant and task irrelevant feature dimensions during conjunction viewing and target template maintenance prior to visual search. Subjects were cued to search for a spatial frequency (SF) or orientation of a Gabor grating and we measured BOLD signal during cue and delay periods before the onset of a search display. RSA of delay period activity revealed that widespread regions in frontal, posterior parietal, and occipitotemporal cortices showed general representational differences between task relevant and task irrelevant dimensions (e.g., orientation vs. SF). In contrast, RSA of cue period activity revealed sensory-related representational differences between cue images (regardless of task) at the occipital pole and additionally in the frontal pole. Our data show that task and sensory information are represented differently during viewing and during target template maintenance, and that task relevance modulates the representation of visual information across the cortex.

  14. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  15. Perceptual learning modifies the functional specializations of visual cortical areas.

    Science.gov (United States)

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  16. Development of cortical thickness and surface area in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Vincent T. Mensen

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volume – cortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD.

  17. A Model for Cortical 40 Hz oscillations invokes inter-area interactions

    DEFF Research Database (Denmark)

    Cotterill, Rodney M J; Helix Nielsen, Claus

    1991-01-01

    COMPUTER simulation of the dynamics of neuronal assemblies within minicolumns, and of the interactions between minicolumns in different cortical areas, has produced a quantitative explanation of the 35-60 Hz oscillations recently observed in adult cat striate cortices. The observed behavior...

  18. Plantar Sole Unweighting Alters the Sensory Transmission to the Cortical Areas

    Directory of Open Access Journals (Sweden)

    Laurence Mouchnino

    2017-05-01

    Full Text Available It is well established that somatosensory inputs to the cortex undergo an early and a later stage of processing. The later has been shown to be enhanced when the earlier transmission decreased. In this framework, mechanical factors such as the mechanical stress to which sensors are subjected when wearing a loaded vest are associated with a decrease in sensory transmission. This decrease is in turn associated with an increase in the late sensory processes originating from cortical areas. We hypothesized that unweighting the plantar sole should lead to a facilitation of the sensory transmission. To test this hypothesis, we recorded cortical somatosensory evoked potentials (SEPs of individuals following cutaneous stimulation (by mean of an electrical stimulation of the foot sole in different conditions of unweighting when standing still with eyes closed. To this end, the effective bodyweight (BW was reduced from 100% BW to 40% BW. Contrary to what was expected, we found an attenuation of sensory information when the BW was unweighted to 41% which was not compensated by an increase of the late SEP component. Overall these results suggested that the attenuation of sensory transmission observed in 40 BW condition was not solely due to the absence of forces acting on the sole of the feet but rather to the current relevance of the afferent signals related to the balance constraints of the task.

  19. Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm

    Directory of Open Access Journals (Sweden)

    Mitsuaki Takemi

    2017-10-01

    Full Text Available Cortical stimulation mapping is a valuable tool to test the functional organization of the motor cortex in both basic neurophysiology (e.g., elucidating the process of motor plasticity and clinical practice (e.g., before resecting brain tumors involving the motor cortex. However, compilation of motor maps based on the motor threshold (MT requires a large number of cortical stimulations and is therefore time consuming. Shortening the time for mapping may reduce stress on the subjects and unveil short-term plasticity mechanisms. In this study, we aimed to establish a cortical stimulation mapping procedure in which the time needed to identify a motor area is reduced to the order of minutes without compromising reliability. We developed an automatic motor mapping system that applies epidural cortical surface stimulations (CSSs through one-by-one of 32 micro-electrocorticographic electrodes while examining the muscles represented in a cortical region. The next stimulus intensity was selected according to previously evoked electromyographic responses in a closed-loop fashion. CSS was repeated at 4 Hz and electromyographic responses were submitted to a newly proposed algorithm estimating the MT with smaller number of stimuli with respect to traditional approaches. The results showed that in all tested rats (n = 12 the motor area maps identified by our novel mapping procedure (novel MT algorithm and 4-Hz CSS significantly correlated with the maps achieved by the conventional MT algorithm with 1-Hz CSS. The reliability of the both mapping methods was very high (intraclass correlation coefficients ≧0.8, while the time needed for the mapping was one-twelfth shorter with the novel method. Furthermore, the motor maps assessed by intracortical microstimulation and the novel CSS mapping procedure in two rats were compared and were also significantly correlated. Our novel mapping procedure that determined a cortical motor area within a few minutes could help

  20. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    Science.gov (United States)

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  1. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  2. Optimal staining methods for delineation of cortical areas and neuron counts in human brains.

    Science.gov (United States)

    Uylings, H B; Zilles, K; Rajkowska, G

    1999-04-01

    For cytoarchitectonic delineation of cortical areas in human brain, the Gallyas staining for somata with its sharp contrast between cell bodies and neuropil is preferable to the classical Nissl staining, the more so when an image analysis system is used. This Gallyas staining, however, does not appear to be appropriate for counting neuron numbers in pertinent brain areas, due to the lack of distinct cytological features between small neurons and glial cells. For cell counting Nissl is preferable. In an optimal design for cell counting at least both the Gallyas and the Nissl staining must be applied, the former staining for cytoarchitectural delineaton of cortical areas and the latter for counting the number of neurons in the pertinent cortical areas. Copyright 1999 Academic Press.

  3. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease.

    Science.gov (United States)

    Thangavel, R; Sahu, S K; Van Hoesen, G W; Zaheer, A

    2009-05-05

    The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimer's disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.

  5. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Science.gov (United States)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  6. The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study

    NARCIS (Netherlands)

    van de Werd, H.J.J.M.; Uylings, H.B.M.

    2008-01-01

    Cytoarchitectonic characterization of borders is necessary for stereological studies (e.g., total cell number estimation), in which particular cortical areas have to be defined. In this study, cytoarchitectonic characteristics are described and illustrated for the rat ventral or orbital frontal

  7. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing.

    Science.gov (United States)

    Guéguin, Marie; Le Bouquin-Jeannès, Régine; Faucon, Gérard; Chauvel, Patrick; Liégeois-Chauvel, Catherine

    2007-02-01

    The human auditory cortex includes several interconnected areas. A better understanding of the mechanisms involved in auditory cortical functions requires a detailed knowledge of neuronal connectivity between functional cortical regions. In human, it is difficult to track in vivo neuronal connectivity. We investigated the interarea connection in vivo in the auditory cortex using a method of directed coherence (DCOH) applied to depth auditory evoked potentials (AEPs). This paper presents simultaneous AEPs recordings from insular gyrus (IG), primary and secondary cortices (Heschl's gyrus and planum temporale), and associative areas (Brodmann area [BA] 22) with multilead intracerebral electrodes in response to sinusoidal modulated white noises in 4 epileptic patients who underwent invasive monitoring with depth electrodes for epilepsy surgery. DCOH allowed estimation of the causality between 2 signals recorded from different cortical sites. The results showed 1) a predominant auditory stream within the primary auditory cortex from the most medial region to the most lateral one whatever the modulation frequency, 2) unidirectional functional connection from the primary to secondary auditory cortex, 3) a major auditory propagation from the posterior areas to the anterior ones, particularly at 8, 16, and 32 Hz, and 4) a particular role of Heschl's sulcus dispatching information to the different auditory areas. These findings suggest that cortical processing of auditory information is performed in serial and parallel streams. Our data showed that the auditory propagation could not be associated to a unidirectional traveling wave but to a constant interaction between these areas that could reflect the large adaptive and plastic capacities of auditory cortex. The role of the IG is discussed.

  8. Interhemispheric claustral circuits coordinate somatomotor and visuomotor cortical areas that regulate exploratory behaviors

    Directory of Open Access Journals (Sweden)

    Jared Brent Smith

    2014-05-01

    Full Text Available The claustrum has a role in the interhemispheric transfer of certain types of sensorimotor information. Whereas the whisker region in rat motor (M1 cortex sends dense projections to the contralateral claustrum, the M1 forelimb representation does not. The claustrum sends strong ipsilateral projections to the whisker regions in M1 and somatosensory (S1 cortex, but its projections to the forelimb cortical areas are weak. These distinctions suggest that one function of the M1 projections to the contralateral claustrum is to coordinate the cortical areas that regulate peripheral sensor movements during behaviors that depend on bilateral sensory acquisition. If this hypothesis is true, then similar interhemispheric circuits should interconnect the frontal eye fields (FEF with the contralateral claustrum and its network of projections to vision-related cortical areas. To test this hypothesis, anterograde and retrograde tracers were placed in physiologically-defined parts of the FEF and primary visual cortex (V1 in rats. We observed dense FEF projections to the contralateral claustrum that terminated in the midst of claustral neurons that project to both FEF and V1. While the FEF inputs to the claustrum come predominantly from the contralateral hemisphere, the claustral projections to FEF and V1 are primarily ipsilateral. Detailed comparison of the present results with our previous studies on somatomotor claustral circuitry revealed a well-defined functional topography in which the ventral claustrum is connected with visuomotor cortical areas and the dorsal regions are connected with somatomotor areas. These results suggest that subregions within the claustrum play a critical role in coordinating the cortical areas that regulate the acquisition of modality-specific sensory information during exploration and other behaviors that require sensory attention.

  9. Automatic segmentation of human cortical layer-complexes and architectural areas using diffusion MRI and its validation

    Directory of Open Access Journals (Sweden)

    Matteo Bastiani

    2016-11-01

    Full Text Available Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high resolution diffusion MRI data. Several groups of adjacent layers could be distinguished in human primary motor and premotor cortex. We then used the signature of diffusion MRI signals along cortical depth as a criterion to detect area boundaries and find borders at which the signature changes abruptly. We validate our clustering results by histological analysis of the same tissue. These results confirm earlier studies which show that diffusion MRI can probe layer-specific intracortical fiber organization and, moreover, suggests that it contains enough information to automatically classify architecturally distinct cortical areas. We discuss the strengths and weaknesses of the automatic clustering approach and its appeal for MR-based cortical histology.

  10. A proposed number system for the 107 cortical areas of Economo and Koskinas, and Brodmann area correlations.

    Science.gov (United States)

    Triarhou, Lazaros C

    2007-01-01

    In their Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex, Economo and Koskinas defined 54 'ground,' 76 'variant,' and 107 'modification' areas. The 107 modifications are topographically distributed as 35 frontal, 13 superior limbic, 6 insular, 18 parietal, 7 occipital, 14 temporal and 14 inferior limbic (or hippocampal). One way to make the Economo-Koskinas system more practical is to encode the complex symbol notations of the 107 cortical areas with numbers EK 1 through EK 107. The present study does that, and it further correlates Economo-Koskinas areas with Brodmann areas, based on an overview of the classical and modern neurohistological literature. Copyright (c) 2007 S. Karger AG, Basel.

  11. Cortico-cortical connections of areas 44 and 45B in the macaque monkey.

    Science.gov (United States)

    Frey, Stephen; Mackey, Scott; Petrides, Michael

    2014-04-01

    In the human brain, areas 44 and 45 constitute Broca's region, the ventrolateral frontal region critical for language production. The homologues of these areas in the macaque monkey brain have been established by direct cytoarchitectonic comparison with the human brain. The cortical areas that project monosynaptically to areas 44 and 45B in the macaque monkey brain require clarification. Fluorescent retrograde tracers were placed in cytoarchitectonic areas 44 and 45B of the macaque monkey, as well as in the anterior part of the inferior parietal lobule and the superior temporal gyrus. The results demonstrate that ipsilateral afferent connections of area 44 arise from local frontal areas, including rostral premotor cortical area 6, from secondary somatosensory cortex, the caudal insula, and the cingulate motor region. Area 44 is strongly linked with the anterior inferior parietal lobule (particularly area PFG and the adjacent anterior intraparietal sulcus). Input from the temporal lobe is limited to the fundus of the superior temporal sulcus extending caudal to the central sulcus. There is also input from the sulcal part of area Tpt in the upper bank of the superior temporal sulcus. Area 45B shares some of the connections of area 44, but can be distinguished from area 44 by input from the caudal inferior parietal lobule (area PG) and significant input from the part of the superior temporal sulcus that extends anterior to the central sulcus. Area 45B also receives input from visual association cortex that is not observed in area 44. The results have provided a clarification of the relative connections of areas 44 and 45B of the ventrolateral frontal region which, in the human brain, subserves certain aspects of language processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    Directory of Open Access Journals (Sweden)

    Marie-Eve eLaramée

    2015-01-01

    Full Text Available Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  13. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    Science.gov (United States)

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  14. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.

    Science.gov (United States)

    Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H

    2015-08-01

    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    Science.gov (United States)

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  16. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram

    2014-01-01

    PM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated...... with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement....

  17. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    Science.gov (United States)

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  18. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    Science.gov (United States)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  19. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  20. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    Science.gov (United States)

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  1. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  2. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Directory of Open Access Journals (Sweden)

    Megan M Herting

    Full Text Available Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  3. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Science.gov (United States)

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Dahl, Ronald E; Sowell, Elizabeth R

    2015-01-01

    Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal) on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  4. Reduced cortical thickness and increased surface area in antisocial personality disorder.

    Science.gov (United States)

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Lee, Seong-Whan; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-11-19

    Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A synergy-based hand control is encoded in human motor cortical areas

    Science.gov (United States)

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  6. Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Amanda Worker

    Full Text Available Parkinson's disease (PD, Multiple System Atrophy (MSA and Progressive Supranuclear Palsy (PSP are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0. Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.

  7. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    Science.gov (United States)

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  9. State-dependent changes in auditory sensory gating in different cortical areas in rats.

    Directory of Open Access Journals (Sweden)

    Renli Qi

    Full Text Available Sensory gating is a process in which the brain's response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject's behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM sleep and Non-REM (NREM sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.

  10. Reperfusion of specific cortical areas is associated with improvement in distinct forms of hemispatial neglect.

    Science.gov (United States)

    Khurshid, Shaan; Trupe, Lydia A; Newhart, Melissa; Davis, Cameron; Molitoris, John J; Medina, Jared; Leigh, Richard; Hillis, Argye E

    2012-05-01

    To test the hypothesis that restoring blood flow to specific right cortical regions in acute stroke results in improvement in distinct forms of hemispatial neglect distinguished by reference frame: viewer-centered versus stimulus-centered neglect. Twenty five patients with acute right stroke were evaluated at Day 1 and Day 3-5 with a battery of neglect tests and Diffusion- and Perfusion-Weighted MR Imaging. Multivariate linear regression analysis revealed Brodmann areas (BAs) where reperfusion predicted degree of improvement in scores on each type of neglect, independently of reperfusion of other areas, total change in the volume of infarct or hypoperfusion, and age. Reperfusion of dorsal frontoparietal cortex (including BAs 40, 46, and 4) independently predicted improvement in viewer-centered neglect, such as detecting stimuli on left in line cancellation and scene copying (r=.951; p<.0001). Reperfusion of a more ventral temporo-occipital cortex, including right BAs 37, 38, 21 and 18, independently contributed to improvement in stimulus-centered neglect, such as detecting left gaps in circles (r=.926; p<.0001). Reperfusion of right midfusiform gyrus (temporal occipital cortex), change in total volume of ischemia, change in volume of hypoperfusion and age predicted degree of improvement in reading (reduction in "neglect dyslexic" errors; r=.915; p<.0001). Results demonstrate that reperfusing specific cortical regions yields improvement in different types of neglect. Copyright © 2011 Elsevier Srl. All rights reserved.

  11. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    Science.gov (United States)

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  12. Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition

    Science.gov (United States)

    Nasr, Shahin; Tootell, Roger BH

    2012-01-01

    Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518

  13. Pragmatics in action: indirect requests engage theory of mind areas and the cortical motor network.

    Science.gov (United States)

    van Ackeren, Markus J; Casasanto, Daniel; Bekkering, Harold; Hagoort, Peter; Rueschemeyer, Shirley-Ann

    2012-11-01

    Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word "grasp" elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59-70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416-423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance "It is hot here!" in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical

  14. Localization of Human Cortical Areas Underlying Glossiness Perception: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yuichi Sakano

    2011-05-01

    Full Text Available We conducted two fMRI experiments to clarify what cortical areas are involved in perception of surface glossiness. To dissociate activations caused by glossiness from those caused by low-level features such as luminance and luminance contrast of the stimulus, we utilized the perceptual glossiness constancy (Experiment 1 and the selective attention technique (Experiment 2. In Experiment 1, subjects viewed glossy or matte objects under bright or dim illumination. The mean luminance and luminance RMS contrast of glossy objects under dim illumination were lower than those of matte objects under bright illumination. Thus, if certain areas are more activated by the former stimulus than the latter, the activation differences can be explained by the differences in surface glossiness but not by the differences in mean luminance or luminance RMS contrast of the stimulus. In Experiment 2, subjects judged whether the paired objects were the same or different in terms of glossiness, 3D form, or 3D orientation. If certain areas are more activated during the glossiness discrimination task than the other two tasks, it is suggested that the areas are involved in glossiness perception. Common areas identified as those involved in glossiness perception in both experiments are bilateral ventral occipital areas.

  15. The effects of caffeine ingestion on cortical areas: functional imaging study.

    Science.gov (United States)

    Park, Chan-A; Kang, Chang-Ki; Son, Young-Don; Choi, Eun-Jung; Kim, Sang-Hoon; Oh, Seung-Taek; Kim, Young-Bo; Park, Chan-Woong; Cho, Zang-Hee

    2014-05-01

    The effect of caffeine as a cognitive enhancer is well known; however, caffeine-induced changes in the cortical regions are still not very clear. Therefore, in this study, we conducted an investigation of the activation and deactivation with blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and of metabolic activity change with positron emission tomography (PET) in the human brain. Fourteen healthy subjects performed a visuomotor task inducing attention with 3T MRI, and PET imaging was also carried out in seven subjects to determine the cerebral glucose metabolic changes of caffeine at rest. The result by fMRI showed increased BOLD activation in the left cerebellum, putamen, insula, thalamus and the right primary motor cortex, and decreased BOLD deactivation in the posterior medial and the left posterior lateral cortex. Also, the resting state PET data showed reduced metabolic activity in the putamen, caudate nucleus, insula, pallidum and posterior medial cortex. The common cortical regions between fMRI and PET, such as putamen, insula and posterior medial cortex, where significant changes occurred after caffeine ingestion, are well known to play an important role in cognitive function like attention. This result suggests that the effect of caffeine as a cognitive enhancer is derived by modulating the attentional areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cortical surface area reduction in identification of subjects at high risk for post-traumatic stress disorder: A pilot study.

    Science.gov (United States)

    Hu, Hao; Sun, Yawen; Su, Shanshan; Wang, Yao; Qiu, Yongming; Yang, Xi; Zhou, Yan; Xiao, Zeping; Wang, Zhen

    2018-01-01

    Victims of motor vehicle accidents often develop post-traumatic stress disorder, which causes significant social function loss. For the difficulty in treating post-traumatic stress disorder, identification of subjects at high risk for post-traumatic stress disorder is essential for providing possible intervention. This paper aims to examine the cortical structural traits related to susceptibility to post-traumatic stress disorder. To address this issue, we performed structural magnetic resonance imaging study in motor vehicle accident victims within 48 hours from the accidents. A total of 70 victims, available for both clinical and magnetic resonance imaging data, enrolled in our study. Upon completion of 6-month follow-up, 29 of them developed post-traumatic stress disorder, while 41 of them didn't. At baseline, voxelwise comparisons of cortical thickness, cortical area and cortical volume were conducted between post-traumatic stress disorder group and trauma control group. As expected, several reduced cortical volume within frontal-temporal loop were observed in post-traumatic stress disorder. For cortical thickness, no between-group differences were observed. There were three clusters in left hemisphere and one cluster in right hemisphere showing decreased cortical area in post-traumatic stress disorder patients, compared with trauma controls. Peak voxels of the three clusters in left hemisphere were separately located in superior parietal cortex, insula and rostral anterior cingulate cortex. The finding of reduced surface area of left insula and left rostral anterior cingulate cortex suggests that shrinked surface area in motor vehicle accident victims could act as potential biomarker of subjects at high risk for post-traumatic stress disorder.

  17. [Brodmann Areas 39 and 40: Human Parietal Association Area and Higher Cortical Function].

    Science.gov (United States)

    Sakurai, Yasuhisa

    2017-04-01

    The anatomy and function of the angular gyrus (Brodmann Area 39) and supramarginal gyrus (Brodmann Area 40) are described here. Both gyri constitute the inferior part of the parietal lobe. Association fibers from the angular gyrus project to the dorsolateral prefrontal cortex via the superior longitudinal fasciculus (SLF) II/arcuate fasciculus (AF), whereas those from the supramarginal gyrus project to the ventrolateral prefrontal cortex via SLF III/AF. Damage to the left angular gyrus causes kanji agraphia (lexical agraphia) and mild anomia, whereas damage to the left supramarginal gyrus causes kana alexia (phonological dyslexia) and kana agraphia (phonological agraphia). Damage to either gyrus causes Gerstmann's syndrome (finger agnosia, left-right disorientation, agraphia and acalculia) and verbal short-term memory impairment. "Angular alexia with agraphia" results from damage to the middle occipital gyrus posterior to the angular gyrus. Alexia and agraphia, with lesions in the angular or supramarginal gyrus, are characterized by kana transposition errors in reading words, which suggests the impairment of sequential phonological processing.

  18. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  19. Brodmann area 12: an historical puzzle relevant to FTLD.

    Science.gov (United States)

    Kawamura, M; Miller, M W; Ichikawa, H; Ishihara, K; Sugimoto, A

    2011-05-03

    Brodmann brain maps, assembled in 1909, are still in use, but understanding of their animal-human homology is uncertain. Furthermore, in 1909, Brodmann did not identify human area 12 (BA12), a location now important to understanding of frontotemporal lobar degeneration (FTLD). We re-examined Brodmann's areas, both animal and human, in his 1909 monograph and other literature, both historical and contemporary, and projected BA12 onto the medial surface of a fixed human brain to show its location. We found Brodmann did identify human BA12 in later maps (1910 and 1914), but that his brain areas, contrary to his own aims as a comparative anatomist, are now used as physiologic loci in human brain. Because of its current link with frontotemporal dementia, BA12's transition from animal (1909) to human (1910 and 1914) is not only an historical puzzle. It impacts how Brodmann's areas, based on comparative animal-human cytoarchitecture, are widely used in current research as functional loci in human brain.

  20. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

    Science.gov (United States)

    Lappe, Claudia; Steinsträter, Olaf; Pantev, Christo

    2013-01-01

    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

  1. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection

    Directory of Open Access Journals (Sweden)

    Claudia eLappe

    2013-06-01

    Full Text Available The mismatch negativity (MMN, an event-related potential (ERP representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a mismatch negativity in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge.We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG, inferior frontal cortex (IFC, and the superior frontal (SFG and orbitofrontal (OFG gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilatral activation within the vicinity of auditory cortices and in the inferior parietal lobule, an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the the dual-pathway model of auditory processing.

  2. Reorganization and stability for motor and language areas using cortical stimulation: case example and review of the literature.

    Science.gov (United States)

    Serafini, Sandra; Komisarow, Jordan M; Gallentine, William; Mikati, Mohamad A; Bonner, Melanie J; Kranz, Peter G; Haglund, Michael M; Grant, Gerald

    2013-11-26

    The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  3. Reorganization and Stability for Motor and Language Areas Using Cortical Stimulation: Case Example and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sandra Serafini

    2013-11-01

    Full Text Available The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  4. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    Science.gov (United States)

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Relevance and Benefits of Urban Water Reuse in Tourist Areas

    Directory of Open Access Journals (Sweden)

    Gaston Tong Sang

    2012-01-01

    Full Text Available Urban water reuse is one of the most rapidly growing water reuse applications worldwide and one of the major elements of the sustainable management of urban water cycle. Because of the high probability of direct contact between consumers and recycled water, many technical and regulatory challenges have to be overcome in order to minimize health risks at affordable cost. This paper illustrates the keys to success of one of the first urban water reuse projects in the island Bora Bora, French Polynesia. Special emphasis is given on the reliability of operation of the membrane tertiary treatment, economic viability in terms of pricing of recycled water and operating costs, as well as on the benefits of water reuse for the sustainable development of tourist areas.

  6. Observing, performing, and understanding actions: revisiting the role of cortical motor areas in processing of action words

    NARCIS (Netherlands)

    Rüschemeyer, S.A.; Ekman, M.; Ackeren, M.J. van; Kilner, J.

    2014-01-01

    Language content and action/perception have been shown to activate common brain areas in previous neuroimaging studies. However, it is unclear whether overlapping cortical activation reflects a common neural source or adjacent, but distinct, sources. We address this issue by using multivoxel pattern

  7. Structural asymmetry of cortical visual areas is related to ocular dominance

    DEFF Research Database (Denmark)

    Jensen, Bettina H; Hougaard, Anders; Amin, Faisal M

    2015-01-01

    lateralized visual areas were identified, both right>left and left>right. When correlating the asymmetries to the functional parameters, we found a significant correlation to ocular dominance (P...The grey matter of the human brain is asymmetrically distributed between the cerebral hemispheres. This asymmetry includes visual areas, but its relevance to visual function is not understood. Voxel-based morphometry is a well-established technique for localization and quantification of cerebral...... was identified to be significantly larger in the left hemisphere for right-eyed participants and vice versa. These results suggest a cerebral basis for ocular dominance....

  8. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    Science.gov (United States)

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  10. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin

    2011-01-01

    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence....... The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD...... treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves....

  11. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Directory of Open Access Journals (Sweden)

    Hongwei eMao

    2015-03-01

    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  12. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  13. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    Science.gov (United States)

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  14. Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation

    NARCIS (Netherlands)

    Self, M.W.; van Kerkoerle, T; Super, H.; Roelfsema, P.R.

    2013-01-01

    Background: What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage

  15. Distinct roles of the cortical layers of area v1 in figure-ground segregation

    NARCIS (Netherlands)

    Self, Matthew W.; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R.

    2013-01-01

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward,

  16. Crossmodal plasticity in auditory, visual and multisensory cortical areas following noise-induced hearing loss in adulthood.

    Science.gov (United States)

    Schormans, Ashley L; Typlt, Marei; Allman, Brian L

    2017-01-01

    Complete or partial hearing loss results in an increased responsiveness of neurons in the core auditory cortex of numerous species to visual and/or tactile stimuli (i.e., crossmodal plasticity). At present, however, it remains uncertain how adult-onset partial hearing loss affects higher-order cortical areas that normally integrate audiovisual information. To that end, extracellular electrophysiological recordings were performed under anesthesia in noise-exposed rats two weeks post-exposure (0.8-20 kHz at 120 dB SPL for 2 h) and age-matched controls to characterize the nature and extent of crossmodal plasticity in the dorsal auditory cortex (AuD), an area outside of the auditory core, as well as in the neighboring lateral extrastriate visual cortex (V2L), an area known to contribute to audiovisual processing. Computer-generated auditory (noise burst), visual (light flash) and combined audiovisual stimuli were delivered, and the associated spiking activity was used to determine the response profile of each neuron sampled (i.e., unisensory, subthreshold multisensory or bimodal). In both the AuD cortex and the multisensory zone of the V2L cortex, the maximum firing rates were unchanged following noise exposure, and there was a relative increase in the proportion of neurons responsive to visual stimuli, with a concomitant decrease in the number of neurons that were solely responsive to auditory stimuli despite adjusting the sound intensity to account for each rat's hearing threshold. These neighboring cortical areas differed, however, in how noise-induced hearing loss affected audiovisual processing; the total proportion of multisensory neurons significantly decreased in the V2L cortex (control 38.8 ± 3.3% vs. noise-exposed 27.1 ± 3.4%), and dramatically increased in the AuD cortex (control 23.9 ± 3.3% vs. noise-exposed 49.8 ± 6.1%). Thus, following noise exposure, the cortical area showing the greatest relative degree of multisensory convergence

  17. Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability?

    Science.gov (United States)

    Docherty, Anna R; Hagler, Donald J; Panizzon, Matthew S; Neale, Michael C; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Jak, Amy; Lyons, Michael J; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-02-01

    The phenotypic and genetic relationship between global cortical size and general cognitive ability (GCA) appears to be driven by surface area (SA) and not cortical thickness (CT). Gyrification (cortical folding) is an important property of the cortex that helps to increase SA within a finite space, and may also improve connectivity by reducing distance between regions. Hence, gyrification may be what underlies the SA-GCA relationship. In previous phenotypic studies, a 3-dimensional gyrification index (3DGI) has been positively associated with cognitive ability and negatively associated with mild cognitive impairment, Alzheimer's disease, and psychiatric disorders affecting cognition. However, the differential genetic associations of 3DGI and SA with GCA are still unclear. We examined the heritability of 3DGI, and the phenotypic, genetic, and environmental associations of 3DGI with SA and GCA in a large sample of adult male twins (N = 512). Nearly 85% of the variance in 3DGI was due to genes, and 3DGI had a strong phenotypic and genetic association with SA. Both 3DGI and total SA had positive phenotypic correlations with GCA. However, the SA-GCA correlation remained significant after controlling for 3DGI, but not the other way around. There was also significant genetic covariance between SA and GCA, but not between 3DGI and GCA. Thus, despite the phenotypic and genetic associations between 3DGI and SA, our results do not support the hypothesis that gyrification underlies the association between SA and GCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area.

    Science.gov (United States)

    Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi

    2016-04-01

    A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Coregistering functional near-infrared spectroscopy with underlying cortical areas in infants

    Science.gov (United States)

    Lloyd-Fox, Sarah; Richards, John E.; Blasi, Anna; Murphy, Declan G. M.; Elwell, Clare E.; Johnson, Mark H.

    2014-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) is becoming a popular tool in developmental neuroscience for mapping functional localized brain responses. However, as it cannot provide information about underlying anatomy, researchers have begun to conduct spatial registration of fNIRS channels to cortical anatomy in adults. The current work investigated this issue with infants by coregistering fNIRS and magnetic resonance imaging (MRI) data from 55 individuals. Our findings suggest that fNIRS channels can be reliably registered with regions in the frontal and temporal cortex of infants from 4 to 7 months of age. Although some macro-anatomical regions are difficult to consistently define, others are more stable and fNIRS channels on an age-appropriate MRI template are often consistent with individual infant MRIs. We have generated a standardized scalp surface map of fNIRS channel locators to reliably locate cortical regions for fNIRS developmental researchers. This new map can be used to identify the inferior frontal gyrus, superior temporal sulcus (STS) region [which includes the superior and middle temporal gyri (MTG) nearest to the STS], and MTG and temporal-parietal regions in 4- to 7-month-old infants. Future work will model data for the whole head, taking into account the properties of light transport in tissue, and expanding to different ages across development. PMID:25558463

  20. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  1. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    International Nuclear Information System (INIS)

    Meyer, Philipp T.; Sturz, Laszlo; Schreckenberger, Mathias; Setani, Keyvan S.; Buell, Udalrich; Spetzger, Uwe; Meyer, Georg F.; Sabri, Osama

    2003-01-01

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but

  2. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Hagan, Cindy C; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2015-01-01

    Previous studies have reported changes in gray matter volume in youths with conduct disorder (CD), although these differences are difficult to interpret as they may have been driven by alterations in cortical thickness, surface area (SA), or folding. The objective of this study was to use surface-based morphometry (SBM) methods to compare male youths with CD and age and sex-matched healthy controls (HCs) in cortical thickness, SA, and folding. We also tested for structural differences between the childhood-onset and adolescence-onset subtypes of CD and performed regression analyses to assess for relationships between CD symptoms and callous-unemotional (CU) traits and SBM-derived measures. We acquired structural neuroimaging data from 20 HCs and 36 CD participants (18 with childhood-onset CD and 18 with adolescence-onset CD) and analyzed the data using FreeSurfer. Relative to HCs, youths with CD showed reduced cortical thickness in the superior temporal gyrus, reduced SA in the orbitofrontal cortex (OFC), and increased cortical folding in the insula. There were no significant differences between the childhood-onset and adolescence-onset CD subgroups in cortical thickness or SA, but several frontal and temporal regions showed increased cortical folding in childhood-onset relative to adolescence-onset CD participants. Both CD subgroups also showed increased cortical folding relative to HCs. CD symptoms were negatively correlated with OFC SA whereas CU traits were positively correlated with insula folding. Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and

  3. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.

    Science.gov (United States)

    Jirmann, Kay-Uwe; Pernberg, Joachim; Eysel, Ulf T

    2009-01-01

    The role of GABAergic inhibition in orientation and direction selectivity has been investigated with the GABA(A)-Blocker bicuculline in the cat visual cortex, and results indicated a region specific difference of functional contributions of GABAergic inhibition in areas 17 and 18. In area 17 inhibition appeared mainly involved in sculpturing orientation and direction tuning, while in area 18 inhibition seemed more closely associated with temporal receptive field properties. However, different types of stimuli were used to test areas 17 and 18 and further studies performed in area 17 suggested an important influence of the stimulus type (single light bars vs. moving gratings) on the evoked responses (transient vs. sustained) and inhibitory mechanisms (GABA(A) vs. GABA(B)) which in turn might be more decisive for the specific results than the cortical region. To insert the missing link in this chain of arguments it was necessary to study GABAergic inhibition in area 18 with moving light bars, which has not been done so far. Therefore, in the present study we investigated area 18 cells responding to oriented moving light bars with extracellular recordings and reversible microiontophoretic blockade of GABAergig inhibition with bicuculline methiodide. The majority of neurons was characterized by a pronounced orientation specificity and variable degrees of direction selectivity. GABA(A)ergic inhibition significantly influenced preferred orientation and preferred direction in area 18. During the action of bicuculline orientation tuning width increased and orientation and direction selectivity indices decreased. Our results obtained in area 18 with moving bar stimuli, although in the proportion of affected cells similar to those described in area 17, quantitatively matched the findings for direction and orientation specificity obtained with moving gratings in area 18. Accordingly, stimulus type is not decisive in area 18 and the GABA(A) dependent, inhibitory intracortical

  4. Feedback from visual cortical area 7 to areas 17 and 18 in cats: How neural web is woven during feedback.

    Science.gov (United States)

    Yang, X; Ding, H; Lu, J

    2016-01-15

    To investigate the feedback effect from area 7 to areas 17 and 18, intrinsic signal optical imaging combined with pharmacological, morphological methods and functional magnetic resonance imaging (fMRI) was employed. A spatial frequency-dependent decrease in response amplitude of orientation maps was observed in areas 17 and 18 when area 7 was inactivated by a local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The pattern of orientation maps of areas 17 and 18 after the inactivation of area 7, if they were not totally blurred, paralleled the normal one. In morphological experiments, after one point at the shallow layers within the center of the cat's orientation column of area 17 was injected electrophoretically with HRP (horseradish peroxidase), three sequential patches in layers 1, 2 and 3 of area 7 were observed. Employing fMRI it was found that area 7 feedbacks mainly to areas 17 and 18 on ipsilateral hemisphere. Therefore, our conclusions are: (1) feedback from area 7 to areas 17 and 18 is spatial frequency modulated; (2) feedback from area 7 to areas 17 and 18 occurs mainly ipsilaterally; (3) histological feedback pattern from area 7 to area 17 is weblike. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  6. A neural model of motion processing and visual navigation by cortical area MST.

    Science.gov (United States)

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  7. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    Science.gov (United States)

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both pstimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Ipsilateral corticotectal projections from the primary, premotor and supplementary motor cortical areas in adult macaque monkeys: a quantitative anterograde tracing study

    Science.gov (United States)

    Fregosi, Michela; Rouiller, Eric M.

    2018-01-01

    The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678

  9. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in non-human primates

    Science.gov (United States)

    Yazdan-Shahmorad, Azadeh; Diaz-Botia, Camilo; Hanson, Tim; Ledochowitsch, Peter; Maharabiz, Michel M.; Sabes, Philip N.

    2015-03-01

    Although several studies have shown the feasibility of using optogenetics in non-human primates (NHP), reliable largescale chronic interfaces have not yet been reported for such studies in NHP. Here we introduce a chronic setup that permits repeated, daily optogenetic stimulation and large-scale recording from the same sites in NHP cortex. The setup combines optogenetics with a transparent artificial dura (AD) and high-density micro-electrocorticography (μECoG). To obtain expression across large areas of cortex, we infused AAV5-CamKIIa-C1V1-EYFP viral vector using an infusion technique based on convection-enhanced delivery (CED) in primary somatosensory (S1) and motor (M1) cortices. By epifluorescent imaging through AD we were able to confirm high levels of expression covering about 110 mm2 of S1 and M1. We then incorporated a 192-channel μECoG array spanning 192 mm2 into the AD for simultaneous electrophysiological recording during optical stimulation. The array consists of patterned Pt-Au-Pt metal traces embedded in ~10 μm Parylene-C insulator. The parylene is sufficiently transparent to allow minimally attenuated optical access for optogenetic stimulation. The array was chronically implanted over the opsin-expressing areas in M1 and S1 for over two weeks. Optical stimulation was delivered via a fiber optic placed on the surface of the AD. With this setup, we recorded reliable evoked activity following light stimulation at several locations. Similar responses were recorded across tens of days, however a decline in the light-evoked signal amplitude was observed during this period due to the growth of dural tissue over the array. These results show the feasibility of a chronic interface for combined largescale optogenetic stimulation and cortical recordings across days.

  10. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    Science.gov (United States)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  11. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence.

    Science.gov (United States)

    Durazzo, Timothy C; Tosun, Duygu; Buckley, Shannon; Gazdzinski, Stefan; Mon, Anderson; Fryer, Susanna L; Meyerhoff, Dieter J

    2011-06-01

    At least 60% of those treated for an alcohol use disorder will relapse. Empirical study of the integrity of the brain reward system (BRS) is critical to understanding the mechanisms of relapse as this collection of circuits is implicated in the development and maintenance of all forms of addictive disorders. This study compared thickness, surface area, and volume in neocortical components of the BRS among nonsmoking light-drinking controls (controls), individuals who remained abstinent and those who relapsed after treatment. Seventy-five treatment-seeking alcohol-dependent individuals (abstinent for 7±3 days) and 43 controls completed 1.5T proton magnetic resonance imaging studies. Parcellated morphological data were obtained for following bilateral components of the BRS: rostral and caudal anterior cingulate cortex, insula, medial and lateral orbitofrontal cortex (OFC), rostral and caudal middle and superior frontal gyri, amygdala and hippocampus as well as for 26 other bilateral neocortical regions. Alcohol-dependent participants were followed over 12-months after baseline study and were classified as abstainers (no alcohol consumption; n=24) and relapsers (any alcohol consumption; n=51) at follow-up. Relapsers and abstainers demonstrated lower cortical thickness in the vast majority of BRS regions as well as lower global thickness compared to controls. Relapsers had lower total BRS surface area than both controls and abstainers, but abstainers were not significantly different from controls on any surface area measure. Relapsers demonstrated lower volumes than controls in the majority of regions, while abstainers showed lower volumes than controls in the superior frontal gyrus, insula, amygdala, and hippocampus, bilaterally. Relapsers exhibited smaller volumes than abstainers in the right rostral middle and caudal middle frontal gyri and the lateral OFC, bilaterally. In relapsers, lower baseline volumes and surface areas in multiple regions were associated with

  12. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli

    International Nuclear Information System (INIS)

    Petersen, S.E.; Fox, P.T.; Snyder, A.Z.; Raichle, M.E.

    1990-01-01

    Visual presentation of words activates extrastriate regions of the occipital lobes of the brain. When analyzed by positron emission tomography (PET), certain areas in the left, medial extrastriate visual cortex were activated by visually presented pseudowords that obey English spelling rules, as well as by actual words. These areas were not activated by nonsense strings of letters or letter-like forms. Thus visual word form computations are based on learned distinctions between words and nonwords. In addition, during passive presentation of words, but not pseudowords, activation occurred in a left frontal area that is related to semantic processing. These findings support distinctions made in cognitive psychology and computational modeling between high-level visual and semantic computations on single words and describe the anatomy that may underlie these distinctions

  13. Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: An FMRI study

    Science.gov (United States)

    Pardini, Matteo; Samson, Rebecca S.; D'Angelo, Egidio; Friston, Karl J.; Toosy, Ahmed T.; Gandini Wheeler‐Kingshott, Claudia A.M.

    2015-01-01

    Abstract Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event‐related visually guided dynamic power‐grip paradigm with parametric (three) forces (GF) in healthy right‐handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL‐specific and hemisphere‐specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL‐specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand‐side‐independent activations of nonmotor‐specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori‐motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power‐grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments. Hum Brain Mapp 36:5079–5100, 2015. © 2015 Wiley Periodicals, Inc. PMID:26415818

  14. Diminished Dentate Gyrus Filtering of Cortical Input Leads to Enhanced Area Ca3 Excitability after Mild Traumatic Brain Injury.

    Science.gov (United States)

    Folweiler, Kaitlin A; Samuel, Sandy; Metheny, Hannah E; Cohen, Akiva S

    2018-04-06

    Mild traumatic brain injury (mTBI) disrupts hippocampal function and can lead to long-lasting episodic memory impairments. The encoding of episodic memories relies on spatial information processing within the hippocampus. As the primary entry point for spatial information into the hippocampus, the dentate gyrus is thought to function as a physiological gate, or filter, of afferent excitation before reaching downstream area Cornu Ammonis (CA3). Although injury has previously been shown to alter dentate gyrus network excitability, it is unknown whether mTBI affects dentate gyrus output to area CA3. In this study, we assessed hippocampal function, specifically the interaction between the dentate gyrus and CA3, using behavioral and electrophysiological techniques in ex vivo brain slices 1 week following mild lateral fluid percussion injury (LFPI). Behaviorally, LFPI mice were found to be impaired in an object-place recognition task, indicating that spatial information processing in the hippocampus is disrupted. Extracellular recordings and voltage-sensitive dye imaging demonstrated that perforant path activation leads to the aberrant spread of excitation from the dentate gyrus into area CA3 along the mossy fiber pathway. These results suggest that after mTBI, the dentate gyrus has a diminished capacity to regulate cortical input into the hippocampus, leading to increased CA3 network excitability. The loss of the dentate filtering efficacy reveals a potential mechanism by which hippocampal-dependent spatial information processing is disrupted, and may contribute to memory dysfunction after mTBI.

  15. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms.

    Science.gov (United States)

    Ecker, Christine; Ginestet, Cedric; Feng, Yue; Johnston, Patrick; Lombardo, Michael V; Lai, Meng-Chuan; Suckling, John; Palaniyappan, Lena; Daly, Eileen; Murphy, Clodagh M; Williams, Steven C; Bullmore, Edward T; Baron-Cohen, Simon; Brammer, Michael; Murphy, Declan G M

    2013-01-01

    Neuroimaging studies of brain anatomy in autism spectrum disorder (ASD) have mostly been based on measures of cortical volume (CV). However, CV is a product of 2 distinct parameters, cortical thickness (CT) and surface area (SA), that in turn have distinct genetic and developmental origins. To investigate regional differences in CV, SA, and CT as well as their relationship in a large and well-characterized sample of men with ASD and matched controls. Multicenter case-control design using quantitative magnetic resonance imaging. Medical Research Council UK Autism Imaging Multicentre Study. A total of 168 men, 84 diagnosed as having ASD and 84 controls who did not differ significantly in mean (SD) age (26 [7] years vs 28 [6] years, respectively) or full-scale IQ (110 [14] vs 114 [12], respectively). Between-group differences in CV, SA, and CT investigated using a spatially unbiased vertex-based approach; the degree of spatial overlap between the differences in CT and SA; and their relative contribution to differences in regional CV. Individuals with ASD differed from controls in all 3 parameters. These mainly consisted of significantly increased CT within frontal lobe regions and reduced SA in the orbitofrontal cortex and posterior cingulum. These differences in CT and SA were paralleled by commensurate differences in CV. The spatially distributed patterns for CT and SA were largely nonoverlapping and shared only about 3% of all significantly different locations on the cerebral surface. Individuals with ASD have significant differences in CV, but these may be underpinned by (separable) variations in its 2 components, CT and SA. This is of importance because both measures result from distinct developmental pathways that are likely modulated by different neurobiological mechanisms. This finding may provide novel targets for future studies into the etiology of the condition and a new way to fractionate the disorder.

  16. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    Science.gov (United States)

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Distinct cortical areas for names of numbers and body parts independent of language and input modality.

    Science.gov (United States)

    Le Clec'H, G; Dehaene, S; Cohen, L; Mehler, J; Dupoux, E; Poline, J B; Lehéricy, S; van de Moortele, P F; Le Bihan, D

    2000-10-01

    Some models of word comprehension postulate that the processing of words presented in different modalities and languages ultimately converges toward common cerebral systems associated with semantic-level processing and that the localization of these systems may vary with the category of semantic knowledge being accessed. We used functional magnetic resonance imaging to investigate this hypothesis with two categories of words, numerals, and body parts, for which the existence of distinct category-specific areas is debated in neuropsychology. Across two experiments, one with a blocked design and the other with an event-related design, a reproducible set of left-hemispheric parietal and prefrontal areas showed greater activation during the manipulation of topographical knowledge about body parts and a right-hemispheric parietal network during the manipulation of numerical quantities. These results complement the existing neuropsychological and brain-imaging literature by suggesting that within the extensive network of bilateral parietal regions active during both number and body-part processing, a subset shows category-specific responses independent of the language and modality of presentation. Copyright 2000 Academic Press.

  18. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area

    Science.gov (United States)

    Jo, Yong Sang; Lee, Jane; Mizumori, Sheri J.Y.

    2013-01-01

    Dopamine (DA) cells have been suggested to signal discrepancies between expected and actual rewards in reinforcement learning. DA cells in the ventral tegmental area (VTA) receive direct projections from the medial prefrontal cortex (mPFC), a structure that is known as one of the brain areas that represent expected future rewards. To investigate whether the mPFC contributes to generating reward prediction error signals of DA cells, we recorded VTA cells from rats foraging for different amounts of reward in a spatial working memory task. Our results showed that DA cells initially responded after the acquisition of rewards, but over training, they exhibited phasic responses when rats detected sensory cues originating from the rewards before obtaining them. We also observed two separate groups of non-DA cells that were activated in expectation of upcoming rewards or during reward consumption. Bilateral injections of muscimol, a GABAA agonist, into the mPFC significantly decreased the non-DA activity that encoded reward expectation. By contrast, the same manipulation of the mPFC elevated DA responses to reward-predicting cues. However, neither DA nor non-DA responses that were elicited after reward acquisition were affected by mPFC inactivation. These results suggest that the mPFC provides the information about expected rewards to the VTA, and its functional loss elevates DA responses to reward-predicting cues by altering expectations about forthcoming rewards. PMID:23658156

  19. Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements.

    Science.gov (United States)

    Inaba, Naoko; Kawano, Kenji

    2014-05-27

    Perception of a stable visual world despite eye motion requires integration of visual information across saccadic eye movements. To investigate how the visual system deals with localization of moving visual stimuli across saccades, we observed spatiotemporal changes of receptive fields (RFs) of motion-sensitive neurons across periods of saccades in the middle temporal (MT) and medial superior temporal (MST) areas. We found that the location of the RFs moved with shifts of eye position due to saccades, indicating that motion-sensitive neurons in both areas have retinotopic RFs across saccades. Different characteristic responses emerged when the moving visual stimulus was turned off before the saccades. For MT neurons, virtually no response was observed after the saccade, suggesting that the responses of these neurons simply reflect the reafferent visual information. In contrast, most MST neurons increased their firing rates when a saccade brought the location of the visual stimulus into their RFs, where the visual stimulus itself no longer existed. These findings suggest that the responses of such MST neurons after saccades were evoked by a memory of the stimulus that had preexisted in the postsaccadic RFs ("memory remapping"). A delayed-saccade paradigm further revealed that memory remapping in MST was linked to the saccade itself, rather than to a shift in attention. Thus, the visual motion information across saccades was integrated in spatiotopic coordinates and represented in the activity of MST neurons. This is likely to contribute to the perception of a stable visual world in the presence of eye movements.

  20. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  1. Eye position effects on the remapped memory trace of visual motion in cortical area MST.

    Science.gov (United States)

    Inaba, Naoko; Kawano, Kenji

    2016-02-23

    After a saccade, most MST neurons respond to moving visual stimuli that had existed in their post-saccadic receptive fields and turned off before the saccade ("trans-saccadic memory remapping"). Neuronal responses in higher visual processing areas are known to be modulated in relation to gaze angle to represent image location in spatiotopic coordinates. In the present study, we investigated the eye position effects after saccades and found that the gaze angle modulated the visual sensitivity of MST neurons after saccades both to the actually existing visual stimuli and to the visual memory traces remapped by the saccades. We suggest that two mechanisms, trans-saccadic memory remapping and gaze modulation, work cooperatively in individual MST neurons to represent a continuous visual world.

  2. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Attention directed by expectations enhances receptive fields in cortical area MT.

    Science.gov (United States)

    Ghose, Geoffrey M; Bearl, David W

    2010-02-22

    Expectations, especially those formed on the basis of extensive training, can substantially enhance visual performance. However, it is not clear that the physiological mechanisms underlying this enhancement are identical to those examined by experiments in which attention is directed by explicit instructions rather than strong expectations. To study the changes in visual representations associated with strong expectations, we trained animals to detect a brief motion pulse that was embedded in noise. Because the nature of the pulse and the statistics of its appearance were well known to the animals, they formed strong expectations which determined their behavioral performance. We used white-noise methods to infer the receptive field structure of single neurons in area MT while they were performing this task. Incorporating non-linearities, we compared receptive fields during periods of time when the animals were expecting the motion pulse with periods of time when they were not. We found receptive field changes consistent with an increased reliability in signaling pulse occurrence. Moreover, these changes were not consistent with a simple gain modulation. The results suggest that strong expectations can create very specific changes in the visual representations at a cellular level to enhance performance. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Regional glucose metabolism within cortical Brodmann areas in healthy individuals and autistic patients.

    Science.gov (United States)

    Hazlett, Erin A; Buchsbaum, Monte S; Hsieh, Pauline; Haznedar, M Mehmet; Platholi, Jimcy; LiCalzi, Elizabeth M; Cartwright, Charles; Hollander, Eric

    2004-01-01

    A new Brodmann area (BA) delineation approach was applied to FDG-PET scans of autistic patients and healthy volunteers (n = 17 in each group) to examine relative glucose metabolism (rGMR) during performance of a verbal memory task. In the frontal lobe, patients had lower rGMR in medial/cingulate regions (BA 32, 24, 25) but not in lateral regions (BA 8-10) compared with healthy controls. Patients had higher rGMR in occipital (BA 19) and parietal regions (BA 39) compared with controls, but there were no group differences in temporal lobe regions. Among controls, better recall and use of the semantic-clustering strategy was associated with greater lateral and medial frontal rGMR, while decreased rGMR in medial-frontal regions was associated with greater perseverative/intrusion errors. Patients failed to show these patterns. Autism patients have dysfunction in some but not all of the key brain regions subserving verbal memory performance, and other regions may be recruited for task performance. Copyright 2004 S. Karger AG, Basel

  5. Synopsis of recent moisture flux analyses relevant to the unsaturated zone at Area G

    International Nuclear Information System (INIS)

    Vold, E.

    1998-03-01

    This report summarizes selected recent analyses relevant to the assessment of the site performance for disposal facilities at Los Alamos (Area G) regarding unsaturated zone transport of moisture in liquid and vapor phases and the surface water balance. Much of the analyses methods have been reported previously but in several separate and detailed reports. These do not always reflect the overview possible with hindsight. The present report is an attempt to integrate the author's previous results into a cohesive whole. Due to project time constraints, this report is incomplete in some area. This report first reviews the basis for the Darcy flux analyses and its inherent uncertainties, as detailed in previous reports. Results from the previous works are then reviewed and discussed and in some cases, elaborated in an attempt for clarification. New results of the Darcy Flux Analyses are presented and discussed for Area G mesa top locations, nearby canyon locations and a second mesa top location (TA46 west of Area G). Select evapotranspiration and precipitation data from TA6 are presented and discussed. The conclusions section draws a picture of the hydrology which unifies the study results reported here and in previous reports for the undisturbed and disturbed site locations

  6. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans

    Directory of Open Access Journals (Sweden)

    Balaram P

    2014-09-01

    Full Text Available Pooja Balaram, Nicole A Young, Jon H Kaas Department of Psychology, Vanderbilt University, Nashville, TN, USA Abstract: The layers and sublayers of primary visual cortex, or V1, in primates are easily distinguishable compared to those in other cortical areas, and are especially distinct in anthropoid primates – monkeys, apes, and humans – where they also vary in histological appearance. This variation in primate-specific specialization has led to a longstanding confusion over the identity of layer 4 and its proposed sublayers in V1. As the application of different histological markers relate to the issue of defining and identifying layers and sublayers, we applied four traditional and four more recent histological markers to brain sections of V1 and adjoining secondary visual cortex (V2 in macaque monkeys, chimpanzees, and humans in order to compare identifiable layers and sublayers in both cortical areas across these species. The use of Nissl, neuronal nuclear antigen (NeuN, Gallyas myelin, cytochrome oxidase (CO, acetylcholinesterase (AChE, nonphosphorylated neurofilament H (SMI-32, parvalbumin (PV, and vesicular glutamate transporter 2 (VGLUT2 preparations support the conclusion that the most popular scheme of V1 lamination, that of Brodmann, misidentifies sublayers of layer 3 (3Bβ and 3C as sublayers of layer 4 (4A and 4B, and that the specialized sublayer of layer 3 in monkeys, 3Bβ, is not present in humans. These differences in interpretation are important as they relate to the proposed functions of layer 4 in primate species, where layer 4 of V1 is a layer that receives and processes information from the visual thalamus, and layer 3 is a layer that transforms and distributes information to other cortical areas. Keywords: area 17, area 18, cortical layers, histology, immunohistochemistry

  7. Awake craniotomy for cortical language mapping and resection of an arteriovenous malformation adjacent to eloquent areas under general anesthesia — A hybrid approach

    Directory of Open Access Journals (Sweden)

    Pree Nimmannitya

    2015-12-01

    Full Text Available Surgery of arteriovenous malformation (AVM is sometimes challenging and carries a high risk of morbidity, especially when the AVM is located in an eloquent area of the brain. Unlike gliomas, awake craniotomy has not been widely used for resection of AVM. The authors present a case of an AVM in the left frontal lobe which was successfully removed with the aid of awake craniotomy with cortical language mapping. In conclusion, awake craniotomy for functional cortical mapping is beneficial for AVM resection, especially when the lesion is located in or adjacent to eloquent areas of the brain. A hybrid approach with functional mapping in the awake condition and AVM resection under general anesthesia may be useful in selected cases. Furthermore, en bloc resection with the nidus embedded in the brain parenchyma may be a useful means of removal to reduce operation time and intraoperative blood loss if there is no apparent functional cortex surrounding the AVM, as in the present case.

  8. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    International Nuclear Information System (INIS)

    Shin, Na-Young; Hong, Jinwoo; Yoon, Uicheul; Choi, Jun Yong; Lee, Seung-Koo; Lim, Soo Mee

    2017-01-01

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  9. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Na-Young [The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Hong, Jinwoo; Yoon, Uicheul [Catholic University of Daegu, Department of Biomedical Engineering, College of Health and Medical Science, Gyeongsan-si, Gyeongbuk (Korea, Republic of); Choi, Jun Yong [Yonsei University College of Medicine, Department of Internal Medicine and AIDS Research Institute, Seoul (Korea, Republic of); Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lim, Soo Mee [Ewha Womans University, School of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2017-11-15

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  10. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    Science.gov (United States)

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased

  11. A genome-wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus

    NARCIS (Netherlands)

    Cai, D.C.; Fonteijn, H.M.; Guadalupe, T.M.; Zwiers, M.P.; Wittfeld, K.; Teumer, A.; Hoogman, M.; Arias Vasquez, A.; Yang, Y; Buitelaar, J.K.; Fernandez, G.S.E.; Brunner, H.G.; Bokhoven, H. van; Franke, B.; Hegenscheid, K.; Homuth, G.; Fisher, S.E.; Grabe, H.J.; Francks, C.; Hagoort, P.

    2014-01-01

    Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical

  12. Analysis of Amygdalar-Cortical Network Covariance During Pre- versus Post-menopausal Estrogen Levels: Potential Relevance to Resting State Networks, Mood, and Cognition

    Science.gov (United States)

    Ottowitz, William E.; Derro, David; Dougherty, Darin D.; Lindquist, Martin A.; Fischman, Alan J.; Hall, Janet E.

    2014-01-01

    Objectives 1.) Expand the scope of neuroendocrine applications of functional neuroimaging techniques. 2.) Compare the covariance of amygdalar activity with that of the rest of the brain during pre- and post-menopausal levels of estrogen (E2). Based on the distribution of cortical E2 receptors and the neocortical regions where E2 has been shown to preferentially accumulate, we predict that E2 infusion will increase covariance of amygdalar activity with that of the temporal and frontal cortices. Design This basic physiology study employed a within-subject design. All participants were post-menopausal women (n =7). Analysis of covariance between whole brain and amygdalar regional cerebral glucose consumption (CMRglc) was conducted in a voxel-wise manner by means of the basic regression option in SPM2 and was applied to FDG-PET scans acquired at baseline and after a 24 hour graded E2 infusion. Setting an academic medical center; Massachusetts General Hospital, Boston, Massachusetts. Results E2 levels (mean ± sem) were significantly greater at 24 hours (257.9 pg/mL ± 29.7) than at 0 hours (28.1 pg/mL ± 3.4). Right amygdalar CMRglc showed a significant covariance with activity of three different regions of the temporal cortex during E2 infusion, but none at baseline. In addition, right amygdalar CMRglc covaried with that of the right medial and superior frontal gyri only during E2 infusion. Conclusions In addition to suggesting changes in amygdalar-cortical network connectivity as a result of short-term E2 exposure, these analyses provide evidence that basic neuroendocrine research may benefit from further use of FDG-PET and other functional neuroimaging modalities for network level analyses. PMID:18766152

  13. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans.

    Science.gov (United States)

    Balaram, Pooja; Young, Nicole A; Kaas, Jon H

    2014-09-01

    The layers and sublayers of primary visual cortex, or V1, in primates are easily distinguishable compared to those in other cortical areas, and are especially distinct in anthropoid primates - monkeys, apes, and humans - where they also vary in histological appearance. This variation in primate-specific specialization has led to a longstanding confusion over the identity of layer 4 and its proposed sublayers in V1. As the application of different histological markers relate to the issue of defining and identifying layers and sublayers, we applied four traditional and four more recent histological markers to brain sections of V1 and adjoining secondary visual cortex (V2) in macaque monkeys, chimpanzees, and humans in order to compare identifiable layers and sublayers in both cortical areas across these species. The use of Nissl, neuronal nuclear antigen (NeuN), Gallyas myelin, cytochrome oxidase (CO), acetylcholinesterase (AChE), nonphosphorylated neurofilament H (SMI-32), parvalbumin (PV), and vesicular glutamate transporter 2 (VGLUT2) preparations support the conclusion that the most popular scheme of V1 lamination, that of Brodmann, misidentifies sublayers of layer 3 (3Bβ and 3C) as sublayers of layer 4 (4A and 4B), and that the specialized sublayer of layer 3 in monkeys, 3Bβ, is not present in humans. These differences in interpretation are important as they relate to the proposed functions of layer 4 in primate species, where layer 4 of V1 is a layer that receives and processes information from the visual thalamus, and layer 3 is a layer that transforms and distributes information to other cortical areas.

  14. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  15. A delineating procedure to retrieve relevant publication data in research areas : the case of nanocellulose

    NARCIS (Netherlands)

    Milanez, D.H.; Noyons, E.C.M.; Lopes, de Faria L.I.

    2016-01-01

    Advances concerning publication-level classification system have been demonstrated striking results by dealing properly with emergent, complex and interdisciplinary research areas, such as nanotechnology and nanocellulose. However, less attention has been paid to propose a delineating method to

  16. Floristic survey of the Brazilian Ages Memorial: a Cerrado sensu stricto area with an educational relevance

    OpenAIRE

    Vasconcelos, Thaís; Silva, Juliana; Ianhez, Marcelo; Proença, Carolyn

    2015-01-01

    The Cerrado Biome is currently classified as one of the most diverse savannas in the world. The anthropic destruction of this biome led the Cerrado to be recognized as one of the world's hot spots for bioconservation. Cerrado sensu stricto phytophysiognomy represents 70% of the original Cerrado Biome surface and floristic surveys are basic and important studies for conservation initiatives in these areas. Our survey area is a Cerrado sensu stricto of 6 ha attached to the Memorial das Idades d...

  17. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self.

    Science.gov (United States)

    Cheng, Wei; Rolls, Edmund T; Gu, Huaguang; Zhang, Jie; Feng, Jianfeng

    2015-05-01

    Whole-brain voxel-based unbiased resting state functional connectivity was analysed in 418 subjects with autism and 509 matched typically developing individuals. We identified a key system in the middle temporal gyrus/superior temporal sulcus region that has reduced cortical functional connectivity (and increased with the medial thalamus), which is implicated in face expression processing involved in social behaviour. This system has reduced functional connectivity with the ventromedial prefrontal cortex, which is implicated in emotion and social communication. The middle temporal gyrus system is also implicated in theory of mind processing. We also identified in autism a second key system in the precuneus/superior parietal lobule region with reduced functional connectivity, which is implicated in spatial functions including of oneself, and of the spatial environment. It is proposed that these two types of functionality, face expression-related, and of one's self and the environment, are important components of the computations involved in theory of mind, whether of oneself or of others, and that reduced connectivity within and between these regions may make a major contribution to the symptoms of autism. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Geographic patterns of vertebrate diversity and identification of relevant areas for conservation in Europe

    Directory of Open Access Journals (Sweden)

    Assunção–Albuquerque, M. J. T.

    2012-06-01

    Full Text Available The ‘EU Council conclusions on biodiversity post–2010′ re–enforced Europe’s commitment to halt biodiversity loss by 2020. Identifying areas of high–value for biodiversity conservation is an important issue to meet this target. We investigated the geographic pattern of terrestrial vertebrate diversity status in Europe by assessing the species richness, rarity, vulnerability (according to IUCN criteria, and a combined index of the three former for the amphibians, reptiles, bird and mammals of this region. We also correlated the value of all indices with climate and human influence variables. Overall, clear geographic gradients of species diversity were found. The combined biodiversity index indicated that high–value biodiversity areas were mostly located in the Mediterranean basin and the highest vulnerability was found in the Iberian peninsula for most taxa. Across all indexes, the proportion of variance explained by climate and human influence factors was moderate to low. The results obtained in this study have the potential to provide valuable support for nature conservation policies in Europe and, consequently, might contribute to mitigate biodiversity decline in this region.

  19. Cystic echinococcosis in Spain: current situation and relevance for other endemic areas in Europe.

    Directory of Open Access Journals (Sweden)

    Francisco A Rojo-Vazquez

    Full Text Available Cystic echinococcosis (CE remains an important health problem in many regions of the world, both where no control measures have been implemented, and where control programs have been incompletely successful with ensuing re-emergence of the disease. In Spain, official data on CE show an increase in the proportion of intermediate hosts with CE during the last few years, and autochthonous pediatric patients have been reported, a sign of active local transmission of disease. A similar picture emerges from data reported to the European Food Safety Authority by other European countries. Nevertheless, several crucial aspects related to CE that would help better understand and control the disease have not been tackled appropriately, in particular the emergence of infection in specific geographical areas. In this respect, while some data are missing, other data are conflicting because they come from different databases. We review the current situation of CE in Spain compared with areas in which similar problems in the CE field exist, and offer recommendations on how to overcome those limitations. Specifically, we believe that the introduction of national registries for CE with online data entry, following the example set by the European Registry for Alveolar Echinococcosis, would help streamline data collection on CE by eliminating the need for evaluating and integrating data from multiple regions, by avoiding duplication of data from patients who access several different health facilities over time, and by providing much needed clinical and epidemiological data that are currently accessible only to clinicians.

  20. Cystic Echinococcosis in Spain: Current Situation and Relevance for Other Endemic Areas in Europe

    Science.gov (United States)

    Rojo-Vazquez, Francisco A.; Pardo-Lledias, Javier; Francos-Von Hunefeld, Marcelo; Cordero-Sanchez, Miguel; Alamo-Sanz, Rufino; Hernandez-Gonzalez, Ana; Brunetti, Enrico; Siles-Lucas, Mar

    2011-01-01

    Cystic echinococcosis (CE) remains an important health problem in many regions of the world, both where no control measures have been implemented, and where control programs have been incompletely successful with ensuing re-emergence of the disease. In Spain, official data on CE show an increase in the proportion of intermediate hosts with CE during the last few years, and autochthonous pediatric patients have been reported, a sign of active local transmission of disease. A similar picture emerges from data reported to the European Food Safety Authority by other European countries. Nevertheless, several crucial aspects related to CE that would help better understand and control the disease have not been tackled appropriately, in particular the emergence of infection in specific geographical areas. In this respect, while some data are missing, other data are conflicting because they come from different databases. We review the current situation of CE in Spain compared with areas in which similar problems in the CE field exist, and offer recommendations on how to overcome those limitations. Specifically, we believe that the introduction of national registries for CE with online data entry, following the example set by the European Registry for Alveolar Echinococcosis, would help streamline data collection on CE by eliminating the need for evaluating and integrating data from multiple regions, by avoiding duplication of data from patients who access several different health facilities over time, and by providing much needed clinical and epidemiological data that are currently accessible only to clinicians. PMID:21283615

  1. Wide area data replication in an ITER-relevant data environment

    International Nuclear Information System (INIS)

    Centioli, C.; Iannone, F.; Panella, M.; Vitale, V.; Bracco, G.; Guadagni, R.; Migliori, S.; Steffe, M.; Eccher, S.; Maslennikov, A.; Mililotti, M.; Molowny, M.; Palumbo, G.; Carboni, M.

    2005-01-01

    The next generation of tokamak experiments will require a new way of approaching data sharing issues among fusion organizations. In the fusion community, many researchers at different worldwide sites will analyse data produced by International Thermonuclear Experimental Reactor (ITER), wherever it will be built. In this context, an efficient availability of the data in the sites where the computational resources are located becomes a major architectural issue for the deployment of ITER computational infrastructure. The approach described in this paper goes beyond the usual site-centric model mainly devoted to granting access exclusively to experimental data stored at the device sites. To this aim, we propose a new data replication architecture relying on a wide area network, based on a Master/Slave model and on synchronization techniques producing mirrored data sites. In this architecture, data replication will affect large databases (TB) as well as large UNIX-like file systems, using open source-based software components, namely MySQL, as database management system, and RSYNC and BBFTP for data transfer. A test-bed has been set up to evaluate the performance of the software components underlying the proposed architecture. The test-bed hardware layout deploys a cluster of four Dual-Xeon Supermicro each with a raid array of 1 TB. High performance network line (1 Gbit over 400 km) provides the infrastructure to test the components on a wide area network. The results obtained will be thoroughly discussed

  2. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  3. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  4. The relevance of humus forms for land degradation in Mediterranean mountainous areas

    Science.gov (United States)

    Sevink, J.; Verstraten, J. M.; Jongejans, J.

    1998-06-01

    properties of these horizons, relevant for degradation, is considerable and not clearly related to humus form development. Accordingly, the abovementioned trends in humus form development cannot be used to predict the susceptibility to land degradation.

  5. Distribution and Network of Basal Temporal Language Areas: A Study of the Combination of Electric Cortical Stimulation and Diffusion Tensor Imaging.

    Science.gov (United States)

    Enatsu, Rei; Kanno, Aya; Ookawa, Satoshi; Ochi, Satoko; Ishiai, Sumio; Nagamine, Takashi; Mikuni, Nobuhiro

    2017-10-01

    The basal temporal language area (BTLA) is considered to have several functions in language processing; however, its brain network is still unknown. This study investigated the distribution and networks of the BTLA using a combination of electric cortical stimulation and diffusion tensor imaging (DTI). 10 patients with intractable focal epilepsy who underwent presurgical evaluation with subdural electrodes were enrolled in this study (language dominant side: 6 patients, language nondominant side: 4 patients). Electric stimulation at 50 Hz was applied to the electrodes during Japanese sentence reading, morphograms (kanji) reading, and syllabograms (kana) reading tasks to identify the BTLA. DTI was used to identify the subcortical fibers originating from the BTLA found by electric stimulation. The BTLA was found in 6 patients who underwent implantation of the subdural electrodes in the dominant hemisphere. The BTLA was located anywhere between 20 mm and 56 mm posterior to the temporal tips. In 3 patients, electric stimulation of some or all areas within the BTLA induced disturbance in reading of kanji words only. DTI detected the inferior longitudinal fasciculus (ILF) in all patients and the uncinate fasciculus (UF) in 1 patient, originating from the BTLA. ILF was detected from both kanji-specific areas and kanji-nonspecific areas. This study indicates that the network of the BTLA is a part of a ventral stream and is mainly composed of the ILF, which acts as a critical structure for lexical retrieval. ILF is also associated with the specific processing of kanji words. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ethnopharmacological relevance of traditional medicinal flora from semi-tribal areas in khyber pakhtunkhwa, punjab, pakistan

    International Nuclear Information System (INIS)

    Batool, A.; Shah, A.; Bahadur, A.

    2017-01-01

    Medicinal plants are locally used for the cure of many diseases. The present study aimed to document the medicinal knowledge as well as medicinal flora of indigenous plants of native communities and represents the first ever ethnomedicinal study from Darra Tang, LakkiMarwat and Kundal, Mianwali. The ethnomedicinal information was conducted via crucial informant conversation, group meetings with herbalists, semi-structure interviews and local people having awareness about the remedial exploit of plants. Current research work describes a brief overview of ethnomedicinal scheme in the study area, by highlighting the vital indigenous constituent of medicinal plants. The rest of the study is dedicated to an investigation and documentation based on the 94 reordered medicinal species belonging to 40 families. The leading family Poaceae was signified by the highest number of medicinal plant species (11). Indigenous people most frequently used leaves of the plants. The greatest amount of species was used to treat gastrointestinal, inflammational, renal, urological and dermatological ailments whereas for diabetes the ratio was the lowest. Dominated medicinal plants with most use values were Rhazyastrictahaving (UVi=0.98) and Phoenix dactylifera(UVi=0.96). There was a significant correlation between the age of informant and used plant known (y= 0.1307*+26.756, r = 0.012) and known plants (y= 0.4043*+16.995, r = 0.082) number by informant.The present study exposes that this vast treasure of medicinal plant played a key role in the health maintenance of local communities from Darra Tang, LakkiMarwat and Kundal, Mianwali. (author)

  7. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  8. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Directory of Open Access Journals (Sweden)

    Iryna Yavorska

    2016-09-01

    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  9. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits

    Directory of Open Access Journals (Sweden)

    Graeme Fairchild

    2015-01-01

    Conclusions: Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and adolescence-onset forms of CD.

  10. The influence of MIR137 on white matter fractional anisotropy and cortical surface area in individuals with familial risk for psychosis.

    Science.gov (United States)

    Vogel, Bob O; Lett, Tristram A; Erk, Susanne; Mohnke, Sebastian; Wackerhagen, Carolin; Brandl, Eva J; Romanczuk-Seiferth, Nina; Otto, Kristina; Schweiger, Janina I; Tost, Heike; Nöthen, Markus M; Rietschel, Marcella; Degenhardt, Franziska; Witt, Stephanie H; Meyer-Lindenberg, Andreas; Heinz, Andreas; Walter, Henrik

    2018-05-01

    The rs1625579 variant near the microRNA-137 (MIR137) gene is one of the best-supported schizophrenia variants in genome-wide association studies (GWAS), and microRNA-137 functionally regulates other GWAS identified schizophrenia risk variants. Schizophrenia patients with the MIR137 rs1625579 risk genotype (homozygous for the schizophrenia risk variant) also have aberrant brain structure. It is unclear if the effect of MIR137 among schizophrenia patients is due to potential epistasis with genetic risk for schizophrenia or other factors of the disorder. Here, we investigated the effect of MIR137 genotype on white matter fractional anisotropy (FA), cortical thickness (CT), and surface area (SA) in a sample comprising healthy control subjects, and individuals with familial risk for psychosis (first-degree relatives of patients with schizophrenia or bipolar disorder; N=426). In voxel-wise analyses of FA, we observed a significant genotype-by-group interaction (P FWE <0.05). The familial risk group with risk genotype had lower FA (P FWE <0.05), but there was no genetic association in controls. In vertex-wise analyses of SA, we also observed a significant genotype-by-group interaction (P FWE <0.05). Relatives with MIR137 risk genotype had lower SA, however the risk genotype was associated with higher SA in the controls (all P FWE <0.05). These results show that MIR137 risk genotype is associated with lower FA in psychosis relatives that is similar to previous imaging-genetics findings in patients with schizophrenia. Furthermore, MIR137 genotype may also be a risk factor in a subclinical population with wide reductions in white matter FA and cortical SA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The modulation of venlafaxine on cortical activation of language area in healthy subjects with fMRI study.

    Science.gov (United States)

    Xie, Qi; Liu, Yan; Li, Chun-Yong; Song, Xue-Zhu; Wang, Jun; Han, Li-Xin; Bai, Hong-Min

    2012-10-01

    Previous studies have shown that selective serotonin reuptake inhibitors, activators of the cortex, apparently improved language functional recovery after brain damage rather than simply affective disorders. Our aim was to determine whether venlafaxine (an agonist of both norepinephrine and 5-hydroxytryptamine) could modulate language cortex function. A double-blind, crossover, randomized design was used to compare two 7-day treatment sessions with either venlafaxine (75 mg per day) or placebo. A functional magnetic resonance imaging experiment and two language function tests were performed on eight healthy males (mean age, 28.25 ± 3.15 years) at the end of each session, i.e., study entry, after venlafaxine, and after placebo (days 0, 7, and 18). Hyperactivation (venlafaxine minus placebo >0) or hypoactivation (placebo minus venlafaxine >0) by venlaxafine was assessed on the basis of the activation-baseline contrast. The naming score (P gyrus frontalis medius and the bilateral fusiform gyrus and the bilateral outer occipital lobes, (2) hyperactivation was observed in the adjoining area of posterior upper Broca area and premotor area in the dominant hemisphere in venlafaxine session (after venlafaxine), (3) the hyperactivation of the left gyrus frontalis medius on fMRI and the increase in naming test score were positively correlated, and (4) by contrast, we observed hypoactivation in the temporo-parieto-occipital region in venlafaxine session (after venlafaxine). This improvement may be related to increased phonics-related output in the frontal language cortex of the dominant hemisphere.

  12. Investigation of cerebral cortical functional areas of the acupoints in zusanli and xiajuxu by fMRI

    International Nuclear Information System (INIS)

    Gong Honghan; Xiao Xiangzuo; Qiu Chunmei; Wang Liya; Ji Yuqiang; Wang Min; Wang Minjun; Wang Jinghua; Zeng Xianjun; Wang Yongzheng

    2003-01-01

    Objective: To study the functional areas of Zusanli (ST36) and Xiajuxu (ST39) in the cerebral cortex with fMRI and acupuncture stimulation. Material and Methods: 64 healthy Volunteers were divided into two groups. Acupuncture stimulation was induced to both of them by manipulating acupuncture needle at the acupuncture point at right ST36 and then ST39 respectively. FMRI was performed in the experimental group during state of the reaction to the acupuncture ('De-Qi') and in the control group during state of no reaction. Functional responses were investigated by students group t-test analysis. Results: Chi-square test showed that there was no significant difference (P>0.05) in ROI in state of 'De-Qi' and in state of no reaction. In state of 'De-Qi', acupuncture mainly resulted in activating bilateral cingulate cortex, insula, upper wall of lateral sulcus and bilateral postcentral gyrus. However, in state of no reaction, acupuncture mainly resulted in activating left postcentral gyrus. Significant difference of between ROI in state of 'De-Qi' and no reaction (P<0.01) at each acupoint was shown. Conclusion: Treatment of gastroenteric disease by acupuncturing ST36 and ST39 has its scientific basis. There are close relations between the central neural system (CNS) and the acupoints. It may be that the acupuncture stimulates the corresponding functional areas in cerebral cortex via the CNS at first, thereby treating disorders of organs

  13. cTBS disruption of the supplementary motor area perturbs cortical sequence representation but not behavioural performance.

    Science.gov (United States)

    Solopchuk, Oleg; Alamia, Andrea; Dricot, Laurence; Duque, Julie; Zénon, Alexandre

    2017-12-01

    Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    Science.gov (United States)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  15. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    International Nuclear Information System (INIS)

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  16. Slice cultures of the imprinting-relevant forebrain area MNH of the domestic chick: quantitative characterization of neuronal morphology.

    Science.gov (United States)

    Hofmann, H; Braun, K

    1995-05-26

    The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.

  17. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama).

    Science.gov (United States)

    Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E

    2010-10-01

    The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted. 2010 Elsevier GmbH. All rights reserved.

  18. Attenuation of oxidative and nitrosative stress in cortical area associates with antidepressant-like effects of tropisetron in male mice following social isolation stress.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Amiri, Shayan; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Kordjazy, Nastaran; Olson, Carl O; Rastegar, Mojgan; Naserzadeh, Parvaneh; Marzban, Hassan; Dehpour, Ahmad Reza; Hosseini, Mir-Jamal; Samiei, Elika; Mehr, Shahram Ejtemaei

    2016-06-01

    Tropisetron, a 5-HT3 receptor antagonist widely used as an antiemetic, has been reported to have positive effects on mood disorders. Adolescence is a critical period during the development of brain, where exposure to chronic stress during this time is highly associated with the development of depression. In this study, we showed that 4 weeks of juvenile social isolation stress (SIS) provoked depressive-like behaviors in male mice, which was associated with disruption of mitochondrial function and nitric oxide overproduction in the cortical areas. In this study, tropisetron (5mg/kg) reversed the negative behavioral effects of SIS in male mice. We found that the effects of tropisetron were mediated through mitigating the negative activity of inducible nitric oxide synthase (iNOS) on mitochondrial activity. Administration of aminoguanidine (specific iNOS inhibitor, 20mg/kg) augmented the protective effects of tropisetron (1mg/kg) on SIS. Furthermore, l-arginine (nitric oxide precursor, 100mg/kg) abolished the positive effects of tropisetron. These results have increased our knowledge on the pivotal role of mitochondrial function in the pathophysiology of depression, and highlighted the role of 5-HT3 receptors in psychosocial stress response during adolescence. Finally, we observed that tropisetron alleviated the mitochondrial dysfunction through decreased nitrergic system activity in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas.

    Science.gov (United States)

    Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin

    2018-06-01

    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management

  20. Early Changes of the Cortical Micro-Channel System in the Bare Area of the Joints of Patients With Rheumatoid Arthritis.

    Science.gov (United States)

    Werner, David; Simon, David; Englbrecht, Matthias; Stemmler, Fabian; Simon, Christoph; Berlin, Andreas; Haschka, Judith; Renner, Nina; Buder, Thomas; Engelke, Klaus; Hueber, Axel J; Rech, Jürgen; Schett, Georg; Kleyer, Arnd

    2017-08-01

    To characterize the specific structural properties of the erosion-prone bare area of the human joint, and to search for early microstructural changes in this region during rheumatoid arthritis (RA). In the initial part of the study, human cadaveric hand joints were examined for exact localization of the bare area of the metacarpal heads, followed by detection of cortical micro-channels (CoMiCs) in this region by high-resolution peripheral quantitative computed tomography (HR-pQCT) and, after anatomic dissection, validation of the presence of CoMiCs by micro-computed tomography (micro-CT). In the second part of the study, the number and distribution of CoMiCs were analyzed in 107 RA patients compared to 105 healthy individuals of similar age and sex distribution. Investigation by HR-pQCT combined with adaptive thresholding allowed the detection of CoMiCs in the bare area of human cadaveric joints. The existence of CoMiCs in the bare area was additionally validated by micro-CT. In healthy individuals, the number of CoMiCs increased with age. RA patients showed significantly more CoMiCs compared to healthy individuals (mean ± SD 112.9 ± 54.7/joint versus 75.2 ± 41.9/joint; P CoMiCs as observed in healthy individuals older than age 65 years. Importantly, CoMiCs were already found in RA patients very early in their disease course, with enrichment in the erosion-prone radial side of the joint. CoMiCs represent a new form of structural change in the joints of patients with RA. Although the number of CoMiCs increases with age, RA patients develop CoMiCs much earlier in life, and such changes can even occur at the onset of the disease. CoMiCs therefore represent an interesting new opportunity to assess structural changes in RA. © 2017, American College of Rheumatology.

  1. Use of Colchicine in Cortical Area 1 of the Hippocampus Impairs Transmission of Non-Motivational Information by the Pyramidal Cells

    Directory of Open Access Journals (Sweden)

    Nosaibeh Riahi Zaniani

    2013-11-01

    Full Text Available Colchicine, a potent neurotoxin derived from plants, has been recently introduced as a degenerative toxin of small pyramidal cells in the cortical area 1 of the hippocampus (CA1. In this study, the effect of the alkaloid in CA1 on the behaviors in the conditioning task was measured. Injections of colchicine (1,5 μg/rat, intra-CA1 was performed in the male Wistar rats, while the animals were settled and cannulated in a stereotaxic apparatus. In the control group solely injection of saline (1 μl/rat, intra-CA1 was used. One week later, all the animals passed the saline conditioning task using a three-day schedule of an unbiased paradigm. They were administered saline (1 ml/kg, s.c. twice a day throughout the conditioning phase. To evaluate the possible effects of cell injury by the toxin on the pyramidal cells, both the motivational signals while in the conditioning box and the non-motivational locomotive signs of the treated and control rats were measured. Based on the present study the alkaloid caused no change in the score of place conditioning, but affected both the sniffing and grooming behaviors in the group that received colchicine. However, the alkaloid did not show the significant effect on the rearing or compartment entering in the rats. According to the findings, the intra-CA1 injection of colchicine may impair the neuronal transmission of non-motivational information by the pyramidal cells in the dorsal hippocampus.

  2. Cortical gyrification is abnormal in children with prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    Timothy J. Hendrickson

    2017-01-01

    Conclusions: Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.

  3. Evidence for adaptive cortical changes in swallowing in Parkinson's disease.

    Science.gov (United States)

    Suntrup, Sonja; Teismann, Inga; Bejer, Joke; Suttrup, Inga; Winkels, Martin; Mehler, David; Pantev, Christo; Dziewas, Rainer; Warnecke, Tobias

    2013-03-01

    Dysphagia is a relevant symptom in Parkinson's disease, whose pathophysiology is poorly understood. It is mainly attributed to degeneration of brainstem nuclei. However, alterations in the cortical contribution to deglutition control in the course of Parkinson's disease have not been investigated. Here, we sought to determine the patterns of cortical swallowing processing in patients with Parkinson's disease with and without dysphagia. Swallowing function in patients was objectively assessed with fiberoptic endoscopic evaluation. Swallow-related cortical activation was measured using whole-head magnetoencephalography in 10 dysphagic and 10 non-dysphagic patients with Parkinson's disease and a healthy control group during self-paced swallowing. Data were analysed applying synthetic aperture magnetometry, and group analyses were done using a permutation test. Compared with healthy subjects, a strong decrease of cortical swallowing activation was found in all patients. It was most prominent in participants with manifest dysphagia. Non-dysphagic patients with Parkinson's disease showed a pronounced shift of peak activation towards lateral parts of the premotor, motor and inferolateral parietal cortex with reduced activation of the supplementary motor area. This pattern was not found in dysphagic patients with Parkinson's disease. We conclude that in Parkinson's disease, not only brainstem and basal ganglia circuits, but also cortical areas modulate swallowing function in a clinically relevant way. Our results point towards adaptive cerebral changes in swallowing to compensate for deficient motor pathways. Recruitment of better preserved parallel motor loops driven by sensory afferent input seems to maintain swallowing function until progressing neurodegeneration exceeds beyond the means of this adaptive strategy, resulting in manifestation of dysphagia.

  4. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    CHEN, BIN; TAO, JING; LIN, YUKUN; LIN, RUHUI; LIU, WEILIN; CHEN, LIDIAN

    2015-01-01

    Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri-infarct area after stroke. The neuroprotective effects of EA on ischemic rats were evaluated by determining the neurological deficit scores and cerebral infarct volumes. The proliferation of the NPCs and the activation of the Wnt/β-catenin signaling pathway in the cortical peri-infarct area were examined. Our results revealed that EA significantly alleviated neurological deficits, reduced the infarct volume and enhanced NPC proliferation [nestin/glial fibrillary acidic protein (GFAP)-double positive] in the cortex of rats subjected to middle cerebral artery occlusion (MCAO). Moreover, the Wnt1 and β-catenin mRNA and protein levels were increased, while glycogen synthase kinase-3 (GSK3) transcription was suppressed by EA. These results suggest that the upregulatory effects of EA on the Wnt/β-catenin signaling pathway may promote NPC proliferation in the cortical peri-infarct area after stroke, consequently providing a therapeutic effect against cerebral ischemia. PMID:26329606

  5. Emergent spatial patterns of excitatory and inhibitory synaptic strengths drive somatotopic representational discontinuities and their plasticity in a computational model of primary sensory cortical area 3b

    Directory of Open Access Journals (Sweden)

    Kamil A. Grajski

    2016-07-01

    Full Text Available Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers, boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties.

  6. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  7. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  8. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  9. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  10. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Science.gov (United States)

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  11. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  12. Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure

    Science.gov (United States)

    ,; Foley, Duncan; Fournier, Robert O.; Heasler, Henry P.; Hinckley, Bern; Ingebritsen, Steven E.; Lowenstern, Jacob B.; Susong, David D.

    2014-01-01

    A panel of leading experts (The Old Faithful Science Review Panel) was convened by Yellowstone National Park (YNP) to review and summarize the geological and hydrological understanding that can inform National Park Service management of the Upper Geyser Basin area. We give an overview of present geological and hydrological knowledge of the Old Faithful hydrothermal (hot water) system and related thermal areas in the Upper Geyser Basin. We prioritize avenues for improving our understanding of key knowledge gaps that limit informed decision-making regarding human use in this fragile natural landscape. Lastly, we offer guidelines to minimize impacts to the hydrothermal system that could be used to aid decisions by park management.

  13. Widespread cortical thinning in patients with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Kim, S-H; Kwak, K; Hyun, J-W; Jeong, I H; Jo, H-J; Joung, A; Kim, J-H; Lee, S H; Yun, S; Joo, J; Lee, J-M; Kim, H J

    2016-07-01

    Studies on cortical involvement and its relationship with cognitive function in patients with neuromyelitis optica spectrum disorder (NMOSD) remain scarce. The objective of this study was to compare cortical thickness on magnetic resonance imaging (MRI) between patients with NMOSD and multiple sclerosis (MS) and to investigate its relationship with clinical features and cognitive function. This observational clinical imaging study of 91 patients with NMOSD, 52 patients with MS and 44 healthy controls was conducted from 1 December 2013 to 30 April 2015 at the institutional referral center. Three tesla MRI of the brain and neuropsychological tests were performed. Cortical thickness was measured using three-dimensional surface-based analysis. Both sets of patients exhibited cortical thinning throughout the entire brain cortex. Patients with MS showed a significantly greater reduction in cortical thickness over broad regions of the bilateral frontal and parieto-temporal cortices and the left precuneus compared to those with NMOSD. Memory functions in patients with MS were correlated with broad regional cortical thinning, whereas no significant associations were observed between cortical thickness and cognitive function in patients with NMOSD. Widespread cortical thinning was observed in patients with NMOSD and MS, but the extent of cortical thinning was greater in patients with MS. The more severe cortical atrophy may contribute to memory impairment in patients with MS but not in those with NMOSD. These results provide in vivo evidence that the severity and clinical relevance of cortical thinning differ between NMOSD and MS. © 2016 EAN.

  14. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  15. Three-dimensional representation of the climates and temperatures which are relevant to thermal comfort in urban areas

    International Nuclear Information System (INIS)

    Jendritzky, G.

    1991-01-01

    The complex outdoor conditions of heat exchange of the human being are determined by the topographic factor, and in a microscale by the specific behaviour of various kinds of land use. For urban planning purposes a one-dimensional boundary layer model provides, with sufficient accuracy, those meteorological elements as a function of land use type which are required for the human heat budget. The model distinguishes between 'settled', 'cultivated (green)', and 'paved' areas. In the first two types, a definable vertical extension is taken into consideration. In a first approach, the meteorological conditions of the following five land use types have been simulated: Built-up area dense and loose, forest, unsealed (arable) land, and asphalt. The influence of orography on radiance, temperature, and wind field is taken into account by empirical approaches. The resulting meteorological fields are analysed by the Klima-Michel-model, which describes the heat budget model of a human being, thus providing physiological significant information. First applications of the procedure (still in 50 m resolution, the aim is 25 m) are presented, and the problem of linking different data levels are discussed. The final objective is a standardized tool to compute so-called climate applicability maps with respect to e.g. residential, recreational and industrial areas. (orig.) [de

  16. The Measurement of Relevance Amount of Documents That By Using of Google cross-language retrieval About Agriculture Subject Area are Retrieved

    Directory of Open Access Journals (Sweden)

    Fatemeh Jamshidi Ghahfarokhi

    2014-02-01

    Full Text Available In this study, the relevance amount of documents has been investigated by using google cross-language retrieval tools about a agriculture subject area in cross-language retrieval form, are retrieved. For this purpose, by using Persian journals articles that have had English abstracts, Persian phrases and subject terms with their English equivalent were extracted. In three class us, thirty number of phrases and subject terms of agriculture area were extracted: First class, subject phrases that only in agriculture are used; Secondary, agriculture subject terms that in other fields are used too; Third class, agriculture subject terms that out of this field are considered as public term. Then by these phrases and terms, documents were searched, and relevance amount of search results are investigated. Results of study showed that google cross-language retrieval tools for two classes of phrases and terms, in cross-language retrieval of relevance document about agriculture subject area, aren`t succeed: one class, agriculture subject terms that in other fields are used too. other class, agriculture subject terms that out of agriculture field are considered as public term. Google cross-language retrieval tools about subject phrase and terms that only in agriculture field are used, are performance rather desirable than other two class of phrase and terms

  17. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  18. Cortical responses following simultaneous and sequential retinal neurostimulation with different return configurations.

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2016-08-01

    Researchers continue to develop visual prostheses towards safer and more efficacious systems. However limitations still exist in the number of stimulating channels that can be integrated. Therefore there is a need for spatial and time multiplexing techniques to provide improved performance of the current technology. In particular, bright and high-contrast visual scenes may require simultaneous activation of several electrodes. In this research, a 24-electrode array was suprachoroidally implanted in three normally-sighted cats. Multi-unit activity was recorded from the primary visual cortex. Four stimulation strategies were contrasted to provide activation of seven electrodes arranged hexagonally: simultaneous monopolar, sequential monopolar, sequential bipolar and hexapolar. Both monopolar configurations showed similar cortical activation maps. Hexapolar and sequential bipolar configurations activated a lower number of cortical channels. Overall, the return configuration played a more relevant role in cortical activation than time multiplexing and thus, rapid sequential stimulation may assist in reducing the number of channels required to activate large retinal areas.

  19. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Directory of Open Access Journals (Sweden)

    Catani Claudia

    2009-07-01

    Full Text Available Abstract Background The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity.

  20. Self-identification with another person's face: the time relevant role of multimodal brain areas in the enfacement illusion.

    Science.gov (United States)

    Bufalari, Ilaria; Porciello, Giuseppina; Sperduti, Marco; Minio-Paluello, Ilaria

    2015-04-01

    The illusory subjective experience of looking at one's own face while in fact looking at another person's face can surprisingly be induced by simple synchronized visuotactile stimulation of the two faces. A recent study (Apps MA, Tajadura-Jiménez A, Sereno M, Blanke O, Tsakiris M. Cereb Cortex. First published August 20, 2013; doi:10.1093/cercor/bht199) investigated for the first time the role of visual unimodal and temporoparietal multimodal brain areas in the enfacement illusion and suggested a model in which multisensory mechanisms are crucial to construct and update self-face representation. Copyright © 2015 the American Physiological Society.

  1. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  2. Drug susceptibility of Mycobacterium tuberculosis in a rural area of Bangladesh and its relevance to the national treatment regimens.

    Science.gov (United States)

    Van Deun, A; Aung, K J; Chowdhury, S; Saha, S; Pankaj, A; Ashraf, A; Rigouts, L; Fissette, K; Portaels, F

    1999-02-01

    Greater Mymensingh District, a rural area of Bangladesh, at the start of the National Tuberculosis Programme (NTP). To determine the prevalence of initial and acquired drug resistance of Mycobacterium tuberculosis, and to assess the appropriateness of the NTP's standard regimens. Sampling of pre-treatment sputum from all newly registered smear-positive cases in five centres covering the area. Culture and susceptibility testing in a supra-national reference laboratory. Initial resistance to isoniazid (H) was 5.4%, and to rifampicin (R) 0.5%. Acquired H and R resistance were 25.9% and 7.4%, respectively. Multidrug resistance (MDR) was observed in one new case only and in 5.6% of previously treated patients. Changing the present NTP indication for retreatment regimen to one month of previous H intake would increase coverage of H-resistant cases from 52% to 89%, adding 6% to drug costs. The prevalence of drug resistance is surprisingly low in Bangladesh, but could rise with improving economic conditions. The NTP regimens for smear-positive cases are appropriate, all the more so since the human immunodeficiency virus is virtually absent. Indications for the retreatment regimen should be extended to include all patients treated for at least one month with any drug. The NTP regimen for smear-negative cases runs the risk of leading to MDR under present field conditions.

  3. Calibration of commercial microwave link derived- rainfall and its relevance to flash flood occurrence in the Dead Sea area

    Science.gov (United States)

    Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich

    2016-04-01

    Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML

  4. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience.

    Science.gov (United States)

    Sun, Xiaoyan; Song, Zhenhua; Si, Yawei; Wang, Jin-Hui

    2018-06-01

    Chronic stress with lack of reward presumably may impair brain reward circuit, leading to major depressive disorder (MDD). Most individuals experiencing chronic stress do not suffer from MDD, i.e., resilience, implying the presence of endogenous anti-depression in the brain. Molecular mechanisms underlying stress-induced depression versus resilience were investigated. Mice were treated by chronic unpredictable mild stress (CUMS) for four weeks. Their mood state was assessed by behavioral tasks, such as sucrose preference, Y-maze and forced swimming testes. To reveal comprehensive molecular profiles of major depression versus resilience, mRNA and microRNA profiles were analyzed by high-throughput sequencing in the ventral tegmental area (VTA) harvested from control, CUMS-susceptible and CUMS-resilience mice. In data analyses of control versus CUMS-susceptible mice as well as control versus CUMS-resilience mice, 1.5 fold ratio in reads per kilo-base per million reads was set as the threshold to judge the involvement of mRNAs and microRNAs in the CUMS, depression or resilience. The downregulation of synaptic vesicle cycle, neurotrophin, GABAergic synapse and morphine addiction as well as the upregulation of transmitter release, calcium signal and cAMP-dependent response element binding are associated to CUMS-susceptibility. The downregulation of tyrosine metabolism and protein process in endoplasmic reticulum as well as the upregulation of amino acid biosynthesis, neuroactive ligand-receptor interaction and dopaminergic synapse are associated to CUMS-resilience. Therefore, the impairment of neurons and GABA/dopaminergic synapses in the VTA is associated with major depression. The upregulation of these entities is associated with resilience. Consistent results obtained from analyzing mRNAs and microRNAs as well as using different approaches strengthen our finding and conclusion. Copyright © 2018. Published by Elsevier Inc.

  5. Modulation of the mirror system by social relevance.

    Science.gov (United States)

    Kilner, James M; Marchant, Jennifer L; Frith, Chris D

    2006-09-01

    When we observe the actions of others, certain areas of the brain are activated in a similar manner as to when we perform the same actions ourselves. This 'mirror system' includes areas in the ventral premotor cortex and the inferior parietal lobule. Experimental studies suggest that action observation automatically elicits activity in the observer, which precisely mirrors the activity observed. In this case we would expect this activity to be independent of observer's viewpoint. Here we use whole-head magnetoencephalography (MEG) to record cortical activity of human subjects whilst they watched a series of videos of an actor making a movement recorded from different viewpoints. We show that one cortical response to action observation (oscillatory activity in the 7-12 Hz frequency range) is modulated by the relationship between the observer and the actor. We suggest that this modulation reflects a mechanism that filters information into the 'mirror system', allowing only socially relevant information to pass.

  6. Holistic face categorization in higher-level cortical visual areas of the normal and prosopagnosic brain: towards a non-hierarchical view of face perception

    Directory of Open Access Journals (Sweden)

    Bruno Rossion

    2011-01-01

    Full Text Available How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (2-tones Mooney figures and Arcimboldo’s facelike paintings. Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (Fusiform face area, FFA and superior temporal sulcus (pSTS, with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no occipital face area, OFA. This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient (PS whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex.

  7. Sources of nitrous oxide and other climate relevant gases on surface area in a dairy free stall barn with solid floor and outside slurry storage

    Science.gov (United States)

    Schmithausen, Alexander J.; Trimborn, Manfred; Büscher, Wolfgang

    2018-04-01

    Livestock production systems in agriculture are one of the major emitters of greenhouse gases. So far, the focus of research in the dairy farm sector was primarily on ruminal methane (CH4) emissions. Emissions of nitrous oxide (N2O) usually arise from solid manure or in deep litter free stall barns. Release of N2O occurs as a result of interactions between organic material, nitrogen and moisture. Data of N2O emissions from modern dairy barns and liquid manure management systems are rare. Thus, the goal of this research was to determine the main sources of trace gas emissions at the dairy farm level, including N2O. Areas such as the scraped surface area where dry and wet conditions alternate are interesting. Possible sources of trace gases within and outside the barn were localised by measuring trace gas concentration rates from different dairy farm areas (e.g., areas covered with urine and excrement or slurry storage system) via the closed chamber technique. The results indicate typical emission ratios of carbon dioxide (CO2), CH4 and N2O in the various areas to generate comparable equivalent values. Calculated on the basis of nitrogen excretion from dairy cows, total emissions of N2O were much lower from barns than typically measured in fields. However, there were also areas within the barn with individual events and unexpected release factors of N2O concentrations such as urine patches, polluted areas and cubicles. Emission factors of N2O ranged from 1.1 to 5.0 mg m-2 d-1, respectively, for cleaned areas and urine patches. By considering the release factors of these areas and their proportion of the entire barn, total emission rates of 371 CO2-eq. LU-1 a-1, 36 CO2-eq. LU-1 a-1, and 1.7 kg CO2-eq. LU-1 a-1 for CO2, CH4 and N2O, respectively, were measured for the whole barn surface area. The CH4 emissions from surface area were stronger climate relevant comparing to N2O emissions, but compared to CH4 emissions from slurry storage or ruminal fermentation (not

  8. Aberrant cortical associative plasticity associated with severe adult Tourette syndrome.

    Science.gov (United States)

    Martín-Rodríguez, Juan Francisco; Ruiz-Rodríguez, María Adilia; Palomar, Francisco J; Cáceres-Redondo, María Teresa; Vargas, Laura; Porcacchia, Paolo; Gómez-Crespo, Mercedes; Huertas-Fernández, Ismael; Carrillo, Fátima; Madruga-Garrido, Marcos; Mir, Pablo

    2015-03-01

    Recent studies have shown altered cortical plasticity in adult patients with Tourette syndrome. However, the clinical significance of this finding remains elusive. Motor cortical plasticity was evaluated in 15 adult patients with severe Tourette syndrome and 16 healthy controls using the paired associative stimulation protocol by transcranial magnetic stimulation. Associations between paired associative stimulation-induced plasticity and relevant clinical variables, including cortical excitability, psychiatric comorbidities, drug treatment and tic severity, were assessed. Motor cortical plasticity was abnormally increased in patients with Tourette syndrome compared with healthy subjects. This abnormal plasticity was independently associated with tic severity. Patients with severe Tourette syndrome display abnormally increased cortical associative plasticity. This aberrant cortical plasticity was associated with tic severity, suggesting an underlying mechanism for tic pathophysiology. © 2015 International Parkinson and Movement Disorder Society.

  9. Ensuring safety of people in case of severe floods: feasibility and relevance of vertical evacuation strategies in high population density areas

    Directory of Open Access Journals (Sweden)

    Pannier Rodolphe

    2016-01-01

    Full Text Available When a major flooding event is expected the authorities in charge of the crisis management often consider bringing people to safety by making them leaving temporarily the threatened area before the onset of the flood. This strategy is called “horizontal evacuation”. It has to be distinguished from “vertical evacuation”, which means that people reach a shelter above the wtaer level within the flood area. Vertical evacuation is often the spontaneousbehaviourof people who are surprised by the flood and are trying to reach a tree, a floor upstairs, a roof of a building etc. in order to get away from the rising water. But vertical evacuation could also be consideredas an alternative strategy to horizontal evacuation when moving outside the flood area is neither a faisible nor a relevant option, for example in high-population density areas. In order to be a credible alternative to horizontal evacuation, vertical evacuation has to be carefully planned. This paper aims to explain why horizontal evacuation is not always a suitable option in case of major flood and to explore under what conditions vertical evacuation can be a relevantalternative solution to horizontal evacuation. It also adresses some general recommendations about how to prepare a vertical evacuation strategy..

  10. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  11. Cortical processing of swallowing in ALS patients with progressive dysphagia--a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Inga K Teismann

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare disease causing degeneration of the upper and lower motor neuron. Involvement of the bulbar motor neurons often results in fast progressive dysphagia. While cortical compensation of dysphagia has been previously shown in stroke patients, this topic has not been addressed in patients suffering from ALS. In the present study, we investigated cortical activation during deglutition in two groups of ALS patients with either moderate or severe dysphagia. Whole-head MEG was employed on fourteen patients with sporadic ALS using a self-paced swallowing paradigm. Data were analyzed by means of time-frequency analysis and synthetic aperture magnetometry (SAM. Group analysis of individual SAM data was performed using a permutation test. We found a reduction of cortical swallowing related activation in ALS patients compared to healthy controls. Additionally a disease-related shift of hemispheric lateralization was observed. While healthy subjects showed bilateral cortical activation, the right sensorimotor cortex was predominantly involved in ALS patients. Both effects were even stronger in the group of patients with severe dysphagia. Our results suggest that bilateral degeneration of the upper motor neuron in the primary motor areas also impairs further adjusted motor areas, which leads to a strong reduction of 'swallowing related' cortical activation. While both hemispheres are affected by the degeneration a relatively stronger activation is seen in the right hemisphere. This right hemispheric lateralization of volitional swallowing observed in this study may be the only sign of cortical plasticity in dysphagic ALS patients. It may demonstrate compensational mechanisms in the right hemisphere which is known to predominantly coordinate the pharyngeal phase of deglutition. These results add new aspects to our understanding of the pathophysiology of dysphagia in ALS patients and beyond. The compensational

  12. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Vecchio, Fabrizio; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Morace, Roberta; Pavone, Luigi; Soricelli, Andrea; Noce, Giuseppe; Esposito, Vincenzo; Rossini, Paolo Maria; Gallese, Vittorio; Mirabella, Giovanni

    2016-01-01

    In the present study, we tested the hypothesis that both movement execution and observation induce parallel modulations of alpha, beta, and gamma electrocorticographic (ECoG) rhythms in primary somatosensory (Brodmann area 1-2, BA1-2), primary motor (BA4), ventral premotor (BA6), and prefrontal (BA44 and BA45, part of putative human mirror neuron system underlying the understanding of actions of other people) areas. ECoG activity was recorded in drug-resistant epileptic patients during the execution of actions to reach and grasp common objects according to their affordances, as well as during the observation of the same actions performed by an experimenter. Both action execution and observation induced a desynchronization of alpha and beta rhythms in BA1-2, BA4, BA6, BA44 and BA45, which was generally higher in amplitude during the former than the latter condition. Action execution also induced a major synchronization of gamma rhythms in BA4 and BA6, again more during the execution of an action than during its observation. Human primary sensorimotor, premotor, and prefrontal areas do generate alpha, beta, and gamma rhythms and differently modulate them during action execution and observation. Gamma rhythms of motor areas are especially involved in action execution. Oscillatory activity of neural populations in sensorimotor, premotor and prefrontal (part of human mirror neuron system) areas represents and distinguishes own actions from those of other people. This methodological approach might be used for a neurophysiological diagnostic imaging of social cognition in epileptic patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  14. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  15. Detailed Geological Modelling in Urban Areas focused on Structures relevant to the Near Surface Groundwater Flow in the context of Climatic Changes

    Science.gov (United States)

    Bach, T.; Pallesen, T. M.; Jensen, N. P.; Mielby, S.; Sandersen, P.; Kristensen, M.

    2015-12-01

    This case demonstrates a practical example from the city of Odense (DK) where new geological modeling techniques has been developed and used in the software GeoScene3D, to create a detailed voxel model of the anthropogenic layer. The voxel model has been combined with a regional hydrostratigraphic layer model. The case is part of a pilot project partly financed by VTU (Foundation for Development of Technology in the Danish Water Sector) and involves many different datatypes such as borehole information, geophysical data, human related elements (landfill, pipelines, basements, roadbeds etc). In the last few years, there has been increased focus on detailed geological modeling in urban areas. The models serve as important input to hydrological models. This focus is partly due to climate changes as high intensity rainfalls are seen more often than in the past, and water recharge is a topic too. In urban areas, this arises new challenges. There is a need of a high level of detailed geological knowledge for the uppermost zone of the soil, which typically are problematic due to practically limitations, especially when using geological layer models. Furthermore, to accommodate the need of a high detail, all relevant available data has to be used in the modeling process. Human activity has deeply changed the soil layers, e.g. by constructions as roadbeds, buildings with basements, pipelines, landfill etc. These elements can act as barriers or pathways regarding surface near groundwater flow and can attribute to local flooding or mobilization and transport of contaminants etc. A geological voxel model is built by small boxes (a voxel). Each box can contain several parameters, ex. lithology, transmissivity or contaminant concentration. Human related elements can be implemented using tools, which gives the modeler advanced options for making detailed small-scale models. This case demonstrates the workflow and the resulting geological model for the pilot area.

  16. Landslide Susceptibility Mapping Based on Particle Swarm Optimization of Multiple Kernel Relevance Vector Machines: Case of a Low Hill Area in Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Yongliang Lin

    2016-10-01

    Full Text Available In this paper, we propose a multiple kernel relevance vector machine (RVM method based on the adaptive cloud particle swarm optimization (PSO algorithm to map landslide susceptibility in the low hill area of Sichuan Province, China. In the multi-kernel structure, the kernel selection problem can be solved by adjusting the kernel weight, which determines the single kernel contribution of the final kernel mapping. The weights and parameters of the multi-kernel function were optimized using the PSO algorithm. In addition, the convergence speed of the PSO algorithm was increased using cloud theory. To ensure the stability of the prediction model, the result of a five-fold cross-validation method was used as the fitness of the PSO algorithm. To verify the results, receiver operating characteristic curves (ROC and landslide dot density (LDD were used. The results show that the model that used a heterogeneous kernel (a combination of two different kernel functions had a larger area under the ROC curve (0.7616 and a lower prediction error ratio (0.28% than did the other types of kernel models employed in this study. In addition, both the sum of two high susceptibility zone LDDs (6.71/100 km2 and the sum of two low susceptibility zone LDDs (0.82/100 km2 demonstrated that the landslide susceptibility map based on the heterogeneous kernel model was closest to the historical landslide distribution. In conclusion, the results obtained in this study can provide very useful information for disaster prevention and land-use planning in the study area.

  17. Interest of targeting either cortical area Brodmann 9 or 46 in rTMS treatment for depression: a preliminary randomized study.

    Science.gov (United States)

    Trojak, Benoit; Meille, Vincent; Jonval, Lysiane; Schuffenecker, Nicolas; Haffen, Emmanuel; Schwan, Raymund; Bonin, Bernard; Chauvet-Gelinier, Jean-Christophe

    2014-12-01

    To assess the interest of specifically targeting Brodmann Areas (BA) 9 or 46 for rTMS treatment of depression. Patients with Treatment-Resistant Depression were randomly assigned to two treatment groups to receive either rTMS on BA 9 or on BA 46. Each patient underwent 10 sessions of 1Hz-rTMS for 2weeks. The Hamilton and Montgomery-Asberg Depression Rating Scales (HDRS, MADRS) were used under blind conditions to assess the therapeutic response (50% improvement). A Wilcoxon signed-rank test was used to compare the depression rating scales scores obtained before and after the 10 rTMS sessions for each of the two groups. The therapeutic results in the two groups were compared using the Mann-Whitney-Wilcoxon test. We also reported the effect sizes using Hedges's g. Fifteen patients were included. Stimulation of both BA 9 (n=7) and BA 46 (n=8) led to similar therapeutic responses in the two groups (with moderate effect size), such as the mean decrease in HDRS (BA 9: p=0.015; BA 46: p=0.010) and MADRS (BA 9: p=0.042; BA 46: p=0.038) scores. Our results do not come out in favor of one or the other BA. Stimulation of BA 9 and BA 46 appears to be equally effective in the treatment of depression. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    Science.gov (United States)

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    -synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.

  20. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    Science.gov (United States)

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical

  1. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    Science.gov (United States)

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  2. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    Science.gov (United States)

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  4. Work-Related Eye Injuries: A Relevant Health Problem. Main Epidemiological Data from a Highly-Industrialized Area of Northern Italy.

    Science.gov (United States)

    Gobba, Fabriziomaria; Dall'Olio, Enrico; Modenese, Alberto; De Maria, Michele; Campi, Luca; Cavallini, Gian Maria

    2017-06-06

    The province of Modena is one of the most industrialized areas of Northern Italy. The medical records of the Ophthalmological Emergency Department (OED) of Modena University Hospital were studied: there were 13,470 OED accesses in 2014 and in 754 cases that an occupational eye injury occurred. The frequency of work-related eye injuries (3‰) was lower compared to other published studies, but the absolute number is still relevant, showing the need for more adequate prevention, especially in metal work, construction work, and agriculture, where the worst prognoses were observed. Intervention programs must be implemented as early as possible in the working life, considering that the frequency in younger workers is about double that of the oldest age class (3.5‰ vs. 1.8‰), and special attention should also be given to foreigners, who have a 50% higher injury risk. Furthermore, the planning of specific interventions for eye-injured workers may be useful, considering that a previous injury does not appear to encourage the adoption of preventive interventions, and a subgroup of eye-injured workers have a potential risk for new injuries. Finally, the data presented here indicates how OED records, integrated with specific occupational information, can be applied for studies on work-related eye injuries.

  5. Work-Related Eye Injuries: A Relevant Health Problem. Main Epidemiological Data from a Highly-Industrialized Area of Northern Italy

    Directory of Open Access Journals (Sweden)

    Fabriziomaria Gobba

    2017-06-01

    Full Text Available The province of Modena is one of the most industrialized areas of Northern Italy. The medical records of the Ophthalmological Emergency Department (OED of Modena University Hospital were studied: there were 13,470 OED accesses in 2014 and in 754 cases that an occupational eye injury occurred. The frequency of work-related eye injuries (3‰ was lower compared to other published studies, but the absolute number is still relevant, showing the need for more adequate prevention, especially in metal work, construction work, and agriculture, where the worst prognoses were observed. Intervention programs must be implemented as early as possible in the working life, considering that the frequency in younger workers is about double that of the oldest age class (3.5‰ vs. 1.8‰, and special attention should also be given to foreigners, who have a 50% higher injury risk. Furthermore, the planning of specific interventions for eye-injured workers may be useful, considering that a previous injury does not appear to encourage the adoption of preventive interventions, and a subgroup of eye-injured workers have a potential risk for new injuries. Finally, the data presented here indicates how OED records, integrated with specific occupational information, can be applied for studies on work-related eye injuries.

  6. Task-Modulated Cortical Representations of Natural Sound Source Categories

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Kassuba, Tanja; Madsen, Kristoffer Hougaard

    2018-01-01

    In everyday sound environments, we recognize sound sources and events by attending to relevant aspects of an acoustic input. Evidence about the cortical mechanisms involved in extracting relevant category information from natural sounds is, however, limited to speech. Here, we used functional MRI...

  7. Flow of cortical activity underlying a tactile decision in mice

    OpenAIRE

    Guo, Zengcai V.; Li, Nuo; Huber, Daniel; Ophir, Eran; Gutnisky, Diego; Ting, Jonathan T.; Feng, Guoping; Svoboda, Karel

    2013-01-01

    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neo...

  8. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices.

    Science.gov (United States)

    Barbas, H

    2000-07-15

    Distinct domains of the prefrontal cortex in primates have a set of connections suggesting that they have different roles in cognition, memory, and emotion. Caudal lateral prefrontal areas (areas 8 and 46) receive projections from cortices representing early stages in visual or auditory processing, and from intraparietal and posterior cingulate areas associated with oculomotor guidance and attentional processes. Cortical input to areas 46 and 8 is complemented by projections from the thalamic multiform and parvicellular sectors of the mediodorsal nucleus associated with oculomotor functions and working memory. In contrast, caudal orbitofrontal areas receive diverse input from cortices representing late stages of processing within every unimodal sensory cortical system. In addition, orbitofrontal and caudal medial (limbic) prefrontal cortices receive robust projections from the amygdala, associated with emotional memory, and from medial temporal and thalamic structures associated with long-term memory. Prefrontal cortices are linked with motor control structures related to their specific roles in central executive functions. Caudal lateral prefrontal areas project to brainstem oculomotor structures, and are connected with premotor cortices effecting head, limb and body movements. In contrast, medial prefrontal and orbitofrontal limbic cortices project to hypothalamic visceromotor centers for the expression of emotions. Lateral, orbitofrontal, and medial prefrontal cortices are robustly interconnected, suggesting that they participate in concert in central executive functions. Prefrontal limbic cortices issue widespread projections through their deep layers and terminate in the upper layers of lateral (eulaminate) cortices, suggesting a predominant role in feedback communication. In contrast, when lateral prefrontal cortices communicate with limbic areas they issue projections from their upper layers and their axons terminate in the deep layers, suggesting a role in

  9. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Caroli, Anna; Salvatore, Elena; Nicolai, Emanuele; Marzano, Nicola; Lizio, Roberta; Cavedo, Enrica; Landau, Susan; Chen, Kewei; Jagust, William; Reiman, Eric; Tedeschi, Gioacchino; Montella, Patrizia; De Stefano, Manuela; Gesualdo, Loreto; Frisoni, Giovanni B; Soricelli, Andrea

    2016-12-01

    Cortical sources of resting state electroencephalographic (EEG) delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms show abnormal activity (i.e., current density) in patients with dementia due to Alzheimer's disease (AD). Here, we hypothesized that abnormality of this activity is related to relevant disease processes as revealed by cortical hypometabolism typically observed in AD patients by fluorodeoxyglucose positron emission tomography. Resting state eyes-closed EEG data were recorded in 19 AD patients with dementia and 40 healthy elderly (Nold) subjects. EEG frequency bands of interest were delta and low-frequency alpha. EEG sources were estimated in these bands by low-resolution brain electromagnetic tomography (LORETA). Fluorodeoxyglucose positron emission tomography images were recorded only in the AD patients, and cortical hypometabolism was indexed by the so-called Alzheimer's discrimination analysis tool (PALZ) in the frontal association, ventromedial frontal, temporoparietal association, posterior cingulate, and precuneus areas. Results showed that compared with the Nold group, the AD group pointed to higher activity of delta sources and lower activity of low-frequency alpha sources in a cortical region of interest formed by all cortical areas of the PALZ score. In the AD patients, there was a positive correlation between the PALZ score and the activity of delta sources in the cortical region of interest (p < 0.05). These results suggest a relationship between resting state cortical hypometabolism and synchronization of cortical neurons at delta rhythms in AD patients with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cortical thickness patterns as state biomarker of anorexia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Cao, Bo; Shott, Megan E; Soares, Jair C; Frank, Guido K W

    2018-03-01

    Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ 2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN. © 2018 Wiley Periodicals, Inc.

  11. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  12. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  13. Modulation of task-related cortical connectivity in the acute and subacute phase after stroke

    DEFF Research Database (Denmark)

    Larsen, Lisbeth H.; Zibrandtsen, Ivan C.; Wienecke, Troels

    2018-01-01

    The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined...... from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations...... of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL...

  14. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  15. Overweight is not associated with cortical thickness alterations in children

    Directory of Open Access Journals (Sweden)

    Rachel Jane Sharkey

    2015-02-01

    Full Text Available IntroductionSeveral studies report an association between body mass index (BMI and cortical thickness in adults. Some studies demonstrate diffuse cortical thinning in obesity, while others report effects in areas that are associated with self-regulation, such as lateral prefrontal cortex. MethodsThis study used multilevel modelling of data from the NIH Pediatric MRI Data Repository, a mixed longitudinal and cross-sectional database, to examine the relationship between cortical thickness and body weight in children. Cortical thickness was computed at 81,942 vertices of 716 MRI scans from 378 children aged between 4 and 18 years. Body mass index Z score for age was computed for each participant. We preformed vertex-wise statistical analysis of the relationship between cortical thickness and BMI, accounting for age and gender. In addition, cortical thickness was extracted from regions of interest in prefrontal cortex and insula.ResultsNo significant association between cortical thickness and BMI was found, either by statistical parametric mapping or by region of interest analysis. Results remained negative when the analysis was restricted to children aged 12-18.ConclusionsThe correlation between BMI and cortical thickness was not found in this large pediatric sample. The association between BMI and cortical thinning develops after adolescence. This has implications for the nature of the relationship between brain anatomy and weight gain.

  16. A survey on trace organic chemicals in a German water protection area and the proposal of relevant indicators for anthropogenic influences.

    Science.gov (United States)

    Seitz, Wolfram; Winzenbacher, Rudi

    2017-06-01

    A comprehensive monitoring programme of trace organic chemicals (TOrC) was conducted for a German water protection area in karstic ground. The aim of this survey was to detect the potential anthropogenic influences of point sources such as wastewater treatment plants and diffuse pollution such as runoff water from roads on the raw water used for drinking water treatment. The programme comprised seven sampling campaigns within 2 years each with up to 20 sampling sites. In total, the programme included 84 anthropogenic compounds from pharmaceuticals, iodinated X-ray contrast media, sweeteners, industrial chemicals (benzotriazoles, melamines and benzothiazoles) and pesticide metabolites. Cyclamate occurred with the highest median concentration of 44 μg l -1 in untreated wastewater and acesulfame occurred with a concentration of 20 μg l -1 in treated wastewater. In runoff water from roads, the most relevant compounds were tolyltriazole with 2.3 μg l -1 and the desphenyl-chloridazon with 1.2 μg l -1 . In the stream waters, the highest median concentrations were found for melamine and acesulfame both at 0.61 μg l -1 . High elimination during conventional wastewater treatment was observed for 5 out of 49 compounds. These are acetyl-sulfamethoxazole, aciclovir, cyclamate, ibuprofen and saccharin. Based on the survey results, we propose a set of nine compounds to be used as indicators for wastewater, untreated wastewater and runoff water from roads for an efficient surveillance. The indicators are intended to detect anthropogenic influences in surface, ground and drinking water.

  17. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  18. Cortical stimulation of language fields under local anesthesia: optimizing removal of brain lesions adjacent to speech areas Mapeamento cortical da fala com o paciente acordado: optimização para ressecção de lesões intracranianas localizadas próximas a área da fala

    Directory of Open Access Journals (Sweden)

    Robson Luis Oliveira de Amorim

    2008-09-01

    Full Text Available OBJECTIVE: The main objective when resecting benign brain lesions is to minimize risk of postoperative neurological deficits. We have assessed the safety and effectiveness of craniotomy under local anesthesia and monitored conscious sedation for the resection of lesions involving eloquent language cortex. METHODS: A retrospective review was performed on a consecutive series of 12 patients who underwent craniotomy under local anesthesia between 2001 and 2004. All patients had lesions close to the speech cortex. All resection was verified by post-operative imaging. Six subjects were male and 6 female, and were aged between 14 and 52 years. RESULTS: Lesions comprised 7 tumour lesions, 3 cavernomas and 1 dermoid cyst. Radiological gross total resection was achieved in 66% of patients while remaining cases had greater than 80% resection. Only one patient had a post-operative permanent deficit, whilst another had a transient post-operative deficit. All patients with uncontrollable epilepsy had good outcomes after surgery. None of our cases subsequently needed to be put under general anesthesia. CONCLUSION: Awake craniotomy with brain mapping is a safe technique and the "gold standard" for resection of lesions involving language areas.OBJETIVO: O presente estudo visa discutir as vantagens e as limitacões do uso da técnica de mapeamento cortical da área da fala com o paciente acordado. MÉTODO: esta é uma revisão retrospectiva dos casos em que foi realizado monitoramento cortical intraoperatório em cirurgias para ressecção de lesões intracranianas localizadas próximas à área da fala. Todos os pacientes foram submetidos a avaliação neuropsicológica no pré e intra-operatório. O grau das ressecções foi verificado através de exames de imagem pós-operatórios. Foram avaliados um total de 12 pacientes. Destes, 6 eram do sexo masculino e 6 do feminino. RESULTADOS: 7 lesões eram tumorais. A ressecção total foi atingida em 66% e ressec

  19. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  20. Are the Symptoms of Parkinsonism Cortical in Origin?

    Directory of Open Access Journals (Sweden)

    Gordon W. Arbuthnott

    Full Text Available We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD since: 1. Cortical synapses onto striatal dendritic spines are lost in PD. 2. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. 3. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Keywords: Parkinson's disease, Deep brain stimulation, Layer I, Motor cortex

  1. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    Science.gov (United States)

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  3. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7 T MRI.

    Science.gov (United States)

    Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Madigan, Nancy; Nielsen, A Scott; Sloane, Jacob A; Kinkel, Revere P; Mainero, Caterina

    2016-01-01

    Using quantitative T 2 * at 7 Tesla (T) magnetic resonance imaging, we investigated whether impairment in selective cognitive functions in multiple sclerosis (MS) can be explained by pathology in specific areas and/or layers of the cortex. Thirty-one MS patients underwent neuropsychological evaluation, acquisition of 7 T multi-echo T 2 * gradient-echo sequences, and 3 T anatomical images for cortical surfaces reconstruction. Seventeen age-matched healthy subjects served as controls. Cortical T 2 * maps were sampled at various depths throughout the cortex and juxtacortex. Relation between T 2 *, neuropsychological scores and a cognitive index (CI), calculated from a principal component analysis on the whole battery, was tested by a general linear model. Cognitive impairment correlated with T 2 * increase, independently from white matter lesions and cortical thickness, in cortical areas highly relevant for cognition belonging to the default-mode network (p < 0.05 corrected). Dysfunction in different cognitive functions correlated with longer T 2 * in selective cortical regions, most of which showed longer T 2 * relative to controls. For most tests, this association was strongest in deeper cortical layers. Executive dysfunction, however, was mainly related with pathology in juxtameningeal cortex. T 2 * explained up to 20% of the variance of the CI, independently of conventional imaging metrics (adjusted-R 2 : 52-67%, p < 5.10 - 4 ). Location of pathology across the cortical width and mantle showed selective correlation with impairment in differing cognitive domains. These findings may guide studies at lower field strength designed to develop surrogate markers of cognitive impairment in MS.

  4. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  5. Extensive cortical rewiring after brain injury.

    Science.gov (United States)

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  6. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  7. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Mezzapesa, Domenico Maria; D'Errico, Eustachio; Tortelli, Rosanna; Distaso, Eugenio; Cortese, Rosa; Tursi, Marianna; Federico, Francesco; Zoccolella, Stefano; Logroscino, Giancarlo; Dicuonzo, Franca; Simone, Isabella Laura

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.

  8. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Domenico Maria Mezzapesa

    Full Text Available Amyotrophic lateral sclerosis (ALS has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.

  9. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  11. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  12. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  13. Inconsistent approaches of the G-BA regarding acceptance of primary study endpoints as being relevant to patients - an analysis of three disease areas: oncological, metabolic, and infectious diseases

    Directory of Open Access Journals (Sweden)

    Thomas Staab

    2016-11-01

    Full Text Available Abstract Background Previous evaluations of oncological medicines in the German early benefit assessment (EBA procedure have demonstrated inconsistent acceptance of endpoints by regulatory authorities and the Federal Joint Committee (G-BA. Accepted standard endpoints for regulatory purposes are frequently not considered as patient-relevant in the German EBA system. In this study the acceptance of clinically acknowledged primary endpoints (PEPs from regulatory trials in EBAs conducted by the G-BA was evaluated across three therapeutic areas. Methods Medicines for oncological, metabolic and infectious diseases with EBAs finalised before 25 January 2016 were evaluated. Respective manufacturer’s dossiers, regulatory assessments, G-BA appraisals and oral hearing minutes were reviewed, and PEPs were examined to determine whether they were considered relevant to patients by the G-BA. Furthermore, the acceptance of symptomatic vs asymptomatic PEPs was also analysed. Results A total of 65 EBAs were evaluated. Mortality PEPs were widely accepted as patient-relevant but were only used in a minority of EBAs and exclusively in oncological diseases. Morbidity PEPs constituted around 72 % of assessed PEPs, but were excluded from the EBA in over half of the corresponding assessments as they were not considered patient-relevant. Symptomatic endpoints were largely deemed patient-relevant, whereas acceptance of asymptomatic endpoints varied between therapeutic areas. Conclusions This evaluation identified inconsistencies in patient relevance of morbidity-related PEPs as well as in acceptance of asymptomatic endpoints by the G-BA in all three disease areas examined. Better harmonisation between the regulatory authorities and the G-BA is still required after 5 years of AMNOG health technology assessment in Germany.

  14. A review on substances and processes relevant for optical remote sensing of extremely turbid marine areas, with a focus on the Wadden Sea

    NARCIS (Netherlands)

    Hommersom, A.; Wernand, M.R.; Peters, S.W.M.; de Boer, J.

    2010-01-01

    The interpretation of optical remote sensing data of estuaries and tidal flat areas is hampered by optical complexity and often extreme turbidity. Extremely high concentrations of suspended matter, chlorophyll and dissolved organic matter, local differences, seasonal and tidal variations and

  15. Planning protected areas network that are relevant today and under future climate change is possible: the case of Atlantic Forest endemic birds

    Directory of Open Access Journals (Sweden)

    Mariana M. Vale

    2018-05-01

    Full Text Available Background A key strategy in biodiversity conservation is the establishment of protected areas. In the future, however, the redistribution of species in response to ongoing climate change is likely to affect species’ representativeness in those areas. Here we quantify the effectiveness of planning protected areas network to represent 151 birds endemic to the Brazilian Atlantic Forest hotspot, under current and future climate change conditions for 2050. Methods We combined environmental niche modeling and systematic conservation planning using both a county and a regional level planning strategy. We recognized the conflict between biodiversity conservation and economic development, including socio-economic targets (as opposed to biological only and using planning units that are meaningful for policy-makers. Results We estimated an average contraction of 29,500 km2 in environmentally suitable areas for birds, representing 52% of currently suitable areas. Still, the most cost-effective solution represented almost all target species, requiring only ca. 10% of the Atlantic Forest counties to achieve that representativeness, independent of strategy. More than 50% of these counties were selected both in the current and future planned networks, representing >83% of the species. Discussion Our results indicate that: (i planning protected areas network currently can be useful to represent species under climate change; (ii the overlapped planning units in the best solution for both current and future conditions can be considered as “no regret” areas; (iii priority counties are spread throughout the biome, providing specific guidance wherever the possibility of creating protected area arises; and (iv decisions can occur at different administrative spheres (Federal, State or County as we found quite similar numerical solutions using either county or regional level strategies.

  16. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism.

    Directory of Open Access Journals (Sweden)

    Mina Lee

    Full Text Available Cortical physiology in human motor cortex is influenced by behavioral motor training (MT as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS. This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.

  17. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism.

    Science.gov (United States)

    Lee, Mina; Kim, Song E; Kim, Won Sup; Lee, Jungyeun; Yoo, Hye Kyung; Park, Kee-Duk; Choi, Kyoung-Gyu; Jeong, Seon-Yong; Kim, Byung Gon; Lee, Hyang Woon

    2013-01-01

    Cortical physiology in human motor cortex is influenced by behavioral motor training (MT) as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS). This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.

  18. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  19. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  20. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  1. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains.

    Directory of Open Access Journals (Sweden)

    Milan Kobal

    Full Text Available In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM, which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts.

  3. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains.

    Science.gov (United States)

    Kobal, Milan; Bertoncelj, Irena; Pirotti, Francesco; Dakskobler, Igor; Kutnar, Lado

    2015-01-01

    In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM), which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts.

  4. Using Lidar Data to Analyse Sinkhole Characteristics Relevant for Understory Vegetation under Forest Cover—Case Study of a High Karst Area in the Dinaric Mountains

    Science.gov (United States)

    Kobal, Milan; Bertoncelj, Irena; Pirotti, Francesco; Dakskobler, Igor; Kutnar, Lado

    2015-01-01

    In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM), which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts. PMID:25793871

  5. Functional cortical mapping of scale illusion

    International Nuclear Information System (INIS)

    Wang, Li-qun; Kuriki, Shinya

    2011-01-01

    We have studied cortical activation using 1.5 T fMRI during 'Scale Illusion', a kind of auditory illusion, in which subjects perceive smooth melodies while listening to dichotic irregular pitch sequences consisting of scale tones, in repeated phrases composed of eight tones. Four male and four female subjects listened to different stimuli, that including illusion-inducing tone sequence, monaural tone sequence and perceived pitch sequence with a control of white noises delivered to the right and left ears in random order. 32 scans with a repetition time (TR) 3 s Between 3 s interval for each type of the four stimuli were performed. In BOLD signals, activation was observed in the prefrontal and temporal cortices, parietal lobule and occipital areas by first-level group analysis. However, there existed large intersubject variability such that systematic tendency of the activation was not clear. The study will be continued to obtain larger number of subjects for group analysis. (author)

  6. Massive cortical reorganization in sighted Braille readers.

    Science.gov (United States)

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  7. Congenital malformations of the supratentorial brain. Pt. 1. Disorders of cortical development

    International Nuclear Information System (INIS)

    Ertl-Wagner, B.; Rummeny, C.; Reiser, M.F.

    2003-01-01

    Disorders of supratentorial cortical development are usually divided into disorders of neuronal proliferation, neuronal migration and cortical organization. Based upon molecular biologic discoveries, a modified classification has recently been proposed. The category of malformations of abnormal neuronal and glial proliferation and apoptosis now includes microlissencephalies, megalencephalies, hemimegalencephalies and cortical dysplasias with balloon cells. Malformations due to abnormal neuronal migration now subsume the lissencephaly spectrum including the subcortical band heterotopias, the cobblestone complex and the group of heterotopias. Malformations due to abnormal cortical organization include the spectrum of polymicrogyria and schizencephaly as well as cortical dysplasias without balloon cells. High-resolution magnetic resonance imaging (MRI) has led to an increasing awareness of these malformations. This article aims to illustrate the classification, MRI presentation and relevant clinical features of the most commonly encountered disorders of cortical development. (orig.) [de

  8. Cisternography contribution in the cortical atrophy diagnosis

    International Nuclear Information System (INIS)

    Calegaro, J.U.M.; Balallai, N.; Suzuki, K.

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study [pt

  9. Cisternography contribution in the cortical atrophy diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Calegaro, J U.M. [Centro de Analises Clinicas e Medicina Nuclear, Londrina (Brazil); Balallai, N; Suzuki, K [Instituto de Neurologia e Neurocirurgia, Londrina (Brazil)

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study.

  10. Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia

    NARCIS (Netherlands)

    Hedman, Anna M.; van Haren, Neeltje E M; van Baal, G. Caroline M; Brouwer, Rachel M.; Brans, Rachel G H; Schnack, Hugo G.; Kahn, René S.; Hulshoff Pol, Hilleke E.

    2016-01-01

    Background: Cortical thickness and surface area changes have repeatedly been found in schizophrenia. Whether progressive loss in cortical thickness and surface area are mediated by genetic or disease related factors is unknown. Here we investigate to what extent genetic and/or environmental factors

  11. The cortical representation of sensory inputs arising from bone.

    Science.gov (United States)

    Ivanusic, Jason J; Sahai, Vineet; Mahns, David A

    2009-05-07

    In the present study, we show that sensory information from bone reaches the discriminative areas of the somatosensory cortices by electrically stimulating the nerve to the cat humerus and recording evoked potentials on the surface of the primary (SI) and secondary (SII) somatosensory cortex. The SI focus was located over the rostral part of the postcruciate cortex, caudal to the lateral aspect of the cruciate sulcus. The SII focus was identified on the anterior ectosylvian gyrus, lateral to the suprasylvian sulcus. These foci were located adjacent to, or within areas that responded to stimulation of the median, ulnar and/or musculocutaneous nerves. The latency (6-11 ms) to onset of cortical responses in SI and SII were indistinguishable (unpaired t-test; P>0.05), and were consistent with activation of A delta fibers in the peripheral nerve. The amplitudes of the cortical responses were graded as a function of stimulus intensity, and may reflect a mechanism for intensity coding. We did not observe long latency cortical responses (50-300 ms) that would be consistent with C fiber activation in the peripheral nerve, and provide evidence that this may be attributable to inhibition of cortical responsiveness following the initial A delta response. Our finding of discrete, short latency evoked potentials (presumably of A delta origin) in the primary and secondary somatosensory cortices, following stimulation of a nerve innervating bone, may reflect a mechanism for the discriminative component of bone pain.

  12. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Schuster, Christina; Kasper, Elisabeth; Machts, Judith; Bittner, Daniel; Kaufmann, Jörn; Benecke, Reiner; Teipel, Stefan; Vielhaber, Stefan; Prudlo, Johannes

    2014-10-01

    To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.

  13. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.

    Science.gov (United States)

    Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C

    2018-02-01

    To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. [Potential of cooperative learning in project development : Relevance of cooperative participation procedure for the further development of generation-appropriate accomodation in structurally weak rural areas].

    Science.gov (United States)

    Kaufmann, Gerd; Frankenberg, Olga; Sommer, Ralf-Rüdiger; Jost, Annemarie

    2017-04-01

    A joint initiative of existing senior care organizations, the municipality of Meyenburg and the state of Brandenburg was further developed by affiliation of an institute of the Brandenburg University of Technology Cottbus-Senftenberg (ABV) in cooperation with members of the architecture and social work departments in 2014. A cooperative process between different players was central to create an appropriate structure of services for this region. Cooperative projects are necessary to establish new forms of generation-appropriate living and care concepts in rural areas. Cooperative learning methods are needed to develop new forms of generation-appropriate living and care concepts in rural areas, which take the diversity of elderly people, the rural context, intergenerational residential arrangements and affordable accommodation that meets the requirements of the social security system into account. Furthermore, the project had to reflect the recent developments of the German care insurance. The article describes the participatory methods, the coordination process and the resulting concept.

  15. Cortical activation in patients with functional hemispherectomy.

    Science.gov (United States)

    Leonhardt, G; Bingel, U; Spiekermann, G; Kurthen, M; Müller, S; Hufnagel, A

    2001-10-01

    Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere.

  16. Cortical processing of object affordances for self and others’ action

    Directory of Open Access Journals (Sweden)

    Monica eMaranesi

    2014-06-01

    Full Text Available The perception of objects does not rely only on visual brain areas, but also involves cortical motor regions. In particular, different parietal and premotor areas host neurons discharging during both object observation and grasping. Most of these cells often show similar visual and motor selectivity for a specific object (or set of objects, suggesting that they might play a crucial role in representing the potential motor act afforded by the object. The existence of such a mechanism for the visuomotor transformation of object physical properties in the most appropriate motor plan for interacting with them has been convincingly demonstrated in humans as well. Interestingly, human studies have shown that visually presented objects can automatically trigger the representation of an action provided that they are located within the observer’s reaching space (peripersonal space. The affordance effect also occurs when the presented object is outside the observer’s peripersonal space, but inside the peripersonal space of an observed agent. These findings recently received direct support by single neuron studies in monkey, indicating that space-constrained processing of objects in the ventral premotor cortex might be relevant to represent objects as potential targets for one’s own or others' action.

  17. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  18. Classification of Cortical Brain Malformations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-03-01

    Full Text Available Clinical, radiological, and genetic classifications of 113 cases of malformations of cortical development (MCD were evaluated at the Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.

  19. Spatial integration and cortical dynamics.

    OpenAIRE

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-01

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells wi...

  20. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    Science.gov (United States)

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

  1. Relevant areas of functioning in patients with adolescent idiopathic scoliosis on the International Classification of Functioning, Disability and Health: The patients' perspective.

    Science.gov (United States)

    Du, Chunping; Yu, Jiadan; Zhang, Jiaqi; Jiang, Jiaojiao; Lai, Huabin; Liu, Wei; Liu, Yang; Li, Hao; Wang, Pu

    2016-10-12

    To investigate relevant aspects of functioning and disability, and environmental factors in people with adolescent idiopathic scoliosis according to patients' self-reports based on the International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY). Multicentre, empirical, cross-sectional study. Four departments of orthopaedics in 4 hospitals, and 5 departments of rehabilitation medicine in 5 hospitals. Semi-structured interviews were conducted with 975 patients with adolescent idiopathic scoliosis from 5 hospitals according to the patients' self-reporting. In addition, patients were divided into 3 groups according to clinical outcome. Participant information included demographic and disease-related characteristics. Three adolescent idiopathic scoliosis groups were then compared with respect to the problems identified. Interviews were transcribed verbatim. Categories identified by qualitative analysis were subsequently mapped to the ICF-CY using established linking rules. In order to enrich these findings, we also translated the Scoliosis Research Society 22 Patient Questionnaire (SRS-22 PQ) into the language of the ICF-CY, based on ICF linking rules. A total of 1278 themes that linked to 54 ICF-CY cate-gories from 18 chapters were identified. Twenty-two (41%) categories were identified as Body Functions, 7 (13%) as Body Structures, 15 (27%) as Activities and Participation, and 10 (19%) as Environmental Factors. Of the 54 categories, 45 (83%) were second-level, 5 (9%) were third-level, and 4 (7%) were fourth-level. Differences between the SRS-22 PQ results and our findings were observed for several ICF-CY categories. Patients with AIS reported activity limitations and participation restrictions combined with impaired body structures and functions. Environmental factors may act as a barrier to, or facilitator of, patient functioning in daily life. The ICF-CY provides a valuable framework for representing the complexity and

  2. The maturation of cortical sleep rhythms and networks over early development

    OpenAIRE

    Chu, Catherine Jean; Leahy, J.; Pathmanathan, Jay Sriram; Kramer, M.A.; Cash, Sydney S.

    2014-01-01

    Objective: Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods: We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. ...

  3. Hiperostosis cortical infantil

    Directory of Open Access Journals (Sweden)

    Salvador Javier Santos Medina

    2015-04-01

    Full Text Available La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco meses de edad, atendido en el Hospital Pediátrico Provincial “Mártires de Las Tunas” con este diagnóstico, quien ingresó en el servicio de miscelánea B por una celulitis facial. Presentaba aumento de volumen en la región geniana izquierda, febrícola e inapetencia. Se impuso tratamiento con cefazolina y se egresó a los siete días. Acudió nuevamente con tumefacción blanda y difusa de ambas hemicaras, irritabilidad y fiebre. Se interconsultó con cirugía maxilofacial, se indicaron estudios sanguíneos y radiológicos. Se diagnosticó como enfermedad de Caffey, basado en la edad del niño, tumefacción facial sin signos inflamatorios agudos e hiperostosis en ambas corticales mandibulares a la radiografía AP mandíbula; unido a anemia ligera, leucocitosis y eritrosedimentación acelerada. El paciente se trató sintomáticamente y con antinflamatorios no esteroideos. Esta rara entidad se debe tener presente en casos de niños y lactantes con irritabilidad y fiebre inespecífica

  4. A checklist of beetles (Insecta, Coleoptera) on pig carcasses in the suburban area of southwestern China: A preliminary study and its forensic relevance.

    Science.gov (United States)

    Lyu, Zhou; Wan, Li-Hua; Yang, Yong-Qiang; Tang, Rui; Xu, Lyu-Zi

    2016-07-01

    Examining the succession pattern of carrion insects on vertebrate carcasses is widely accepted as an effective method to estimate the postmortem interval (PMI) of decayed bodies. Investigation of the community of sarcosaprophagous insects, especially flies and beetles, is the foundation of the succession pattern study. This study aimed to investigate the sarcosaprophagous beetles succession on animal carcasses in the suburban area of southwestern China and to establish a basic catalog for forensic application. The present study was conducted in 2013 in a mountain in Chongqing municipality with modified Schoenly traps. Carcasses of miniature pig were used to simulate human bodies. For most carcasses, five decomposition stages were observed. A total of 2108 adult coleopterans belonging to at least 61 species and 18 families were collected in the study, and most of the specimens occurred at the advanced decay stage. Omosita colon (Linnaeus, 1758), Necrodes nigricornis (Harold, 1875), Necrobia ruficollis (Fabricius, 1775) and Neosilusa ceylonica (Kraatz, 1857) were the dominant species. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Domestic dog demographic structure and dynamics relevant to rabies control planning in urban areas in Africa: the case of Iringa, Tanzania

    Directory of Open Access Journals (Sweden)

    Gsell Alena S

    2012-12-01

    Full Text Available Abstract Background Mass vaccinations of domestic dogs have been shown to effectively control canine rabies and hence human exposure to rabies. Knowledge of dog population demography is essential for planning effective rabies vaccination programmes; however, such information is still rare for African domestic dog populations, particularly so in urban areas. This study describes the demographic structure and population dynamics of a domestic dog population in an urban sub-Saharan African setting. In July to November 2005, we conducted a full household-level census and a cross-sectional dog demography survey in four urban wards of Iringa Municipality, Tanzania. The achievable vaccination coverage was assessed by a two-stage vaccination campaign, and the proportion of feral dogs was estimated by a mark-recapture transect study. Results The estimated size of the domestic dog population in Iringa was six times larger than official town records assumed, however, the proportion of feral dogs was estimated to account for less than 1% of the whole population. An average of 13% of all households owned dogs which equalled a dog:human ratio of 1:14, or 0.31 dogs per household or 334 dogs km-2. Dog female:male ratio was 1:1.4. The average age of the population was 2.2 years, 52% of all individuals were less than one year old. But mortality within the first year was high (72%. Females became fertile at the age of 10 months and reportedly remained fertile up to the age of 11 years. The average number of litters whelped per fertile female per year was 0.6 with an average of 5.5 pups born per litter. The population growth was estimated at 10% y-1. Conclusions Such high birth and death rates result in a rapid replacement of anti-rabies immunised individuals with susceptible ones. This loss in herd immunity needs to be taken into account in the design of rabies control programmes. The very small proportion of truly feral dogs in the population implies that

  6. Domestic dog demographic structure and dynamics relevant to rabies control planning in urban areas in Africa: the case of Iringa, Tanzania.

    Science.gov (United States)

    Gsell, Alena S; Knobel, Darryn L; Kazwala, Rudovick R; Vounatsou, Penelope; Zinsstag, Jakob

    2012-12-05

    Mass vaccinations of domestic dogs have been shown to effectively control canine rabies and hence human exposure to rabies. Knowledge of dog population demography is essential for planning effective rabies vaccination programmes; however, such information is still rare for African domestic dog populations, particularly so in urban areas. This study describes the demographic structure and population dynamics of a domestic dog population in an urban sub-Saharan African setting. In July to November 2005, we conducted a full household-level census and a cross-sectional dog demography survey in four urban wards of Iringa Municipality, Tanzania. The achievable vaccination coverage was assessed by a two-stage vaccination campaign, and the proportion of feral dogs was estimated by a mark-recapture transect study. The estimated size of the domestic dog population in Iringa was six times larger than official town records assumed, however, the proportion of feral dogs was estimated to account for less than 1% of the whole population. An average of 13% of all households owned dogs which equalled a dog:human ratio of 1:14, or 0.31 dogs per household or 334 dogs km-2. Dog female:male ratio was 1:1.4. The average age of the population was 2.2 years, 52% of all individuals were less than one year old. But mortality within the first year was high (72%). Females became fertile at the age of 10 months and reportedly remained fertile up to the age of 11 years. The average number of litters whelped per fertile female per year was 0.6 with an average of 5.5 pups born per litter. The population growth was estimated at 10% y-1. Such high birth and death rates result in a rapid replacement of anti-rabies immunised individuals with susceptible ones. This loss in herd immunity needs to be taken into account in the design of rabies control programmes. The very small proportion of truly feral dogs in the population implies that vaccination campaigns aimed at the owned dog population are

  7. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar type I disorder using cortical pattern matching

    Science.gov (United States)

    Foland-Ross, Lara C.; Thompson, Paul M.; Sugar, Catherine A.; Madsen, Sarah K.; Shen, Jim K.; Penfold, Conor; Ahlf, Kyle; Rasser, Paul E.; Fischer, Jeffrey; Yang, Yilan; Townsend, Jennifer; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Objective Several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder. Findings however, have been largely inconsistent across studies. Differences in patients’ medication status or mood state, or the application of traditional volumetric methods that are insensitive to subtle neuroanatomic differences may have contributed to these inconsistent findings. Given this, we used magnetic resonance imaging (MRI) in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar subjects who were not treated with lithium. Method Sixty-five subjects, including 34 lithium-free euthymic subjects with bipolar (type I) disorder and 31 healthy subjects were scanned using magnetic resonance imaging (MRI). Data were processed to measure cortical gray matter thickness. Cortical pattern matching methods associated homologous brain regions across subjects. Spatially normalized thickness maps were analyzed to assess illness effects and associations with clinical variables. Results Relative to healthy subjects, euthymic bipolar I subjects had significantly thinner gray matter in bilateral prefrontal cortex (Brodmann Areas 11, 10, 8 and 44) and left anterior cingulate cortex (Brodmann Areas 24/32). Additionally, thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar subjects versus healthy subjects. Conclusions Using a technique that is highly sensitive to subtle neuroanatomic differences, significant regional cortical thinning was found in euthymic subjects with bipolar disorder. Clinical implications are discussed. PMID:21285139

  8. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  9. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  10. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  11. Individual differences in posterior cortical volume correlate with proneness to pride and gratitude.

    Science.gov (United States)

    Zahn, Roland; Garrido, Griselda; Moll, Jorge; Grafman, Jordan

    2014-11-01

    Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.

  12. Abnormalities of cortical structures in adolescent-onset conduct disorder.

    Science.gov (United States)

    Jiang, Y; Guo, X; Zhang, J; Gao, J; Wang, X; Situ, W; Yi, J; Zhang, X; Zhu, X; Yao, S; Huang, B

    2015-12-01

    Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients. We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD). Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively. The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.

  13. Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis.

    Science.gov (United States)

    Pareto, D; Sastre-Garriga, J; Auger, C; Vives-Gilabert, Y; Delgado, J; Tintoré, M; Montalban, X; Rovira, A

    2015-12-01

    The role of juxtacortical lesions in brain volume loss in multiple sclerosis has not been fully clarified. The aim of this study was to explore the role of juxtacortical lesions on cortical atrophy and to investigate whether the presence of juxtacortical lesions is related to local cortical thinning in the early stages of MS. A total of 131 patients with clinically isolated syndrome or with relapsing-remitting MS were scanned on a 3T system. Patients with clinically isolated syndrome were classified into 3 groups based on the presence and topography of brain lesions: no lesions (n = 24), only non-juxtacortical lesions (n = 33), and juxtacortical lesions and non-juxtacortical lesions (n = 34). Patients with relapsing-remitting MS were classified into 2 groups: only non-juxtacortical lesions (n = 10) and with non-juxtacortical lesions and juxtacortical lesions (n = 30). A juxtacortical lesion probability map was generated, and cortical thickness was measured by using FreeSurfer. Juxtacortical lesion volume in relapsing-remitting MS was double that of patients with clinically isolated syndrome. The insula showed the highest density of juxtacortical lesions, followed by the temporal, parietal, frontal, and occipital lobes. Patients with relapsing-remitting MS with juxtacortical lesions showed significantly thinner cortices overall and in the parietal and temporal lobes compared with those with clinically isolated syndrome with normal brain MR imaging. The volume of subcortical structures (thalamus, pallidum, putamen, and accumbens) was significantly decreased in relapsing-remitting MS with juxtacortical lesions compared with clinically isolated syndrome with normal brain MR imaging. The spatial distribution of juxtacortical lesions was not found to overlap with areas of cortical thinning. Cortical thinning and subcortical gray matter volume loss in patients with a clinically isolated syndrome or relapsing-remitting MS was related to the presence of juxtacortical

  14. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  15. Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?

    Science.gov (United States)

    Azulay, Haim; Striem, Ella; Amedi, Amir

    2009-05-01

    People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.

  16. Horizontal integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  17. Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site

    Directory of Open Access Journals (Sweden)

    Michelle L. Harris-Love

    2017-05-01

    Full Text Available Motor practice is an essential part of upper limb motor recovery following stroke. To be effective, it must be intensive with a high number of repetitions. Despite the time and effort required, gains made from practice alone are often relatively limited, and substantial residual impairment remains. Using non-invasive brain stimulation to modulate cortical excitability prior to practice could enhance the effects of practice and provide greater returns on the investment of time and effort. However, determining which cortical area to target is not trivial. The implications of relevant conceptual frameworks such as Interhemispheric Competition and Bimodal Balance Recovery are discussed. In addition, we introduce the STAC (Structural reserve, Task Attributes, Connectivity framework, which incorporates patient-, site-, and task-specific factors. An example is provided of how this framework can assist in selecting a cortical region to target for priming prior to reaching practice poststroke. We suggest that this expanded patient-, site-, and task-specific approach provides a useful model for guiding the development of more successful approaches to neuromodulation for enhancing motor recovery after stroke.

  18. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  19. Quantitative Architectural Analysis: A New Approach to Cortical Mapping

    Science.gov (United States)

    Schleicher, Axel; Morosan, Patricia; Amunts, Katrin; Zilles, Karl

    2009-01-01

    Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological…

  20. Reduced cortical thickness associated with visceral fat and BMI

    Directory of Open Access Journals (Sweden)

    Ralf Veit

    2014-01-01

    Full Text Available Structural brain imaging studies have shown that obesity is associated with widespread reductions in gray matter (GM volume. Although the body mass index (BMI is an easily accessible anthropometric measure, substantial health problems are more related to specific body fat compartments, like visceral adipose tissue (VAT. We investigated cortical thickness measures in a group of 72 healthy subjects (BMI range 20–35 kg/m2, age range 19–50 years. Multiple regression analyses were performed using VAT and BMI as predictors and age, gender, total surface area and education as confounds. BMI and VAT were independently associated with reductions in cortical thickness in clusters comprising the left lateral occipital area, the left inferior temporal cortex, and the left precentral and inferior parietal area, while the right insula, the left fusiform gyrus and the right inferior temporal area showed a negative correlation with VAT only. In addition, we could show significant reductions in cortical thickness with increasing VAT adjusted for BMI in the left temporal cortex. We were able to detect widespread cortical thinning in a young to middle-aged population related to BMI and VAT; these findings show close resemblance to studies focusing on GM volume differences in diabetic patients. This may point to the influence of VAT related adverse effects, like low-grade inflammation, as a potentially harmful factor on brain integrity already in individuals at risk of developing diabetes, metabolic syndromes and arteriosclerosis.

  1. Post-adolescent developmental changes in cortical complexity.

    Science.gov (United States)

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  2. Brain activation in motor sequence learning is related to the level of native cortical excitability.

    Directory of Open Access Journals (Sweden)

    Silke Lissek

    Full Text Available Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi. In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.

  3. Prefrontal cortex and sensory cortices during working memory: quantity and quality.

    Science.gov (United States)

    Ku, Yixuan; Bodner, Mark; Zhou, Yong-Di

    2015-04-01

    The activity in sensory cortices and the prefrontal cortex (PFC) throughout the delay interval of working memory (WM) tasks reflect two aspects of WM-quality and quantity, respectively. The delay activity in sensory cortices is fine-tuned to sensory information and forms the neural basis of the precision of WM storage, while the delay activity in the PFC appears to represent behavioral goals and filters out irrelevant distractions, forming the neural basis of the quantity of task-relevant information in WM. The PFC and sensory cortices interact through different frequency bands of neuronal oscillation (theta, alpha, and gamma) to fulfill goal-directed behaviors.

  4. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  5. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.

    Science.gov (United States)

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2014-02-07

    The purpose of this study was to compare cortical inhibition in the hand region of the primary motor cortex between subjects with focal hand dystonia (FHD), adductor spasmodic dysphonia (AdSD), and healthy controls. Data from 28 subjects were analyzed (FHD n=11, 53.25 ± 8.74 y; AdSD: n=8, 56.38 ± 7.5 y; and healthy controls: n=941.67 ± 10.85 y). All subjects received single pulse TMS to the left motor cortex to measure cortical silent period (CSP) in the right first dorsal interosseus (FDI) muscle. Duration of the CSP was measured and compared across groups. A one-way ANCOVA with age as a covariate revealed a significant group effect (p<0.001). Post hoc analysis revealed significantly longer CSP duration in the healthy group vs. AdSD group (p<0.001) and FHD group (p<0.001). These results suggest impaired intracortical inhibition is a neurophysiologic characteristic of FHD and AdSD. In addition, the shortened CSP in AdSD provides evidence to support a widespread decrease in cortical inhibition in areas of the motor cortex that represent an asymptomatic region of the body. These findings may inform future investigations of differential diagnosis as well as alternative treatments for focal dystonias. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Cortical plasticity as a new endpoint measurement for chronic pain

    Directory of Open Access Journals (Sweden)

    Zhuo Min

    2011-07-01

    Full Text Available Abstract Animal models of chronic pain are widely used to investigate basic mechanisms of chronic pain and to evaluate potential novel drugs for treating chronic pain. Among the different criteria used to measure chronic pain, behavioral responses are commonly used as the end point measurements. However, not all chronic pain conditions can be easily measured by behavioral responses such as the headache, phantom pain and pain related to spinal cord injury. Here I propose that cortical indexes, that indicate neuronal plastic changes in pain-related cortical areas, can be used as endpoint measurements for chronic pain. Such cortical indexes are not only useful for those chronic pain conditions where a suitable animal model is lacking, but also serve as additional screening methods for potential drugs to treat chronic pain in humans. These cortical indexes are activity-dependent immediate early genes, electrophysiological identified plastic changes and biochemical assays of signaling proteins. It can be used to evaluate novel analgesic compounds that may act at peripheral or spinal sites. I hope that these new cortical endpoint measurements will facilitate our search for new, and more effective, pain medicines, and help to reduce false lead drug targets.

  7. Tactile thermal oral stimulation increases the cortical representation of swallowing

    Directory of Open Access Journals (Sweden)

    Suntrup Sonja

    2009-06-01

    Full Text Available Abstract Background Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Compared to the normal swallowing task a significantly increased bilateral cortical activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition. Conclusion In the present study functional cortical changes elicited by oral sensory stimulation could be demonstrated. We suggest that these results reflect short-term cortical plasticity of sensory swallowing areas. These findings facilitate our understanding of the role of cortical reorganization in dysphagia treatment and recovery.

  8. Effects of Stress and Task Difficulty on Working Memory and Cortical Networking.

    Science.gov (United States)

    Kim, Yujin; Woo, Jihwan; Woo, Minjung

    2017-12-01

    This study investigated interactive effects of stress and task difficulty on working memory and cortico-cortical communication during memory encoding. Thirty-eight adolescent participants (mean age of 15.7 ± 1.5 years) completed easy and hard working memory tasks under low- and high-stress conditions. We analyzed the accuracy and reaction time (RT) of working memory performance and inter- and intrahemispheric electroencephalogram coherences during memory encoding. Working memory accuracy was higher, and RT shorter, in the easy versus the hard task. RT was shorter under the high-stress (TENS) versus low-stress (no-TENS) condition, while there was no difference in memory accuracy between the two stress conditions. For electroencephalogram coherence, we found higher interhemispheric coherence in all bands but only at frontal electrode sites in the easy versus the hard task. On the other hand, intrahemispheric coherence was higher in the left hemisphere in the easy (versus hard task) and higher in the right hemisphere (with one exception) in the hard (versus easy task). Inter- and intracoherences were higher in the low- versus high-stress condition. Significant interactions between task difficulty and stress condition were observed in coherences of the beta frequency band. The difference in coherence between low- and high-stress conditions was greater in the hard compared with the easy task, with lower coherence under the high-stress condition relative to the low-stress condition. Stress seemed to cause a decrease in cortical network communications between memory-relevant cortical areas as task difficulty increased.

  9. Probing phase- and frequency-dependent characteristics of cortical interneurons using combined transcranial alternating current stimulation and transcranial magnetic stimulation.

    Science.gov (United States)

    Hussain, Sara J; Thirugnanasambandam, Nivethida

    2017-06-01

    Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.

  10. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection.

    Science.gov (United States)

    Stenner, Max-Philipp; Litvak, Vladimir; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-07-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. Copyright © 2015 the American Physiological Society.

  11. Different cortical mechanisms for spatial vs. feature-based attentional selection in visual working memory

    Directory of Open Access Journals (Sweden)

    Anna Heuer

    2016-08-01

    Full Text Available The limited capacity of visual working memory necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial versus feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information or their shape (featural information. We found that TMS over the supramarginal gyrus (SMG selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.

  12. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  13. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    Science.gov (United States)

    2008-04-30

    significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse , Cancer Research UK Your research papers...of the evidence for local cortical over-connectivity is anecdotal. Belmonte and colleagues suggested the co-morbidity with epilepsy that is highly...Tomma-Halme J, Lahti-Nuuttila P, Service E, Virsu V: Rate of information segregation in developmentally dyslexic children . Brain Lang 2000, 75:66-81

  14. Cortical Thickness Changes Associated with Photoparoxysmal Response

    DEFF Research Database (Denmark)

    Hanganu, Alexandru; Groppa, Stanislav A; Deuschl, Günther

    2014-01-01

    Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal co...... in the occipital lobe, frontoparietal regions and temporal lobe, which also show functional changes associated with PPR. Patients with epilepsy present changes in the temporal lobe and supplementary motor area.......-positive-subjects presented a significant decrease of cortical thickness in the temporal cortex in the same group contrast. IGE patients exhibited lower cortical thickness in the temporal lobe bilaterally and in the right paracentral region in comparison to PPR-positive-subjects. Our study demonstrates structural changes......Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal...

  15. Theory of cortical function

    Science.gov (United States)

    Heeger, David J.

    2017-01-01

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction. PMID:28167793

  16. Theory of cortical function.

    Science.gov (United States)

    Heeger, David J

    2017-02-21

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.

  17. [Relevant public health enteropathogens].

    Science.gov (United States)

    Riveros, Maribel; Ochoa, Theresa J

    2015-01-01

    Diarrhea remains the third leading cause of death in children under five years, despite recent advances in the management and prevention of this disease. It is caused by multiple pathogens, however, the prevalence of each varies by age group, geographical area and the scenario where cases (community vs hospital) are recorded. The most relevant pathogens in public health are those associated with the highest burden of disease, severity, complications and mortality. In our country, norovirus, Campylobacter and diarrheagenic E. coli are the most prevalent pathogens at the community level in children. In this paper we review the local epidemiology and potential areas of development in five selected pathogens: rotavirus, norovirus, Shiga toxin-producing E. coli (STEC), Shigella and Salmonella. Of these, rotavirus is the most important in the pediatric population and the main agent responsible for child mortality from diarrhea. The introduction of rotavirus vaccination in Peru will have a significant impact on disease burden and mortality from diarrhea. However, surveillance studies are needed to determine the impact of vaccination and changes in the epidemiology of diarrhea in Peru following the introduction of new vaccines, as well as antibiotic resistance surveillance of clinical relevant bacteria.

  18. Quantifying cortical development in typically developing toddlers and young children, 1-6 years of age.

    Science.gov (United States)

    Remer, Justin; Croteau-Chonka, Elise; Dean, Douglas C; D'Arpino, Sara; Dirks, Holly; Whiley, Dannielle; Deoni, Sean C L

    2017-06-01

    Cortical maturation, including age-related changes in thickness, volume, surface area, and folding (gyrification), play a central role in developing brain function and plasticity. Further, abnormal cortical maturation is a suspected substrate in various behavioral, intellectual, and psychiatric disorders. However, in order to characterize the altered development associated with these disorders, appreciation of the normative patterns of cortical development in neurotypical children between 1 and 6 years of age, a period of peak brain development during which many behavioral and developmental disorders emerge, is necessary. To this end, we examined measures of cortical thickness, surface area, mean curvature, and gray matter volume across 34 bilateral regions in a cohort of 140 healthy children devoid of major risk factors for abnormal development. From these data, we observed linear, logarithmic, and quadratic patterns of change with age depending on brain region. Cortical thinning, ranging from 10% to 20%, was observed throughout most of the brain, with the exception of posterior brain structures, which showed initial cortical thinning from 1 to 5 years, followed by thickening. Cortical surface area expansion ranged from 20% to 108%, and cortical curvature varied by 1-20% across the investigated age range. Right-left hemisphere asymmetry was observed across development for each of the 4 cortical measures. Our results present new insight into the normative patterns of cortical development across an important but under studied developmental window, and provide a valuable reference to which trajectories observed in neurodevelopmental disorders may be compared. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  20. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  1. Functional MRI study of cerebral cortical activation during volitional swallowing

    International Nuclear Information System (INIS)

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji

    2002-01-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  2. Functional MRI study of cerebral cortical activation during volitional swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji [Okayama Univ. (Japan). Graduate School of Medicine and Dentistry

    2002-12-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  3. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  4. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  5. Isolated Hand Palsy Due to Small Cortical Infarcts: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Meliha Tan

    2009-03-01

    Full Text Available The cortical motor hand area is a knob-like structure of the precentral gyrus, with an inverted omega or horizontal epsilon shape. Isolated hand weakness is infrequently observed and is usually due to small cortical infarcts of this hand knob structure. Isolated hand palsy is sometimes restricted to radial-sided fingers or ulnar sided-fingers. Uniform weakness in all fingers may also occur. We present 2 patients with small cortical infarcts of the cortical hand knob due to different etiologies. A 61-year-old male had right hand weakness restricted to his first and second digits. He had a small cortical infarct on the hand knob area due to emboli from ulcerative plaque of the ipsilateral internal carotid artery. The other patient, a 23-year-old female with sickle cell anemia, had uniform left hand weakness due to an epsilon-shaped infarct on the right precentral gyrus. An obstruction of the small cerebral artery supply to the hand knob area due to sickle cell anemia was the likely pathogenic mechanism. It is suggested that isolated hand weakness due to small cortical infarcts may have different etiologies, most commonly homodynamic or embolic processes. Conditions that rarely cause brain infarction, such as sickle cell anemia, deserve clinical attention. Investigations of strokes must include anemia tests. Patients with predominant weakness of the radial group of fingers due to cortical infarct must be checked for embolism

  6. Vestibular-related frontal cortical areas and their roles in smooth-pursuit eye movements: representation of neck velocity, neck-vestibular interactions and memory-based smooth-pursuit

    Directory of Open Access Journals (Sweden)

    Kikuro eFukushima

    2011-12-01

    Full Text Available Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF and the supplementary eye fields (SEF. Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in cancelling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit-vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion-direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory

  7. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Science.gov (United States)

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  8. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Directory of Open Access Journals (Sweden)

    Andrea Mike

    Full Text Available Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus. Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed, processing of emotions (right entorhinal cortex and socially relevant information (left temporal pole. Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  9. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  10. Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain

    Directory of Open Access Journals (Sweden)

    Markus eSiegel

    2011-02-01

    Full Text Available Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography (MEG to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks.

  11. Vestibulo-cortical Hemispheric Dominance: the link between Anxiety and the Vestibular System?

    Science.gov (United States)

    Bednarczuk, Nadja F; Casanovas Ortega, Marta; Fluri, Anne-Sophie; Arshad, Qadeer

    2018-05-16

    Vestibular processing and anxiety networks are functionally intertwined, as demonstrated by reports of reciprocal influences upon each other. Yet whether there is an underlying link between these two systems remains unknown Previous findings have highlighted the involvement of hemispheric lateralisation in processing of both anxiety and vestibular signals. Accordingly, we explored the interaction between vestibular cortical processing and anxiety by assessing the relationship between anxiety levels and the degree of hemispheric lateralisation of vestibulo-cortical processing in 64 right-handed, healthy individuals. Vestibulo-cortical hemispheric lateralisation was determined by gaging the degree of caloric-induced nystagmus suppression following modulation of cortical excitability using trans-cranial direct current stimulation targeted over the posterior parietal cortex, an area implicated in the processing of vestibular signals. The degree of nystagmus suppression yields an objective biomarker, allowing the quantification of the degree of right vestibulo-cortical hemisphere dominance. Anxiety levels were quantified using the Trait component of the Spielberger State-Trait Anxiety Questionnaire. Our findings demonstrate that the degree of an individual's vestibulo-cortical hemispheric dominance correlates with their anxiety levels. That is, those individuals with greater right hemispheric vestibulo-cortical dominance exhibited lower levels of anxiety. By extension, our results support the notion that hemispheric lateralisation determines an individual's emotional processing, thereby linking cortical circuits involved in processing anxiety and vestibular signals respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Cortical morphology of adolescents with bipolar disorder and with schizophrenia.

    Science.gov (United States)

    Janssen, Joost; Alemán-Gómez, Yasser; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Inmaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2014-09-01

    Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, padolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Histomorphometry and cortical robusticity of the adult human femur.

    Science.gov (United States)

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  14. Obstructive sleep apnea and cortical thickness in females and males.

    Science.gov (United States)

    Macey, Paul M; Haris, Natasha; Kumar, Rajesh; Thomas, M Albert; Woo, Mary A; Harper, Ronald M

    2018-01-01

    Obstructive sleep apnea (OSA) affects approximately 10% of adults, and alters brain gray and white matter. Psychological and physiological symptoms of the disorder are sex-specific, perhaps related to greater injury occurs in female than male patients in white matter. Our objective was to identify influences of OSA separated by sex on cortical gray matter. We assessed cortical thickness in 48 mild-severe OSA patients (mean age±std[range] = 46.5±9.0[30.8-62.7] years; apnea-hypopnea index = 32.6±21.1[6-102] events/hour; 12 female, 36 male; OSA severity: 5 mild, 18 moderate, 25 severe) and 62 controls (mean age = 47.7±8.9[30.9-65.8] years; 22 female, 40 male). All OSA patients were recently-diagnosed via polysomnography, and control subjects screened and a subset assessed with sleep studies. We used high-resolution magnetic resonance imaging to identify OSA-related cortical thinning, based on a model with condition and sex as independent variables. OSA and OSA-by-sex interaction effects were assessed (Pfrontal lobe in female OSA vs. all other groups. Significant thinning within the pre- and post-central gyri and the superior temporal gyrus, extending into the insula, appeared between the general OSA populations vs. control subjects. No areas showed increased thickness in OSA vs. controls or positive female OSA interaction effects. Reduced cortical thickness likely represents tissue atrophy from long term injury, including death of neurons and supporting glia from repeated intermittent hypoxic exposure in OSA, although disease comordities may also contribute to thinning. Lack of polysomnography in all control subjects means results may be confounded by undiagnosed OSA. The greater cortical injury in cognitive areas of female OSA patients may underlie enhanced symptoms in that group. The thinning associated with OSA in male and females OSA patients may contribute to autonomic dysregulation and impaired upper airway sensori-motor function.

  15. MRI of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Lee, B.C.P.; Hatfield, G.A.; Bourgeois, B.; Park, T.S.

    1998-01-01

    We studied nine cases of focal cortical dysplasia (FCD) by MRI, with surface-rendered 3D reconstructions. One case was also examined using single-voxel proton MR spectroscopy (MRS). The histological features were reviewed and correlated with the MRI findings. The gyri affected by FCD were enlarged and the signal of the cortex was slightly increased on T1-weighted images. The gray-white junction was indistinct. Signal from the subcortical white matter was decreased on T1- and increased on T2-weighted images in most cases. Contrast enhancement was seen in two cases. Proton MRS showed a spectrum identical to that of normal brain. (orig.) (orig.)

  16. The Personal Relevance of the Social Studies.

    Science.gov (United States)

    VanSickle, Ronald L.

    1990-01-01

    Conceptualizes a personal-relevance framework derived from Ronald L. VanSickle's five areas of life integrated with four general motivating goals from Abraham Maslow's hierarchy of needs and Richard and Patricia Schmuck's social motivation theory. Illustrates ways to apply the personal relevance framework to make social studies more relevant to…

  17. Acute hepatic encephalopathy with diffuse cortical lesions

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.M.; Spreer, J.; Schumacher, M. [Section of Neuroradiology, Univ. of Freiburg (Germany); Els, T. [Dept. of Neurology, University of Freiburg (Germany)

    2001-07-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  18. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  19. Acute hepatic encephalopathy with diffuse cortical lesions

    International Nuclear Information System (INIS)

    Arnold, S.M.; Spreer, J.; Schumacher, M.; Els, T.

    2001-01-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  20. A Laminar Organization for Selective Cortico-Cortical Communication

    Directory of Open Access Journals (Sweden)

    Rinaldo D. D’Souza

    2017-08-01

    Full Text Available The neocortex is central to mammalian cognitive ability, playing critical roles in sensory perception, motor skills and executive function. This thin, layered structure comprises distinct, functionally specialized areas that communicate with each other through the axons of pyramidal neurons. For the hundreds of such cortico-cortical pathways to underlie diverse functions, their cellular and synaptic architectures must differ so that they result in distinct computations at the target projection neurons. In what ways do these pathways differ? By originating and terminating in different laminae, and by selectively targeting specific populations of excitatory and inhibitory neurons, these “interareal” pathways can differentially control the timing and strength of synaptic inputs onto individual neurons, resulting in layer-specific computations. Due to the rapid development in transgenic techniques, the mouse has emerged as a powerful mammalian model for understanding the rules by which cortical circuits organize and function. Here we review our understanding of how cortical lamination constrains long-range communication in the mammalian brain, with an emphasis on the mouse visual cortical network. We discuss the laminar architecture underlying interareal communication, the role of neocortical layers in organizing the balance of excitatory and inhibitory actions, and highlight the structure and function of layer 1 in mouse visual cortex.

  1. Cortical influences drive amyotrophic lateral sclerosis.

    Science.gov (United States)

    Eisen, Andrew; Braak, Heiko; Del Tredici, Kelly; Lemon, Roger; Ludolph, Albert C; Kiernan, Matthew C

    2017-11-01

    The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Pharmacokinetics of Cefuroxime in Cortical and Cancellous Bone Obtained by Microdialysis - a Porcine Study

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Forsingdal Hardlei, Tore; Bendtsen, Michael

    2014-01-01

    . As reference, free and total plasma concentrations were also measured. The animals received a bolus of 1500 mg cefuroxime over 30 min. No significant differences between key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone were found. The mean area under the concentration...... (MD) technique for measurement of cefuroxime in bone, and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. Measurements were conducted in bone-wax sealed and unsealed drill holes in cortical bone, in drill holes in cancellous bone and in subcutaneous tissue...

  3. Reduced Synaptic Vesicle Recycling during Hypoxia in Cultured Cortical Neurons

    OpenAIRE

    Fedorovich, Sergei; Hofmeijer, Jeannette; van Putten, Michel Johannes Antonius Maria; le Feber, Jakob

    2017-01-01

    Improvement of neuronal recovery in the ischemic penumbra, an area around the core of a brain infarct with some remaining perfusion, has a large potential for the development of therapy against acute ischemic stroke. However, mechanisms that lead to either recovery or secondary damage in the penumbra largely remain unclear. Recent studies in cultured networks of cortical neurons showed that failure of synaptic transmission (referred to as synaptic failure) is a critical factor in the penumbra...

  4. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  5. Cortical representations of communication sounds.

    Science.gov (United States)

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  6. A Retrospective Study on Indian Population to evaluate Cortical Bone Thickness in Maxilla and Mandible using Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jeegar Ketan Vakil

    2014-01-01

    Conclusion: Mini-implants have gained considerable popularity due to their low cost, effectiveness, clinical management and stability. Among the factors related to microimplant stability, bone density and cortical bone thickness appear to be critical for successful placement. This study will provide knowledge of cortical bone thickness in various areas which can guide the clinicians in selecting the placement site.

  7. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Directory of Open Access Journals (Sweden)

    Yuichi Kitaura

    Full Text Available Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”. Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography. Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more

  8. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  9. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  10. "The mute who can sing": a cortical stimulation study on singing.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Borsa, Stefano; Démonet, Jean-François

    2009-02-01

    In an attempt to identify cortical areas involved in singing in addition to language areas, the authors used a singing task during direct cortical mapping in 5 patients who were amateur singers and had undergone surgery for brain tumors. The organization of the cortical areas involved in language and singing was analyzed in relation with these surgical data. One left-handed and 4 right-handed patients with brain tumors in left (2 cases) and right (3 cases) hemispheres and no significant language or singing deficits underwent surgery with the "awake surgery" technique. All patients had a special interest in singing and were involved in amateur singing activities. They were tested using naming, reading, and singing tasks. Outside primary sensorimotor areas, singing interferences were rare and were exclusively localized in small cortical areas (singing in the Broca region. In the Broca region, no singing interference was found in areas in which interference in naming and reading tasks were detected. Conversely, a specific singing interference was found in nondominant middle frontal gyri in one patient. This interference consisted of abrupt singing arrest without apparent face, mouth, and tongue contraction. Finally, nonspecific singing interferences were found in the right and left precentral gyri in all patients (probably by interference in final articulatory mechanisms of singing). Dissociations between speech and singing found outside primary sensorimotor areas showed that these 2 functions use, in some cortical stages, different cerebral pathways.

  11. Cortical Pathology in RRMS: Taking a Cue from Four Sisters

    Directory of Open Access Journals (Sweden)

    Massimiliano Calabrese

    2012-01-01

    Full Text Available Background. Although grey matter pathology is a relevant aspect of multiple sclerosis (MS both with physical and cognitive rebounds, its pathogenesis is still under investigation. To what extent the familial and sporadic cases of MS differ in cortical pathology has not been elucidated yet. Here we present a multiple case report of four sisters affected by MS, all of them having a very high burden of cortical pathology. Methods. The clinical and grey matter MRI parameters of the patients were compared with those of twenty-five-aged matched healthy women and 25 women affected by sporadic MS (matched for age, disease duration, EDSS, and white matter lesion load. Results. Despite their short disease duration (<5 years, the four sisters showed a significant cortical thinning compared to healthy controls ( and sporadic MS ( and higher CLs number ( and volume ( compared to sporadic MS. Discussion. Although limited to a single family, our observation is worth of interest since it suggests that familial factors may account for a peculiar involvement of the cortex in MS pathology. This hypothesis should be further evaluated in a large number of multiplex MS families.

  12. Detecting a cortical fingerprint of Parkinson’s disease for closed-loop neuromodulation

    Directory of Open Access Journals (Sweden)

    Kevin eKern

    2016-03-01

    Full Text Available Recent evidence suggests that deep brain stimulation (DBS of the subthalamic nucleus (STN in Parkinson’s disease (PD mediates its clinical effects by modulating cortical oscillatory activity, presumably via a direct cortico-subthalamic connection. This observation might pave the way for novel closed-loop approaches comprising a cortical sensor. Enhanced beta oscillations (13-35 Hz have been linked to the pathophysiology of PD and may serve as such a candidate marker to localize a cortical area reliably modulated by DBS. However, beta-oscillations are widely distributed over the cortical surface, necessitating an additional signal source for spotting the cortical area linked to the pathologically synchronized cortico-subcortical motor network.In this context, both cortico-subthalamic coherence and cortico-muscular coherence (CMC have been studied in PD patients. Whereas the former requires invasive recordings, the latter allows for non-invasive detection, but displays a rather distributed cortical synchronization pattern in motor tasks. This distributed cortical representation may conflict with the goal of detecting a cortical localization with robust biomarker properties which is detectable on a single subject basis. We propose that this limitation could be overcome when recording CMC at rest. We hypothesized that – unlike healthy subjects – PD would show CMC at rest owing to the enhanced beta oscillations observed in PD. By performing source space analysis of beta CMC recorded during resting-state magnetoencephalography, we provide preliminary evidence in one patient for a cortical hot spot that is modulated most strongly by subthalamic DBS. Such a spot would provide a prominent target region either for direct neuromodulation or for placing a potential sensor in closed-loop DBS approaches, a proposal that requires investigation in a larger cohort of PD patients.

  13. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  14. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    International Nuclear Information System (INIS)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P.

    2015-01-01

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [ 11 C]PIB and [ 18 F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [ 11 C]PIB or [ 18 F]FDG PET scans. The [ 11 C]PIB PET scans were quantified using [ 11 C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  15. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  16. Value of renal cortical scintigraphy in children with acute pyelonephritis

    International Nuclear Information System (INIS)

    Paul, A.K.; Miah, M.S.R.; Rahman, H.A.; Hasan, M.H.

    2004-01-01

    Purpose: Acute pyelonephritis is a major cause of morbidity in children with urinary tract infection and can result in irreversible renal scarring leading to hypertension and end-stage renal disease. Tc-99m-dimercaptosuccinic acid (DMSA) scintigraphy is the imaging modality of choice for the detection of acute pyelonephhfis and renal scarfing. This study evaluated the importance of renal cortical scintigraphy to identify children at risk from renal damage due to acute pyelonephritis. Methods: Forty-nine children (ages 9 months to 11 years) with urinary tract infection having positive urine culture were studied. A DMSA scan was performed within 72 hours of receiving antibiotic during acute infection. Single or multiple areas of varying degrees of diminished cortical uptake or diffusely decreased uptake in an enlarged kidney was considered for the diagnosis of acute pyelonephrifis. Follow-up scintigraphy was done at 6 months of initial scan in children with acute pyelonephritis documented by DMSA scan. Renal scarring was considered if the affected kidney shows cortical thinning or focal cortical defect with loss of volume or become small kidney. Children with known renal tract abnormalities were excluded from the study. RESULTS: Twenty-seven children (55%) wine considered acute pyelonephritis by DMSA scintigraphy and the abnormality was bilateral in 17(63%) cases and unilateral in 10(37%) cases. Among these 44 abnormal kidneys, scintigraphy showed solitary defect in 29 kidneys, multiple defects in 6 kidneys and diffuse decreased uptake in 9 kidneys. Of them, twenty children were available for follow-up evaluation and scintigraphy demonstrated complete recovery in 21 of 34 (62%) kidneys and renal scarfing in 13 of 34 (38%) kidneys. Renal scarring was found in 5 of 7 kidneys (71%) with diffuse decreased uptake, 2 of 5 kidneys (40%) with multiple cortical defect and 6 of 22 (27%) with single focal detect. Conclusion: The scintigraphic pattern of acute pyelonephritis

  17. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  18. RADIONUCLIDE IMAGING IN THE ASSESSMENT OF THE RESIDUAL CORTICAL FUNCTION OF OBSTRUCTIVE NEPHROPATHIES

    OpenAIRE

    川村, 寿一; 伊藤, 坦; 王, 本欽; 吉田, 修; 藤田, 透

    1980-01-01

    The diagnostic value of 99m-Tc-DMSA renal scintigraphy was assessed in 156 kidneys of 107 patients with a variety of obstructive nephropathies. DMSA renal cortical imaging well demonstrated morphological changes in the renal parenchyma around the dilated pelvocalyceal system. DMSA renal uptake, as a marker of cortical functioning mass, paralleled the grading of the hydronephrotic changes on IVP. DMSA renal scintigram well visualizes the residual functioning area in the renal parenchyma and DM...

  19. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  20. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  1. Workbench surface editor of brain cortical surface

    Science.gov (United States)

    Dow, Douglas E.; Nowinski, Wieslaw L.; Serra, Luis

    1996-04-01

    We have developed a 3D reach-in tool to manually reconstruct 3D cortical surface patches from 2D brain atlas images. The first application of our cortex editor is building 3D functional maps, specifically Brodmann's areas. This tool may also be useful in clinical practice to adjust incorrectly mapped atlas regions due to the deforming effect of lesions. The cortex editor allows a domain expert to control the correlation of control points across slices. Correct correlation has been difficult for 3D reconstruction algorithms because the atlas slices are far apart and because of the complex topology of the cortex which differs so much from slice to slice. Also, higher precision of the resulting surfaces is demanded since these define 3D brain atlas features upon which future stereotactic surgery may be based. The cortex editor described in this paper provides a tool suitable for a domain expert to use in defining the 3D surface of a Brodmann's area.

  2. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    Science.gov (United States)

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  3. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    Directory of Open Access Journals (Sweden)

    Jennifer J. Coppola

    2018-01-01

    Full Text Available Acetylcholine (ACh is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  4. Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly.

    Science.gov (United States)

    Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz

    2015-03-01

    FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  6. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    Science.gov (United States)

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  7. Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis.

    Science.gov (United States)

    Yang, J-J; Yoon, U; Yun, H J; Im, K; Choi, Y Y; Lee, K H; Park, H; Hough, M G; Lee, J-M

    2013-08-29

    A number of imaging studies have reported neuroanatomical correlates of human intelligence with various morphological characteristics of the cerebral cortex. However, it is not yet clear whether these morphological properties of the cerebral cortex account for human intelligence. We assumed that the complex structure of the cerebral cortex could be explained effectively considering cortical thickness, surface area, sulcal depth and absolute mean curvature together. In 78 young healthy adults (age range: 17-27, male/female: 39/39), we used the full-scale intelligence quotient (FSIQ) and the cortical measurements calculated in native space from each subject to determine how much combining various cortical measures explained human intelligence. Since each cortical measure is thought to be not independent but highly inter-related, we applied partial least square (PLS) regression, which is one of the most promising multivariate analysis approaches, to overcome multicollinearity among cortical measures. Our results showed that 30% of FSIQ was explained by the first latent variable extracted from PLS regression analysis. Although it is difficult to relate the first derived latent variable with specific anatomy, we found that cortical thickness measures had a substantial impact on the PLS model supporting the most significant factor accounting for FSIQ. Our results presented here strongly suggest that the new predictor combining different morphometric properties of complex cortical structure is well suited for predicting human intelligence. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.

    Science.gov (United States)

    Bidelman, Gavin M

    2015-02-15

    Simultaneous recording of brainstem and cortical event-related brain potentials (ERPs) may offer a valuable tool for understanding the early neural transcription of behaviorally relevant sounds and the hierarchy of signal processing operating at multiple levels of the auditory system. To date, dual recordings have been challenged by technological and physiological limitations including different optimal parameters necessary to elicit each class of ERP (e.g., differential adaptation/habitation effects and number of trials to obtain adequate response signal-to-noise ratio). We investigated a new stimulus paradigm for concurrent recording of the auditory brainstem frequency-following response (FFR) and cortical ERPs. The paradigm is "optimal" in that it uses a clustered stimulus presentation and variable interstimulus interval (ISI) to (i) achieve the most ideal acquisition parameters for eliciting subcortical and cortical responses, (ii) obtain an adequate number of trials to detect each class of response, and (iii) minimize neural adaptation/habituation effects. Comparison between clustered and traditional (fixed, slow ISI) stimulus paradigms revealed minimal change in amplitude or latencies of either the brainstem FFR or cortical ERP. The clustered paradigm offered over a 3× increase in recording efficiency compared to conventional (fixed ISI presentation) and thus, a more rapid protocol for obtaining dual brainstem-cortical recordings in individual listeners. We infer that faster recording of subcortical and cortical potentials might allow more complete and sensitive testing of neurophysiological function and aid in the differential assessment of auditory function. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cortical Reorganization in Dual Innervation by Single Peripheral Nerve.

    Science.gov (United States)

    Zheng, Mou-Xiong; Shen, Yun-Dong; Hua, Xu-Yun; Hou, Ao-Lin; Zhu, Yi; Xu, Wen-Dong

    2017-09-21

    Functional recovery after peripheral nerve injury and repair is related with cortical reorganization. However, the mechanism of innervating dual targets by 1 donor nerve is largely unknown. To investigate the cortical reorganization when the phrenic nerve simultaneously innervates the diaphragm and biceps. Total brachial plexus (C5-T1) injury rats were repaired by phrenic nerve-musculocutaneous nerve transfer with end-to-side (n = 15) or end-to-end (n = 15) neurorrhaphy. Brachial plexus avulsion (n = 5) and sham surgery (n = 5) rats were included for control. Behavioral observation, electromyography, and histologic studies were used for confirming peripheral nerve reinnervation. Cortical representations of the diaphragm and reinnervated biceps were studied by intracortical microstimulation techniques before and at months 0.5, 3, 5, 7, and 10 after surgery. At month 0.5 after complete brachial plexus injury, the motor representation of the injured forelimb disappeared. The diaphragm representation was preserved in the "end-to-side" group but absent in the "end-to-end" group. Rhythmic contraction of biceps appeared in "end-to-end" and "end-to-side" groups, and the biceps representation reappeared in the original biceps and diaphragm areas at months 3 and 5. At month 10, it was completely located in the original biceps area in the "end-to-end" group. Part of the biceps representation remained in the original diaphragm area in the "end-to-side" group. Destroying the contralateral motor cortex did not eliminate respiration-related contraction of biceps. The brain tends to resume biceps representation from the original diaphragm area to the original biceps area following phrenic nerve transfer. The original diaphragm area partly preserves reinnervated biceps representation after end-to-side transfer. Copyright © 2017 by the Congress of Neurological Surgeons

  10. Cortical activities of single-trial P300 amplitudes modulated by memory load using simultaneous EEG-fMRI

    Science.gov (United States)

    Zhang, Qiushi; Zhao, Xiaojie; Zhu, Chaozhe; Yang, Xueqian; Yao, Li

    2015-03-01

    The functional magnetic resonance imaging (fMRI) researches on working memory have found that activation of cortical areas appeared dependent on memory load, and event-related potentials (ERP) studies have demonstrated that amplitudes of P300 decreased significantly when working memory load increased. However, the cortical activities related with P300 amplitudes under different memory loads remains unclear. Joint fMRI and EEG analysis which fusions the time and spatial information in simultaneous EEG-fMRI recording can reveal the regional activation at each ERP time point. In this paper, we first used wavelet transform to obtain the single-trial amplitudes of P300 caused by a digital N-back task in the simultaneous EEG-fMRI recording as the ERP feature sequences. Then the feature sequences in 1-back condition and 3-back condition were introduced into general linear model (GLM) separately as parametric modulations to compare the cortical activation under different memory loads. The results showed that the average amplitudes of P300 in 3-back significantly decreased than that in 1-back, and the activities induced by ERP feature sequences in 3-back also significantly decreased than that in the 1-back, including the insular, anterior cingulate cortex, right inferior frontal gyrus, and medial frontal gyrus, which were relevant to the storage, monitoring, and manipulation of information in working memory task. Moreover, the difference in the activation caused by ERP feature showed a positive correlation with the difference in behavioral performance. These findings demonstrated the locations of P300 amplitudes differences modulated by the memory load and its relationship with the behavioral performance.

  11. Extrastriate cortical areas activated during visual discrimination in man

    DEFF Research Database (Denmark)

    Roland, PE

    1981-01-01

    The regional cerebral blood flow (rCBF) was measured in 254 different regions of the human extrastriate cerebral cortex during rest and during visual shape discrimination. Visual shape discrimination increased the rCBF markedly in the frontal eye fields, the upper part of the prefrontal cortex, t......, the lateral occipital cortex and the superior parietal cortex. Moderate increases of rCBF appeared in the inferotemporal cortex, the parietotemporo-occipital region and scattered in the lateral part of the prefrontal cortex....

  12. Individual Movement Variability Magnitudes Are Explained by Cortical Neural Variability.

    Science.gov (United States)

    Haar, Shlomi; Donchin, Opher; Dinstein, Ilan

    2017-09-13

    Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior-parietal cortex of individual subjects explained their movement-extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities. SIGNIFICANCE STATEMENT Neural activity and movement kinematics are remarkably variable. Although intertrial variability is rarely studied, here, we demonstrate that individual human subjects exhibit distinct magnitudes of neural and kinematic variability that are reproducible across movements to different targets and when performing these movements with either arm. Furthermore, when examining the relationship between cortical variability and movement variability, we find that cortical fMRI variability in parietal cortex of individual subjects explained their movement extent variability. This enabled us to explain why some subjects

  13. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  14. The Hounsfield value for cortical bone geometry in the proximal humerus - an in vitro study

    International Nuclear Information System (INIS)

    Lim Fat, Daren; Kennedy, Jim; Galvin, Rose; O'Brien, Fergal; Mc Grath, Frank; Mullett, Hannan

    2012-01-01

    Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval, we used ten fresh-frozen human proximal humeri. These were stripped of all soft tissue and high-resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface, we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds. We could compute a single closest value at 700 HU. No difference was found in the HU-based contours generated along the 500-900 HU pixels (p = 1.000). The contours were significantly different from those generated at 300, 400, 1,000, and 1,100 HU. A Hounsfield range of 500-900 HU can accurately depict cortical bone geometry in the proximal humerus. Thresholding outside this range leads to statistically significant inaccuracies. Our results concur with a similar range reported in the literature for the proximal femur. Knowledge of regional variations in cortical bone thickness has direct implications for basic science studies on osteoporosis and its treatment, but is also important for the orthopedic surgeon since our decision for treatment options is often guided by local bone quality. (orig.)

  15. Associations between cortical thickness and general intelligence in children, adolescents and young adults

    Science.gov (United States)

    Menary, Kyle; Collins, Paul F.; Porter, James N.; Muetzel, Ryan; Olson, Elizabeth A.; Kumar, Vipin; Steinbach, Michael; Lim, Kelvin O.; Luciana, Monica

    2013-01-01

    Neuroimaging research indicates that human intellectual ability is related to brain structure including the thickness of the cerebral cortex. Most studies indicate that general intelligence is positively associated with cortical thickness in areas of association cortex distributed throughout both brain hemispheres. In this study, we performed a cortical thickness mapping analysis on data from 182 healthy typically developing males and females ages 9 to 24 years to identify correlates of general intelligence (g) scores. To determine if these correlates also mediate associations of specific cognitive abilities with cortical thickness, we regressed specific cognitive test scores on g scores and analyzed the residuals with respect to cortical thickness. The effect of age on the association between cortical thickness and intelligence was examined. We found a widely distributed pattern of positive associations between cortical thickness and g scores, as derived from the first unrotated principal factor of a factor analysis of Wechsler Abbreviated Scale of Intelligence (WASI) subtest scores. After WASI specific cognitive subtest scores were regressed on g factor scores, the residual score variances did not correlate significantly with cortical thickness in the full sample with age covaried. When participants were grouped at the age median, significant positive associations of cortical thickness were obtained in the older group for g-residualized scores on Block Design (a measure of visual-motor integrative processing) while significant negative associations of cortical thickness were observed in the younger group for g-residualized Vocabulary scores. These results regarding correlates of general intelligence are concordant with the existing literature, while the findings from younger versus older subgroups have implications for future research on brain structural correlates of specific cognitive abilities, as well as the cognitive domain specificity of behavioral

  16. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.

    Science.gov (United States)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-12-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.

  20. Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report

    International Nuclear Information System (INIS)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-01-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment

  1. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus - a cortical thickness analysis study

    DEFF Research Database (Denmark)

    Frøkjær, J B; Brock, C; Søfteland, E

    2013-01-01

    .03) and superior parietal gyrus (P=0.008) in patients. The cortical thickness of these regions was not associated with diabetes duration, age at diabetes onset or to HbA1c (all P>0.08). Patients with peripheral neuropathy showed reduced right postcentral gyrus cortical thickness compared to patients without...... peripheral neuropathy (P=0.02).Patients with longstanding type 1 diabetes showed cortical thinning involving sensory related areas, even though no overall macrostructural brain alterations were detected. This could possibly have underlying functional significance since cortical thinning was associated...... to presence of peripheral neuropathy. The absence of universal macrostructural changes might illustrate that more pronounced brain pathology is likely to be preceded by more subtle microstructural changes as reported in other studies...

  2. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.

    Science.gov (United States)

    Khodagholy, Dion; Gelinas, Jennifer N; Buzsáki, György

    2017-10-20

    Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Reye's syndrome with cortical laminar necrosis: MRI

    International Nuclear Information System (INIS)

    Kinoshita, T.; Takahashi, S.; Ishii, K.; Higano, S.; Matsumoto, K.; Sakamoto, K.; Haginoya, K.; Iinuma, K.

    1996-01-01

    Serial MRI findings are described in two patients with Reye's syndrome, demonstrating diffuse cortical and white matter changes. In the acute stage, T2-weighted images showed subtle but definite laminar high signal and contrast-enhanced T1-weighted images laminar enhancement, along the entire cerebral cortex bilaterally. In the chronic stage, unenhanced T1-weighted images showed diffuse cortical laminar high signal. These characteristic MRI features seemed very similar to those of laminar cortical necrosis in hypoxic brain damage. MRI also displayed delayed white matter changes with cerebral atrophy. (orig.)

  4. Cortical heterotopia in Aicardi's syndrome - CT findings

    International Nuclear Information System (INIS)

    Besenski, N.; Bosnjak, V.; Ligutic, I.; Marusic-Della Marina, B.

    1988-01-01

    The case of 5-month-old female infant with Aicardi's syndrome is presented. The main clinical features were severe developmental retardation and intractable epileptic seizures. Ophthalmoscopic examination revealed pathognomonic choriorethinopathy. Ultrasonic examination of the brain detected agenesis of the corpus callosum, whereas CT showed a coexisting malformation of the brain, i.e. cortical heterotopia of the gray matter. Agenesis of the corpus callosum is an entity well-recognized by sonography. However, ultrasonography is an insufficient modality for the visualization of cortical heterotopia which is common to all cases of Aicardi's syndrome. Therefore, in cases of suspected Aicardi's syndrome CT is recommended, as it enables the diagnosis of cortical heterotopia. (orig.)

  5. Cortical plasticity associated with Braille learning.

    Science.gov (United States)

    Hamilton, R H; Pascual-Leone, A

    1998-05-01

    Blind subjects who learn to read Braille must acquire the ability to extract spatial information from subtle tactile stimuli. In order to accomplish this, neuroplastic changes appear to take place. During Braille learning, the sensorimotor cortical area devoted to the representation of the reading finger enlarges. This enlargement follows a two-step process that can be demonstrated with transcranial magnetic stimulation mapping and suggests initial unmasking of existing connections and eventual establishment of more stable structural changes. In addition, Braille learning appears to be associated with the recruitment of parts of the occipital, formerly `visual', cortex (V1 and V2) for tactile information processing. In blind, proficient Braille readers, the occipital cortex can be shown not only to be associated with tactile Braille reading but also to be critical for reading accuracy. Recent studies suggest the possibility of applying non-invasive neurophysiological techniques to guide and improve functional outcomes of these plastic changes. Such interventions might provide a means of accelerating functional adjustment to blindness.

  6. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  7. Cortical Integration of Audio-Visual Information

    Science.gov (United States)

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  8. Low serum vitamin D is associated with higher cortical porosity in elderly men.

    Science.gov (United States)

    Sundh, D; Mellström, D; Ljunggren, Ö; Karlsson, M K; Ohlsson, C; Nilsson, M; Nilsson, A G; Lorentzon, M

    2016-11-01

    Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P vitamin D levels compared to the highest. In men with vitamin D deficiency (6.8 pmol L -1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R 2 = 1.1%, P = 0.024), area (β = 0.123, R 2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R 2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R 2 = 0.9%, P = 0.04). Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry. © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  9. Making Deferred Taxes Relevant

    NARCIS (Netherlands)

    Brouwer, Arjan; Naarding, Ewout

    2018-01-01

    We analyse the conceptual problems in current accounting for deferred taxes and provide solutions derived from the literature in order to make International Financial Reporting Standards (IFRS) deferred tax numbers value-relevant. In our view, the empirical results concerning the value relevance of

  10. Parsimonious relevance models

    NARCIS (Netherlands)

    Meij, E.; Weerkamp, W.; Balog, K.; de Rijke, M.; Myang, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We describe a method for applying parsimonious language models to re-estimate the term probabilities assigned by relevance models. We apply our method to six topic sets from test collections in five different genres. Our parsimonious relevance models (i) improve retrieval effectiveness in terms of

  11. Biomechanics of far cortical locking.

    Science.gov (United States)

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  12. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay.

    Science.gov (United States)

    Lukoshe, Akvile; Hokken-Koelega, Anita C; van der Lugt, Aad; White, Tonya

    2014-01-01

    Prader-Willi Syndrome (PWS) is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL), 12 with maternal uniparental disomy (mUPD)) and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI) was obtained using the FreeSurfer software suite. Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to alterations in gene networks that play a prominent role in

  13. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay.

    Directory of Open Access Journals (Sweden)

    Akvile Lukoshe

    Full Text Available BACKGROUND: Prader-Willi Syndrome (PWS is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. METHODS: High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL, 12 with maternal uniparental disomy (mUPD and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI was obtained using the FreeSurfer software suite. RESULTS: Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. CONCLUSIONS: These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to

  14. Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia.

    Science.gov (United States)

    Hedman, Anna M; van Haren, Neeltje E M; van Baal, G Caroline M; Brouwer, Rachel M; Brans, Rachel G H; Schnack, Hugo G; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-06-01

    Cortical thickness and surface area changes have repeatedly been found in schizophrenia. Whether progressive loss in cortical thickness and surface area are mediated by genetic or disease related factors is unknown. Here we investigate to what extent genetic and/or environmental factors contribute to the association between change in cortical thickness and surface area and liability to develop schizophrenia. Longitudinal magnetic resonance imaging study over a 5-year interval. Monozygotic (MZ) and dizygotic (DZ) twin pairs discordant for schizophrenia were compared with healthy control twin pairs using repeated measures analysis of variance (RM-ANOVA) and structural equation modeling (SEM). Twins discordant for schizophrenia and healthy control twins were recruited from the twin cohort at the University Medical Centre Utrecht, The Netherlands. A total of 90 individuals from 46 same sex twin pairs were included: 9 MZ and 10 DZ discordant for schizophrenia and 14 MZ and 13 (11 complete and 2 incomplete) DZ healthy twin-pairs. Age varied between 19 and 57years. Higher genetic liability for schizophrenia was associated with progressive global thinning of the cortex, particularly of the left superior temporal cortex. Higher environmental liability for schizophrenia was associated with global attenuated thinning of the cortex, and including of the left superior temporal cortex. Cortical surface area change was heritable, but not significantly associated with higher genetic or environmental liability for schizophrenia. Excessive cortical thinning, particularly of the left superior temporal cortex, may represent a genetic risk marker for schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  16. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  17. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  18. Autosomal dominant cortical tremor, myoclonus and epilepsy.

    Science.gov (United States)

    Striano, Pasquale; Zara, Federico

    2016-09-01

    The term 'cortical tremor' was first introduced by Ikeda and colleagues to indicate a postural and action-induced shivering movement of the hands which mimics essential tremor, but presents with the electrophysiological findings of cortical reflex myoclonus. The association between autosomal dominant cortical tremor, myoclonus and epilepsy (ADCME) was first recognized in Japanese families and is now increasingly reported worldwide, although it is described using different acronyms (BAFME, FAME, FEME, FCTE and others). The disease usually takes a benign course, although drug-resistant focal seizures or slight intellectual disability occur in some cases. Moreover, a worsening of cortical tremor and myoclonus is common in advanced age. Although not yet recognized by the International League Against Epilepsy (ILAE), this is a well-delineated epilepsy syndrome with remarkable features that clearly distinguishes it from other myoclonus epilepsies. Moreover, genetic studies of these families show heterogeneity and different susceptible chromosomal loci have been identified.

  19. Subcortical orientation biases explain orientation selectivity of visual cortical cells.

    Science.gov (United States)

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-04-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Modeling the effects of transcranial magnetic stimulation on cortical circuits.

    Science.gov (United States)

    Esser, Steve K; Hill, Sean L; Tononi, Giulio

    2005-07-01

    Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.

  1. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Motor features in posterior cortical atrophy and their imaging correlates☆

    Science.gov (United States)

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  3. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  4. Cortico-Cortical Receptive Field Estimates in Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Koen V Haak

    2012-05-01

    Full Text Available Human visual cortex comprises many visual areas that contain a map of the visual field (Wandell et al 2007, Neuron 56, 366–383. These visual field maps can be identified readily in individual subjects with functional magnetic resonance imaging (fMRI during experimental sessions that last less than an hour (Wandell and Winawer 2011, Vis Res 718–737. Hence, visual field mapping with fMRI has been, and still is, a heavily used technique to examine the organisation of both normal and abnormal human visual cortex (Haak et al 2011, ACNR, 11(3, 20–21. However, visual field mapping cannot reveal every aspect of human visual cortex organisation. For example, the information processed within a visual field map arrives from somewhere and is sent to somewhere, and visual field mapping does not derive these input/output relationships. Here, we describe a new, model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI data. Just as a stimulus-referred receptive field predicts the neural response as a function of the stimulus contrast, the neural-referred receptive field predicts the neural response as a function of responses elsewhere in the nervous system. When applied to two cortical regions, this function can be called the cortico-cortical receptive field (CCRF. We model the CCRF as a Gaussian-weighted region on the cortical surface and apply the model to data from both stimulus-driven and resting-state experimental conditions in visual cortex.

  5. Verbal memory impairments in schizophrenia associated with cortical thinning

    Directory of Open Access Journals (Sweden)

    S. Guimond

    2016-01-01

    Full Text Available Verbal memory (VM represents one of the most affected cognitive domains in schizophrenia. Multiple studies have shown that schizophrenia is associated with cortical abnormalities, but it remains unclear whether these are related to VM impairments. Considering the vast literature demonstrating the role of the frontal cortex, the parahippocampal cortex, and the hippocampus in VM, we examined the cortical thickness/volume of these regions. We used a categorical approach whereby 27 schizophrenia patients with ‘moderate to severe’ VM impairments were compared to 23 patients with ‘low to mild’ VM impairments and 23 healthy controls. A series of between-group vertex-wise GLM on cortical thickness were performed for specific regions of interest defining the parahippocampal gyrus and the frontal cortex. When compared to healthy controls, patients with ‘moderate to severe’ VM impairments revealed significantly thinner cortex in the left frontal lobe, and the parahippocampal gyri. When compared to patients with ‘low to mild’ VM impairments, patients with ‘moderate to severe’ VM impairments showed a trend of thinner cortex in similar regions. Virtually no differences were observed in the frontal area of patients with ‘low to mild’ VM impairments relative to controls. No significant group differences were observed in the hippocampus. Our results indicate that patients with greater VM impairments demonstrate significant cortical thinning in regions known to be important in VM performance. Treating VM deficits in schizophrenia could have a positive effect on the brain; thus, subgroups of patients with more severe VM deficits should be a prioritized target in the development of new cognitive treatments.

  6. Cortical recovery of swallowing function in wound botulism

    Directory of Open Access Journals (Sweden)

    Ringelstein Erich B

    2008-05-01

    Full Text Available Abstract Background Botulism is a rare disease caused by intoxication leading to muscle weakness and rapidly progressive dysphagia. With adequate therapy signs of recovery can be observed within several days. In the last few years, brain imaging studies carried out in healthy subjects showed activation of the sensorimotor cortex and the insula during volitional swallowing. However, little is known about cortical changes and compensation mechanisms accompanying swallowing pathology. Methods In this study, we applied whole-head magnetoencephalography (MEG in order to study changes in cortical activation in a 27-year-old patient suffering from wound botulism during recovery from dysphagia. An age-matched group of healthy subjects served as control group. A self-paced swallowing paradigm was performed and data were analyzed using synthetic aperture magnetometry (SAM. Results The first MEG measurement, carried out when the patient still demonstrated severe dysphagia, revealed strongly decreased activation of the somatosensory cortex but a strong activation of the right insula and marked recruitment of the left posterior parietal cortex (PPC. In the second measurement performed five days later after clinical recovery from dysphagia we found a decreased activation in these two areas and a bilateral cortical activation of the primary and secondary sensorimotor cortex comparable to the results seen in a healthy control group. Conclusion These findings indicate parallel development to normalization of swallowing related cortical activation and clinical recovery from dysphagia and highlight the importance of the insula and the PPC for the central coordination of swallowing. The results suggest that MEG examination of swallowing can reflect short-term changes in patients suffering from neurogenic dysphagia.

  7. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.

    Science.gov (United States)

    Gerfen, C R

    1989-10-20

    The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.

  8. Correlation analysis of findings from neuroimaging and histopathology in focal cortical dysplasia

    International Nuclear Information System (INIS)

    Ma Mingping; Fan Jianzhong; Jiang Zirong; Bao Qiang; Du Ruibin; Ritter, J.L.

    2009-01-01

    Objective: To characterize neuroimaging features of focal cortical dysplasia (FCD) retrospectively and correlate those with pathological findings, which may improve our understanding of neuroimaging characteristics of FCD. Methods: Clinical information and neuroimaging findings of 28 cases with FCD proved by pathology were retrospectively reviewed, and neuroimaging features of FCD were correlated with the pathological changes. Results: MRI revealed abnormal changes in 24 of 28 patients (85.7%) and no abnormalities were observed in 4 cases. Focal cortical thickening and blurring of the gray- white matter junction were the major features of FCD on MRI. Accompanied abnormal MR signals can also be observed in cortical or subcortical white matter in FCD. The radial band of hyperintensity in subcortical white matter tapering to the ventricle is one of the characteristic features of FCD on MRI. On FDG-PET examination, focal hypometabolism were revealed in 9 of 14 cases (64.3%). Histologically, cortical dyslamination was accompanied by various degrees of dysmorphic neurons and balloon cells in cortical and subcortical areas. Subcortical white matter dysmyelination and spongiotic necrotic changes were found in some cases with FCD. Conclusion: High resolution MRI can reveal most of the lesions in FCD, including abnormal changes of cortical and subcortical white matter, which makes MRI the best pre-operation examination for FCD. (authors)

  9. Cortical depth dependent population receptive field attraction by spatial attention in human V1.

    Science.gov (United States)

    Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O

    2018-04-27

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.

  10. Culturally Relevant Cyberbullying Prevention

    OpenAIRE

    Phillips, Gregory John

    2017-01-01

    In this action research study, I, along with a student intervention committee of 14 members, developed a cyberbullying intervention for a large urban high school on the west coast. This high school contained a predominantly African American student population. I aimed to discover culturally relevant cyberbullying prevention strategies for African American students. The intervention committee selected video safety messages featuring African American actors as the most culturally relevant cyber...

  11. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    Science.gov (United States)

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  12. Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity.

    Science.gov (United States)

    Miller, Lee M; Recanzone, Gregg H

    2009-04-07

    The auditory cortex is critical for perceiving a sound's location. However, there is no topographic representation of acoustic space, and individual auditory cortical neurons are often broadly tuned to stimulus location. It thus remains unclear how acoustic space is represented in the mammalian cerebral cortex and how it could contribute to sound localization. This report tests whether the firing rates of populations of neurons in different auditory cortical fields in the macaque monkey carry sufficient information to account for horizontal sound localization ability. We applied an optimal neural decoding technique, based on maximum likelihood estimation, to populations of neurons from 6 different cortical fields encompassing core and belt areas. We found that the firing rate of neurons in the caudolateral area contain enough information to account for sound localization ability, but neurons in other tested core and belt cortical areas do not. These results provide a detailed and plausible population model of how acoustic space could be represented in the primate cerebral cortex and support a dual stream processing model of auditory cortical processing.

  13. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    Science.gov (United States)

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  14. Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior?

    Science.gov (United States)

    Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph

    2016-10-01

    Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (psuicidal patients with non-suicidal patients significant (psuicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Light up ADHD: I. Cortical hemodynamic responses measured by functional Near Infrared Spectroscopy (fNIRS): Special Section on "Translational and Neuroscience Studies in Affective Disorders" Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summarise relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders.

    Science.gov (United States)

    Mauri, Maddalena; Nobile, Maria; Bellina, Monica; Crippa, Alessandro; Brambilla, Paolo

    2018-07-01

    Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by deficits in cognitive and emotional self-control. Optical technique acquisitions, such as near infrared spectroscopy (NIRS), seem to be very promising during developmental ages, as they are non- invasive techniques and less influenced by body movements than other neuroimaging methods. Recently, these new techniques are being widely used to measure neural correlates underlying neuropsychological deficits in children with ADHD. In a short series of articles, we will review the results of functional NIRS (fNIRS) studies in children with ADHD. The present brief review will focus on the results of the fNIRS studies that investigate cortical activity during neuropsychological and/or emotional tasks. According to the reviewed studies, children and adolescents with ADHD show peculiar cortical activation both during neurological and emotional tasks, and the majority of the reviewed studies revealed lower prefrontal cortex activation in patients compared to typically developmental controls. a consistent interpretation of these results is limited by the substantial methodological heterogeneity including patients' medication status and washout period, explored cerebral regions, neuropsychological tasks, number of channels and sampling temporal resolutions. fNIRS seems to be a promising tool for investigating neural substrates of emotional dysregulation and executive function deficits in individuals with ADHD during developmental ages. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke.

    Science.gov (United States)

    Cheng, Bastian; Schulz, Robert; Bönstrup, Marlene; Hummel, Friedhelm C; Sedlacik, Jan; Fiehler, Jens; Gerloff, Christian; Thomalla, Götz

    2015-09-01

    Cortical atrophy as demonstrated by measurement of cortical thickness (CT) is a hallmark of various neurodegenerative diseases. In the wake of an acute ischemic stroke, brain architecture undergoes dynamic changes that can be tracked by structural and functional magnetic resonance imaging studies as soon as 3 months after stroke. In this study, we measured changes of CT in cortical areas connected to subcortical stroke lesions in 12 patients with upper extremity paresis combining white-matter tractography and semi-automatic measurement of CT using the Freesurfer software. Three months after stroke, a significant decrease in CT of -2.6% (median, upper/lower boundary of 95% confidence interval -4.1%/-1.1%) was detected in areas connected to ischemic lesions, whereas CT in unconnected cortical areas remained largely unchanged. A cluster of significant cortical thinning was detected in the superior frontal gyrus of the stroke hemisphere using a surface-based general linear model correcting for multiple comparisons. There was no significant correlation of changes in CT with clinical outcome parameters. Our results show a specific impact of subcortical lesions on distant, yet connected cortical areas explainable by secondary neuro-axonal degeneration of distant areas.

  17. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  18. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI

    Directory of Open Access Journals (Sweden)

    Jie Wen

    2015-01-01

    Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  19. Cortical theta wanes for language.

    Science.gov (United States)

    Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2014-01-15

    The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.

  20. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  1. Osmosis in Cortical Collecting Tubules

    Science.gov (United States)

    Schafer, James A.; Troutman, Susan L.; Andreoli, Thomas E.

    1974-01-01

    The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (P DDurea l→b) and from bath to lumen (P DDurea b→l). For hypotonic luminal solutions and isotonic bathing solutions, P DDurea l→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of P DDurea l→b and P urea b→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, P DDurea l→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in

  2. Focal cortical hypoperfusion in corticobasal degeneration demonstrated by three-dimensional surface display with {sup 123}I-IMP: a possible cause of apraxia

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, B. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Tachibana, H. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Takeda, M. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Kawabata, K. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Sugita, M. [5. Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya (Japan); Fukuchi, M. [Department of Nuclear Medicine, Hyogo College of Medicine, Nishinomiya (Japan)

    1995-11-01

    To clarify cortical lesions responsible for apraxia in corticobasal degeneration (CBD), we reconstructed three-dimensional surface images from single-photon emission computed tomography (SPECT) data with N-isopropyl-p[I-123]-iodoamphetamine in two patients with CBD. Both had limb-kinetic apraxia (LKA) and one also had constructional apraxia (CA). Both showed asymmetrical cortical hypoperfusion in the perirolandic area. The patient with CA had unilateral hypoperfusion in the posterior parietal area. Thus, cortical hypoperfusion in the perirolandic area corresponded to LKA, and that in the posterior parietal area to CA. (orig.). With 4 figs.

  3. Focal cortical hypoperfusion in corticobasal degeneration demonstrated by three-dimensional surface display with 123I-IMP: a possible cause of apraxia

    International Nuclear Information System (INIS)

    Okuda, B.; Tachibana, H.; Takeda, M.; Kawabata, K.; Sugita, M.; Fukuchi, M.

    1995-01-01

    To clarify cortical lesions responsible for apraxia in corticobasal degeneration (CBD), we reconstructed three-dimensional surface images from single-photon emission computed tomography (SPECT) data with N-isopropyl-p[I-123]-iodoamphetamine in two patients with CBD. Both had limb-kinetic apraxia (LKA) and one also had constructional apraxia (CA). Both showed asymmetrical cortical hypoperfusion in the perirolandic area. The patient with CA had unilateral hypoperfusion in the posterior parietal area. Thus, cortical hypoperfusion in the perirolandic area corresponded to LKA, and that in the posterior parietal area to CA. (orig.). With 4 figs

  4. Modeling a space-variant cortical representation for apparent motion.

    Science.gov (United States)

    Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash

    2013-08-06

    Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.

  5. Motor cortical representation of the pelvic floor muscles.

    Science.gov (United States)

    Schrum, A; Wolff, S; van der Horst, C; Kuhtz-Buschbeck, J P

    2011-07-01

    Pelvic floor muscle training involves rhythmical voluntary contractions of the external urethral sphincter and ancillary pelvic floor muscles. The representation of these muscles in the motor cortex has not been located precisely and unambiguously. We used functional magnetic resonance imaging to determine brain activity during slow and fast pelvic floor contractions. Cerebral responses were recorded in 17 healthy male volunteers, 21 to 47 years old, with normal bladder control. Functional magnetic resonance imaging was performed during metronome paced slow (0.25 Hertz) and fast (0.7 Hertz) contractions of the pelvic floor that mimicked the interruption of voiding. To study the somatotopy of the cortical representations, flexion-extension movements of the right toes were performed as a control task. Functional magnetic resonance imaging during pelvic floor contractions detected activity of the supplementary motor area in the medial wall and of the midcingulate cortex, insula, posterior parietal cortex, putamen, thalamus, cerebellar vermis and upper ventral pons. There were no significant differences in activation between slow and fast contractions. Toe movements involved significantly stronger activity of the paracentral lobule (ie the medial primary motor cortex) than did the pelvic floor contractions. Otherwise the areas active during pelvic floor and leg muscle contractions overlapped considerably. The motor cortical representation of pelvic floor muscles is located mostly in the supplementary motor area. It extends further ventrally and anteriorly than the representation of distal leg muscles. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Tensor-based cortical surface morphometry via weighted spherical harmonic representation.

    Science.gov (United States)

    Chung, Moo K; Dalton, Kim M; Davidson, Richard J

    2008-08-01

    We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.

  7. Cortical layers, rhythms and BOLD signals.

    Science.gov (United States)

    Scheeringa, René; Fries, Pascal

    2017-11-03

    This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging

    Directory of Open Access Journals (Sweden)

    David A. Rudko

    2016-01-01

    Full Text Available The purpose of our study was to evaluate the utility of measurements of cortical surface magnetization transfer ratio (csMTR on the inner, mid and outer cortical boundaries as clinically accessible biomarkers of cortical gray matter pathology in multiple sclerosis (MS. Twenty-five MS patients and 12 matched controls were recruited from the MS Clinic of the Montreal Neurological Institute. Anatomical and magnetization transfer ratio (MTR images were acquired using 3 Tesla MRI at baseline and two-year time-points. MTR maps were smoothed along meshes representing the inner, mid and outer neocortical boundaries. To evaluate csMTR reductions suggestive of sub-pial demyelination in MS patients, a mixed model analysis was carried out at both the individual vertex level and in anatomically parcellated brain regions. Our results demonstrate that focal areas of csMTR reduction are most prevalent along the outer cortical surface in the superior temporal and posterior cingulate cortices, as well as in the cuneus and precentral gyrus. Additionally, age regression analysis identified that reductions of csMTR in MS patients increase with age but appear to hit a plateau in the outer caudal anterior cingulate, as well as in the precentral and postcentral cortex. After correction for the naturally occurring gradient in cortical MTR, the difference in csMTR between the inner and outer cortex in focal areas in the brains of MS patients correlated with clinical disability. Overall, our findings support multi-surface analysis of csMTR as a sensitive marker of cortical sub-pial abnormality indicative of demyelination in MS patients.

  9. Clinical and imaging characteristics of localized megalencephaly: a retrospective comparison of diffuse hemimegalencephaly and multilobar cortical dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Nakahashi, Masumi; Tsushima, Yoshito; Amanuma, Makoto; Endo, Keigo [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi, Gunma (Japan); Sato, Noriko; Ota, Miho [National Center Hospital of Neurology and Psychiatry, Department of Radiology, Kodaira, Tokyo (Japan); Yagishita, Akira [Tokyo Metropolitan Neurological Hospital, Department of Neuroradiology, Kokubunji, Tokyo (Japan); Saito, Yoshiaki; Sugai, Kenji; Sasaki, Masayuki [National Center Hospital of Neurology and Psychiatry, Department of Child Neurology, Kodaira, Tokyo (Japan); Natsume, Jun [Nagoya University Graduate School of Medicine, Department of Pediatrics, Nagoya, Aichi (Japan)

    2009-12-15

    Hemimegalencephaly is a well-known congenital malformation. However, localized megalencephaly, which may be one of the subtypes of hemimegalencephaly, has not been separately investigated. In the present study, we attempted to characterize the clinical and magnetic resonance (MR) imaging features of localized megalencephaly in comparison with ordinary diffuse hemimegalencephaly and multilobar cortical dysplasia. MR findings for 43 patients with hemimegalencephaly and ten with multilobar cortical dysplasia, which is the differential diagnosis of localized megalencephaly, were retrospectively reviewed. Clinical findings such as the onset and severity of seizures and imaging findings including the affected area of the brain, structures outside of the hemisphere, and interval morphological changes were examined. Of the 43 patients, 11 showed signs of localized megalencephaly (25.6%). Localized megalencephaly was predominantly seen on the left side (72.7%) and had a tendency toward severe-grade seizures compared to multilobar cortical dysplasia. The frequencies of the extracerebral abnormalities in the diffuse hemimegalencephaly, localized megalencephaly, and multilobar cortical dysplasia groups were 84.4%, 36.4%, and 0.0%, respectively. There were three localized megalencephaly patients whose affected areas shrank and whose images were similar to those of multilobar cortical dysplasia. Localized megalencephaly accounts for one quarter of all hemimegalencephaly cases in this study. The incidence of extracerebral abnormalities in patients with localized hemimegalencephaly was almost half that of patients with diffuse hemimegalencephaly. Extracerebral abnormalities were absent in patients with multilobar cortical dysplasia. Associated extracerebral abnormalities may be a clue to differentiating localized megalencephaly from multilobar cortical dysplasia. (orig.)

  10. Optogenetic stimulation of a meso-scale human cortical model

    Science.gov (United States)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  11. The Limits to Relevance

    Science.gov (United States)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  12. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  13. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    empirical MEG data and looked for potential determinants of the spectral properties of an individual's gamma response, and how they relate to underlying visual cortex microcircuitry and excitation/inhibition balance. We found correlations between peak gamma frequency and cortical inhibition (parameterized by the excitatory drive to inhibitory cell populations over subjects. This constitutes a compelling illustration of how non-invasive data can provide quantitative estimates of the spatial properties of neural sources and explain systematic variations in the dynamics those sources generate. Furthermore, the conclusions fitted comfortably with studies of contextual interactions and orientation discrimination suggesting that local contextual interactions in V1 are weaker in individuals with a large V1 area [13, 14]. Finally, we will use dynamic causal modeling and neural fields to test specific hypotheses about precision and gain control based on predictive coding formulations of neuronal processing. We exploited finely sampled electrophysiological responses from awake-behaving monkeys and an experimental manipulation (the contrast of visual stimuli to look at changes in the gain and balance of excitatory and inhibitory influences. Our results suggest that increasing contrast effectively increases the sensitivity or gain of superficial pyramidal cells to inputs from spiny stellate populations. Furthermore, they are consistent with intriguing results showing that the receptive fields of V1 units shrinks with increasing visual contrast. The approach we will illustrate in this paper rests on neural field models that are optimized in relation to observed gamma responses from the visual cortex and are – crucially – compared in terms of their evidence. This provides a principled way to address questions about cortical structure, function and the architectures that underlie neuronal computations.

  14. Gambling behavior in Parkinson's Disease: Impulsivity, reward mechanism and cortical brain oscillations.

    Science.gov (United States)

    Balconi, Michela; Angioletti, Laura; Siri, Chiara; Meucci, Nicoletta; Pezzoli, Gianni

    2018-03-20

    Psychopathological components, such as reward sensitivity and impulsivity, and dopaminergic treatment are crucial characteristics related to the development of Pathological Gambling (PG) in Parkinson's Disease (PD). The aim of the present study is to investigate the differences in decision-making in PD patients with or without PG considering both neurophysiological and behavioral aspects. The IOWA Gambling Task (IGT) and electroencephalographic (EEG) activity were considered to elucidate the decision and post-feedback processes in PG. The sample included fifty-two PD patients, divided in three groups: 17 PD patients with active gambling behavior (PD Gamblers, PDG); 15 PD patients who remitted from PG (PD Non-Gamblers, PDNG); and a Control Group (CG) composed by 20 patients with PD only. EEG and IGT performance were recorded during decision and post-feedback phase. Results showed worse performance and an increase of the low frequency bands in the frontal area for the PDG group compared to the other two groups. In addition, higher BAS (Behavioral Activation System) and BIS-11 (Barratt Impulsiveness Scale) personality components were correlated to groups' behavioral response. These results show an anomalous behavioral (IGT) and cortical response of PDG patients related to their inability to use adequate control mechanisms during a decision-making task where reward mechanisms (BAS) and impulsivity (BIS-11) are relevant. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    Science.gov (United States)

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (pfrequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task.

    Science.gov (United States)

    Halari, R; Kumari, V

    2005-03-07

    Men are hypothesised to perform better than women at tasks requiring cognitive inhibition. The present study applied whole-brain functional magnetic resonance imaging to investigate the neural correlates of cognitive inhibition using a novel task, requiring detection of numbers decreasing in numerical order, in relation to sex. The study involved 19 young healthy subjects (9 men, 10 women). Behavioural sex differences favouring men were found on the inhibition, but not on the automatization (i.e. detection of numbers increasing in numerical order), condition of the task. Significant areas of activation associated with cognitive inhibition included the right inferior prefrontal and bilateral dorsolateral prefrontal cortices, left inferior and superior parietal lobes, and bilateral temporal regions across men and women. No brain region was significantly differently activated in men and women. Our findings demonstrate that (a) cognitive inhibition is dependent on intact processes within frontal and parietal regions, and (b) women show inferior cognitive inhibition despite of comparable activation to men in relevant regions. Equated behavioural performance may elicit sex differences in brain activation.

  17. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy.

    Science.gov (United States)

    Pallud, J; Mandonnet, E; Corns, R; Dezamis, E; Parraga, E; Zanello, M; Spena, G

    2017-06-01

    Intraoperative application of electrical current to the brain is a standard technique during brain surgery for inferring the function of the underlying brain. The purpose of intraoperative functional mapping is to reliably identify cortical areas and subcortical pathways involved in eloquent functions, especially motor, sensory, language and cognitive functions. The aim of this article is to review the rationale and the electrophysiological principles of the use of direct bipolar electrostimulation for cortical and subcortical mapping under awake conditions. Direct electrical stimulation is a window into the whole functional network that sustains a particular function. It is an accurate (spatial resolution of about 5mm) and a reproducible technique particularly adapted to clinical practice for brain resection in eloquent areas. If the procedure is rigorously applied, the sensitivity of direct electrical stimulation for the detection of cortical and subcortical eloquent areas is nearly 100%. The main disadvantage of this technique is its suboptimal specificity. Another limitation is the identification of eloquent areas during surgery, which, however, could have been functionally compensated postoperatively if removed surgically. Direct electrical stimulation is an easy, accurate, reliable and safe invasive technique for the intraoperative detection of both cortical and subcortical functional brain connectivity for clinical purpose. In our opinion, it is the optimal technique for minimizing the risk of neurological sequelae when resecting in eloquent brain areas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  19. Cortical modulation of the nucleus of the optic tract in the rabbit.

    Science.gov (United States)

    Pettorossi, V E; Troiani, D

    1983-09-01

    We analyzed in rabbits the relationships between the temporooccipital nystagmogenic cortex (NGC)--the region sited at the border between cortical areas 17, 21, and 22--and the nucleus of the optic tract (NOT). Two experimental approaches were used: (a) eye movement analysis before and after electrolytic lesion of the NOT region provided an indication of the importance of the NOT for the interaction between the ocular nystagmus elicited by natural optokinetic stimulation (OKN) and the nystagmus evoked by electrical stimulation of the nystagmogenic area; (b) NOT direction-selective and velocity-sensitive units were tested with single shock or repetitive electrical stimulation of the nystagmogenic region. Single-shock stimulation evoked single or multiple spikes in 50% of NOT units analyzed and repetitive stimuli induced prolonged facilitation and inhibitory rebounds in 70% of the units tested. Comparison of orthodromic activation latencies of the NOT cells (3.2 and 6.1 ms) after cortical stimulation and of antidromic activation latencies of cortical nystagmogenic units (2.6 ms) after NOT shocks, suggested monosynaptic as well as polysynaptic connections between the temporooccipital cortex and the NOT. The existence of such cortical-NOT linkage indicates that the NOT is intercalated between the cortex and the oculomotor centers and represents the most probable site of interaction of the cortical nystagmus pathway with the optokinetic reflex arc.

  20. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    Science.gov (United States)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  1. Electrophysiological and pathological study of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Hodozuka, Akira; Hashizume, Kiyotaka; Hayashi, Yoshimitsu; Tanaka, Tatsuya

    2008-01-01

    Clinical and experimental studies on focal cortical dysplasia (FCD) were carried out. For the experimental study, an experimental FCD model of rats was developed. Twenty Wistar rats at 0-2 days after birth were used for the study. Kainic acid (KA) solution was injected stereotaxically into medial and lateral sites of the sensori-motor cortex. Bipolar electrodes were inserted. The behavior of the rats and electroencephalography (EEG) were recorded using a digital video-EEG monitoring system. After observation periods of 1, 2 and 6 months, the rats were perfused for pathological study. FCD was observed adjacent to the site of KA injection in all rats more than one month after the injection. EEG recording demonstrated focal spike discharges in and around the site of injection. However, clinical seizure was not observed. Pathological studies showed decrease in gamma aminobutyric acid (GABA)-A receptors and increase in GABA-B receptors not only in the lesion but also in perilesional areas. Fifteen surgical cases of FCD with intractable epilepsy were included in the clinical study. Neuro-imaging studies including high-resolution MRI and single photon emission computed tomography (SPECT) were performed. Conventional EEG studies demonstrated focal EEG abnormalities with epileptic phenomena. At surgery, intraoperative electrocorticography (ECoG) was performed in order to localize epileptic foci under neuroleptanalgesia. Fourteen patients showed epileptiform discharges on preresection ECoG. All foci in non-eloquent areas were resected. Pathological studies including immunohistochemical staining were performed, and characteristics of the FCD in relation to EEG findings were analyzed. Electrophysiological examination revealed epileptogenecity not only in the lesions but also in perilesional areas. In the lesions, immunohistochemical studies showed decrease in GABA-A receptors and increase in GABA-B receptors in both the lesions and perilesional areas, but N

  2. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement.

    Science.gov (United States)

    Rossi, Margherita; Bruno, Giovanni; De Stefani, Alberto; Perri, Alessandro; Gracco, Antonio

    2017-12-01

    To assess whether cortical bone thickness and density vary in relation to age, sex and skeletal pattern at the maxillary and mandibular areas suitable for miniplates placement for orthodontic purposes. CBCT of 92 subjects (42 males and 50 females) with skeletal class I, II or III malocclusion, divided between adolescents and adults, were examined. InVivoDental ® software (Anatomage Inc, USA) was used to measure 34 maxillary areas and 40 mandibular areas per side. Values obtained were then compared between the groups of subjects. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney rank-sum test for independent samples. No significant differences were found in the cortical bone thickness values between the three skeletal patterns, and according to sex and age. Both maxilla and mandible showed an increase in cortical bone thickness from the anterior towards the posterior regions, and from the alveolar boneto the basal bone. Cortical bone density significantly varied in relation to the subject's age, with adults always showing higher values. Slight clinically significant differences were found between the three skeletal patterns and sex. In terms of cortical bone thickness, age, sex and skeletal pattern do not represent valid decision criteria for the evaluation of the best insertion areas for miniplates, while in terms of cortical bone density, only age is useful as a decision criterion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  3. Changes in Thickness and Surface Area of the Human Cortex and Their Relationship with Intelligence

    NARCIS (Netherlands)

    Schnack, H.G.; van Haren, N.E.M.; Brouwer, R.M.; Evans, A.; Durston, S.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E.

    2015-01-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface

  4. Cortical Plasticity after Cochlear Implantation

    DEFF Research Database (Denmark)

    Petersen, Bjørn; Gjedde, Albert; Wallentin, Mikkel

    2013-01-01

    recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners...... with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss...... occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only...

  5. PET in malformations of cortical development

    International Nuclear Information System (INIS)

    Bouilleret, V.; O'Brien, T.J.; Bouilleret, V.; Bouilleret, V.; Chiron, C.; Chiron, C.

    2009-01-01

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [ 18 F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [ 18 F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  6. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  7. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  8. Is Information Still Relevant?

    Science.gov (United States)

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  9. Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation.

    Science.gov (United States)

    Mattsson, Anna; Lindqvist, Eva; Ogren, Sven Ove; Olson, Lars

    2005-11-07

    Altered cholinergic function is considered as a potential contributing factor in the pathogenesis of schizophrenia. We hypothesize that cortical cholinergic denervation may result in changes in glutamatergic activity. Therefore, we lesioned the cholinergic corticopetal projections by local infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of rats. Possible effects of this lesion on glutamatergic systems were examined by phencyclidine-induced locomotor activity, and also by N-methyl-D-aspartate receptor binding. We find that cholinergic lesioning of neocortex leads to enhanced sensitivity to phencyclidine in the form of a dramatic increase in horizontal activity. Further, N-methyl-D-aspartate receptor binding is unaffected in denervated rats. These results suggest that aberrations in cholinergic function might lead to glutamatergic dysfunctions, which might be of relevance for the pathophysiology for schizophrenia.

  10. TUTORIAL: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity

    Science.gov (United States)

    Fernández, E.; Pelayo, F.; Romero, S.; Bongard, M.; Marin, C.; Alfaro, A.; Merabet, L.

    2005-12-01

    Clinical applications such as artificial vision require extraordinary, diverse, lengthy and intimate collaborations among basic scientists, engineers and clinicians. In this review, we present the state of research on a visual neuroprosthesis designed to interface with the occipital visual cortex as a means through which a limited, but useful, visual sense could be restored in profoundly blind individuals. We review the most important physiological principles regarding this neuroprosthetic approach and emphasize the role of neural plasticity in order to achieve desired behavioral outcomes. While full restoration of fine detailed vision with current technology is unlikely in the immediate near future, the discrimination of shapes and the localization of objects should be possible allowing blind subjects to navigate in a unfamiliar environment and perhaps even to read enlarged text. Continued research and development in neuroprosthesis technology will likely result in a substantial improvement in the quality of life of blind and visually impaired individuals.

  11. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    Science.gov (United States)

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  12. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    D.J. O'Rourke

    2014-01-01

    Full Text Available Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD and discuss the literature on this topic.

  13. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Science.gov (United States)

    O'Rourke, D.J.; Bergin, A.; Rotenberg, A.; Peters, J.; Gorman, M.; Poduri, A.; Cryan, J.; Lidov, H.; Madsen, J.; Harini, C.

    2014-01-01

    Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD) and discuss the literature on this topic. PMID:25667877

  14. Cortical Networks for Visual Self-Recognition

    Science.gov (United States)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  15. Cortical networks for visual self-recognition

    International Nuclear Information System (INIS)

    Sugiura, Motoaki

    2007-01-01

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed. (author)

  16. Developmental tumors and adjacent cortical dysplasia: single or dual pathology?

    Science.gov (United States)

    Palmini, André; Paglioli, Eliseu; Silva, Vinicius Duval

    2013-12-01

    Developmental tumors often lead to refractory partial seizures and constitute a well-defined, surgically remediable epilepsy syndrome. Dysplastic features are often associated with these tumors, and their significance carries both practical and conceptual relevance. If associated focal cortical dysplasia (FCD) relates to the extent of the epileptogenic tissue, then presurgical evaluation and surgical strategies should target both the tumor and the surrounding dyslaminated cortex. Furthermore, the association has been included in the recently revised classification of FCD and the epileptogenicity of this associated dysplastic tissue is crucial to validate such revision. In addition to the possibility of representing dual pathology, the association of developmental tumors and adjacent dysplasia may instead represent a single developmental lesion with distinct parts distributed along a histopathologic continuum. Moreover, the possibility that this adjacent dyslamination is of minor epileptogenic relevance should also be entertained. Surgical data show that complete resection of the solid tumors and immediately adjacent tissue harboring satellites may disrupt epileptogenic networks and lead to high rates of seizure freedom, challenging the epileptogenic relevance of more extensive adjacent dyslaminated cortex. Whether the latter is a primary or secondary abnormality and whether dyslaminated cortex in the context of a second lesion may produce seizures after complete resection of the main lesion is still to be proven. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  17. Degraded attentional modulation of cortical neural populations in strabismic amblyopia.

    Science.gov (United States)

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.

  18. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    Science.gov (United States)

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  19. Neuropsychology of selective attention and magnetic cortical stimulation.

    Science.gov (United States)

    Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V

    1996-01-01

    Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.

  20. Microscopic mild focal cortical dysplasia in temporal lobe dual pathology: an electrocorticography study.

    Science.gov (United States)

    Morales Chacón, L; Estupiñán, B; Lorigados Pedre, L; Trápaga Quincoses, O; García Maeso, I; Sanchez, A; Bender del Busto, J; Garcia, M E; Baez Martin, M; Zaldivar, M; Gómez, A; Orozco, S; Rocha Arrieta, L

    2009-10-01

    Associations between electrophysiological and histological findings might provide an insight into the epileptogenicity of mild focal cortical dysplasia (FCD) in patients with temporal lobe epilepsy (TLE) and a dual pathology. A total of 22 patients with pharmacoresistant TLE were included in the study, 16 of them with histologically confirmed hippocampal sclerosis (HS) associated with neocortical temporal mild Palmini Type-I FCD subtypes and 6 with HS. Intraoperative electrocorticography (ECoG) recordings were analysed for epileptiform discharge frequency and morphology. Associations between histological, and electrocorticography pattern findings in these patients were analysed. Electroclinical outcomes in these patients were also evaluated. Neocortical areas with mild Palmini Type-I FCD showed a significantly higher spike frequency (SF) recorded in the inferior temporal gyrus than those neocortical areas in patients with HS. There was a tendency to higher spike frequency and lower amplitude in neocortical areas with histopathologic subtype IB FCD in relation with IA during intraoperative ECoG. Post-SF excision and amplitude were significantly lower during neocortical post-excision intraoperative ECoG than during neocortical pre-excision recording. There was no difference found in the clinical outcome between patients with and without FCD. Intraoperative electrocorticographic interictal spike frequency recorded in the neocortical inferior temporal gyrus may help to characterize the histopathologic subtypes of mild Palmini Type-I FCD in patients with temporal lobe epilepsy (TLE) and a dual pathology. Our data support the epileptogenicity of neocortical mild FCD in TLE and assessments of ECoG patterns are relevant to determine the extent of the resection in these patients which can influence the electroclinical outcome.

  1. Patterns of Neuropsychological Profile and Cortical Thinning in Parkinson's Disease with Punding.

    Directory of Open Access Journals (Sweden)

    Han Soo Yoo

    Full Text Available Punding, one of dopamine replacement treatment related complications, refers to aimless and stereotyped behaviors. To identify possible neural correlates of punding behavior in patients with Parkinson's disease (PD, we investigated the patterns of cognitive profiles and cortical thinning.Of the 186 subjects with PD screened during the study period, we prospectively enrolled 10 PD patients with punding and 43 without punding on the basis of a structured interview. We performed comprehensive neuropsychological tests and voxel-based and regions-of-interest (ROIs-based cortical thickness analysis between PD patients with and without punding.The prevalence of punding in patients with PD was 5.4%. Punding behaviors were closely related to previous occupations or hobbies and showed a temporal relationship to changes of levodopa-equivalent dose (LED. Significant predisposing factors were a long duration of PD and intake of medications of PD, high total daily LED, dyskinesia, and impulse control disorder. Punding severity was correlated with LED (p = 0.029. The neurocognitive assessment revealed that PD patients with punding showed more severe cognitive deficits in the color Stroop task than did those without punding (p = 0.022. Voxel-based analysis showed that PD-punders had significant cortical thinning in the dorsolateral prefrontal area relative to controls. Additionally, ROI-based analysis revealed that cortical thinning in PD-punders relative to PD-nonpunders was localized in the prefrontal cortices, extending into orbitofrontal area.We demonstrated that PD patients with punding performed poorly on cognitive tasks in frontal executive functions and showed severe cortical thinning in the dorsolateral prefrontal and orbitofrontal areas. These findings suggest that prefrontal modulation may be an essential component in the development of punding behavior in patients with PD.

  2. Disturbed functional connectivity of cortical activation during semantic discrimination in patients with schizophrenia and subjects at genetic high-risk.

    Science.gov (United States)

    Li, Xiaobo; Branch, Craig A; Nierenberg, Jay; Delisi, Lynn E

    2010-03-01

    Schizophrenia has a strong genetic component that is relevant to the understanding of the pathophysiology of the syndrome. Thus, recent investigations have shifted from studies of diagnosed patients with schizophrenia to examining their unaffected relatives. Previous studies found that during language processing, relatives thought to be at genetic high-risk for the disorder exhibit aberrant functional activation in regions of language processing, specifically in the left inferior frontal gyrus (Broca's area). However, functional connectivity among the regions involved in language pathways is not well understood. In this study, we examined the functional connectivity between a seed located in Broca's area and the remainder of the brain during a visual lexical decision task, in 20 schizophrenia patients, 21 subjects at genetic high risk for the disorder and 21 healthy controls. Both the high-risk subjects and patients showed significantly reduced activation correlations between seed and regions related to visual language processing. Compared to the high-risk subjects, the schizophrenia patients showed even fewer regions that were correlated with the seed regions. These results suggest that there is aberrant functional connectivity within cortical language circuitry in high-risk subjects and patients with schizophrenia. Broca's area, which is one of the important regions for language processing in healthy controls, had a significantly reduced role in the high-risk subjects and patients with schizophrenia. Our findings are consistent with the existence of an underlying biological disturbance that begins in genetically at risk individuals and progresses to a greater extent in those who eventually develop schizophrenia.

  3. Cortical connective field estimates from resting state fMRI activity

    NARCIS (Netherlands)

    Gravel, Nicolas; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V.; Dumoulin, Serge O.; Renken, Remco; Curcic-Blake, Branisalava; Cornelissen, Frans W.

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective

  4. Clinical Relevance of Adipokines

    Directory of Open Access Journals (Sweden)

    Matthias Blüher

    2012-10-01

    Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

  5. Motor Cortical Plasticity to Training Started in Childhood: The Example of Piano Players.

    Directory of Open Access Journals (Sweden)

    Raffaella Chieffo

    Full Text Available Converging evidence suggest that motor training is associated with early and late changes of the cortical motor system. Transcranial magnetic stimulation (TMS offers the possibility to study plastic rearrangements of the motor system in physiological and pathological conditions. We used TMS to characterize long-term changes in upper limb motor cortical representation and interhemispheric inhibition associated with bimanual skill training in pianists who started playing in an early age. Ipsilateral silent period (iSP and cortical TMS mapping of hand muscles were obtained from 30 strictly right-handed subjects (16 pianists, 14 naïve controls, together with electromyographic recording of mirror movements (MMs to voluntary hand movements. In controls, motor cortical representation of hand muscles was larger on the dominant (DH than on the non-dominant hemisphere (NDH. On the contrary, pianists showed symmetric cortical output maps, being their DH less represented than in controls. In naïve subjects, the iSP was smaller on the right vs left abductor pollicis brevis (APB indicating a weaker inhibition from the NDH to the DH. In pianists, interhemispheric inhibition was more symmetric as their DH was better inhibited than in controls. Electromyographic MMs were observed only in naïve subjects (7/14 and only to voluntary movement of the non-dominant hand. Subjects with MM had a lower iSP area on the right APB compared with all the others. Our findings suggest a more symmetrical motor cortex organization in pianists, both in terms of muscle cortical representation and interhemispheric inhibition. Although we cannot disentangle training-related from preexisting conditions, it is possible that long-term bimanual practice may reshape motor cortical representation and rebalance interhemispheric interactions, which in naïve right-handed subjects would both tend to favour the dominant hemisphere.

  6. Genetic associations between intelligence and cortical thickness emerge at the start of puberty.

    Science.gov (United States)

    Brouwer, Rachel M; van Soelen, Inge L C; Swagerman, Suzanne C; Schnack, Hugo G; Ehli, Erik A; Kahn, René S; Hulshoff Pol, Hilleke E; Boomsma, Dorret I

    2014-08-01

    Cognitive abilities are related to (changes in) brain structure during adolescence and adulthood. Previous studies suggest that associations between cortical thickness and intelligence may be different at different ages. As both intelligence and cortical thickness are heritable traits, the question arises whether the association between cortical thickness development and intelligence is due to genes influencing both traits. We study this association in a longitudinal sample of young twins. Intelligence was assessed by standard IQ tests at age 9 in 224 twins, 190 of whom also underwent structural magnetic resonance imaging (MRI). Three years later at age 12, 177/125 twins returned for a follow-up measurement of intelligence/MRI scanning, respectively. We investigated whether cortical thickness was associated with intelligence and if so, whether this association was driven by genes. At age 9, there were no associations between cortical thickness and intelligence. At age 12, a negative relationship emerged. This association was mainly driven by verbal intelligence, and manifested itself most prominently in the left hemisphere. Cortical thickness and intelligence were explained by the same genes. As a post hoc analysis, we tested whether a specific allele (rs6265; Val66Met in the BDNF gene) contributed to this association. Met carriers showed lower intelligence and a thicker cortex, but only the association between the BDNF genotype and cortical thickness in the left superior parietal gyrus reached significance. In conclusion, it seems that brain areas contributing to (verbal) intellectual performance are specializing under the influence of genes around the onset of puberty. Copyright © 2013 Wiley Periodicals, Inc.

  7. Information Needs/Relevance

    OpenAIRE

    Wildemuth, Barbara M.

    2009-01-01

    A user's interaction with a DL is often initiated as the result of the user experiencing an information need of some kind. Aspects of that experience and how it might affect the user's interactions with the DL are discussed in this module. In addition, users continuously make decisions about and evaluations of the materials retrieved from a DL, relative to their information needs. Relevance judgments, and their relationship to the user's information needs, are discussed in this module. Draft

  8. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults

    Science.gov (United States)

    Nusslock, Robin; Almeida, Jorge RC; Forbes, Erika E; Versace, Amelia; Frank, Ellen; LaBarbara, Edmund J; Klein, Crystal R; Phillips, Mary L

    2012-01-01

    Objective Bipolar disorder may be characterized by a hypersensitivity to reward-relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward-processing and approach-related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods Twenty-one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card-guessing paradigm designed to examine reward-related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results Region-of-interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right-sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward, relative to healthy controls (p anticipation (p anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward-relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward-related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness. PMID:22548898

  9. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    Science.gov (United States)

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural

  10. Simplified Classification of Focal Cortical Dysplasia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-09-01

    Full Text Available Sections of cortex from 52 of 224 (23% patients with cortical dysplasia, operated on for drug-resistant partial epilepsy, were retrospectively re-examined histologically at Niguarda Hospital, and Istituto Nazionale Neurologico ‘C. Besta’, Milan, Italy.

  11. Neuroimaging of malformation of cortical development

    International Nuclear Information System (INIS)

    Zlatareva, D.; Hadjidekov, V.; Tournev, I.; Rossi, A.

    2012-01-01

    Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development.The common clinical presentation is refractory epilepsy and or developmental delay. The aim of this paper is to describe and analyze magnetic resonance (MR) findings and to present protocol for examination. We analyze MR findings in 17 patients with MCD. The average age was 12,1 year (from 2 months - 57 years). The main indications from reference physician are epilepsy and developmental delay. In 12 patients 1.5T MR was performed, and in 5 - 0.5T. Subependymal heterotopias was found in 6 patients, focal cortical dysplasia - 3. polymicrogyria - 3, schizencephaly - 2, hemimegalencephaly -1, lizencephaly -1, tuberous sclerosis -1. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria. schizencephaiy, pachygyria and lizencephaly. In our study the number of patients is not big enough to make a conclusion about frequency of the forms of MCD and our goal is to analyze MR findings which are not well studied in our country. MRI is the method of choice for diagnosis of MCD. The protocol should be different from routine brain protocol to interpret the images with good quality and not miss the pathology. Knowledge of MR findings in MCD would help for genetic counselling in some cases or can predict prognosis in some patients. (authors)

  12. Response variability in balanced cortical networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ursta, C.; Hertz, J.

    2006-01-01

    We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external...

  13. Cortical enhancement in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Sato, Jun; Makita, Tadatoshi; Hayashi, Shigetoshi; Nakamura, Norio.

    1981-01-01

    In the CT findings of chronic subdural hematoma, brain enhancement adjacent to a subdural hematoma was seen occasionally after the injection of a contrast material. The authors called this finding ''cortical enhancement'', and 35 cases of chronic subdural hematoma were studied concerning cortical enhancement in relation to age, clinical signs and symptoms, hematoma density, and volume of the hematoma. Eight cases out of the 35 were subjected to measurements of the regional cerebral blood flow preoperatively by the method of the carotid injection of Xe-133. Cortical enhancement was apt to be seen in the cases which revealed intracranial hypertension or disturbance of consciousness, in isodensity or mixed-density hematomas, and in huge subdural hematomas. There was no specific correlation with age distribution. The pathogenesis of cortical enhancement seemed to be the result of cerebral compression with an increase in the contrast material per unit of volume and a prolonged venous outflow from the hemisphere, but no characteristic feature was detected in the average regional cerebral blood flow in our cases. (author)

  14. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  15. Rehabilitation of cortical blindness secondary to stroke.

    Science.gov (United States)

    Gaber, Tarek A-Z K

    2010-01-01

    Cortical blindness is a rare complication of posterior circulation stroke. However, its complex presentation with sensory, physical, cognitive and behavioural impairments makes it one of the most challenging. Appropriate approach from a rehabilitation standpoint was never reported. Our study aims to discuss the rehabilitation methods and outcomes of a cohort of patients with cortical blindness. The notes of all patients with cortical blindness referred to a local NHS rehabilitation service in the last 6~years were examined. Patients' demographics, presenting symptoms, scan findings, rehabilitation programmes and outcomes were documented. Seven patients presented to our service, six of them were males. The mean age was 63. Patients 1, 2 and 3 had total blindness with severe cognitive and behavioural impairments, wandering and akathisia. All of them failed to respond to any rehabilitation effort and the focus was on damage limitation. Pharmacological interventions had a modest impact on behaviour and sleep pattern. The 3 patients were discharged to a nursing facility. Patients 4, 5, 6 and 7 had partial blindness with variable severity. All of them suffered from significant memory impairment. However, none suffered from any behavioural, physical or other cognitive impairment. Rehabilitation efforts on 3 patients were carried out collaboratively between brain injury occupational therapists and sensory disability officers. All patients experienced significant improvement in handicap and they all maintained community placements. This small cohort of patients suggests that the rehabilitation philosophy and outcomes of these 2 distinct groups of either total or partial cortical blindness differ significantly.

  16. Critical fluctuations in cortical models near instability

    NARCIS (Netherlands)

    Aburn, M.J.; Holmes, C.A.; Roberts, J.A.; Boonstra, T.W.; Breakspear, M.

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale

  17. Cortical projection of the inferior choroidal point as a reliable landmark to place the corticectomy and reach the temporal horn through a middle temporal gyrus approach

    Directory of Open Access Journals (Sweden)

    Thomas Frigeri

    2014-10-01

    Full Text Available Objective To establish preoperatively the localization of the cortical projection of the inferior choroidal point (ICP and use it as a reliable landmark when approaching the temporal horn through a middle temporal gyrus access. To review relevant anatomical features regarding selective amigdalohippocampectomy (AH for treatment of mesial temporal lobe epilepsy (MTLE. Method The cortical projection of the inferior choroidal point was used in more than 300 surgeries by one authors as a reliable landmark to reach the temporal horn. In the laboratory, forty cerebral hemispheres were examined. Conclusion The cortical projection of the ICP is a reliable landmark for reaching the temporal horn.

  18. Cortical projection of the inferior choroidal point as a reliable landmark to place the corticectomy and reach the temporal horn through a middle temporal gyrus approach.

    Science.gov (United States)

    Frigeri, Thomas; Rhoton, Albert; Paglioli, Eliseu; Azambuja, Ney

    2014-10-01

    To establish preoperatively the localization of the cortical projection of the inferior choroidal point (ICP) and use it as a reliable landmark when approaching the temporal horn through a middle temporal gyrus access. To review relevant anatomical features regarding selective amigdalohippocampectomy (AH) for treatment of mesial temporal lobe epilepsy (MTLE). The cortical projection of the inferior choroidal point was used in more than 300 surgeries by one authors as a reliable landmark to reach the temporal horn. In the laboratory, forty cerebral hemispheres were examined. The cortical projection of the ICP is a reliable landmark for reaching the temporal horn.

  19. Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration

    Science.gov (United States)

    Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.

    2004-01-01

    Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.

  20. Qualia could arise from information processing in local cortical networks.

    Science.gov (United States)

    Orpwood, Roger

    2013-01-01

    Re-entrant feedback, either within sensory cortex or arising from prefrontal areas, has been strongly linked to the emergence of consciousness, both in theoretical and experimental work. This idea, together with evidence for local micro-consciousness, suggests the generation of qualia could in some way result from local network activity under re-entrant activation. This paper explores the possibility by examining the processing of information by local cortical networks. It highlights the difference between the information structure (how the information is physically embodied), and the information message (what the information is about). It focuses on the network's ability to recognize information structures amongst its inputs under conditions of extensive local feedback, and to then assign information messages to those structures. It is shown that if the re-entrant feedback enables the network to achieve an attractor state, then the message assigned in any given pass of information through the network is a representation of the message assigned in the previous pass-through of information. Based on this ability the paper argues that as information is repeatedly cycled through the network, the information message that is assigned evolves from a recognition of what the input structure is, to what it is like, to how it appears, to how it seems. It could enable individual networks to be the site of qualia generation. The paper goes on to show networks in cortical layers 2/3 and 5a have the connectivity required for the behavior proposed, and reviews some evidence for a link between such local cortical cyclic activity and conscious percepts. It concludes with some predictions based on the theory discussed.

  1. Cortical and subcortical mechanisms of brain-machine interfaces.

    Science.gov (United States)

    Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf

    2017-06-01

    Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Localization of Cortical Oscillations Induced by SCS Using Coherence

    Directory of Open Access Journals (Sweden)

    P. Sovka

    2007-12-01

    Full Text Available This paper suggests a method based on coherence analysis and scalp mapping of coherence suitable for more accurate localization of cortical oscillations induced by electric stimulation of the dorsal spinal cord (SCS, which were previously detected using spectral analysis. While power spectral density shows the increase of power during SCS only at small number of electrodes, coherence extends this area and sharpens its boundary simultaneously. Parameters of the method were experimentally optimized to maximize its reliability. SCS is applied to suppress chronic, intractable pain by patients, whom pharmacotherapy does not relieve. In our study, the pain developed in lower back and lower extremity as the result of unsuccessful vertebral discotomy, which is called failed-back surgery syndrome (FBSS. Our method replicated the results of previous analysis using PSD and extended them with more accurate localization of the area influenced by SCS.

  3. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  4. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  5. Antioxidant and protective mechanisms against hypoxia and hypoglycaemia in cortical neurons in vitro.

    Science.gov (United States)

    Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar

    2014-02-12

    In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This "in vitro" model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12-24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.

  6. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions

    DEFF Research Database (Denmark)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre

    2016-01-01

    and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1......) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions...... and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex...

  7. The maturation of cortical sleep rhythms and networks over early development.

    Science.gov (United States)

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Auditory cortical activation and plasticity after cochlear implantation measured by PET using fluorodeoxyglucose.

    Science.gov (United States)

    Łukaszewicz-Moszyńska, Zuzanna; Lachowska, Magdalena; Niemczyk, Kazimierz

    2014-01-01

    The purpose of this study was to evaluate possible relationships between duration of cochlear implant use and results of positron emission tomography (PET) measurements in the temporal lobes performed while subjects listened to speech stimuli. Other aspects investigated were whether implantation side impacts significantly on cortical representations of functions related to understanding speech (ipsi- or contralateral to the implanted side) and whether any correlation exists between cortical activation and speech therapy results. Objective cortical responses to acoustic stimulation were measured, using PET, in nine cochlear implant patients (age range: 15 to 50 years). All the patients suffered from bilateral deafness, were right-handed, and had no additional neurological deficits. They underwent PET imaging three times: immediately after the first fitting of the speech processor (activation of the cochlear implant), and one and two years later. A tendency towards increasing levels of activation in areas of the primary and secondary auditory cortex on the left side of the brain was observed. There was no clear effect of the side of implantation (left or right) on the degree of cortical activation in the temporal lobe. However, the PET results showed a correlation between degree of cortical activation and speech therapy results.

  9. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.

    Science.gov (United States)

    Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L

    2017-03-01

    There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey.

    Science.gov (United States)

    Morecraft, R J; Cipolloni, P B; Stilwell-Morecraft, K S; Gedney, M T; Pandya, D N

    2004-01-26

    The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient

  11. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To inv