WorldWideScience

Sample records for releases decommissioning rule

  1. Completion of decommissioning: Monitoring for site release and license termination

    International Nuclear Information System (INIS)

    Boing, L.E.

    1997-01-01

    To request termination of a license upon completion of dismantling or decommissioning activities, documenting any residual radioactivity to show that the levels are environmentally acceptable will be necessary. When the regulators approve the decommissioning plan, they establish what the release criteria for the decommissioned site will be at the time of the site release and license termination. The criteria are numeric guidelines for direct radiation in soils and on surfaces. If the regulatory body finds that the measured on-site values are below the guidelines, the site will be acceptable for unrestricted release (no radiological controls or future use). If areas are found above those values, more decontamination or cleanup of these areas may be required unless the regulatory body grants an exemption

  2. Site release in the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Revilla, Jose Luis; Sanz, Maria Teresa; Marugan, Inmaculada; Simon, Inmaculada; Martin, Manuel; Solis, Susana; Sterling, Agustina

    2008-01-01

    Spanish regulatory framework for the decommissioning process of a nuclear facility ends up with a decommission statement, which releases the licence-holder of the facility from its responsibilities as an operator. It also establishes -where a restricted site release applies- the appropriate future use restrictions, and the responsible of both maintaining such restrictions and ensuring their compliance. Releasing a site implies eliminating all radiological monitoring. The Regulations, however, did not specify either the radiological conditions to be met for the site to be released, or the possibility of a partial release -with or without restrictions-. In case of restricted site release, the Regulations did not specify either the required criteria for such a release. This paper presents the main features of the Safety Instruction IS-13 'Radiological criteria for the release of nuclear facilities sites' issued recently by the Spanish Nuclear Safety Council as a new specific regulation. This Safety Instruction establishes the requirements and conditions for the release of nuclear facility sites, that is, radiological criteria on the effective dose to the public, partial release of nuclear facility sites and restricted release of nuclear facility sites. (author).

  3. Idaho National Engineering Laboratory release criteria for decontamination and decommissioning

    International Nuclear Information System (INIS)

    Dolenc, M.R.; Case, M.J.

    1986-01-01

    Criteria have been developed for release of Idaho National Engineering Laboratory (INEL) facilities and land areas following decontamination and decommissioning (D and D). Decommissioning release criteria in the form of dose guidelines were proposed by the US Nuclear Regulatory Commission as early as 1980. These criteria were used on an interim basis for INEL D and D projects. However, dose guidelines alone do not adequately cover the criteria necessary to release sites for unrestricted use. In actual practice, other parameters such as pathways analyses, sampling and instrumentation techniques, and implementation procedures are required to develop the basis for unrestricted release of a site. Thus, a rigorous approach for evaluating these other parameters is needed to develop acceptable D and D release criteria. Because of the complex and sensitive nature of the dose and pathways analyses work, a thorough review by experts in those respective fields was desired. Input and support in preparing or reviewing each part of the criteria development task was solicited from several DOE field offices. Experts were identified and contracted to assist in preparing portions of the release criteria, or to serve on a peer-review committee. Thus, the entire release criteria development task was thoroughly reviewed by recognized experts from each DOE field office, to validate technical content of the INEL site-specific document

  4. Shippingport Station Decommissioning Project site release protocol

    International Nuclear Information System (INIS)

    Handy, J.W.

    1988-01-01

    The Richland, Washington field office of the DOE and its Remedial Actions Contractor, GE, took possession of the SSDP site in September 1984. In February of the following year, DOE-HQ issued generic, site independent guidelines taken from existing radiation protection standards. Basic generic dose limits were English equivalents of 1 mSv (100 mrem) per year averaged over the lifetime of any individual member of the general public. Hot spot limits were given. Occupied or habitable structures were limited to 5.2 x 10 -9 C/Kg h (20mR/h). Surface contamination was limited to standards plus average and maximum contact dose rates of 2 microGy (0.2 mrad) per hour and 10 microGy (1 mrad) per hour respectively. In addition, ''all exposures ... were to be limited to levels that (were) as low as reasonably achievable (ALARA).'' Authorized limits higher than these guidelines were allowed under given exceptional circumstances. GE determined the allowable radionuclide concentrations that could remain in soil and included rubble, and not dose the resident farmer to more than 1 mSv (100 mrem) per year. Under more conservative scenarios, however, exposures were controlled for buried, potentially occupationally occupiable, concrete substructures, to souvenir items, or to buried, but potentially exposed, concrete slabs. GE incorporated the scenario's pathways into a document implementing specific site release criteria which cannot be exceeded if the site is to be released unconditionally. 3 refs., 1 fig

  5. Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  6. Technology, safety and costs of decommissioning a refernce boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  7. NRC proposes changes to nuke decommissioning funding rules

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Nuclear Regulatory Commission (NRC) has proposed to amend its regulations to allow self-guarantee as a means of assuring adequate funding for nuclear plant decommissioning. It acted in response to a rulemaking petition filed by General Electric Co. and Westinghouse Electric Corp. The proposal would allow self-guarantees if certain conditions are met: Tangible net worth of at least $1 billion; Tangible net worth at least 10 times the present decommissioning cost estimate for all activities the utility is responsible for as a self-guaranteeing licensee and as parent guarantor; Domestic assets amounting to at least 90 percent of total assets or at least 10 times the present decommissioning cost estimate; A credit rating for the utility's most recent bond issuance of AAA, AA, or A (Standard ampersand Poor's), or Aaa, Aa, or A (Moody's). Additional requirements include that the utility licensee must have at least one class of equity securities registered under the Securities Exchange Act of 1934, and that an independent auditor must verify that the utility met the financial test. A utility also would be responsible for reporting any change in circumstances affecting the criteria used to meet the financial test, and would be responsible for meeting that test within 90 days of each financial year. The NRC will accept written comments until March 29, 1993

  8. Release criteria for decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    Eger, K.J.; Gardner, D.L.; Giordano, R.J.

    1986-01-01

    The United States Department of Energy (DOE) has established guidelines for allowable levels of residual radioactivity at remote sites in the Surplus Facilities Management Program (SFMP). These guidelines specify that doses to the public from this residual radioactivity must not exceed 500 mrem/year (for up to five years) or 100 mrem/year (for a lifetime), regardless of the use of the land. The guidelines also specify that exposures be further limited, depending on ALARA considerations. The decommissioning of the Shippingport Atomic Power Station, done under the auspices of SFMP, is being performed in accordance with these guidelines. It follows that, at the conclusion of the project, the concentrations of residual radioactivity, identified both by isotope and location (x,y,z), must be low enough so that the guidelines (500,100) are not exceeded. Furthermore, the concentrations must be low enough so that additional action which might be taken to reduce them cannot cost effectively decrease the dose to the public. A cost-benefit analysis, based on actual conditions at Shippingport, is being prepared to identify these ''low-enough'' concentrations. Once identified, these concentrations will comprise the release criteria for the site. The analysis will be developed by (1) performing an initial site characterization, (2) employing pathways analyses to compute the dose to a future occupant, (3) costing of proposed site modifications, and (4) repeating a pathways analysis based on each ''as-modified'' location on the site. The result will be a paired set of data relating the cost of modification to the reduction in the dose to the future occupant

  9. 26 CFR 1.468A-1T - Nuclear decommissioning costs; general rules (temporary).

    Science.gov (United States)

    2010-04-01

    ... accrual method of accounting that do not elect the application of section 468A are not allowed a deduction... (temporary). 1.468A-1T Section 1.468A-1T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE...-1T Nuclear decommissioning costs; general rules (temporary). (a) Introduction. Section 468A provides...

  10. Release from control of inactive material from decommissioning the ASTRA research reactor

    International Nuclear Information System (INIS)

    Brandl, A.; Hrnecek, E.; Steger, F.; Kurz, H.; Meyer, F.; Karacson, P.

    2003-01-01

    The Austrian Research Centers Seibersdorf have been operating a 10 MW ASTRA research reactor from 1960 until 1999. After that date, a submission of the intention to decommission the reactor has been provided to the Competent Authorities. After completion of an Environmental Impact Study by the Competent Authorities and modification of the Permissions for Site Use, the reactor finally entered the decommissioning phase in 2003. Inactive materials from the decommissioning site are expected to be released from control. The procedure for such a release from control agreed upon between the Competent Authorities and ARC Seibersdorf involves a four-step measurement, verification, and certification process detailed in this paper. By September 2003, this four-step procedure has been completed for 16500 kg of steel re-enforced concrete and for 5500 kg of other materials; the release from control of 3000 kg of paraffin and 10000 kg of graphite from the thermal column are planned for the near future. (author)

  11. Monitoring programmes for unrestricted release related to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Decommissioning of nuclear facilities usually results in a large volume of radioactive and non-radioactive materials. All these materials will have to be segregated as radioactive, non-radioactive and exempt from regulatory control, and then disposed of, reused or recycled. As more and more facilities approach decommissioning, controlling these wastes and setting release criteria and limits for these materials will represent a major task for the regulatory body and the licensee. Efforts are, therefore, under way at the IAEA to help achieve international consensus on the release criteria for decommissioning and a monitoring programme to verify compliance with these criteria. Within the above context, the present report was conceived as a technical document to provide an overview of all the factors to be considered in the development, planning and implementation of a monitoring programme to assure regulatory compliance with criteria for unrestricted release of materials, buildings and sites from decommissioning. The report is intended as a planning document for the owners, operators and regulatory bodies involved in decommissioning. 41 refs, 4 figs, 2 tabs

  12. Working draft regulatory guide on release criteria for decommissioning: NRC staff's draft for comment

    International Nuclear Information System (INIS)

    Daily, M.C.; Huffert, A.; Cardile, F.; Malaro, J.C.

    1994-08-01

    The Nuclear Regulatory Commission's (NRC) regulations in 10 CFR 20 are being amended to include radiological criteria for decommissioning of lands and structures at nuclear facilities. 10 CFR Part 20, Subpart E establishes criteria for the remediation of contaminated sites or facilities that will allow their release for future use with or without restrictions. The criteria include a Total Effective Dose Equivalent (TEDE) limit of 15 mrem/year (0.15 mSv/y) that should not be exceeded by an average individual among those who could potentially receive the greatest exposure from any residual activity within a facility or on a site. The criteria also require a licensee to reduce any residual radioactivity to as-low-as-reasonably-achievable (ALARA) levels. This staff draft guide describes acceptable procedures for determining the predicted dose level (PDL) from any residual radioactivity at the site. It describes the basic features of the calculational models and the associated default assumptions and parameter values the NRC staff would find acceptable in calculating PDLs. Appendices A, B, and C provide numerical values that can be used to estimate the dose from residual radioactivity remaining at a site. Since 10 CFR Part 20, Subpart E introduces several new concepts, definitions and discussions are included in a regulatory position concepts section of the guide to assist licensees in understanding some of the philosophy underlying the rule

  13. Comments received on proposed rule on radiological criteria for decommissioning and related documents

    International Nuclear Information System (INIS)

    Page, G.; Caplin, J.; Smith, D.

    1996-03-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As a part of this action, the Commission published in the Federal Register (59 FR 43200), on August 22, 1994, a proposed rule on radiological criteria for decommissioning, soliciting comments both on the rule as proposed and on certain specific items as identified in its supplementary statement of considerations. A draft Generic Environmental Impact Statement (GEIS) in support of the rule, also published in August 1994 as NUREG-1496, along with its Appendix A (NUREG-1501), were also made available for comment. A staff working draft on regulatory guidance (NUREG-1500)was also made available. This report summarizes the 1,309 comments on the proposed rule and supplementary items and the 311 comments on the GEIS as excerpted from 101 docketed letters received associated in the Federal/Register notice. Comments from two NRC/Agreement-States meetings are also summarized

  14. Surface radiological free release program for the Battelle Columbus Laboratory Decommissioning Project

    International Nuclear Information System (INIS)

    Horton, C.N.

    1995-01-01

    This paper was prepared for the Second Residual Radioactivity and Recycling Criteria Workshop and discusses decommissioning and decontamination activities at the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The BCLDP is a joint effort between the Department of Energy (DOE) and Battelle Columbus Operations to decontaminate fifteen Battelle-owned buildings contaminated with DOE radioactive materials. The privately owned buildings located across the street from The Ohio State University campus became contaminated with natural uranium and thorium during nuclear research activities. BCLDP waste management is supported by an extensive radiological free-release program. Miscellaneous materials and building surfaces have been free-released from the BCLDP. The free-release program has substantially reduced radioactive waste volumes and supported waste minimization. Free release for unrestricted use has challenged regulators and NRC licensees since the development of early surface-release criteria. This paper discusses the surface radiological free-release program incorporated by the BCLDP and the historical development of the surface radiological free-release criteria. Concerns regarding radiological free-release criteria are also presented. (author)

  15. Summary of comments received on staff draft proposed rule on radiological criteria for decommissioning

    International Nuclear Information System (INIS)

    Caplin, J.; Page, G.; Smith, D.; Wiblin, C.

    1994-08-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC licensed facilities. The NRC obtained comments on the scope, issues, and approaches through a series of workshops (57 FR 58727), Generic Environmental Impact Statement (GEIS) scoping meetings (58 FR 33570), a dedicated electronic bulletin board system (58 FR 37760), and written submissions. A summary of workshop and scope-meeting comments was published as NUREG/CR-6156. On February 2, 1994, the Commission published in the Federal Register (59 FR 4868) a notice that the NRC staff had prepared a ''staff draft'' proposed rule on radiological criteria for decommissioning. Copies of the staff draft were distributed to the Agreement States, participants in the earlier meetings, and other interested parties for comment. This report summarizes the comments identified from the 96 docketed letters received on the staff draft. No analysis or response is included in this report. The comments reflect a broad spectrum of viewpoints. Two subjects on which the commenters were in general agreement were (1) that the enhanced participatory rulemaking should proceed, and (2) that the forthcoming GEIS and guidance documents are needed for better understanding of the draft rule

  16. Investigation of Appropriate Applications for Reuse of Conditionally Released Materials from Decommissioning

    International Nuclear Information System (INIS)

    Daniska, V.; Vasko, M.; Necas, V.

    2012-01-01

    During the decommissioning (D and D) phase of nuclear facility life cycle a lot of original facility materials are generated as a primary decommissioning waste. One portion of these materials is unconditionally releasable, i.e. their radioactivity content is below the stipulated concentration limits for clearance thus they can be further recycled or dumped without any constraints as a conventional waste. Second portion of generated waste is waste with radioactivity content higher than limits for free release and it has to be handled and disposed of as the radioactive waste (RAW) within special RAW repositories. Disposal of RAW is quite expensive therefore it seems to be reasonable to reduce amount of waste destined for disposal and to identify RAW with radioactivity content slightly higher than stipulated concentration limits for unconditional release which could be released with some constraints for further recycling and reuse while stipulated safety requirements are observed, i.e. conditional release of RAW. The most perspective materials from decommissioning for such material reuse are steel and concrete. These materials can be reused within the long term robust constructions for applications with infrequent or only short time presence of personnel/public, minimum interaction of human with materials and controllable interaction of materials with environment. Ideal applications for deployment of such materials are steel reinforcement in pylons for highways, tunnel linings, industry prefabricates, big tanks or linings in nuclear applications, for concrete debris it can be filling material for road construction. Presented paper deals with preconditions for reuse of conditionally released materials. It maps legal pre-requisites in the Slovak Republic, appropriate material application scenarios, methodology of assessment of impact on human health and environment - external and internal exposure assessment, possible optimisation of scenarios and estimation of

  17. Release criteria for decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    Eger, K.J.; Gardner, D.L.; Giordano, R.J.

    1986-01-01

    The United States Department of Energy (DOE) has established guidelines for allowable levels of residual radioactivity at remote sites in the Surplus Facilities Management Program (SFMP). These guidelines specify that doses to the public from this residual radioactivity must not exceed 500 mrem/year (for up to five years) or 100 mrem/year (for a lifetime), regardless of the use of the land. The guidelines also specify that exposures be further limited, depending on ALARA considerations. A cost-benefit analysis, based on actual conditions at Shippingport, is being prepared to identify these ''low-enough'' concentrations. These concentrations comprise the release criteria for the site. The analysis is developed by performing an initial site characterization, employing pathways analyses to compute the dose to a future occupant, costing of proposed site modifications, and repeating a pathways analysis based on each ''as-modified'' location on the site. The result are paired set of data relating the cost of modification to the reduction in the dose to the occupant. In this paper, details in each of the four major steps needed to prepare the cost-benefit analysis are discussed, as well as the sampling plan and estimated costs for site characterization

  18. Determination of Radiological, Material and Organizational Measures for Reuse of Conditionally Released Materials from Decommissioning

    International Nuclear Information System (INIS)

    Ondra, F.; Vasko, M.; Necas, V.

    2012-01-01

    An important part of nuclear installation decommissioning is conditional release of materials. The mass of conditionally released materials can significantly influence radioactive waste management and capacity of radioactive waste repository. The influence on a total decommissioning cost is also not negligible. Several scenarios for reuse of conditionally released materials were developed within CONRELMAT project. Each scenario contains preparation phase, construction phase and operation phase. For each above mentioned phase is needed to determine radiological, material, organizational and other constraints for conditionally released materials reuse to not break exposure limits for staff and public. Constraints are determined on the basis of external and internal exposure calculations in created models for selected takes in particular scenarios phases. The paper presents a developed methodology for determination of part of above mentioned constraints concerning external exposure of staff or public. Values of staff external exposure are also presented in paper to ensure that staff or public exposure does not break the limits. The methodology comprises a proposal of following constraints: radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, specific deployment of conditionally released materials eventually shielding materials, staff and public during the scenario's phases, organizational measures concerning time of staff's or public's stay in the vicinity of conditionally released materials for individual performed scenarios and nuclide vectors. The paper further describes VISIPLAN 3D ALARA calculation planning software tool used for calculation of staff's and public's external exposure for individual scenarios. Several other parallel papers proposed for HND2012 are presenting selected details of the project.(author).

  19. Vandellos 1 NPP partial site release after level 2 decommissioning, using Marssim

    Energy Technology Data Exchange (ETDEWEB)

    Medinilla, G.; Sanchez, M.; Peinador, M. [Initec-Westinghouse, Madrid (Spain); Lopez, M.T. [ENRESA, Madrid (Spain)

    2008-07-01

    The Vandellos 1 nuclear power plant is a french technology 480 MWe graphite gas cooled reactor, located in the spanish mediterranean coast, in the province of Tarragona. It started commercial operations in 1972 and that was definitively shutdown after a turbine fire in 1989, being decommissioned by ENRESA to reach IAEA level 2 in 2005, starting a dormancy period that will last around 20 years before the final phase of the decommissioning is executed to reach the ''greenfield'' state. For the plant remaining structures during this dormancy period the site needs not to keep its original size of approx. 130000 m{sup 2}, so ENRESA took the decision of starting a partial site release process of almost a half of the site aiming to exclude that part from regulatory control, applying US MARSSIM methodology. Main activities included: - Site radiological characterization - Derived concentration guideline limits calculation - Definition and classification of survey units Development and testing of scanning devices and procedures - Pilot application of full process to two survey units A summary of the scope and results of these activities is presented in this paper. (authors)

  20. Development of criteria for release of Idaho National Engineering Laboratory sites following decontamination and decommissioning

    International Nuclear Information System (INIS)

    Kirol, L.

    1986-08-01

    Criteria have been developed for release of Idaho National Engineering Laboratory (INEL) facilities and land areas following decontamination and decommissioning (D and D). Although these facilities and land areas are not currently being returned to the public domain, and no plans exist for doing so, criteria suitable for unrestricted release to the public were desired. Midway through this study, the implementation of Department of Energy (DOE) Order 5820.2, Radioactive Waste Management, required development of site specific release criteria for use on D and D projects. These criteria will help prevent remedial actions from being required if INEL reuse considerations change in the future. Development of criteria for release of INEL facilities following D and D comprised four study areas: pathways analysis, dose and concentration guidelines, sampling and instrumentation, and implementation procedures. Because of the complex and sensitive nature of the first three categories, a thorough review by experts in those respective fields was desired. Input and support in preparing or reviewing each part of the criteria development task was solicited from several DOE field offices. Experts were identified and contracted to assist in preparing portions of the release criteria, or to serve on a peer-review committee. Thus, the entire release criteria development task was thoroughly reviewed by recognized experts from contractors at several DOE field offices, to validate technical content of the document. Each of the above four study areas was developed originally as an individual task, and a report was generated from each. These reports are combined here to form this document. This release criteria document includes INEL-specific pathways analysis, instrumentation requirements, sampling procedures, the basis for selection of dose and concentration guidelines, and cost-risk-benefit procedures

  1. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  2. Influence of accounting concepts and regulatory rules on the funding of power reactor decommissioning costs

    International Nuclear Information System (INIS)

    Ferguson, J.S.

    1985-01-01

    Under normal circumstances, an evaluation of nuclear plant decommissioning costs by an engineering analyst will not produce the same results as an evaluation by a financial analyst. These analysts should understand evaluations based on each other's bases to ensure that their evaluation techniques are appropriate for the circumstances. The intent of this discussion is to enhance that understanding by describing the accounting and regulatory framework that is applicable to the decommissioning costs of U.S. nuclear power plants, and by explaining why evaluations of decommissioning costs prepared by engineering analysts often look different from evaluations prepared by financial analysts. Of major importance are the financial implications of several methods of funding the decommissioning costs. Since many owners of nuclear plants are subject to revenue rate regulation, financial implications often translate directly to regulatory implications

  3. Methodology of external exposure calculation for reuse of conditional released materials from decommissioning - 59138

    International Nuclear Information System (INIS)

    Ondra, Frantisek; Vasko, Marek; Necas, Vladimir

    2012-01-01

    The article presents methodology of external exposure calculation for reuse of conditional released materials from decommissioning using VISIPLAN 3D ALARA planning tool. Production of rails has been used as an example application of proposed methodology within the CONRELMAT project. The article presents a methodology for determination of radiological, material, organizational and other conditions for conditionally released materials reuse to ensure that workers and public exposure does not breach the exposure limits during scenario's life cycle (preparation, construction and operation of scenario). The methodology comprises a proposal of following conditions in the view of workers and public exposure: - radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, - specific deployment of conditionally released materials eventually shielding materials, workers and public during the scenario's life cycle, - organizational measures concerning time of workers or public stay in the vicinity on conditionally released materials for individual performed scenarios and nuclide vectors. The above mentioned steps of proposed methodology have been applied within the CONRELMAT project. Exposure evaluation of workers for rail production is introduced in the article as an example of this application. Exposure calculation using VISIPLAN 3D ALARA planning tool was done within several models. The most exposed profession for scenario was identified. On the basis of this result, an increase of radionuclide concentration in conditional released material was proposed more than two times to 681 Bq/kg without no additional safety or organizational measures being applied. After application of proposed safety and organizational measures (additional shielding, geometry changes and limitation of work duration) it is possible to increase concentration of radionuclide in conditional released material more than ten times to 3092 Bq/kg. Storage

  4. Conditional release of steel from decommissioning in a form of reinforced concrete - 59058

    International Nuclear Information System (INIS)

    Pritrsky, Jozef; Brodnan, Miroslav; Necas, Vladimir

    2012-01-01

    The paper deals with the conditional release of low-level radioactive steel from decommissioning in a form of reinforced concrete. The main goal was to determine limits for radionuclides concentration and calculate the annual dose for a member of a critical group of public, which should not exceed 10 μSv/year (according to IAEA Safety Guide RS-G-1.7). Corrosion is the principle mechanism of radionuclides release in this case; therefore effort was devoted to assess the time-dependent rate of steel reinforcement corrosion. It was assumed, that concrete is initially highly alkaline (with pH of 12 to 13) because of hydration products such as calcium hydroxide, which keeps the steel surface passive and protected from corrosion. However, carbonic acid resulting from carbon dioxide and water in the atmosphere can react with these products to produce calcium carbonate. This process is referred to as a 'carbonation', and leads after a period of time to significant reduction of the alkalinity (to pH as low as 8.5) followed by destruction of passive layer and starting corrosion of the embedded steel. The analytical principles and a set of input data have been implemented into a mathematical model developed by means of GoldSim software. The paper presents the results of mathematical simulation of corrosion process, which are compared with real measured values. (authors)

  5. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1975-01-01

    Present concepts on stages of, designing for and costs of decommissioning, together with criteria for site release, are described. Recent operations and studies and assessments in progress are summarized. Wastes from decommissioning are characterized

  6. Conditional release of materials from decommissioning process into the environment in the form of steel railway tracks

    International Nuclear Information System (INIS)

    Tatransky, Peter; Necas, Vladimir

    2009-01-01

    This work points to the possibilities of conditional release of materials from the process of decommissioning the nuclear unit from the operation. According to the valid legislation, materials which do not meet the condition of direct-unconditional release into the environment, should be modified and processed into the matrix designed for the final disposal in the storing place. However there exists a group of materials which activity is on the borderline of the limit of releasing into the environment and it is possible to release them conditionally. The matter of conditional release is that notable amount of materials, mainly metals, is usually contaminated only by radionuclids with relatively short time of half decay. These materials are suitable to use for a specific industrial purpose where the longtime fixation of shortly living radionuclids is expected in one place. This work deals with the conditional release of metals into the form of steel railway tracks. It describes the (working) groups of workers working with the steel railway tracks and defines in the numbers the critical group and its critical individual. For critical individual it dimensions the amounts of materials, which are possible to be released conditionally from one double-unit of the plant of the type VVER 440 V-230 which operation was ended on the regular basis. According to the calculations in the software VISIPLAN and OMEGA there is defined a number of released steel in such way that the internationally recommended rate of maximal effective dose for critical individual-10 μSv/year [IAEA, 2008. Managing low radioactivity material from the decommissioning of nuclear facility. Technical reports series no. 462] is not extended. In the final part there are compared the estimates of the costs of the decommissioning process with the application of conditional release and without it, which is directly reflected in the amount of saved costs and number of containers for surface disposal.

  7. New free-release and sorting monitors developed for NPP A-1 decommissioning, Slovakia - 59071

    International Nuclear Information System (INIS)

    Slavik, Ondrej; Listjak, Martin; Kravar, Kamil; Slaninka, Alojz; Pely, Igor

    2012-01-01

    A pilot free-release monitoring post with a 600 L container monitor was developed and metrological tested within the 2. stage of NPP A1 decommissioning project. In order to reduce the volume of contaminated soil monitoring a conceptual design of fast sorting loader shovel monitor (loader's spoon) was proposed and tested within the project as well. The free-release monitoring post makes use of a pair of electrically cooled lead shielded semiconductor detectors placed into a mounting rack ensuring measurements in either horizontal (container monitoring) or vertical (drum monitoring) counting geometry. For evaluation of measured HPGe spectra the Canberra -Packard ISOCS detection efficiency calculation code was used. A loader is used to change the measured side of the 600 L container. For metrological certification of this monitor a special prototype test container with 24 rod sources inside a regular grid was necessary to design and to use. The mentioned above vertical counting geometry together with an additional drum rotator ensures standard free release monitoring of materials in 200 l rotating drums. Successful metrological qualification of the both counting geometries at SMU Bratislava showed 20 % accuracy class. A pair of NaI(Tl) detectors and a measurement and navigation frame ensuring loader shovel fixation in counting position are used for the fast sorting monitoring. The navigation of loader and its shovel to the counting geometry should be as fast as possible. The monitored results shall be indicated by a prompt light indication system (apart from storing on HDD). MCNP 5 calculation code was used for assessment of gross gamma 137 Cs detection efficiency. The estimated MDA for a pair of 2'' x 2'' Na(Tl) detectors and 30 s acquisition time is about 90 Bq/kg. However, due to the counting geometry deviations from calculated values the uncertainty of measurements can be relatively high. Hence, the system is applicable for sorting monitoring only. (authors)

  8. Reuse of conditional released materials from decommissioning; a review of approaches and scenarios with long-term constructions - 59149

    International Nuclear Information System (INIS)

    Daniska, Vladimir; Pritrsky, Jozef; Ondra, Frantisek; Zachar, Matej; Necas, Vladimir

    2012-01-01

    Paper presents the overall scope and actual results of the project for evaluation of representative scenarios for reuse of conditionally released materials from decommissioning. Aim of the project is to evaluate the possibilities of reuse of conditionally released steels and concrete in technical constructions which guarantee the long-term preservation of design properties over periods of 50-100 years. Interaction of conditionally released materials with public is limited and predictable due to design and purpose of selected constructions and due to fact that in many scenarios these materials are embedded in non-radioactive materials such as bars in reinforced concrete. Worker's scenarios for preparation, operation and maintenance of these constructions are analysed in detail including the manufacturing of elements for these constructions. Project aims to evaluate the scenarios of reuse of conditionally released materials in a complex way in order to develop the data for designers of scenarios and to evaluate the volumes of conditionally released materials based on facility (to be decommissioned) inventory data. The long-term constructions considered are bridges, tunnels, roads, railway constructions, industrial buildings, power industry equipment and others. Evaluation covers following areas: - Analysis of activities for manufacturing of reinforcement bars, rolled steel sheets and other steel elements and analysis of activities for construction of evaluated scenarios in order to evaluate the external exposure of professionals performing these activities; - Analysis of external exposure of professionals involved in operation and maintenance of the long-term constructions; analysis of external exposure of public groups which are exposed to evaluated constructions; - Analysis of internal exposure of public groups from the radionuclides released from the evaluated scenarios based on models for migration of radionuclides from the long-term constructions to critical

  9. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  10. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N. [Pacific Northwest Lab., Richland, WA (United States)

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  11. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ''green field'' condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities

  12. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the '978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ''green field'' condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities

  13. Application of innovative policies for controlling radionuclide releases: The {open_quotes}open-market trading rule{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, D.W. [Dade Moeller & Associates, Inc., New Bern, NC (United States)

    1997-08-01

    In the past, most efforts for reducing airborne radio nuclide releases and controlling radioactive wastes have been directed to the development of new and improved technologies. Little attention has been paid to the possible application to these problems of new, innovative policies. Yet, experience in other fields shows that such applications could be beneficial. A prime example is the {open_quotes}open-market trading rule,{close_quotes} now being widely used in the U.S. for the control of a range of environmental problems. Through this rule, nuclear facility operators would be permitted to control airborne emissions in a more cost-effective manner, and those responsible for decommissioning and decontaminating nuclear facilities no longer in operation could do so at far lower costs while generating significantly smaller volumes of radioactive wastes. Application of such a policy would also significantly reduce the demands on existing, and the need for research to develop new, improved, control technologies. 16 refs.

  14. Standard guide for radioactive pathway methodology for release of sites following decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The purpose of this guide is to provide guidance in determining site-specific conversion factors for translating between dose limits and residual radioactive contamination levels on equipment structures, and land areas. This guide is to serve as a guide to acceptable methodology for translating the yet to be determined dose limits into allowable levels of residual radioactive materials that can be left at a site following decommissioning

  15. Concrete release protocol case studies for decommissioning work at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Kamboj, S.; Arnish, J.; Chen, S-Y; Parker, F. L.; Phillips, A. M.; Tripp, J. L.; Meservey, R. H.

    2000-01-01

    The US Department of Energy (DOE) Order 5400.5, ''Radiation Protection of the Public and Environment'' contains provisions pertinent to releasing potentially radioactive materials from DOE facilities for reuse or recycle. A process of authorized release for materials recovered from radiation areas is permitted under Order 5400.5 and the proposed rule in Title 10, Part 834, of the Code of Federal Regulations (10 CFR Part 834). A generic disposition protocol to facilitate release of concrete under these provisions has been developed. This report analyzes the application of that generic protocol to site-specific cases at the Idaho National Engineering and Environmental Laboratory (INEEL). The potential radiological doses and costs for several concrete disposition alternatives for the sewage treatment plant (STP) at the Central Facilities Area (CFA) of INEEL were evaluated in this analysis. Five disposition alternatives were analyzed for the concrete: (A) decontaminate, crush, and reuse; (B) crush and reuse without decontamination; (C) decontaminate, demolish, and dispose of at a nonradiological landfill; (D) demolish and dispose of at a nonradiological landfill without decontamination; and (E) demolish and dispose of at a low-level radioactive waste (LLW) facility. The analysis was performed for disposition of concrete from four INEEL structures: (1) trickle filter, (2) primary clarifier, (3) secondary clarifier, and (4) CFA-691 pumphouse for a generic case (based on default parameters from the disposition protocol) and an INEEL-specific case (based on INEEL-specific parameters). The results of the analysis indicated that Alternatives B and D would incur the lowest cost and result in a dose less than 1 mrem/yr (except for the trickle filter, the dose for which was estimated at 1.9 mrem/yr) for nonradiological workers. The analysis indicated that the main contributor to the radiological dose would be cobalt-60 contamination in the concrete. A characterization conducted

  16. U.S. experience with organizational issues during decommissioning

    International Nuclear Information System (INIS)

    Durbin, N.E.; Harty, R.

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant

  17. U.S. experience with organizational issues during decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting, Kirkland, WA (United States); Harty, R. [Battelle Pacific Northwest National Laboratory, Richland, WA (United States)

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant.

  18. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Schneider, K.J.

    1979-01-01

    The Symposium was jointly sponsored by OECD/NEA and IAEA and was attended by more than 225 participants from 26 countries. Forty one papers were presented in eight sessions which covered the following topics: national and international policies and planning; engineering considerations relevant to decommissioning; radiological release considerations and waste classifications; decommissioning experience; and decontamination and remote operations. In addition, a panel of decommissioning experts discussed questions from the participants

  19. Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

  20. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  1. Investigations on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Goertz, R.; Bastek, H.; Doerge, W.; Kruschel, K.P.

    1985-01-01

    The study discusses and evaluates safety and licensing related aspects associated with the decommissioning of nuclear power plants. Important decommissioning projects and experiences with relevance to decommissioning are analyzed. Recent developments in the field of decommissioning techniques with the potential of reducing the occupational dose to decommissioning workers are described and their range of application is discussed. The radiological consequences of the recycling of scrap metal arising during decommissioning are assessed. The results may be used to evaluate present licensing practices and may be useful for future licensing procedures. Finally the environmental impact of radionuclide release via air and water pathways associated with decommissioning activities is estimated. (orig.) [de

  2. 77 FR 41107 - Decommissioning Planning During Operations

    Science.gov (United States)

    2012-07-12

    ..., 40, 50, 70, and 72 [NRC-2011-0162] Decommissioning Planning During Operations AGENCY: Nuclear... (DG) 4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning Rule. The NRC...

  3. 78 FR 663 - Decommissioning Planning During Operations

    Science.gov (United States)

    2013-01-04

    ...] Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide..., ``Decommissioning Planning During Operations.'' The guide describes a method that the NRC staff considers acceptable for use by holders of licenses in complying with the NRC's Decommissioning Planning Rule (DPR) (76 FR...

  4. A study on safety concept and criteria of site release of nuclear installation proposed by international organizations and adopted in decommissioning practices

    International Nuclear Information System (INIS)

    Enokido, Yuji; Miyasaka, Yasuhiko; Ishikawa, Hironori

    2008-01-01

    Regulatory systems and safety criteria of site release of nuclear installation proposed by international organizations such as IAEA and applied in decommissioning in domestic and foreign countries have been studied, in order to avail them to deliberate the relevant domestic regulation and guides. In addition, the applicability of the proposal and practices to domestic legislation have been discussed. Regarding the national safety criteria, the annual individual dose constraint is optimized between 10 μSv and 300 μSv after recommendation and/or guides of IAEA etc. Unconditional release should be achieved, but the conditional and/or partial site release are possible under the same safety criteria to make the selection flexible for licensees. (author)

  5. Decommissioning Handbook

    International Nuclear Information System (INIS)

    Cusack, J.G.; Dalfonso, P.H.; Lenyk, R.G.

    1994-01-01

    The Decommissioning Handbook provides technical guidance on conducting decommissioning projects. Information presented ranges from planning logic, regulations affecting decommissioning, technology discussion, health and safety requirements, an developing a cost estimate. The major focus of the handbook are the technologies -- decontamination technologies, waste treatment, dismantling/segmenting/demolition, and remote operations. Over 90 technologies are discussed in the handbook providing descriptions, applications, and advantages/disadvantages. The handbook was prepared to provide a compendium of available or potentially available technologies in order to aid the planner in meeting the specific needs of each decommissioning project. Other subjects presented in the Decommissioning Handbook include the decommissioning plan, characterization, final project configuration based planning, environmental protection, and packaging/transportation. These discussions are presented to complement the technologies presented in the handbook

  6. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  7. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1994-09-01

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  8. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    International Nuclear Information System (INIS)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.

    1994-09-01

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System's WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined

  9. Decommissioning of IFEC

    International Nuclear Information System (INIS)

    Ceccotti, G.; Sberze, L.

    1995-05-01

    The IFEC nuclear fuel fabrication plant operated in Italy for more then thirty years and has now been successfully decommissioned. The rules and regulations relating to Quality Assurance established during the fabrication of Cirene reactor fuel have been adhered to during the decommissioning phase. The use of personnel with large experience in the nuclear field has resulted in vast majority of cares of material and apparatus to be reutilized in conventional activities without the need of calling on the assistance of external firms. The whole decontamination process was successfully completed on time and in particular the quantity of contaminated wastes was kept to eminimun

  10. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the decontamination of plant components and structures at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities in support of the shipment of radioactive wastes and the unconditional release of the site and structural materials. 1 ref., 16 figs., 4 tabs

  11. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper on nuclear decommissioning was presented by Dr H. Lawton to a meeting of the British Nuclear Energy Society and Institution of Nuclear Engineers, 1986. The decommissioning work currently being undertaken on the Windscale advanced gas cooled reactor (WAGR) is briefly described, along with projects in other countries, development work associated with the WAGR operation and costs. (U.K.)

  12. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  13. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    Chirica, T.; Havris, A.

    2003-01-01

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  14. Study on decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    This study examines the status of maintenance of the decommissioning-related regulations to which the maintenance is still insufficient. The contents in 2012 are as follows. First, we examined site release criteria through reports by international organizations, by overseas countries where nuclear sites have been released, and the environment standards in Japan. Then we also examined the standards of decommissioning completion confirmation (in other words, site release criteria). The study results will be utilized to document standards. Second, we assessed the present Japanese decommissioning regulatory system based on safety requirements of IAEA, and identified improvements. Then we prepared an improvement plan benefiting from the regulatory experiences in foreign countries. The study results will be utilized to document standards. Third, the Fukushima Daiichi NPS, which experienced serious core accident in March, 2011, has become a Specified Nuclear Facilities according to the new nuclear regulation, and the examination of the implementation plan is performed of the Nuclear Regulation Authority. As Units 1 to 4 at the Fukushima Daiichi NPS are planned to be decommissioned, we investigated regulatory requirements in foreign countries which experienced severe accidents. (author)

  15. Site decommissioning management plan

    International Nuclear Information System (INIS)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff's strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites

  16. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  17. Radiological characterization and challenges at decommissioning sites

    International Nuclear Information System (INIS)

    Moore, Scott

    2002-01-01

    Scott Moore described the dose-based radiological characterisation process used in the USA, and four current characterisation issues faced there. His paper emphasized the importance of characterisation to control decommissioning hazards and costs: The License Termination Rule (LTR), Subpart E to 10 CFR Part 20, provides the dose-based criteria that the U.S. Nuclear Regulatory Commission (NRC) uses as the basis for regulating cleanup at material and reactor sites. The LTR permits the release of sites for unrestricted use, if the radioactivity that is distinguishable from background results in a total effective dose equivalent to an average member of a critical group that does not exceed 0.25 milli-Sievert per year (mSv/yr) (25 milli-rem/year) and the residual radioactivity has been reduced to levels that are as low as reasonably achievable. Additionally, the LTR establishes criteria for license termination with restrictions on future land use, which allow for a dose to the critical group of 0.25 mSv/yr (25 milli-rem/year) with restrictions in place, and 1 mSv/yr (100 milli-rem/year) if the restrictions fail. In certain circumstances as outlined in Subpart E, a dose as high as 5 mSv/yr (500 milli-rem/year) is permitted if restrictions fail. Following issuance of the dose-based LTR in 1997, NRC staff developed the Standard Review Plan for Decommissioning Plans (NUREG-1727). NUREG-1727 is a guidance document that describes the methods that NRC has determined are acceptable for implementing the LTR and other decommissioning regulations. While NUREG-1727 is focused on the review of decommissioning plans for nuclear material sites, it provides general guidance that in many cases is applicable to reactor sites (e.g., review criteria for dose-modeling and radiological surveys). In addition to NUREG-1727, staff developed the Standard Review Plan for Evaluating Nuclear Power Reactor License Termination Plans (NUREG-1700) as specific guidance for reactor decommissioning. NUREG

  18. Liabilities identification and long-term management decommissioning of nuclear installations in Slovak Republic

    International Nuclear Information System (INIS)

    Burclova, Jana; Konecny, Ladislav

    2003-01-01

    The decommissioning is defined as the safe removal of nuclear facilities from service and reduction of residual radioactivity and/or risk to a level enabling their use for the purpose of another nuclear facility or unrestricted use (site release) and termination of license. The Legal Basis for Decommissioning and Waste Management are described in 4 acts: - 1. Act 130/98 Coll. on peaceful use of nuclear energy (Atomic Act); - 2. The act No 127/1994 Coll. on environmental impact assessment (amended 2000); - 3. The act No 254/1994 Coll. on creation of state found for NPP decommissioning, spent fuel management and disposal investment (amended 2000, 2001); 4. The act No 272/1994 Coll. on protection of public health (amended 1996,2000). The licensing process for radioactive waste management installations as for all nuclear installations is running in following principal steps. The permits for siting, construction, operation including commissioning, individual steps of decommissioning and site release are issued by municipal environmental office on the basis of the Act No 50/1976 Coll. on territorial planning and construction rules and the decisions of the Nuclear regulatory Authority (UJD SR) based on the Atomic Act. The safety documentation shall be prepared by applicant and it is subject of the regulatory bodies approval, for nuclear safety is responsible UJD SR, for radiation protection Ministry of Health, for fire protection Ministry of Interior and for general safety Ministry of Labour, Social Policy and Family. UJD SR issues the permit for each decommissioning phase based on review and approval of safety documentation. Decommissioning Strategy of Slovak Republic was strongly influenced by the changes of Waste Management Strategy. During the last time UJD SR dedicated the great effort to principal improvement of legislation, to cooperation with Ministry of Economy with the aim to create rules for financial sources for decommissioning activities and to enforcement of

  19. Reactor decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1984-01-01

    A pioneering project on the decommissioning of the Windscale Advanced Gas-cooled Reactor, by the UKAEA, is described. Reactor data; policy; waste management; remote handling equipment; development; and recording and timescales, are all briefly discussed. (U.K.)

  20. ECED 2013: Eastern and Central Europe Decommissioning. International Conference on Decommissioning of Nuclear Facilities. Conference Guide and Book of Abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The Conference included the following sessions: (I) Opening session (2 contributions); (II) Managerial and Funding Aspects of Decommissioning (5 contributions); (III) Technical Aspects of Decommissioning I (6 contributions); (IV) Experience with Present Decommissioning Projects (4 contributions); (V) Poster Session (14 contributions); (VI) Eastern and Central Europe Decommissioning - Panel Discussion; (VII) Release of Materials, Waste Management and Spent Fuel Management (6 contributions); (VIII) Technical Aspects of Decommissioning II (5 contributions).

  1. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Harris, P.W.

    2001-01-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  2. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.W. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2001-07-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  3. Nuclear decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, H.

    1987-02-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level.

  4. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  5. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Haffner, D.R.; Schneider, K.J.; Short, S.M.

    2002-01-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of 3 H-labeled compounds; a laboratory for the manufacture of 14 C-labeled compounds; a laboratory for the manufacture of 123 I-labeled compounds; a laboratory for the manufacture of 137 Cs sealed sources; a laboratory for the manufacture of 241 Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires

  6. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  7. Determination of the fraction of blowing agent released from refrigerator/freezer foam after decommissioning the product

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2002-01-01

    Several halocarbons having very high global warming potential have been used as blowing agent for insulation foam in refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam revealed that most...... of the blowing agent is not released to the atmosphere during a six-week period following the shredding process. The fraction which is released in the six-week period, is highly dependent on how fine the foam is shredded. The residual blowing agent remaining after the six-week period may be very slowly released...

  8. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    Kiyota, M.; Yanagihara, S.

    1995-01-01

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  9. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  10. Decommissioning in western Europe

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1999-12-01

    time (sometimes hundred years or more), prior to final demolition. Among the reasons for deferring the dismantling are lack of waste repositories and decreasing dose-rates for the workers. Of Europe's 218 commercial reactors in operation, the majority, 151, are located i the Western part. The biggest producers are France, United Kingdom and Germany, with 58, 35 and 20 reactors respectively. Until now mostly research- and pilot reactors have been shut-down. There are yet few experiences from decommissioning of large-scale commercial reactors. The following commercial reactors are undergoing decommissioning. (There are also a great amount of nuclear facilities of other types being decommissioned.) The three gas-cooled twin reactor plants of Berkeley, Trawsfynydd and Hunterston in UK. In Germany Gundremmingen, Lingen, Kahl and Wuergassen are being decommissioned. All of them are located in the Western part of the country. The biggest project is however the dismantling of the gigantic Greifswald facility situated on the coast of the Baltic see in former Eastern Germany. The plant has eight Russian built reactors of VVER-type. Like the rest of the former GDR-plants Greifswald was shutdown after the reunification in 1990. The strategy chosen is immediate dismantling. France is decommissioning seven reactors (Chooz A1, Chinon A1, A2, A3, St Laurent A1, A2 and Bugey 1.) The oldest, Chinon A1, closed down in 1973 and the youngest, Bugey 1, in 1994. Italy closed down all NPPs (altogether four) in 1987 after a referendum. The first reactor of the Netherlands was shutdown in 1997 mainly for economical reasons. The development of a free European electricity market will make it less profitable to run certain facilities. Vandelos 1 in Spain is undergoing decommissioning after a fire in the turbines in 1989. IAEA, OECD/NEA and EU are co-operating in the field of decommissioning. Much work is spent on harmonizing rules and preparing international guidelines. The international agencies

  11. The decommissioning of a research reactor in the USA: A case study from planning to site release

    International Nuclear Information System (INIS)

    Boing, L.E.

    1997-01-01

    Argonne National Laboratory (ANL) has completed the D ampersand D of the Experimental Boiling Water Reactor (EBWR). The project consisted of the decontamination and/or packaging as radioactive waste the reactor vessel and internals, contaminated piping systems, miscellaneous tanks, pumps, and associated equipment. The dismantling process involved the removal and size reduction of equipment and associated plumbing, ductwork, drain lines, etc. Size reduction of reactor vessel internals was performed in the fuel pool. All radioactive and mixed waste was packaged and manifested. A thorough survey of the facility was performed after the removal of contaminated and activated material. Non-radioactive waste was disposed of in the ANL landfill or recycled as appropriate. The EBWR D ampersand D project was divided into four phases. Phases I and II were completed by ANL personnel, while Phases III and IV were done by a contractor under ANL management. The final survey was performed by the contractor, while the verification survey was performed by ANL. The project lasted 118 months. Phase I was initiated in April 1986 and the final report was issued February 1996. The duration of the project was driven by the availability of funding for decommissioning. Total exposure to project personnel was 208.7 person-mSv (20.87 person-rem), with no personnel exceeding the EBWR project dose limit of 15 mSv (1.5 rem)

  12. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  13. Decommissioning handbook

    International Nuclear Information System (INIS)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained

  14. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  15. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    International Nuclear Information System (INIS)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System's Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a open-quotes green fieldclose quotes condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined

  16. 77 FR 25012 - Notice of Intent To Rule on Request To Release Airport Property at the South Texas Regional...

    Science.gov (United States)

    2012-04-26

    ... To Release Airport Property at the South Texas Regional Airport at Hondo (formerly Hondo Municipal... Release Airport Property. SUMMARY: The FAA proposes to rule and invite public comment on the release of.... Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be received on...

  17. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  18. Decommissioning standards

    International Nuclear Information System (INIS)

    Crofford, W.N.

    1980-01-01

    EPA has agreed to establish a series of environmental standards for the safe disposal of radioactive waste through participation in the Interagency Review Group on Nuclear Waste Management (IRG). One of the standards required under the IRG is the standard for decommissioning of radioactive contaminated sites, facilities, and materials. This standard is to be proposed by December 1980 and promulgated by December 1981. Several considerations are important in establishing these standards. This study includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include: the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions. 4 refs

  19. Challenges for decommissioning policies

    International Nuclear Information System (INIS)

    Riotte, H.

    2007-01-01

    In the coming years, OECD member countries will be increasingly faced with the need to make appropriate provisions, in terms of policy, finance and management, for all aspects of decommissioning. Decommissioning requires regulatory approval and oversight, the directions of which are guided by national policy. In several instances, governments have only recently begun to address their approaches to decommissioning policy and regulation in national legislation, and international overviews of such approaches, which may eventually lead to international harmonization, are only now beginning to emerge. In parallel, policy and regulation have been evolving and a broadened competence has developed in relevant regulatory authorities. The challenge lying ahead is to establish a framework that will allow for the growth of nuclear industrial activities in competitive, globalized markets, while maintaining and assuring the safety of decommissioning for the public and for workers. Within this context, institutional arrangements, stakeholder issues, costs and funding, waste management and policies for release from regulatory control, as well as the availability of technologies and skills, need to be reviewed. (author)

  20. Status of the Fort St. Vrain decommissioning

    International Nuclear Information System (INIS)

    Fisher, M.J.

    1990-01-01

    Fort St. Vrain is a high temperature gas cooled reactor. It has been shut down as a result of financial and technical difficulties. Fort St. Vrain has been planning for defueling and decommissioning for at least three years. The preliminary decommissioning plan, in accordance with the NRC's final rule, has been submitted and is being reviewed by the NRC. The basis of the preliminary decommissioning plan has been SAFSTOR. Public Service Company, who is the owner and operator of FSV, is scheduled to submit a proposed decommissioning plan to the NRC in the fourth quarter of 1990. PSC has gone out for bid on the decontamination and dismantlement of FSV. This paper includes the defueling schedule, the independent spent fuel storage installation status, the probability of shipping fuel to DOE, the status of the preliminary decommissioning plan submittal, the issuance of a possession only license and what are the results of obtaining this license amendment, preliminary decommissioning activities allowed prior to the approval of a proposed decommissioning plan, the preparation of a proposed decommissioning plan and the status of our decision to proceed with SAFSTOR or DECON as identified in the NRC's final decommissioning rule

  1. Fort St. Vrain defueling ampersand decommissioning considerations

    International Nuclear Information System (INIS)

    Warembourg, D.

    1994-01-01

    Fort St. Vrain Nuclear Generating Station (FSV) is one of the first commercial reactors to be decommissioned under NRC's decommissioning rule. The defueling and decommissioning of this 330 MWe High Temperature Gas Cooled Reactor (HTGR) has involved many challenges for Public Service Company of Colorado (PSC) including defueling to an Independent Spent Fuel Storage Installation (ISFSI), establishing decommissioning funding, obtaining regulatory approvals, arranging for waste disposal, and managing a large fixed price decommissioning contract. In 1990, a team comprised of the Westinghouse Corporation and Morrison Knudsen Corporation, with the Scientific Ecology Group as a major subcontractor, was contracted by PSC to perform the decommissioning under a fixed price contract. Physical work activities began in August 1992. Currently, physical dismantlement activities are about 45% complete, the project is on schedule, and is within budget

  2. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - main report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), which is a boiling water reactor (BWR), located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low- level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  3. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - main report. Final report

    International Nuclear Information System (INIS)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System's Washington Nuclear Plant Two (WNP-2), which is a boiling water reactor (BWR), located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a open-quotes green fieldclose quotes condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low- level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined

  4. A study on source term assessment and waste disposal requirement of decontamination and decommissioning for the TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Joo Ho; Lee, Kyung JIn; Lee, Jae Min; Choi, Gyu Seup; Shin, Byoung Sun [Kyunghee Univ., Seoul (Korea, Republic of)

    1999-08-15

    The objective and necessity of the project : TRIGA is the first nuclear facility that decide to decommission and decontamination in our nation. As we estimate the expected life of nuclear power generation at 30 or 40 years, the decommissioning business should be conducted around 2010, and the development of regulatory technique supporting it should be developed previously. From a view of decommissioning and decontamination, the research reactor is just small in scale but it include all decommissioning and decontamination conditions. So, the rules by regulatory authority with decommissioning will be a guide for nuclear power plant in the future. The basis of regulatory technique required when decommissioning the research reactor are the radiological safety security and the data for it. The source term is very important condition not only for security of worker but for evaluating how we dispose the waste is appropriate for conducting the middle store and the procedure after it when the final disposal is considered. The content and the scope in this report contain the procedure of conducting the assessment of the source term which is most important in understanding the general concept of the decommissioning procedure of the decommissioning and decontamination of TRIGA research reactor. That is, the sampling and measuring method is presented as how to measure the volume of the radioactivity of the nuclear facilities. And also, the criterion of classifying the waste occurred in other countries and the site release criteria which is the final step of decommissioning and decontamination presented through MARSSIM. Finally, the program to be applicable through comparing the methods of our nation and other countries ones is presented as plan for disposal of the waste in the decommissioning.

  5. 76 FR 35511 - Decommissioning Planning

    Science.gov (United States)

    2011-06-17

    ... licensees to conduct their operations to minimize the introduction of residual radioactivity into the site... account and line of credit as approved financial assurance mechanisms, and modify other financial... additional information on the costs of decommissioning and spent fuel management. DATES: The final rule is...

  6. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  7. The Importance of Decommissioning Planning for African Countries

    International Nuclear Information System (INIS)

    Reisenweaver, D.W.

    2011-01-01

    Many countries in Africa have facilities that will require eventual decommissioning. If the entire life cycle of a nuclear facility is considered, decommissioning is just the last activity. The IAEA has published a number of documents that can be used during the decommissioning process, from initial planning to final release of the site. These documents are discussed briefly in this paper and further discussion is provided that will explain why planning for decommissioning should start now.

  8. 1982 international decommissioning symposium

    International Nuclear Information System (INIS)

    Mickelson, S.

    1982-01-01

    Sixty-four papers were presented at the following sessions: policy, regulations, and standards; management of decommissioning wastes; decommissioning experience; decommissioning tooling and techniques; radiological concerns; and planning and engineering

  9. Human resource development for decommissioning

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2016-01-01

    This paper summarized the features of decommissioning work and the methods how to develop human resources. The general flow of decommissioning includes the following steps: (1) evaluation of facility characteristics, (2) planning, (3) decontamination and disassembly of equipment and structures contaminated with radioactivity, (4) radioactivity measurement, (5) treatment and disposal of radioactive waste, and (6) release from legal restrictions (termination of decommissioning). For this purpose, techniques in various fields are required. In the evaluation of facility characteristics, radiation measurement and calculation of activation amount in the core part are required. In decontamination and dismantling, cutting technology (mechanical cutting, thermal cutting, etc.), decontamination technology, and remote control technology are required. In the nuclear power education in the past, the fields related to design, construction, operation, and maintenance among the plant life cycle were the main parts. Much attention was not payed to decommissioning and the treatment/disposal of radioactive waste in the second half of life cycle. As university education, Hokkaido University and Fukui University have lectures on decommissioning. Furthermore, the education and research for students are proceeding at seven universities, with a focus on common reactors including those of Fukushima Daiichi Power Station. It is a key for promoting decommissioning, to incorporate project management, risk analysis, cost evaluation, and decision making into education, and to foster human resources heading toward challenging problems including social problems. (A.O.)

  10. 75 FR 41922 - Notice of Intent To Rule on Request To Release Airport Property at Fort Smith Regional Airport...

    Science.gov (United States)

    2010-07-19

    ... To Release Airport Property at Fort Smith Regional Airport, Fort Smith, AR AGENCY: Federal Aviation... rule and invites public comment on the release of land at Fort Smith Regional Airport under the.... John Parker, Airport Director, Fort Smith Regional Airport, at the following address: Fort Smith...

  11. 77 FR 59035 - Notice of Intent To Rule on Request To Release Airport Property at the St. George Airport, St...

    Science.gov (United States)

    2012-09-25

    ... To Release Airport Property at the St. George Airport, St. George, UT AGENCY: Federal Aviation... rule and invite public comment on the release of land at St. George Airport under the provisions of..., City of St. George, Utah, at the following address: Mr. Gary Esplin, City Manager, City of St. George...

  12. STUDSVIK's methods for treatment/free release of components and buildings structures from decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Krause, G.

    2005-01-01

    This paper will describe methods for treatment of retired, large, contaminated components from NPPs. The treatment includes transports, decontamination, segmentation, melting as well recycling of the metal in Sweden. Decontamination and free release of building strictures is also one of services which Studsvik provides for the nuclear industry. For this services different techniques are used for 'shaving' and subsequent measurements of the concrete surfaces. Since the mid of 1980-ies different procedures for decontamination and segmentation as well as pre- and post treatment have been developed and successively applied at Studsvik's melting facility in Sweden. The experience on this sector are permanent used for improvement and development of methods for treatment of both domestic and foreign large components like: heat exchangers, reactors vessel heads, turbine parts, steam generators and boilers. The high metal recycling rate is due to optimized production and results in extremely low percentage of secondary waste. The driving force is to maximize recycling rate of metal to the steel industry and to minimize the volume of the secondary waste and by that owner's costs for final storage in the national repositories. For decontamination of building structures several options are available using shaving or hammering tools to remove the contaminated concrete layers. This treatment is carried out in the closed circuit where removed dust is directly evacuated into the waste collection drums. During and after the decontamination process the treated and surrounding areas are free from dust and risk of cross contamination has been eliminated. The equipment capacity is up to 30 m2/h with simultaneous concrete removal of 3 mm at very high accuracy. It is not necessary of in-housing (tent, containment) of working area. The presentation will focus on methods, equipment used and experience in treatment of components and methods for decontamination of building structures

  13. Decommissioning of Brennilis NPP

    International Nuclear Information System (INIS)

    Baize, Jean-Marc

    1998-01-01

    This EDF press communique give information related to the decommissioning of the Brennilis NPP. The following five items are developed in this report: 1. the level-2 decommissioning operations at the Brennilis NPP; 2. the Brennilis NPP, a pilot operation from the commissioning up to the decommissioning; 3. history of the Brennilis NPP decommissioning; 4. the types of radioactive wastes generated by the Brennilis NPP decommissioning; 5. the Brennilis NPP - a yard management as a function of the wastes. The document contains also seven appendices addressing the following subjects: 1. the share of decommissioning assigned to EDF and the decommissioning steps; 2. the EDF installations in course of decommissioning; 3. the CEA decommissioned installations or in course of decommissioning; 4. regulations; 5. costs; 6. waste management - principles; 7. data on the decommissioning yard

  14. Workshop on decommissioning

    International Nuclear Information System (INIS)

    Broden, K.

    2005-12-01

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  15. Decommissioning of Ukrainian NPPs

    International Nuclear Information System (INIS)

    Skripov, A.E.

    2002-01-01

    The decision about the development of 'Decommissioning Concept of Ukrainian NPPs' being on commercial operational stage was approved by NAEK 'Energoatom' Board of Administration by way of the decommissioning activity effective planning. The Concept will be the branch document, containing common approaches formulations on problem decisions according to the units decommissioning with generated resources, and RAW and SNF management strategy during decommissioning

  16. The IAEA Safety Regime for Decommissioning

    International Nuclear Information System (INIS)

    Bell, M.J.

    2002-01-01

    Full text of publication follows: The International Atomic Energy Agency is developing an international framework for decommissioning of nuclear facilities that consists of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, and a hierarchy of Safety Standards applicable to decommissioning. The Joint Convention entered into force on 18 June 2001 and as of December 2001 had been ratified by 27 IAEA Member States. The Joint Convention contains a number of articles dealing with planning for, financing, staffing and record keeping for decommissioning. The Joint Convention requires Contracting Parties to apply the same operational radiation protection criteria, discharge limits and criteria for controlling unplanned releases during decommissioning that are applied during operations. The IAEA has issued Safety Requirements document and three Safety Guides applicable to decommissioning of facilities. The Safety Requirements document, WS-R-2, Pre-disposal Management of Radioactive Waste, including Decommissioning, contains requirements applicable to regulatory control, planning and funding, management of radioactive waste, quality assurance, and environmental and safety assessment of the decommissioning process. The three Safety Guides are WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, WS-G-2.2, Decommissioning of Medical, Industrial and Research Facilities, an WS-G-2.4, Decommissioning of Nuclear Fuel Cycle Facilities. They contain guidance on how to meet the requirements of WS-R-2 applicable to decommissioning of specific types of facilities. These Standards contain only general requirements and guidance relative to safety assessment and do not contain details regarding the content of the safety case. More detailed guidance will be published in future Safety Reports currently in preparation within the Waste Safety Section of the IAEA. Because much material arising during the decommissioning

  17. The curious accountancy of decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Financial provision for the decommissioning and waste management of the United Kingdom Magnox and AGR reactor is discussed. In the last set of accounts prior to privatisation a decommissioning provision of Pound 8.34 bn was indicated whereas previous figures had only shown Pound 2.88. It is suggested that the increase was only achieved on paper, without real financial provision. Estimates of decommissioning costs for the Magnox stations have increased greatly. Cost estimates for AGR decommissioning have still to be released but it is expected that the post-privatisation owners of the nuclear power industry, Nuclear Electric, will have to find Pound 6-7 bn to dismantle its own reactors. Much of this it hopes to put off for over 100 years. The South of Scotland Electicity Board has made much more realistic provision for its own Magnox and two AGR stations. Reprocessing costs for AGR reactor fuel is uncertain and high reprocessing and decommissioning costs will mean increases in the price of nuclear electricity. (UK)

  18. 75 FR 55401 - Notice of Intent To Rule on Request To Release Airport Property at the Dallas/Fort Worth...

    Science.gov (United States)

    2010-09-10

    ... To Release Airport Property at the Dallas/Fort Worth International Airport, DFW Airport, TX AGENCY... airport property. SUMMARY: The FAA proposes to rule and invite public comment on the request for permanent... H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be...

  19. 78 FR 9105 - Notice of Intent To Rule on Request To Release Airport Property at the Dallas/Fort Worth...

    Science.gov (United States)

    2013-02-07

    ... To Release Airport Property at the Dallas/Fort Worth International Airport, DFW Airport, TX AGENCY... Airport Property. SUMMARY: The FAA proposes to rule and invite public comment on the request for permanent... H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be...

  20. 76 FR 37874 - Notice of Intent To Rule on Request To Release Airport Property at Lehigh Valley International...

    Science.gov (United States)

    2011-06-28

    ... land, under agricultural production, and is maintained to protect airspace surfaces of 14 CFR 77.19... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of Intent To Rule on Request... Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The...

  1. Evolution of some important principles on decommissioning of nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Zhao Yamin; Wu Hao

    2004-01-01

    The paper introduces the evolution of some important principles on decommissioning of nuclear and radiation facilities. Decommissioning issue should not be regarded just as an end phase of the facilities operation, but should be taken into consideration as a part of whole operation process. The decommissioning plan and management should be considered in all phases of siting, design, construction and operation. A new term 'Facilitating Decommissioning' is introduced. Three stages principle of decommissioning (storage with surveillance, restricted release and unrestricted release) is being faded. The decommissioning implementation and related regulatory body should pay attention to these principal changes

  2. Global solutions through simulation for better decommissioning

    International Nuclear Information System (INIS)

    Scoto Di Suoccio, Ines; Testard, Vincent

    2016-01-01

    Decommissioning is a new activity in sense that it only exists a limited experience. Moreover, each facility is different due to their own history and there is no rule about choosing a decommissioning strategy. There are three major decommissioning strategies. First, 'immediate dismantling', which means the action of decommissioning begins immediately after the transfer of waste and nuclear material. Second, 'deferred dismantling strategy', which means that the facility is maintained into a containment zone from thirty to one hundred years before being decommissioned. Finally, 'entombment', means the facility is placed into a reinforced containment until the radionuclides decay and reach a level allowing the site release. When a strategy is decided many factors have to be taken into account. Into a major project such as a reactor decommissioning, there are many smaller projects. The decommissioning strategy can be different among these smaller projects. For some reasons, some entry data are not perfectly known. For example, dosimetric activity has not been updated through time or after specific events. Indeed, because of uncertainties and/or hypothesis existing around projects and their high level of interdependency, global solutions are a good way to choose the best decommissioning strategy. Actually, each entry data has consequences on output results whether it is on costs, cumulated dose, waste or delays. These output data are interdependent and cannot be taken apart from each other. Whether the dose, delays or waste management, all have impact on costs. To obtain an optimal scenario into a special environment, it is necessary to deal with all these items together. This global solution can be implemented thanks to simulation in dedicated software which helps to define the global strategy, to optimize the scenario, and to prevent contingencies. As a complete scenario simulation can be done quickly and efficiently, many strategies can

  3. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Williams, D.H.

    1982-01-01

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  4. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnacs, J.

    2012-01-01

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  5. Decommissioning and decontamination

    International Nuclear Information System (INIS)

    Dadoumont, J.; Cantrel, E.; Valenduc, P.; Noynaert, L.

    2009-01-01

    The SCK-CEN has built a large know-how in decommissioning and decontamination, thanks to its BR3 decommissioning project. In 2007, the decommissioning activities at BR3 have been continued according to the strategy. This article discusses main realisations the following domains: decommissioning of the neutron shield tank and installation of new ventilation for the controlled area, dismantling of the former one and characterization of the stack

  6. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  7. Economic aspects of decommissioning

    International Nuclear Information System (INIS)

    Jenne, C.

    1988-01-01

    Two viewpoints on decommissioning are quoted; the first suggests that decommissioning can be viewed as a technical detail that is of limited relevance whereas the second suggests that decommissioning is a key financial issue. Both are specifically relevant to United Kingdom nuclear power stations. This paper attempts to reconcile the two views. It suggests that decommissioning does raise some important issues for regulation and financing of a privatised industry but, despite this, the economics of nuclear do remain insensitive. The paper begins by examining the significance of decommissioning costs in a number of contexts, including nuclear unit generating costs and financing requirements. It then addresses the degree of uncertainty in the decommissioning cost estimates. With privatisation on the horizon, the paper considers the significance of decommissioning and the associated uncertainty for the investor; this last section considers regulatory issues raised in relation to funding, accounting policy and electricity pricing. (author)

  8. Financial aspects of decommissioning (key aspects of decommissioning costing)

    International Nuclear Information System (INIS)

    Danska, V.

    2009-01-01

    In this presentation the following aspects of NPPs decommissioning are discussed: Requirements and purpose of decommissioning costing; Decommissioning costing methodologies; Standardised decommissioning cost structure; Input data for cost estimate process; Waste management in cost estimate process; Grading aspects in cost estimating; Cost control in decommissioning projects; Summary of the cost estimation process; Conclusions and recommendations.

  9. Shippingport Station Decommissioning Project: Contaminated concrete removal: Topical report

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the removal of contaminated concrete from the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the decontamination activities in support of site release in the decommissioning of a nuclear power reactor. 4 refs., 8 figs., 2 tabs

  10. Training for decommissioning

    International Nuclear Information System (INIS)

    Dietzold, A.

    2009-01-01

    Plants entering decommissioning face many challenges One of the most important is the challenge of training for decommissioning This is important because: The facility operators and management have spent many years successfully operating the facility; The facility management arrangements are geared to operation; Decommissioning will include non-nuclear specialists and other stakeholders; Other skills are needed to decommission successfully. UKAEA has decommissioned many facilities at its sites in Dounreay, Windscale, Harwell and Winfrith in the UK. We have faced all of the challenges previously described and have developed many training methods for ensuring the challenges are met safely and effectively. We have developed courses for specialised skills such as safety cases which can be deployed to support any decommissioning. (author)

  11. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  12. Decommissioning of NPP A-1

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation the Operation history of A1 NPP, Project 'Decommissioning of A1 NPP' - I stage, Project 'Decommissioning of A1 NPP ' - II stage and Next stages of Project 'Decommissioning of A1 NPP ' are discussed.

  13. Feasibility studies for decommissioning

    International Nuclear Information System (INIS)

    Hladky, E.

    2000-01-01

    In this presentation author deals with planning of decommission of the NPPs A1, V1 and V2 Bohunice and Mochovce. It was concluded that: Used model for decommissioning parameters assessment has been suitable for elaboration of initial decommissioning plans (feasibility studies); Basic assessment of main decommissioning parameters and basic comparison of various decommissioning options have been possible; Improvement of the model and corresponding software is desirable and works on software improvement began one year ago; V1-NPP initial decommissioning plan should be actualized, because initial decommissioning plan does not correspond by its content and structure to requirements of Act No. 130/98 and Nuclear Regulatory Authority Degree No. 246/99; Strategy of radioactive wastes treatment and conditioning together with technical provisions at Jaslovske Bohunice site was changed in comparison with the assumptions in 1991-92; Considered V1 NPP decommissioning options are necessary to be re-evaluated in accordance with latest development of knowledge and approaches to NPP decommissioning in the world; Specific unit costs are substantially and differentially changed in comparison with the assumptions in 1991-92; Necessity to take into account technical changes resulted from V1 NPP reconstruction. (author)

  14. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  15. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  16. Study on decommissioning

    International Nuclear Information System (INIS)

    2012-01-01

    This project consists of researches on (1) establishment of review plan on application of decommissioning, (2) establishment of specific method to confirm decommissioning completion, of decommissioning and (3) establishment of radioactive waste management guideline during dismantling and (4) development of the regulatory system on decommissioning in response to Fukushima Daiichi NPP accident. About researches on establishment of review plan on application of decommissioning. 'Planning of the Commercial Power Reactor Decommissioning:2001' which was published by Atomic Energy Society of Japan, was evaluated whether it suited the requirement for the decommissioning stipulated in the law, and the draft evaluation report was prepared. About researches on establishment of specific method to confirm decommissioning completion, technical information of practical procedures on the confirmation in U.S.A. were organized based on MARSSIM (Multi-Agency Radiation Survey and Site Investigation Manual, NUREG-1575) and applicability of MARSSIM on the confirmation in Japan was examined. Exposed doses for public during decommissioning period were estimated to study dose criterion of the confirmation. Radioactive concentrations in the soil of Tokai and Hamaoka NPP caused by the Fukushima Daiichi NPP accident were also investigated. About researches on establishment of radioactive waste management guideline during dismantling, one concrete core was sampled in biological shield of the Tokai NPP and radioactive concentrations were investigated. About researches on development of the regulatory system on decommissioning in response to Fukushima Daiichi NPP accident, present status of Three Mile Island Unit 2 and Chernobyl NPP Unit 4 were investigated. Present status of regulatory systems for decommissioning in foreign countries taken in consideration of the accident was also researched. (author)

  17. Fact Sheet: Clean Air Act Section 112(r): Accidental Release Prevention / Risk Management Plan Rule

    Science.gov (United States)

    EPA is required to publish regulations and guidance for chemical accident prevention at facilities that pose the greatest risk of harm from accidental releases of regulated flammable and toxic substances above threshold quantities.

  18. Preliminary nuclear decommissioning cost study

    International Nuclear Information System (INIS)

    Sissingh, R.A.P.

    1981-04-01

    The decommissioning of a nuclear power plant may involve one or more of three possible options: storage with surveillance (SWS), restricted site release (RSR), and unrestricted site use(USU). This preliminary study concentrates on the logistical, technical and cost aspects of decommissioning a multi-unit CANDU generating station using Pickering GS as the reference design. The procedure chosen for evaluation is: i) removal of the fuel and heavy water followed by decontamination prior to placing the station in SWS for thiry years; ii) complete dismantlement to achieve a USU state. The combination of SWS and USU with an interim period of surveillance allows for radioactive decay and hence less occupational exposure in achieving USU. The study excludes the conventional side of the station, assumes waste disposal repositories are available 1600 km away from the station, and uses only presently available technologies. The dismantlement of all systems except the reactor core can be accomplished using Ontario Hydro's current operating, maintenance and construction procedures. The total decommissioning period is spread out over approximately 40 years, with major activities concentrated in the first and last five years. The estimated dose would be approximately 1800 rem. Overall Pickering GS A costs would be $162,000,000 (1980 Canadian dollars)

  19. Summary of comments received at workshop on use of a Site Specific Advisory Board (SSAB) to facilitate public participation in decommissioning cases

    International Nuclear Information System (INIS)

    Caplin, J.; Padge, G.; Smith, D.; Wiblin, C.

    1995-06-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As part of this rulemaking, On August 20, 1994 the NRC published a proposed rule for public comment. Paragraph 20.1406(b) of the proposed rule would require that the licensee convene a Site Specific Advisory Board (SSAB) if the licensee proposed release of the site for restricted use after decommissioning. To encourage comment the NRC held a workshop on the subject of $SABs on December 6, 7, and 8, 1994. This report summarizes the 567 comments categorized from the transcript of the workshop. The commenters at the workshop generally supported public participation in decommissioning cases. Many participants favored promulgating requirements in the NRC's rules. Some industry participants favored relying on voluntary exchanges between the public and the licensees. Many participants indicated that a SSAB or something functionally equivalent is needed in controversial decommissioning cases, but that some lesser undertaking can achieve meaningful public participation in other cases. No analysis or response to the comments is included in this report

  20. Stakeholders involvement in the decommissioning processes in Italy

    International Nuclear Information System (INIS)

    Dionisi, Mario

    2006-01-01

    The aim of this paper is to present the situation about stakeholders involvement in Italy in the framework of the decommissioning process of the Italian nuclear installations, and in particular the specific experience of the Italian Regulatory Body APAT. Specific aspects and APAT initiatives for building confidence of stakeholders in the process of the release of solid material from the regulatory control are presented. Content: Decommissioning activities in Italy, Decommissioning licensing procedures (Site and material release, APAT - ARPA Partnership approach in the clearance process)

  1. Decommissioning Unit Cost Data

    International Nuclear Information System (INIS)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-01-01

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  2. Decommissioning and material recycling. Radiation risk management issues

    International Nuclear Information System (INIS)

    Dodd, D.H.

    1996-09-01

    Once nuclear fuel cycle facilities have permanently stopped operations they have to be decommissioned. The decommissioning of a nuclear facility involves the surveillance and dismantling of the facility systems and buildings, the management of the materials resulting from the dismantling activities and the release of the site for further use. The management of radiation risks associated with these activities plays an important role in the decommissioning process. Existing legislation covers many aspects of the decommissioning process. However, in most countries with nuclear power programmes legislation with respect to decommissioning is incomplete. In particular this is true in the Netherlands, where government policy with respect to decommissioning is still in development. Therefore a study was performed to obtain an overview of the radiation risk management issues associated with decommissioning and the status of the relevant legislation. This report describes the results of that study. It is concluded that future work at the Netherlands Energy Research Foundation on decommissioning and radiation risk management issues should concentrate on surveillance and dismantling activities and on criteria for site release. (orig.)

  3. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  4. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety.

  5. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  6. Site Decommissioning Management Plan. Supplement 1

    International Nuclear Information System (INIS)

    Fauver, D.N.; Weber, M.F.; Johnson, T.C.; Kinneman, J.D.

    1995-11-01

    The Nuclear Regulatory Commission (NRC) staff has identified 51 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety, they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC stairs strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 51 sites and describes the status of decommissioning activities at the sites. This is supplement number one to NUREG-1444, which was published in October 1993

  7. Securing decommissioning funds. Why organization matters?

    International Nuclear Information System (INIS)

    Tchapga, F.

    2005-01-01

    Full text: Securing decommissioning funds requires that the financial resources set aside for the purpose of decommissioning be managed prudently. Decommissioning of nuclear power plant is prescribed by National Atomic Laws or by other nuclear legislation. It is a mandatory operation. The operators of nuclear power plants set money aside for that purpose. This is known as 'Decommissioning reserve fund'. Decommissioning implies costs very distant in time. Thus, it is obvious, from an economic point of view, that the funds set aside should be managed. As decommissioning is mandatory, the funds accumulated should be secured. In others words, they should be available when needed. Availability of funds is influenced by endogenous and exogenous factors. Endogenous factors are a matter of design of the reserve funds. They include the management of the funds, its monitoring and control... Availability of funds is influenced by these factors, depending on the rules to which the behaviour of the manager of the funds is subjected. In contrast, exogenous factors deal with the energy context. These factors are mainly the electricity sector organisation and/or the overall economic situation. They are decisive factors of the economic performance of the reserve fund for a given design. Therefore, the requirement of availability of funds, when needed, is a matter of compatibility between the design of the decommissioning funds and the electricity context. Put differently, reserve fund's design need to be consistent with the electricity context's features in respect of the availability of funds. Current reserve funds were designed in a context of monopoly regime. In this context, availability of decommissioning funds was not questionable. At least, as far as the design of the reserve funds is concerned. This is because nuclear generator didn't confront any competition pressure. Electricity prices were set trough rate base mechanism, and all the business risks were borne by the

  8. UK reactor decommissioning strategy

    International Nuclear Information System (INIS)

    Woollam, P.B.

    2004-01-01

    With the cessation of electricity generation, nuclear power stations move into the next stage of the overall life cycle of the facility: decommissioning. Decommissioning is defined as the process whereby a nuclear facility, at the end of its economic life, is taken permanently out of service and its site made available for other purposes. This involves the implementation of a structured and safe programme for dismantling and clearing the site and making it available for alternative use in the future. In practical terms, 'decommissioning' means the systematic and progressive reduction of hazards to the point where the site could eventually be de-licensed. (author)

  9. Nuclear decommissioning and society

    International Nuclear Information System (INIS)

    Pasqualetti, M.J.

    1990-01-01

    Links between decommissioning in general, reactor decommissioning in particular, and the public are indexed. The established links are recognised and others, such as jobs, are discussed. Finally the links with policy, such as political geography, and wider issues of the environment and public concern over waste disposal are considered. Decommissioning is a relatively new field where public opinion must now be considered but it has implications both for existing nuclear power plants and those planned for the future, especially in their siting. This book looks especially at the situation in the United Kingdom. There are twelve papers, all indexed separately. (UK)

  10. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  11. Safety Assessment for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  12. European Decommissioning Academy

    International Nuclear Information System (INIS)

    Slugen, V. S.; Hornacek, M.

    2016-01-01

    Full text: Experiences from the first run of the European Decommissioning Academy (EDA) are reported in details. EDA was created at the Slovak University of Technology in Bratislava Slovakia, based on discussion and expressed needs declared at many international meetings including ECED2013. The first run successfully passed 15 participants during 7–26 June 2015. Academy was focused on decommissioning issues via lessons, practical exercises in laboratories, on-site training prepared at NPP V-1 in Jaslovské Bohunice, Slovakia as well as four day technical tour to other European decommissioning facilities in Switzerland and Italy. Detailed information can be found at http://kome.snus.sk/inpe/. (author

  13. Approach to long- term regalement of nuclear energy installation decommissioning

    International Nuclear Information System (INIS)

    Dryapachenko, Yi.P.; Rudenko, B. A.; Ozimaj, M.S.

    2001-01-01

    In this report we make an accent on because the rules of nuclear installation decommissioning should provide controllability with compounded operations not one generations of the performers. The strategy should take into account problems of the economic completion, environment and standards of health, script of decommissioning and its execution, and so on. These strategies are bound with the social conditions, with accent on work with the low level wastes

  14. Apollo decommissioning project, Apollo, Pennsylvania. Final technical report

    International Nuclear Information System (INIS)

    1997-01-01

    In November, 1991 Babcock and Wilcox (B and W) received a grant to partially fund the decommissioning of the former Apollo Nuclear Fuel Facility. The decommissioning was performed in accordance with a Nuclear Regulatory Commission (NRC) approved decommissioning plan. This report summarizes the decommissioning of the Apollo Nuclear Fuel Facility and the radiological surveying of the site to demonstrate that these decommissioning activities were effective in reducing residual activity well below NRC's criteria for release for unrestricted use. The Apollo Nuclear Fuel Facility was utilized by the Nuclear Materials and Equipment Corporation (NUMEC) and B and W for nuclear research and production under Atomic Energy Commission and Department of Energy (DOE) contracts during 20 plus years of nuclear fuel manufacturing operations

  15. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  16. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  17. Possibilities for the Reuse of Steel from Decommissioning. Selected Scenarios in the Process of Proposal and Evaluation of Manufacturing Processes for Conditional Released Steel and their Application in General and Nuclear Industry

    International Nuclear Information System (INIS)

    Bezak, P.; Daniska, V.; Ondra, F.; Necas, V.

    2012-01-01

    Conditional release of steels from NPP decommissioning enables controlled reuse of non-negligible volumes of steels. For proposal of scenarios for steel reuse, it is needed to identify and evaluate partial elementary activities of the whole process from conditional release of steels, manufacturing of various elements up to realisation of scenarios. For scenarios of reuse of conditionally released steel the products of steel, as steel reinforcements, rails, profiles and sheets for technical constructions such as bridges, tunnels, railways and other constructions which guarantee the long-term properties over the periods of 50-100 years are considered. The idea offers also the possibility for using this type of steel for particular technical constructions, directly usable in nuclear facilities. The paper presents the review of activities for manufacturing of various steel construction elements made from conditionally released steels and their use in general and also in the nuclear industry. As the starting material for manufacturing of steel elements ingots or just fragments of steel after dismantling in controlled area can be used. These input materials are re-melted in industrial facilities in order to achieve the required physical and chemical characteristics. Mostly used technique for manufacturing of the steel construction elements is rolling. As the products considered in scenarios for reuse of conditional released steels are bars for reinforcement concrete, rolled steel sheets and other rolled profiles. For use in the nuclear industry it offers the possibility for casting of thick-walled steel containers for long-term storage of high level radioactive components in integral storage and also assembly of stainless steel tanks for storing of liquid radioactive waste. Lists of elementary activities which are needed for manufacturing of selected steel elements are elaborated. These elementary activities are then the base for detailed safety evaluation of external

  18. Feedback experience from the decommissioning of Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Santiago, J.L.

    2008-01-01

    The Spain has accumulated significant experience in the field of decommissioning of nuclear and radioactive facilities. Relevant projects include the remediation of uranium mills and mines, the decommissioning of research reactors and nuclear research facilities and the decommissioning of gas-graphite nuclear power plants. The decommissioning of nuclear facilities in Spain is undertaken by ENRESA, who is also responsible for the management of radioactive wastes. The two most notable projects are the decommissioning of the Vandellos I nuclear power plant and the decommissioning of the CIEMAT nuclear research centre. The Vandellos I power plant was decommissioned in about five years to what is known as level 2. During this period, the reactor vessel was confined, most plant systems and components were dismantled, the facility was prepared for a period of latency and a large part of the site was restored for subsequent release. In 2005 the facility entered into the phase of dormancy, with minimum operating requirements. Only surveillance and maintenance activities are performed, among which special mention should be made to the five-year check of the leak tightness of the reactor vessel. After the dormancy period (25 - 30 years), level 3 of decommissioning will be initiated including the total dismantling of the remaining parts of the plant and the release of the whole site for subsequent uses. The decommissioning of the CIEMAT Research Centre includes the dismantling of obsolete facilities such as the research reactor JEN-1, a pilot reprocessing plant, a fuel fabrication facility, a conditioning plant for liquid and a liquid waste storage facility which were shutdown in the early eighties. Dismantling works have started in 2006 and will be completed by 2009. On the basis of the experience gained in the above mentioned sites, this paper describes the approaches adopted by ENRESA for large decommissioning projects. (author)

  19. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    Massaut, V.

    2000-01-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  20. Optimising waste management performance - The key to successful decommissioning

    International Nuclear Information System (INIS)

    Keep, Matthew

    2007-01-01

    Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

  1. Lessons learned from the decommissioning of NORM facility in Malaysia

    International Nuclear Information System (INIS)

    Kontol, Khairuddin M.; Omar, Muhamat; Ahmad, Syed H.S.S.

    2008-01-01

    Full text: Malaysia Decommissioning of Naturally Occurring Radioactive Materials (NORM) facility in Malaysia will run into unforeseeable complications and difficulties if there is no proper planning. The Atomic Energy Licensing Board (AELB) plays important role in guiding and assisting the operator/contractor in this NORM decommissioning project. A local Naturally Occurring Radioactive Materials (NORM) processing plant located in the northern region of peninsular Malaysia had ceased its operations and decided to decommission and remediate its site for the final release of the site. The remediated site is earmarked as an industrial site. During its operations, monazites are processed for rare earth elements such as cerium and lanthanum. It's plant capable of processing monazite to produce rare earth chloride and rare earth carbonate. The main by-product of monazite processing is the radioactive cake containing primarily thorium hydroxide. Operation of the monazite processing plant started in early eighties and terminated in early nineties. The decommissioning of the plant site started in late 2003 and completed its decommissioning and remediation works in early 2006. This paper described the lesson learned by Malaysian Nuclear Agency (Nuclear Malaysia) in conducting third party independent audit for the decommissioning of the NORM contaminated facility. By continuously reviewing the lessons learned, mistakes and/or inefficiencies in this plant decommissioning project, hopefully will result in a smoother, less costly and more productive future decommissioning works on NORM facilities in Malaysia. (author)

  2. Experience Practices on Decontamination Activity in NPP Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Kim, Jeongju; Sohn, Wook [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning of a nuclear power plant (NPP) involves various technical and administrative activities for a utility to terminate its license, which allows the plant site to be released from the regulatory control (site release). Decontamination activity in NPP decommissioning is one of the main technical activities to be performed during the decommissioning. The decontamination at decommissioning sites is usually performed due to several reasons such as reducing personnel dose and disposal costs, and cleanup to meet license termination requirements by using physical or chemical removal techniques proven through the previous experience practices. This paper introduces the best and worst practices for the decontamination activities collected from the decommissioning operational experiences through the implementation of nuclear decommissioning projects around the world. Review of the experiences of decontamination shows that it is important to conduct an advanced planning for optimized implementation of decontamination taking into considering site specific conditions such as operating time, reactor type, system, and so on. Also, a review of newer decontamination methods is necessary to safely and economically decommission the nuclear facility.

  3. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  4. Radiological planning and implementation for nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Valentine, A.M.

    1982-01-01

    The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures

  5. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  6. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process.

  7. Safety problems in decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Auler, I.; Bardtenschlager, R.; Gasch, A.; Majohr, N.

    1975-12-01

    The safety problems at decommissioning are illustrated by the example of a LWR with 1300 MW electric power after 40 years of specified normal operation. For such a facility the radioactivity in the form of activation and contamination one year after being finally taken out of service is in the order of magnitude of 10 7 Ci, not counting the fuel assemblies. The dose rates occurring during work on the reactor vessel at nozzle level may amount to some 10 4 rem/h. After a rough estimation the accumulated dose for the decommissioning personnel during total dismantling will be about 1200 rem. During performance of the decommissioning activities the problems are mainly caused by direct radiation of the active components and systems and by the release of radioactive particles, aerosols and liquids if these components are crushed. The extent of later dismantling problems may be reduced by selecting appropriate materials as well as considering the requirements for dismantling in design and arrangement of the components already in the design stage of new facilities. Apart from plant design also the concept for the disposal of the radioactive waste from decommissioning will provide important boundary conditions. E.g. the maximum size of the pieces to be stored in the ultimate storage place will very much influence the dose expenditure for handling these parts. For complete dismantling of nuclear power plants an ultimate store must be available where large amounts of bulky decommissioning waste, containing relatively low activity, can be stored. The problems and also the cost for decommissioning may be considerably reduced by delaying complete disposal of the radioactive material >= 40 years and during this period, keeping the radioactivity enclosed within the plant in the form of a safe containment. (orig./HP) [de

  8. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    Santos, Ivan

    2008-01-01

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF 6 ) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  9. Decommissioning strategy selection

    International Nuclear Information System (INIS)

    Warnecke, E.

    2005-01-01

    At the end of their useful life nuclear facilities have to be decommissioned. The strategy selection on how to decommission a facility is a highly important decision at the very beginning of decommissioning planning. Basically, a facility may be subject to (a) immediate dismantling; (b) deferred dismantling after a period of ''safe enclosure'' or (c) entombment where a facility is turned into a near surface disposal facility. The first two strategies are normally applied. The third one may be accepted in countries without significant nuclear activities and hence without disposal facilities for radioactive waste. A large number of factors has to be taken into account when a decision on the decommissioning strategy is being made. Many of the factors cannot be quantified. They may be qualitative or subject to public opinion which may change with time. At present, a trend can be observed towards immediate dismantling of nuclear facilities, mainly because it is associated with less uncertainty, less local impact, a better public acceptance, and the availability of operational expertise and know how. A detailed evaluation of the various factors relevant to strategy selection and a few examples showing the situation regarding decommissioning strategy in a number of selected countries are presented in the following article. (orig.)

  10. Implementation of 10 CFR 20.1406 through Life Cycle Planning for Decommissioning

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ott, W.R.

    2009-01-01

    This paper summarizes a newly released regulatory guide (RG 4.21 'Minimization of Contamination and Radioactive Waste Generation - Life Cycle Planning') issued by the U.S. Nuclear Regulatory Commission (NRC) in June 2008. The purpose of RG 4.21 is to support implementation of 10 CFR 20.1406 'Minimization of Contamination'. That regulation is a portion of NRC's License Termination Rule and it is intended to avoid 'legacy sites', that is, those without financial means to satisfactorily terminate a license. As currently written, 10 CFR 20.1406 applies to all NRC license applications and applications for standard design certifications submitted after August 20, 1997. The regulation requires applicants to address in their application how they will (1) minimize contamination of the facility and environment, (2) minimize waste generation, and (3) facilitate decommissioning. The regulation represents a dramatically different approach to licensing because it mandates consideration of decommissioning before submittal of a license application or design for certification. The guidance in RG 4.21 consists of design considerations drawn from nuclear industry experience and lessons learned from decommissioning. These have been combined to support the development of a contaminant management philosophy. The principles embodied in this philosophy are threefold: (1) prevention of unintended releases; (2) early detection, if there is unintended release of radioactive contamination; and (3) prompt assessment to support a timely and appropriate response. Applying these principles requires the use of sound design, proven engineering practices, conservative radiation protection principles, and attention to operational practices. All of this should be considered in the context of the life cycle of the facility from the early planning stages through the final plans for decommissioning and waste disposal. This guide describes some of the mechanisms that can be employed for facility life

  11. A strategy for the unrestricted release of metallic scrap from decommissioned nuclear facilities, integrating quality planning with the effective use of non-destructive assay instrumentation

    International Nuclear Information System (INIS)

    Gunn, R.; Troughten, N.; Warran, C.

    2000-01-01

    The key component of any release operation is its quality plan. This plan is a step by step procedure which describes all the actions which are required during the entire process and also the information required at every stage of the process. Once drafted the quality plan will enable operators to determine at what stages it is necessary to measure the parameters required to allow the process to progress. The objective of the radiometric system is to provide the auditable proof that material has been surveyed, the record of the survey and the evidence that the system was operating within its design parameters during the survey. Typical radiometric instruments which have been deployed to provide the information requirements of the quality plan are described in this paper. These include the IonSens TM Conveyor, conveyorized survey monitor used to provide high throughout clearance surveys of removed metallic scrap. The IonSens TM Pipe, cut pipe monitor is used to survey interiors and exteriors of long lengths of removed pipe-work. The IonSens TM 208 large Item monitor is used to survey removed pieces of vessels and ductwork which may have convoluted shapes and finally the DrumScan TM system is used to survey 200 litre drums containing cut up pieces of metal. (author)

  12. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    2006-01-01

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  13. Decommissioning a nuclear power plant: the tax effects

    International Nuclear Information System (INIS)

    Foyt, W.W.

    1982-01-01

    The tax treatment of decommissioning costs is as important a consideration as construction costs. The principles also apply to offshore operations and pipeline systems having a negative salvage value. Estimates place the cost at somewhere between 15 and 100% of construction costs, depending on how the decommissioning is done. It is essential to find an accurate way to project decommissioning costs and to decide how they should be reported for tax purposes. The Internal Revenue Service (IRS) does not plan to apply Section 167, which deals with negative net salvage. Utility customers will ultimately provide the funds, but current IRS rulings count these funds as ordinary income and do not allow matching the additional revenue with decommissioning expenses

  14. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project

  15. Scheduling for decommissioning projects

    International Nuclear Information System (INIS)

    Podmajersky, O.E.

    1987-01-01

    This paper describes the Project Scheduling system being employed by the Decommissioning Operations Contractor at the Shippingport Station Decommissioning Project (SSDP). Results from the planning system show that the project continues to achieve its cost and schedule goals. An integrated cost and schedule control system (C/SCS) which uses the concept of earned value for measurement of performance was instituted in accordance with DOE orders. The schedule and cost variances generated by the C/SCS system are used to confirm management's assessment of project status. This paper describes the types of schedules and tools used on the SSDP project to plan and monitor the work, and identifies factors that are unique to a decommissioning project that make scheduling critical to the achievement of the project's goals. 1 fig

  16. Decommissioning: the final folly

    International Nuclear Information System (INIS)

    Dibdin, T.

    1990-01-01

    The Second International Seminar on Decommissioning of Nuclear Facilities held in London is reviewed. Various solutions to the reactor decommissioning, including isolating the reactor core, and turning the surrounding buildings into a theme park, are mentioned. The International Atomic Energy Agency identifies three decommissioning stages. Stage 1, defuelling; Stage 2 dismounting of non-radioactive plant with isolation of the nuclear island and Stage 3, return to a 'green field' site. The real debate is about waste management and timing of the stages - whether to defer Stage 3 for a century or so, or even whether to attempt Stage 3 at all. Cost estimation is also discussed. In the United Kingdom, the timing of completion of the deep repository for high level waste will affect the timing. (UK)

  17. Decommissioning licensing procedure

    International Nuclear Information System (INIS)

    Perello, M.

    1979-01-01

    Decommissioning or closure of a nuclear power plant, defined as the fact that takes place from the moment that the plant stops producing for the purpose it was built, is causing preocupation. So this specialist meeting on Regulatory Review seems to be the right place for presenting and discusing the need of considering the decommissioning in the safety analysis report. The main goal of this paper related to the licensing procedure is to suggest the need of a new chapter in the Preliminary Safety Analysis Report (P.S.A.R.) dealing with the decommissioning of the nuclear power plant. Therefore, after a brief introduction the problem is exposed from the point of view of nuclear safety and finally a format of the new chapter is proposed. (author)

  18. Preparation for Ignalina NPP decommissioning

    International Nuclear Information System (INIS)

    Medeliene, D.

    2004-01-01

    Latest developments of atomic energy in Lithuania, works done to prepare Ignalina NPP for final shutdown and decommissioning are described. Information on decommissioning program for Ignalina NPP unit 1, decommissioning method, stages and funding is presented. Other topics: radiation protection, radioactive waste management and disposal. Key facts related to nuclear energy in Lithuania are listed

  19. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  20. Optimizing decommissioning strategies

    International Nuclear Information System (INIS)

    Passant, F.H.

    1993-01-01

    Many different approaches can be considered for achieving satisfactory decommissioning of nuclear installations. These can embrace several different engineering actions at several stages, with time variations between the stages. Multi-attribute analysis can be used to help in the decision making process and to establish the optimum strategy. It has been used in the Usa and the UK to help in selecting preferred sites for radioactive waste repositories, and also in UK to help with the choice of preferred sites for locating PWR stations, and in selecting optimum decommissioning strategies

  1. Vinca nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.

    2002-01-01

    In this paper a preliminary program for the nuclear decommissioning in The Vinca Institute of Nuclear Sciences is presented. Proposed Projects and Activities, planned to be done in the next 10 years within the frames of the Program, should improve nuclear and radiation safety and should solve the main problems that have arisen in the previous period. Project of removal of irradiated spent nuclear fuel from the RA reactor, as a first step in all possible decommissioning strategies and the main activity in the first two-three years of the Program realization, is considered in more details. (author)

  2. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  3. Platform decommissioning costs

    International Nuclear Information System (INIS)

    Rodger, David

    1998-01-01

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  4. Shippingport station decommissioning project ALARA Program

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F.P. [Lockheed Environmental Systems and Technology Co., Houston, TX (United States)

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality in December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.

  5. Radiation protection in decommissioning of the NPP V1

    International Nuclear Information System (INIS)

    Svitek, J.; Kaizer, J.; Siska, J.

    2014-01-01

    What's new in decommissioning of the NPP V1? In 2014 the first stage of the decommissioning should be finished. The program of the first stage was characterized by decommissioning of the non-contaminated facilities and buildings (facilities and buildings out of the control area). However, during the first stage, two key activities were done during which radiation protection had to be especially supervised: BIDSF project - Treatment and Conditioning of Wet Historical Waste - Sludge and Sorbents in the operational tanks NPP V1 (the treatment has been the condition of the regulatory body for the ending of the first stage) and preparation of decontamination of both primary circuits NPP (without reactors). In the year 2015, the second stage of decommissioning should be started. Program for the second stage is broad and it includes fragmentation and treatment of activated parts of the primary circuits (reactors, their internal parts, shielding cassettes). Modification of the radiation protection equipment on the NPP site has been made by BIDSF projects. During the first stage, two basic projects have been done: C12 - Refurbishment of the radiation protection monitoring equipment and C-10 - Free release of decommissioning materials. The present state of monitoring systems, as the result of the aforementioned projects, and the first experiences are main part of this presentation. Another activity, which prepared basic conditions for an execution of radiation protection in the second stage of decommissioning, was the preparation of documents for the procurement of license for the second stage of decommissioning. (authors)

  6. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  7. Information management for decommissioning projects

    International Nuclear Information System (INIS)

    LeClair, A.N.; Lemire, D.S.

    2011-01-01

    This paper explores the importance of records and information management for decommissioning projects. Key decommissioning information and elements of a sound information management strategy are identified. Various knowledge management strategies and tools are discussed as opportunities for leveraging decommissioning information. The paper also examines the implementation of Atomic Energy of Canada Limited's (AECL) strategy for the long term preservation of decommissioning information, and its initiatives in leveraging of information with the application of several knowledge management strategies and tools. The implementation of AECL's strategy illustrates common as well as unique information and knowledge management challenges and opportunities for decommissioning projects. (author)

  8. New projects related to decommissioning

    International Nuclear Information System (INIS)

    Benbow, R.

    2008-01-01

    The PMU has been established in support of the KNPP Decommissioning Department. All of the Infrastructure Projects associated with Decommissioning have been identified and are being managed through the EBRD Procurement Process. The status of the following projects is presented: Evaluation of the Radiological Inventory for Units 1 to 4; Supply of Size Reduction and Decontamination Workshops; Dismantling Tools and Equipment; Heat Generation Plant; Environmental Assessment for Decommissioning; Decay Storage Site for Transitional RAW ; Information Centres for Decommissioning; Storage Site for Conventional Waste from Decommissioning; Inventory, Treatment an Conditioning of Contaminated Soil; Concrete Core Sampling Analysis; Asbestos Removal Equipment; Demolition Equipment

  9. Guidelines of Decommissioning Schedule Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Yun, Taesik; Kim, Younggook; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning has recently become an issue highlighted in Korea due to the Permanent Shutdown (PS) of Kori-1 plant. Since Korea Hydro and Nuclear Power (KHNP) Company decided the PS of Kori-1 instead of further continued operation, Kori-1 will be the first decommissioning plant of the commercial reactors in Korea. Korean regulatory authority demands Initial Decommissioning Plan (IDP) for all the plants in operation and under construction. In addition, decommissioning should be considered for the completion of the life cycle of NPPs. To date, Korea has no experience regarding decommissioning of the commercial reactor and a lot of uncertainties will be expected due to its site-specific factors. However, optimized decommissioning process schedule must be indispensable in the safety and economic efficiency of the project. Differed from USA, Korea has no experience and know-hows of the operation and site management for decommissioning. Hence, in Korea, establishment of decommissioning schedule has to give more weight to safety than precedent cases. More economical and rational schedule will be composed by collecting and analyzing the experience data and site-specific data and information as the decommissioning progresses. In a long-range outlook, KHNP having capability of NPP decommissioning will try to decommissioning business in Korea and foreign countries.

  10. Lessons Learned for Decommissioning Planning

    International Nuclear Information System (INIS)

    Sohn, Wook; Kim, Young-gook; Kim, Hee-keun

    2015-01-01

    The purpose of this paper is to introduce the U.S. nuclear industrial's some key lessons learned especially for decommissioning planning based on which well informed decommissioning planning can be carried out. For a successful decommissioning, it is crucial to carry out a well-organized decommissioning planning before the decommissioning starts. This paper discussed four key factors which should be decided or considered carefully during the decommissioning planning period with introduction of related decommissioning lessons learned of U.S. nuclear industry. Those factors which have been discussed in this paper include the end state of a site, the overall decommissioning strategy, the management of the spent fuels, and the spent fuel pool island. Among them, the end state of a site should be decided first as it directs the whole decommissioning processes. Then, decisions on the overall decommissioning strategy (DECON vs. SAFSTOR) and the management of the spent fuels (wet vs. dry) should follow. Finally, the spent fuel pool island should be given due consideration because its implementation will result in much cost saving. Hopefully, the results of this paper would provide useful inputs to performing the decommissioning planing for the Kori unit 1

  11. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  12. Decommissioning, mothballing and revamping

    International Nuclear Information System (INIS)

    Briggs, M.; Buck, S.; Smith, M.

    1997-01-01

    This guide, written to assist those concerned with the decommissioning of redundant facilities, is applicable to nuclear, chemical and power plants. Legal aspects and risk management is covered in the pre-project stage. Preparation for and execution of renovation, modification or mothballing of various plants is also covered. Dismantling operations and the necessary follow-up conclude the book. (UK)

  13. Decommissioning the WAGR

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, H. (UKAEA Windscale Nuclear Power Development Labs.)

    1982-11-01

    The planned decommissioning of the Windscale Advanced Gas-cooled Reactor, which will take about ten years, is discussed with especial reference to the radioactive decay of the reactor components, the problems of disposal of the resulting radioactive waste, and the planning of the necessary engineering works.

  14. Decommissioning the WAGR

    International Nuclear Information System (INIS)

    Lawton, H.

    1982-01-01

    The planned decommissioning of the Windscale Advanced Gas-cooled Reactor, which will take about ten years, is discussed with especial reference to the radioactive decay of the reactor components, the problems of disposal of the resulting radioactive waste, and the planning of the necessary engineering works. (U.K.)

  15. Shippingport Station Decommissioning Project (SSDP). A progress report

    International Nuclear Information System (INIS)

    Mullee, G.R.; Usher, J.M.

    1986-01-01

    The Shippingport Atomic Power Station was shutdown in October, 1982 by the Plant Operator, Duquesne Light Company, for decommissioning by the US Department of Energy. The planning for decommissioning was completed in September, 1983. In September, 1984 operational responsibility for the station was transferred to the DOE's Decommissioning Operations Contractor - the General Electric Company (assisted by an integrated subcontractor, MK Ferguson Company). Significant accomplishments to date include the completion of all prerequisites for decommissioning, the removal of asbestos from plant systems, loading of irradiated reactor components into the reactor vessel for shipment, the commencement of electrical deactivations and the commencement of piping/component removal. Decontamination and waste processing are progressing in support of the project schedule. The reactor vessel will be shipped as one piece on a barge for burial at Hanford, Washington. The final release of the site is scheduled for April, 1990. A technology transfer program is being utilized to disseminate information about the project

  16. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  17. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  18. Decommissioning - The worldwide challenge

    International Nuclear Information System (INIS)

    McKeown, John

    2002-01-01

    Full text: Whatever the future may hold for nuclear power, there are closed or ageing nuclear facilities in many countries around the world. While these may be in safe care and maintenance at present, a sustainable long term solution is required. Facilities need to be decommissioned, contaminated land remediated, and wastes conditioned for safe storage or disposal. Practical nuclear site restoration has been demonstrated internationally. This experience has revealed generic challenges in dealing with old, often experimental, facilities. These include: Facilities not designed for ease of decommissioning; Records of plant construction and operation, and of the materials utilised and wastes produced, not to modern standards; Fuels and wastes stored for long periods in less than optimal conditions, leading to deterioration and handling problems; The historic use of experimental fuels and materials, giving rise to unique waste streams requiring unique waste management solutions; The application of modern safety and environmental standards to plant which dates from the 1940s, 50s and 60s, requiring investment before decommissioning can even commence. These problems can be tackled, as examples from UKAEA's own programme will illustrate. But two fundamental issues must be recognised and considered. First, the costs of decommissioning older facilities are very high, and may place a heavy burden on national budgets, despite using best efforts to control them. We can limit these costs by learning from one another's experience and sharing the development of new techniques and technologies. UKAEA has already initiated a programme of international collaboration, and hopes that other IAEA countries will be encouraged to follow suit. But whilst the costs of decommissioning may be high, the process normally meets with public acceptance. This is seldom the case for long term waste storage or disposal. Until waste management routes are available - either nationally or internationally

  19. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  20. Decommissioning of nuclear facilities using current criteria

    International Nuclear Information System (INIS)

    Shum, E.Y.; Swift, J.J.; Malaro, J.C.

    1991-01-01

    When a licensed nuclear facility ceases operation, the US Nuclear Regulatory Commission (NRC) is responsible for ensuring that the facility and its site are decontaminated to an acceptable level so that it is safe to release that facility and site for unrestricted public use. Currently, the NRC is developing decommissioning criteria based on reducing public doses from residual contamination in soils and structures at sites released for unrestricted use to as low as is reasonably achievable (ALARA). Plans are to quantify ALARA in terms of an annual total effective dose equivalent (TEDE) to an average member of the most highly exposed population group. The NRC is working on a regulatory guidance document to provide a technical basis for translating residual contamination levels to annual dose levels. Another regulatory guide is being developed to provide guidance to the licensee on how to conduct radiological surveys to demonstration compliance with the NRC decommissioning criteria. The methods and approaches used in these regulatory guides on the decommissioning of a nuclear facility are discussed in the paper

  1. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  2. Evolution or revolution? Dismantling the FASB standard on decommissioning costs

    International Nuclear Information System (INIS)

    Ferguson, J.S.

    1996-01-01

    The Financial Standards and Accounting Board has issued for comment a draft of proposed financial accounting standards pertaining to nuclear plant decommissioning. This article examines the proposed rules and discusses alternate approaches in those areas in which the author takes issue with the FASB draft

  3. Progress and experiences from the decommissioning of the eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gillis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2008-01-01

    The Eurochemic reprocessing facility at Dessel in Belgium, was constructed from 1960 to 1966. After shutdown, the plant was decontaminated from 1975 to 1979 to keep safe standby conditions at reasonable cost. When it was decided in 1986 not to resume reprocessing in Belgium, the main Belgoprocess activities changed to processing and storage of radioactive waste and to decontamination and decommissioning of obsolete nuclear facilities. The industrial decommissioning was started in 1990. This document presents the project: overview of decommissioning activities and equipment used, automation in decontamination, ensuring health and safety during the operations, release of decontaminated materials, current situation of the decommissioning activities and quality assurance program. (A.L.B.)

  4. Decommissioning project management unit started its activities

    International Nuclear Information System (INIS)

    Medeliene, D.

    2002-01-01

    The Decommissioning Project Management Unit team comprises western experts as well as experts from INPP Decommissioning Service who all work as a single team. The DPMU will develop the Final Decommissioning Plan and a more detailed Decommissioning Project, which will describe how the plant will be removed from service and safely decommissioned

  5. INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

  6. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  7. Ethics of nuclear decommissioning

    International Nuclear Information System (INIS)

    Surrey, John

    1992-01-01

    What to do with the numerous reactors that reach the end of their operating lives over the next 30 years involves ethical issues of an intergenerational kind. This essay examines various nuclear decommissioning options in the light of the ethical issues. Prompt dismantlement seems preferable to other options involving postponed dismantlement, entombment of some kind or doing nothing. It would avoid bequeathing future generations with the disamenity of entombed reactors or responsibility for dismantling other disused reactors. The choice of option also depends on the health risks through time and whether a sufficient decommissioning fund exists to avoid handing down debt and constrained choice. There is a strong case for supporting research and development from public funds to develop the technology and reduce both the health risks and the costs, especially if dismantlement is left to a future generation. (author)

  8. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  9. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  10. Fort St. Vrain decommissioning project

    International Nuclear Information System (INIS)

    Fisher, M.

    1998-01-01

    Public Service Company of Colorado (PSCo), owner of the Fort St. Vrain nuclear generating station, achieved its final decommissioning goal on August 5, 1997 when the Nuclear Regulatory Commission terminated the Part 50 reactor license. PSCo pioneered and completed the world's first successful decommissioning of a commercial nuclear power plant after many years of operation. In August 1989, PSCo decided to permanently shutdown the reactor and proceed with its decommissioning. The decision to proceed with early dismantlement as the appropriate decommissioning method proved wise for all stake holders - present and future - by mitigating potential environmental impacts and reducing financial risks to company shareholders, customers, employees, neighboring communities and regulators. We believe that PSCo's decommissioning process set an exemplary standard for the world's nuclear industry and provided leadership, innovation, advancement and distinguished contributions to other decommissioning efforts throughout the world. (author)

  11. Vandellos 1 NPP decommissioning feedback experience

    International Nuclear Information System (INIS)

    Fernandez, Rodriguez A.

    2003-01-01

    amount of material generated during the decommissioning works, the different types, the different origins, the different vector nuclides make the problem of the materials control, a serious problem, which must be managed as a logistics with a fine control and software systems support; h) The characterisation of the materials is a very detailed work in order to define the ways for dispatching. Any radwaste procedure must be supported by a characterization data. The characterization of the materials takes more importance in the clearance process; everybody knows the relevance of the radiological decisions for release the materials outside; i) The new designs can be improve with the experience of the decommissioning. When you arrive at the last step of any industrial activity, you realize that could be designed better; Some times, technicians speak about the improve the alloy of the metals, it's true, but 'there are more things relatively important, as a expansion joints, waterproof surfaces, an other aspects, that can be improve to facilitate decommissioning activities; j) The records are the bases of the projects. To have a good documentation (as-built) from the operation time is needed in order to perform the project; During the decommissioning projects recorded files of the executed works are needed for the future, mostly in deferred dismantlement. Reflections about physical support and management system of records must be done; k) The human resources in the works are essential. It's necessary to integrate the experience of operation phase into these decommissioning teams. The multidisciplinary must be a characteristic of the teams; some changes must be done in the organization chart when the installations pass from the operational phase to the decommissioning phase. The organization from the operation is not directly applicable to decommissioning

  12. Decommissioning and demolition 1992

    International Nuclear Information System (INIS)

    Whyte, I.L.

    1992-01-01

    The decommissioning and demolition of structures offshore, onshore and in nuclear works involves new technologies and industries in demolition and removal. The aim of the conference was to provide a forum to keep up to date with technological developments, to publicise new techniques and to share and discuss present and future plans. A particular feature was the multi-disciplinary approach to promote and encourage communication between different sectors of this difficult field of operations. The conference emphasised not only technical issues but also legislative, management and health and safety aspects. Papers were presented by practising engineers, contractors and research workers involved in offshore structures, buildings, power stations, contaminated sites, nuclear plant and includes specialist techniques of cutting, lifting, explosives, ground treatment and decontamination. Many valuable case histories and records based on practical experience were reported. The volume provides a reference source on the state-of-the-art in decommissioning and demolition. The ten papers relevant to the decommissioning and demolition of nuclear facilities are indexed separately. (Author)

  13. Decommissioning of nuclear power facilities

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Yashchenko, Ya.V.

    2005-01-01

    This is the first manual in Ukraine giving the complete review of the decommissioning process of the nuclear power facilities including the issues of the planning, design documentation development, advanced technology description. On the base of the international and domestic experience, the issues on the radwaste management, the decontamination methods, the equipment dismantling, the remote technology application, and also the costs estimate at decommissioning are considered. The special attention to the personnel safety provision, population and environment at decommissioning process is paid

  14. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  15. Guideline to Estimate Decommissioning Costs

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Kim, Younggook; Oh, Jaeyoung [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The primary objective of this work is to provide guidelines to estimate the decommissioning cost as well as the stakeholders with plausible information to understand the decommissioning activities in a reasonable manner, which eventually contribute to acquiring the public acceptance for the nuclear power industry. Although several cases of the decommissioning cost estimate have been made for a few commercial nuclear power plants, the different technical, site-specific and economic assumptions used make it difficult to interpret those cost estimates and compare them with that of a relevant plant. Trustworthy cost estimates are crucial to plan a safe and economic decommissioning project. The typical approach is to break down the decommissioning project into a series of discrete and measurable work activities. Although plant specific differences derived from the economic and technical assumptions make a licensee difficult to estimate reliable decommissioning costs, estimating decommissioning costs is the most crucial processes since it encompasses all the spectrum of activities from the planning to the final evaluation on whether a decommissioning project has successfully been preceded from the perspective of safety and economic points. Hence, it is clear that tenacious efforts should be needed to successfully perform the decommissioning project.

  16. Recordkeeping in the decommissioning process

    International Nuclear Information System (INIS)

    Boing, L. E.

    2000-01-01

    In the US, there are two sets of key decommissioning records clearly identified -- those that are essential for planning the D and D of a facility and then those that are the result of the decommissioning process itself. In some cases, the regulatory authorities require and in others advise the licensees of the records that may be useful or which are required to be kept from the decommissioning. In the remainder of the paper, the author attempts to highlight some important aspects of decommissioning recordkeeping

  17. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  18. SOGIN Decommissioning strategy and funding (Italy)

    International Nuclear Information System (INIS)

    2006-01-01

    Statement: In Italy, as it is well known, there are no more operational NPPs. The four existing nuclear plants are definitely shutdown and ready for decommissioning. Considerations on decommissioning funding system have to take into account this particular situation. Strategy for decommissioning: New inputs given to SOGIN by the Italian Government are: conditioning all radioactive waste existing on the NPPs within the year 2010, release all nuclear sites - free of radiological constraints - by 2020. The last task is conditioned by availability of the national waste repository by the year 2009. Strategy for decommissioning: Key issue is prompt dismantling considering No more nuclear activities in Italy and Progressive loss of competencies. Previously Existing funds: Before plant shutdown, ENEL has cumulated provisions for decommissioning, even in absence of a clear regulatory framework. These provisions were not sufficient for decommissioning, considering the early closure of the plants. An additional fund was granted to ENEL by the government, in the form of a 'credit' to be paid by the 'electric system' (CCSE). This fund (provisions + credit) was considered sufficient by ENEL for a decommissioning with Safe Store strategy (fund = discounted foreseen costs). The total fund (provisions + credit) was assigned to Sogin at the incorporation date. The amount, money 1999, was about 800 M euros. Considering the new context: new strategy (Prompt Dismantling with site release by 2020), Sogin constitution (societal costs), new economic conditions. The fund was not considered sufficient for all Sogin tasks. This conclusion was agreed upon also by the independent 'Authority for electric energy and gas'. A new regulatory framework was therefore defined. Regulatory aspects: The Legislative Decree 79/99 has stated that costs for the decommissioning of NPP, fuel cycle back end and related activities should be considered as stranded costs for the general electric system. The same

  19. Assuring the availability of funds for decommissioning nuclear reactors

    International Nuclear Information System (INIS)

    1990-08-01

    The general requirements for applications for license termination and decommissioning nuclear power, research, and test reactors are contained in 10 CFR Part 50, ''Domestic Licensing of Production and Utilization Facilities.'' On June 27, 1988, the Commission published amendments to 10 CFR Part 50 (53 FR 24018) concerning specific criteria for decommissioning nuclear facilities. Amended 10 CFR 50.33(k), 50.75, and 50.82(b) require operating license applicants and existing licensees to submit information on how reasonable assurance will be provided that funds are available to decommission the facility. Amended section 50.75 establishes requirements for indicating how this assurance will be provided, namely the amount of funds that must provided, including updates, and the methods to be used for assuring funds. This regulatory guide has been developed in conjunction with the rule amendments and was published for public comment in May 1989. This version incorporates, where appropriate, the public comments received. Its purpose is to provide guidance to applicants and licensees of nuclear power, research, and test reactors concerning methods acceptable to the NRC staff for complying with requirements in the amended rule regarding the amount of funds for decommissioning. It also provides guidance on the content and form of the financial assurance mechanisms indicated in the rule amendments. 9 refs

  20. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  1. Workshop on decommissioning; Seminarium om avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. (ed.)

    2005-12-15

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  2. ORNL decontamination and decommissioning program

    International Nuclear Information System (INIS)

    Bell, J.P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed

  3. BNFL decommissioning strategy and techniques

    International Nuclear Information System (INIS)

    Taylor, D.

    2002-01-01

    This paper provides an overview of the range of reactor decommissioning projects being managed by BNFL, both on its own sites and for other client organizations in the UK and abroad. It also describes the decommissioning strategies and techniques that have been developed by BNFL and adopted in order to carry out this work

  4. Implementation of the Clean Air Act, Title III, Section 112(r) Prevention of Accidental Release Rule requirements at U.S. DOE Oak Ridge Reservation facilities

    International Nuclear Information System (INIS)

    Humphreys, M.P.

    1997-01-01

    Title III, Section 112(r) of the Clean Air Act (CAA) Amendments of 1990 requires the Environmental Protection Agency (EPA) to promulgate regulations to prevent accidental releases of regulated substances and to reduce the severity of those releases that do occur. The final EPA rule for Risk Management Programs under Section 112(r)(7) of the CAA, promulgated June 20, 1996, applies to all stationary sources with processes that contain more than a threshold quantity of any of 139 regulated substances listed under 40 CFR 68.130. All affected sources will be required to prepare a risk management plan which must be submitted to EPA and be made available to state and local governments and to the public. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of the Prevention of Accidental Release Rule. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the K-25 Site. The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the K-25 Site conducts a variety of research and development activities and is the home of a mixed waste incinerator. ORR activities underway and soon to be undertaken toward implementation of the Prevention of Accidental Release Rule include: compilation of inventories of regulated substances at all processes at each of the three ORR Facilities for determination of affected processes and facilities; plans for inventory reduction to levels below threshold quantities, where necessary and feasible; determination of the overlap of processes subject to the OSHA PSM Standard and determination of parallel requirements; preparation of Risk Management Plans and Programs for affected processes and facilities including detailed requirements

  5. Decommissioning policy in Sweden

    International Nuclear Information System (INIS)

    Bergman, C.; Boge, R.; Snihs, J.O.

    1987-01-01

    In Sweden the nuclear power program is, according to a parliamentary decision, limited to twelve power producing reactors. The last reactor shall be taken out of service no later than the year 2010. As a result of the Chernobyl accident the program for taking the reactors out of service will be accelerated. This report is the first approach by the Swedish authorities to formulate a decommissioning policy. It is not the final policy document but it discusses the principal questions from the special Swedish viewpoint. (orig.)

  6. Decommissioning policy in Sweden

    International Nuclear Information System (INIS)

    Bergman, C.; Boge, R.; Snihs, J.O.

    1987-01-01

    In Sweden the nuclear power program is, according to a parliamentary decision, limited to twelve power producing reactors. The last reactor shall be taken out of service no later than the year 2010. As a result of the Chernobyl accident the program for taking the reactors out of service will be accelerated. The first approach by the Swedish authorities to formulate a decommissioning policy is discussed. It is not the final policy document but it discusses the principal questions from the special Swedish viewpoint

  7. Decommissioning Funding: Ethics, Implementation, Uncertainties

    International Nuclear Information System (INIS)

    2007-01-01

    This status report on decommissioning funding: ethics, implementation, uncertainties is based on a review of recent literature and materials presented at NEA meetings in 2003 and 2004, and particularly at a topical session organised in November 2004 on funding issues associated with the decommissioning of nuclear power facilities. The report also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). This report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems

  8. Remote Decommissioning Experiences at Sellafield

    International Nuclear Information System (INIS)

    Brownridge, M.

    2006-01-01

    British Nuclear Group has demonstrated through delivery of significant decommissioning projects the ability to effectively deploy innovative remote decommissioning technologies and deliver cost effective solutions. This has been achieved through deployment and development of off-the-shelf technologies and design of bespoke equipment. For example, the worlds first fully remotely operated Brokk was successfully deployed to enable fully remote dismantling, packaging and export of waste during the decommissioning of a pilot reprocessing facility. British Nuclear Group has also successfully implemented remote decommissioning systems to enable the decommissioning of significant challenges, including dismantling of a Caesium Extraction Facility, Windscale Pile Chimney and retrieval of Plutonium Contaminated Material (PCM) from storage cells. The challenge for the future is to continue to innovate through utilization of the supply chain and deploy off-the-shelf technologies which have been demonstrated in other industry sectors, thus reducing implementation schedules, cost and maintenance. (authors)

  9. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  10. 76 FR 30422 - Notice of Intent To Rule on Request To Release Airport Property at the Helena Regional Airport...

    Science.gov (United States)

    2011-05-25

    ... To Release Airport Property at the Helena Regional Airport, Helena, Montana AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of Request to Release Airport Property... Airport (HLN) under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  11. 75 FR 58019 - Notice of Intent to Rule on Request to Release Airport Property at the Kearney Municipal Airport...

    Science.gov (United States)

    2010-09-23

    ... to Release Airport Property at the Kearney Municipal Airport, Kearney, NE AGENCY: Federal Aviation Administration, (FAA), DOT. ACTION: Notice of Request to Release Airport Property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  12. 78 FR 7852 - Notice of Intent To Rule on Request To Release Airport Property at the Rocky Mountain...

    Science.gov (United States)

    2013-02-04

    ... To Release Airport Property at the Rocky Mountain Metropolitan Airport, Broomfield, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY... Metropolitan Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  13. 75 FR 20879 - Notice of Intent To Rule on Request To Release Airport Property at the Eagle County Regional...

    Science.gov (United States)

    2010-04-21

    ... To Release Airport Property at the Eagle County Regional Airport, Eagle, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Request to Release Airport Property. SUMMARY: The FAA proposes to... provisions of section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  14. 76 FR 20071 - Notice of Intent To Rule on Request To Release Airport Property at the Burnet Municipal Airport...

    Science.gov (United States)

    2011-04-11

    ... To Release Airport Property at the Burnet Municipal Airport, Burnet, TX AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Request To Release Airport Property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  15. 76 FR 12408 - Notice of Intent to Rule on Request To Release Airport Property at Ellington Field Airport...

    Science.gov (United States)

    2011-03-07

    ... To Release Airport Property at Ellington Field Airport, Houston, Texas AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  16. 77 FR 64838 - Notice of Intent To Rule on Request To Release Airport Property at the Seattle-Tacoma...

    Science.gov (United States)

    2012-10-23

    ... To Release Airport Property at the Seattle-Tacoma International Airport, Seattle, Washington AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY... International Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  17. 78 FR 20168 - Notice of Intent To Rule on Request To Release Airport Property at the Boulder Municipal Airport...

    Science.gov (United States)

    2013-04-03

    ... To Release Airport Property at the Boulder Municipal Airport, Boulder, CO AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  18. 78 FR 15112 - Notice of Intent To Rule on Request To Release Airport Property at the Seattle-Tacoma...

    Science.gov (United States)

    2013-03-08

    ... To Release Airport Property at the Seattle-Tacoma International Airport, Seattle, Washington AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Request to Release Airport Property. SUMMARY... International Airport under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  19. 77 FR 39793 - Notice of Intent To Rule on Request To Release Airport Property at Portland-Hillsboro Airport...

    Science.gov (United States)

    2012-07-05

    ... To Release Airport Property at Portland--Hillsboro Airport, Hillsboro, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Proposal to Release Airport Property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  20. 75 FR 76778 - Notice of Intent To Rule on Request To Release Airport Property at the Kearney Municipal Airport...

    Science.gov (United States)

    2010-12-09

    ... To Release Airport Property at the Kearney Municipal Airport, Kearney, NE AGENCY: Federal Aviation Administration, (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21...

  1. 76 FR 18622 - Notice of Intent To Rule on Request To Release Airport Property at the Helena Regional Airport...

    Science.gov (United States)

    2011-04-04

    ... To Release Airport Property at the Helena Regional Airport, Helena, MT AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of request to release airport property... Airport (HLN) under the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act...

  2. 78 FR 32699 - Notice of Intent To Rule on Request to Release Airport Property at the Fort Worth Spinks Airport...

    Science.gov (United States)

    2013-05-31

    ... to Release Airport Property at the Fort Worth Spinks Airport, Fort Worth, Texas AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA... the provisions of Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st...

  3. Shippingport Station Decommissioning Project Start of Physical Decommissioning

    International Nuclear Information System (INIS)

    Crimi, F. P.

    1987-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy, and the turbine-generator and balance of plant, which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by DOE from Duquesne Light Company. The Shippingport Station Decommissioning Project is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, Morrison-Knudsen Company. as the Decommissioning Operations Contractor. This paper describes the current status of the physical decommissioning work, which started September 1985. The preparations required to start a major decommissioning work effort in a safe and cost effective manner are discussed including the development and implementation of a cost/schedule control system. The detailed plan required to ensure that people, property, and procedures are ready in sufficient time to support the start of physical decommissioning is also discussed. The total estimated cost of the Shippingport Station Decommissioning Project should be $98.3 M, with the Project scheduled for completion in April 1990. As the decommissioning of the first commercial-scale nuclear power plant, the Shippingport Project is expected to set the standard for safe, cost-effective demolition of nuclear plants

  4. Criteria for decommissioning

    International Nuclear Information System (INIS)

    Ricci, P.F.

    1988-01-01

    In this paper the authors describe three risk acceptability criteria as parts of a strategy to clean up decommissioned facilities, related to both the status quo and to a variety of alternative technical clean-up options. The acceptability of risk is a consideration that must enter into any decision to establish when a site is properly decommissioned. To do so, both the corporate and public aspects of the acceptability issue must be considered. The reasons for discussion the acceptability of risk are to: Legitimize the process for making cleanup decisions; Determine who is at risk, who benefits, and who bears the costs of site cleanup, for each specific cleanup option, including the do nothing option; Establish those factors that, taken as a whole, determine measures of acceptability; Determine chemical-specific aggregate and individual risk levels; and Establish levels for cleanup. The choice of these reasons is pragmatic. The method consistent with these factors is risk-risk-effectiveness: the level of cleanup must be consistent with the foreseeable use of the site and budget constraints. Natural background contamination is the level below which further cleanup is generally inefficient. Case-by-case departures from natural background are to be considered depending on demonstrated risk. For example, a hot spot is obviously a prima facie exception, but should be rebuttable. Rebuttability means that, through consensus, the ''hot spot'' is shown not to be associated with exposure

  5. Funding Decommissioning - UK Experience

    International Nuclear Information System (INIS)

    MacKerron, Gordon

    2006-01-01

    'Funding' started with CEGB and SSEB (state-owned electric utilities) in 1976 using the internal un-segregated fund route (i.e unfunded). This continued until privatisation of electricity industry (excluding nuclear) in 1990. Assets bought with the internal un-segregated fund were mostly transferred into non-nuclear private utilities. New state-owned Nuclear Electric (England and Wales) was given a 'Fossil Fuel Levy', a consumer charge of 10% on retail bills, amounting to c. BP 1 bn. annually. This allowed Nuclear Electric to trade legally (A reserve of BP 2.5 bn. was available from Government if company ran out of money). By 1996 the newer nuclear stations (AGRS plus PWR) were privatised as British Energy. British Energy started an external segregated fund, the Nuclear Decommissioning Fund, with a starting endowment of c. BP 225 m. - and BE made annual contributions of British Pound 16 m. into the Fund. Assumptions were that BE had 70 to accumulate cash and could get a 3.5% average annual real return. Older stations (Magnox) were left in private sector and went to BNFL in 1997. Magnox inherited the surplus cash in BE - mostly unspent Fossil Fuel Levy receipts - of c. BP 2.6 bn. Government gave an 'Undertaking' to pay BP 3.8 bn. (escalating at 4.5% real annually) for Magnox liabilities, should Magnox Electric run out of cash. BNFL inherited the BP 2.6 bn. and by 2000 had a 'Nuclear Liabilities Investment Portfolio' of c. BP 4 bn. This was a quasi-segregated internal fund for liabilities in general. [Note: overall UK nuclear liabilities in civilian sector were running at c. BP 48 bn. by now]. BE started profitable and paid BP 100 m. annually in dividends to private investors for several years. BE ran into severe financial problems after 2001 and Government organised restructuring aid, now approved by European Commission. Terms include: - BE now to contribute BP 20 m. a year into an expanded Nuclear Liabilities Fund; - A bond issue of BP 275 m. to go to Fund; - 65

  6. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  7. Aspects related to the decommissioning of the nuclear power plants

    International Nuclear Information System (INIS)

    Goicea, Andrei; Andrei, Veronica

    2003-01-01

    All power plants, either coal, gas or nuclear, at the end of their life needs to be decommissioned and demolished and thus, to made the site available for other uses. The first generation nuclear power plants were designed for a life of about 30 years and some of them proved capable of continuing well beyond this term. Newer plants have been designed for a 40 to 60 years operating life. To date, other 90 commercial power reactors have been retired from operation. For nuclear power plants and nuclear facilities in general the decommissioning process consists of some or all of the following activities: the safe management of nuclear materials held in the facility, cleaning-up of radioactivity (decontamination), plant dismantling, progressive demolition of the plant and site remediation. Following the decommissioning, the regulatory controls covering facility end, partially or totally, and the safe site is released for appropriate alternative use. Cernavoda NPP is a young plant and it can benefit from the continuously developing experience of the decommissioning process at the international level. The current experience allows the most metallic parts of a nuclear power to be decontaminated and recycled and makes available proven techniques and equipment to dismantle nuclear facilities safely. As experience is gained, decommissioning costs for nuclear power plants, including disposal of associated wastes, are reducing and thus, contribute in a smaller fraction to the total cost of electricity generation. The new specific Romanian regulations establish a funding system for decommissioning and provisions for long-term radioactive waste management. In the near future a decommissioning plan will be made available for Cernavoda NPP. Since the plant has only 7 years operation, that plan can be improved in order to benefit from international experience that is growing. (authors)

  8. Decommissioning of nuclear facilities in Korea

    International Nuclear Information System (INIS)

    Hahn, Pil Soo

    2003-01-01

    In 1996, it was concluded that the first Korea research reactor (KRR-1) and the second Korea research reactor (KRR-2) would be shut down and decommissioned. The main reason for the decommissioning was that the facilities became old and has become surrounded by the urbanised community. And many difficulties, including the higher cost, were faced according to the enhanced regulations. Another reason was the introduction of a new research reactor 'HANARO' in 1995. A project to decommission the reactors was launched on January of 1997 with a goal of release of the site and buildings for unrestricted use by 2008. All the radioactive wastes generated are to be transported to the national repository, planned by the Korea Hydro and Nuclear Power Company (KHNP), and the final evaluation of the residual radioactivity will be made before the clearance of the site. As a first step of the project, a decommissioning plan, including the assessment of the environmental impact and the quality assurance program, was prepared and submitted to the government in 1998. It was approved, after its safety evaluation, by the Korea Institute of Nuclear Safety (KINS) in November of 2000. After some preparative works such as documentation of procedures, the decontamination and dismantling works for the laboratories and hot cells of KRR-2 were started in September, 2001 and finished in December, 2002. The spent fuels that had been generated from the reactors were transferred to the United States in 1998 and no spent fuel remained at the site. All the liquid waste, both operational and decommissioning, was very low in its radioactivity and was treated in a natural evaporation facility of 200 m3/year capacity, developed by KAERI. Especially the laundry waste was treated in a membrane filtering unit for the removal of surfactants before being introduced to the natural evaporator. The solid wastes were segregated and packed in the container of 4 m3, designed according to the ISO-1496, and also in

  9. Stakeholder involvement in the decommissioning of Trojan and Maine Yankee nuclear power plants

    International Nuclear Information System (INIS)

    Watson, Bruce A.; Orlando, Dominick A.

    2006-01-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in the decommissioning planning, the conduct of decommissioning operations, the volume of low-level radioactive waste, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated its 10 CFR Part 50 license. Maine Yankee elected to reduce the 10 CFR Part 50 license to only the requirements for the ISFSI. While the NRC regulations are flexible and allow different approaches to ISFSI licensing, there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, stakeholder and public input resulted in the licensee entering into an agreement with a citizen group and resulted in State legislation that lowered the dose limit below the NRC radiological criteria of 0.25 milli-Sievert/year (mSv/yr) (25 mrem/yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs) that were well below the NRC DCGL screening values. This contributed to

  10. The decommissioning information management system

    International Nuclear Information System (INIS)

    Park, Seung-Kook; Moon, Jei-Kwon

    2015-01-01

    At the Korea Atomic Energy Research Institute (KAERI), the Korea Research Reactor (KRR-2) and one uranium conversion plant (UCP) were decommissioned. A project was launched in 1997, for the decommissioning of KRR-2 reactor with the goal of completion by 2008. Another project for the decommissioning of the UCP was launched in 2001. The physical dismantling works were started in August 2003 and the entire project was completed by the end of 2010. KAERI has developed a computer information system, named DECOMMIS, for an information management with an increased effectiveness for decommissioning projects and for record keeping for the future decommissioning projects. This decommissioning information system consists of three sub-systems; code management system, data input system (DDIS) and data processing and output system (DDPS). Through the DDIS, the data can be directly inputted at sites to minimize the time gap between the dismantling activities and the evaluation of the data by the project staff. The DDPS provides useful information to the staff for more effective project management and this information includes several fields, such as project progress management, man power management, waste management, and radiation dose control of workers and so on. The DECOMMIS was applied to the decommissioning projects of the KRR-2 and the UCP, and was utilized to give information to the staff for making decisions regarding the progress of projects. It is also to prepare the reference data for the R and D program which is for the development of the decommissioning engineering system tools and to maintain the decommissioning data for the next projects. In this paper, the overall system will be explained and the several examples of its utilization, focused on waste management and manpower control, will be introduced. (author)

  11. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  12. Governments' role in decommissioning nuclear power facilities

    International Nuclear Information System (INIS)

    Guindon, S.; Wendling, R.D.; Gordelier, S.; Soederberg, O.; Averous, J.; Orlando, D.

    2005-01-01

    the Rome Workshop, we conclude that, with respect to power production facilities, government policy should aim at securing funding, whatever system is practically chosen, so that the actual beneficiary from the power generated - and not the future taxpayer -pays for all the production costs, including future decommissioning. There are very good ethical reasons behind a system which ensures that the generations that consume this electricity do not leave such an economic burden to their grandchildren. This is also one of the principles that are expressed in the 1999 Joint Convention. The most practical way to ensure that such economic burdens do not crop up at a later stage is probably to create some sort of funding mechanism. Such funding can be organised in different ways according to different conditions in different countries. Generally speaking, to ensure an effective funding mechanism, there has to be national legislation on how such a mechanism should be constructed. Different systems with governmental institutions more or less involved are possible. But any funding system, aiming at providing economic resources for decommissioning in a foreseeable future should meet the following requirements. Stable legal framework: the legislation regarding funding should have high profile among legislators to ensure that political pressures do not lead to decisions to change the legislation in order to allow assets to be used for other urgent purposes. Legal rules must ensure that funds collected for this purpose cannot disappear as a consequence of bankruptcy of an owner of a nuclear facility that needs to be decommissioned. Calculations of future costs have to meet high accuracy standards. This means that appropriate discount factors will have to be applied to ensure that the time frames when costs will be incurred will be factored into the costing formulae. One possible way to achieve high accuracy is to require regular and frequent reviews of all calculations. It is

  13. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  14. Approaches to estimating decommissioning costs

    International Nuclear Information System (INIS)

    Smith, R.I.

    1990-07-01

    The chronological development of methodology for estimating the cost of nuclear reactor power station decommissioning is traced from the mid-1970s through 1990. Three techniques for developing decommissioning cost estimates are described. The two viable techniques are compared by examining estimates developed for the same nuclear power station using both methods. The comparison shows that the differences between the estimates are due largely to differing assumptions regarding the size of the utility and operating contractor overhead staffs. It is concluded that the two methods provide bounding estimates on a range of manageable costs, and provide reasonable bases for the utility rate adjustments necessary to pay for future decommissioning costs. 6 refs

  15. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist.

  16. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    International Nuclear Information System (INIS)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon

    2014-01-01

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist

  17. Decommissioning of multiple-reactor stations: facilitation by sequential decommissioning

    International Nuclear Information System (INIS)

    Moore, E.B.; Smith, R.I.; Wittenbrock, N.G.

    1982-01-01

    Reductions in cost and radiation dose can be achieved for decommissionings at multiple reactor stations because of factors not necessarily present at a single reactor station: reactors of similar design, the opportunity for sequential decommissioning, a site dedicated to nuclear power generation, and the option of either interim or permanent low-level radioactive waste storage facilities onsite. The cost and radiation dose reductions occur because comprehensive decommissioning planning need only be done once, because the labor force is stable and need only be trained once, because there is less handling of radioactive wastes, and because central stores, equipment, and facilities may be used. The cost and radiation dose reductions are sensitive to the number and types of reactors on the site, and to the alternatives selected for decommissioning. 3 tables

  18. Utility financial stability and the availability of funds for decommissioning: An analysis of internal and external funding

    International Nuclear Information System (INIS)

    Siegel, J.J.

    1988-06-01

    The NRC is currently developing final rules in the area of decommissioning nuclear facilities. A part of that rulemaking effort is assuring that funds will be available at the time of decommissioning of power reactors. This report provides an update by considering public comments received on the NRC's proposed rule on decommissioning (published February, 1985) and by analyzing the relative level of assurance of internal and external reserves. In its analysis, the report makes use of specific case utility financial situations. The report concludes that from a financial standpoint, with the exception of PSNH, internal reserves currently provide sufficient assurance of funds for decommissioning. The report also concludes that the NRC should recommend changes in bankruptcy laws, including decommissioning obligations in utility prospectuses, and conduct periodic financial reviews of nuclear utilities due to changing economic conditions

  19. Safety problems in decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1975-12-01

    The safety problems in decommissioning are presented by the example of light water reactors with an electric power of 1300 MW and 40 years of preceding specified operation. In such a plant the radioactivity in the form of activation and contamination is of the order of 10 7 Ci one year after final shut-down. The fuel elements are not taken into account. During the work at the reactor vessel dose rates of some 10 4 rem/h may occur at the flange level. According to a rough estimation the dose accumulated by the decommissioning personnel during dismantling of the radioactive components amounts to 1200 rem. During the decommissioning work the problems are caused predominantly by the direct radiation from the radioactive components and systems as well as from the release of radioactive particles, aerosols and liquids on cutting them up. In designing new plants the extent of later decommissioning problems can be reduced above all by selection of suitable materials and by decommissioning-minded design and arrangement of the components and parts of the plant. (orig./RW) [de

  20. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  1. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  2. Decommissioning Cost Assessment

    International Nuclear Information System (INIS)

    Labor, Bea

    2012-03-01

    The future costs for dismantling, decommissioning and handling of associated radioactive waste of nuclear installations represents substantial liabilities. It is the generations that benefits from the use of nuclear installations that shall carry the financial burden. Nuclear waste programmes have occasionally encountered set-backs related to the trust from society. This has resulted in delayed, redirected or halted activities, which has the common denominator of costs increases. In modern democratic countries, information sharing, knowledge transfer and open communication about costs for the management of radioactive waste are prerequisites for the task to develop modern methods for public participation and thus to develop well-founded and justified confidence for further development of nuclear energy. Nuclear and radiation safety Authorities have a clear role to provide unbiased information on any health, safety, financial and environmental related issues. This task requires a good understanding of the values and opinion of the public, and especially those of the younger generation

  3. Decommissioning. Success with preparation

    International Nuclear Information System (INIS)

    Klasen, Joerg; Schulz, Rolf; Wilhelm, Oliver

    2017-01-01

    The decommissioning of a nuclear power plant poses a significant challenge for the operating company. The business model is turned upside down and a working culture developed for power operation has to be adapted while necessary know- how for the upcoming tasks has to be built up. The trauma for the employees induced by the final plant shut-down has to be considered and respected. The change of working culture in the enterprise has to be managed and the organization has to be prepared for the future. Here the methods of Change-Management offer a systematic and effective approach. Confidence in the employee's competencies is one of the key success factors for the change into the future.

  4. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  5. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  6. Feedback from the decommissioning of two accelerators

    International Nuclear Information System (INIS)

    Aubert, M-C; Damoy, F.; Joly, J-M

    2003-01-01

    Saclay Linear Accelerator (ALS) and Saturne synchrotron, both well known as international research instruments, have definitively stopped operating in 1990 and 1997 respectively. The French Atomic Energy Commission (CEA) has decided proceeding with the appropriate actions in order to dismantle these two nuclear installations (NIs) known as INB 43 (ALS) and INB 48 (Saturne). The SDA (Accelerator Decommissioning Division) was created to be in charge of the dismantling procedure of the above NIs under the following conditions: - to maintain within the team a few employees from the previous exploitation of two NIs, in order not to loose the details and history of accelerator operation; - to import the necessary skills for a good management of dismantling operation such as waste management, ANDRA rules, project AMEC34omelt.com. Learn more about GeoMelt ats-gssr410nuclear safety, radiation protection, ALARA concepts, etc. Presently the dismantling operations are well under way at INB 43 and nearly finished at INB 48. The project organisation established by SDA has allowed meeting both the schedule and cost requirements of the decommissioning. At the beginning, major decommissioning safety characteristics of large research instruments will be presented and dismantling aspects in particular. Afterwards, the organization of both projects will be detailed, emphasizing their statutory aspects (e.g., safety documents, zoning, traceability, etc.) and technical difficulties. Waste characterisation as well as the choice of evacuation paths for each category of the waste will then be described in detail for both accelerators. A number of difficulties met during these procedures will be analysed and proposals will be made in order to improve the statutory framework in particular, both on technical and nuclear safety aspects. The application of the above experience to the dismantling of two fuel cycle installations, namely the research nuclear reactors, is presently under study

  7. An analysis of decommissioning costs

    International Nuclear Information System (INIS)

    Teunckens, L.; Loeschhorn, U.; Yanagihara, S.; Wren, G.; Menon, S.

    1992-01-01

    Within the OECD/NEA Cooperative Programme on Decommissioning a Task Group was set up early in 1989 to identify the reasons for the large variations in decommissioning cost estimates. The Task Group gathered cost data from 12 of the 14 projects in the Programme to form the basis of their analysis. They included reactors being decommissioned to various stages as well as fuel cycle facilities. The projects were divided into groups of projects with similar characteristics ('models') to facilitate the analysis of the cost distribution in each group of projects and the cost data was progressively refined by a dialogue between the Task Group and the project managers. A comparative analysis was then performed and project specific discrepancies were identified. The Task Group's report is summarized on the results of the comparative analysis as well as the lessons learnt by the Task Group in the acquisition and analysis of cost data from international decommissioning projects. (author) 5 tabs

  8. Trojan Decommissioning Project Cost Performance

    International Nuclear Information System (INIS)

    Michael B. Lackey

    2000-01-01

    The Trojan nuclear plant (Trojan) was an 1160-MW(electric) four-loop pressurized water reactor located in Rainier, Oregon. The plant was permanently shut down in 1993 after ∼17 yr of commercial operation. The early plant closure was an economic decision. The key factors in the closure analysis were escalation of inspection and repair costs associated with steam generator tube cracking and the projected availability of inexpensive replacement power in the Pacific Northwest region of the United States. Since the plant closure, Portland General Electric (PGE) has been actively engaged in decommissioning. The Trojan Decommissioning Project currently has a forecast at completion of $429.7 million (all costs are in millions of 1997 dollars, unless otherwise noted). The cost performance of the Trojan Decommissioning Project to date is addressed, as well as the tools that are in place to provide cost control through completion of decommissioning

  9. 75 FR 65705 - Notice of Intent To Rule on Request To Release Airport Property at the Tri-Cities Regional...

    Science.gov (United States)

    2010-10-26

    ... To Release Airport Property at the Tri-Cities Regional Airport, Blountville, TN. AGENCY: Federal... of Blountville, Tennessee. This property, approximately 2.413 acres in Tract 45 and .0324 acres in... 125 of the Wendell H. Ford Aviation [[Page 65706

  10. 75 FR 16900 - Notice of Intent To Rule on Request To Release Airport Property at the Cincinnati/Northern...

    Science.gov (United States)

    2010-04-02

    ... To Release Airport Property at the Cincinnati/Northern Kentucky International Airport, Hebron, KY.../Northern Kentucky International Airport in the city of Hebron, Kentucky. This property, approximately 75.88... Investment Reform Act for the 21st Century (AIR 21). DATES: Comments must be received on or before May 3...

  11. Status of the support researches for the regulation of nuclear facilities decommissioning in Japan

    International Nuclear Information System (INIS)

    Masuda, Yusuke; Iguchi, Yukihiro; Kawasaki, Satoru; Kato, Masami

    2011-01-01

    , measuring method, release procedure and analysis code for the site release were studied for the establishment of the license termination process in the future. From FY 2010, based on the new plan, we have started the researches for the standardization of review process of decommissioning plan for power reactors and nuclear fuel cycle facilities, establishing the process and criteria of license termination and appropriate method of management of decommissioning waste based on the waste form confirmation process. (author)

  12. An outsider's view of decommissioning

    International Nuclear Information System (INIS)

    Wilkie, T.

    1996-01-01

    The decommissioning of nuclear facilities is not just a technical or even a financial issue. Presenting decommissioning as a technically difficult task overcome by superhuman effort on the part of the industry will not gain much credit amongst sophisticated consumers who now require that any complex technology will work and work safely. Any engineering problems are surmountable given the money to find the solution. Some of the financial aspects of decommissioning are worrying, however, given their open-ended nature. The cost of waste disposal is one of these. Despite a lapse of fifty years since the start-up of its first reactor, the United Kingdom is unlikely to have available a repository for the disposal of intermediate level waste until about 2020. Waste disposal is a large consideration in decommissioning and the industry's forecasts of cost in this area lack credibility in the light of a poor track record in financial prediction. Financial engineering in the form of the segregated fund set up in March 1996 to cover the decommissioning of nuclear power stations in the United Kingdom is likely to provide only short term reassurance in the light of doubts about a credible future for nuclear power. This lack of confidence over the wider problems of nuclear power creates particular problems for decommissioning which go beyond technical difficulties and complicate financial considerations. (UK)

  13. Decommissioning challenges - an industrial reality

    International Nuclear Information System (INIS)

    Moore, H.; Mort, P.; Hutton, E.

    2008-01-01

    Sellafield Limited has undergone many transformations in previous years. The Nuclear Decommissioning Authority (NDA) has managed the site from April 2005, and a new Parent Body Organisation (PBO) is soon to be announced. In addition, it is an exciting time for the nuclear industry following the announcement of the UK government support new reactor builds. Should the site be selected for new build, the impact on Sellafield, its decommissioning program and economic impact on the local area can only be speculated at the current time. Every past, present and future decommissioning project at the Sellafield Limited site offers complex challenges, as each facility is unique. Specialist skills and experience must be engaged at pre-planned phases to result in a safe, efficient and successful decommissioning project. This paper provides an overview of a small selection of decommissioning projects, including examples of stakeholder engagement, plant and equipment dismantling using remote handling equipment and the application of innovative techniques and technologies. In addition, the final section provides a summary upon how future technologies required by the decommissioning projects are being assessed and developed. (authors)

  14. Money Related Decommissioning and Funding Decision Making

    International Nuclear Information System (INIS)

    Goodman, Lynne S.

    2008-01-01

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds

  15. Decommissioning Trawsfynydd - How public consultation shaped the strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Martin J [Nuclear Electric plc. (United Kingdom)

    1995-07-01

    This case study discusses the ned of consulting the public when decommissioning a nuclear power plants. When Trawsfynydd power station in North Wales shutdown in July 1993, Nuclear Electric's strategy for decommissioning its stations was not clearly defined. The company had altered its corporate policy on decommissioning fro he strategy referred to as the 'Reference Case' which had been approved by the Government, to the preferred 'Deferred Safestore' strategy, which was waiting Government approval. Deferred Safestore is preferred as it simplifies the engineering work involved by capitalising an the basic strength and integrity of the reactor building. It minimises thd radiation exposure to workers and radioactivity released to the environment, reduces the amount of radioactive waste produced and significantly cuts the total decommissioning cost. The closure and the decommissioning of Trawsfynydd power station was a sensitive issue as: The station lies within a National Park of outstanding beauty. The economic circumstances in the area are such that employment opportunities are very limited. At a crucial time when the company was approaching a Government review which would decide its future, Nuclear Electric could not afford to lose any credibility. A public consultation programme was launched in the vicinity of the power station To gauge the reactions of the public and elected local government bodies to a series of decommissioning options. Nuclear Electric presented three main options with details on the employment opportunities, the costs, and the lorry loads of material involved with each. The people were identified on whom decommissioning Trawsfynydd power station is likely to have an environmental or socioeconomic impact. As a result of the polls the Nuclear Electric received feedback in two ways. Formal feedback from the local councils Independent analysis of the completed questionnaires. The company was wholly committed to a meaningful consultation. Before

  16. Decommissioning Trawsfynydd - How public consultation shaped the strategy

    International Nuclear Information System (INIS)

    Kay, Martin J.

    1995-01-01

    This case study discusses the ned of consulting the public when decommissioning a nuclear power plants. When Trawsfynydd power station in North Wales shutdown in July 1993, Nuclear Electric's strategy for decommissioning its stations was not clearly defined. The company had altered its corporate policy on decommissioning fro he strategy referred to as the 'Reference Case' which had been approved by the Government, to the preferred 'Deferred Safestore' strategy, which was waiting Government approval. Deferred Safestore is preferred as it simplifies the engineering work involved by capitalising an the basic strength and integrity of the reactor building. It minimises thd radiation exposure to workers and radioactivity released to the environment, reduces the amount of radioactive waste produced and significantly cuts the total decommissioning cost. The closure and the decommissioning of Trawsfynydd power station was a sensitive issue as: The station lies within a National Park of outstanding beauty. The economic circumstances in the area are such that employment opportunities are very limited. At a crucial time when the company was approaching a Government review which would decide its future, Nuclear Electric could not afford to lose any credibility. A public consultation programme was launched in the vicinity of the power station To gauge the reactions of the public and elected local government bodies to a series of decommissioning options. Nuclear Electric presented three main options with details on the employment opportunities, the costs, and the lorry loads of material involved with each. The people were identified on whom decommissioning Trawsfynydd power station is likely to have an environmental or socioeconomic impact. As a result of the polls the Nuclear Electric received feedback in two ways. Formal feedback from the local councils Independent analysis of the completed questionnaires. The company was wholly committed to a meaningful consultation. Before

  17. Comparison of different strategies for decommissioning a tritium laboratory

    International Nuclear Information System (INIS)

    Kris Dylst

    2009-01-01

    Full text: Between 2003 and 2009 two rooms that served as tritium laboratory at SCK-CEN and its ventilation system were decommissioned. Initially, the decommissioning strategy was to free release as much materials as possible. The low free release limit imposed by the Belgian authorities made decommissioning of the first laboratory room very labor intensive. Timing restrictions forced us to use a different strategy for the ventilation system. Steel that could not be easily decontaminated was disposed to a nuclear melting facility. Compared to similar work done on steel in the lab, the new strategy took less than 80% of the man hours in only 40% of the calendar days. For the second laboratory a similar strategy was used: contaminated steel was disposed to a nuclear melting facility, other materials that could not be easily decontaminated were disposed as nuclear waste. Compared to the first laboratory the decommissioning was done in less than 40% of the time using merely one third of the man hours, although at the expense of extra waste generation. Economically, as far as not easily decontaminated materials are concerned, steel is best disposed to a nuclear melting and it is worth to invest in the decontamination of other materials. (author)

  18. Impact of metals recycling on a Swedish BWR decommissioning project

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially contaminated metals. By proper management of the waste streams significant amounts can be free released and recycled either directly or after decontamination and melting. A significant part of the required work should be performed early in the process to make the project run smoothly without costly surprises and delays. A large portion of the clearance activities can be performed on-site. This on-site work should focus on the so called low-risk for contamination material. Other material can be decontaminated and released on site if schedule and the available facility areas so allow. It should be noted that the on-site decontamination and clearance activities can be a significant bottle neck for a decommissioning project. The availability of and access to a specialized metals recycling facility is an asset for a decommissioning project. This paper will describe the forecasted positive impact of a well-structured metals characterisation, categorisation and clearance process for a BWR plant decommissioning project. The paper is based on recent studies, performed projects and recent in-house development. (authors)

  19. Decommissioning and demolition in the European Union. Current status

    International Nuclear Information System (INIS)

    Blohm-Hieber, Ute

    2009-01-01

    The European Commission pursues the environmental and energy policy goals of limiting global warming to a maximum of 2 C and, therefore, reducing CO 2 emissions by at least 20%. Nuclear power, with its present 30% contribution to the Community's electricity supply and the low CO 2 emissions of the entire fuel cycle, makes an important contribution to an energy mix matching the 3 factors of competitiveness, security of supply, and sustainability. The decision to use nuclear power plants in their respective countries for electricity production is left to each member state. As of mid-2008, 146 nuclear power plants were in operation in the European Union, while 74 had been shut down permanently. Two nuclear power plants had been demolished completely, showing that the European Community is just at the beginning of the learning curve in this field. The importance of nuclear power plant decommissioning and demolition will increase in the future as replacement capacity in nuclear power generation will become necessary. The European Commission's activities in decommissioning and demolition date from the 1990s: The provisions about environmental impact assessment and the recommendations to apply Article 37 (potential impacts on water, soil and air) of the Euratom Treaty demand a description of decommissioning and demolition of nuclear power plants. In a ruling of 2002, the European Court of Justice assigns to the Community the required competences in the fields of nuclear safety and, consequently, also decommissioning and demolition. The financial provisions necessary for these activities are covered in the Electricity Directive within the framework of the rules for a common single market in 2003. After a first status report, the Commission published recommendations about financing decommissioning and demolition in 2006. (orig.)

  20. Vandellos 1 NPP decommissioning feedback experience

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rodriguez A. [Empresa Nacional de Residuos Radioactivos, ENPRESA, Madrid (Spain)

    2003-07-01

    amount of material generated during the decommissioning works, the different types, the different origins, the different vector nuclides make the problem of the materials control, a serious problem, which must be managed as a logistics with a fine control and software systems support; h) The characterisation of the materials is a very detailed work in order to define the ways for dispatching. Any radwaste procedure must be supported by a characterization data. The characterization of the materials takes more importance in the clearance process; everybody knows the relevance of the radiological decisions for release the materials outside; i) The new designs can be improve with the experience of the decommissioning. When you arrive at the last step of any industrial activity, you realize that could be designed better; Some times, technicians speak about the improve the alloy of the metals, it's true, but 'there are more things relatively important, [abstract truncated

  1. Current status of Chernobyl NPP decommissioning

    International Nuclear Information System (INIS)

    2009-01-01

    Strategy of Chernobyl NPP decommissioning with the decommissioning license 2002-2064 is presented. The main activities at the stage of ChNPP units shutdown (2002 - 2012) are: units maintenance in safe state; decommissioning infrastructure construction; unloading of SNF – main activity determining the stage duration; systems and elements final shutdown; decommissioning life-support systems reconstruction; Comprehensive engineering and radiation survey (CERS); dismantling of the reactor facilities external equipment; removal of RAW from units; decommissioning documentation development. The decommissioning activities main results are presented

  2. NPP Decommissioning: the concept; state of activities

    International Nuclear Information System (INIS)

    Nemytov, S.; Zimin, V.

    2001-01-01

    The main principles of NPP decommissioning concept in Russia are given. The conditions with fulfillment of works on NPP unit pre-decommissioning and decommissioning including: development of the normative documentation, creation of special fund for financing NPP decommissioning activities, deriving the Gosatomnadzor license for decommissioning of shut down NPP units, development of the equipment and technologies for waste and spent fuel management are presented. The decommissioning cost and labour intensity of one WWER-440 unit are shown. The practical works, executed on shut down units at Beloyarsk NPP (Unit1 and 2) and Novo Voronezh NPP (Unit 1 and 2) are outlined

  3. Radiological control guide for decommissioning of the TRIGA mark-2, 3

    International Nuclear Information System (INIS)

    Lee, Bong Jae

    2000-08-01

    The purpose of radiological control for TRIGA mark-2, 3 research reactors and facilities at the KAERI Seoul site, which are to be decommissioned, is in minimizing the radiation exposure for workers and in preventing the release of the radioactive materials to the environment. In order to accomplish these goal, the radiological control guide will be prepared during the decommissioning activities. Therefore, it is expected that this technical report can be used in preparing radiological control guide for safety decommissioning of the TRIGA mark-2, 3

  4. Management of the decommissioning of the Thetis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Luc; Maris, Patrick; Noynaert, Luc [SCK-CEN, Mol (Belgium)

    2013-07-01

    decommissioning job. We gained the decommissioning license in May 2012. We also prepared the software tool allowing managing the decommissioning project by updating the inventory and recording the progress, the characterization measurements and the material and waste production. This software allows also to trace all the material streams and to report to the Authorities. This software is a simplified release of the ones developed by SCK-CEN in the framework of other decommissioning projects like BR3 and Belgonucleaire. The dismantling of the reactor i.e. reactor pool, circuits and rabbit system, will be performed in 2013. In 2014, it is planned to map all the surfaces of the infrastructure to highlight residual contamination of floor, walls and ceiling. The contaminated surfaces will be decontaminated and controlled. The objective is to reach the free release of the reactor building and laboratories by the end of 2014. (authors)

  5. JPDR decommissioning program

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    As approved by the Japan Nuclear Safety Commission, the preparatory work for dismantling the Japan Power Demonstration Reactor of Japan Atomic Energy Research Institute has begun. As decided in the long term nuclear energy development and utilization program in June, 1982, by the Japan Atomic Energy Commission, the dismantling of the JPDR through its entire phase is the model case for the development of the dismantling technology and for the establishment of safety standard in the dismantling of shut-off nuclear power plants and their removal. The schedule of the JPDR dismantling is divided into two phases. In Phase 1, the development of dismantling techniques is made by the end of fiscal 1985, and in Phase 2, the full scale dismantling work is carried out by the end of fiscal 1989. The removal of the related facilities and the rearrangement of the evacuated land also are scheduled to be completed. During the first 10 days of April, 1983, the JPDR will be in the sealed up condition for the purpose of developing the dismantling techniques, and the nuclear fuel has been transferred to the spent fuel pool. The national policy on reactor decommissioning and the program for the technology development are reported. (Kako, I.)

  6. Enhanced productivity in reactor decommissioning and waste management

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2014-01-01

    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on the way Areva

  7. Enhanced productivity in reactor decommissioning and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [Areva GmbH, Offenbach (Germany)

    2014-04-15

    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on

  8. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Pittman, J.D.; Prewett, S.V.

    1987-01-01

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  9. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    and overseas. AECL, with the support of Ontario Power Generation, also continues deep geologic repository-based research and development in support of the long-term management of Canada's nuclear fuel waste. Decommissioning activities on AECL sites are also increasing significantly - many of the facilities first established in the 1940s and 1950s are now redundant and need to be safely dismantled and the resulting wastes managed. Several such projects are now underway at CRL. and include the removal of several radioactively contaminated buildings and laboratories, remediating contaminated lands arising from past practices, and the establishment of new facilities that, for example, will optimize the quantities of decommissioning wastes that can be issued for ''free release'' to conventional landfills. In addition, good progress is being made to decommission the entirety of Whiteshell Laboratories

  10. State of decommissioning process in Romania

    International Nuclear Information System (INIS)

    Ciuculescu, C.

    2002-01-01

    In Romania, there are several installations that arrived at the decommissioning stage. These installations are: VVR-S research reactor, Sub critical Assembly HELEN, and Zero Power Reactor (RP-0). In this paper, the methods the Romanian Regulatory Body is developing the legal framework for decommissioning process of nuclear installations are described. There is a draft of decommissioning norms for research reactors. This regulation provides each stage of decommissioning and requirements for decommissioning plan. Also, CNCAN has evaluated and made requirements for completion of a VVR-S research reactor decommissioning plan submitted by IFIN-HH. Further, the reasons for which the decommissioning plan was rejected and requirements that the owner of VVR-S research reactor must fulfil in order to receive decommissioning licence are presented. (author)

  11. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  12. Decommissioning planning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Gunnar; Bergh, Niklas [Westinghouse Electric Sweden AB, Vaesteraes (Sweden)

    2013-07-01

    The technologies required for the decommissioning work are for the most part readily proven. Taken into account that there will be many more years before the studied reactor units will undergo decommissioning, the techniques could even be called conventional at that time. This will help bring the decommissioning projects to a successful closure. A national waste fund is already established in Sweden to finance amongst others all dismantling and decommissioning work. This will assure that funding for the decommissioning projects is at hand when needed. All necessary plant data are readily available and this will, combined with a reliable management system, expedite the decommissioning projects considerably. Final repositories for both long- and short-lived LILW respectively is planned and will be constructed and dimensioned to receive the decommissioning waste from the Swedish NPP:s. Since the strategy is set and well thought-through, this will help facilitate a smooth disposal of the radioactive decommissioning waste. (orig.)

  13. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  14. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  15. The Italian decommissioning industry

    International Nuclear Information System (INIS)

    Adinolfi, R.

    2005-01-01

    Full text: Italy's step out from nuclear activities in 1987 deeply affected an industry that, in the previous years, had managed to grow up in quality and technology levels to meet the nuclear standards. Only a few companies were able to partially retain their skills through activities abroad. The decommissioning program represents a new challenge for the Italian industry at large and will require a consistent effort to properly qualify the potential suppliers. On the other side, a program with such implications in terms of investments and so depending from social aspects cannot be effectively implemented without a significant involvement of the local industry. Essential conditions for the success are a reliable program, as well as a careful supply management scheme, which must facilitate aggregation of skills spread among different subjects. 'Human Resources: Maintaining a Nuclear Culture in Italy' Bruno Panella Politecnico di Torino, Giuseppe Forasassi, Universita di Pisa, Inter-University Consortium for the Nuclear Technological Research (CIRTEN). After a brief history of the nuclear engineering education in Italy within the international and national nuclear energy scenario, the present situation, with reference to the Italian universities, is shown. In order to maintain a nuclear culture in Italy the solution, exploited with different peculiarities in each University, is to carry out high quality research activities in reciprocal collaboration (mostly within the CIRTEN inter university Consortium) as well as with the Industry and research Organisations and to collaborate actively in establishing a stable network and a synergy of teaching activities in Europe in the field of Nuclear Engineering Education. The aim is to maintain at a high level and as updated as possible the Italian educational offer in nuclear engineering and also to attract the best students for the enrolment. (author)

  16. Radiation safety for decommissioning projects

    International Nuclear Information System (INIS)

    Ross, A.C.

    1999-01-01

    Decommissioning of redundant nuclear facilities is a growth area in the UK at the present time. NUKEM Nuclear Limited is a leading-edge nuclear decommissioning and waste management contractor (with its own in-house health physics and safety department), working for a variety of clients throughout the UK nuclear industry. NUKEM Nuclear is part of the prestigious, international NUKEM group, a world-class organization specializing in nuclear engineering and utilities technologies. NUKEM Nuclear is involved in a number of large, complex decommissioning projects, both in its own right and as part of consortia. This paper explores the challenges presented by such projects and the interfaces of contractor, client and subcontractors from the point of view of a radiation protection adviser. (author)

  17. Platform decommissioning. Environmental challenges and practical solutions

    International Nuclear Information System (INIS)

    Kvalvik, Inge

    1998-01-01

    The publication gives a short introduction of platform decommissioning, followed by an overview of what to be decommissioned and removed. This will be followed by some of the vital technologies and methods within decommissioning, abandonment of wells, removal and handling of remains that is reuse and scrapping. A final presentation with a view of current research and developments is given. 3 figs

  18. Development of decommissioning system engineering technology

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Seo, B. K.

    2012-02-01

    In the decommissioning planning stage, it is important to select the optimized decommissioning process considering the cost and safety. Especially the selection of the optimized decommissioning process is necessary because it affects to improve worker's safety and decommissioning work efficiency. The decommissioning process evaluation technology can provide the optimized decommissioning process as constructing various decommissioning scenarios and it can help to prevent the potential accidents as delivering the exact work procedures to workers and to help workers to perform decommissioning work skillfully. It's necessary to measure the radioactive contamination in the highly contaminated facilities such as hot-cells or glove-boxes to be decommissioned for decommissioning planning. These facilities are very high radiation level, so it is difficult to approach. In this case the detector system is preferable to separate the sensor and electronics, which have to locate in the facility outside to avoid the electric noise and worker's radiation exposure. In this project, we developed the remote detection system for radiation measurement and signal transmission in the high radiation area. In order to minimize worker's exposure when decommissioning highly activated nuclear facilities, it is necessary to develop the remote handling tool to perform the dismantling work remotely. Especially, since cutting, measuring, and decontamination works should be performed remotely in the highly activated area, the remote handling tool for conducting these works should be developed. Therefore, the multi-purpose dismantling machine that can measuring dose, facility cutting, and remote handling for maintenance and decommissioning of highly activated facility should be needed

  19. 76 FR 77431 - Decommissioning Planning During Operations

    Science.gov (United States)

    2011-12-13

    ... (DG) DG-4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the.... The draft regulatory guide entitled, ``Decommissioning Planning During Operations,'' is temporarily..., 40, 50, 70, and 72 RIN 3150-AI55 [NRC-2011-0286; NRC-2008-0030] Decommissioning Planning During...

  20. Decommissioning experience at UKAEA Winfrith

    International Nuclear Information System (INIS)

    Miller, K.

    2008-01-01

    The Winfrith Site was used for development of nuclear reactors, particularly the 100 MW(e) Steam Generating Heavy Water Reactor (SGHWR) and the 30 MW gas-cooled DRAGON reactor. Following the closure of the SGHWR reactor in 1990 the site has run down nuclear operations by removing from site most of the high level hazards from both reactors and then commencing the decommissioning of major items of plant and other site facilities. After the SGHWR was shut down, UKAEA prepared a decommissioning programme for this plant comprising a multistage process, each to be subjected to a competitive tendering operation. The recently completed Stage 1 decommissioning contract, awarded to Nuvia in 2005, involved decommissioning and removal of all the ancillary plant and equipment in the secondary containment and non-containment areas of the plant. The decommissioning processes involved with these large and heavy plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations. Over the past 18 years Nuvia has gained vast experience with decommissioning operations on redundant nuclear plant and facilities on the Winfrith Site and has been extremely successful in meeting its contractual obligations in a safe and efficient manner. The final section of the paper will dwell upon the key issues that have made a difference in achieving these objectives for the benefit of others involved in similar operations. (author)

  1. Fostering cooperation in power asymmetrical water systems by the use of direct release rules and index-based insurance schemes

    Science.gov (United States)

    Denaro, Simona; Castelletti, Andrea; Giuliani, Matteo; Characklis, Gregory W.

    2018-05-01

    In river basin systems, power asymmetry is often responsible of inefficient and unbalanced water allocations. Climate change and anthropogenic pressure will possibly exacerbate such disparities as the dominant party controls an increasingly limited shared resource. In this context, the deployment of cooperation mechanisms giving greater consideration to a balanced distribution of the benefits, while improving system-wide efficiency, may be desirable. This often implies the intervention of a third party (e.g., the river basin water authority) imposing normative constraints (e.g., a minimum release) on the party in the dominant position. However, this imposition will be more acceptable to the dominant party if coupled with some form of compensation. For a public agency, compensation may be burdensome, especially when the allowance is triggered by natural events whose timing and magnitude are highly uncertain. In this context, index-based insurance contracts may represent a viable alternative and reduce the cost of achieving socially desirable outcomes. In this paper, we develop a hybrid cooperation mechanism composed of i) a direct normative constraint imposed by a regulator, and ii) an indirect financial tool, an index-based insurance contract, to be used as a compensation measure. The approach is developed for the Lake Como multi-purpose water system, Italy: a complex Alpine river basin, supporting several hydropower reservoirs and finally flowing into a regulated lake which supplies water to several downstream uses, mostly irrigated agriculture. The system is characterized by a manifest geographic power asymmetry: the upstream hydropower companies are free to release their stored water in time irrespective of the timing of the downstream demands. This situation can lead to financial losses by the downstream users and undesirable social outcomes. Results suggest that financial instruments may offer a reliable and relatively inexpensive alternative to other forms of

  2. Shippingport: A relevant decommissioning project

    International Nuclear Information System (INIS)

    Crimi, F.P.

    1988-01-01

    Because of Shippingport's low electrical power rating (72 MWe), there has been some misunderstanding on the relevancy of the Shippingport Station Decommissioning Project (SSDP) to a modern 1175 MWe commercial pressurized water reactor (PWR) power station. This paper provides a comparison of the major components of the reactor plant of the 72 MWe Shippingport Atomic Power Station and an 1175 MWe nuclear plant and the relevancy of the Shippingport decommissioning as a demonstration project for the nuclear industry. For the purpose of this comparison, Portland General Electric Company's 1175 MWe Trojan Nuclear Plant at Rainier, Oregon, has been used as the reference nuclear power plant. 2 refs., 2 figs., 1 tab

  3. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    International Nuclear Information System (INIS)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook

    2015-01-01

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost

  4. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  5. The decommissioning of the Barnwell nuclear fuel plant

    International Nuclear Information System (INIS)

    McNeil, J.

    1999-01-01

    The decommissioning of the Barnwell Nuclear Fuel Plant is nearing completion. The owner's objective is to terminate the plant radioactive material license associated with natural uranium and transuranic contamination at the plant. The property is being released for commercial-industrial uses, with radiation exposure from residual radioactivity not to exceed 0.15 millisieverts per year. Historical site assessments have been performed and the plant characterized for residual radioactivity. The decommissioning of the uranium hexafluoride building was completed in April, 1999. Most challenging from a radiological control standpoint is the laboratory building that contained sixteen labs with a total of 37 glove boxes, many of which had seen transuranics. Other facilities being decommissioned include the separations building and the 300,000-gallon underground high-level waste tanks. This decommissioning in many ways is the most significant project of this type yet undertaken in South Carolina. Many innovations have been made to reduce the time and costs associated with the project. (author)

  6. Decommissioning in British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Colquhoun, A.

    1988-01-01

    Decommissioning projects at the BNFL Sellafield site have been selected taking the following into account; the need to gain experience in preparation for the decommissioning of the Magnox reactors and for the post Magnox stage; the need to develop larger scale projects; the need to be cost effective and to foster long term safety. The balance between prompt or delayed decommissioning has to consider operator dose uptake and radioactive waste management. The ten year plan for decommissioning at Sellafield is described briefly. Currently decommissioning is of the fuel pond and decanning plant, the Windscale Pile Chimneys, the coprecipitation plant and the uranium recovery plant. (author)

  7. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  8. Optimizing decommissioning and waste management

    International Nuclear Information System (INIS)

    McKeown, J.

    2000-01-01

    UKAEA has clarified its future purpose. It is a nuclear environmental restoration business. Its proud history of being at the forefront of nuclear research now provides decommissioning challenges of unique breadth. The methods employed, and in some cases developed, by UKAEA to assist in the optimization of its overall work programme are identified. (author)

  9. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  10. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  11. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  12. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  13. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  14. Simulation studies for quantification of solid waste during decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Sobhan Babu, K.; Gopalakrishnan, R.K.; Gupta, P.C.

    2007-01-01

    Decommissioning is the final phase in the lifecycle of a nuclear installation and in the area of occupational radiation protection, decommissioning constitute a challenge mainly due to the huge and complex radioactive waste generation. In the context of management and disposal of waste and reuse/recycle of usable materials during decommissioning of reactors, clearance levels for relevant radionuclides are of vital importance. During the process of decommissioning radionuclide-specific clearance levels allow the release of a major quantity of materials to the environment, without regulatory considerations. These levels may also be used to declare the usable materials for reuse or recycle. Assessment of activity concentration in huge quantities of material, for the purpose of clearance, is a challenge in decommissioning process. This paper describes the simulation studies being carried out for the design of a monitoring system for the estimation of activity concentration of the decommissioned materials, especially rubbles/concrete, using mathematical models. Several designs were studied using simulation and it was observed that for the estimation of very low levels of activity concentration, to satisfy the conditions of unrestricted releases, detection system using the principle of Emission Computed Tomography (ECT) is the best suitable method. (author)

  15. Decommissioning of NPPs with spent nuclear fuel present - efforts to amend the German regulatory framework to cope with this situation

    International Nuclear Information System (INIS)

    Brendebach, Boris; Rehs, Bernd

    2016-01-01

    The authorization to operate an installation for the fission of nuclear fuel for the commercial production of electricity was withdrawn for the seven oldest NPPs and NPP Kruemmel in Germany on August 6, 2011 after the events at Japanese Nuclear Power Plant (NPP) Fukushima Daiichi in March 2011. In the meantime, all these NPPs applied for decommissioning. One aspect reflected in the applications for these NPPs is the possibility that spent nuclear fuel elements or fuel rods will still be present in the cooling ponds at least during the first stage of decommissioning, i.a. due to limited availability of spent fuel casks. Although considerable decommissioning experiences are available in Germany, the approach 'decommissioning with fuel elements present' has been the exceptional case so far. The paper highlights the efforts undertaken to strengthen the regulatory framework with respect to decommissioning in Germany taking into account this changed approach. The paper presents a short introduction to the legal and regulatory requirements for decommissioning in Germany. Afterwards, the updates to the Decommissioning Guide, which includes proposals for an appropriate procedure for the decommissioning, safe enclosure and dismantling of facilities or parts thereof as defined in item 7 of the German Atomic Energy Act in respect of the application of the technical rules for planning and preparation of decommissioning measures as well as for licensing and supervision, are highlighted. In addition, the amendments to the Guidelines for the Decommissioning of Nuclear Facilities of the Nuclear Waste Management Commission (ESK), which is complementary to the Decommissioning Guide in a technical sense, are reported as well. (authors)

  16. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  17. A Comparative Perspective on Reactor Decommissioning

    International Nuclear Information System (INIS)

    Devgun, J.S.; Zelmer, R.

    2006-01-01

    A comparative perspective on decommissioning, based on facts and figures as well as the national policies, is useful in identifying mutually beneficial 'lessons learned' from various decommissioning programs. In this paper we provide such a perspective on the US and European approaches based on a review of the programmatic experience and the decommissioning projects. The European countries selected for comparison, UK, France, and Germany, have nuclear power programs comparable in size and vintage to the US program but have distinctly different policies at the federal level. The national decommissioning scene has a lot to do with how national nuclear energy policies are shaped. Substantial experience exists in all decommissioning programs and the technology is in a mature state. Substantial cost savings can result from sharing of decommissioning information, technologies and approaches among various programs. However, the Achilles' heel for the decommissioning industry remains the lack of appropriate disposal facilities for the nuclear wastes. (authors)

  18. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    International Nuclear Information System (INIS)

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs

  19. Analytical methodology for optimization of waste management scenarios in nuclear installation decommissioning process - 16148

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir; Rehak, Ivan; Vasko, Marek

    2009-01-01

    The nuclear installation decommissioning process is characterized by production of large amount of various radioactive and non-radioactive waste that has to be managed, taking into account its physical, chemical, toxic and radiological properties. Waste management is considered to be one of the key issues within the frame of the decommissioning process. During the decommissioning planning period, the scenarios covering possible routes of materials release into the environment and radioactive waste disposal, should be discussed and evaluated. Unconditional and conditional release to the environment, long-term storage at the nuclear site, near surface or deep geological disposal and relevant material management techniques for achieving the final status should be taken into account in the analysed scenarios. At the level of the final decommissioning plan, it is desirable to have the waste management scenario optimized for local specific facility conditions taking into account a national decommissioning background. The analytical methodology for the evaluation of decommissioning waste management scenarios, presented in the paper, is based on the materials and radioactivity flow modelling, which starts from waste generation activities like pre-dismantling decontamination, selected methods of dismantling, waste treatment and conditioning, up to materials release or conditioned radioactive waste disposal. The necessary input data for scenarios, e.g. nuclear installation inventory database (physical and radiological data), waste processing technologies parameters or material release and waste disposal limits, have to be considered. The analytical methodology principles are implemented into the standardised decommissioning parameters calculation code OMEGA, developed in the DECOM company. In the paper the examples of the methodology implementation for the scenarios optimization are presented and discussed. (authors)

  20. Nuclear decommissioning in Italy

    International Nuclear Information System (INIS)

    Tripputi, I.

    2005-01-01

    in the oil market, both in terms of barrel cost and in terms of security of supplies, and the severe black-outs that have plagued also Italy (the major one in September 2003 lasting in some areas for about 24 hours), have started a widespread discussion about energy alternatives and strategic energy plans. In this frame an increasing number of politicians and scientists are calling for a reconsideration of nuclear energy as a viable option also for Italy in a new energy mix. It is clear that public acceptance of nuclear energy is strictly connected not only to the demonstration of high safety standards of future plants, but also to the solution of radioactive waste disposal and of plant decommissioning. This is the link that could make the SOGIN mission even more strategic for the country

  1. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  2. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  3. In-house developed methodologies and tools for decommissioning projects

    International Nuclear Information System (INIS)

    Detilleux, Michel; Centner, Baudouin

    2007-01-01

    , algorithms allow to estimate, on the basis of local inputs, radiological exposures of the operators (collective and individual doses), production of primary, secondary and tertiary waste and their characterization, production of conditioned waste, release of effluents,... and enable the calculation and the presentation (histograms) of the global results for all activities together. An example of application in the frame of the Ignalina decommissioning project is given. (authors)

  4. The emergence of sustainable practice within decommissioning - 16059

    International Nuclear Information System (INIS)

    Adamson, David William; Francis, Jonathan

    2009-01-01

    Despite the advance of sustainable practice and energy efficient techniques outside of the nuclear industry, at the start of the 21. Century there was a lack of published guidance aimed at their adoption at specifically nuclear facilities. Even with the establishment of the Nuclear Decommissioning Authority, there is very little guidance published on how to adopt sustainable practices during decommissioning. There have been instances where energy efficiency had affected design and operations decisions. Projects aimed at responsible housekeeping, switching off lights, and changes to the nuclear ventilation design philosophy illustrate a desire for action, but these activities were championed by interested and motivated employees. Sustainable practice had not at that time received a strategic lead that resulted in a management structure to enable a coordinated and concerted effort in sustainable practice. This paper traces the progress during the 20. and early 21. Centuries, whereby sustainable practice is now established within a much firmer foundation of case study, guidance and organisational structure; to embed sustainable practice within the United Kingdom's current decommissioning programme. It looks at the development of relevant literature and, through interviews with key managers and external stakeholders, demonstrates (i) the degree to which two essential guidance documents (the NiCOP and CIRIA SD:SPUR) are permeating the industry, (ii) how the current work of the Characterisation and Clearance Group has evolved to influence the decontamination and dismantling planning procedures and (iii) the transition from identifying 'free-release' materials to actually releasing them for re-use in the community. (authors)

  5. Development of a preliminary decommissioning plan of the reactor IPEN/MB-01

    International Nuclear Information System (INIS)

    Vivas, Ary de Souza; Carneiro, Alvaro Luiz Guimaraes

    2013-01-01

    Around the world, many nuclear plants were built and need to be turned off at a certain time because they are close to their recommended time of use is approximately 50 years. So the IAEA (International Atomic Energy Agency), seeks to guide and recommend, through publications, guidelines for the conduct of activities both for decommissioning nuclear power plants and for research reactors, with special attention to countries that do not have a framework regulatory Legal that sustain the activities of decommissioning. Brazil, so far, does not have a specific standard to guide the steps of the guidelines regarding decommissioning research reactors, having only a standard applied to decommissioning power plants which was published in November 2012. The Nuclear and Energy Research Institute (IPEN) has two research reactors one being the reactor IPEN/MB-01. The aim of this work is to develop a preliminary plan for decommissioning of nuclear reactor research, considering the technical documentation of the system (RAS-Safety Analysis Report), the existing rules of CNEN (National Nuclear Energy Commission), as well as regulatory instructions and recommendations of the IAEA. The preliminary decommissioning plan consists of the presentation of actions and steps required as well as the strategies to be adopted for the shutdown of the facility under the technical and administrative, seeking the safety, health workers and the general public, minimizing environmental impacts. (author)

  6. Regulations, guidelines, standards, and policies pertaining to decontamination and decommissioning activities: A literature review

    International Nuclear Information System (INIS)

    Cowgill, M.G.

    1993-09-01

    A literature review has been conducted of the existing rules, regulations, and guidelines pertaining to the decontamination and decommissioning of nuclear facilities. Included in the survey are US Government documents, national (industrial) standards, international standards and guidelines, and the regulations issued by various national governments, such as the United Kingdom, Canada, and Germany

  7. Considerations about the European Decommissioning Academy (EDA)

    International Nuclear Information System (INIS)

    Slugen, V.; Hinca, R.

    2014-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year.Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning (16:74:10), as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the overbridging this gap.For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe.A graduate of the European Decommissioning Academy (EDA) should have at least bachelor level from technical or natural science Universities or Colleges and at least one year working experiences in the area of NPP decommissioning or nuclear power engineering. This study creates prerequisites for acquiring and completion of professional and specialized knowledge in the subjects which are described. (authors)

  8. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  9. Operating Procedures to Identify Wastes of Decommissioning

    International Nuclear Information System (INIS)

    Gatea, M.A.

    2016-01-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive material. Many of these sites suffered substantial physical damage during the Gulf Wars as well as the challenging of the difficult security situation in the country.The destruction of the former nuclear facilities during the 1991 Gulf war aggravated the problem. As a result of these events, many of these nuclear facilities have lost their containment of the radioactive material and it now has an increased potential to be dispersed into the environment.Iraqi Decommissioning Directorate (IDD) is one of the Ministry of Science and Technology (MoST) formations. It deals with decommissioning of former Iraqi nuclear sites. It considers a producer of radioactive waste.Therefore, waste management represents the vital requirement to work accomplishment.The work carries out on-site waste pretreatment which considers as a minimization of waste management.W M is necessary to: Segregate 'at source' as much materials as possible to minimize quantities of radioactive waste, clear or exempt as much materials as possible and decontaminate and recycle as much radioactive waste as possible. And in more general terms: to control and account for radioactive waste to protect human health and the environment, to make sure we do not leave unnecessary burdens for future generations, to concentrate, contain and isolate the waste from the environment therefore, this make any releases to the environment to be restricted and subject to regulatory control.This procedure applies on-site waste pretreatment which comprises segregating, characterizing, minimizing, classifying, packaging and relocating of generated wastes during decommissioning of destroyed nuclear facilities. The stationary waste treatment activities are the responsibility of RWTD/MoST.The (RPC/MoE) is the national regulatory body during the whole radioactive waste management

  10. Decommissioning and dismantling of the reprocessing plant Karlsruhe

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    Reprocessing activities were discontinued in late 1990. The facility was drained and rinsed, and 80 m3 of HLWC have since been stored in special tanks, awaiting vitrification. Decommissioning work is scheduled to proceed in six phases. The reprocessing areas of the facility will be prepared for release from radiological control and dismantled in the first phase. The remaining facilities can be deregulated, and storage tanks dismantled, only after termination of phase 1. The goal of the following phase is clearance from radiological control of all controlled areas, and the last phase is to cover dismantling of all buildings and restoration of a green field site. The overall costs of these activities are estimated to amount to DM 1.657 million. The article explains the contents of the first permits for decommissioning as well as the documents prepared for planning of work and licence application. (orig./HP) [de

  11. Decommissioning of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Popelis, A.; Abramenkova, G

    2008-01-01

    The Salaspils Research Reactor (SRR) is out of operation since July 1998 and the decommissioning of SRR was started in 1999 according to the decision of the Government of Latvia. The main decommissioning activities up to 2006 were connected with collecting and conditioning of historical radioactive wastes from different storages outside and inside of reactor hall. The total amount of dismantled materials was about 700 tons, more than 77 tons were conditioned in concrete containers for disposal in repository. The radioactive wastes management technology is discussed in the paper. It was found, that additional efforts must be spent for immobilization of radionuclides in cemented matrix to be comply with the wastes acceptance criteria. The investigations of mechanical stability of water-cement matrix are described and discussed in the paper

  12. Planning activities for ANPP decommissioning

    International Nuclear Information System (INIS)

    Ghazaryan, K.G.

    2002-01-01

    The Armenian NPP consists of two WWER-440, model 270 pressurized water reactors. After an earthquake in northern Armenia in December 1988 both units were shut down for safety reasons: Unit 1 in February 1988, Unit 2 in March 1989, respectively. Unit 2 was restarted in November 1995 after a number of safety upgrades. Unit 1 remains in a long-term shutdown mode. The design lifetime of Unit 2 expires in 2015. Opportunity to shutdown earlier has been discussed in the last years. In particular a statement has been issued by EC asking for an early shutdown of Unit 2 in exchange for the TACIS support in implementing the safety upgrades in a short term. Currently the safety improvement program is being successfully implemented in the framework of US DOE and TACIS assistance. At the moment the date of the permanent plant shutdown is not specified. As with many older reactors throughout the world, a decommissioning plan has not been developed for Armenian NPP at the design stage. After shutdown of ANPP in 1988-1989 the radiological characterization campaign at Unit 1 had been carried out. Recently two studies in the decommissioning area have been performed for ANPP. The first one has been carried out under the US DOE Assistance Program. The purpose of this study was to identify and evaluate feasible decommissioning options for ANPP. Some critical issues related to the waste management had been specified and the near-term activities within this project will be focused on issues of waste characterization and information data base creation as an important prerequisite to manage waste safely. The model used to calculate many of the decommissioning costs was NRC CECP reprogrammed for WWER NPPs. The second study had been carried out in the framework of TACIS project 'Assistance to Energy Strategic Center'. The purpose of the study was to select the best strategy to phase-out and decommission the ANPP and evaluate conditions, implications and consequence of this decision. A

  13. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  14. Project No. 8 - Final decommissioning plan

    International Nuclear Information System (INIS)

    2000-01-01

    Ignalina NPP should prepare the final Ignalina NPP unit 1 decommissioning plan by march 31, 2002. This plan should include the following : description of Ignalina NPP and the Ignalina NPP boundary that could be influenced by decommissioning process; decommissioning strategy selected and a logical substantiation for this selection; description of the decommissioning actions suggested and a time schedule for the actions to be performed; conceptual safety and environmental impact assessment covering ionizing radiation and other man and environment impact; description of the environmental monitoring program proposed during decommissioning process; description of the waste management proposed; assessment of decommissioning expenses including waste management, accumulated funds and other sources. Estimated project cost - 0.75 M EURO

  15. The decommissioning of Berkeley II

    International Nuclear Information System (INIS)

    Hannan, A.

    2002-01-01

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m 3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  16. IDMT, Integrated Decommissioning Management Tools

    International Nuclear Information System (INIS)

    Alemberti, A.; Castagna, P.; Marsiletti, M.; Orlandi, S.; Perasso, L.; Susco, M.

    2005-01-01

    Nuclear Power Plant decommissioning requires a number of demolition activities related to civil works and systems as well as the construction of temporary facilities used for treatment and conditioning of the dismantled parts. The presence of a radiological, potentially hazardous, environment due to the specific configuration and history of the plant require a professional, expert and qualified approach approved by the national safety authority. Dismantling activities must be designed, planned and analysed in detail during an evaluation phase taking into account different scenarios generated by possible dismantling sequences and specific waste treatments to be implemented. The optimisation process of the activities becomes very challenging taking into account the requirement of the minimisation of the radiological impact on exposed workers and people during normal and accident conditions. While remote operated equipment, waste treatment and conditioning facilities may be designed taking into account this primary goal also a centralised management system and corresponding software tools have to be designed and operated in order to guarantee the fulfilment of the imposed limits as well as the traceability of wastes. Ansaldo Nuclear Division has been strongly involved in the development of a qualified and certified software environment to manage the most critical activities of a decommissioning project. The IDMT system (Integrated Decommissioning Management Tools) provide a set of stand alone user friendly applications able to work in an integrated configuration to guarantee waste identification, traceability during treatment and conditioning process as well as location and identification at the Final Repository site. Additionally, the system can be used to identify, analyse and compare different specific operating scenarios to be optimised in term of both economical and radiological considerations. The paper provides an overview of the different phases of

  17. Decommissioning program of JRR-2

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Banba, Masao; Arigane, Kenji

    1999-01-01

    Japan Research Reactor No.2(JRR-2), heavy water moderated and cooled tank type research reactor with maximum thermal power of 10 MW, was used over 36 years, and was permanently shut down in December, 1996. Afterward, dismantling report was submitted to the STA, and dismantling was begun in 1997. Decommissioning of JRR-2 is planned in 11 years from 1997 to 2007, and the program is divided into 4 phases. Phase 1 had already been ended, phase 2 is being executed at present. Reactor body will be removed in phase 4 by one piece removal or caisson techniques. On reactor building, it is planned to use effectively as a hot experimental facilities after decommissioning ends. How to treat heavy water and primary cooling system contaminated by tritium becomes an important problem to lead decommissioning to success because JRR-2 is heavy water reactor. On heavy water, transportation to foreign country is planned in phase 2. On primary cooling system, it is planned to remove and dispose the majority in phase 3, and tritium decontamination with technique established by the proof test is planned before them. As a preparation for them, various investigation and examination are being advanced at present. (author)

  18. Decommissioning: a United Kingdom perspective

    International Nuclear Information System (INIS)

    Haworth, A.; Reed, D.L.; Bleeze, A.

    1995-01-01

    The paper considers the United Kingdom legislative framework relevant to decommissioning of facilities on nuclear licensed sites. It describes the various legislative bodies involved in regulating this activity and the inspectorate concerned. The licensing regime is described in some detail highlighting the UK arrangements whereby a license is granted for the site upon which nuclear facilities are planned or exist. The license remains in place throughout the life of the plant on the site: from initial planning through to the end of decommissioning. A site (of part of) is not de-licensed until it can be stated that there has ceased to be any danger from ionising radiations from anything on the site (or appropriate part of the site). The final part of the paper considers the changes arising from the commercialization of the nuclear power industry in UK and the restatement of the Nuclear Installation Inspectorate's policy on decommissioning which has arisen as a result of a review made in response to these changes. (author)

  19. Planning For Armenian NPP Decommissioning

    International Nuclear Information System (INIS)

    Ghazaryan, K.; Atoyan, V.; Pyuskyulyan, K.

    2008-01-01

    Armenian Nuclear Power Plant (ANPP) is situated in Ararat valley near the Metzamor town, approximately 30 km west of Yerevan. The plant consists of two units of WWER-440 Model V-270 that is seismically upgraded version of standard V-230 design. The two units were put in commercial operation in 1976 and 1980 respectively. An earthquake in northern Armenia occurred in December 1988. Although both plants continued to operate after the earthquake, the USSR Council of Ministers ordered the shutdown of both plants for safety reasons. Unit 1 was shutdown in February 1989; Unit 2 was shutdown in March 1989. Shortly after Armenia became an independent republic, the ''energy crisis'' began, leaving the country with virtually no power for five years. The Armenian Government ordered the restart of Unit 2 ANPP. Unit 2 was restarted in November 1995. Unit 1 remains in a long-term shutdown mode. Currently nuclear share in total electricity generation is about 45%. The design life of Unit 2 expires in 2016. As with many older reactors throughout the world the decommissioning issues had not been considered for ANPP at the design stage. The planning activities for ANPP decommissioning were started in 2002 taking into account the IAEA recommendations that early planning will facilitate future decommissioning activities, and the complexity of preparatory and D and D activities as well. (author)

  20. Experience of TTR-1 decommissioning

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Nobuoka, Yoshishige; Yoshimura, Yukio; Homma, Hitoshi; Nakai, Masaru

    2005-01-01

    Toshiba Training Reactor-1 (TTR-1) was planned for improvement of technical level from the standpoint of nuclear reactor manufacturer, training of a nuclear engineer, and research of nuclear physics, radiochemistry, radiation shielding and others. TTR-1 was permitted for construction in May 1960, attained at the first criticality in March 1962 and has continued to operate over 40 years. TTR-1 was permanently shut down in March 2001, accomplishing the planned target. From the initial criticality to the shut down, total operating time amounts to 15,300 hours and 31 MWds. Decommissioning plan was submitted to the Ministry of Education, Culture, Sports, Science and Technology on August 8, 2001 and dismantling work was started. The spent fuel was transported outside the laboratory, and the first phase and the second phase dismantling work were completed at the end of February 2004. Some of the reactor equipments continue maintaining their performance, and waste materials generated from dismantling work are under the state of managed storage, until disposal of the dismantling radioactive waste becomes clear, when the third phase of dismantling work will be started. At the end of the third phase work, all the TTR-1 equipments are dismantled and all waste materials are removed from TTR-1, then decommissioning of TTR-1 is completed. The outline of the decommissioning plan, the actually performed dismantling work, and spent fuel transportation work is briefly described. (author)

  1. Decommissioning of naval nuclear ships

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-10-01

    During the next decade the two major nuclear powers will each have to decommission more than 100 naval nuclear vessels, in particular submarines. The problems connected with this task is considered in this report. Firstly the size of the task is considered, i.e. the number of nuclear vessels that has to be decommissioned. Secondly the reactors of these vessels, their fuel elements, their power level, the number of reactors per vessel and the amount of radioactivity to be handled are discussed. Thirdly the decommissioning procedures, i.e. The removal of fuel from the vessels, the temporary storage of the reactor fuel near the base, and the cleaning and disposal of the reactor and the primary circuit components are reviewed. Finally alternative uses of the newer submarines are briefly considered. It should be emphasizes that much of the detailed information on which this report is based, may be of dubious nature, and that may to some extent affect the validity of the conclusions of the report. (au)

  2. The decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Barker, F.

    1992-01-01

    This report has been commissioned by the National Steering Committee of Nuclear Free Local Authorities to provide: a comprehensive introduction to the technical, social, political, environmental and economic dimensions to nuclear power station decommissioning; an independent analysis of Nuclear Electric's recent change of decommissioning strategy; the case for wider public involvement in decision making about decommissioning; and a preliminary assessment of the potential mechanisms for achieving that essential wider public involvement

  3. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  4. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  5. Shippingport Station Decommissioning Project: overview and justification

    International Nuclear Information System (INIS)

    Coffman, F.E.

    1984-01-01

    The purpose of this booklet is to brief the reader on the Shippingport Station Decommissioning Project and to summarize the benefits of funding the project in FY 1984. Background information on the station and the decommissioning project is provided in this section of the booklet; the need for a reactor decommissining demonstration is discussed in the next section; and a summary of how the Shippingport Station Decommissioning Project (SSDP) provides the needed demonstration is provided in the final section

  6. Medicare Program; Revisions to Payment Policies Under the Physician Fee Schedule and Other Revisions to Part B for CY 2017; Medicare Advantage Bid Pricing Data Release; Medicare Advantage and Part D Medical Loss Ratio Data Release; Medicare Advantage Provider Network Requirements; Expansion of Medicare Diabetes Prevention Program Model; Medicare Shared Savings Program Requirements. Final rule.

    Science.gov (United States)

    2016-11-15

    This major final rule addresses changes to the physician fee schedule and other Medicare Part B payment policies, such as changes to the Value Modifier, to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services, as well as changes in the statute. This final rule also includes changes related to the Medicare Shared Savings Program, requirements for Medicare Advantage Provider Networks, and provides for the release of certain pricing data from Medicare Advantage bids and of data from medical loss ratio reports submitted by Medicare health and drug plans. In addition, this final rule expands the Medicare Diabetes Prevention Program model.

  7. New requirements to collect operational data that are essential for facility decommissioning

    International Nuclear Information System (INIS)

    Kristofova, K.; Valcuha, P.

    2017-01-01

    The paper describes the features of the first nuclear regulatory safety guide to be released by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in field of decommissioning. This safety guide specifies requirements to collect those nuclear facility operational data that are essential for its decommissioning. Recommendations of international organisations as well as experience in selected countries are provided. The following operational data types necessary for decommissioning process are identified and analysed: design documentation including modifications and changes during operation, photo-documentation, operational events and material and radiological inventory of the nuclear facility. The guide establishes requirements for collection of the operational data that can be recorded in interconnected database modules. In addition, a structure of decommissioning database is proposed, representing material and radiological inventory of a nuclear facility. This inventory database forms a basis for planning of the decommissioning process. At last, the guide summarises recommendations for data collection, archiving and maintenance of database records and also their applications in safety documentation necessary for decommissioning of nuclear facilities in Slovakia. (authors)

  8. Planning and management for reactor decommissioning

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2001-01-01

    This report describes decommissioning strategy, planning process, regulation, management and organization, radiological characterization and safety. Planning is used to identify, define and organize the requirements for decommissioning including decommissioning options, items to be accomplished (objective, scope), to solve problems of how it is to be accomplished (methods, means and procedures), questions of who will execute it (resources, organization and responsibilities, interfacing), and time when it will be executed (schedule for meeting the objectives). A plan is highly dependent on the quality of the management team assembled to carry it out. Radiological characterization involves a survey of existing data, calculation, in situ measurements and/or sampling and analyses. Using this databases decommissioning planner may assess options, considering: decontamination processes, dismantling procedures, tools required, radiological protection of workers and public/environment, waste classification, and resulting costs. Comparison and optimization of these factors will lead to selection of a decommissioning strategy, i.e. typically, immediate or deferred dismantling. The planning and implementation of decommissioning for nuclear reactors should be referred both recent dismantling techniques and many decommissioning experiences. The technical lessons learned from many projects will help in the planning for future decommissioning projects. And systematic planning and management are essential to successful completion of a decommissioning project. (author)

  9. The waste management implications of decommissioning

    International Nuclear Information System (INIS)

    Passant, F.H.

    1988-01-01

    Decommissioning policy can only be framed in the light of radioactive waste management policy. What can be done with the waste materials, how and when, will determine the overall decommissioning plans and costs. In this paper the waste management options and their costs are reviewed for the decommissioning of the Central Electricity Generating Boards civil nuclear power stations. The paper concentrates on the decommissioning of Magnox stations, although comparative information on waste volumes and costs are given for the AGR programme and a typical PWR. (author)

  10. Prospective needs for decommissioning commercial nuclear facilities

    International Nuclear Information System (INIS)

    Stevens, G.H.; Yasui, M.; Laraia, M.

    1992-01-01

    The answers to the questions: How many reactors will face the end of their operating lifetime over the next few decades? To what extent are the issues of decommissioning urgent? The answers will lead us to those issues that should be tackled now in order to complete smoothly the decommissioning of commercial nuclear power plants. The prospective needs for decommissioning of nuclear power plants are illustrated from the viewpoint of reactor age, and some of the issues to be tackled, in particular by governments, in this century are discussed, to prepare for the future decommissioning activities. (author) 18 refs.; 2 figs.; 2 tabs

  11. Evaluating decommissioning costs for nuclear power plants

    International Nuclear Information System (INIS)

    MacDonald, R.R.

    1980-01-01

    An overview is presented of the economic aspects of decommissioning of large nuclear power plants in an attempt to put the subject in proper perspective. This is accomplished by first surveying the work that has been done to date in evaluating the requirements for decommissioning. A review is presented of the current concepts of decommissioning and a discussion of a few of the uncertainties involved. This study identifies the key factors to be considered in the econmic evaluation of decommissioning alternatives and highlights areas in which further study appears to be desirable. 12 refs

  12. Human resource development for management of decommissioning

    International Nuclear Information System (INIS)

    Tanaka, Kenichi

    2017-01-01

    This paper described the contents of 'Human resource development for the planning and implementation of safe and reasonable nuclear power plant decommissioning' as the nuclear human resource development project by the Ministry of Education, Culture, Sports, Science and Technology. The decommissioning of a nuclear power plant takes 30 to 40 years for its implementation, costing tens of billions of yen. As the period of decommissioning is almost the same as the operation period, it is necessary to provide a systematic and continuous supply of engineers who understand the essence of the decommissioning project. The engineers required here should have project management ability to take charge of preparation, implementation, and termination of decommissioning, and have the ability to perform not only technology, but also factor management, cost management, and the like. As the preconditions of these abilities, it is important to develop human resources who possess qualities that can oversee decommissioning in the future. The contents of human resource education are as follows; (1) desk training (teaching materials: facilities of nuclear power plants, management of nuclear fuels, related laws, decommissioning work, decontamination, dismantling, disposal of waste, etc.), (2) field training (simulators, inspection of power station under decommissioning, etc.), (3) practical training (radiation inventory evaluation, and safety assessment), and (4) inspection of overseas decommissioning, etc. (A.O.)

  13. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  14. Financing the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Decommissioning of both commercial and R and D nuclear facilities is expected to increase significantly in the coming years, and the largest of such industrial decommissioning projects could command considerable budgets. It is important to understand the costs of decommissioning projects in order to develop realistic cost estimates as early as possible based on preliminary decommissioning plans, but also to develop funding mechanisms to ensure that future decommissioning expenses can be adequately covered. Sound financial provisions need to be accumulated early on to reduce the potential risk for residual, unfunded liabilities and the burden on future generations, while ensuring environmental protection. Decommissioning planning can be subject to considerable uncertainties, particularly in relation to potential changes in financial markets, in energy policies or in the conditions and requirements for decommissioning individual nuclear installations, and such uncertainties need to be reflected in regularly updated cost estimates. This booklet offers a useful overview of the relevant aspects of financing the decommissioning of nuclear facilities. It provides information on cost estimation for decommissioning, as well as details about funding mechanisms and the management of funds based on current practice in NEA member countries. (authors)

  15. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  16. European Decommissioning Academy (EDA). Ready to start

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2015-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  17. Experiences in teaching decommissioning - 16179

    International Nuclear Information System (INIS)

    Catlow, Fred

    2009-01-01

    The paper describes the experience gained by the author in teaching decommissioning in the Highlands of Scotland. Initially when asked to teach the subject of decommissioning to students sitting for a BSc degree in 'Electrical or Mechanical Engineering with Decommissioning Studies', the author was taken aback, not having previously taught degree students and there was no precedent since there was no previous material or examples to build on. It was just as difficult for the students since whilst some had progressed from completing HND studies, the majority were employed at the Dounreay site and were mature students with families who were availing themselves of the opportunity for career advancement (CPD). Some of the students were from the UKAEA and its contractors whilst others were from Rolls-Royce working at Vulcan, the Royal Navy's establishment for testing nuclear reactors for submarines. A number of the students had not been in a formal learning environment for many years. The College which had originally been funded by the UKAEA and the nuclear industry in the 1950's was anxious to break into the new field of Decommissioning and were keen to promote these courses in order to support the work progressing on site. Many families in Thurso, and in Caithness, have a long tradition of working in the nuclear industry and it was thought at the time that expertise in nuclear decommissioning could be developed and indeed exported elsewhere. In addition the courses being promoted by the College would attract students from other parts so that a centre of excellence could be established. In parallel with formal teaching, online courses were also developed to extend the reach of the College. The material was developed as a mixture of power point presentations and formal notes and was obtained from existing literature, web searches and interactive discussions with people in the industry as well as case studies obtained from actual situations. Assignments were set and

  18. International regulatory issues and approaches in the transition phase from operation to decommissioning

    International Nuclear Information System (INIS)

    Pyy, P.; Hrehor, M.; ); Murley, T.; Ranieri, R.; Laaksonen, J.

    2005-01-01

    Full text: The paper summarizes the work performed by an international group of senior nuclear safety regulators which was convened by the Committee on Nuclear Regulatory Activities (CNRA) of the OECD/Nuclear Energy Agency. The fundamental objective of this work was to identify the safety, environmental, organizational, human factors and public policy issues arising from decommissioning that will produce new challenges for the regulator. The study begins by recognizing that decommissioning is not simply an extension of operation and thus it is important for both the management of the facility and the regulator to understand the fundamental nature of the change taking place. Major regulatory policy issues discussed during this study include assurance of adequate funds, waste storage and disposal sites, material release criteria and site release criteria. Some of the important regulatory challenges relate to organizational and human factors, to safety and security requirements and to waste disposal and license termination. The importance of regular communication with both the corporate and site management and with public is recognized in the study as one of the key factors. When a nuclear facility ceases operation and enters into the decommissioning phase, both the operator and the regulator face a new set of challenges very different from those of an operating facility. The operator should have in place a strategic plan for decommissioning, prepared well in advance and reviewed by the regulatory body, to guide the facility managers and personnel through the changed circumstances. An essential part of the strategic plan should be the operator's plan for securing adequate funds to complete the decommissioning activities. In fact, the regulator should ensure that the operator sets aside funds, perhaps in a trust fund, while the facility is still operating and generating revenues. Both the operator and the regulator should expect a heightened public interest and concern

  19. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem

  20. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  1. Evaluation of the I. Stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1

    International Nuclear Information System (INIS)

    Hrasnova, E.

    2015-01-01

    In this paper author deals with following aspects: 1. Introduction of company Nuclear and Decommissioning Company, plc; 2. Evaluation of the I. stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1; (author)

  2. Evaluation of the UCP Decommissioning Activities in 2008 using DECOMMIS

    International Nuclear Information System (INIS)

    Park, S. K.; Park, J. H; Hwang, D. S.; Lee, K. W.; Chung, U. S.

    2009-01-01

    In early 1992, Korea Atomic Energy Research Institute (KAERI) decided that the operation of the Uranium Conversion Plant (UCP) would be stopped due to a relatively higher production cost than that of the international market. The conversion plant has been shut down and minimally maintained for the prevention of a contamination by a deterioration of the equipment and the lagoon. In 2000, the decommissioning was finally decided upon and a decommissioning program was launched to complete the following tasks by 2010 with the total budget, 10 million US dollars: planning and assessment of the environmental impact; dismantling of the pipes, tanks, vessels and equipment for a canning or reuse; decontamination of the dismantled metal wastes for release, decontamination of the building for an reuse as an another experimental facility, and the treatment of the sludge waste and the demolition of the lagoon. The decommissioning works started in 2004. The Uranium Conversion Plant building is composed 3 stories and the floor area is 2,950 m 2 . The equipment and facilities consist of chemical reactors such as a dissolver and FBR, tanks, pumps, pipes, and electric and electronic equipment. The radiological conditions before a dismantling were as follows; radiation dose 3x10 -4 ∼3x10 -2 mSv/hr, surface contamination of equipment and structure 0.001∼3.6 Bq/cm 2 , and surface contamination of concrete 0.01∼1.4 Bq/cm 2 . The lagoon is used for store the waste water which generated during an operation. The lagoon consists of two artificial ponds constructed by a concrete structure with a lubber coating and the surface area is 760 m 2 . Total weight of the sludge is about 330 tons. The major compounds are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and natural uranium of 1 wt%. Radiological conditions were as follows; radiation dose 1x10 -4 ∼3x10 -3 mSv/hr. The DECOMMIS, which is the data base system, developed in 2005 for the decommissioning project

  3. Principles of record keeping for decommissioning purposes

    International Nuclear Information System (INIS)

    Laraia, M.

    2003-01-01

    At the siting and conceptual design stage of a nuclear facility the first records pertaining to that facility are produced and stored. Subsequent phases in the facility's life cycle (detailed design, construction, commissioning, operation and shutdown) will include the production and retention of a large variety of records. Design, as-built drawings and operational records are essential for safe and efficient operation of any nuclear facility. This set of records is constantly updated and augmented during operation. Records from all phases of a nuclear facility are important for planning its decommissioning. Although not all of these records need to be included explicitly in the decommissioning plan itself, the process of initial, ongoing and final planning utilizes pertinent records for, and ultimately achieves, safe and cost effective decommissioning. When a nuclear facility is shutdown for decommissioning, current operating experience may be lost. Therefore, one important element of planning is to identify, secure and store appropriate operational records to support decommissioning. This process is preferably initiated during the design and construction phase and continues throughout operation including shutdown. Part of the records inventory from operation will become records for decommissioning and it is cost effective to identify these records before final facility shutdown. Experience shows that lack of attention to record keeping may result in an undue waste of time, other resources and additional costs. The newly established Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management recognizes the importance of keeping decommissioning-related records. In addition, the systematic management of records is an essential part of quality assurance and is often a licence condition. A good comprehensive decommissioning records management system (RMS) is one specific application of the broader concepts of 'Protection

  4. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    International Nuclear Information System (INIS)

    Ogawa, Ryuichiro; Ishijima, Noboru

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  5. Costing for decommissioning: Continuing NEA engagement

    International Nuclear Information System (INIS)

    Gillogly, Mari; Weber, Inge; ); Siemann, Michael; )

    2017-01-01

    On 20-21 September 2016, the International Conference on Financing of Decommissioning of nuclear power plants was held in Stockholm, Sweden. The conference focused on the exchange and sharing of information on current and emerging issues in the financing of nuclear power plant decommissioning and the underlying costs of decommissioning. It aimed at providing a good picture of the variety of financing systems in place to cover the costs of decommissioning of nuclear facilities. As an increasing number of nuclear reactors are expected to be permanently shut-down and enter into the decommissioning phase, the conference highlighted challenges for financing and delivering these decommissioning activities and explored the ways in which they were being addressed. This also included consideration of the implications of potentially under-funded or uncertain decommissioning liabilities. The insights gained in the course of the conference informed future development of work on these issues. The conference addressed a variety of issues from a range of perspectives under three main themes: financing systems - the variety of financing systems in place to provide the financial resources needed for decommissioning, including the arrangements for collecting and developing financial resources during operation and drawing down the assets during decommissioning activities, as well as oversight and reporting issues; decommissioning costing - understanding the cost estimates, quality and interpretation issues in decommissioning costing, the challenges of assurance, comparisons of estimates and actual costs, exploring ways to remedy the current lack of comparable actual cost data, possible benchmarking, etc.; [financial] risk management - effective management of financial assets, risk management strategies, the changing of markets and investment strategies for financial assets, balancing the rates of return and the reduction of risk, implications of the major changes in the energy and

  6. Implementing 'Continuous Improvement' in the U.S. Nuclear Regulatory Commission's Decommissioning Program

    International Nuclear Information System (INIS)

    Orlando, D. A.; Buckley, J. T.; Johnson, R. L.; Gillen, D. M.

    2006-01-01

    The United States Nuclear Regulatory Commission's (US NRC's) comprehensive decommissioning program encompasses the decommissioning of all US NRC licensed facilities, ranging from the termination of routine licenses for sealed sources, to the closure of complex materials sites and nuclear power reactor facilities. Of the approximately 200 materials licenses that are terminated each year, most are routine and require little, if any, remediation to meet the US NRC unrestricted release criteria. However, some present technical and policy challenges that require large expenditures of resources, including a few complex materials sites that have requested license termination under the restricted-use provisions of 10 CFR 20.1403. Fiscal constraints to reduce budgeted resources in the decommissioning program, as well as concerns over the time to complete the decommissioning process have led to actions to improve the program and use resources more efficiently. In addition, the US NRC's Strategic Plan requires efforts to identify and implement improvements to US NRC programs in order to improve efficiency, effectiveness, timeliness, and openness, of the US NRC's activities, while maintaining the necessary focus on safety. Decommissioning regulations, and more recently the analysis of several issues associated with implementing those regulations, also have been significant catalysts for improvements in the decommissioning program. Actions in response to these catalysts have resulted in a program focused on the management of complex sites in a comprehensive, consistent, and risk-informed manner, as opposed to the past practice of focusing on sites deemed to be problematic. This paper describes the current status of the decommissioning of US NRC-licensed nuclear facilities, including an overview of recent decommissioning project completion efforts. It provides a detailed summary of past, current, and future improvements in the US NRC decommissioning program including the

  7. Decommissioning of commercial shallow-land burial sites

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1979-01-01

    Estimated costs and safety considerations for decommissioning LLW burial grounds have been evaluated. Calculations are based on a generic burial ground assumed to be located at a western and an eastern site. Decommissioning modes include: (1) site stabilization followed by long-term care of the site; and (2) waste relocation. Site stabilization is estimated to cost from $0.4 million to $7.5 million, depending on the site and the stabilization option chosen. Long-term care is estimated to cost about $100,000 annually, with somewhat higher costs during early years because of increased site maintenance and environmental monitoring requirements. Long-term care is required until the site is released for unrestricted public use. Occupational and public safety impacts of site stabilization and long-term care are estimated to be small. Relocation of all the waste from a reference burial ground is estimated to cost more than $1.4 billion and to require more than 20 years for completion. Over 90% of the cost is associated with packaging, transportation, and offsite disposal of the exhumed waste. Waste relocation results in significant radiation exposure to decommissioning workers

  8. Decommissioning of the pool reactor Thetis in Ghent, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Cortenbosch, Geert; Mommaert, Chantal [Bel V, Brussels (Belgium); Tierens, Hubert; Monsieurs, Myriam; Meierlaen, Isabelle; Strijckmans, Karel [Ghent Univ. (Belgium)

    2016-11-15

    The Thetis research pool reactor (with a nominal power of 150 kW) of the Ghent University was operational from 1967 till December 2003. The first phase of the decommissioning of the reactor, the removal of the spent fuel from the site, took place in 2010. The cumulative dose received was only 404 man . μSv. During the second phase, the transition period between the removal of the spent fuel in 2010 and the start of the decommissioning phase in March 2013, 3-monthly internal inspections and inspections by Bel V, were performed. The third and final decommissioning phase started on March 18, 2013. The total dose received between March 2013 and August 2013 was 1561 man . μSv. The declassification from a Class I installation to a Class II installation was possible by the end of 2015. The activated concrete in the reactor pool will remain under regulatory control until the activation levels are lower than the limits for free release.

  9. Progress of decommissioning of Rikkyo reactor in FY2014

    International Nuclear Information System (INIS)

    Suzuki, M.; Kato, M.; Tanzawa, T.; Kawaguchi, K.; Terasawa, T.; Yamada, Shigeru; Nakai, Masaru

    2015-01-01

    Institute for Atomic Energy, Rikkyo University, applied in 2012 for changes in the decommissioning plan toward the abolition of the reactor facilities, and received approval. It promoted the decommissioning work of the research reactors in a plan for two years from 2012, conducted the removal of the structure installed in the reactor tank and storage management measures, and implemented the function stop of the disposal facility of liquid waste and the removal of part of them. These procedures achieved the safe storage condition of core internal structure / equipment with relatively high radioactivity due to neutron irradiation. In addition, the maintenance management of partial facilities and equipment that had been maintained in operational conditions had come to be unnecessary. Based on these results, the implementation plan for decommissioning scheduled for 2015-2016 was prepared. The contents of main works are as follows: (1) dismantling and removal of disposal facilities for liquid waste and storage management of subsequently generated radioactive waste in the reactor building control area, (2) storage management of radioactive solid waste of solid waste storage facilities in the reactor building control area, (3) dismantling and removal of solid waste storage facilities that become unnecessary, and (4) release of part of the controlled area associated with the above actions. (A.O.)

  10. Decommissioning program and future plan for research hot laboratory (2)

    International Nuclear Information System (INIS)

    Koya, Toshio; Nozawa, Yukio; Hanada, Yasushi; Ono, Katsuto; Kanazawa, Hiroyuki; Nihei, Yasuo; Owada, Isao

    2010-01-01

    The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in JAPAN, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells, which had been contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL have been started on April 2003. The decommissioning work will be progressing, dismantling the lead cells and decontamination of concrete caves then release in the regulation of controlled area. The 18 lead cells (including semi-hot cell and junior-cell) had been dismantled. Removal of the applause from the cells, survey of the contamination revel in the lead cells and prediction of radio active waste have been finished as the preparing work for dismantling of the remained 20 lead cells. The future plan of decommissioning work has been prepared to incarnate the basic vision and dismantling procedure. (author)

  11. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  12. Estimating pressurized water reactor decommissioning costs: A user's manual for the PWR Cost Estimating Computer Program (CECP) software

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Mencinsky, G.J.

    1993-10-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the US Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user's manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personnel computer, provides estimates for the cost of decommissioning PWR plant stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning

  13. Criteria and measurement techniques applicable to residual radioactivity on a decommissioned reactor site

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1988-12-01

    This document summarises the radiological criteria which might be developed to cover the release of a partly decommissioned nuclear reactor site, then looks at the techniques available by which the site could be monitored to assure compliance with these criteria. In particular, the implications of existing levels of radioactive contamination resulting from airburst nuclear weapons tests and the Chernobyl accident are discussed. (author)

  14. Waste Management During RA Reactor Decommissioning

    International Nuclear Information System (INIS)

    Markovic, M.; Avramovic, I.

    2008-01-01

    The objective of radioactive waste management during the RA reactor decommissioning is to deal with radioactive waste in a manner that protects human health and the environment now and in the future. The estimation of waste quantities to be expected during decommissioning is a very important step in the initial planning. (author)

  15. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Kusler, L.E.

    1977-01-01

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  16. Meeting the challenge of BNFL's decommissioning programme

    International Nuclear Information System (INIS)

    Sheil, A.E.

    1997-01-01

    The paper reviews the co-ordinated and integrated programme, adopted by BNFL, in the decommissioning of its radioactive plants. It examines BNFL's approach to the challenges posed by the eventual decommissioning of its 120 plants, its overall strategies, the constraints and the progress achieved to date, drawing on real experience from the 22 completed projects and the 24 projects currently underway. (author)

  17. Criteria development methodology for DOE decommissioning operations

    International Nuclear Information System (INIS)

    Denham, D.H.

    1981-01-01

    The Radiological Guide for DOE Decommissioning Operations provides a uniform basis for assessing hazard inventories, making risk analyses, performing site characterizations, and certifying decommissioning operations. While initially addressed to radioactive contaminants, in all likelihood it will be extended to include other contaminants

  18. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Johnson, R.P.; Speed, D.L.

    1985-01-01

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  19. Brief Assessment of Krsko NPP Decommissioning Costs

    International Nuclear Information System (INIS)

    Skanata, D.; Medakovic, S.; Debrecin, N.

    2000-01-01

    The first part of the paper gives a brief description of decommissioning scenarios and models of financing the decommissioning of NPPs. The second part contains a review of decommissioning costs for certain PWR plants with a brief description of methods used for that purpose. The third part of the paper the authors dedicated to the assessment of decommissioning costs for Krsko NPP. It does not deal with ownership relations and obligations ensuing from them. It starts from the simple point that decommissioning is an structure of the decommissioning fund is composed of three basic cost items of which the first refers to radioactive waste management, the second to storage and disposal of the spent nuclear fuel and the third to decommissioning itself. The assessment belongs to the category of preliminary activities and as such has a limited scope and meaning. Nevertheless, the authors believe that it offers a useful insight into the basic costs that will burden the decommissioning fund of Krsko NPP. (author)

  20. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Moore, E.B. Jr.

    1979-12-01

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  1. Decommissioning alternatives, process and work activities

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The following outlines the topics discussed under Decommissioning Alternatives, Process and Work Activities: (1) decommissioning alternatives, (2) work activities for prompt removal/dismantling, (3) work activities for entombment with delayed dismantling, and (4) work activities for mothballing with delayed dismantling

  2. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    1979-04-01

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  3. Review of Impact Factors on Decommissioning Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Jung, Hyejin; Kim, Younggook [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This article is prepared to factor out decommissioning strategies mostly appropriate to the decommissioning Kori-1 nuclear power plant. Terms used to delineate the lifetime of an authorized facility and of the associated licensing process consists of six core stages such as siting, design, construction, commissioning, operation and decommissioning. The term decommissioning implies the administrative and technical actions taken to allow the removal of some or all of the regulatory controls from a facility except for the part of a disposal facility in which the radioactive waste is emplaced. Whole range of each process of decommissioning should be considered throughout the other five stages. The decommissioning process is typically composed of its planning, conducting actions and terminating the authorization. In order to achieve the successful decommissioning, the impact factor on the strategy should be analyzed and evaluated to optimally apply to Kori-1 project. From my perspective, among eight factor, stakeholder’s consideration and spent fuel management are considered the key elements we have to concentrate on to smoothly go ahead for successful decommissioning of Kori-1.

  4. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  5. Rancho Seco--Decommissioning Update

    International Nuclear Information System (INIS)

    Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

    2003-01-01

    The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered

  6. AREVA decommissioning strategy and programme

    International Nuclear Information System (INIS)

    Gay, A.

    2008-01-01

    As with any industrial installation, a nuclear facility has an operating life that requires accounting for its shutdown. In compliance with its sustainable development commitments, AREVA accounts this via its own decommissioning resources to value and make sites fit for further use. These capabilities guarantee the reversibility of the nuclear industry. Thus, the nuclear site value development constitutes an important activity for AREVA, which contributes to the acceptance of nuclear in line with the AREVA continuous policy of sustainable development which is to be fully responsible from the creation, during the operation, to the dismantling of its facilities in all respects with safety, local acceptance and environment. AREVA has already performed a large variety of operation during the life-time of its installations such as heavy maintenance, equipment replacement, upgrading operation. Nowadays, a completely different dimension is emerging with industrial decommissioning operations of nuclear fuel cycle installations: enrichment gaseous diffusion plant, fuel assembly plants, recycling and reprocessing facilities. These activities constitute a major know-how for AREVA. For this reason, the group decided, beginning of 2008, to gather 4 projects in one business unit called Nuclear Site Value Development - a reprocessing plant UP2 400 on AREVA La Hague site, a reprocessing plant UP1 on AREVA Marcoule site, a MOX fuel plant on Cadarache and 2 sites (SICN Veurey and Annecy) that handled GCR fuel fabrication). The main objectives are to enhance the feed back, to contribute to performance improvements, to value professionals and to put innovation forward. The following article will describe in a first part the main decommissioning programmes managed by AREVA NC Nuclear Site Value Development Business Unit. The second part will deal with strategic approaches. A more efficient organization with integration of the supply chain and innovation will be part of the main drivers

  7. Investment and Decommissioning Decisions under Conditions of Uncertainty: An Application to the Electricity Sector

    International Nuclear Information System (INIS)

    Chaton, Corinne

    2001-01-01

    The purpose of this study is to use real options theory to answer the following question: Is it necessary, in France, to invest in new nuclear power units or should some of the existing units be decommissioned? The theoretical model developed establishes two price thresholds which determine investment or decommissioning rules for a regulated risk-neutral firm which does not know the future price of its input. It also provides an empirical reading of past choices in construction of French nuclear power plants. The main finding is that, on a certain number of theoretical and empirical assumptions, it is optimal at present is to leave French nuclear power capacity unchanged. Other more general findings follow from the theoretical model. Thus an increase in uncertainty facilitates investment, defers decommissioning and extends the range of input prices for which there is no change in capacity

  8. Hands-on glovebox decommissioning

    International Nuclear Information System (INIS)

    Smith, D.

    1997-01-01

    Over recent years, the United Kingdom Atomic Energy Authority (UKAEA) has undertaken the decommissioning of a large number of Plutonium glove boxes at Winfrith Technology Centre. UKAEA has managed this work on behalf of the DTI, who funded most of the work. Most of the planning and practical work was contracted to AEA Technology (AEAT), which, until 1996, was the commercial arm of UKAEA, but is now a private company. More than 70 gloveboxes, together with internal plant and equipment such as ball mills, presses and furnaces, have been successfully size reduced into drums for storage, leaving the area, in which they were situated, in a clean condition. (UK)

  9. Decontamination and decommissioning: a bibliography

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contain information on decontamination and decommissioning included in the Department of Energy's Data Base from January 1981 through October 1982. The abstracts are grouped by subject category. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: corporate author, personal author, subject, contract number, and report umber. (468 abstracts)

  10. Decommission of nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Tateyama, Takeshi

    1996-01-01

    The nuclear-powered ship 'MUTSU' was decommissioned by removing the reactor room in June 1995, which was hoisted and transported by a floating crane to a shore storage room at Sekinehama, Aomori Prefecture. This work was carried out in three stages: extraction of the spent fuel assemblies and neutron sources, dismantling of the machinery in the reactor auxiliary room, and separation and transportation of the reactor together with the secondary shielding structure and surrounding hull. IHI mainly conducted the third stage work. The separation work of the reactor room structure using a semisubmersible barge is outlined. Stress analysis and design of the reactor room for lifting work is also described. (author)

  11. Cost estimation for decommissioning: a review of current practice

    International Nuclear Information System (INIS)

    O'Sullivan, P.; Pescatore, C.

    2009-01-01

    boundary conditions; cost estimation methodologies; and experience gained during the process. Twelve countries provided responses and participated in the analysis: Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, the Slovak Republic, Spain, Sweden, the United Kingdom and the United States. The final report documenting the study is nearing publication. Its main findings are reported in this article. There is no single cost assessment methodology that applies equally at all stages of a decommissioning project. This means that different cost assessment methodologies may need to be used as the project advances. Such methodologies should be continuously updated using cost data from actual decommissioning projects, thus improving the cost assessment, providing better control of uncertainties and contingencies for each major cost category, and facilitating the preparation of an annualized schedule of expenditures for each facility. In the future, risk management may benefit from an approach that uses a deterministic calculation (base case) that feeds into a probabilistic assessment of future costs. Such approaches may be used to gain a better understanding of potential cost and programme requirements. Attention should also be given early on to socio-economic factors, including impacts caused by loss of employment, to help in building public support and acceptance of a decommissioning project. Early meetings with stakeholders may be used to gain agreement on project boundary conditions, strategy, release criteria and measurement protocols, and waste containers used. In view of the very significant impacts that changes and increases in scope may have on cost estimates, it is important that these be identified and controlled immediately, and incorporated into the estimate so that the estimate may continue to provide a viable benchmarking resource. Characterisation is acknowledged to be an important part of cost estimating accuracy, as it affects system and structure

  12. Cost estimation for decommissioning of research reactors

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Tello, Cledola Cassia Oliveira de; Segabinaze, Roberto de Oliveira; Daniska, Vladimir

    2013-01-01

    In the case of research reactors, the limited data that is available tends to provide only overall decommissioning costs, without any breakdown of the main cost elements. In order to address this subject, it is important to collect and analyse all available data of decommissioning costs for the research reactors. The IAEA has started the DACCORD Project focused on data analysis and costing of research reactors decommissioning. Data collection is organized in accordance with the International Structure for Decommissioning Costing (ISDC), developed jointly by the IAEA, the OECD Nuclear Energy Agency and the European Commission. The specific aims of the project include the development of representative and comparative data and datasets for preliminary costing for decommissioning. This paper will focus on presenting a technique to consider several representative input data in accordance with the ISDC structure and using the CERREX (Cost Estimation for Research Reactors in Excel) software developed by IAEA. (author)

  13. Public attitudes toward nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    A public workshop was conducted with a group of citizens to obtain the concerns and preferences of the group with respect to decommissioning. Seventeen concerns about decommissioning were identified and prioritized. The participants were most concerned about the potential health and safety effects from decommissioning. The potential impacts from the lost tax base and loss of employment were also rated highly. The estimated increase in electric utility rates was not a major concern. The participants were split fairly evenly on preferences about the methods of decommissioning. However, nine of the ten participants preferred power plant life extension over decommissioning by any method. Finally, the participants were given an evaluation questionnaire about the workshop. In general, they concluded that the process was effective, and they felt like they were a part of the Commission's planning process

  14. Measuring and reporting on decommissioning progress

    International Nuclear Information System (INIS)

    Lange, B.A.

    2006-01-01

    One of the challenges facing AECL, as well as other organizations charged with the responsibility of decommissioning nuclear facilities, is the means by which to measure and report on decommissioning progress to various audiences which, in some cases, may only have a peripheral knowledge or understanding of the complexities associated with the decommissioning process. The reporting and measurement of decommissioning progress is important for a number of reasons, i.e., It provides a vehicle by which to effectively communicate the nature of the decommissioning process; It ensures that stakeholders and shareholders are provided with a transparent and understandable means for assessing value for money; It provides a means by which to integrate the planning, measurement, and operational aspects of decommissioning One underlying reason behind the challenge of reporting decommissioning progress lies in the fact that decommissioning programs are generally executed over periods of time that far exceed those generally associated with typical design and build projects. For example, a decommissioning program could take decades to complete in which case progress on the order of a few percent in any one year might be typical. However, such progress may appear low compared to that seen with more typical projects that can be completed in a matter of years. As a consequence, AECL undertook to develop a system by which to measure decommissioning progress in a straightforward, meaningful, and understandable fashion. The system is not rigorously objective, and there are subjective aspects that are necessitated by the need to keep the system readily understandable. It is also important to note that while the system is simple in concept, there is, nonetheless, significant effort involved in generating and updating the parameters used as input, and in the actual calculations. (author)

  15. Preparatory activities of the Fugen decommissioning

    International Nuclear Information System (INIS)

    Iguchi, Y.; Tajiri, T.; Kiyota, S.

    2004-01-01

    The Advanced Thermal Reactor Fugen is a 165 MWe, heavy water moderated, light-water cooled, pressure-tube type reactor. In February 1998, the Atomic Energy Commission of Japan introduced a new policy that development and research of decommissioning of Fugen should be promoted in order to carry out the decommissioning smoothly after the shutdown. The Fugen reactor was shut down definitely in March 2003, and Fugen has been preparing for the project, including necessary development of technologies. The development of decommissioning for Fugen is divided into two areas. One area is the development of unique technology for dismantling special components such as the reactor core and the heavy water system. Another area is the improvement and enhancement of existing technologies. Especially the former area requires effort and comprises development of the reactor dismantlement, tritium decontamination of heavy water system and engineering support systems. The activities are as follows: the density and amount of radioactive nuclides in all equipment or concrete including the reactor core need to be evaluated for the decommissioning. To prepare for decommissioning, analysis, measurement and evaluation of the neutron flux density have been executed during reactor operation. Special dismantling process is necessary for the heavy water system and the reactor that are unique to Fugen. Some studies and tests are going on for the safe dismantling based on existing technologies and their combination. Systems engineering approach is necessary in order to optimize the work load, exposure dose, waste mass and cost by selecting appropriate dismantling process at the planning stage of the decommissioning. For this reason, in order to make a decommissioning plan efficiently, we have been developing an Engineering Support System for decommissioning by adopting new information technologies such as three-dimensional computer-aided design system and virtual reality system. Moreover, the

  16. Decommissioning of nuclear power stations in community countries carried out and projected

    International Nuclear Information System (INIS)

    Cregut, A.; Gregory, A.R.

    1984-01-01

    The decommissioning of large plants such as nuclear power stations merits an approach requiring the introduction of measures and procedures allowing them to be dealt with efficiently; this efficiency would imply concern for optimum economy of operations while respecting the safety and protection rules inherent in nuclear energy. Consequently, plant owners require: the tactical and policy elements to guide them in their decisions and choices; efficient tools, equipment and processes which meet their needs; information gained from experience of decommissioning already carried out which would provide them with a verified background knowledge when dealing with problems. Since decommissioning experience to date has not made it possible to draw up codes and guidelines, it is important to review the work carried out by Community countries in particular on the decommissioning of nuclear power plants. The following paper does not claim to be exhaustive or to make value judgements. Its aim is to list the nuclear power stations shut down in Community countries, to outline the decommissioning levels selected in each case and to underline some interesting aspects of the technical options. In conclusion it will review what appeared to be the difficulties common to the various projects. (author)

  17. Development of computer systems for planning and management of reactor decommissioning

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi; Sukegawa, Takenori; Shiraishi, Kunio

    2001-01-01

    The computer systems for planning and management of reactor decommissioning were developed for effective implementation of a decommissioning project. The systems are intended to be applied to construction of work breakdown structures and estimation of manpower needs, worker doses, etc. based on the unit productivity and work difficulty factors, which were developed by analyzing the actual data on the JPDR dismantling activities. In addition, information necessary for project planning can be effectively integrated as a graphical form on a computer screen by transferring the data produced by subprograms such as radioactive inventory and dose rate calculation routines among the systems. Expert systems were adopted for modeling a new decommissioning project using production rules by reconstructing work breakdown structures and work specifications. As the results, the systems were characterized by effective modeling of a decommissioning project, project management data estimation based on feedback of past experience, and information integration through the graphical user interface. On the other hands, the systems were validated by comparing the calculated results with the actual manpower needs of the JPDR dismantling activities; it is expected that the systems will be applicable to planning and evaluation of other decommissioning projects. (author)

  18. Shippingport Station decommissioning project overview

    International Nuclear Information System (INIS)

    Schreiber, J.J.

    1985-01-01

    The U.S. Department of Energy is in the process of decommissioning the Shippingport Atomic Power Station located on the Ohio River, 30 miles northwest of Pittsburgh, Pennsylvania. The Shippingport Station is the first commercial size nuclear power plant to undergo decommissioning in the United Staes. The plant is located on approximately 7 acres of land owned by the Duquesne Light Company (DLC) and leased to the U.S. Government. DLC operates two nuclear power plants, Beaver Valley 1 and 2, located immediately adjacent to the site and the Bruce Mansfield coal-fired power plant is also within the immediate area. The Station was shutdown in October, 1982. Defueling operations began in 1983 and were completed by September, 1984. The Shippingport Station consists of a 275' x 60' fuel handling building containing the reactor containment chamber, the service building, the turbine building, the radioactive waste processing building, the administration building and other smaller support buildings. The Station has four coolant loops and most of the containment structures are located below grade. Structures owned by the U.S. Government including the fuel handling building, service building, contaminated equipment room, the boiler chambers, the radioactive waste processing building and the decontamination and laydown buildings will be dismantled and removed to 3 feet below grade. The area will then be filled with clean soil and graded. The turbine building, testing and training building and the administration building are owned by DLC and will remain

  19. Decommissioning of excess nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.; Jacobs, D.J.; Auxier, J.A.

    1978-01-01

    The Department of Energy (DOE) is reviewing the radiological status of over 100 sites previously utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission (AEC) for handling uranium and thorium ores. Many of these sites have been returned to the control of private industry or to public use. Recent radiological surveys indicate that radiation levels at some of the sites exceed certain existing radiological health guidelines, some requiring remedial action. To assess the need for remedial action and to arrive at radiation levels acceptable for unrestricted use of these sites in the future, provisional radiological criteria for decontamination and decommissioning of property contaminated with radium have been developed. These criteria give due consideration to the level of risk, to consistency with existing guidelines, to achievability, enforceability, variability of natural background, flexibility in their application, and the achievement of levels as low as reasonably achievable. Based upon analyses of exposure pathways, numerical criteria have been derived for external gamma radiation, radon daughters levels in structures, radium concentrations in soil and surface contamination levels. In addition, a monitoring program has been designed to evaluate compliance with these decommissioning criteria. (author)

  20. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  1. Government Assigns New Supervisory Task. Safe Decommissioning

    International Nuclear Information System (INIS)

    Lekberg, Anna

    2003-01-01

    When the Government decided to shutdown one of the two Barsebaeck reactors in February of 1998, it presented SKI with a task that came much earlier than expected; the supervision of the decommissioning of a reactor. As a result of proposals presented in Parliament, SKI began the formulation of a long-term strategy in 1997 for the inspection of a nuclear plant during the decommissioning process. As a preliminary task, SKI started a research programme dealing with the potential risks associated with the transition from normal operations through shutdown to final deconstruction of the power plant. Emphasis was laid on safety culture issues and on questions of organization, as opposed to an earlier stress on the purely technical aspects of decommissioning. After a long period of uncertainty, following much discussion, in July 1998 a Government decision was finally reached to shutdown the first reactor at Barsebaeck. This was carried out in November 1999. It is still uncertain as to when the other reactor will be decommissioned; a decision is expected at the earliest in 2004. This uncertainty, resulting from the prolonged decision making process, could be detrimental to the safety culture on the site; motivation could diminish, and key personnel could be lost. Decommissioning is a new phase in the life cycle of a plant, giving rise to new inspection issues of supervision. During the period of uncertainty, while awaiting SKI has identified ten key areas, dealing with the safety culture of the organization, in connection with the decommissioning of Barsebaeck 1. 1. Obtaining and retaining staff competence during decommissioning; 2. Sustaining organizational memory; 3. Identifying key organizational functions and management skills that are critical during the transition from operations to decommissioning. 4. Sustaining organizational viability and accountability for decommissioning; 5. Sustaining motivation and trust in management of dismantlement; 6. Overseeing

  2. Planning of the BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibayeva, I.L.; Zhantikin, T.M.; Baldov, A.N.; Nazarenko, P.I.; Koltyshev, S.M.; Wells, P.B.

    2002-01-01

    The experimental and commercial BN-350 NPP equipped with a fast neutron sodium cooled reactor is located in Kazakhstan near the Aktau city on the Caspian Sea coast. It was commissioned in 1973 and intended for weapon-grade plutonium production and as stream supply to a water desalination facility and the turbines of the Mangyshlak Atomic Energy Complex. Taking into account technical, financial and political issues, the Government of Kazakhstan enacted the Decree no. 456 'On Decommissioning of the Reactor BN-350 in the Aktau City of the Mangystau Region'. Because the decision on reactor decommissioning was adopted before the end of scheduled operation (2003), the plan to decommission the BN-350 reactor has not yet been developed. To determine the activities required for ensuring reactor safety and in preparation for decommission in the period prior, the development and ensuring approval by the Republic of Kazakhstan Government of the decommissioning plan, a 'Plan of Priority Actions for BN-350 Reactor Decommissioning' was developed and approved. Actions provided for in the plan include the following: Development of BN-350 Reactor Decommissioning Plan; Accident prevention during the period of transition; Unloading nuclear fuel from reactor and draining the coolant from the heat exchange circuits. Decommission is defined as a complex of administrative and technical actions taken to allow the removal of some or all of regulatory controls over a nuclear facility. These actions involve decontamination, dismantling and removal of radioactive materials, waste, components and structures. They are carried out to achieve a progressive and systematic reduction in radiological hazards and are undertaken on the basis of planning and assessment in order to ensure safety decommissioning operations. In accordance with the decision of Kazakhstan Government, three basic stages for BN-350 reactor decommissioning are envisaged: First stage - Placement of BN-350 into long-term storage

  3. The decommissioning plan of the Nuclear Ship MUTSU

    International Nuclear Information System (INIS)

    Adachi, M.; Matsuo, R.; Fujikawa, S.; Nomura, T.

    1995-01-01

    This paper describes the review about the decommissioning plan and present state of the Nuclear Ship Mutsu. The decommissioning of the Mutsu is carried out by Removal and Isolation method. The procedure of the decommissioning works is presented in this paper. The decommissioning works started in April, 1992 and it takes about four years after her last experimental voyage. (author)

  4. The evaluation process of the decommissioning of nuclear installations from the perspective of materials remelting

    International Nuclear Information System (INIS)

    Hornacek, M.; Necas, V.; Zachar, M.

    2012-01-01

    The subject of the work is to evaluate the process of decommissioning SW from operation in terms of releasable materials into the environment in the form of ingots after remelting depending on the changes of selected input parameters. The number as well as batch load is analysed in terms of compliance with the limits for release into the environment. Calculations were carried out by means of OMEGA and MicroShield , which are described more detailed in the next sections. (author)

  5. Development of a harmonized approach to safety assessment of decommissioning: Lessons learned from international experience (DeSa project)

    International Nuclear Information System (INIS)

    Percival, K.; Nokhamzon, J.-G.; Ferch, R.; Batandjieva, B.

    2006-01-01

    comprehensive approach to identification of radiological and non-radiological hazards needs to be applied, as in most decommissioning projects non-radiological hazards are predominant; (iv) there is limited experience worldwide on procedures for review of decommissioning safety assessments; (v) a graded approach is being applied on the basis of various criteria and there is no internationally agreed common approach; (vi) engineering evaluation of systems and components remains a challenge due to the gradual elimination of engineering barriers, aging of a facility and dynamic decommissioning activities; (vii) more clarity and guidance is needed on the interface between safety assessment for waste management and decommissioning. It is envisaged that consolidation of the knowledge, experience and lessons learned from decommissioning in over thirty Member States will provide a useful tool for the successful performance and regulation of decommissioning and for the release of sites from regulatory control consistent with international safety standards and good international practice. (author)

  6. Barsebaeck NPP in Sweden - Decommissioning Project

    International Nuclear Information System (INIS)

    Hakan, Lorentz

    2009-01-01

    Barsebaeck 1 and 2, type BWR (Boiling Water Reactor) with a capacity of 615 MWe was closed down permanently on 30 November 1999 respective 31 May 2005 due to political decision. Both units together have been in Service operation (Care and maintenance) since 1 December 2006. Barsebaeck NPP will stay in Service operation until beginning of 2018 when Dismantling operation begins with the aim of a free-realized site in the beginning of 2025. That means that the remaining buildings, including equipment should be declared free-released or dismantled. It would then be up to the owner, E.ON Kaernkraft Sverige AB (EKS) to decide what is to be done with the site in the future. There was a re-organisation at Barsebaeck Kraft AB (BKAB) in 1 January 2007 and the company is organised in the following areas of function: site service operation, decommissioning planning, new business and BO replacement. The Organisation at BKAB has gone down from 450 during operation of Barsebaeck 1 and 2 to 50 employees (2009-01-01) involved in Service operation of both units. But still there are in total 250 persons placed at Barsebaeck NPP with different kinds of job assignments. A lot of activities have been carried out since 2000 and up to now for example: - All nuclear fuel has been transported away to interim storage at CLAB in Oskarshamn. - BKAB have built up contact nets and competence by taking part in different kinds of national and international organisations (SKB, IAEA, OECD/NEA TAG, WNA, ENISS, WANO, EPRI etc) commissions. - The Electrical and operational systems have been rebuilt for the actual demands and requirements for the Service operation. - The central control room is unattended since 17 December 2007 and the supervision of the Service operation is handled by a system of VDI (duty engineers) and LOP (alarm operators). - Full system decontamination on unit 1 and 2. Barsebaeck's approach today and for the future dismantling are: - Safer; - Faster; - Cost effective. BKAB

  7. Decommissioning of the research nuclear reactor WWR-S Magurele - Bucharest. General presentation of the project

    International Nuclear Information System (INIS)

    Dragulescu, Emilian; Dragusin, Mitica; Popa, Victor; Boicu, Alin; Tuca, Carmen; Iorga, Ioan; Vrabie, Ionut; Mustata, Carmen

    2003-01-01

    , personal protection and monitoring. Environmental protection concerns: air quality, surface water, ground water, shipments, effluent sampling and monitoring, environmental monitoring, site release criteria. The final chemical and radiological surveys, as well as a Project Final Report, are produced at the termination of the decommissioning project. The final reports includes details of the project, lesson learned, the final condition of the site, and references to the supporting documentation. (authors)

  8. Optimized determination of the radiological inventory during different phases of decommissioning

    International Nuclear Information System (INIS)

    Hillberg, Matthias; Beltz, Detlef; Karschnick, Oliver

    2012-01-01

    The decommissioning of nuclear facilities comprises a lot of activities such as decontamination, dismantling and demolition of equipment and structures. For these activities the aspects of health and safety of the operational personnel and of the general public as well as the minimization of radioactive waste have to be taken into account. An optimized, comprehensible and verifiable determination of the radiological inventory is essential for the decommissioning management with respect to safety, time, and costs. For example: right from the start of the post operational phase, the radiological characterization has to enable the decision whether to perform a system decontamination or not. Furthermore it is necessary, e.g. to determine the relevant nuclides and their composition (nuclide vector) for the release of material and for sustaining the radiological health and safety at work (e. g. minimizing the risk of incorporation). Our contribution will focus on the optimization of the radiological characterization with respect to the requisite extent and the best instant of time during the decommissioning process. For example: which additional information, besides the history of operation, is essential for an adequate amount of sampling and measurements needed in order to determine the relevant nuclides and their compositions? Furthermore, the characterization of buildings requires a kind of a graded approach during the decommissioning process. At the beginning of decommissioning, only a rough estimate of the expected radioactive waste due to the necessary decontamination of the building structures is sufficient. With ongoing decommissioning, a more precise radiological characterization of buildings is needed in order to guarantee an optimized, comprehensible and verifiable decontamination, dismantling and trouble-free clearance. These and other examples will be discussed on the background of and with reference to different decommissioning projects involving direct

  9. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  10. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  11. Decommissioning standards: the radioactive waste impact

    International Nuclear Information System (INIS)

    Russell, J.L.; Crofford, W.N.

    1979-01-01

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  12. Decommissioning of the gaseous diffusion plant at BNF plc Capenhurst in the UK

    International Nuclear Information System (INIS)

    Clements, D.W.; Cross, J.R.

    1993-01-01

    Since 1982, a gaseous diffusion plant located at the British Nuclear Fuels plc (BNFL) site at Capenhurst in the United Kingdom, has been undergoing decontamination, decommissioning, and dismantling. By March 1994, the decontamination and decommissioning activities will be complete with 99% of the materials used to construct the plant recycled to the environment as clean material. This paper describes the history of the decontamination, decommissioning, dismantling, and disposal program. Reference is made to the scale of the project and to the special techniques developed, particularly in the areas of size reduction, decontamination, and protection of personnel and the environment. The quantities of material involved that require decontamination and release levels for recycling materials in the U.K. metals market are discussed

  13. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  14. The NEA Co-Operative Programme on Decommissioning, the First Ten Years 1985-95

    International Nuclear Information System (INIS)

    1996-01-01

    The Nuclear Energy (NEA) Co-operative Programme on Decommissioning established the Task Group on Recycling and Reuse in 1992. The Task Group was charged with examining means for maximizing the recovery of valuable materials that partially comprise waste resulting from decommissioning activities. The Task Group also was to examine means for minimising the quantity of waste from such operations. Much of the Task Group's work has been concentrated on metal recycling and reuse. The Task Group's examination and report are the product of experts from seven countries and constitute a synthesis of surveys, analyses, and case studies. The report is intended to provide information and insights, as of the end of 1994, into the practicality and usefulness of release criteria from the perspective of organisations currently engaged in actual decommissioning activities

  15. Sixteen Years of International Co-operation. The OECD/NEA Co-operative Programme on Decommissioning

    International Nuclear Information System (INIS)

    Menon, S.; Valencia, L.

    2002-01-01

    The Co-operative Programme on Decommissioning under the administration of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency (NEA) has recently completed sixteen years of operation. The Programme, which is essentially an information exchange programme between decommissioning projects, came into being in 1985. It has grown from an initial 10 decommissioning projects from 7 countries to 39 projects from 14 countries today. From purely information exchange to start with, the Programme has, in later years, been functioning as a voice for the collective expression of views of the implementers of nuclear decommissioning. During the first sixteen years of the operation of the Co-operative Programme, nuclear decommissioning has grown from local specialist activities within projects to a competitive commercial industry. By the dismantling and release from regulatory control of over a dozen diverse nuclear facilities, the Programme has been able to demonstrate in practice, that nuclear decommissioning can be performed safely both for the workers and the public, and that this can be done at reasonable costs in an environmentally friendly fashion. During the recent years, discussions and work within the Co-operative Programme, specially within some of the Task Groups, have had/are having effects and repercussions not just in the field of nuclear decommissioning, but can possibly affect activities and regulations in other industries. This paper describes how the Programme and its activities and procedures have evolved over the years and indicate the directions of developments in the organization and execution of decommissioning projects. Finally, it gives a brief overview of the achievements of the Cooperative Programme and visualizes future developments in the field of nuclear decommissioning

  16. Installations of in-vivo nuclear medicine: Minimal technical rules of design, operation and maintenance. Guide Nr 32 - Release of the 2017/05/24

    International Nuclear Information System (INIS)

    2017-01-01

    After having evoked the regulatory context, this document details the different articles contained by a decision taken by the ASN in October 2014 to define the minimal technical rules of design, operation and maintenance of installations dedicated to in-vivo nuclear medicine. It is therefore written for the different professions involved in nuclear medicine, and its content is to be reflected by modifications introduced in the French labour code and public health code. The following issues and aspects are addressed: general principles adopted for the decision, design rules (for premises, for equipments and for premises ventilation), operation rules (general and specific rules), and various and transient measures. For each of these issues, the texts of concerned articles are indicated and their content is then explained in a detailed way

  17. The brief introduction to decommissioning of nuclear reactor projects

    International Nuclear Information System (INIS)

    Zhao Shixin

    1991-01-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste

  18. The brief introduction to decommissioning of nuclear reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Shixin, Zhao [Beijing Inst. of Nuclear Engineering (China)

    1991-08-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste.

  19. Policy and systems analysis for nuclear installation decommissioning

    International Nuclear Information System (INIS)

    Gu Jiande

    1995-01-01

    On the basis of introducing into principal concept for nuclear installation decommissioning, form policy, sciences point of view, the author analyses present problems in the policy, the administrative and programme for decommissioning work in China. According to the physical process of decommissioning, the author studied engineering economics, derived method and formulas to estimate decommissioning cost. It is pointed out that basing on optimization principle for radiation protection and analysing cost-benefit for decommissioning engineering, the corresponding policy decision can be made

  20. Social effects of decommissioning Trawsfynydd Power Station

    International Nuclear Information System (INIS)

    Jones, H.

    2001-01-01

    The decision to close Trawsfynydd in 1993 had significant implications for the staff and local community. The site is situated within a National Park and local employment opportunities are limited. The staff and local communities were consulted regarding the issues arising from closure and decommissioning. This consultation influenced the decommissioning strategy for the site, with emphasis placed on the mitigation of the effects of closure. Subsequent studies have shown that the adopted strategies have served to limit the social and economic effects. The experience at Trawsfynydd has proved to be generally applicable at other decommissioning sites. (author)

  1. Stakeholder involvement in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    2007-01-01

    Significant numbers of nuclear facilities will need to be decommissioned in the coming decades. In this context, NEA member countries are placing increasing emphasis on the involvement of stakeholders in the associated decision procedures. This study reviews decommissioning experience with a view to identifying stakeholder concerns and best practice in addressing them. The lessons learnt about the end of the facility life cycle can also contribute to better foresight in siting and building new facilities. This report will be of interest to all major players in the field of decommissioning, in particular policy makers, implementers, regulators and representatives of local host communities

  2. Development of a Decommissioning Certificate Program; TOPICAL

    International Nuclear Information System (INIS)

    M. R. Morton

    1999-01-01

    A Decommissioning Certificate Program has been developed at Washington State University Tri-Cities (WSU TC) in conjunction with Bechtel Hanford, Inc. (BHI), and the U.S. Department of Energy (DOE)to address the increasing need for qualified professionals to direct and manage decommissioning projects. The cooperative effort between academia, industry, and government in the development and delivery of this Program of education and training is described, as well as the Program's design to prepare students to contribute sooner, and at a higher level, to decommissioning projects

  3. Development of a Decommissioning Certificate Program

    International Nuclear Information System (INIS)

    Morton, M. R.

    1999-01-01

    A Decommissioning Certificate Program has been developed at Washington State University Tri-Cities (WSU TC) in conjunction with Bechtel Hanford, Inc. (BHI), and the U.S. Department of Energy (DOE)to address the increasing need for qualified professionals to direct and manage decommissioning projects. The cooperative effort between academia, industry, and government in the development and delivery of this Program of education and training is described, as well as the Program's design to prepare students to contribute sooner, and at a higher level, to decommissioning projects

  4. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes

  5. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  6. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  7. Decommissioning and decontrolling the R1-reactor

    International Nuclear Information System (INIS)

    Bergman, C.; Holmberg, B.T.

    1985-01-01

    Sweden's first nuclear reactor - the research reactor R1 - situated in bedrock under the Royal Technical Institute of Stockholm, has in the period 1981-1983 been subject to a complete decommissioning. The National Institute for Radiation Protection has followed the work in detail, and has after the completion of the decommissioning performed measurements of radioactivity on site. The report gives an account of the work the Institute has done in preparation for- and during decommissioning and specifically report on the measurements for classification of the local as free for non-nuclear use. (aa)

  8. Decommissioning of the CANDU-PHW reactor

    International Nuclear Information System (INIS)

    Unsworth, G.N.

    1977-04-01

    This report contains the results of a study of various aspects of decommissioning of reactors. The study places in perspective the size of the job, the hazards involved, the cost and the environmental impact. The three internationally agreed ''stages'' of decommissioning, namely, mothballing, entombment, and dismantling are defined and discussed. The single unit 600 MW(e) CANDU is chosen as the type of reactor on which the discussion is focussed but the conclusions reached will provide a basis for judgement of the costs and problems associated with decommissioning reactors of other sizes and types. (author)

  9. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  10. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  11. The work and perspective of the OECD/NEA in decommissioning

    International Nuclear Information System (INIS)

    O'Sullivan, P.; Pescatore, C.

    2008-01-01

    OECD member countries are increasingly faced with the need to make provisions for dealing with all aspects of dealing with the management of legacy nuclear installations, especially in terms of having in place adequate policies and regulatory frameworks for ensuring both safety and the efficient implementation of the decommissioning projects. Efficiency also requires that funding schemes are capable of providing adequate funds when required, even in the event that issues arise during implementation that were not anticipated during the planning phase. Waste management arrangements may encompass separate disposal routes for different categories of waste, including Very Low Level Waste, and may also include provisions for clearance and recycling. Recent moves in several countries towards establishing new nuclear programmes are bringing decommissioning activities into fresh focus, for reasons of public confidence (i.e. demonstrating that decommissioning can be done). In some instances existing nuclear sites will be used for the construction of new installations, but stakeholder issues are important for these sites as well. Maturing decommissioning experience should also provide lessons that would help in the reduction of lifetime costs for nuclear plants and other facilities. The challenge lying ahead is to establish a framework that will account for growing nuclear industrial activities in competitive, globalized markets, while maintaining and assuring the safety of decommissioning for the public and for workers. Within this context, institutional arrangements, stakeholder issues, costs and funding, waste management and release policies, as well as availability of technologies and skills, need to be kept under review. (authors)

  12. The NEA Co-operative Programme on Decommissioning. A Decade of Progress

    International Nuclear Information System (INIS)

    2006-01-01

    -operative Programme on Decommissioning, and in particular through the information exchange and review within the TAG, it has become evident that: decommissioning can and has been done in a safe, cost-effective and environmentally friendly manner; current technologies have demonstrated their effectiveness and robust performance in numerous decommissioning activities; and feedback of experience on design, construction and operation is a considerable help for reliable planning, cost evaluation and successful realisation of a decommissioning project. Regarding technical challenges, specific trends have been observed over the last decade. Large contaminated components, for example heat exchangers, steam generators, large tanks etc., that have been segmented in situ into smaller pieces, are increasingly removed 'in one piece' and transported outside the contained area into separated facilities for further processing. Regarding the use of robotics, the CPD observed that industrial robots may have a limited applicability in decommissioning, in contrary to earlier expectations that robotic methods would be extensively used in the dismantling of radioactive components, especially in the high radiation areas in fuel facilities. Experience collected within the CPD also pointed to challenges in the release of alpha contaminated areas, where seepage of contamination into cracks and reappearance of activity in walls previously declared as 'clean' posed specific problems. On the side of organisational trends a movement towards sequential licensing has been observed. This is seen as being advantageous for the management of projects, but also increases the efforts needed for documentation. Other challenges for management raise from company reorganisation, privatisation and budgetary difficulties. The lessons learnt by the participants in the CPD have been helpful for individual projects in making project decisions and in many cases have influenced general project directions. Key examples concern

  13. Decommissioning of NS OTTO HAHN

    International Nuclear Information System (INIS)

    Lettnin, H.K.J.; Viecenz, H.J.

    1982-01-01

    With NS OTTO HAHN for the first time a nuclear propelled merchant vessel has been regularly decommissioned after more than 10 years of successful operation. Based on the concept of the total decontamination about 1100 ts of contaminated and decontaminated components have been dismantled and removed from board ship. 260 ts of contaminated components packed in 10 ft containers and 400-liter drums and the 480 ts RPV unit are stored at the GKSS site for post investigations. A total mass of about 370 ts has been decontaminated by mechanical and chemical procedures below the required radiological limits. The nuclear status of OTTO HAHN has been removed by the competent licensing authority in June 1982 so that the vessel is now offered for sale for conventionel operations. 8 references, 11 figures

  14. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  15. Decommissioning of a nuclear facility: the Brazilian case

    International Nuclear Information System (INIS)

    Menezes, Regina M.; Deppe, Alzira L.; Nunes, Marcos E.C.; Cardoso, Eliezer M.; Nouailhetas, Y.; Mouco, Charles; Ferreira, Paulo R.; Matta, Luiz E.da

    1996-01-01

    The first decommissioning process of a nuclear facility in Brazil, has being taken place in Usina de Santo Amaro (USAM), located in Sao Paulo whose physical and chemical milling activities of the monazitic sands were interrupted in June 1992. Nowadays, materials and equipment generated from Minerals Physical Treatment and Rare Earths Separation Sectors, classified as low level radiation areas, are in final phase of dismantling, monitoring and release to the internal backyard of the facility or segregation in controlled areas. This decommissioning phase is considered as pilot for the verification of procedures, follow up of pieces and application of suitable radioprotection measures for the future dismantling of the Chemical Treatment of Monazite Sector, which will involve higher risks regarding radioprotection and safety aspects. The criteria of discharge of areas and equipment established by CNEN are conservative enough to assure that the contamination is not released to the environment. CNEN's activities conducted at the surveillance of works involving the dismantling and decontamination of materials and equipment verifying that they are in accordance with the requirements established by the Brazilian Commission of Nuclear Energy. (author)

  16. Decommissioning of a brachytherapy facility at the Oncology Hospital in Havana

    International Nuclear Information System (INIS)

    Benitez, J.C.; Salgado, M.; Madrazo, S.; Castillo, R.; Marcos, J.; Flores, J.

    2001-01-01

    , measurements of dose rate and surface contamination were carried out. The selection of the more convenient strategies for decommissioning included a justification, a proposed timetable and a demonstration of adequate financial provision. Different factors were considered, such as: the future use of the facility, the availability of a national waste treatment and storage facility, technical feasibility and cost benefit analysis. Dismantling, as one of the operations during decommissioning, was necessary for facilitating access to radium sources and for size reduction of contaminated materials to facilitate their handling. The dismantling strategy was very simple, using simple equipment. The generation of radioactive wastes from decommissioning process was kept to the minimum practical, by using appropriate decontamination and dismantling techniques. The decommissioning project was successfully completed. Adequate project management was applied to the program for safety assurance, radiation protection and waste management. One hundred and thirty six spent 226 Ra sources were recovered from the facility and properly managed. The requirements established by the Regulatory Body to release the facility from the regulatory control were achieved. Simple and effective decontamination and dismantling technology was applied for decommissioning of INOR brachytherapy facility allowing minimization of generated radioactive waste and the immediate site release from regulatory control. Upon successful completion of decommissioning, the Oncology Institute received the authorization from Regulatory Body for unrestricted use of the facility

  17. 75 FR 79079 - Notice of Intent to Rule on Request to Release Airport Property at New Century AirCenter, New...

    Science.gov (United States)

    2010-12-17

    ... to Release Airport Property at New Century AirCenter, New Century, Kansas AGENCY: Federal Aviation Administration, (FAA), DOT. ACTION: Notice of request to release airport property. SUMMARY: The FAA proposes to... Section 125 of the Wendell H. Ford Aviation Investment Reform Act for the 21st Century (AIR 21). DATES...

  18. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  19. Environmental impact assessment of NPP decommissioning

    International Nuclear Information System (INIS)

    Hinca, R.

    2009-01-01

    In this presentation the following potential impacts of decommissioning of NPP are discussed: - Impacts on population; Impacts on natural environment; Land impacts; Impacts on urban complex and land utilisation; Possible impacts on area as a result of failure.

  20. Decommissioning and disposal costs in Switzerland

    International Nuclear Information System (INIS)

    Zurkinden, Auguste

    2003-01-01

    Introduction Goal: Secure sufficient financial resources. Question: How much money is needed? Mean: Concrete plans for decommissioning and waste disposal. - It is the task of the operators to elaborate these plans and to evaluate the corresponding costs - Plans and costs are to be reviewed by the authorities Decommissioning Plans and Costs - Comprise decommissioning, dismantling and management (including disposal) of the waste. - New studies 2001 for each Swiss nuclear power plant (KKB 2 x 380 MWe, KKM 370 MWe, KKG 1020 MWe, KKL 1180 MWe). - Studies performed by NIS (D). - Last developments taken into account (Niederaichbach, Gundremmingen, Kahl). Decommissioning: Results and Review Results: Total cost estimates decreasing (billion CHF) 1994 1998 2001 13.7 13.1 11.8 Lower costs for spent fuel conditioning and BE/HAA/LMA repository (Opalinus Clay) Split in 2025: 5.6 bil. CHF paid by NPP 6.2 billion CHF in Fund Review: Concentrates on disposal, ongoing

  1. Decommissioning and dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Pelzer, N.

    1993-01-01

    The German law governing decommissioning and dismantling of nuclear installations can be called to be embryonic as compared to other areas of the nuclear regulatory system, and this is why the AIDN/INLA regional meeting organised by the German national committee in July 1992 in Schwerin has been intended to elaborate an assessment of the current legal situation and on this basis establish proposals for enhancement and development, taking into account the experience reported by experts from abroad. The proceedings comprise the paper of the opening session, 'Engineering and safety aspects of the decommissioning of nuclear installations', and the papers and discussions of the technical sessions entitled: - Comparative assessment of the regulatory regimes. - Legislation governing the decommissioning of nuclear installations in Germany. - Analysis of the purpose and law making substance of existing regulatory provisions for the decommissioning of nuclear installations. All seventeen papers of the meeting have been prepared for separate retrieval from the database. (orig./HSCH) [de

  2. Nuclear power plant decommissioning costs in perspective

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey; Deffrennes, Marc; Weber, Inge

    2016-01-01

    At the international level, actual experience is limited in the completion of nuclear power plant decommissioning projects. Cost data for decommissioning projects are thus largely unavailable, with few examples of analyses or comparisons between estimates and actual costs at the project level. The Nuclear Energy Agency (NEA) initiated a project to address this knowledge gap and in early 2016 published the outcomes in the report on Costs of Decommissioning Nuclear Power Plants. The study reviews decommissioning costs and funding practices adopted by NEA member countries, based on the collection and analysis of survey data via a questionnaire. The work was carried out in co-operation with the International Atomic Energy Agency (IAEA) and the European Commission (EC). (authors)

  3. Health physics considerations in decontamination and decommissioning

    International Nuclear Information System (INIS)

    1985-12-01

    These proceedings contain papers on legal considerations, environmental aspects, decommissioning equipment and methods, instrumentation, applied health physics, waste classification and disposal, and project experience. Separate abstracts have been prepared for individual papers

  4. Decommissioning of DR 1, Final report

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2006-01-01

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  5. NPP A-1 decommissioning - Phase I

    International Nuclear Information System (INIS)

    Krstenik, A.; Blazek, J.

    2000-01-01

    Nuclear power plant A-1 with output 150 MW e , with metallic natural uranium fuelled, CO 2 cooled and heavy water moderated reactor had been prematurely finally shut down in 1977. It is necessary to mention that neither operator nor regulatory and other authorities have been prepared for the solution of such situation. During next two consecutive years after shutdown main effort of operator focused on technical and administrative activities which are described in the previous paper together with approach, condition and constraints for NPP A-1 decommissioning as well as the work and research carried out up to the development and approval of the Project for NPP A-1 decommissioning - I. phase. Subject of this paper is description of: (1) An approach to NPP A -1 decommissioning; (2) An approach to development of the project for NPP A-1 decommissioning; (3) Project - tasks, scope, objectives; (4) Mode of the Project realisation; (5) Progress achieved up to the 1999 year. (authors)

  6. Sellafield Decommissioning Programme - Update and Lessons Learned

    International Nuclear Information System (INIS)

    Lutwyche, P. R.; Challinor, S. F.

    2003-01-01

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted

  7. The cost of decommissioning uranium mill tailings

    International Nuclear Information System (INIS)

    Lush, D.L.; Lendrum, C.; Hostovsky, C.; Eedy, W.; Ashbrook, A.

    1986-04-01

    This report identifies several key operations that are commonly carried out during decommissioning of tailings areas in the Canadian environment. These operations are unit costed for a generic site to provide a base reference case. The unit costs have also been scaled to the quantities required for the decommissioning of four Canadian sites and these scaled quantities compared with site-specific engineering cost estimates and actual costs incurred in carrying out the decommissioning activities. Variances in costing are discussed. The report also recommends a generic monitoring regime upon which both short- and longer-term environmental monitoring costs are calculated. Although every site must be addressed as a site-specific case, and monitoring programs must be tailored to fit a specific site, it would appear that for the conventional decommissioning and monitoring practices that have been employed to date, costs can be reasonably estimated when site-specific conditions are taken into account

  8. Decommissioning of DR 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2006-01-15

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  9. Canadian decommissioning experience from policy to project

    International Nuclear Information System (INIS)

    Pare, F.E.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada Limited (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, this paper explains its foundations and describes how it has and soon will be applied to various facilities. It terminates by providing a brief summary of the experience gained up to date on the implementation of this strategy

  10. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  11. Knowledge Management Aspects of Decommissioning. Case Study

    International Nuclear Information System (INIS)

    Pironkov, Lyubomir

    2017-01-01

    Kozloduy NPP: Units 5&6, type VVER-1000 - in operation. SE RAW SD “Decommissioning of units 1-4” (type VVER-440); SD “Radioactive Waste – Kozloduy”; SD “National Repository for Radioactive Waste“; SD “Permanent Repository for Radioactive Waste – Novi Han”. Decommissioning Strategy: Strategy Target: “Brown Field”. Initial Version: Safe enclosure – completing by 2050. Updated Version: Continuous dismantling of equipment; Completing the process of Decommissioning of Units 1-4 by 2030. Major Phases: 1.Pre-decommissioning activities; 2.Facility shutdown activities; 3.Procurement of equipment; 4.Dismantling activities; 5.Treatment of RAM and RAW and delivery for disposal; 6.Site management and support; 7.Project management and engineering; 8.Management of SNF and activated materials

  12. Decommissioning of AECL Whiteshell laboratories - 16311

    International Nuclear Information System (INIS)

    Koroll, Grant W.; Bilinsky, Dennis M.; Swartz, Randall S.; Harding, Jeff W.; Rhodes, Michael J.; Ridgway, Randall W.

    2009-01-01

    Whiteshell Laboratories (WL) is a Nuclear Research and Test Establishment near Winnipeg, Canada, operated by AECL since the early 1960's and now under decommissioning. WL occupies approximately 4400 hectares of land and employed more than 1000 staff up to the late-1990's, when the closure decision was made. Nuclear facilities at WL included a research reactor, hot cell facilities and radiochemical laboratories. Programs carried out at the WL site included high level nuclear fuel waste management research, reactor safety research, nuclear materials research, accelerator technology, biophysics, and industrial radiation applications. In preparation for decommissioning, a comprehensive environmental assessment was successfully completed [1] and the Canadian Nuclear Safety Commission issued a six-year decommissioning licence for WL starting in 2003 - the first decommissioning licence issued for a Nuclear Research and Test Establishment in Canada. This paper describes the progress in this first six-year licence period. A significant development in 2006 was the establishment of the Nuclear Legacy Liabilities Program (NLLP), by the Government of Canada, to safely and cost effectively reduce, and eventually eliminate the nuclear legacy liabilities and associated risks, using sound waste management and environmental principles. The NLLP endorsed an accelerated approach to WL Decommissioning, which meant advancing the full decommissioning of buildings and facilities that had originally been planned to be decontaminated and prepared for storage-with-surveillance. As well the NLLP endorsed the construction of enabling facilities - facilities that employ modern waste handling and storage technology on a scale needed for full decommissioning of the large radiochemical laboratories and other nuclear facilities. The decommissioning work and the design and construction of enabling facilities are fully underway. Several redundant non-nuclear buildings have been removed and redundant

  13. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  14. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    Fournier, Vincent

    2016-01-01

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter

  15. Decommissioning co-operation in Europe

    International Nuclear Information System (INIS)

    Simon, R.A.

    1992-01-01

    Under the provisions of the Euratom treaty, member states of the European Community have since 1978 been conducting successive five-year R and D programmes in the field of decommissioning on the basis of cost-sharing contracts. The main objective of the programmes is to establish safe, socially acceptable and economic decommissioning strategies for obsolete nuclear plant. The programmes share the common aim of all Euratom activities in promoting cooperation, scientific exchange and industrial competition within the Community. (author)

  16. SGDes project. Decommissioning management system of Enresa

    International Nuclear Information System (INIS)

    Fernandez Lopez, M.; Julian, A. de

    2013-01-01

    ENRESA, the public company responsible for managing radioactive waste produced in spain and nuclear facilities decommissioning work, has developed a management information system (SGDes) for the decommissioning of nuclear power plants, critical for the company. SGDes system is capable of responding to operational needs for efficient, controlled and secure way. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both the human and technological point of view. (Author)

  17. Decommissioning of the BR3 PWR

    International Nuclear Information System (INIS)

    Massaut, V.; Klein, M.

    1998-01-01

    The objectives, programme and main achievements of SCK-CEN's decommissioning programme in 1997 are summarised. Particular emphasis is on the BR3 decommissioning project. In 1997, auxiliary equipment and loops were dismantled; concrete antimissile slabs were decontaminated; the radiology of the primary loop was modelled; the quality assurance procedure for dismantling loops and equipment were implemented; a method for the dismantling of the reactor pressure vessel was selected; and contaminated thermal insulation of the primary loop containing asbestos was removed

  18. Risk Management of Large Component in Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Ku; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down.

  19. The cost of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    This report sets out the results of a National Audit Office investigation to determine the extent of the potential Government liability for nuclear decommissioning, how this is to be financed and the possible implications for the taxpayer. Further effort are needed to improve the nuclear industry's estimates, improve efficiency and face up to the costs of decommissioning. This should also ensure that the full cost of nuclear energy is identified. (author)

  20. Risk Management of Large Component in Decommissioning

    International Nuclear Information System (INIS)

    Nah, Kyung Ku; Kim, Tae Ryong

    2014-01-01

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down

  1. A nationwide modelling approach to decommissioning - 16182

    International Nuclear Information System (INIS)

    Kelly, Bernard; Lowe, Andy; Mort, Paul

    2009-01-01

    In this paper we describe a proposed UK national approach to modelling decommissioning. For the first time, we shall have an insight into optimizing the safety and efficiency of a national decommissioning strategy. To do this we use the General Case Integrated Waste Algorithm (GIA), a universal model of decommissioning nuclear plant, power plant, waste arisings and the associated knowledge capture. The model scales from individual items of plant through cells, groups of cells, buildings, whole sites and then on up to a national scale. We describe the national vision for GIA which can be broken down into three levels: 1) the capture of the chronological order of activities that an experienced decommissioner would use to decommission any nuclear facility anywhere in the world - this is Level 1 of GIA; 2) the construction of an Operational Research (OR) model based on Level 1 to allow rapid what if scenarios to be tested quickly (Level 2); 3) the construction of a state of the art knowledge capture capability that allows future generations to learn from our current decommissioning experience (Level 3). We show the progress to date in developing GIA in levels 1 and 2. As part of level 1, GIA has assisted in the development of an IMechE professional decommissioning qualification. Furthermore, we describe GIA as the basis of a UK-Owned database of decommissioning norms for such things as costs, productivity, durations etc. From level 2, we report on a pilot study that has successfully tested the basic principles for the OR numerical simulation of the algorithm. We then highlight the advantages of applying the OR modelling approach nationally. In essence, a series of 'what if...' scenarios can be tested that will improve the safety and efficiency of decommissioning. (authors)

  2. Russian nuclear-powered submarine decommissioning

    International Nuclear Information System (INIS)

    Bukharin, O.; Handler, J.

    1995-01-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems

  3. Decommissioning Project Manager's Implementing Instructions (PMII)

    International Nuclear Information System (INIS)

    Mihalic, M.A.

    1998-02-01

    Decommissioning Project personnel are responsible for complying with these PMII. If at any time in the performance of their duties a conflict between these instructions and other written or verbal direction is recognized or perceived, the supervisor or worker shall place his/her work place in a safe condition, stop work, and seek resolution of the conflict from the Decommissioning Project Manager or his designee

  4. Applicability of EPRI Decommissioning Pre-Planning Manual to International Decommissioning Projects

    International Nuclear Information System (INIS)

    Lessard, Leo; Kay, Jim; Lefrancois, Donald; Furr, Richard; Lucas, Matthieu; Schauer, Konrad

    2016-01-01

    Industry models for planning the efficient decommissioning of a nuclear power plant continue to evolve. Effective planning is a key to cost control, a critical aspect of decommissioning. In 2001, the Electric Power Research Institute (EPRI) published the 'Decommissioning Pre-Planning Manual', referred to as the 'Manual'. The goal of the Manual was to develop a framework for use in pre-planning the decommissioning of a nuclear power plant. The original research was based on information collected during the active decommissioning of power reactors in New England, and the ongoing decommissioning planning of another reactor still in operation. The research team identified thirty-two (32) major Decommissioning Tasks that support the strategic and tactical planning that can be conducted in advance of plant shutdown. The Decommissioning Tasks were organized in a logical sequence of execution, and sorted in common discipline groupings. Owners of U.S. nuclear plants that have shut down prematurely during the past 5 years have found the EPRI Decommissioning Pre-Planning Manual useful in developing their transition plans from an operating to shutdown facility. Concurrently, during the past 15 years, the IAEA has published numerous technical and safety reports on nuclear reactor decommissioning planning and execution. IAEA's goal is to provide its global members with useful and timely guidance for the planning and execution of nuclear decommissioning projects. This information has been used extensively by international nuclear plant operators. One of the key objectives will be to develop a road-map linking the 32 EPRI Decommissioning Tasks with the comparable (or equivalent) topics covered in the IAEA library of decommissioning knowledge. The logical and convenient structure of the Manual will be cross-referenced to the IAEA topics to aid in organizing the development of decommissioning plans. The road-map will serve to provide a basis for improved

  5. The Importance of Experience Based Decommissioning Planning

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2016-01-01

    Decommissioning of a nuclear facility is an extensive and multidisciplinary task, which involves the management and technical actions associated with ceasing operation and thereafter the step-by-step transfer of the facility from an operating plant to an object under decommissioning. The decommissioning phase includes dismantling of systems and components, decontamination and clearance, demolition of buildings, remediation of any contaminated ground and finally a survey of the site. Several of these activities generate radioactive or potentially radioactive waste, which has to be managed properly prior to clearance or disposal. What makes decommissioning of nuclear installations unique is to large extent the radioactive waste management. No other industries have that complex regulatory framework for the waste management. If decommissioning project in the nuclear industry does not consider the waste aspects to the extent required, there is a large risk of failure causing a reduced trust by the regulators and other stakeholders as well as cost and schedule overruns. This paper will give an overview of important aspects and findings gathered during decades of planning and conducting decommissioning and nuclear facility modernization projects. (authors)

  6. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    1986-01-01

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  7. Implementation of decommissioning materials conditional clearance process to the OMEGA calculation code

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir

    2011-01-01

    The activities performed during nuclear installation decommissioning process inevitably lead to the production of large amount of radioactive material to be managed. Significant part of materials has such low radioactivity level that allows them to be released to the environment without any restriction for further use. On the other hand, for materials with radioactivity slightly above the defined unconditional clearance level, there is a possibility to release them conditionally for a specific purpose in accordance with developed scenario assuring that radiation exposure limits for population not to be exceeded. The procedure of managing such decommissioning materials, mentioned above, could lead to recycling and reuse of more solid materials and to save the radioactive waste repository volume. In the paper an a implementation of the process of conditional release to the OMEGA Code is analyzed in details; the Code is used for calculation of decommissioning parameters. The analytical approach in the material parameters assessment, firstly, assumes a definition of radiological limit conditions, based on the evaluation of possible scenarios for conditionally released materials, and their application to appropriate sorter type in existing material and radioactivity flow system. Other calculation procedures with relevant technological or economical parameters, mathematically describing e.g. final radiation monitoring or transport outside the locality, are applied to the OMEGA Code in the next step. Together with limits, new procedures creating independent material stream allow evaluation of conditional material release process during decommissioning. Model calculations evaluating various scenarios with different input parameters and considering conditional release of materials to the environment are performed to verify the implemented methodology. Output parameters and results of the model assessment are presented, discussed and conduced in the final part of the paper

  8. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  9. DASAO: software tool for the management of safeguards, waste and decommissioning

    International Nuclear Information System (INIS)

    Noynaert, Luc; Verwaest, Isi; Libon, Henri; Cuchet, Jean-Marie

    2013-01-01

    now implementing a simplified release of the software for the management of the decommissioning of the Thetis reactor. Its decommissioning will start in March 2013 and will be completed by the end of 2014. (authors)

  10. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, R.; Eurajoki, T. [Nuclear Power Engineering (Finland)

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated because of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.

  11. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station

  12. The specificity of decommissioning waste for disposal and from different facilities

    International Nuclear Information System (INIS)

    Jones, J.; Hilden, W.; Pla Campana, E.; )

    2005-01-01

    Full text: During the decommissioning of nuclear installations significant waste quantities arise, the bulk being material which qualifies for free release or exemption. Only minor quantities have to be submitted to regulatory control and have either to be disposed or can be released, recycled or reused under certain conditions defined by the regulatory body. Actually, it is almost impossible to derive at meaningful data for the expected waste quantities by a simple propagation of the experiences made in other installations. Rather, the quantities and categorisation are significantly installation specific and are determined by a variety of factors such as the plant construction and operation history, the thoroughness of facility characterisation in preparation for decommissioning, the timing of the decommissioning exercise, the kind and scope of the applied waste treatment and conditioning techniques, the possibility for recycling or reusing irradiated or contaminated materials as well as the applicable national legislation. Further international co-operation aiming at the development of waste estimation techniques is required. Moreover, a harmonisation of national legislation might help to compare waste arisings under the various decommissioning exercises

  13. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Reisenweaver, D W.; )

    2005-01-01

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  14. Two Approaches to Reactor Decommissioning: 10 CFR Part 50 License Termination and License Amendment, Lessons Learned from the Regulatory Perspective

    International Nuclear Information System (INIS)

    Watson, B.A.; Buckley, J.T.; Craig, C.M.

    2006-01-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in decommissioning planning, conduct of decommissioning operations, volumes of low- level radioactive waste disposed, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated their 10 CFR Part 50 license. Maine Yankee elected to obtain a general license under 10 CFR Part 50 for the ISFSI and reduce the physical site footprint to the ISFSI through a series of license amendments. While the NRC regulations are flexible and allow different approaches to ISFSI licensing there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, public input resulted in the licensee entering into an agreement with a concerned citizen group and resulted in State legislation that significantly lowered the dose limit below the NRC radiological criteria of 25 mrem (0.25 mSv) per year (yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs

  15. Discussion on management of decommissioning funds for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hailiang

    2013-01-01

    Decommissioning funding is one of the major issues with regard to the policy and management of nuclear power. This paper describes current status of decommissioning of nuclear power plants in some foreign countries and narrates the practices in these countries on the estimation of decommissioning cost, the retrieval and management of decommissioning funds, and the guarantee of fund sufficiency. Based on a brief analysis of the status of decommissioning funding management for nuclear power plants in China, suggestions on tasks or activities needed to be carried out at present in the field of decommissioning funding are proposed. (authors)

  16. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  17. Decommissioning techniques for research reactors. Final report of a co-ordinated research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    in this technical publication. Operating experience in real-scale applications, lessons learned, key results in laboratory scale or pilot scale research, and validation of mathematical models, are among the most significant achievements of the CRP and have been highlighted. The objective of this CRP was to promote the exchange of information on the practical experience gained by Member States in decommissioning or operation, maintenance, and refurbishment activities which would be eventually related to the decommissioning of research reactors. Special emphasis was given to the development/adaptation of methods and approaches for optimization of the decommissioning process. The scope of the project included several technical areas of decommissioning rather than focusing on a single aspect of it. It was felt that this format would generate more awareness of the integrated approach to decommissioning. In particular, the scope included the following: design, construction and operational features to assist in final decommissioning; planning for decommissioning, including technical solution assessment; decommissioning strategies and their technological implications; radiological and physical characterization; dismantling technology; decontamination technology; remotely operated equipment; means to reduce occupational exposures; waste generation and management, including clearance of solid materials; restricted and unrestricted site release, including final surveys; costs and financial provisions; safe enclosure of shutdown reactors, including long-term integrity of buildings and systems; decommissioning experience; and ageing management and refurbishment experience.

  18. Decommissioning techniques for research reactors. Final report of a co-ordinated research project 1997-2001

    International Nuclear Information System (INIS)

    2002-02-01

    in this technical publication. Operating experience in real-scale applications, lessons learned, key results in laboratory scale or pilot scale research, and validation of mathematical models, are among the most significant achievements of the CRP and have been highlighted. The objective of this CRP was to promote the exchange of information on the practical experience gained by Member States in decommissioning or operation, maintenance, and refurbishment activities which would be eventually related to the decommissioning of research reactors. Special emphasis was given to the development/adaptation of methods and approaches for optimization of the decommissioning process. The scope of the project included several technical areas of decommissioning rather than focusing on a single aspect of it. It was felt that this format would generate more awareness of the integrated approach to decommissioning. In particular, the scope included the following: design, construction and operational features to assist in final decommissioning; planning for decommissioning, including technical solution assessment; decommissioning strategies and their technological implications; radiological and physical characterization; dismantling technology; decontamination technology; remotely operated equipment; means to reduce occupational exposures; waste generation and management, including clearance of solid materials; restricted and unrestricted site release, including final surveys; costs and financial provisions; safe enclosure of shutdown reactors, including long-term integrity of buildings and systems; decommissioning experience; and ageing management and refurbishment experience

  19. Decommissioning of fast reactors after sodium draining

    International Nuclear Information System (INIS)

    2009-11-01

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  20. Overview of decommissioning activities in the US

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    2006-01-01

    The U.S. has been involved the successful decontamination, decommissioning and reutilization of nuclear facilities for over 20 years. A number of commercial power plants in the United States have either completed their decommissioning, or will be in the next few years. In addition, the U.S. DOE has taken an aggressive approach to site remediation focusing on site closures so as to better utilize its financial resources. The U.S. initiative to deregulate the electrical generation industry to promote competition and presumably to reduce electricity prices to the consumer, is again in flux. Some utilities, facing the real or perceived threat of competition in its markets decided to shut down the 'costly' nuclear plants to alleviate the drain on their financial reserves. The older nuclear units experienced serious mechanical problems, entailing expensive repairs and replacements. Such difficulties have caused owner-operator utilities to decide to decommission these facilities rather than incur the expense of upgrading or repairing the plants to meet current regulatory and design criteria. Plants that were marginally cost-competitive, or not at all competitive, were shut down and decommissioned. Other utilities have bought some of the older nuclear plants in the Northeast (a high power demand region) to operate them and to extend their licenses for continued life. This paper will discuss the decommissioning lessons learned, management approaches, site characterization and challenges faced in disposition of radioactive waste and large components, contracting practice, and the status of several of these shut down reactor-decommissioning programs. The industry has proven that nuclear power plants can be cost effectively and safely decommissioned. (author)

  1. Decommissioning Challenges, strategy and programme development

    Energy Technology Data Exchange (ETDEWEB)

    Potier, J.M.; Laraie, M.; Dinner, P. [Waste Technology Section, Dept. of Nuclear Energy, International Atomic Energy Agency (IAEA), Vienna (Austria); Pescatore, C.; O' Sullivan [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France); Dupuis, M.C. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Szilagyi, A.; Collazo, Y.; Negin, Ch. [U.S. Department of Energy, Washington, DC (United States)

    2008-11-15

    This document gathers 4 short articles. The first one presents the IAEA decommissioning activities. These activities include: -) the development and implementation of the international action on decommissioning, -) the provision of experts and equipment to assist member states, -) networking activities such as training or exchange of knowledge and experience. The second article presents the work program of the Nea (nuclear energy agency) in the field of decommissioning and reports on the lessons that have been learnt. Among these lessons we can quote: -) selecting a strategy for decommissioning and funding it adequately, -) regulating the decommissioning of nuclear activities, -) thinking of the future in terms of reusing materials, buildings and sites, -) involving local and regional actors in the decommissioning process from decision-making to dismantling work itself, and -) increasing transparency in decision-making in order to build trust. The third article presents the management of radioactive wastes in France. This management is based on the categorization of wastes in 6 categories according to both the activity level and the radioactive half-life T: 1) very low activity, 2) low activity and T < 31 years, 3) low activity and T > 31 years, 4) intermediate activity and T < 31 years, 5) intermediate activity and T > 31 years, and 6) high activity. For categories 1, 2, 3 and 5, the waste treatment process and the disposal places have been operating for a long time while for categories 4 and 6, the disposal places are still being studied: low-depth repository and deep geological repository respectively. The last article presents the action of the US Department of energy in decommissioning activities and environmental remediation, the example of the work done at the ancient nuclear site of Rocky Flats gives an idea of the magnitude and complexity of the operations made. (A.C.)

  2. Italian decommissioning in the post-referendum era

    International Nuclear Information System (INIS)

    Ferrazzano, Vincenzo; Scarabotti, Serena

    2012-01-01

    rationale and their impact on existing legal rules. Moreover, the benefits arising from the new enabling provisions in terms of planning and accelerating decommissioning activities for the dismantlement of the Italian nuclear programme will be identified. Article 24 represents a fundamental step with respect to the evolution of legal provisions governing the nuclear arena in Italy. While looking at the decommissioning field in Italy, a significant institutional role is played by SO.G.I.N. S.p.A. (Sogin), an Italian joint stock company whose shares are owned entirely by the Italian Ministry of Economy and Finance. Sogin's primary corporate mission is the decommissioning of nuclear power plants and research reactors that have been shut down in Italy. From a historical standpoint, after the Chernobyl accident in 1986, there was a general public debate in Italy on the implications of using nuclear power, and, following a referendum in 1987, the new national energy plan called for the abandonment of nuclear power in Italy

  3. Germany: Management of decommissioning waste in Germany

    International Nuclear Information System (INIS)

    Borrmann, F.; Brennecke, P.; Koch, W.; Kugel, K.; Steyer, S.

    2007-01-01

    Over the past two decades, Germany has gained a substantial amount of experience in the decommissioning of nuclear facilities of different types and sizes. Many research reactors and all prototype nuclear power plants, as well as a few larger nuclear power plants and fuel cycle facilities, are currently at varying stages of decommissioning. Several facilities have been fully dismantled and the sites have been cleared for reuse. The decommissioning projects comprise 18 power and prototype reactors, 33 research reactors and 11 fuel cycle facilities which are being or have been decommissioned. In the future, further nuclear power plants will be shut down and decommissioned in accordance with Germany?s energy policy to phase out the use of nuclear power for commercial electricity generation as given in the April 2002 amendment of the Atomic Energy Act. Radioactive waste, from operations as well as from decommissioning activities, is to be conditioned in such a way as to comply with the waste acceptance requirements of a repository. In Germany, all types of radioactive waste (i.e., short-lived and long-lived) are to be disposed of in deep geological formations. A distinction is being made for heat generating waste (i.e., high level waste) and waste with negligible heat generation (i.e., low level and intermediate level waste). Radioactive decommissioning waste is waste with negligible heat generation. Waste acceptance requirements of a repository are of particular importance for the conditioning of radioactive waste, including decommissioning waste. The waste acceptance requirements, as they resulted from the Konrad licensing procedure, are being applied by the waste generators for the conditioning of decommissioning waste. Compliance with these requirements must be demonstrated through the waste package quality control, even if the waste will be disposed of in the future. In 2002 the Konrad repository was licensed for the disposal of all types of waste with negligible

  4. International Good Practice on Practical Implementation of Characterisation in Decommissioning. Radiological Characterization in Decommissioning of Nuclear Facilities: International Good Practice on Practical Implementation

    International Nuclear Information System (INIS)

    Larsson, A.; Empdage, M.; Weber, I.; )

    2017-01-01

    Within the Nuclear Energy Agency (NEA), the Working Party on Decommissioning and Dismantling (WPDD) operates under the umbrella of the Radioactive Waste Management Committee (RWMC). The WPDD provides a focus for the analysis of decommissioning policy, strategy and regulation, including the related issues of waste management, release of buildings and sites from regulatory control and associated cost estimation and funding. WPDD also convenes task groups comprised of experts from the NEA member countries to review related topics such as characterisation techniques which support decommissioning and associated waste management. The Task Group on Radiological Characterisation and Decommissioning was established in 2011 to identify and present characterisation good practice at different stages of decommissioning and to identify areas that could, or should, be developed further through international cooperation and coordination. By the end of 2016 two phases of work will be complete. The first phase developed strategic guidance for decision makers on the selection and tailoring of strategies for radiological characterisation, which gives an overview of good practice for radiological characterisation at different phases of the life cycle of a nuclear installation. The second phase has focused on strategies for practical implementation of radiological characterisation from a waste and materials end-state perspective. This paper provides a summary of the phase 2 findings, covering: -) a major international survey (questionnaire) to elicit the views of characterisation experts regarding good practice; -) Learning drawn from recent international case studies; -) The collation and analysis of regulations, standards and guidance documents; -) Learning distilled from an international conference on characterisation co-organised by the task group; and -) Overall conclusions regarding characterisation good practice, recommendations and identified areas for further international

  5. Contaminated concrete scabbling at the Shippingport station decommissioning project

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1989-01-01

    The Shippingport atomic power station was the first commercial nuclear power plant in the United States, joining the Duquesne Light Company (DLC) grid in December 1957. The Shippingport station was shut down in October 1982 and defueled in preparation for dismantling. On September 6, 1984, the Shippingport Station Decommissioning Project (SSDP) office of the US Department of Energy (DOE) assumed responsibility for the site. At turnover, there were several areas in the plant where radioactive contamination was entrained in concrete surfaces. The removal of contaminated concrete at SSDP was an important part of the decontamination to meet site release criteria, which is a major consideration in the decommissioning of nuclear power reactors. The highlights of this activity include: (1) development and application of remote scabbling tools, which effectively removed the contaminated concrete surfaces, and (2) use of scabblers minimized the removal of noncontaminated concrete by removing shallow layers of the surface and contributed to waste control, since the waste form enabled good packaging efficiency

  6. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  7. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  8. Full system decontamination. AREVAs experience in decontamination prior to decommissioning

    International Nuclear Information System (INIS)

    Topf, Christian

    2010-01-01

    Minimizing collective radiation exposure and producing free-release material are two of the highest priorities in the decommissioning of a Nuclear Power Plant (NPP). Full System Decontamination (FSD) is the most effective measure to reduce source term and remove oxide layer contamination within the plant systems. FSD is typically a decontamination of the primary coolant circuit and the auxiliary systems. In recent years AREVA NP has performed several FSDs in PWRs and BWRs prior to decommissioning by applying the proprietary CORD copyright family and AMDA copyright technology. Chemical Oxidation Reduction Decontamination or CORD represents the chemical decontamination process while AMDA stands for Automated Mobile Decontamination Appliance, AREVA NPs decontamination equipment. Described herein are the excellent results achieved for the FSDs applied at the German PWRs Stade in 2004 and Obrigheim in 2007 and for the FSDs performed at the Swedish BWRs, Barsebaeck Unit 1 in 2007 and Barsebaeck Unit 2 in 2008. All four FSDs were performed using the AREVA NP CORD family decontamination technology in combination with the AREVA NP decontamination equipment, AMDA. (orig.)

  9. Radiochemical analysis of concrete samples for decommission of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, Daniel; Wershofen, Herbert [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100 38116, Braunschweig (Germany); Larijani, Cyrus; Sobrino-Petrirena, Maitane; Garcia-Miranda, Maria; Jerome, Simon M. [National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2014-07-01

    Decommissioning of the oldest nuclear power reactors are some of the most challenging technological legacy issues many countries will face in forthcoming years, as many power reactors reach the end of their design lives. Decommissioning of nuclear reactors generates large amounts of waste that need to be classified according to their radioactive content. Approximately 10 % of the contaminated material ends up in different repositories (depending on their level of contamination) while the rest is decontaminated, measured and released into the environment or sent for recycling. Such classification needs to be done accurately in order to ensure that both the personnel involved in decommissioning and the population at large are not needlessly exposed to radiation or radioactive material and to minimise the environmental impact of such work. However, too conservative classification strategies should not be applied, in order to make proper use of radioactive waste repositories since space is limited and the full process must be cost-effective. Implicit in decommissioning and classification of waste is the need to analyse large amounts of material which usually combine a complex matrix with a non-homogeneous distribution of the radionuclides. Because the costs involved are large, it is possible to make great savings by the adoption of best available practices, such as the use of validated methods for on-site measurements and simultaneous determination of more than one radionuclide whenever possible. The work we present deals with the development and the validation of a procedure for the simultaneous determination of {sup 241}Am, plutonium isotopes, uranium isotopes and {sup 90}Sr in concrete samples. Samples are firstly ground and fused with LiBO{sub 2} and Li{sub 2}B{sub 4}O{sub 7}. After dissolution of the fused sample, silicate and alkaline elements are removed followed by radiochemical separation of the target radionuclides using extraction chromatography. Measurement

  10. Economical aspect of the decommissioning for NPP

    International Nuclear Information System (INIS)

    Daryoko, M.

    1998-01-01

    The estimated, analysed and founding of the economical aspect at decommissioning of Nuclear Power Plant (NPP) have been studied. The data that have been obtained from literature, then the calculation and analysing have been done base to the future condition. The cost for NPP decommissioning depend on the internal factor such as type, capacity and safe storage time, and the external factor such as policy, manpower and the technology preparation. The successfulness of funding, depend on the rate of inflation, discount rate of interest and the currency fluctuation. For the internal factor, the influence of the type of the reactor (BWR or PWR) to the decommissioning cost is negligible, the big reactor capacity (±1100 MW), and the safe storage between 30 to 100 years are recommended, and for the external factor, specially Indonesia, to meet the future need the ratio of decommissioning cost and capital cost will be lower than in develop countries at the present (10%). The ratio between decommissioning fund and electricity generation cost relatively very low, are more less than 1.79 % for 30 years safe storage, and discount rate of interest 3%, or more less than 0.30 % for safe storage 30 years, and discount rate of interest 6%. (author)

  11. Study on the decommissioning of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Doo Hwan; Jun, Kwan Sik; Choi, Yoon Dong; Lee, Tae Yung; Kwon, Sang Woon; Lee, Jong Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Currently, KAERI operates TRIGA Mark-II and TRIGA Mark-III research reactors as a general purpose research and training facility. As these are, however, situated at Seoul office site of KAERI which is scheduled to be transferred to KEPCO as well as 30 MW HANARO research reactor which is expected to reach the first criticality in 1995 is under construction at head site of KAERI, decommissioning of TRIGA reactors has become an important topic. The objective of this study is to prepare and present TRIGA facility decontamination and decommissioning plan. Estimation of the radioactive inventory in TRIGA research reactor was carried out by the use of computational method. In addition, summarized in particular were the methodologies associated with decontamination, segmenting processes for activated metallic components, disposition of wastes. Particular consideration in this study was focused available technology applicable to decommissioning of TRIGA research reactor. State-of-the-art summaries of the available technology for decommissioning presented here will serve a useful document for preparations for decommissioning in the future. 6 figs, 41 tabs, 30 refs. (Author).

  12. Closing responsibilities: decommissioning and the law

    International Nuclear Information System (INIS)

    Macrory, R.

    1990-01-01

    Laws change over time, with the times. Interpretations of old laws shift and the need for new laws emerges. There are endless reasons for these necessary changes, but the basic impetus is the changing nature of societal circumstance. Fifty years ago there were no laws directly governing nuclear power in any way. Today we know that nuclear power touches people from their wallets to their descendants. Currently, many laws related to nuclear power are in place, laws which protect all sectors of society from electricity generating bodies to a newborn child, and the Chernobyl accident has broadened the legal ramifications of nuclear power even more. This expanding body of nuclear law reflects our expanding understanding of nuclear power from its technical beginnings to its societal consequences and implications. The law is now beginning to reflect the growing significance of decommissioning. What are the relationships between decommissioning and the existing laws, government agencies, and policies? Ironically, although the UK will lead the world in addressing decommissioning responsibilities, there are no explicit laws in place to govern the process. In the absence of specific legislation governing decommissioning, the primary responsibilities fall to the operators of the power plants, a circumstance not lost on those involved in privatization. In this chapter, the wide and varied legal ramifications of decommissioning are examined. (author)

  13. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  14. A decontamination technique for decommissioning waste

    International Nuclear Information System (INIS)

    Heki, H.; Hosaka, K.; Kuribayashi, N.; Ishikura, T.

    1993-01-01

    A large amount of radioactive metallic waste is generated from decommissioned commercial nuclear reactors. It is necessary from the point of environmental protection and resource utilization to decontaminate the contaminated metallic waste. A decommissioning waste processing system has been previously proposed considering such decommissioning waste characteristics as its large quantity, large radioactivity range, and various shapes and materials. The decontamination process in this system was carried out by abrasive blasting as pretreatment, electrochemical decontamination as the main process, and ultrasonic cleaning in water as post-treatment. For electrochemical decontamination, electrolytic decontamination for simple shaped waste and REDOX decontamination for complicated shaped waste were used as effective decontamination processing. This time, various kinds of actual radioactive contaminated samples were taken from operating power plants to simulate the decontamination of decommissioning waste. After analyzing the composition, morphogenesis and surface observation, electrolytic decontamination, REDOX decontamination, and ultrasonic cleaning experiments were carried out by using these samples. As a result, all the samples were decontaminated below the assumed exemption level(=4 x 10 -2 Bq/g). A maximum decontamination factor of over 104 was obtained by both electrolytic and REDOX decontamination. The stainless steel sample was easy to decontaminate in both electrochemical decontaminations because of its thin oxidized layer. The ultrasonic cleaning process after electrochemical decontamination worked effectively for removing adhesive sludge and the contaminated liquid. It has been concluded from the results mentioned above that electrolytic decontamination and REDOX decontamination are effective decontamination process for decontaminating decommissioning waste

  15. Systematic Approach for Decommissioning Planning and Estimating

    International Nuclear Information System (INIS)

    Dam, A. S.

    2002-01-01

    Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises

  16. Application of innovative policies for controlling radionuclide releases: The open-quotes open-market trading ruleclose quotes

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1997-01-01

    In the past, most efforts for reducing airborne radio nuclide releases and controlling radioactive wastes have been directed to the development of new and improved technologies. Little attention has been paid to the possible application to these problems of new, innovative policies. Yet, experience in other fields shows that such applications could be beneficial. A prime example is the open-quotes open-market trading rule,close quotes now being widely used in the U.S. for the control of a range of environmental problems. Through this rule, nuclear facility operators would be permitted to control airborne emissions in a more cost-effective manner, and those responsible for decommissioning and decontaminating nuclear facilities no longer in operation could do so at far lower costs while generating significantly smaller volumes of radioactive wastes. Application of such a policy would also significantly reduce the demands on existing, and the need for research to develop new, improved, control technologies. 16 refs

  17. 77 FR 14047 - Guidance for Decommissioning Planning During Operations

    Science.gov (United States)

    2012-03-08

    ...)-4014, ``Decommissioning Planning During Operations.'' This action is necessary to correct the NRC's... NUCLEAR REGULATORY COMMISSION [NRC-2011-0286] Guidance for Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; correction. SUMMARY: The U...

  18. Decommissioning and radioactive waste management. The European Commission overview

    International Nuclear Information System (INIS)

    Rehak, M

    2010-01-01

    In this lecture author deals with the European Commission overview on the decommissioning and radioactive waste management. Financial support of European Commission of decommissioning of the Ignalina NPP, Bohunice V1 NPP and Kozloduy Units 1 and 2 is presented.

  19. Technical and cost aspects of radioactive wastes from decommissioning

    International Nuclear Information System (INIS)

    Claes, J.; Menon, S.

    2001-01-01

    The OECD Nuclear Energy Agency's Co-operative Programme on Decommissioning was established in 1985 to share the experience and information emerging from on-going decommissioning projects within member countries. The main aim of the programme is to gather and collate such data, which can then provide the basis for planning the future industrial phase of decommissioning of commercial nuclear plants. Starting with 10 decommissioning projects in 1985, today the programme has 35 participating projects from 12 countries. Apart from exchanging valuable information, task groups have been set up for in-depth analysis and studies of areas of common interest, among which are the recycling of material from decommissioning projects and decommissioning costs. This paper will describe the structure and mode of operation of the programme. Some of the results of the work in the task groups will be presented, with particular emphasis on the management of materials from decommissioning and on decommissioning costs. (author)

  20. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  1. The use of modern engineered polymer coatings and products in decommissioning of nuclear facilities and plant

    International Nuclear Information System (INIS)

    Christie, K.; Harris, C.W.; Morris, O.P.; Atkinson, P.

    2014-01-01

    During decommissioning of nuclear plant, problems can arise whereby leaks and cracks appear which may require repair or remediation. Following clean-up processes radionuclides may be exposed in concrete or structures such ponds which require sealing to prevent atmospheric release and to obtain a reduction in operator dose. There are a number of polymer based products on the market which with care and skillful selection can be utilised to aid decommissioning and to add reassurance to regulators that radionuclide release cannot occur. Choosing between them is difficult due to the fact that the standard coating tests cannot reliably distinguish between the various products since these modern polymers are all significantly tougher than previous generations of coating technologies. There is therefore a need to develop new bespoke tests which replicate the likely failure modes of the plant and which demonstrate which products are likely to perform well in real life situations. (authors)

  2. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  3. Eastern and Central Europe Decommissioning, ECED 2015 - Book of Abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    Scientific conference deals with problems of reactor decommissioning and radioactive waste management in the Central Europe. The Conference included the following sessions: (1): Characterisation and Radioactive Waste Management; (2) Managerial Aspects of Decommissioning; (3) JAVYS Experience with Back-End of Nuclear Power Engineering - Progress in Last 2 Years; (4) Decommissioning Planning and Costing and Education; (5) Technical Aspects of Decommissioning; (6) Radioactive Waste Management; (4) Poster Session. The Book of Abstracts contains two invitation speeches and 30 abstracts.

  4. Assessment of financial expenditure for Rivne NPP power units decommissioning

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Salij, L.M.

    2007-01-01

    The article covers some financial aspects of developing a decommissioning concept for Rivne NPP power units with reactor VVER-440 and VVER-1000. Possible methodological approaches to costs estimate have been analyzed. Preliminary results of cost estimation are presented for two decommissioning options: deferred and immediate dismantling. Principally possible options for accumulating assets have been analyzed to finance measures related to Rivne NPP decommissioning. A mathematical model has been proposed for creating decommissioning financial reserve

  5. Detritiation studies for JET decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N.; Bell, A.C.; Williams, J.; Brennan, P.D. [EURATOM/UKAEA Fussion Association, Culham Science Centre, Abingdon (United Kingdom)

    2007-07-01

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T{sub 2}) in 1991, the Trace Tritium Experiment (5g T{sub 2}) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T{sub 2}) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, 'oxygen-free' copper, aluminium bronze), carbon fibre composite tiles, 'carbon' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  6. Estimating boiling water reactor decommissioning costs. A user's manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1994-12-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user's manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning

  7. Management of very low level waste from decommissioning of the A-1 Jaslovske Bohunice nuclear power plant in Slovakia

    International Nuclear Information System (INIS)

    Burclova, J.; Konecny, L.; Mrskova, A.

    2000-01-01

    Efforts were made to accelerate decommissioning, particularly of the nuclear power plant A1 of the HWGCR type. Progress made and current developments in this subject area are reviewed. Radioactive waste categories are described along with release criteria. An overview is provided on contaminated scrap and the sorting of contaminated soil and concrete. (author)

  8. AREVA NP decontamination concept for decommissioning. A comprehensive approach based on over 30 years experience

    International Nuclear Information System (INIS)

    Stiepani, Christoph

    2011-01-01

    Decontamination prior to Decommissioning and Dismantlement is imperative. Not only does it provide for minimization of personnel dose exposure but also maximization of the material volume available for free release. Since easier dismantling techniques in lower dose areas can be applied, the licensing process is facilitated and the scheduling and budgeting effort is more reliable. The most internationally accepted approach for Decontamination prior to Decommissioning projects is the Full System Decontamination (FSD). FSD is defined as the chemical decontamination of the primary cooling circuit, in conjunction with the main auxiliary systems. AREVA NP has long-term experience with Full System Decontamination for return to service of operating nuclear power plants as well as for decommissioning after shutdown. Since 1976, AREVA NP has performed over 500 decontamination applications and, from 1986, Decontaminations prior to Decommissioning projects which comprise virtually all NPP designs and plant conditions were performed: NPP designs: HPWR, PWR, and BWR by AREVA, Westinghouse, ABB and GE. Decontaminations performed shortly after final shutdown or several years later, and even after re-opening Safe Enclosure. High Alpha inventory and or low gamma/alpha ratio. Main Coolant chemistry (e.g., with and without Zn injection during operation). Fifteen Decontaminations prior to Decommissioning Projects have been performed successfully to date and the sixteenth FSD is now in the detailed engineering phase and is scheduled to commence late 2010. AREVA NP has developed a fully comprehensive approach for decontamination based on the CORD® (Chemical Oxidation Reduction Decontamination) Family, applied using the in-house designed decontamination equipment AMDA TM (Automatic Modular Decontamination Appliance). Based on the vast experience of AREVA NP in the field of decontamination, the Decontamination Concept for Decommissioning was developed. This concept ensures that the

  9. Nuclear data requirements for fission reactor decommissioning

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1993-01-01

    The meeting was attended by 13 participants from 8 Member States and 2 International Organizations who reviewed the status of the nuclear data libraries and computer codes used to calculate the radioactive inventory in the reactor unit components for the decommissioning purposes. Nuclides and nuclear reactions important for determination of the radiation fields during decommissioning and for the final disposal of radioactive waste from the decommissioned units were identified. Accuracy requirements for the relevant nuclear data were considered. The present publication contains the text of the reports by the participants and their recommendations to the Nuclear Data Section of the IAEA. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  10. Platform decommissioning: Socio-economic impacts

    International Nuclear Information System (INIS)

    Scheelhaase, Janina D.

    1998-01-01

    The object of this presentation is to evaluate the socio-economic effects of the decommissioning of steel jacket platforms in the North Sea and in the North East Atlantic in the period up to 2020 in their entirety. It is focused on two different decommissioning options, namely total and partial removal of installations. Partial removal applies only to installations in water deeper than 75 meters. All other installations, i.e those in waters shallower than 75 meters, have to be totally removed and brought onshore for disposal. Areas being analyzed cover costs of different decommissioning options, effects of the different options on employment, fiscal aspects of the different options, and aspects of recycling onshore. 6 figs., 13 tabs

  11. Model Regulations for Decommissioning of Facilities

    International Nuclear Information System (INIS)

    2017-07-01

    The IAEA has systematic programmes to provide Member States with the guidance, services and training necessary for establishing a legal and regulatory framework, including the planning and implementation of decommissioning. The model regulations provided in this publication cover all aspects of the planning, conduct and termination of the decommissioning of facilities and management of the associated waste, in accordance with the relevant requirements of the IAEA safety standards. They provide a framework for establishing regulatory requirements and conditions of authorization to be incorporated into individual authorizations for the decommissioning of specific facilities. The model regulations also establish criteria to be used for assessing compliance with regulatory requirements. The publication will be of assistance to Member States in appraising the adequacy of their existing regulations and regulatory guides, and serves as a reference for those Member States developing regulations for the first time.

  12. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  13. Decommissioning of the Neuherberg Research Reactor (FRN)

    International Nuclear Information System (INIS)

    Demmeler, M.; Rau, G.; Strube, D.

    1982-01-01

    The Neuherberg Research Reactor is of type TRIGA MARK III with 1 MW steady state power and pulsable up to 2000 MW. During more than ten years of operation 12000 MWh and 6000 reactor pulses had been performed. In spite of its good technical condition and of permanent safe operation without any failures, the decommissioning of the Neuherberg research reactor was decided by the GSF board of directors to save costs for maintaining and personnel. As the mode of decommissioning the safe enclosure was chosen which means that the fuel elements will be transferred back to the USA. All other radioactive reactor components will be enclosed in the reactor block. Procedures for licensing of the decommissioning, dismantling procedures and time tables are presented

  14. The Ministry of Dilemmas [decommissioning nuclear submarines

    International Nuclear Information System (INIS)

    Peden, W.

    1995-01-01

    A consultant for Greenpeace, the anti-nuclear campaigners, looks at the United Kingdom Government's problems with decommissioning of its nuclear submarine fleet as the vessels become obsolete, and at the transport and storage of spent fuels from the submarine's propulsion reactors. It is argued that no proper plans exist to decommission the vessels safely. The Ministry of Defence sites such as Rosyth and Devonport are immune from inspection by regulatory bodies, so there is no public knowledge of any potential radioactive hazards from the stored out-of-service carcasses, floating in dock, awaiting more active strategies. The author questions the wisdom of building new nuclear submarines, when no proper program exists to decommission existing vessels and their operational waste. (U.K.)

  15. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  16. Development of improved technology for decommissioning operations

    International Nuclear Information System (INIS)

    Allen, R.P.

    1982-07-01

    This paper describes the technology development activities conducted at Pacific Northwest Laboratory under US Department of Energy sponsorship to help ensure the availability of safe, cost-effective and environmentally sound decommissioning technology for radioactively contaminated facilities. These improved decommissioning technologies include techniques for the removal of contaminated concrete surfaces and coatings, adaptation of electropolishing and vibratory finishing decontamination techniques for field decommissioning applications, development of sensitive field instrumentation and methods for the monitoring of large surface areas, techniques for the field sectioning of contaminated components, improved contamination-stabilizing coatings and application methods, and development of a small solidification system for the field solidification of liquid waste. The results of cost/benefit studies for some of these technologies are also reported

  17. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Narbalek uranium mine: from EIS to decommissioning

    International Nuclear Information System (INIS)

    Waggitt, P.W.

    2000-01-01

    The Nabarlek uranium mine operated in Northern Australia from 1979 until 1989 and was the first of the 'new generation' of uranium mines to go through the cycle of EIS, operation and decommissioning. The paper describes the environmental and operational approval processes, the regulatory regime and the decommissioning procedures at the mine. The mine was located on land owned by indigenous Aboriginal people and so there were serious cultural considerations to be taken into account throughout the mine's life. Site work for decommissioning and rehabilitation was completed in 1995 but revegetation assessment has continued until the present time (1999). The paper concludes with the latest assessment and monitoring data and discusses the lessons learned by all parties from the completion of the cycle of mine life 'from cradle to grave'. (author)

  19. Decommissioning strategy for reactor AM, Russian Federation

    International Nuclear Information System (INIS)

    Suvorov, A.P.; Mukhamadeev, R.I.

    2002-01-01

    This paper presents the results of studies into the various aspects of decommissioning the oldest Russian research reactor, the AM reactor. Experimental and calculation results of a study to determine the inventory of long lived radioactive materials at the AM reactor are presented, along with a comparison to comparable data for other similar reactors. An analysis, by calculation, of the decay time needed to allow manual dismantling of the reactor vessel and stack, without remote operated equipment, defined it as 90 years. The possibility of burning most of the irradiated graphite to decrease the amount of long lived radioactive wastes was confirmed. The problems associated with the dismantling of the reactor components, contaminated with radioactive corrosion products, were analyzed. A decommissioning strategy for reactor AM was formed which is deferred dismantling, placing most of the radiological areas into long term safe enclosure. An overall decommissioning plan for reactor AM is given. (author)

  20. Mound's decommissioning experience, tooling, and techniques

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Elswick, T.C.; Garner, J.M.; Geichman, J.R.

    1982-01-01

    Monsanto Research Corporation (MRC), which operates Mound for the Department of Energy (DOE), has been decommissioning radioactively contaminated facilities since 1949. We are currently decommissioning three plutonium-238 contaminated facilities (approximately 50,000 ft 2 ) that contained 1100 linear ft of gloveboxes; 900 linear ft of conveyor housing; 2650 linear ft of dual underground liquid waste lines; and associated contaminated piping, services, equipment, structures, and soil. As of June 1982, over 29,000 Ci of plutonium-238 have been removed in waste and scrap residues. As a result of the current and previous decommissioning projects, valuable experience has been gained in tooling and techniques. Special techniques have been developed in planning, exposure control, contamination control, equipment removal, structural decontamination, and waste packaging