WorldWideScience

Sample records for release channel ryr1

  1. Oxygen-coupled Redox Regulation of the Skeletal Muscle Ryanodine Receptor/Ca2+ Release Channel (RyR1)

    Science.gov (United States)

    Sun, Qi-An; Wang, Benlian; Miyagi, Masaru; Hess, Douglas T.; Stamler, Jonathan S.

    2013-01-01

    In mammalian skeletal muscle, Ca2+ release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca2+-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca2+ channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in “hot spot” regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues. PMID:23798702

  2. A structural model of the pore-forming region of the skeletal muscle ryanodine receptor (RyR1.

    Directory of Open Access Journals (Sweden)

    Srinivas Ramachandran

    2009-04-01

    Full Text Available Ryanodine receptors (RyRs are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1 give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca(2+ over K(+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca(2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K(+ but not Ca(2+. Our simulations with G4898R likewise show a decrease in the preference of Ca(2+ over K(+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level.

  3. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating.

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2009-04-01

    Full Text Available Ryanodine receptor type 1 (RyR1 produces spatially and temporally defined Ca2+ signals in several cell types. How signals received in the cytoplasmic domain are transmitted to the ion gate and how the channel gates are unknown. We used EGTA or neuroactive PCB 95 to stabilize the full closed or open states of RyR1. Single-channel measurements in the presence of FKBP12 indicate that PCB 95 inverts the thermodynamic stability of RyR1 and locks it in a long-lived open state whose unitary current is indistinguishable from the native open state. We analyzed two datasets of 15,625 and 18,527 frozen-hydrated RyR1-FKBP12 particles in the closed and open conformations, respectively, by cryo-electron microscopy. Their corresponding three-dimensional structures at 10.2 A resolution refine the structure surrounding the ion pathway previously identified in the closed conformation: two right-handed bundles emerging from the putative ion gate (the cytoplasmic "inner branches" and the transmembrane "inner helices". Furthermore, six of the identifiable transmembrane segments of RyR1 have similar organization to those of the mammalian Kv1.2 potassium channel. Upon gating, the distal cytoplasmic domains move towards the transmembrane domain while the central cytoplasmic domains move away from it, and also away from the 4-fold axis. Along the ion pathway, precise relocation of the inner helices and inner branches results in an approximately 4 A diameter increase of the ion gate. Whereas the inner helices of the K+ channels and of the RyR1 channel cross-correlate best with their corresponding open/closed states, the cytoplasmic inner branches, which are not observed in the K+ channels, appear to have at least as important a role as the inner helices for RyR1 gating. We propose a theoretical model whereby the inner helices, the inner branches, and the h1 densities together create an efficient novel gating mechanism for channel opening by relaxing two right

  4. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  5. Voltage-dependent modulation of cardiac ryanodine receptors (RyR2 by protamine.

    Directory of Open Access Journals (Sweden)

    Paula L Diaz-Sylvester

    Full Text Available It has been reported that protamine (>10 microg/ml blocks single skeletal RyR1 channels and inhibits RyR1-mediated Ca2+ release from sarcoplasmic reticulum microsomes. We extended these studies to cardiac RyR2 reconstituted into planar lipid bilayers. We found that protamine (0.02-20 microg/ml added to the cytosolic surface of fully activated RyR2 affected channel activity in a voltage-dependent manner. At membrane voltage (V(m; SR lumen-cytosol = 0 mV, protamine induced conductance transitions to several intermediate states (substates as well as full block of RyR2. At V(m>10 mV, the substate with the highest level of conductance was predominant. Increasing V(m from 0 to +80 mV, decreased the number of transitions and residence of the channel in this substate. The drop in current amplitude (full opening to substate had the same magnitude at 0 and +80 mV despite the approximately 3-fold increase in amplitude of the full opening. This is more similar to rectification of channel conductance induced by other polycations than to the action of selective conductance modifiers (ryanoids, imperatoxin. A distinctive effect of protamine (which might be shared with polylysines and histones but not with non-peptidic polycations is the activation of RyR2 in the presence of nanomolar cytosolic Ca2+ and millimolar Mg2+ levels. Our results suggest that RyRs would be subject to dual modulation (activation and block by polycationic domains of neighboring proteins via electrostatic interactions. Understanding these interactions could be important as such anomalies may be associated with the increased RyR2-mediated Ca2+ leak observed in cardiac diseases.

  6. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  7. Exercise-Induced Rhabdomyolysis and Stress-Induced Malignant Hyperthermia Events, Association with Malignant Hyperthermia Susceptibility, and RYR1 Gene Sequence Variations

    Directory of Open Access Journals (Sweden)

    Antonella Carsana

    2013-01-01

    Full Text Available Exertional rhabdomyolysis (ER and stress-induced malignant hyperthermia (MH events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1. The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.

  8. Multigenerational Brazilian family with malignant hyperthermia and a novel mutation in the RYR1 gene.

    Science.gov (United States)

    Matos, A R; Sambuughin, N; Rumjanek, F D; Amoedo, N D; Cunha, L B P; Zapata-Sudo, G; Sudo, R T

    2009-12-01

    Malignant hyperthermia (MH) is a pharmacogenetic disease triggered in susceptible individuals by the administration of volatile halogenated anesthetics and/or succinylcholine, leading to the development of a hypermetabolic crisis, which is caused by abnormal release of Ca2+ from the sarcoplasmic reticulum, through the Ca2+ release channel ryanodine receptor 1 (RyR1). Mutations in the RYR1 gene are associated with MH in the majority of susceptible families. Genetic screening of a 5-generation Brazilian family with a history of MH-related deaths and a previous MH diagnosis by the caffeine halothane contracture test (CHCT) in some individuals was performed using restriction and sequencing analysis. A novel missense mutation, Gly4935Ser, was found in an important functional and conserved locus of this gene, the transmembrane region of RyR1. In this family, 2 MH-susceptible individuals previously diagnosed with CHCT carry this novel mutation and another 24 not previously diagnosed members also carry it. However, this same mutation was not found in another MH-susceptible individual whose CHCT was positive to the test with caffeine but not to the test with halothane. None of the 5 MH normal individuals of the family, previously diagnosed by CHCT, carry this mutation, nor do 100 controls from control Brazilian and USA populations. The Gly4932Ser variant is a candidate mutation for MH, based on its co-segregation with disease phenotype, absence among controls and its location within the protein.

  9. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of RyR

  10. ß-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation

    Science.gov (United States)

    Li, Jiao; Imtiaz, Mohammad S.; Beard, Nicole A.; Dulhunty, Angela F.; Thorne, Rick; vanHelden, Dirk F.; Laver, Derek R.

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca2+ and Mg2+ and the role of these changes in SR Ca2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca2+] adrenergic stimulation increased luminal Ca2+ activation of single RyR channels, decreased luminal Mg2+ inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg2+. At cytoplasmic [Ca2+] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg2+ and Ca2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca2+ binding to the luminal Ca2+ site and decreasing its affinity for luminal Mg2+ and 2) decreasing affinity of the low-affinity Ca2+/Mg2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter. PMID:23533585

  11. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.

    Science.gov (United States)

    Mei, Yingwu; Xu, Le; Mowrey, David D; Mendez Giraldez, Raul; Wang, Ying; Pasek, Daniel A; Dokholyan, Nikolay V; Meissner, Gerhard

    2015-07-10

    Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. ß-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation.

    Directory of Open Access Journals (Sweden)

    Jiao Li

    Full Text Available Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs by intracellular Ca(2+ and Mg(2+ and the role of these changes in SR Ca(2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca(2+] 1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg(2+ and Ca(2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca(2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1 increasing the activating potency of Ca(2+ binding to the luminal Ca(2+ site and decreasing its affinity for luminal Mg(2+ and 2 decreasing affinity of the low-affinity Ca(2+/Mg(2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter.

  13. Decreased intracellular [Ca2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  14. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    Science.gov (United States)

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  15. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  16. A Close Association of RyRs with Highly Dense Clusters of Ca2+-activated Cl− Channels Underlies the Activation of STICs by Ca2+ Sparks in Mouse Airway Smooth Muscle

    Science.gov (United States)

    Bao, Rongfeng; Lifshitz, Lawrence M.; Tuft, Richard A.; Bellvé, Karl; Fogarty, Kevin E.; ZhuGe, Ronghua

    2008-01-01

    Ca2+ sparks are highly localized, transient releases of Ca2+ from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca2+ sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca2+-activated K+ channels, and also gate Ca2+-activated Cl− (Cl(Ca)) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca2+ sparks is well understood, little information is available on how Ca2+ sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl(Ca) channels in spark sites in airway myocytes from mouse. Ca2+ sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca2+ current underlying a Ca2+ spark (ICa(spark)), with an appropriate correction for endogenous fixed Ca2+ buffer, which was characterized by flash photolysis of NPEGTA. We found that ICa(spark) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca2+ sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the ICa(spark) by less than 3 ms, and its rising phase matches the duration of the ICa(spark). We further determined that Cl(Ca) channels on average are exposed to a [Ca2+] of 2.4 μM or greater during Ca2+ sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca2+] produced by a reaction-diffusion simulation with measured ICa(spark). Finally we estimated that the number of Cl(Ca) channels localized in Ca2+ spark sites could account for all the Cl(Ca) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl(Ca) channels in Ca2+ spark sites localize

  17. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle.

    Science.gov (United States)

    Bao, Rongfeng; Lifshitz, Lawrence M; Tuft, Richard A; Bellvé, Karl; Fogarty, Kevin E; ZhuGe, Ronghua

    2008-07-01

    Ca(2+) sparks are highly localized, transient releases of Ca(2+) from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca(2+) sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca(2+)-activated K(+) channels, and also gate Ca(2+)-activated Cl(-) (Cl((Ca))) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca(2+) sparks is well understood, little information is available on how Ca(2+) sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl((Ca)) channels in spark sites in airway myocytes from mouse. Ca(2+) sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca(2+) current underlying a Ca(2+) spark (I(Ca(spark))), with an appropriate correction for endogenous fixed Ca(2+) buffer, which was characterized by flash photolysis of NPEGTA. We found that I(Ca(spark)) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca(2+) sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the I(Ca(spark)) by less than 3 ms, and its rising phase matches the duration of the I(Ca(spark)). We further determined that Cl((Ca)) channels on average are exposed to a [Ca(2+)] of 2.4 microM or greater during Ca(2+) sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca(2+)] produced by a reaction-diffusion simulation with measured I(Ca(spark)). Finally we estimated that the number of Cl((Ca)) channels localized in Ca(2+) spark sites could account for all the Cl((Ca)) channels in the entire cell. Taken together these results lead us to propose a model in which

  18. Novel Variants in Individuals with RYR1-Related Congenital Myopathies: Genetic, Laboratory, and Clinical Findings

    Directory of Open Access Journals (Sweden)

    Joshua J. Todd

    2018-03-01

    Full Text Available The ryanodine receptor 1-related congenital myopathies (RYR1-RM comprise a spectrum of slow, rare neuromuscular diseases. Affected individuals present with a mild-to-severe symptomatology ranging from proximal muscle weakness, hypotonia and joint contractures to scoliosis, ophthalmoplegia, and respiratory involvement. Although there is currently no FDA-approved treatment for RYR1-RM, our group recently conducted the first clinical trial in this patient population (NCT02362425. This study aimed to characterize novel RYR1 variants with regard to genetic, laboratory, muscle magnetic resonance imaging (MRI, and clinical findings. Genetic and histopathology reports were obtained from participant’s medical records. Alamut Visual Software was used to determine if participant’s variants had been previously reported and to assess predicted pathogenicity. Physical exams, pulmonary function tests, T1-weighted muscle MRI scans, and blood measures were completed during the abovementioned clinical trial. Six novel variants (two de novo, three dominant, and one recessive were identified in individuals with RYR1-RM. Consistent with established RYR1-RM histopathology, cores were observed in all biopsies, except Case 6 who exhibited fiber-type disproportion. Muscle atrophy and impaired mobility with Trendelenburg gait were the most common clinical symptoms and were identified in all cases. Muscle MRI revealed substantial inter-individual variation in fatty infiltration corroborating the heterogeneity of the disease. Two individuals with dominant RYR1 variants exhibited respiratory insufficiency: a clinical symptom more commonly associated with recessive RYR1-RM cases. This study demonstrates that a genetics-led approach is suitable for the diagnosis of suspected RYR1-RM which can be corroborated through histopathology, muscle MRI and clinical examination.

  19. Variable myopathic presentation in a single family with novel skeletal RYR1 mutation.

    Directory of Open Access Journals (Sweden)

    Ruben Attali

    Full Text Available We describe an autosomal recessive heterogeneous congenital myopathy in a large consanguineous family. The disease is characterized by variable severity, progressive course in 3 of 4 patients, myopathic face without ophthalmoplegia and proximal muscle weakness. Absence of cores was noted in all patients. Genome wide linkage analysis revealed a single locus on chromosome 19q13 with Zmax = 3.86 at θ = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Direct sequencing of the main candidate gene within the candidate region, RYR1, was performed. A novel homozygous A to G nucleotide substitution (p.Y3016C within exon 60 of the RYR1 gene was found in patients. ARMS PCR was used to screen for the mutation in all available family members and in an additional 150 healthy individuals. This procedure confirmed sequence analysis and did not reveal the A to G mutation (p.Y3016C in 300 chromosomes from healthy individuals. Functional analysis on EBV immortalized cell lines showed no effect of the mutation on RyR1 pharmacological activation or the content of intracellular Ca(2+ stores. Western blot analysis demonstrated a significant reduction of the RyR1 protein in the patient's muscle concomitant with a reduction of the DHPRα1.1 protein. This novel mutation resulting in RyR1 protein decrease causes heterogeneous clinical presentation, including slow progression course and absence of centrally localized cores on muscle biopsy. We suggest that RYR1 related myopathy should be considered in a wide variety of clinical and pathological presentation in childhood myopathies.

  20. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  1. Carcass traits, blood serum and meat lipid fractions in Polish Landrace pigs differing in RYR1 genotype

    OpenAIRE

    Janik A.; Barowicz T.; Pieszka M.; Migdai W.

    2005-01-01

    The aim of study was to investigate the effect of RYR1 genotypes on carcass traits and lipid fractions in blood serum and musculus longissimus dorsi of Polish Landrace pigs. The fatteners with RYR1CRYR1 genotype had lower level of triglycerides, total cholesterol, HDL- and LDL cholesterol in blood serum than individuals from RYR1CRYR1C group. The same group of animals had lower amount of intramuscular fat and cholesterol in comparison to homozygotes RYR1CRYR1C. The intramuscular fat of hetero...

  2. Calcium-Dependent Energetics of Calmodulin Domain Interactions with Regulatory Regions of the Ryanodine Receptor Type 1 (RyR1)

    Science.gov (United States)

    Newman, Rhonda A.; Sorensen, Brenda R.; Kilpatrick, Adina M.; Shea, Madeline A.

    2014-01-01

    Calmodulin (CaM) plays a vital role in calcium homeostasis by allosterically modulating intracellular calcium channels including the homo-tetrameric human Ryanodine Receptor Type 1 (hRyR1). Apo (calcium-free) CaM activates hRyR1 while calcium-saturated CaM inhibits it. Two CaM-binding regions (residues 1975–1999 and 3614–3643) identified in each RyR1 monomer were proposed to allow CaM to bridge adjacent RyR1 subunits. We explored the distinct roles of CaM domains by using fluorescence anisotropy to determine the affinity of CaM1–148 (full-length), CaM1–80 (N-domain) and CaM76–148 (C-domain) for peptides encompassing hRyR1 residues 1975–1999 or 3614–3643. Both CaM1–148 and CaM76–148 associated in a calcium-independent manner with similar affinities for hRyR1(3614–3643)p while CaM1–80 required calcium and bound ~250-fold more weakly. Association of CaM1–148, CaM1–80 and CaM76–148 with hRyR1(1975–1999)p was much less favorable than with hRyR1(3614–3643)p; differences between the two CaM domains were smaller. Equilibrium calcium titrations monitored by steady-state fluorescence demonstrated that both hRyR1 peptides increased the calcium-binding affinity of both CaM domains. These thermodynamic properties support a prior model in which the CaM C-domain associates with RyR1(3614–3643) at low levels of calcium, positioning CaM to rapidly respond to calcium efflux. However, the affinity of the N-domain of CaM for hRyR1(1975–1999)p is insufficient to explain a model in which CaM bridges adjacent RyR1 subunits within the tetramer. This indicates that other protein factors or properties of the tertiary or quaternary structure of hRyR1 contribute to the energetics of CaM-mediated regulation. PMID:25145833

  3. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Vijay Rajagopal

    2015-09-01

    Full Text Available Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm data of RyR clusters with 3D electron microscopy data (~ 30 nm of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation. At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5. However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions

  4. Novel Homozygous Missense Mutation in RYR1 Leads to Severe Congenital Ptosis, Ophthalmoplegia, and Scoliosis in the Absence of Myopathy.

    Science.gov (United States)

    Dilaver, Nafi; Mazaheri, Neda; Maroofian, Reza; Zeighami, Jawaher; Seifi, Tahere; Zamani, Mina; Sedaghat, Alireza; Shariati, Gholam Reza; Galehdari, Hamid

    2017-12-01

    Ryanodine receptor 1 ( RYR1 ) is an intracellular calcium receptor primarily expressed in skeletal muscle with a role in excitation contraction. Both dominant and recessive mutations in the RYR1 gene cause a range of RYR1 -related myopathies and/or susceptibility to malignant hyperthermia (MH). Recently, an atypical manifestation of ptosis, variably presenting with ophthalmoplegia, facial paralysis, and scoliosis but without significant muscle weakness, has been reported in 9 cases from 4 families with bialleic variants in RYR1 . Two affected children from a consanguineous family with severe congenital ptosis, ophthalmoplegia, scoliosis, and distinctive long faces but without skeletal myopathy were studied. To identify the cause of the hereditary condition, DNA from the proband was subjected to whole exome sequencing (WES). WES revealed a novel homozygous missense variant in RYR1 (c.14066T>A; p.IIe4689Asn), which segregated within the family. Although the phenotype of the affected siblings in this study was similar to previously described cases, the clinical features were more severely expressed. Our findings contribute to the expansion of phenotypes related to RYR1 dysfunction. Additionally, it supports a new RYR1 -related clinical presentation without musculoskeletal involvement. It is important that individuals with RYR1 mutations are considered susceptible to MH, as 70% of the MH cases are caused by mutations in the RYR1 gene.

  5. Molecular cloning of αRYR hotspot region 1 from broiler chicken

    Directory of Open Access Journals (Sweden)

    Iris Lamberti Ziober

    2009-11-01

    Full Text Available Samples of Pectoralis major m. were collected, and an RT-PCR analysis of the a-Ryanodine receptor (a RYR from chicken mRNA hotspot region spanning aminoacid residues 386 to 540, numbered according to the turkey sequence, revealed two classes of transcripts. The sequences of the first class were similar to turkey and human with 97% and 74% of identity, respectively, and included all transcripts with substitutions in the nucleotide sequence. The second class was characterized by the deletion of nucleotides, leading to a premature stop codon and coding for a truncated and nonfunctional protein. These results are to date the first report related to the sequencing of the chicken αRYR hotspot region 1, which will possibility serve as a guide for further studies regarding a solution in the poultry production chain related to the problem of pale, soft and exudative (PSE meat.Amostras do músculo Pectoralis major foram coletadas e uma RT-PCR foi conduzida para avaliar a sequência do mRNA do αRYR, região compreendida entre os resíduos de aminoácido 386-540, numerado de acordo com a sequência de perus. Os resultados revelaram duas classes de transcritos. O primeiro teve 97% e 74% de identidade com as sequências de αRyR e RyR1 de perus e humanos, respectivamente, e incluiu todos os transcritos com substituições de nucleotídeos. A segunda classe de transcritos foi caracterizada pela deleção de bases que levaram a um stop códon prematuro e a uma proteína truncada não-funcional. Esses resultados são até o momento, o primeiro relato de sequenciamento do αRYR, região hotspot1 de frangos e podem servir como guia para estudos futuros na tentativa de se encontrar uma solução para os problemas na cadeia de produção de frangos relacionados com as carnes PSE (pálida, flácida e exsudativa.

  6. Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development

    Directory of Open Access Journals (Sweden)

    Wu Houdini HT

    2011-12-01

    Full Text Available Abstract Background Calcium signals ([Ca2+]i direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. Findings The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a, fast (ryr3 and both types (ryr1b of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. Conclusions Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types.

  7. Distinct transcriptomic changes in E14.5 mouse skeletal muscle lacking RYR1 or Cav1.1 converge at E18.5

    Science.gov (United States)

    Henry, Margit; Rotshteyn, Tamara; Brunn, Anna; Carstov, Mariana; Deckert, Martina; Hescheler, Jürgen; Sachinidis, Agapios; Pfitzer, Gabriele

    2018-01-01

    In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels—the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)–underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 –the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 –the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis. PMID

  8. Association of cardiac myosin binding protein-C with the ryanodine receptor channel: putative retrograde regulation?

    Science.gov (United States)

    Stanczyk, Paulina J; Seidel, Monika; White, Judith; Viero, Cedric; George, Christopher H; Zissimopoulos, Spyros; Lai, F Anthony

    2018-06-21

    The cardiac muscle ryanodine receptor-Ca 2+ release channel (RyR2) constitutes the sarcoplasmic reticulum (SR) Ca 2+ efflux mechanism that initiates myocyte contraction, while cardiac myosin binding protein-C (cMyBP-C) mediates regulation of acto-myosin cross-bridge cycling. In this report, we provide the first evidence for the presence of direct interaction between these two proteins, forming a RyR2:cMyBP-C complex. The C-terminus of cMyBP-C binds with the RyR2 N-terminus in mammalian cells and is not mediated by a fibronectin-like domain. Notably, we detected complex formation between both recombinant cMyBP-C and RyR2, as well as with the native proteins in cardiac tissue. Cellular Ca 2+ dynamics in HEK293 cells is altered upon co-expression of cMyBP-C and RyR2, with lowered frequency of RyR2-mediated spontaneous Ca 2+ oscillations, suggesting cMyBP-C exerts a potential inhibitory effect on RyR2-dependent Ca 2+ release. Discovery of a functional RyR2 association with cMyBP-C provides direct evidence for a putative mechanistic link between cytosolic soluble cMyBP-C and SR-mediated Ca 2+ release, via RyR2. Importantly, this interaction may have clinical relevance to the observed cMyBP-C and RyR2 dysfunction in cardiac pathologies, such as hypertrophic cardiomyopathy. © 2018. Published by The Company of Biologists Ltd.

  9. RYR1-related myopathies: a wide spectrum of phenotypes throughout life

    NARCIS (Netherlands)

    Snoeck, M.; Engelen, B.G.M. van; Kusters, B.; Lammens, M.M.; Meijer, R.; Molenaar, J.P.F.; Raaphorst, J.; Verschuuren-Bemelmans, C.C.; Straathof, C.S.; Sie, L.T.L.; Coo, I.F.M. de; Pol, W.L. van der; Visser, M de; Scheffer, H.; Treves, S.; Jungbluth, H.; Voermans, N.C.; Kamsteeg, E.J.

    2015-01-01

    BACKGROUND AND PURPOSE: Although several recent studies have implicated RYR1 mutations as a common cause of various myopathies and the malignant hyperthermia susceptibility (MHS) trait, many of these studies have been limited to certain age groups, confined geographical regions or specific

  10. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    Science.gov (United States)

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  11. Ryanodine Receptor Calcium Leak in Circulating B-Lymphocytes as a Biomarker in Heart Failure.

    Science.gov (United States)

    Kushnir, Alexander; Santulli, Gaetano; Reiken, Steven R; Coromilas, Ellie; Godfrey, Sarah J; Brunjes, Danielle L; Colombo, Paolo C; Yuzefpolskaya, Melana; Sokol, Seth I; Kitsis, Richard N; Marks, Andrew R

    2018-03-28

    Background -Advances in congestive heart failure (CHF) management depend on biomarkers for monitoring disease progression and therapeutic response. During systole, intracellular Ca2 + is released from the sarcoplasmic reticulum (SR) into the cytoplasm through type 2 ryanodine receptor/Ca2 + release channels (RyR2). In CHF, chronically elevated circulating catecholamine levels cause pathologic remodeling of RyR2 resulting in diastolic SR Ca2 + leak, and decreased myocardial contractility. Similarly, skeletal muscle contraction requires SR Ca2 + release through type-1 ryanodine receptors (RyR1), and chronically elevated catecholamine levels in CHF cause RyR1 mediated SR Ca2 + leak, contributing to myopathy and weakness. Circulating B-lymphocytes express RyR1 and catecholamine responsive signaling cascades, making them a potential surrogate for defects in intracellular Ca2 + handling due to leaky RyR channels in CHF. Methods -Whole blood was collected from patients with CHF, CHF status-post left-ventricular assist devices (LVAD), and controls. Blood was also collected from mice with ischemic CHF, ischemic CHF + S107 (a drug that specifically reduces RyR channel Ca2 + leak), and WT controls. Channel macromolecular complex was assessed by immunostaining RyR1 immunoprecipitated from lymphocyte enriched preparations. RyR1 Ca2 + leak was assessed using flow cytometry to measure Ca2 + fluorescence in B-lymphocytes, in the absence and presence of RyR1 agonists that empty RyR1 Ca2 + stores within the endoplasmic reticulum (ER). Results -Circulating B-lymphocytes from humans and mice with CHF exhibited remodeled RyR1 and decreased ER Ca2 + stores, consistent with chronic intracellular Ca2 + leak. This Ca2 + leak correlated with circulating catecholamine levels. The intracellular Ca2 + leak was significantly reduced in mice treated with the Rycal S107. CHF patients treated with LVAD exhibited a heterogeneous response. Conclusions -In CHF, B-lymphocytes exhibit remodeled leaky

  12. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  13. [Hot spot mutation screening of RYR1 gene in diagnosis of congenital myopathies].

    Science.gov (United States)

    Chang, Xing-zhi; Jin, Yi-wen; Wang, Jing-min; Yuan, Yun; Xiong, Hui; Wang, Shuang; Qin, Jiong

    2014-10-18

    To detect hot spot mutation of RYR1 gene in 15 cases of congenital myopathy with different subtypes, and to discuss the value of RYR1 gene hot spot mutation detection in the diagnosis of the disease. Clinical data were collected in all the patients, including clinical manifestations and signs, serum creatine kinase, electromyography. Fourteen of the patients accepted the muscle biopsy. Hot spot mutation in the C-terminal of RYR1 gene (extron 96-106) had been detected in all the 15 patients. All the patients presented with motor development delay, and they could walk at the age of 1 to 3.5 years,but were always easy to fall and could not run or jump. There were no progressive deteriorations. Physical examination showed different degrees of muscle weakness and hypotonia.High arched palates were noted in 3 patients. The serum levels of creatine kinase were mildly elevated in 3 cases, and normal in 12 cases. Electromyography showed "myogenic" features in 11 patients, being normal in the other 4 patients. Muscle biopsy pathologic diagnosis was the central core disease in 3 patients, the central nuclei in 2 patients, the congenital fiber type disproportion in 2 patients, the nameline myopathy in 3 patient, the multiminicore disease in 1 patient, and nonspecific minimal changes in the other 3 patients; one patient was diagnosed with central core disease according to positive family history and gene mutation. In the family case (Patient 2) of central core disease, the c.14678G>A (p.Arg4893Gln) mutation in 102 extron of RYR1 was identified in three members of the family, which had been reported to be a pathogenic mutation. The c.14596A>G(p.Lys4866Gln) mutation in 101 extron was found in one patient with central core disease(Patient 1), and the c.14719G>A(p.Gly4907Ser) mutation in 102 extron was found in another case of the central core disease(Patient 3).The same novel mutation was verified in one of the patients' (Patient 3) asymptomatic father. Congenital myopathies in

  14. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis.

    Science.gov (United States)

    Chekeni, Faraaz B; Elliott, Michael R; Sandilos, Joanna K; Walk, Scott F; Kinchen, Jason M; Lazarowski, Eduardo R; Armstrong, Allison J; Penuela, Silvia; Laird, Dale W; Salvesen, Guy S; Isakson, Brant E; Bayliss, Douglas A; Ravichandran, Kodi S

    2010-10-14

    Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.

  15. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  16. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Directory of Open Access Journals (Sweden)

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  17. Effects of pO2 on the activation of skeletal muscle ryanodine receptors by NO: a cautionary note.

    Science.gov (United States)

    Cheong, Eunji; Tumbev, Vassil; Stoyanovsky, Detcho; Salama, Guy

    2005-11-01

    Eu et al., reported that O2 dynamically controls the redox state of 6-8 out of 50 thiols per skeletal ryanodine receptor (RyR1) subunit and thereby tunes the response of Ca2+-release channels to authentic nitric oxide (NO) [J.P. Eu, J. Sun, L. Xu, J.S. Stamler, G. Meissner, The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions, Cell 102 (2000) 499-509]. A role for O2 was based on the observation that RyR1 can be activated by submicromolar NO at physiological ( approximately 10 mmHg) but not ambient (approximately 150 mmHg) pO2. At ambient pO2, these critical thiols were oxidized but incubation at low pO2 reset the redox state of these thiols, closed RyR1 channels and made these thiols available for nitrosation by low NO concentrations. Eu et al., postulated the existence of a redox/O2sensor that couples channel activity to NO and pO2 and explained that "the nature of the 'redox/O2 sensor' that couples channel activity to intracellular redox chemistry is a mystery". Here, we re-examined the effect of pO2 on RyR1 and find that incubation of RyR1 at low pO2 did not alter channel activity and NO (0.5-50 microM) failed to activate RyR1 despite a wide range of pO2 pre-incubation conditions. We show that low levels of NO do not activate RyR1, do not reverse the inhibition of RyR1 by calmodulin (CaM) even at physiological pO2. Similarly, the pre-incubation of SR vesicles in low pO2 (for 10-80 min) did not inhibit channel activity or sensitization of RyR1 to NO. We discuss the significance of these findings and propose that caution should be taken when considering a role for pO2 and nitrosation by NO as mechanisms that tune RyRs in striated muscles.

  18. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  19. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    Directory of Open Access Journals (Sweden)

    Paula L Diaz-Sylvester

    Full Text Available Cardiac ryanodine receptor (RyR2 function is modulated by Ca(2+ and Mg(2+. To better characterize Ca(2+ and Mg(2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+: Mg(2+, Ca(2+, Sr(2+, Ba(2+ were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+ or Sr(2+. This activation was interfered by Mg(2+ and Ba(2+ acting at low affinity M(2+-unspecific binding sites. When testing the effects of luminal M(2+ as current carriers, all M(2+ increased maximal RyR2 open probability (compared to Cs(+, suggesting the existence of low affinity activating M(2+-unspecific sites at the luminal surface. Responses to M(2+ vary from channel to channel (heterogeneity. However, with luminal Ba(2+or Mg(2+, RyR2 were less sensitive to cytosolic Ca(2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+or Sr(2+. Kinetics of RyR2 with mixtures of luminal Ba(2+/Ca(2+ and additive action of luminal plus cytosolic Ba(2+ or Mg(2+ suggest luminal M(2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+/Sr(2+-specific sites, which stabilize high P(o mode (less voltage-dependent and increase RyR2 sensitivity to cytosolic Ca(2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+ binding sites (specific for Ca(2+ and unspecific for Ca(2+/Mg(2+ that dynamically modulate channel activity and gating status, depending on SR voltage.

  20. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Directory of Open Access Journals (Sweden)

    Fanny eMomboisse

    2014-09-01

    Full Text Available Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1 is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 µM in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress.

  1. RYR1-related rhabdomyolysis: A common but probably underdiagnosed manifestation of skeletal muscle ryanodine receptor dysfunction.

    Science.gov (United States)

    Voermans, N C; Snoeck, M; Jungbluth, H

    2016-10-01

    Mutations in the skeletal muscle ryanodine receptor (RYR1) gene are associated with a wide spectrum of inherited myopathies presenting throughout life. Malignant hyperthermia susceptibility (MHS)-related RYR1 mutations have emerged as a common cause of exertional rhabdomyolysis, accounting for up to 30% of rhabdomyolysis episodes in otherwise healthy individuals. Common triggers are exercise and heat and, less frequently, viral infections, alcohol and drugs. Most subjects are normally strong and have no personal or family history of malignant hyperthermia. Heat intolerance and cold-induced muscle stiffness may be a feature. Recognition of this (probably not uncommon) rhabdomyolysis cause is vital for effective counselling, to identify potentially malignant hyperthermia-susceptible individuals and to adapt training regimes. Studies in various animal models provide insights regarding possible pathophysiological mechanisms and offer therapeutic perspectives. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  3. Involvement of plasma membrane Ca2+ channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct.

    Science.gov (United States)

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29±0.009 Hz (n=43) and an amplitude of 14.6±1.25 mg (n=29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30-50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2

  4. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Directory of Open Access Journals (Sweden)

    Filip Touska

    2017-08-01

    Full Text Available Ciguatoxins (CTXs are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1 into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP ion channels. In contrast, lidocaine and tetrodotoxin (TTX reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC. Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.

  5. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Science.gov (United States)

    Touska, Filip; Sattler, Simon; Malsch, Philipp; Lewis, Richard J.; Zimmermann, Katharina

    2017-01-01

    Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics. PMID:28867800

  6. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.

    Science.gov (United States)

    Dries, Eef; Santiago, Demetrio J; Johnson, Daniel M; Gilbert, Guillaume; Holemans, Patricia; Korte, Sanne M; Roderick, H Llewelyn; Sipido, Karin R

    2016-10-15

    The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca 2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca 2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca 2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca 2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. In cardiac myocytes, β-adrenergic stimulation enhances Ca 2+ cycling through an integrated signalling cascade modulating L-type Ca 2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca 2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca 2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca 2+ ] i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca 2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca 2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces

  7. Rem uncouples excitation–contraction coupling in adult skeletal muscle fibers

    Science.gov (United States)

    Beqollari, Donald; Romberg, Christin F.; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon

    2015-01-01

    In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling. PMID:26078055

  8. Effects of tetracaine on voltage-activated calcium sparks in frog intact skeletal muscle fibers.

    Science.gov (United States)

    Hollingworth, Stephen; Chandler, W Knox; Baylor, Stephen M

    2006-03-01

    The properties of Ca(2+) sparks in frog intact skeletal muscle fibers depolarized with 13 mM [K(+)] Ringer's are well described by a computational model with a Ca(2+) source flux of amplitude 2.5 pA (units of current) and duration 4.6 ms (18 degrees C; Model 2 of Baylor et al., 2002). This result, in combination with the values of single-channel Ca(2+) current reported for ryanodine receptors (RyRs) in bilayers under physiological ion conditions, 0.5 pA (Kettlun et al., 2003) to 2 pA (Tinker et al., 1993), suggests that 1-5 RyR Ca(2+) release channels open during a voltage-activated Ca(2+) spark in an intact fiber. To distinguish between one and greater than one channel per spark, sparks were measured in 8 mM [K(+)] Ringer's in the absence and presence of tetracaine, an inhibitor of RyR channel openings in bilayers. The most prominent effect of 75-100 microM tetracaine was an approximately sixfold reduction in spark frequency. The remaining sparks showed significant reductions in the mean values of peak amplitude, decay time constant, full duration at half maximum (FDHM), full width at half maximum (FWHM), and mass, but not in the mean value of rise time. Spark properties in tetracaine were simulated with an updated spark model that differed in minor ways from our previous model. The simulations show that (a) the properties of sparks in tetracaine are those expected if tetracaine reduces the number of active RyR Ca(2+) channels per spark, and (b) the single-channel Ca(2+) current of an RyR channel is normal voltage-activated sparks (i.e., in the absence of tetracaine) are produced by two or more active RyR Ca(2+) channels. The question of how the activation of multiple RyRs is coordinated is discussed.

  9. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling.

    Science.gov (United States)

    Bannister, Roger A

    2016-01-01

    In skeletal muscle, excitation-contraction (EC) coupling relies on the transmission of an intermolecular signal from the voltage-sensing regions of the L-type Ca(2+) channel (Ca(V)1.1) in the plasma membrane to the channel pore of the type 1 ryanodine receptor (RyR1) nearly 10 nm away in the membrane of the sarcoplasmic reticulum (SR). Even though the roles of Ca(V)1.1 and RyR1 as voltage sensor and SR Ca(2+) release channel, respectively, have been established for nearly 25 years, the mechanism underlying communication between these two channels remains undefined. In the course of this article, I will review current viewpoints on this topic with particular emphasis on recent studies. © 2016. Published by The Company of Biologists Ltd.

  10. Ca2+ and voltage dependence of cardiac ryanodine receptor channel block by sphingosylphosphorylcholine.

    Science.gov (United States)

    Yasukochi, Midori; Uehara, Akira; Kobayashi, Sei; Berlin, Joshua R

    2003-03-01

    The effect of sphingosylphosphorylcholine (SPC) on the cytoplasmic Ca(2+) and voltage dependence of channel gating by cardiac ryanodine receptors (RyR) was examined in lipid bilayer experiments. Micromolar concentrations of the lysosphingolipid SPC added to cis solutions rapidly and reversibly decreased the single-channel open probability (P(o)) of reconstituted RyR channels. The SPC-induced decrease in P(o) was marked by an increase in mean closed time and burst-like channel gating. Gating kinetics during intraburst periods were unchanged from those observed in the absence of the sphingolipid, although SPC induced a long-lived closed state that appeared to explain the observed decrease in channel P(o). SPC effects were observed over a broad range of cis [Ca(2+)] but were not competitive with Ca(2+). Interestingly, the sphingolipid-induced, long-lived closed state displayed voltage-dependent kinetics, even though other channel gating kinetics were not sensitive to voltage. Assuming SPC effects represent channel blockade, these results suggest that the blocking rate is independent of voltage whereas the unblocking rate is voltage dependent. Together, these results suggest that SPC binds directly to the cytoplasmic side of the RyR protein in a location in or near the membrane dielectric, but distinct from cytoplasmic Ca(2+) binding sites on the protein.

  11. Pannexin-1 channels in epilepsy.

    Science.gov (United States)

    Aquilino, Mark S; Whyte-Fagundes, Paige; Zoidl, Georg; Carlen, Peter L

    2017-09-05

    Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K + . Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  13. [Endoplasmic-mitochondrial Ca(2+)-functional unit: dependence of respiration of secretory cells on activity of ryanodine- and IP3 - sensitive Ca(2+)-channels].

    Science.gov (United States)

    Velykopols'ka, O Iu; Man'ko, B O; Man'ko, V V

    2012-01-01

    Using Clark oxygen electrode, dependence of mitochondrial functions on Ca(2+)-release channels activity of Chironomus plumosus L. larvae salivary glands suspension was investigated. Cells were ATP-permeabilized in order to enable penetration of exogenous oxidative substrates. Activation of plasmalemmal P2X-receptors (as well as P2Y-receptors) per se does not modify the endogenous respiration of salivary gland suspension. That is, Ca(2+)-influx from extracellular medium does not influence functional activity of mitochondria, although they are located along the basal part of the plasma membrane. Activation of RyRs intensifies endogenous respiration and pyruvate-malate-stimulated respiration, but not succinate-stimulated respiration. Neither activation of IP3Rs (via P2Y-receptors activation), nor their inhibition alters endogenous respiration. Nevertheless, IP3Rs inhibition by 2-APB intensifies succinate-stimulated respiration. All abovementioned facts testify that Ca2+, released from stores via channels, alters functional activity of mitochondria, and undoubtedly confirm the existence of endoplasmic-mitochondrial Ca(2+)-functional unit in Ch. plumosus larvae salivary glands secretory cells. In steady state of endoplasmic-mitochondrial Ca(2+)-functional unit the spontaneous activity of IP3Rs is observed; released through IP3Rs, Ca2+ is accumulated in mitochondria via uniporter and modulates oxidative processes. Activation of RyRs induces the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to the active state, which is required to intensify cell respiration and oxidative phosphorylation. As expected, the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to inactivated state (i. e. inhibition of Ca(2+)-release channels at excessive [Ca2+]i) limits the duration of signal transduction, has protective nature and prevents apoptosis.

  14. Crystal structure of type I ryanodine receptor amino-terminal [beta]-trefoil domain reveals a disease-associated mutation 'hot spot' loop

    Energy Technology Data Exchange (ETDEWEB)

    Amador, Fernando J.; Liu, Shuang; Ishiyama, Noboru; Plevin, Michael J.; Wilson, Aaron; MacLennan, David H.; Ikura, Mitsuhiko; (Toronto)

    2009-12-01

    Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca{sup 2+}. Ca{sup 2+} is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca{sup 2+} transient by activation of a class of Ca{sup 2+} release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca{sup 2+}-ATPases (SERCAs) to terminate the Ca{sup 2+} transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR{sub NTD}) at 2.5 {angstrom}. The RyR{sub NTD} structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP3Rsup), but lacks most of the long helix-turn-helix segment of the 'arm' domain in IP3Rsup. The N-terminal {beta}-trefoil fold, found in both RyR and IP{sub 3}R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation 'hot spot' loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyRNTD, supporting previously described mechanisms whereby mutations perturb protein-protein interactions.

  15. Effect of Multimodal Pore Channels on Cargo Release from Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2016-01-01

    Full Text Available Mesoporous silica nanoparticles (MSNs with multimodal pore channels were fully characterized by TEM, nitrogen adsorption-desorption, and DLS analyses. MSNs with average diameter of 200 nm with dual pore channel zones with pore diameters of 1.3–2.6 and 4 nm were tested for their use in drug delivery application. Important role of the multimodal pore systems present on MSNs on the quantitative release of model drug ibuprofen was investigated. The results obtained revealed that the release profile for ibuprofen clearly shows distinct zones which can be attributed to the respective porous channel zones present on the particles. The fluctuations in the concentration of ibuprofen during the prolonged release from MSNs were caused by the multimodal pore channel systems.

  16. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons.

    Science.gov (United States)

    Patel, Seema

    2016-05-01

    Red yeast rice (RYR), the fermentation product of mold Monascus purpureus has been an integral part of Oriental food and traditional Chinese medicine, long before the discovery of their medicinal roles. With the identification of bioactive components as polyketide pigments (statins), and unsaturated fatty acids, RYR has gained a nutraceutical status. Hypercholesterolemic effect of this fermented compound has been validated and monacolin K has been recognized as the pivotal component in cholesterol alleviation. Functional similarity with commercial drug lovastatin sans the side effects has catapulted its popularity in other parts of the world as well. Apart from the hypotensive role, ameliorative benefits of RYR as anti-inflammatory, antidiabetic, anticancer and osteogenic agent have emerged, fueling intense research on it. Mechanistic studies have revealed their interaction with functional agents like coenzyme Q10, astaxanthin, vitamin D, folic acid, policosanol, and berberine. On the other hand, concurrence of mycotoxin citrinin and variable content of statin has marred its integration in mainstream medication. In this disputable scenario, evaluation of the scopes and lacunae to overcome seems to contribute to an eminent area of healthcare. Red yeast rice (RYR), the rice-based fermentation product of mold Monascus purpureus is a functional food. Its bioactive component monacolin K acts like synthetic drug lovastatin, without the severe side effects of the latter. RYR has been validated to lower cholesterol, control high blood pressure; confer anti-flammation, hypoglycaemic, anticancer and osteogenic properties. However, dose inconsistency and co-occurrence of toxin citrinin hampers its dietary supplementation prospect. Further research might facilitate development of RYR as a nutraceutical.

  17. Novel skeletal muscle ryanodine receptor mutation in a large Brazilian family with malignant hyperthermia.

    Science.gov (United States)

    McWilliams, S; Nelson, T; Sudo, R T; Zapata-Sudo, G; Batti, M; Sambuughin, N

    2002-07-01

    Malignant hyperthermia (MH) is an autosomal dominant disorder that predisposes susceptible individuals to a potentially life-threatening crisis when exposed to commonly used anesthetics. Mutations in the skeletal muscle calcium release channel, ryanodine receptor (RYR1) are associated with MH in over 50% of affected families. Linkage analysis of the RYR1 gene region at 19q13 was performed in a large Brazilian family and a distinct disease co-segregating haplotype was revealed in the majority of members with diagnosis of MH. Subsequent sequencing of RYR1 mutational hot spots revealed a nucleotide substitution of C to T at position 7062, causing a novel amino acid change from Arg2355 to Cys associated with MH in the family. Haplotype analysis of the RYR1 gene area at 19q13 in the family with multiple MH members is an important tool in identification of genetic cause underlying this disease.

  18. Functionally heterogenous ryanodine receptors in avian cerebellum.

    Science.gov (United States)

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  19. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. 3D Mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle cryo-EM.

    Directory of Open Access Journals (Sweden)

    Alex Perálvarez-Marín

    Full Text Available The type 1 skeletal muscle ryanodine receptor (RyR1 is principally responsible for Ca(2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208 in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.

  1. Impact of industrial nuclear releases into the English Channel

    International Nuclear Information System (INIS)

    Germain, P.; Guegueniat, P.

    1992-01-01

    The nuclear fuel reprocessing plant at La Hague is the main source of releases of weakly radioactive waste into the English Channel; there are also some contributions from nuclear power stations along the coast. Indicator species, seawater samples and sediments are used to study the distribution and transfer mechanisms of radionuclides in Channel waters. The observed pattern of radiolabelled zones is in good agreement with an hydrodynamic model for the Channel. The variations of activity with time are discussed in relation to releases from La Hague

  2. CaMKII Regulation of Cardiac Ryanodine Receptors and Inositol Triphosphate Receptors

    Directory of Open Access Journals (Sweden)

    Emmanuel eCamors

    2014-05-01

    Full Text Available Ryanodine receptors (RyRs and inositol triphosphate receptors (InsP3Rs are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca2+ signals, triggering muscle contraction and oscillatory Ca2+ waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca2+ release from sarcoplasmic reticulum (SR, and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca2+ signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and posttranslational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca2+ leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

  3. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  4. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death

    NARCIS (Netherlands)

    Terentyev, Dmitry; Nori, Alessandra; Santoro, Massimo; Viatchenko-Karpinski, Serge; Kubalova, Zuzana; Gyorke, Inna; Terentyeva, Radmila; Vedamoorthyrao, Srikanth; Blom, Nico A.; Valle, Giorgia; Napolitano, Carlo; Williams, Simon C.; Volpe, Pompeo; Priori, Silvia G.; Gyorke, Sandor

    2006-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular

  5. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1.

    Directory of Open Access Journals (Sweden)

    Shweta A Raina

    Full Text Available Fluorescent protein (FP insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET measurements were used to localize green fluorescent protein (GFP insertions within the ryanodine receptor type 1 (RyR1, a large intracellular Ca(2+ release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.

  6. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.

    Science.gov (United States)

    Nivala, Michael; Song, Zhen; Weiss, James N; Qu, Zhilin

    2015-02-01

    In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the effects of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in "orphaned" RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise.

    Science.gov (United States)

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan

    2015-12-15

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.

  8. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise

    Science.gov (United States)

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan

    2015-01-01

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622

  9. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  10. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  11. Piezo1 regulates mechanotransductive release of ATP from human RBCs.

    Science.gov (United States)

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E; Wan, Jiandi

    2015-09-22

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.

  12. Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy

    NARCIS (Netherlands)

    Sarma, Satyam; Li, Na; van Oort, Ralph J.; Reynolds, Corey; Skapura, Darlene G.; Wehrens, Xander H. T.

    2010-01-01

    Aberrant intracellular Ca(2+) regulation is believed to contribute to the development of cardiomyopathy in Duchenne muscular dystrophy. Here, we tested whether inhibition of protein kinase A (PKA) phosphorylation of ryanodine receptor type 2 (RyR2) prevents dystrophic cardiomyopathy by reducing SR

  13. Effect of cutter type on sediment pollutants release in channel dredging

    Science.gov (United States)

    Yu, Y. R.; Chen, Y.; Dong, M. M.; Yang, B. L.

    2016-08-01

    Dredging activities are often used to maintain existing navigation channels. However’ traditional dredging equipment inevitably leads to sediment resuspension and nutrient loading in water. In this work’ the existing cutter used for dredging was transformed environmentally to reduce the release amount of sediment pollutants’ and to avoid the formation of secondary pollution to water bodies. Simulated tests with a general cutter’ a spiral cutter’ along with a general and spiral cutter equipped with the anti-diffusion device were conducted respectively in this study. The change of pollutants concentration in overlying water was examined. The environmental performance of each different structure cutter was comparatively analysed as well. The result revealed that in channel dredging with a spiral cutter’ the release amount of sediment pollutants was less than with a general cutter’ and that a general/spiral cutter equipped with the anti-diffusion device could effectively reduce the release amount of sediment contaminants’ particularly the release of the nitrogen nutrient during the 1h after the dredging treatment. The best transformation scheme for a cutter suction dredger (CSD) in its environmental-protection function may be: a spiral cutter equipped with the anti-diffusion device.

  14. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor.

    Science.gov (United States)

    Bussiere, Renaud; Lacampagne, Alain; Reiken, Steven; Liu, Xiaoping; Scheuerman, Valerie; Zalk, Ran; Martin, Cécile; Checler, Frederic; Marks, Andrew R; Chami, Mounia

    2017-06-16

    Alteration of ryanodine receptor (RyR)-mediated calcium (Ca 2+ ) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca 2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca 2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca 2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca 2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca 2+ leakage may be a therapeutic approach to treat AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats.

    Science.gov (United States)

    Carneiro-Júnior, M A; Quintão-Júnior, J F; Drummond, L R; Lavorato, V N; Drummond, F R; Amadeu, M A; Oliveira, E M; Felix, L B; Cruz, J S; Mill, J G; Natali, A J; Prímola-Gomes, T N

    2014-08-29

    In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.

  16. Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    M.A. Carneiro-Júnior

    2014-11-01

    Full Text Available In cardiomyocytes, calcium (Ca2+ release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age were divided into 4 groups: normotensive (NC and hypertensive control (HC, and normotensive (NT and hypertensive trained (HT animals (7 rats per group. NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2 and FK506 binding protein (FKBP12.6 increased (270% and decreased (88%, respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230% and normalizing FKBP12.6 gene expression (112%. Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0, full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm, total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms, time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms, and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms. These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms. Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.

  17. Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Carneiro-Júnior, M.A.; Quintão-Júnior, J.F.; Drummond, L.R.; Lavorato, V.N.; Drummond, F.R.; Amadeu, M.A.; Oliveira, E.M.; Felix, L.B.; Cruz, J.S.; Mill, J.G.; Natali, A.J.; Prímola-Gomes, T.N.

    2014-01-01

    In cardiomyocytes, calcium (Ca 2+ ) release units comprise clusters of intracellular Ca 2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca 2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca 2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F 0 ), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca 2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F 0 , full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes

  18. Effect of exercise training on Ca{sup 2+} release units of left ventricular myocytes of spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro-Júnior, M.A. [Universidade Federal do Espírito Santo, Departamento de Ciências Fisiológicas, Vitória, ES (Brazil); Universidade Federal de Viçosa, Laboratório de Biologia do Exercício, Departamento de Educação Física, Viçosa, MG (Brazil); Quintão-Júnior, J.F.; Drummond, L.R.; Lavorato, V.N.; Drummond, F.R. [Universidade Federal de Viçosa, Laboratório de Biologia do Exercício, Departamento de Educação Física, Viçosa, MG (Brazil); Amadeu, M.A.; Oliveira, E.M. [Universidade de São Paulo, Laboratório de Bioquímica e Biologia Molecular do Exercício, Escola de Educação Física e Esportes, São Paulo, SP (Brazil); Felix, L.B. [Universidade Federal de Viçosa, Departamento de Engenharia Elétrica, Viçosa, MG (Brazil); Cruz, J.S. [Universidade Federal de Minas Gerais, Laboratório de Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG (Brazil); Mill, J.G. [Universidade Federal do Espírito Santo, Departamento de Ciências Fisiológicas, Vitória, ES (Brazil); Natali, A.J.; Prímola-Gomes, T.N. [Universidade Federal de Viçosa, Laboratório de Biologia do Exercício, Departamento de Educação Física, Viçosa, MG (Brazil)

    2014-08-29

    In cardiomyocytes, calcium (Ca{sup 2+}) release units comprise clusters of intracellular Ca{sup 2+} release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca{sup 2+} sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca{sup 2+} sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F{sub 0}), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca{sup 2+} sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F{sub 0}, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of

  19. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  20. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  1. Effect of exercise training on Ca²⁺ release units of left ventricular myocytes of spontaneously hypertensive rats.

    Science.gov (United States)

    Carneiro-Júnior, M A; Quintão-Júnior, J F; Drummond, L R; Lavorato, V N; Drummond, F R; Amadeu, M A; Oliveira, E M; Felix, L B; Cruz, J S; Mill, J G; Natali, A J; Prímola-Gomes, T N

    2014-11-01

    In cardiomyocytes, calcium (Ca²⁺) release units comprise clusters of intracellular Ca²⁺ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca²⁺ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca²⁺ sparks (HC=7.61 ± 0.26 vs NC=4.79 ± 0.19 per 100 µm/s) and decreased its amplitude (HC=0.260 ± 0.08 vs NC=0.324 ± 0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05 ± 0.08 vs NC=1.26 ± 0.01 µm), total duration (HC=11.51 ± 0.12 vs NC=14.97 ± 0.24 ms), time to peak (HC=4.84 ± 0.06 vs NC=6.31 ± 0.14 ms), and time constant of decay (HC=8.68 ± 0.12 vs NC=10.21 ± 0.22 ms). These changes were partially reversed in HT rats (frequency of Ca²⁺ sparks=6.26 ± 0.19 µm/s, amplitude=0.282 ± 0.10 ΔF/F0, full width at half-maximum amplitude=1.14 ± 0.01 µm, total duration=13.34 ± 0.17 ms, time to peak=5.43 ± 0.08 ms, and time constant of decay=9.43 ± 0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release

  2. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites.

    Science.gov (United States)

    Lin, Lianyun; Liu, Chen; Qin, Juan; Wang, Jie; Dong, Shengjie; Chen, Wei; He, Weiyi; Gao, Qingzhi; You, Minsheng; Yuchi, Zhiguang

    2018-01-01

    Ryanodine receptors (RyRs) are large calcium-release channels located in sarcoplasmic reticulum membrane. They play a central role in excitation-contraction coupling of muscle cells. Three commercialized insecticides targeting pest RyRs generate worldwide sales over 2 billion U.S. dollars annually, but the structure of insect RyRs remains elusive, hindering our understanding of the mode of action of RyR-targeting insecticides and the development of insecticide resistance in pests. Here we present the crystal structure of RyR N-terminal domain (NTD) (residue 1-205) at 2.84 Å resolution from the diamondback moth (DBM), Plutella xylostella, a destructive pest devouring cruciferous crops all over the world. Similar to its mammalian homolog, DBM RyR NTD consists of a beta-trefoil folding motif and a flanking alpha helix. Interestingly, two regions in NTD interacting with neighboring domains showed distinguished conformations in DBM relative to mammalian RyRs. Using homology modeling and molecular dynamics simulation, we created a structural model of the N-terminal three domains, showing two unique binding pockets that could be targeted by potential species-specific insecticides. Thermal melt experiment showed that the stability of DBM RyR NTD was higher than mammalian RyRs, probably due to a stable intra-domain disulfide bond observed in the crystal structure. Previously DBM NTD was shown to be one of the two critical regions to interact with insecticide flubendiamide, but isothermal titration calorimetry experiments negated DBM NTD alone as a major binding site for flubendiamide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development.

    Science.gov (United States)

    Nakamura, Yukihiro; Harada, Harumi; Kamasawa, Naomi; Matsui, Ko; Rothman, Jason S; Shigemoto, Ryuichi; Silver, R Angus; DiGregorio, David A; Takahashi, Tomoyuki

    2015-01-07

    Synaptic efficacy and precision are influenced by the coupling of voltage-gated Ca(2+) channels (VGCCs) to vesicles. But because the topography of VGCCs and their proximity to vesicles is unknown, a quantitative understanding of the determinants of vesicular release at nanometer scale is lacking. To investigate this, we combined freeze-fracture replica immunogold labeling of Cav2.1 channels, local [Ca(2+)] imaging, and patch pipette perfusion of EGTA at the calyx of Held. Between postnatal day 7 and 21, VGCCs formed variable sized clusters and vesicular release became less sensitive to EGTA, whereas fixed Ca(2+) buffer properties remained constant. Experimentally constrained reaction-diffusion simulations suggest that Ca(2+) sensors for vesicular release are located at the perimeter of VGCC clusters (<30 nm) and predict that VGCC number per cluster determines vesicular release probability without altering release time course. This "perimeter release model" provides a unifying framework accounting for developmental changes in both synaptic efficacy and time course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.

    Science.gov (United States)

    Toussay, Xavier; Morel, Jean-Luc; Biendon, Nathalie; Rotureau, Lolita; Legeron, François-Pierre; Boutonnet, Marie-Charlotte; Cho, Yoon H; Macrez, Nathalie

    2017-10-01

    Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca 2+ ) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca 2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca 2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca 2+ -release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca 2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca 2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca 2+ signals in PS1dE9 mutant mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  6. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity

    Science.gov (United States)

    Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.

    2017-01-01

    Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893

  7. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine

    Science.gov (United States)

    Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.

    2016-01-01

    Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was

  8. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine.

    Science.gov (United States)

    Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2016-06-15

    Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it

  9. True Molecular Scale Visualization of Variable Clustering Properties of Ryanodine Receptors

    Directory of Open Access Journals (Sweden)

    Isuru Jayasinghe

    2018-01-01

    Full Text Available Summary: Signaling nanodomains rely on spatial organization of proteins to allow controlled intracellular signaling. Examples include calcium release sites of cardiomyocytes where ryanodine receptors (RyRs are clustered with their molecular partners. Localization microscopy has been crucial to visualizing these nanodomains but has been limited by brightness of markers, restricting the resolution and quantification of individual proteins clustered within. Harnessing the remarkable localization precision of DNA-PAINT (<10 nm, we visualized punctate labeling within these nanodomains, confirmed as single RyRs. RyR positions within sub-plasmalemmal nanodomains revealed how they are organized randomly into irregular clustering patterns leaving significant gaps occupied by accessory or regulatory proteins. RyR-inhibiting protein junctophilin-2 appeared highly concentrated adjacent to RyR channels. Analyzing these molecular maps showed significant variations in the co-clustering stoichiometry between junctophilin-2 and RyR, even between nearby nanodomains. This constitutes an additional level of complexity in RyR arrangement and regulation of calcium signaling, intrinsically built into the nanodomains. : Jayasinghe et al. resolve the distribution of single ryanodine receptors (RyRs within intracellular signaling domains in cardiac myocytes with DNA-PAINT, a super-resolution microscopy approach. Individual RyRs are resolved within irregular cluster arrays. Quantitative imaging reveals significant variation in the co-clustering stoichiometry between RyRs and the regulatory protein junctophilin-2. Keywords: nanodomains, DNA-PAINT, single-molecule localization microscopy, ryanodine receptor, super-resolution imaging, junctophilin, heart

  10. On the burnout in annular channels at non-uniform heat release distribution in length

    International Nuclear Information System (INIS)

    Ornatskij, A.P.; Chernobaj, V.A.; Vasil'ev, A.F.; Struts, G.V.

    1982-01-01

    The effect of axial heat release non-uniformity on the conditions of the burnout in annular channels is investigated. The investigation is carried out in annular channels with different laws of heat flux density distribution by channel length. The heat release non-uniformity coefficient was varied from 4.4 to 10, the pressure from 9.8 to 17.6 MPa, mass rate from 500 to 1700 kg (m 2 xS), liquid temperature (chemically desalted water) at the channel inlet constituted 30-300 deg C. The experiments have been performed at the test bench with a closed circulation circuit. The data obtained testify to the fact that under non-uniform heat release the influence of main operating parameters on the value of critical power is of the same character as under uniform heat release. The character of wall temperature variation by channel length before the burnout is determined by the form of heat supply temperature profile. The temperature maximum is observed in the region lying behind the cross section with maximum heat flux. The conclusion is drawn that the dominant influence on the position of the cross section in which the burnout arises is exerted by the form of heat flux density distribution by length. Independently of this distribution form the burnout developes when the vapour content near the wall reaches a limiting value

  11. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Associations of biochemical changes and maternal traits with mutation 1843 (C>T in the RYR1 gene as a common cause for porcine stress syndrome

    Directory of Open Access Journals (Sweden)

    Popovski ZT

    2016-12-01

    Full Text Available Stress syndrome is usually caused by a mutation in the ryanodine receptor gene (ryr1 and it is widely studied in humans and swine populations. The protein product of this gene plays a crucial role in the regulation of calcium transport in muscle cells. A G>T mutation in the human ryr1 gene, which results in the replacement of a conserved arginine at position 614 where a leucine occurs at the same position as the previously identified Arg→Cys mutation reported in all cases of porcine stress syndrome (PSS. Porcine stress syndrome affects biochemical pathways in stress-susceptible individuals during a stress episode and some biochemical parameters that were used as markers for diagnostic purposes. Also, PSS has remarkable influence on the maternal characteristics of sows. This study dealt with different genotypes for PSS and its association with possible biochemical changes and maternal traits of sows. Seventy-three reproductive sows genotyped for PSS by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP were included in this survey. Sixty of them were stress-free (NN, 11 were heterozygous carriers (Nn and two animals were homozygous (nn for the 1843 (C>T mutation. Significant differences in non stress induced animals with different PSS genotypes were found in the values of creatine phoshokinase (CPK, lactate dehydrogenase (LDH, alkaline phosphatase (AP and aspartate aminotransferase (AST. Regarding the maternal traits, our study showed that stress susceptible animals (nn have an increased number of stillborn piglets and a reduced number of newborn piglets compared with heterozygous and normal animals.

  13. Influence of water-soluble channeling agents on the release of diclofenac sodium from Irvingia malayana wax matrix tablets.

    Science.gov (United States)

    Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat

    2017-05-01

    Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).

  14. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    Science.gov (United States)

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  15. Inward rectifier K+ channel and T-type Ca2+ channel contribute to enhancement of GABAergic transmission induced by β1-adrenoceptor in the prefrontal cortex.

    Science.gov (United States)

    Luo, Fei; Zheng, Jian; Sun, Xuan; Tang, Hua

    2017-02-01

    The functions of prefrontal cortex (PFC) are sensitive to norepinephrine (NE). Endogenously released NE influences synaptic transmission through activation of different subtypes of adrenergic receptors in PFC including α 1 , α 2 , β 1 or β 2 -adrenoceptor. Our recent study has revealed that β 1 -adrenoceptor (β 1 -AR) activation modulates glutamatergic transmission in the PFC, whereas the roles of β 1 -AR in GABAergic transmission are elusive. In the current study, we probed the effects of the β 1 -AR agonist dobutamine (Dobu) on GABAergic transmission onto pyramidal neurons in the PFC of juvenile rats. Dobu increased both the frequency and amplitude of miniature IPSCs (mIPSCs). Ca 2+ influx through T-type voltage-gated Ca 2+ channel was required for Dobu-enhanced mIPSC frequency. We also found that Dobu facilitated GABA release probability and the number of releasable vesicles through regulating T-type Ca 2+ channel. Dobu depolarized GABAergic fast-spiking (FS) interneurons with no effects on the firing rate of action potentials (APs) of interneurons. Dobu-induced depolarization of FS interneurons required inward rectifier K + channel (Kir). Our results suggest that Dobu increase GABA release via inhibition of Kir, which further depolarizes FS interneurons resulting in Ca 2+ influx via T-type Ca 2+ channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    Science.gov (United States)

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  17. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Science.gov (United States)

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  18. Calcium-Release Channels in Paramecium. Genomic Expansion, Differential Positioning and Partial Transcriptional Elimination

    Science.gov (United States)

    Ladenburger, Eva-Maria; Plattner, Helmut

    2011-01-01

    The release of Ca2+ from internal stores is a major source of signal Ca2+ in almost all cell types. The internal Ca2+ pools are activated via two main families of intracellular Ca2+-release channels, the ryanodine and the inositol 1,4,5-trisphosphate (InsP3) receptors. Among multicellular organisms these channel types are ubiquitous, whereas in most unicellular eukaryotes the identification of orthologs is impaired probably due to evolutionary sequence divergence. However, the ciliated protozoan Paramecium allowed us to prognosticate six groups, with a total of 34 genes, encoding proteins with characteristics typical of InsP3 and ryanodine receptors by BLAST search of the Paramecium database. We here report that these Ca2+-release channels may display all or only some of the characteristics of canonical InsP3 and ryanodine receptors. In all cases, prediction methods indicate the presence of six trans-membrane regions in the C-terminal domains, thus corresponding to canonical InsP3 receptors, while a sequence homologous to the InsP3-binding domain is present only in some types. Only two types have been analyzed in detail previously. We now show, by using antibodies and eventually by green fluorescent protein labeling, that the members of all six groups localize to distinct organelles known to participate in vesicle trafficking and, thus, may provide Ca2+ for local membrane-membrane interactions. Whole genome duplication can explain radiation within the six groups. Comparative and evolutionary evaluation suggests derivation from a common ancestor of canonical InsP3 and ryanodine receptors. With one group we could ascertain, to our knowledge for the first time, aberrant splicing in one thoroughly analyzed Paramecium gene. This yields truncated forms and, thus, may indicate a way to pseudogene formation. No comparable analysis is available for any other, free-living or parasitic/pathogenic protozoan. PMID:22102876

  19. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    Full Text Available BACKGROUND: While ryanodine receptor 1 (RyR1 critically contributes to skeletal muscle contraction abilities by mediating Ca²⁺ion oscillation between sarcoplasmatic and myofibrillar compartments, AMP-activated protein kinase (AMPK senses contraction-induced energetic stress by phosphorylation at Thr¹⁷². Phosphorylation of RyR1 at serine²⁸⁴³ (pRyR1Ser²⁸⁴³ results in leaky RyR1 channels and impaired Ca²⁺homeostasis. Because acute resistance exercise exerts decreased contraction performance in skeletal muscle, preceded by high rates of Ca²⁺-oscillation and energetic stress, intense myofiber contractions may induce increased RyR1 and AMPK phosphorylation. However, no data are available regarding the time-course and magnitude of early RyR1 and AMPK phosphorylation in human myofibers in response to acute resistance exercise. PURPOSE: Determine the effects and early time-course of resistance exercise on pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² in type I and II myofibers. METHODS: 7 male subjects (age 23±2 years, height: 185±7 cm, weight: 82±5 kg performed 3 sets of 8 repetitions of maximum eccentric knee extensions. Muscle biopsies were taken at rest, 15, 30 and 60 min post exercise. pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² levels were determined by western blot and semi-quantitative immunohistochemistry techniques. RESULTS: While total RyR1 and total AMPK levels remained unchanged, RyR1 was significantly more abundant in type II than type I myofibers. pRyR1Ser²⁸⁴³ increased 15 min and peaked 30 min (p<0.01 post exercise in both myofiber types. Type I fibers showed relatively higher increases in pRyR1Ser²⁸⁴³ levels than type II myofibers and remained elevated up to 60 min post resistance exercise (p<0.05. pAMPKThr¹⁷² also increased 15 to 30 min post exercise (p<0.01 in type I and II myofibers and in whole skeletal muscle. CONCLUSION: Resistance exercise induces acutely increased pRyR1Ser²⁸⁴³ and

  20. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Patrick E MacDonald

    2007-06-01

    Full Text Available Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+ responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+ signalling was blocked, but was reversed by low concentrations (1-20 muM of the ATP-sensitive K(+ (KATP channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM. Higher diazoxide concentrations (>/=30 muM decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM, glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+ (TTX and N-type Ca(2+ channels (omega-conotoxin, but not L-type Ca(2+ channels (nifedipine, prevented glucagon secretion. Both the N-type Ca(2+ channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  1. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  2. Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Negoro

    Full Text Available Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1 channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs. We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1, and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS, a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger. These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.

  3. Detección de una mutación puntual en el gen receptor Ryanodina (Ryr 1 en cerdos criollos colombianos

    Directory of Open Access Journals (Sweden)

    Muñoz Flórez Jaime Eduardo

    2008-12-01

    Full Text Available El síndrome de estrés porcino (PSS es una enfermedad hereditaria monogénica recesiva relacionada con el gen receptor ryanodina (Ryr1. Utilizando PCR-SSCP y PCR-RFLP se tipificaron genéticamente 14 individuos de cerdos comerciales con el rasgo sindactilia (Casco de Mula-CM, 21 San Pedreños -SP y 100 Zungos- ZN. Las razas CM y SP tuvieron las mismas frecuencias alélicas (F(H = 0.79 y F(h = 0.21, mientras que en los cerdos ZN no se encontró el alelo recesivo (h. La heterocigosidad (He fue de 0.28% para los cerdos CM y 0.23% para los SP. La He para la muestra poblacional fue de 0.066.

  4. Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Ladenburger

    Full Text Available The release of Ca²⁺ from internal stores is a major source of signal Ca²⁺ in almost all cell types. The internal Ca²⁺ pools are activated via two main families of intracellular Ca²⁺-release channels, the ryanodine and the inositol 1,4,5-trisphosphate (InsP₃ receptors. Among multicellular organisms these channel types are ubiquitous, whereas in most unicellular eukaryotes the identification of orthologs is impaired probably due to evolutionary sequence divergence. However, the ciliated protozoan Paramecium allowed us to prognosticate six groups, with a total of 34 genes, encoding proteins with characteristics typical of InsP₃ and ryanodine receptors by BLAST search of the Paramecium database. We here report that these Ca²⁺-release channels may display all or only some of the characteristics of canonical InsP₃ and ryanodine receptors. In all cases, prediction methods indicate the presence of six trans-membrane regions in the C-terminal domains, thus corresponding to canonical InsP₃ receptors, while a sequence homologous to the InsP₃-binding domain is present only in some types. Only two types have been analyzed in detail previously. We now show, by using antibodies and eventually by green fluorescent protein labeling, that the members of all six groups localize to distinct organelles known to participate in vesicle trafficking and, thus, may provide Ca²⁺ for local membrane-membrane interactions. Whole genome duplication can explain radiation within the six groups. Comparative and evolutionary evaluation suggests derivation from a common ancestor of canonical InsP₃ and ryanodine receptors. With one group we could ascertain, to our knowledge for the first time, aberrant splicing in one thoroughly analyzed Paramecium gene. This yields truncated forms and, thus, may indicate a way to pseudogene formation. No comparable analysis is available for any other, free-living or parasitic/pathogenic protozoan.

  5. The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation

    Science.gov (United States)

    Lesiak, Adam; Zhu, Mingyan; Chen, Hao; Appleyard, Suzanne M.; Impey, Soren; Wayman, Gary A.

    2014-01-01

    Non–dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca2+ oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders. PMID:24431430

  6. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.

    Science.gov (United States)

    Price, Alexander K; Fischer, David J; Martin, R Scott; Spence, Dana M

    2004-08-15

    The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.22 +/- 0.50 microM ATP). Microscopic images indicate that erythrocytes, when being pumped through the microchip channels, migrate toward the center of the channels, leaving a cell-free or skimming layer at the walls of the channel, a profile known to exist in circulatory vessels in vivo. A comparison of the amounts of ATP released from RBCs mechanically deformed in microbore tubing (2.54 +/- 0.15 microM) vs a microchip (2.59 +/- 0.32 microM) suggests that channels in microchips may serve as functional biomimics of the microvasculature. Control studies involving diamide, a membrane-stiffening agent, suggest that the RBC-derived ATP is not due to cell lysis but rather physical deformation.

  7. Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca(2+) channels.

    Science.gov (United States)

    Bartoletti, Theodore M; Jackman, Skyler L; Babai, Norbert; Mercer, Aaron J; Kramer, Richard H; Thoreson, Wallace B

    2011-12-01

    Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca(2+) channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca(2+) channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca(2+) currents (I(Ca)) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca(2+) channel number and single-channel current amplitude were calculated by mean-variance analysis of I(Ca). Two different comparisons-one comparing average numbers of release events to average I(Ca) amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone I(Ca)-suggested that fewer than three Ca(2+) channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca(2+) channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca(2+) dependence of release, Ca(2+) channel number, and Ca(2+) channel properties. The model replicated observations when a barrier was added to slow Ca(2+) diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca(2+) buffers did not affect release efficiency. The tight clustering of Ca(2+) channels, along with a high-Ca(2+) affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca(2+) influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light.

  8. Nationwide experience of catecholaminergic polymorphic ventricular tachycardia caused by RyR2 mutations

    DEFF Research Database (Denmark)

    Broendberg, Anders Krogh; Nielsen, Jens Cosedis; Bjerre, Jesper

    2017-01-01

    probands, 18 symptomatic and 10 asymptomatic relatives with a RyR2 mutation. Twenty (87%) probands and 10 (36%) relatives had severe presenting symptoms (sudden cardiac death (SCD), aborted SCD (ASCD) or syncope).As compared with symptomatic relatives, probands had lower age at onset of symptoms (16 years...... (IQR, 10-33) vs 43 years (IQR, 25-54), pnear-fatal events (ASCD, SCD) (16vs5, p... events in the majority of probands and also occurred in 36% of relatives identified through family screening. Probands were younger at disease onset and more prone to fatal or near-fatal events than relatives....

  9. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart

    Science.gov (United States)

    Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.

    2016-01-01

    S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its

  10. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse.

    Science.gov (United States)

    Rozanski, Gabriela M; Nath, Arup R; Adams, Michael E; Stanley, Elise F

    2013-11-15

    A subpopulation of dorsal root ganglion (DRG) neurons are intimately attached in pairs and separated solely by thin satellite glial cell membrane septa. Stimulation of one neuron leads to transglial activation of its pair by a bi-, purinergic/glutamatergic synaptic pathway, a transmission mechanism that we term sandwich synapse (SS) transmission. Release of ATP from the stimulated neuron can be attributed to a classical mechanism involving Ca(2+) entry via voltage-gated calcium channels (CaV) but via an unknown channel type. Specific blockers and toxins ruled out CaV1, 2.1 and 2.2. Transmission was, however, blocked by a moderate depolarization (-50 mV) or low-concentration Ni(2+) (0.1 mM). Transmission persisted using a voltage pulse to -40 mV from a holding potential of -80 mV, confirming the involvement of a low voltage-activated channel type and limiting the candidate channel type to either CaV3.2 or a subpopulation of inactivation- and Ni(2+)-sensitive CaV2.3 channels. Resistance of the neuron calcium current and SS transmission to SNX482 argue against the latter. Hence, we conclude that inter-somatic transmission at the DRG SS is gated by CaV3.2 type calcium channels. The use of CaV3 family channels to gate transmission has important implications for the biological function of the DRG SS as information transfer would be predicted to occur not only in response to action potentials but also to sub-threshold membrane voltage oscillations. Thus, the SS synapse may serve as a homeostatic signalling mechanism between select neurons in the DRG and could play a role in abnormal sensation such as neuropathic pain.

  11. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses.

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

  12. Elementary properties of Ca2+ channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L.; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses. PMID:25904847

  13. Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2007-02-01

    Full Text Available Pressure overload-induced hypertrophy is a key step leading to heart failure. The Ca(2+-induced Ca(2+ release (CICR process that governs cardiac contractility is defective in hypertrophy/heart failure, but the molecular mechanisms remain elusive. To examine the intermolecular aspects of CICR during hypertrophy, we utilized loose-patch confocal imaging to visualize the signaling between a single L-type Ca(2+ channel (LCC and ryanodine receptors (RyRs in aortic stenosis rat models of compensated (CHT and decompensated (DHT hypertrophy. We found that the LCC-RyR intermolecular coupling showed a 49% prolongation in coupling latency, a 47% decrease in chance of hit, and a 72% increase in chance of miss in DHT, demonstrating a state of "intermolecular failure." Unexpectedly, these modifications also occurred robustly in CHT due at least partially to decreased expression of junctophilin, indicating that intermolecular failure occurs prior to cellular manifestations. As a result, cell-wide Ca(2+ release, visualized as "Ca(2+ spikes," became desynchronized, which contrasted sharply with unaltered spike integrals and whole-cell Ca(2+ transients in CHT. These data suggested that, within a certain limit, termed the "stability margin," mild intermolecular failure does not damage the cellular integrity of excitation-contraction coupling. Only when the modification steps beyond the stability margin does global failure occur. The discovery of "hidden" intermolecular failure in CHT has important clinical implications.

  14. Enhancement of Cellular Antioxidant-Defence Preserves Diastolic Dysfunction via Regulation of Both Diastolic Zn2+ and Ca2+ and Prevention of RyR2-Leak in Hyperglycemic Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Erkan Tuncay

    2014-01-01

    Full Text Available We examined whether cellular antioxidant-defence enhancement preserves diastolic dysfunction via regulation of both diastolic intracellular free Zn2+ and Ca2+ levels (Zn2+i and Ca2+i levels N-acetyl cysteine (NAC treatment (4 weeks of diabetic rats preserved altered cellular redox state and also prevented diabetes-induced tissue damage and diastolic dysfunction with marked normalizations in the resting Zn2+i and Ca2+i. The kinetic parameters of transient changes in Zn2+ and Ca2+ under electrical stimulation and the spatiotemporal properties of Zn2+ and Ca2+ sparks in resting cells are found to be normal in the treated diabetic group. Biochemical analysis demonstrated that the NAC treatment also antagonized hyperphosphorylation of cardiac ryanodine receptors (RyR2 and significantly restored depleted protein levels of both RyR2 and calstabin2. Incubation of cardiomyocytes with 10 µM ZnCl2 exerted hyperphosphorylation in RyR2 as well as higher phosphorphorylations in both PKA and CaMKII in a concentration-dependent manner, similar to hyperglycemia. Our present data also showed that a subcellular oxidative stress marker, NF-κB, can be activated if the cells are exposed directly to Zn2+. We thus for the first time report that an enhancement of antioxidant defence in diabetics via directly targeting heart seems to prevent diastolic dysfunction due to modulation of RyR2 macromolecular-complex thereby leading to normalized Ca2+i and Zn2+i in cardiomyocytes.

  15. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans).

    Science.gov (United States)

    Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A

    2003-03-01

    A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs

  16. Dam Breach Release of Non-Cohesive Sediments: Channel Response and Recovery Rates

    Science.gov (United States)

    Collins, M. J.; Boardman, G.; Banks, W.; Andrews, M.; Conlon, M.; Dillow, J. J. A.; Gellis, A.; Lowe, S.; McClain, S.; Miller, A. J.; Snyder, N. P.; Wilcock, P. R.

    2014-12-01

    Dam removals featuring unchecked releases of non-cohesive sediments are excellent opportunities to learn more about stream channel response to abrupt increases in bed material supply that can occur deliberately or by natural processes like landslides and volcanic eruptions. Understanding channel response to sediment pulses, including response rates, is essential because human uses of river channels and floodplains are impacted by these events as are aquatic habitats. We had the opportunity to study a dam removal site at the Simkins Dam in Maryland, USA, that shares many important geophysical attributes of another well-studied dam removal in the humid northeast United States [Merrimack Village Dam, New Hampshire; Pearson et al., 2011]. The watershed sizes are the same order of magnitude (102 km2), and at both sites relatively low head dams were removed (~ 3-4 m) and ~60,000 m3 of dominantly sand-sized sediments discharged to low-gradient reaches immediately downstream. Analyzing four years of repeat morphometry and bed sediment grain size surveys at the Simkins site on the Patapsco River, as well as continuous discharge and suspended sediment gaging data, we clearly document a two-phase response in the upstream reach as described by Pearson et al. [2011] for their New Hampshire site and noted at other dam removals [e.g., Major et al., 2012]. In the early phase, approximately 50% of the impounded sediment mass was eroded rapidly over a period of about three months when flows were very modest (Figure 1). After incision to base level and channel widening in the former impoundment, a second phase began when further erosion depended on floods large enough to access impounded sediments more distant from the newly-formed channel. We also found important differences in the upstream responses at the Maryland and New Hampshire sites that appear to be related to valley type (non-glaciated versus glaciated, respectively). Response variances immediately downstream between the

  17. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  18. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J.; Meinild, A.-K.

    2013-01-01

    AIM: A number of K(+) channels are regulated by small, fast changes in cell volume. The mechanisms underlying cell volume sensitivity are not known, but one possible mechanism could be purinergic signalling. Volume activated ATP release could trigger signalling pathways that subsequently lead...... stimuli. Basal ATP release was approx. three times higher in the KCNQ1 + AQP1 and KCNQ1 injected oocytes compared to the non-injected ones. Exogenously added ATP (0.1 mm) did not have any substantial effect on volume-induced KCNQ1 currents. Nevertheless, apyrase decreased all currents by about 50...

  19. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.

    Science.gov (United States)

    Wu, Jing-Xiang; Ding, Dian; Wang, Mengmeng; Kang, Yunlu; Zeng, Xin; Chen, Lei

    2018-06-01

    ATP-sensitive potassium channels (K ATP ) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of β-cells, pancreatic K ATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic K ATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.

  20. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  1. Imaging Ca2+ nanosparks in heart with a new targeted biosensor.

    Science.gov (United States)

    Shang, Wei; Lu, Fujian; Sun, Tao; Xu, Jiejia; Li, Lin-Lin; Wang, Yanru; Wang, Gang; Chen, Liangyi; Wang, Xianhua; Cannell, Mark B; Wang, Shi-Qiang; Cheng, Heping

    2014-01-31

    In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states. To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space. By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events. This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.

  2. Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling.

    Directory of Open Access Journals (Sweden)

    Panpan Hou

    Full Text Available Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC channel, intermediate K+ (IK channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.

  3. T-type channels: release a brake, engage a gear

    Czech Academy of Sciences Publication Activity Database

    Weiss, Norbert; Lacinová, L.

    2016-01-01

    Roč. 10, č. 2 (2016), s. 78-80 ISSN 1933-6950 Institutional support: RVO:61388963 Keywords : gating brake * pore opening * Ca(V)3.3 * channel gating * Ca(V)3.1 * low-voltage activated calcium channels Subject RIV: CE - Biochemistry Impact factor: 2.042, year: 2016

  4. KChIP2 regulates the cardiac Ca2+ transient and myocyte contractility by targeting ryanodine receptor activity.

    Directory of Open Access Journals (Sweden)

    Drew M Nassal

    Full Text Available Pathologic electrical remodeling and attenuated cardiac contractility are featured characteristics of heart failure. Coinciding with these remodeling events is a loss of the K+ channel interacting protein, KChIP2. While, KChIP2 enhances the expression and stability of the Kv4 family of potassium channels, leading to a more pronounced transient outward K+ current, Ito,f, the guinea pig myocardium is unique in that Kv4 expression is absent, while KChIP2 expression is preserved, suggesting alternative consequences to KChIP2 loss. Therefore, KChIP2 was acutely silenced in isolated guinea pig myocytes, which led to significant reductions in the Ca2+ transient amplitude and prolongation of the transient duration. This change was reinforced by a decline in sarcomeric shortening. Notably, these results were unexpected when considering previous observations showing enhanced ICa,L and prolonged action potential duration following KChIP2 loss, suggesting a disruption of fundamental Ca2+ handling proteins. Evaluation of SERCA2a, phospholamban, RyR, and sodium calcium exchanger identified no change in protein expression. However, assessment of Ca2+ spark activity showed reduced spark frequency and prolonged Ca2+ decay following KChIP2 loss, suggesting an altered state of RyR activity. These changes were associated with a delocalization of the ryanodine receptor activator, presenilin, away from sarcomeric banding to more diffuse distribution, suggesting that RyR open probability are a target of KChIP2 loss mediated by a dissociation of presenilin. Typically, prolonged action potential duration and enhanced Ca2+ entry would augment cardiac contractility, but here we see KChIP2 fundamentally disrupts Ca2+ release events and compromises myocyte contraction. This novel role targeting presenilin localization and RyR activity reveals a significance for KChIP2 loss that reflects adverse remodeling observed in cardiac disease settings.

  5. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  6. Redox regulation of calcium release in skeletal and cardiac muscle

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2002-01-01

    Full Text Available In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist and Mg2+ (endogenous inhibitor on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 µM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 µM [Ca2+]. In 10 µM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] ­ 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 µM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed

  7. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian, E-mail: zhijian_fu@163.com

    2014-11-01

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{sup 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.

  8. Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction

    International Nuclear Information System (INIS)

    Schulz, Joseph R.; Vega-Beltran, Jose L. de la; Beltran, Carmen; Vacquier, Victor D.; Darszon, Alberto

    2004-01-01

    The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca 2+ and Na + influx and K + and H + efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba 2+ , and has a PK + /PNa + selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization

  9. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia.

    Science.gov (United States)

    Zhang, Lili; Lu, Xiangru; Gui, Le; Wu, Yan; Sims, Stephen M; Wang, Guoping; Feng, Qingping

    2016-08-01

    Rac1 is a small GTPase and plays key roles in multiple cellular processes including the production of reactive oxygen species (ROS). However, whether Rac1 activation during myocardial ischaemia and reperfusion (I/R) contributes to arrhythmogenesis is not fully understood. We aimed to study the effects of Rac1 inhibition on store overload-induced Ca(2+) release (SOICR) and ventricular arrhythmia during myocardial I/R. Adult Rac1(f/f) and cardiac-specific Rac1 knockdown (Rac1(ckd) ) mice were subjected to myocardial I/R and their electrocardiograms (ECGs) were monitored for ventricular arrhythmia. Myocardial Rac1 activity was increased and ventricular arrhythmia was induced during I/R in Rac1(f/f) mice. Remarkably, I/R-induced ventricular arrhythmia was significantly decreased in Rac1(ckd) compared to Rac1(f/f) mice. Furthermore, treatment with Rac1 inhibitor NSC23766 decreased I/R-induced ventricular arrhythmia. Ca(2+) imaging analysis showed that in response to a 6 mM external Ca(2+) concentration challenge, SOICR was induced with characteristic spontaneous intracellular Ca(2+) waves in Rac1(f/f) cardiomyocytes. Notably, SOICR was diminished by pharmacological and genetic inhibition of Rac1 in adult cardiomyocytes. Moreover, I/R-induced ROS production and ryanodine receptor 2 (RyR2) oxidation were significantly inhibited in the myocardium of Rac1(ckd) mice. We conclude that Rac1 activation induces ventricular arrhythmia during myocardial I/R. Inhibition of Rac1 suppresses SOICR and protects against ventricular arrhythmia. Blockade of Rac1 activation may represent a new paradigm for the treatment of cardiac arrhythmia in ischaemic heart disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  11. Mechanical stress and stress release channels in 10–350 nm palladium hydrogen thin films with different micro-structures

    International Nuclear Information System (INIS)

    Wagner, Stefan; Kramer, Thilo; Uchida, Helmut; Dobron, Patrik; Cizek, Jakub; Pundt, Astrid

    2016-01-01

    For thin metal films adhered to rigid substrates hydrogen uptake results in compressive stresses in the GPa range. Stresses affect the thermodynamics as well as the durability of thin films, but many films can release stress above critical stress values. Depending on the films' thickness, microstructure and adhesion to the substrate, which determine the energy available in the nano-sized system, stress release is conducted via different release mechanisms. To evaluate the different mechanisms, Palladium thin films ranging from 10 nm to 350 nm and with three different types of microstructures (nanocrystalline, multi-oriented epitaxy and three-fold epitaxy) are studied with special focus on the mechanical stress. In-situ substrate curvature measurements, XRD stress analyses and acoustic emission (AE) measurements are conducted to determine intrinsic stresses, hydrogen-induced stress changes and stress release signals. By this complementary experimental approach, different stress release mechanisms (named channels) are identified. Discrete stress relaxation (DSR) events are found already within the overall linear elastic stress-strain regime. Energies to stimulate DSRs lay well below the formation energy of dislocations, and may allow the movement of defects pre-existing in the films. For higher strain energies, all studied films can release stress by the formation of new dislocations and plastic deformation. When the adhesion to the substrate is small, an alternative release channel of film buckling opens for thick films.

  12. Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jung-Tung Liu

    2017-01-01

    Full Text Available The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs, also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1. We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM PAC senescence and the development of reactive oxygen species (ROS in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.

  13. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.

    Science.gov (United States)

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-03-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.

  14. Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models.

    Directory of Open Access Journals (Sweden)

    Kirsi Penttinen

    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1 is caused by cardiac ryanodine receptor (RyR2 gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca(2+ release, has been shown to rescue this abnormal Ca(2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs on average by 74% (range 33-97 in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs. The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca(2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca(2+ cycling abnormalities in 80% (range 65-97 of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.Trial Registration: EudraCT Clinical Trial Registry 2012-005292-14.

  15. One Dimensional Finite Element Method Approach to Study Effect of Ryanodine Receptor and Serca Pump on Calcium Distribution in Oocytes

    Science.gov (United States)

    Naik, Parvaiz Ahmad; Pardasani, Kamal Raj

    2013-11-01

    Oocyte is a female gametocyte or germ cell involved in reproduction. Calcium ions (Ca2+) impact nearly all aspects of cellular life as they play an important role in a variety of cellular functions. Calcium ions contributes to egg activation upon fertilization. Since it is the internal stores which provide most of the calcium signal, much attention has been focused on the intracellular channels. There are mainly two types of calcium channels which release calcium from the internal stores to the cytoplasm in many cell types. These channels are IP3-Receptor and Ryanodine Receptor (RyR). Further it is essential to maintain low cytosolic calcium concentration, the cell engages the Serco/Endoplasmic reticulum Ca2+ ATPases (SERCA) present on the ER or SR membrane for the re-uptake of cytosolic calcium at the expense of ATP hydrolysis. In view of above an attempt has been made to study the effect of the Ryanodine receptor (RyR) and the SERCA pump on the calcium distribution in oocytes. The main aim of this paper is to study the calcium concentration in absence and presence of these parameters. The FEM is used to solve the proposed Mathematical model under appreciate initial and boundary conditions. The program has been developed in MATLAB 7.10 for the entire problem to get numerical results.

  16. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation.

    Science.gov (United States)

    Polster, Alexander; Nelson, Benjamin R; Olson, Eric N; Beam, Kurt G

    2016-09-27

    In skeletal muscle, conformational coupling between CaV1.1 in the plasma membrane and type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) is thought to underlie both excitation-contraction (EC) coupling Ca(2+) release from the SR and retrograde coupling by which RyR1 increases the magnitude of the Ca(2+) current via CaV1.1. Recent work has shown that EC coupling fails in muscle from mice and fish null for the protein Stac3 (SH3 and cysteine-rich domain 3) but did not establish the functional role of Stac3 in the CaV1.1-RyR1 interaction. We investigated this using both tsA201 cells and Stac3 KO myotubes. While confirming in tsA201 cells that Stac3 could support surface expression of CaV1.1 (coexpressed with its auxiliary β1a and α2-δ1 subunits) and the generation of large Ca(2+) currents, we found that without Stac3 the auxiliary γ1 subunit also supported membrane expression of CaV1.11a/α2-δ1, but that this combination generated only tiny Ca(2+) currents. In Stac3 KO myotubes, there was reduced, but still substantial CaV1.1 in the plasma membrane. However, the CaV1.1 remaining in Stac3 KO myotubes did not generate appreciable Ca(2+) currents or EC coupling Ca(2+) release. Expression of WT Stac3 in Stac3 KO myotubes fully restored Ca(2+) currents and EC coupling Ca(2+) release, whereas expression of Stac3W280S (containing the Native American myopathy mutation) partially restored Ca(2+) currents but only marginally restored EC coupling. We conclude that membrane trafficking of CaV1.1 is facilitated by, but does not require, Stac3, and that Stac3 is directly involved in conformational coupling between CaV1.1 and RyR1.

  17. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  18. EPICS release 3.11.6 specific documentation -- Release notes for EPICS 3.11.6

    International Nuclear Information System (INIS)

    1994-01-01

    These notes cover the following: (1) directions for switching to production APS release R3.11.6; (2) unbundling of channel access clients; (3) access security; (4) channel access additions; synchronous time support; and (5) description of major differences between R3.11.3 and R3.11.6 Also included is a list of new and/or updated documentation for the program

  19. Choline Modulation of the Aβ P1-40 Channel Reconstituted into a Model Lipid Membrane

    Directory of Open Access Journals (Sweden)

    Daniela Meleleo

    2010-01-01

    Full Text Available Nicotinic acetylcholine receptors (AChRs, implicated in memory and learning, in subjects affected by Alzheimer's disease result altered. Stimulation of α7-nAChRs inhibits amyloid plaques and increases ACh release. β-amyloid peptide (AβP forms ion channels in the cell and model phospholipid membranes that are retained responsible in Alzheimer disease. We tested if choline, precursor of ACh, could affect the AβP1-40 channels in oxidized cholesterol (OxCh and in palmitoyl-oleoyl-phosphatidylcholine (POPC:Ch lipid bilayers. Choline concentrations of 5 × 10−11 M–1.5 × 10−8 M added to the cis- or trans-side of membrane quickly increased AβP1-40 ion channel frequency (events/min and ion conductance in OxCh membranes, but not in POPC:Ch membranes. Circular Dichroism (CD spectroscopy shows that after 24 and 48 hours of incubation with AβP1-40, choline stabilizes the random coil conformation of the peptide, making it less prone to fibrillate. These actions seem to be specific in that ACh is ineffective either in solution or on AβP1-40 channel incorporated into PLMs.

  20. Insulin-releasing action of the novel antidiabetic agent BTS 67 582.

    Science.gov (United States)

    McClenaghan, N H; Flatt, P R; Bailey, C J

    1998-02-01

    1. BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl)guanidine fumarate) is a novel antidiabetic agent with a short-acting insulin-releasing effect. This study examined its mode of action in the clonal B-cell line BRIN-BD11. 2. BTS 67582 increased insulin release from BRIN-BD11 cells in a concentration-dependent manner (10[-8] to 10[-4] M) at both non-stimulating (1.1 mM) and stimulating (16.7 mM) concentrations of glucose. 3. BTS 67582 (10[-4] M) potentiated the insulin-releasing effect of a depolarizing concentration of K+ (30 mM), whereas the K+ channel openers pinacidil (400 microM) and diazoxide (300 microM) inhibited BTS 67582-induced release. 4. Suppression of Ca+ channel activity with verapamil (20 microM) reduced the insulin-releasing effect of BTS 67582 (10[-4] M). 5. BTS 67582 (10[-4] M) potentiated insulin release induced by amino acids (10 mM), and enhanced the combined stimulant effects of glucose plus either the fatty acid palmitate (10 mM), or agents which raise intracellular cyclic AMP concentrations (25 microM forskolin and 1 mM isobutylmethylxanthine), or the cholinoceptor agonist carbachol (100 microM). 6. Inhibition of glucose-stimulated insulin release by adrenaline or noradrenaline (10 microM) was partially reversed by BTS 67582 (10[-4] M). 7. These data suggest that the insulin-releasing effect of BTS 67582 involves regulation of ATP-sensitive K+ channel activity and Ca2+ influx, and that the drug augments the stimulant effects of nutrient insulin secretagogues and agents which enhance adenylate cyclase and phospholipase C. BTS 67582 may also exert insulin-releasing effects independently of ATP-sensitive K+ channel activity.

  1. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    Science.gov (United States)

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  2. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    International Nuclear Information System (INIS)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-01-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion–reaction equations presented by Izu et al (2001 Biophys. J. 80 103–20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca 2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca 2+ leak in the form of Ca 2+ quarks, increase the probability of occurrence of spontaneous Ca 2+ waves even with smaller SR Ca 2+ stores, accelerate Ca 2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca 2+ wave model under HF conditions provides a new view of Ca 2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca 2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF

  3. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure

    Science.gov (United States)

    Lu, Luyao; Xia, Ling; Ye, Xuesong; Cheng, Heping

    2010-06-01

    Calcium homeostasis is considered to be one of the most important factors for the contraction and relaxation of the heart muscle. However, under some pathological conditions, such as heart failure (HF), calcium homeostasis is disordered, and spontaneous waves may occur. In this study, we developed a mathematical model of formation and propagation of a calcium wave based upon a governing system of diffusion-reaction equations presented by Izu et al (2001 Biophys. J. 80 103-20) and integrated non-clustered or 'rogue' ryanodine receptors (rogue RyRs) into a two-dimensional (2D) model of ventricular myocytes isolated from failing hearts in which sarcoplasmic reticulum (SR) Ca2+ pools are partially unloaded. The model was then used to simulate the effect of rogue RyRs on initiation and propagation of the calcium wave in ventricular myocytes with HF. Our simulation results show that rogue RyRs can amplify the diastolic SR Ca2+ leak in the form of Ca2+ quarks, increase the probability of occurrence of spontaneous Ca2+ waves even with smaller SR Ca2+ stores, accelerate Ca2+ wave propagation, and hence lead to delayed afterdepolarizations (DADs) and cardiac arrhythmia in the diseased heart. This investigation suggests that incorporating rogue RyRs in the Ca2+ wave model under HF conditions provides a new view of Ca2+ dynamics that could not be mimicked by adjusting traditional parameters involved in Ca2+ release units and other ion channels, and contributes to understanding the underlying mechanism of HF.

  4. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  5. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  6. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  7. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    Full Text Available The discovery that nitric oxide (NO functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated.The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated.Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  8. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghui; Zhang, Wei K.; Benvin, Nicole M.; Zhou, Xiaoyuan; Su, Deyuan; Li, Huan; Wang, Shu; Michailidis, Ioannis E.; Tong, Liang; Li, Xueming; Yang, Jian

    2017-01-23

    The activities of organellar ion channels are often regulated by Ca2+ and H+, which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca2+/pH regulation of TRPML1, a Ca2+-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EM analyses confirmed that this architecture occurs in the full-length channel. Structure–function studies demonstrated that Ca2+ and H+ interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.

  9. Differential sensitivity to perchlorate and caffeine of tetracaine-resistant Ca2+ release in frog skeletal muscle.

    Science.gov (United States)

    Píriz, Nazira; Brum, Gustavo; Pizarro, Gonzalo

    2006-01-01

    In voltage clamped frog skeletal muscle fibres 0.2 mM tetracaine strongly suppresses Ca(2+) release. After this treatment Ca(2+) release flux lacks its characteristic initial peak and the remaining steady component is strongly reduced when compared with the control condition. We studied the effect of two agonists of Ca(2+) release on these tetracaine treated fibres. 8 mM ClO(4)(-) added after tetracaine potentiated release flux from 0.11 +/- 0.03 mM s(-1) to 0.34 +/- 0.07 mM s(-1) (n = 6) although without recovery of the peak at any test voltage. The voltage dependence of the increased release was shifted towards more negative potentials (approximately -10 mV). The effects of ClO(4)(-) on charge movement under these conditions showed the previously described characteristic changes consisting in a left shift of its voltage dependence (approximately -9 mV) together with a slower kinetics, both at the ON and OFF transients. Caffeine at 0.5 mM in the presence of the same concentration of tetracaine failed to potentiate release flux independently of the test voltage applied. When the cut ends of the fibre were exposed to a 10 mM BAPTA intracellular solution, in the absence of tetracaine, the peak was progressively abolished. Under these conditions caffeine potentiated release restoring the peak (from 0.63 +/- 0.12 mM s(-1) to 1.82 +/- 0.23 mM s(-1)) with no effect on charge movement. Taken together the present results suggest that tetracaine is blocking a Ca(2+) sensitive component of release flux. It is speculated that the suppressed release includes a component that is dependent on Ca(2+) and mainly mediated by the activation of the beta ryanodine receptors (the RyR3 equivalent isoform). These receptors are located parajunctionally in the frog and are not interacting with the dihydropyridine receptor.

  10. Cell volume changes regulate slick (Slo2.1, but not slack (Slo2.2 K+ channels.

    Directory of Open Access Journals (Sweden)

    Maria A Tejada

    Full Text Available Slick (Slo2.1 and Slack (Slo2.2 channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control by cell swelling and inhibited (57% of control by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  11. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer's disease cells

    Science.gov (United States)

    Wei, Fang; Li, Xiang; Cai, Meichun; Liu, Yanping; Jung, Peter; Shuai, Jianwei

    2017-06-01

    In neurons of patients with Alzheimer's disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer's disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

  12. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension

    KAUST Repository

    Gordienko, Dmitri V.; Povstyan, Oleksandr V.; Sukhanova, Khrystyna Yu; Raphaë l, Maylis; Harhun, Maksym I.; Dyskina, Yulia; Lehen'Kyi, V'Yacheslav; Jama, Abdirahman Mahmoud; Lu, Zhiliang; Skryma, Roman N.; Prevarskaya, Natalia B.

    2014-01-01

    Aims P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. Methods and results We compared the expression of pertinent genes and P2XR-linked Ca2+ entry and Ca2+ release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca2+ entry and Ca2+ release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca2+ load. The SR Ca2+ load reduction is caused by attenuated Ca2+ uptake via down-regulated sarco-/endoplasmic reticulum Ca2+-ATPase 2b and elevated Ca2+ leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca2+-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. Conclusions Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.

  13. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension

    KAUST Repository

    Gordienko, Dmitri V.

    2014-12-16

    Aims P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. Methods and results We compared the expression of pertinent genes and P2XR-linked Ca2+ entry and Ca2+ release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca2+ entry and Ca2+ release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca2+ load. The SR Ca2+ load reduction is caused by attenuated Ca2+ uptake via down-regulated sarco-/endoplasmic reticulum Ca2+-ATPase 2b and elevated Ca2+ leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca2+-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. Conclusions Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.

  14. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  15. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes Na(V)1.9, Na(V)1.7 and Na(V)1.1

    Czech Academy of Sciences Publication Activity Database

    Touška, Filip; Sattler, S.; Malsch, P.; Lewis, R. J.; Reeh, P. W.; Zimmermann, K.

    2017-01-01

    Roč. 15, č. 9 (2017), č. článku 269. ISSN 1660-3397 Institutional support: RVO:67985823 Keywords : voltage-gated calcium channels * calcitonin-gene related peptide * tetrodotoxin * TTX * P-CTX-1 * TRPA1 * TRPC5 * neuropathic pain * neurogenic inflammation Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.503, year: 2016

  16. Intercellular odontoblast communication via ATP mediated by pannexin-1 channel and phospholipase C-coupled receptor activation.

    Directory of Open Access Journals (Sweden)

    Masaki eSato

    2015-11-01

    Full Text Available Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected form rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s, we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca2+ concentration ([Ca2+]i by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca2+]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca2+]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca2+]i in a stimulated human embryo kidney (HEK 293 cell, but not in nearby HEK293 cells. The increase in [Ca2+]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP release channel (pannexin-1 inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC inhibitor, the increase in [Ca2+]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated

  17. A Thapsigargin-Resistant Intracellular Calcium Sequestering Compartment in Rat Brain

    Science.gov (United States)

    2000-03-31

    have a major impact on neuronal intracellular signaling. Most of the ER in neurons and glia appears to accumulate calcium by energy driven ion pumps...secretion of exocrine, endocrine, and neurocrine products, regulation of glycogenolysis and gluconeogenesis , intracellular transport, secretion of fluids...the RyRs [140]. Furthermore, the intracellular expression of these receptor-channels in neuronal ER is also reciprocal with RyRs located primarily in

  18. A quantized mechanism for activation of pannexin channels

    Science.gov (United States)

    Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2017-01-01

    Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257

  19. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2017-08-01

    Full Text Available Microparticles (MPs are cell-cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17 creates transverse-tubule (t-tubule membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA, and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT-III subunit charged multivesicular body protein 4B (CHMP4B colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily

  20. The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles.

    Science.gov (United States)

    Xu, Bing; Fu, Ying; Liu, Yan; Agvanian, Sosse; Wirka, Robert C; Baum, Rachel; Zhou, Kang; Shaw, Robin M; Hong, TingTing

    2017-08-01

    Microparticles (MPs) are cell-cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17) creates transverse-tubule (t-tubule) membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA), and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT)-III subunit charged multivesicular body protein 4B (CHMP4B) colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR) domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily to the ESCRT

  1. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  2. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  3. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  4. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Science.gov (United States)

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  5. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  6. Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres. PMID:19917569

  7. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type Ca(V)1.3 Ca(2+) channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca(2+) channels in immature mouse IHCs under near-physiological recording conditions. Ca(V)1.3 Ca(2+) channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about 70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca(2+) action potential activity characteristic of these immature cells. The Ca(V)1.3 Ca(2+) channels showed a very low open probability (about 0.15 at 20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca(2+) currents indicated that very few Ca(2+) channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca(2+) channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca(2+) channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.

  8. Burst activity and ultrafast activation kinetics of CaV1.3 Ca²⁺ channels support presynaptic activity in adult gerbil hair cell ribbon synapses.

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Knipper, Marlies; Holley, Matthew C; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2013-08-15

    Auditory information transfer to afferent neurons relies on precise triggering of neurotransmitter release at the inner hair cell (IHC) ribbon synapses by Ca²⁺ entry through CaV1.3 Ca²⁺ channels. Despite the crucial role of CaV1.3 Ca²⁺ channels in governing synaptic vesicle fusion, their elementary properties in adult mammals remain unknown. Using near-physiological recording conditions we investigated Ca²⁺ channel activity in adult gerbil IHCs. We found that Ca²⁺ channels are partially active at the IHC resting membrane potential (-60 mV). At -20 mV, the large majority (>70%) of Ca²⁺ channel first openings occurred with an estimated delay of about 50 μs in physiological conditions, with a mean open time of 0.5 ms. Similar to other ribbon synapses, Ca²⁺ channels in IHCs showed a low mean open probability (0.21 at -20 mV), but this increased significantly (up to 0.91) when Ca²⁺ channel activity switched to a bursting modality. We propose that IHC Ca²⁺ channels are sufficiently rapid to transmit fast signals of sound onset and support phase-locking. Short-latency Ca²⁺ channel opening coupled to multivesicular release would ensure precise and reliable signal transmission at the IHC ribbon synapse.

  9. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    Science.gov (United States)

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  10. Animal Ca2+ release-activated Ca2+ (CRAC channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators

    Directory of Open Access Journals (Sweden)

    Tamang Dorjee G

    2010-06-01

    Full Text Available Abstract Background Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC channels, promoting an immune response to pathogens. Defects in a CRAC (Orai channel in humans gives rise to the hereditary Severe Combined Immune Deficiency (SCID syndrome. We here report results that define the evolutionary relationship of the CRAC channel proteins of animals, and the ubiquitous Cation Diffusion Facilitator (CDF carrier proteins. Findings CDF antiporters derived from a primordial 2 transmembrane spanner (TMS hairpin structure by intragenic triplication to yield 6 TMS proteins. Four programs (IC/GAP, GGSEARCH, HMMER and SAM were evaluated for identifying sequence similarity and establishing homology using statistical means. Overall, the order of sensitivity (similarity detection was IC/GAP = GGSEARCH > HMMER > SAM, but the use of all four programs was superior to the use of any two or three of them. Members of the CDF family appeared to be homologous to members of the 4 TMS Orai channel proteins. Conclusions CRAC channels derived from CDF carriers by loss of the first two TMSs of the latter. Based on statistical analyses with multiple programs, TMSs 3-6 in CDF carriers are homologous to TMSs 1-4 in CRAC channels, and the former was the precursor of the latter. This is an unusual example of how a functionally and structurally more complex protein may have predated a simpler one.

  11. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    ‐mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization‐evoked transients in a pertussis‐toxin sensitive manner, indicating a Gi/o protein‐dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R‐knockout animals, depolarization‐evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild‐type mice. Our results show that CB1R‐mediated signalling exerts both a constitutive and an agonist‐mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs. PMID:27641745

  12. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle.

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver; Csernoch, László

    2016-12-15

    + transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a G i/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca 2+ transients, as well qas Ca 2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca 2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca 2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca 2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Skeletal muscle excitation-contraction coupling: who are the dancing partners?

    Science.gov (United States)

    Rebbeck, Robyn T; Karunasekara, Yamuna; Board, Philip G; Beard, Nicole A; Casarotto, Marco G; Dulhunty, Angela F

    2014-03-01

    There is an overwhelming body of work supporting the idea that excitation-contraction coupling in skeletal muscle depends on a physical interaction between the skeletal muscle isoform of the dihydropyridine receptor L-type Ca(2+) channel and the skeletal isoform of the ryanodine receptor Ca(2+) release channel. A general assumption is that this physical interaction is between "critical" residues that have been identified in the II-III loop of the dihydropyridine receptor alpha subunit and the ryanodine receptor. However, despite extensive searches, the complementary "critical" residues in the ryanodine receptor have not been identified. This raises the possibility that the coupling proceeds either through other subunits of the dihydropyridine receptor and/or other co-proteins within the large RyR1 protein complex. There have been some remarkable advances in recent years in identifying proteins in the RyR complex that impact on the coupling process, and these are considered in this review. A major candidate for a role in the coupling mechanism is the beta subunit of the dihydropyridine receptor, because specific residues in both the beta subunit and ryanodine receptor have been identified that facilitate an interaction between the two proteins and these also impact on excitation-contraction coupling. This role of beta subunit remains to be fully investigated as well as the degree to which it may complement any other direct or indirect voltage-dependent coupling interactions between the DHPR alpha II-III loop and the ryanodine receptor. Copyright © 2014. Published by Elsevier Ltd.

  14. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H1 and H2 receptors, Na+ -permeable cation channels, and inward rectifier K+ channels.

    Science.gov (United States)

    Cilz, Nicholas I; Lei, Saobo

    2017-05-01

    In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H 1 , H 2 , and H 3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC 50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca 2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H 1 and H 2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H 1 and H 2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na + -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K + channel, although HA also inhibited the delayed rectifier K + channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  16. The Breakdown: Hillslope Sources of Channel Blocks in Bedrock Landscapes

    Science.gov (United States)

    Selander, B.; Anderson, S. P.; Rossi, M.

    2017-12-01

    Block delivery from hillslopes is a poorly understood process that influences bedrock channel incision rates and shapes steep terrain. Previous studies demonstrate that hillslope sediment delivery rate and grain size increases with channel downcutting rate or fracture density (Attal et al., 2015, ESurf). However, blocks that exceed the competence of the channel can inhibit incision. In Boulder Creek, a bedrock channel in the Colorado Front Range, large boulders (>1 m diameter) are most numerous in the steepest channel reaches; their distribution seems to reflect autogenic channel-hillslope feedback between incision rate and block delivery (Shobe et al., 2016, GRL). It is clear that the processes, rates of production, and delivery of large blocks from hillslopes into channels are critical to our understanding of steep terrain evolution. Fundamental questions are 1) whether block production or block delivery is rate limiting, 2) what mechanisms release blocks, and 3) how block production and transport affect slope morphology. As a first step, we map rock outcrops on the granodiorite hillslopes lining Boulder Creek within Boulder Canyon using a high resolution DEM. Our algorithm uses high ranges of curvature values in conjunction with slopes steeper than the angle of repose to quickly identify rock outcrops. We field verified mapped outcrop and sediment-mantled locations on hillslopes above and below the channel knickzone. We find a greater abundance of exposed rock outcrops on steeper hillslopes in Boulder Canyon. Additionally, we find that channel reaches with large in-channel blocks are located at the base of hillslopes with large areas of exposed bedrock, while reaches lacking large in-channel blocks tend to be at the base of predominately soil mantled and forested hillslopes. These observations support the model of block delivery and channel incision of Shobe et al. (2016, GRL). Moreover, these results highlight the conundrum of how rapid channel incision is

  17. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.

    Science.gov (United States)

    Körner, Jannis; Meents, Jannis; Machtens, Jan-Philipp; Lampert, Angelika

    2018-06-01

    The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be

  18. Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Shin

    2018-04-01

    Full Text Available Background: Extended endoplasmic reticulum (ER stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. Methods: The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Results: Compound K-induced ER stress was confirmed through increased phosphorylation of eIF2α and protein levels of GRP78/BiP, XBP-1S, and IRE1α in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular Ca2+ chelator or dantrolene (an RyR channel antagonist. These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12 partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor dramatically improved the compound K-induced apoptosis. Conclusion: Cell survival and intracellular Ca2+ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway. Keywords: apoptosis, calcium, compound K, ER stress, lung cancer cells

  19. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  20. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  1. A model of cardiac ryanodine receptor gating predicts experimental Ca2+-dynamics and Ca2+-triggered arrhythmia in the long QT syndrome

    Science.gov (United States)

    Wilson, Dan; Ermentrout, Bard; Němec, Jan; Salama, Guy

    2017-09-01

    Abnormal Ca2+ handling is well-established as the trigger of cardiac arrhythmia in catecholaminergic polymorphic ventricular tachycardia and digoxin toxicity, but its role remains controversial in Torsade de Pointes (TdP), the arrhythmia associated with the long QT syndrome (LQTS). Recent experimental results show that early afterdepolarizations (EADs) that initiate TdP are caused by spontaneous (non-voltage-triggered) Ca2+ release from Ca2+-overloaded sarcoplasmic reticulum (SR) rather than the activation of the L-type Ca2+-channel window current. In bradycardia and long QT type 2 (LQT2), a second, non-voltage triggered cytosolic Ca2+ elevation increases gradually in amplitude, occurs before overt voltage instability, and then precedes the rise of EADs. Here, we used a modified Shannon-Puglisi-Bers model of rabbit ventricular myocytes to reproduce experimental Ca2+ dynamics in bradycardia and LQT2. Abnormal systolic Ca2+-oscillations and EADs caused by SR Ca2+-release are reproduced in a modified 0-dimensional model, where 3 gates in series control the ryanodine receptor (RyR2) conductance. Two gates control RyR2 activation and inactivation and sense cytosolic Ca2+ while a third gate senses luminal junctional SR Ca2+. The model predicts EADs in bradycardia and low extracellular [K+] and cessation of SR Ca2+-release terminate salvos of EADs. Ca2+-waves, systolic cell-synchronous Ca2+-release, and multifocal diastolic Ca2+ release seen in subcellular Ca2+-mapping experiments are observed in the 2-dimensional version of the model. These results support the role of SR Ca2+-overload, abnormal SR Ca2+-release, and the subsequent activation of the electrogenic Na+/Ca2+-exchanger as the mechanism of TdP. The model offers new insights into the genesis of cardiac arrhythmia and new therapeutic strategies.

  2. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    Science.gov (United States)

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of tetracaine on insulin release and calcium handling by rat pancreatic islets

    International Nuclear Information System (INIS)

    Abdel El Motal, S.M.A.; Pian-Smith, M.C.M.; Sharp, G.W.G.

    1987-01-01

    The effects of tetracaine on insulin release and 45 Ca 2+ handling by rat pancreatic islets have been studied under basal, glucose-stimulated, and 3-isobutyl-1-methylxanthine (IBMX)-stimulated conditions. Islets were isolated by the use of collagenase and used either directly (freshly isolated islets) or after a period under tissue culture conditions. Tetracaine was found to stimulate insulin release under basal conditions, to inhibit glucose-stimulated insulin release, and to potentiate insulin release stimulated by IBMX. In studies on the mechanisms underlying these effects, tetracaine was found to decrease glucose-stimulated net retention of 45 Ca 2+ (by an action to block the voltage-dependent Ca channels) and to mobilize Ca 2+ from intracellular stores. These two actions form the basis for the inhibition of glucose-stimulated insulin release, which depends heavily on Ca 2+ entry via the voltage-dependent channels and the synergism with IBMX to potentiate release. No inhibition of IBMX-stimulated release occurs because IBMX does not use the voltage-dependent channels to raise intracellular Ca 2+

  4. Altered Elementary Calcium Release Events and Enhanced Calcium Release by Thymol in Rat Skeletal Muscle

    OpenAIRE

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-01-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine bind...

  5. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    OpenAIRE

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitu...

  6. Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles.

    Science.gov (United States)

    Ding, Qiang; Heller, Brigitte; Capuccino, Juan M V; Song, Bokai; Nimgaonkar, Ila; Hrebikova, Gabriela; Contreras, Jorge E; Ploss, Alexander

    2017-01-31

    Hepatitis E virus (HEV) is the leading cause of enterically transmitted viral hepatitis globally. Of HEV's three ORFs, the function of ORF3 has remained elusive. Here, we demonstrate that via homophilic interactions ORF3 forms multimeric complexes associated with intracellular endoplasmic reticulum (ER)-derived membranes. HEV ORF3 shares several structural features with class I viroporins, and the function of HEV ORF3 can be maintained by replacing it with the well-characterized viroporin influenza A virus (IAV) matrix-2 protein. ORF3's ion channel function is further evidenced by its ability to mediate ionic currents when expressed in Xenopus laevis oocytes. Furthermore, we identified several positions in ORF3 critical for its formation of multimeric complexes, ion channel activity, and, ultimately, release of infectious particles. Collectively, our data demonstrate a previously undescribed function of HEV ORF3 as a viroporin, which may serve as an attractive target in developing direct-acting antivirals.

  7. KCNE1 constrains the voltage sensor of Kv7.1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Liora Shamgar

    Full Text Available Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+ channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K(+ channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions.

  8. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  9. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    Science.gov (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  10. SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5

    Directory of Open Access Journals (Sweden)

    Musaab Ahmed

    2016-01-01

    Full Text Available Background: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5. The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. Methods: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. Results: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. Conclusion: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.

  11. Intracellular sphingosine releases calcium from lysosomes.

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  12. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Lewis; Dobler, Markus R.; Radetich, Branko; Zhu, Yanyi; Atadja, Peter W.; Claiborne, Tavina; Grob, Jonathan E.; McRiner, Andrew; Pancost, Margaret R.; Patnaik, Anup; Shao, Wenlin; Shultz, Michael; Tichkule, Ritesh; Tommasi, Ruben A.; Vash, Brian; Wang, Ping; Stams, Travis (Novartis)

    2013-11-20

    Herein we report the discovery of a family of novel yet simple, amino-acid derived class I HDAC inhibitors that demonstrate isoform selectivity via access to the internal acetate release channel. Isoform selectivity criteria is discussed on the basis of X-ray crystallography and molecular modeling of these novel inhibitors bound to HDAC8, potentially revealing insights into the mechanism of enzymatic function through novel structural features revealed at the atomic level.

  13. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  14. Localization of Rod Bipolar Cells in the Mammalian Retina Using an Antibody Against the α1c L-type Ca2+ Channel

    International Nuclear Information System (INIS)

    Huh, Yu-Jin; Choi, Jae-Sik; Jeon, Chang-Jin

    2015-01-01

    Bipolar cells transmit stimuli via graded changes in membrane potential and neurotransmitter release is modulated by Ca 2+ influx through L-type Ca 2+ channels. The purpose of this study was to determine whether the α 1 c subunit of L-type voltage-gated Ca 2+ channel1 c L-type Ca 2+ channel) colocalizes with protein kinase C alpha (PKC-α), which labels rod bipolar cells. Retinal whole mounts and vertical sections from mouse, hamster, rabbit, and dog were immunolabeled with antibodies against PKC-α and α 1 c L-type Ca 2+ channel, using fluorescein isothiocyanate (FITC) and Cy5 as visualizing agents. PKC-α-immunoreactive cells were morphologically identical to rod bipolar cells as previously reported. Their cell bodies were located within the inner nuclear layer, dendritic processes branched into the outer plexiform layer, and axons extended into the inner plexiform layer. Immunostaining showed that α 1 c L-type Ca 2+ channel colocalized with PKC-α in rod bipolar cells. The identical expression of PKC-α and α 1 c L-type Ca 2+ channel indicates that the α 1 c L-type Ca 2+ channel has a specific role in rod bipolar cells, and the antibody against the α 1 c L-type Ca 2+ channel may be a useful marker for studying the distribution of rod bipolar cells in mouse, hamster, rabbit, and dog retinas

  15. Study of the Effects of Monacolin K and Other Constituents of Red Yeast Rice on Obesity, Insulin-Resistance, Hyperlipidemia, and Nonalcoholic Steatohepatitis Using a Mouse Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Makoto Fujimoto

    2012-01-01

    Full Text Available Purpose. Nonalcoholic fatty liver disease (NAFLD is a progressive and intractable disease associated with metabolic syndrome. Red yeast rice (RYR contains monacolin K, a potent inhibitor of HMG-CoA reductase, and its consumption decreases cholesterol and triglyceride levels. We examined the efficacy of RYR constituents using a novel metabolic syndrome-NAFLD mouse model (MSG mice. Methods. Two types of RYR grown under different culture conditions were used. 1P-DU contained only 0.002 g/100 g of monacolin K, whereas 3P-D1 contained 0.131 g/100 g. MSG mice were divided into three groups: control (C group fed standard food, RYR-C group fed standard food with 1% 1P-DU, and RYR-M group fed standard food with 1% 3P-D1. Mice were examined from 12 to 24 weeks of age. Results. Serum insulin, leptin, and liver damage as well as macrophage aggregation in visceral fat in RYR-C and RYR-M groups were lower than those in C group. The serum adiponectin levels in RYR-C group were significantly higher than those in RYR-M and C groups. Conclusions. RYR was effective against obesity-related inflammation, insulin resistance, and NAFLD in MSG mice irrespective of monacolin K levels. GABA and various peptides produced during fermentation were determined as the active constituents of RYR.

  16. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1.

    Directory of Open Access Journals (Sweden)

    Suseno Amien

    2010-06-01

    Full Text Available In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K(+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K(+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K(+ influx. We further suggest that K(+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization

  17. Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1

    Science.gov (United States)

    Márton, Mihaela L.; Debener, Thomas; Geiger, Dietmar; Becker, Dirk; Dresselhaus, Thomas

    2010-01-01

    In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a

  18. Radioactivity of French coast of the Channel due to the release of technectium 99 and iodine 129: modelisation and measurements

    International Nuclear Information System (INIS)

    Robeau, D.; Patti, F.; Charmasson, S.

    1988-01-01

    Radioactive releases of Iodine 129 are controlled by measurements of the radioactivity in the liquid effluents before it is released in to the sea from the outlet of the reprocessing plant of La Hague. The effects on the marine environment are examined by a radioactive survey of Technecium 99 and Iodine 129 in Fucus (common seaweed). This radioactivity is measured along the north coast of France from Roscoff in the west of Brittany to Wimereux close to the Belgian frontier. The theoretical study of dispersion of radionuclides in the Channel has permitted a simulation model of the transfer of pollutants and particularly Technecium 99 and Iodine 129 to be formulated. (author)

  19. KCNQ1 channels sense small changes in cell volume

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; MacAulay, Nanna

    2003-01-01

    Many important physiological processes involve changes in cell volume, e.g. the transport of salt and water in epithelial cells and the contraction of cardiomyocytes. In this study, we show that voltage-gated KCNQ1 channels, which are strongly expressed in epithelial cells or cardiomyocytes......, and KCNQ4 channels, expressed in hair cells and the auditory tract, are tightly regulated by small cell volume changes when co-expressed with aquaporin 1 water-channels (AQP1) in Xenopus oocytes. The KCNQ1 and KCNQ4 current amplitudes precisely reflect the volume of the oocytes. By contrast, the related...... KCNQ2 and KCNQ3 channels, which are prominently expressed in neurons, are insensitive to cell volume changes. The sensitivity of the KCNQ1 and KCNQ4 channels to cell volume changes is independent of the presence of the auxiliary KCNE1-3 subunits, although modulated by KCNE1 in the case of KCNQ1...

  20. Towards an integrative computational model of the guinea pig cardiac myocyte

    Directory of Open Access Journals (Sweden)

    Laura Doyle Gauthier

    2012-07-01

    Full Text Available The local control theory of excitation-contraction (EC coupling asserts that regulation of calcium (Ca2+ release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs trigger openings of small clusters of ryanodine receptors (RyRs co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, it’s functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically-based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally-observed causal relationship between action potential (AP shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue-level electro-mechanical function.

  1. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    Science.gov (United States)

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  2. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    International Nuclear Information System (INIS)

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-01-01

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na + -channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  3. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  4. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    International Nuclear Information System (INIS)

    Gao, Lin; Sun, Jihong; Zhang, Li; Wang, Jinpeng; Ren, Bo

    2012-01-01

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N 2 adsorption–desorption isotherms, thermogravimetric analyses, solid-state 29 Si NMR spectra, elemental analysis, and UV–vis spectra. Meanwhile, the Korsmeyer–Peppas equation f t = kt n was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer–Peppas equation was around 4.10. Highlights: ► BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. ► Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. ► BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  5. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  6. Differential regulation of proton-sensitive ion channels by phospholipids: a comparative study between ASICs and TRPV1.

    Directory of Open Access Journals (Sweden)

    Hae-Jin Kweon

    Full Text Available Protons are released in pain-generating pathological conditions such as inflammation, ischemic stroke, infection, and cancer. During normal synaptic activities, protons are thought to play a role in neurotransmission processes. Acid-sensing ion channels (ASICs are typical proton sensors in the central nervous system (CNS and the peripheral nervous system (PNS. In addition to ASICs, capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1 channels can also mediate proton-mediated pain signaling. In spite of their importance in perception of pH fluctuations, the regulatory mechanisms of these proton-sensitive ion channels still need to be further investigated. Here, we compared regulation of ASICs and TRPV1 by membrane phosphoinositides, which are general cofactors of many receptors and ion channels. We observed that ASICs do not require membrane phosphatidylinositol 4-phosphate (PI(4P or phosphatidylinositol 4,5-bisphosphate (PI(4,5P2 for their function. However, TRPV1 currents were inhibited by simultaneous breakdown of PI(4P and PI(4,5P2. By using a novel chimeric protein, CF-PTEN, that can specifically dephosphorylate at the D3 position of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3, we also observed that neither ASICs nor TRPV1 activities were altered by depletion of PI(3,4,5P3 in intact cells. Finally, we compared the effects of arachidonic acid (AA on two proton-sensitive ion channels. We observed that AA potentiates the currents of both ASICs and TRPV1, but that they have different recovery aspects. In conclusion, ASICs and TRPV1 have different sensitivities toward membrane phospholipids, such as PI(4P, PI(4,5P2, and AA, although they have common roles as proton sensors. Further investigation about the complementary roles and respective contributions of ASICs and TRPV1 in proton-mediated signaling is necessary.

  7. Characteristics of inositol trisphosphate mediated Ca2+ release from permeabilized hepatocytes

    International Nuclear Information System (INIS)

    Joseph, S.K.; Williamson, J.R.

    1986-01-01

    Ca 2+ release triggered by inositol trisphosphate (IP 3 ) has been measured in saponin-permeabilized hepatocytes with 45 Ca 2+ or Quin 2. The initial rate of Ca 2+ release was not markedly affected by the incubation temperature (175 +/- 40 pmol/s/mg at 30 0 C versus 133 +/- 24 pmol/s/mg at 4 0 C). This result is consistent with the membrane translocation of Ca 2+ occurring through an ion-channel rather than an ion-carrier. The amount of Ca 2+ released by IP 3 was not affected by pH (6.5-8.0) or by compounds that inhibit voltage-gated Ca 2+ channels. La 3+ (100 μM) markedly inhibits the effect of 1 μM IP 3 . The possibility that La 3+ chelates IP 3 cannot be excluded since the effect of La 3+ can be overcome by increasing the IP 3 concentration. IP 3 -mediated Ca 2+ release displays a requirement for a permeant cation in the incubation medium. Optimal release is observed with K + gluconate. Other monovalent cations, with the exception of Li + , can substitute for K + . Permeant anions, at concentrations above 40 mM, inhibit Ca 2+ release produced by IP 3 . Cl - , Br - , I - , and SO 4 2- were equally effective. Ca 2+ release was not inhibited by DIDS or Furosemide. 85 Sr 2+ and 54 Mn 2+ fluxes were also stimulated by IP 3 . These results suggest that IP 3 acts to gate a divalent cation channel. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membrane

  8. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    Science.gov (United States)

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. The Hv1 proton channel responds to mechanical stimuli.

    Science.gov (United States)

    Pathak, Medha M; Tran, Truc; Hong, Liang; Joós, Béla; Morris, Catherine E; Tombola, Francesco

    2016-11-01

    The voltage-gated proton channel, Hv1, is expressed in tissues throughout the body and plays important roles in pH homeostasis and regulation of NADPH oxidase. Hv1 operates in membrane compartments that experience strong mechanical forces under physiological or pathological conditions. In microglia, for example, Hv1 activity is potentiated by cell swelling and causes an increase in brain damage after stroke. The channel complex consists of two proton-permeable voltage-sensing domains (VSDs) linked by a cytoplasmic coiled-coil domain. Here, we report that these VSDs directly respond to mechanical stimuli. We find that membrane stretch facilitates Hv1 channel opening by increasing the rate of activation and shifting the steady-state activation curve to less depolarized potentials. In the presence of a transmembrane pH gradient, membrane stretch alone opens the channel without the need for strong depolarizations. The effect of membrane stretch persists for several minutes after the mechanical stimulus is turned off, suggesting that the channel switches to a "facilitated" mode in which opening occurs more readily and then slowly reverts to the normal mode observed in the absence of membrane stretch. Conductance simulations with a six-state model recapitulate all the features of the channel's response to mechanical stimulation. Hv1 mechanosensitivity thus provides a mechanistic link between channel activation in microglia and brain damage after stroke. © 2016 Pathak et al.

  10. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  11. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    International Nuclear Information System (INIS)

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-01-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K + channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca 2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] C ), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na + /Ca 2+ exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca 2+ entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did

  12. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan (China); Lu, Cheng-Wei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Wang, Chia-Chuan; Lu, Jyh-Feng [School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China)

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  13. Calcium homeostasis in myogenic differentiation factor 1 (MyoD-transformed, virally-transduced, skin-derived equine myotubes.

    Directory of Open Access Journals (Sweden)

    Marta Fernandez-Fuente

    Full Text Available Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1 mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1 transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

  14. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  15. Release Notes for Whisper-1.1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-27

    Whisper is a statistical analysis package developed in 2014 to support nuclear criticality safety (NCS) validation [1-3]. It uses the sensitivity profile data for an application as computed by MCNP6 [4-6] along with covariance files [7,8] for the nuclear data to determine a baseline upper-subcritical-limit (USL) for the application. Whisper version 1.0 was first developed and used at LANL in 2014 [3]. During 2015-2016, Whisper was updated to version 1.1 [9] and is to be included with the upcoming release of MCNP6.2. This document describes the Whisper-1.1 package that will be included with the MCNP6.2 release during 2017. Specific details are provided on the computer systems supported, the software quality assurance (SQA) procedures, installation, and testing. This document does not address other important topics, such as the importance of sensitivity-uncertainty (SU) methods to NCS validation, the theory underlying SU methodology, tutorials on the usage of MCNP-Whisper, practical approaches to using SU methodology to support and extend traditional validation, etc. There are over 50 documents included with Whisper-1.1 and available in the MCNP Reference Collection on the MCNP website (mcnp.lanl.gov) that address all of those topics and more. In this document, however, a complete bibliography of relevant MCNP-Whisper references is provided.

  16. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  17. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca2+ Selectivity in Calcium Release-Activated Calcium Channels.

    Science.gov (United States)

    Alavizargar, Azadeh; Berti, Claudio; Ejtehadi, Mohammad Reza; Furini, Simone

    2018-04-26

    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca 2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca 2+ over Na + . The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.

  18. Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Shreaya Chakroborty

    Full Text Available Alzheimer's disease (AD is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca(2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS AD mice is increased intracellular Ca(2+ signaling, predominantly through the ER-localized inositol triphosphate (IP(3 and ryanodine receptors (RyR. In particular, the RyR-mediated Ca(2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca(2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca(2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca(2+ aberrations in AD, and propose a novel strategy to

  19. Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by small changes in cell volume

    DEFF Research Database (Denmark)

    Soe, Rikke; Macaulay, Nanna; Klaerke, Dan Arne

    2009-01-01

    in Kir4.1 and Kir4.1-Kir5.1 currents upon swelling of the oocytes and a reduction in the current when the oocytes were shrunk. The volume-dependent changes in channel activity were not due to changes in the kinetics of the channels. These findings implicate a putative functional interaction between...... the Kir channels and aquaporins via small, fast cell volume changes in the glial cells....... channels and aquaporins is therefore debated. To test a possible volume-sensitivity of the Kir channels, the Kir4.1 or Kir4.1-Kir5.1 channels were expressed in Xenopus oocytes with or without co-expression of aquaporins and subsequently exposed to cell volume alterations. Our results show an increase...

  20. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    Science.gov (United States)

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  1. Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synaptosomes

    International Nuclear Information System (INIS)

    Minnema, D.J.; Greenland, R.D.; Michaelson, I.A.

    1986-01-01

    The effect of inorganic lead in vitro in several aspects of [ 3 H]dopamine release from superfused rat striatal synaptosomes was examined. Under conditions of spontaneous release, lead (1-30 microM) induced dopamine release in a concentration-dependent manner. The onset of the lead-induced release was delayed by approximately 15-30 sec. The magnitude of dopamine release induced by lead was increased when calcium was removed from the superfusing buffer. Lead-induced release was unaffected in the presence of putative calcium, sodium, and/or potassium channel blockers (nickel, tetrodotoxin, tetraethylammonium, respectively). Depolarization-evoked dopamine release, produced by a 1-sec exposure to 61 mM potassium, was diminished at calcium concentrations below 0.254 mM. The onset of depolarization-evoked release was essentially immediate following exposure of the synaptosomes to high potassium. The combination of lead (3 or 10 microM) with high potassium reduced the magnitude of depolarization-evoked dopamine release. This depression of depolarization-evoked release by lead was greater in the presence of 0.25 mM than 2.54 mM calcium in the superfusing buffer. These findings demonstrate multiple actions of lead on synaptosomal dopamine release. Lead can induce dopamine release by yet unidentified neuronal mechanisms independent of external calcium. Lead can also reduce depolarization-evoked dopamine release by apparent competition with calcium influx at the neuronal membrane calcium channel

  2. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  3. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  4. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  5. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  6. Kv1 channels and neural processing in vestibular calyx afferents.

    Science.gov (United States)

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  7. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  8. Tuning the ion selectivity of two-pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing (UTSMC)

    2017-01-17

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.

  9. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    International Nuclear Information System (INIS)

    Barrera, Nelson P.; Shaifta, Yasin; McFadzean, Ian; Ward, Jeremy P.T.; Henderson, Robert M.; Edwardson, J. Michael

    2007-01-01

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm 3 , corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88 o and 178 o . This result again indicates that the channel assembles as a tetramer

  10. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  11. The distribution characteristics of pollutants released at different cross-sectional positions of a river

    International Nuclear Information System (INIS)

    Huang Heqing; Chen Guang; Zhang Qianfeng

    2010-01-01

    The distribution characteristics of heavier or lighter pollutants released at different cross-sectional positions of a wide river is investigated with a well-tested three-dimensional numerical model of gravity flows based on Reynolds-Averaged Navier-Stokes equations and turbulence k-ε model. By focusing on investigating the influences of flow and buoyancy on pollutants, it is found that while carrying by the river flow downstream: i) a heavier pollutant released from the cross-sectional side position, forms transverse oscillation between two banks with decreased amplitude, i.e. forms kind of helical flow pattern along the straight part of channel bed; ii) a heavier pollutant released from the cross-sectional middle position, forms collapse oscillation in the middle of the straight channel part with reduced amplitude; iii) in the downstream sinuous channel, heavier pollutant is of higher concentration on the outer side of channel bends; iv) a light pollutant released from the cross-sectional side position, slips partly to the other side of the river, resulting in higher concentrations on two sides of the channel top; v) a light pollutant released from the cross-sectional middle position, splits into two parts symmetrically along two sides of the channel top; vi) in the downstream sinuous channel, light pollutant presents higher concentration on the inner side of channel bends. These findings may assist in cost-effective scientific countermeasures to be taken for accidental or planned pollutant releases into a river. - The distribution characteristics of heavier or lighter pollutants released at different cross-sectional positions of a river.

  12. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity.

    Science.gov (United States)

    Wang, Liwei; Wagner, Larry E; Alzayady, Kamil J; Yule, David I

    2017-07-14

    The inositol 1,4,5 trisphosphate receptor (IP 3 R) is an intracellular Ca 2+ release channel expressed predominately on the membranes of the endoplasmic reticulum. IP 3 R1 can be cleaved by caspase or calpain into at least two receptor fragments. However, the functional consequences of receptor fragmentation are poorly understood. Our previous work has demonstrated that IP 3 R1 channels, formed following either enzymatic fragmentation or expression of the corresponding complementary polypeptide chains, retain tetrameric architecture and are still activated by IP 3 binding despite the loss of peptide continuity. In this study, we demonstrate that region-specific receptor fragmentation modifies channel regulation. Specifically, the agonist-evoked temporal Ca 2+ release profile and protein kinase A modulation of Ca 2+ release are markedly altered. Moreover, we also demonstrate that activation of fragmented IP 3 R1 can result in a distinct functional outcome. Our work suggests that proteolysis of IP 3 R1 may represent a novel form of modulation of IP 3 R1 channel function and increases the repertoire of Ca 2+ signals achievable through this channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  14. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    Jones, J.I.; Fitzpatrick, L.A.

    1990-01-01

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  15. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.; Niemeyer, M. I.; Machler, P.; Ruminot, I.; Lerchundi, R.; Wyss, M. T.; Stobart, J.; Fernandez-Moncada, I.; Valdebenito, R.; Garrido-Gerter, P.; Contreras-Baeza, Y.; Schneider, B. L.; Aebischer, P.; Lengacher, S.; San Martin, A.; Le Douce, J.; Bonvento, G.; Magistretti, Pierre J.; Sepulveda, F. V.; Weber, B.; Barros, L. F.

    2015-01-01

    in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  16. VizieR Online Data Catalog: The Chandra Source Catalog, Release 1.1 (Evans+ 2012)

    Science.gov (United States)

    Evans, I. N.; Primini, F. A.; Glotfelty, C. S.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G.; Grier, J. D.; Hain, R. M.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Kashyap, V. L.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Mossman, A. E.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2014-01-01

    This version of the catalog is release 1.1. It includes the information contained in release 1.0.1, plus point and compact source data extracted from HRC imaging observations, and catch-up ACIS observations released publicly prior to the end of 2009. (1 data file).

  17. CO-independent modification of K+ channels by tricarbonyldichlororuthenium(II) dimer (CORM-2).

    Science.gov (United States)

    Gessner, Guido; Sahoo, Nirakar; Swain, Sandip M; Hirth, Gianna; Schönherr, Roland; Mede, Ralf; Westerhausen, Matthias; Brewitz, Hans Henning; Heimer, Pascal; Imhof, Diana; Hoshi, Toshinori; Heinemann, Stefan H

    2017-11-15

    Although toxic when inhaled in high concentrations, the gas carbon monoxide (CO) is endogenously produced in mammals, and various beneficial effects are reported. For potential medicinal applications and studying the molecular processes underlying the pharmacological action of CO, so-called CO-releasing molecules (CORMs), such as tricabonyldichlororuthenium(II) dimer (CORM-2), have been developed and widely used. Yet, it is not readily discriminated whether an observed effect of a CORM is caused by the released CO gas, the CORM itself, or any of its intermediate or final breakdown products. Focusing on Ca 2+ - and voltage-dependent K + channels (K Ca 1.1) and voltage-gated K + channels (Kv1.5, Kv11.1) relevant for cardiac safety pharmacology, we demonstrate that, in most cases, the functional impacts of CORM-2 on these channels are not mediated by CO. Instead, when dissolved in aqueous solutions, CORM-2 has the propensity of forming Ru(CO) 2 adducts, preferentially to histidine residues, as demonstrated with synthetic peptides using mass-spectrometry analysis. For K Ca 1.1 channels we show that H365 and H394 in the cytosolic gating ring structure are affected by CORM-2. For Kv11.1 channels (hERG1) the extracellularly accessible histidines H578 and H587 are CORM-2 targets. The strong CO-independent action of CORM-2 on Kv11.1 and Kv1.5 channels can be completely abolished when CORM-2 is applied in the presence of an excess of free histidine or human serum albumin; cysteine and methionine are further potential targets. Off-site effects similar to those reported here for CORM-2 are found for CORM-3, another ruthenium-based CORM, but are diminished when using iron-based CORM-S1 and absent for manganese-based CORM-EDE1. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Belén Climent

    Full Text Available Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals.In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR compared to Lean Zucker Rats (LZR. Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer.Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.

  19. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  20. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    International Nuclear Information System (INIS)

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Ani, C.J.; Odusanya, O.S.; Oni, Y.; Anuku, N.; Malatesta, K.; Soboyejo, W.O.

    2014-01-01

    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10 −12 m 2 /s and 4.8 × 10 −6 m 2 /s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug

  1. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release

    Energy Technology Data Exchange (ETDEWEB)

    Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Ani, C.J. [Department of Theoretical Physics, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Odusanya, O.S. [Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Federal Capital Territory (Nigeria); Oni, Y. [Department of Chemistry, Bronx Community College, New York, NY (United States); Anuku, N. [Department of Chemistry, Bronx Community College, New York, NY (United States); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Malatesta, K. [Department of Chemistry, Bronx Community College, New York, NY (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST), Abuja, Federal Capital Territory (Nigeria); Princeton Institute for the Science and Technology of Materials (PRISM), 70 Prospect Street, Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering 1 Olden Street, Princeton, NJ 08544 (United States)

    2014-09-01

    This paper presents an implantable encapsulated structure that can deliver localized heating (hyperthermia) and controlled concentrations of prodigiosin (a cancer drug) synthesized by bacteria (Serratia marcesce (subsp. marcescens)). Prototypical Poly-di-methyl-siloxane (PDMS) packages, containing well-controlled micro-channels and drug storage compartments, were fabricated along with a drug-storing polymer produced by free radical polymerization of Poly(N-isopropylacrylamide)(PNIPA) co-monomers of Acrylamide (AM) and Butyl-methacrylate (BMA). The mechanisms of drug diffusion of PNIPA-base gels were elucidated. Scanning Electron Microscopy (SEM) was also used to study the heterogeneous porous structure of the PNIPA-based gels. The release exponents, n, of the gels were found to between 0.5 and 0.7. This is in the range expected for Fickian (n = 0.5). Deviation from Fickian diffusion was also observed (n > 0.5) diffusion. The gel diffusion coefficients were shown to vary between 2.1 × 10{sup −12} m{sup 2}/s and 4.8 × 10{sup −6} m{sup 2}/s. The implications of the results are then discussed for the localized treatment of cancer via hyperthermia and the controlled delivery of prodigiosin from encapsulated PNIPA-based devices. - Highlights: • Fabricated thermo-sensitive hydrogels for localized drug release from an implantable biomedical device. • Determined the cancer drug diffusion mechanisms of PNIPA-co-AM copolymer hydrogel. • Encapsulated PNIPA-based hydrogels in PDMS capsules for controlled drug delivery. • Established the kinetics of drug release from gels and channels in an implantable biomedical device. • Demonstrated the potential for the controlled release of prodigiosin (PG) as an anticancer drug.

  2. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Smith, J.B.; Smith, L.; Higgins, B.L.

    1985-01-01

    Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45 Ca 2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45 Ca 2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45 Ca 2+ release. IP3 strongly stimulated 45 Ca 2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45 Ca 2+ efflux suggests that IP3 activated a Ca 2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction

  3. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Arsenic release and geochemical evolution of groundwater in an alluvial aquitard, West Bengal, India.

    Science.gov (United States)

    Desbarats, A. J.; Pal, T.; Mukherjee, P. K.; Beckie, R. D.

    2017-12-01

    According to the World Health Organization, contamination of groundwater by geogenic arsenic (As) represents the largest mass poisoning in history. At a field site in West Bengal, India, the source of As affecting a shallow aquifer was traced to silty sediments filling an abandoned river meander. Along with As-bearing phases, these sediments also contain 0.46 % organic carbon. The release of As within the channel fill is investigated using a geochemical mass balance model supported by detailed field observations of aqueous chemistry, sequential extraction analyses of sediment chemistry, and analyses of sediment mineralogy. The model explores the evolution of groundwater chemistry along a flow path extending from its recharge point in an abandoned channel pond, through the channel-fill sequence, to the underlying aquifer. Variations in groundwater composition within the host sediments are explained in terms of mineral weathering driven by organic carbon decay. The model yields reaction coefficients expressing amounts of minerals (and gases) reacting or precipitating along the flow path. Arsenic and phosphorus cycles appear closely linked as these species are hosted by goethite, Fe-rich chlorite, and vivianite. Arsenic is released through the rapid reductive dissolution of goethite and the slower weathering of chlorite. Concomitantly, some As is sequestered in precipitating vivianite. These competing processes reach equilibrium deeper in the channel-fill sequence as groundwater As concentrations stabilize. Using groundwater residence time in channel fill obtained from a numerical flow model and the calculated reaction coefficients, rates of organic carbon oxidation, goethite dissolution, and net As release are estimated at 1.15 mmol C L-1 a-1, 0.18 mmol L-1 a-1, and 4.57 10-4 mmol L-1 a-1, respectively. Fine-grained yet slightly permeable deposits such as channel-fill silts containing reactive organic carbon and As-bearing goethite and phyllosilicates are localized

  5. Complementary roles of KCa3.1 channels and β1-integrin during alveolar epithelial repair.

    Science.gov (United States)

    Girault, Alban; Chebli, Jasmine; Privé, Anik; Trinh, Nguyen Thu Ngan; Maillé, Emilie; Grygorczyk, Ryszard; Brochiero, Emmanuelle

    2015-09-04

    Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-β1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein β1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and β1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and β1-integrin in the regulation of alveolar repair processes.

  6. On the mechanism of TBA block of the TRPV1 channel.

    Science.gov (United States)

    Oseguera, Andrés Jara; Islas, León D; García-Villegas, Refugio; Rosenbaum, Tamara

    2007-06-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.

  7. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels.

    Directory of Open Access Journals (Sweden)

    Alexander V Maltsev

    2017-08-01

    Full Text Available Intracellular Local Ca releases (LCRs from sarcoplasmic reticulum (SR regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s. Background Ca (in locations lacking LCRs quickly decays to resting Ca levels (<100 nM at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates.

  8. Interleukin 1α inhibits prostaglandin E2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    International Nuclear Information System (INIS)

    Rettori, V.; McCann, S.M.; Gimeno, M.F.; Karara, A.; Gonzalez, M.C.

    1991-01-01

    Interleukin 1α (IL-1α), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1α into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1α caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1α (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E 2 into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1α reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1α suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E 2 -mediated release of LHRH

  9. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  10. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  11. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.

    Directory of Open Access Journals (Sweden)

    Alice A Royal

    Full Text Available The slow delayed-rectifier potassium current (IKs is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1 channel requires phosphatidylinositol-4,5-bisphosphate (PIP2 binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4P at the plasma membrane (PM or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1. Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.

  12. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Katherine J Zappia

    Full Text Available Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1 is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.

  13. Neural tissue engineering scaffold with sustained RAPA release relieves neuropathic pain in rats.

    Science.gov (United States)

    Ding, Tan; Zhu, Chao; Kou, Zhen-Zhen; Yin, Jun-Bin; Zhang, Ting; Lu, Ya-Cheng; Wang, Li-Ying; Luo, Zhuo-Jing; Li, Yun-Qing

    2014-09-01

    To investigate the effect of locally slow-released rapamycin (RAPA) from bionic peripheral nerve stent to reduce the incidence of neuropathic pain or mitigate the degree of pain after nerve injury. We constructed a neural tissue engineering scaffold with sustained release of RAPA to repair 20mm defects in rat sciatic nerves. Four presurgical and postsurgical time windows were selected to monitor the changes in the expression of pain-related dorsal root ganglion (DRG) voltage-gated sodium channels 1.3 (Nav1.3), 1.7 (Nav1.7), and 1.8 (Nav1.8) through immunohistochemistry (IHC) and Western Blot, along with the observation of postsurgical pathological pain in rats by pain-related behavior approaches. Relatively small upregulation of DRG sodium channels was observed in the experimental group (RAPA+poly(lactic-co-glycolic acid) (PLGA)+stent) after surgery, along with low degrees of neuropathic pain and anxiety, which were similar to those in the Autologous nerve graft group. Autoimmune inflammatory response plays a leading role in the occurrence of post-traumatic neuropathic pain, and that RAPA significantly inhibits the abnormal upregulation of sodium channels to reduce pain by alleviating inflammatory response. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-Bo [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China); Shen, Xun, E-mail: shenxun@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  15. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.

    Science.gov (United States)

    Whitt, Joshua P; McNally, Beth A; Meredith, Andrea L

    2018-02-05

    Large conductance K + (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca 2+ (Ca 2+ i ). To enable this regulation, BK channels functionally couple to both voltage-gated Ca 2+ channels (VGCCs) and channels mediating Ca 2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca 2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca 2+ i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca 2+ i are reduced. Here, to determine whether diurnal regulation of Ca 2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca 2+ channels (LTCCs) are the primary daytime Ca 2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca 2+ i release. The N- and P/Q-type Ca 2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca 2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. © 2018 Whitt et al.

  16. Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion

    Directory of Open Access Journals (Sweden)

    Stanko S. Stojilkovic

    2017-06-01

    Full Text Available Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM. These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA, acetylcholine (ACh, and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.

  17. Inhibition of K+ permeability diminishes alpha 2-adrenoceptor mediated effects on norepinephrine release

    International Nuclear Information System (INIS)

    Zimanyi, I.; Folly, G.; Vizi, E.S.

    1988-01-01

    The effect of two different potassium channel blockers, 4-aminopyridine (4-AP) and quinine, on the alpha 2-adrenoceptor mediated modulation of norepinephrine (NE) release was investigated. Pairs of mouse vasa deferentia were loaded with 3 H-norepinephrine ( 3 H-NE), superfused continuously, and stimulated electrically. 4-AP (5.3 x 10(-4) M), and quinine (10(-5) M) enhanced the stimulation-evoked release of tritium significantly. The electrically induced release of radioactivity was reduced by alpha 2-adrenoceptor agonists (1-NE and xylazine) and enhanced by the alpha 2-adrenoceptor antagonist yohimbine. Both effects were affected markedly by 4-AP or quinine: the depressant action of 1-NA and xylazine was partially antagonized and the facilitatory effect of yohimbine was completely abolished during the blockade of the potassium channels. It is suggested that the blockade of the potassium permeability counteracts negative feedback modulation; therefore, it seems likely that the stimulation of alpha 2-adrenoceptors leads to an enhanced potassium permeability and hyperpolarization of varicose axon terminals

  18. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved?

    Science.gov (United States)

    Sadananda, Prajni; Kao, Felicity C L; Liu, Lu; Mansfield, Kylie J; Burcher, Elizabeth

    2012-05-15

    Stretch-evoked ATP release from the bladder mucosa is a key event in signaling bladder fullness. Our aim was to examine whether acid and capsaicin can also release ATP and to determine the receptors involved, using agonists and antagonists at TRPV1 and acid-sensing ion channels (ASICs). Strips of porcine bladder mucosa were exposed to acid, capsaicin or stretch. Strip tension was monitored. Bath fluid was collected for ATP measurement. Gene expression of ASICs and TRPV1 in porcine bladders was quantified using quantitative real-time PCR (qRT-PCR). Stretch stimulus (150% of original length) repeatedly and significantly increased ATP release to approximately 45 times basal release. Acid (pH 6.5, 6.0, 5.6) contracted mucosal strips and also increased ATP release up to 30-fold, without evidence of desensitization. Amiloride (0.3 μM) reduced the acid-evoked ATP release by approximately 70%, while capsazepine (10 μM) reduced acid-evoked ATP release at pH 6.0 and pH 5.6 (by 68% and 61%, respectively). Capsaicin (0.1-10 μM) was ineffective in causing ATP release, and also failed to contract porcine mucosal or detrusor strips. Gene expression for ASIC1, ASIC2, ASIC3 and TRPV1 was seen in the lateral wall, dome, trigone and neck of both detrusor and mucosa. In conclusion, stretch and acid induce ATP release in the porcine bladder mucosa, but capsaicin is ineffective. The pig bladder is a well-known model for the human bladder, however these data suggest that it should be used with caution, particularly for TRPV1 related studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons.

    Science.gov (United States)

    Memon, Tosifa; Chase, Kevin; Leavitt, Lee S; Olivera, Baldomero M; Teichert, Russell W

    2017-06-14

    The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (K V ) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking K V channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Modeling a point-source release of 1,1,1-trichloroethane using EPA's SCREEN model

    International Nuclear Information System (INIS)

    Henriques, W.D.; Dixon, K.R.

    1994-01-01

    Using data from the Environmental Protection Agency's Toxic Release Inventory 1988 (EPA TRI88), pollutant concentration estimates were modeled for a point source air release of 1,1,1-trichloroethane at the Savannah River Plant located in Aiken, South Carolina. Estimates were calculating using the EPA's SCREEN model utilizing typical meteorological conditions to determine maximum impact of the plume under different mixing conditions for locations within 100 meters of the stack. Input data for the SCREEN model were then manipulated to simulate the impact of the release under urban conditions (for the purpose of assessing future landuse considerations) and under flare release options to determine if these parameters lessen or increase the probability of human or wildlife exposure to significant concentrations. The results were then compared to EPA reference concentrations (RfC) in order to assess the size of the buffer around the stack which may potentially have levels that exceed this level of safety

  1. The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart.

    Science.gov (United States)

    Yang, Lin; Katchman, Alexander; Weinberg, Richard L; Abrams, Jeffrey; Samad, Tahmina; Wan, Elaine; Pitt, Geoffrey S; Marx, Steven O

    2015-01-23

    Voltage-gated Ca(2+) channels play a key role in initiating muscle excitation-contraction coupling, neurotransmitter release, gene expression, and hormone secretion. The association of CaV1.2 with a supramolecular complex impacts trafficking, localization, turnover, and, most importantly, multifaceted regulation of its function in the heart. Several studies hint at an important role for the C terminus of the α1C subunit as a hub for multidimensional regulation of CaV1.2 channel trafficking and function. Recent studies have demonstrated an important role for the four-residue PDZ binding motif at the C terminus of α1C in interacting with scaffold proteins containing PDZ domains, in the subcellular localization of CaV1.2 in neurons, and in the efficient signaling to cAMP-response element-binding protein in neurons. However, the role of the α1C PDZ ligand domain in the heart is not known. To determine whether the α1C PDZ motif is critical for CaV1.2 trafficking and function in cardiomyocytes, we generated transgenic mice with inducible expression of an N-terminal FLAG epitope-tagged dihydropyridine-resistant α1C with the PDZ motif deleted (ΔPDZ). These mice were crossed with α-myosin heavy chain reverse transcriptional transactivator transgenic mice, and the double-transgenic mice were fed doxycycline. The ΔPDZ channels expressed, trafficked to the membrane, and supported robust excitation-contraction coupling in the presence of nisoldipine, a dihydropyridine Ca(2+) channel blocker, providing functional evidence that they appropriately target to dyads. The ΔPDZ Ca(2+) channels were appropriately regulated by isoproterenol and forskolin. These data indicate that the α1C PDZ motif is not required for surface trafficking, localization to the dyad, or adrenergic stimulation of CaV1.2 in adult cardiomyocytes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Assembling filamentous phage occlude pIV channels.

    Science.gov (United States)

    Marciano, D K; Russel, M; Simon, S M

    2001-07-31

    Filamentous phage f1 is exported from its Escherichia coli host without killing the bacterial cell. Phage-encoded protein pIV, which is required for phage assembly and secretion, forms large highly conductive channels in the outer membrane of E. coli. It has been proposed that the phage are extruded across the bacterial outer membrane through pIV channels. To test this prediction, we developed an in vivo assay by using a mutant pIV that functions in phage export but whose channel opens in the absence of phage extrusion. In E. coli lacking its native maltooligosacharride transporter LamB, this pIV variant allowed oligosaccharide transport across the outer membrane. This entry of oligosaccharide was decreased by phage production and still further decreased by production of phage that cannot be released from the cell surface. Thus, exiting phage block the pIV-dependent entry of oligosaccharide, suggesting that phage occupy the lumen of pIV channels. This study provides the first evidence, to our knowledge, for viral exit through a large aqueous channel.

  3. Results of the examination of channel H12/1

    International Nuclear Information System (INIS)

    Bauer, E.

    1983-01-01

    Channel H12/1 is one part of the channel unit of the High-Flux Reactor that has been affected by corrosion attack. It was disassembled after the appearance of a heavy water leak and examined in a hot cell. Results of the examination are presented

  4. Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release

    Science.gov (United States)

    Estacion, Mark; Turner, Jamie; Mis, Malgorzata A.; Wilbrey, Anna; Payne, Elizabeth C.; Gutteridge, Alex; Cox, Peter J.; Doyle, Rachel; Printzenhoff, David; Lin, Zhixin; Marron, Brian E.; West, Christopher; Swain, Nigel A.; Storer, R. Ian; Stupple, Paul A.; Castle, Neil A.; Hounshell, James A.; Rivara, Mirko; Randall, Andrew; Dib-Hajj, Sulayman D.; Krafte, Douglas; Waxman, Stephen G.; Patel, Manoj K.; Butt, Richard P.; Stevens, Edward B.

    2016-01-01

    Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7’s role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission. PMID:27050761

  5. Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release.

    Directory of Open Access Journals (Sweden)

    Aristos J Alexandrou

    Full Text Available Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7 is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission.

  6. Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2017-05-01

    Full Text Available The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite sigma-1 receptors have been confirmed to regulate various types of ion channels, the relationship between the sigma-1 receptor and N-type Ca2+ channel is still unclear. Considering both sigma-1 receptors and N-type Ca2+ channels are involved in intracellular calcium homeostasis and neurotransmission, we undertake studies to explore the possible interaction between these two proteins. In the experiment, we confirmed the expression of the sigma-1 receptors and the N-type calcium channels in the cholinergic interneurons (ChIs in rat striatum by using single-cell reverse transcription-polymerase chain reaction (scRT-PCR and immunofluorescence staining. N-type Ca2+ currents recorded from ChIs in the brain slice of rat striatum was depressed when sigma-1 receptor agonists (SKF-10047 and Pre-084 were administrated. The inhibition was completely abolished by sigma-1 receptor antagonist (BD-1063. Co-expression of the sigma-1 receptors and the N-type calcium channels in Xenopus oocytes presented a decrease of N-type Ca2+ current amplitude with an increase of sigma-1 receptor expression. SKF-10047 could further depress N-type Ca2+ currents recorded from oocytes. The fluorescence resonance energy transfer (FRET assays and co-immunoprecipitation (Co-IP demonstrated that sigma-1 receptors and N-type Ca2+ channels formed a protein complex when they were co-expressed in HEK-293T (Human Embryonic Kidney -293T cells. Our results revealed that the sigma-1 receptors played a negative modulation on N-type Ca2+ channels. The mechanism for the inhibition of sigma-1 receptors on

  7. Excitation contraction uncoupling by high intracellular [Ca2+] in frog skeletal muscle: a voltage clamp study.

    Science.gov (United States)

    Olivera, J Fernando; Pizarro, Gonzalo

    2016-10-01

    Raising the intracellular [Ca 2+ ] ([Ca 2+ ] i ) was previously found to produce uncoupling between the electrical depolarization of the transverse tubules and contraction in skinned muscle fibers. Here we study the effect of elevated [Ca 2+ ] i in voltage clamped cut fibers of frog skeletal muscle to establish how the charge movement, a measure of the activation of the dihydropyridine receptors (DHPR)-voltage sensors, and Ca 2+ release, a consequence of the opening of the ryanodine receptor (RyR)-release channels, were affected. [Ca 2+ ] i was raised by various procedures (pharmacological release from the sarcoplasmic reticulum, application of high [Ca 2+ ] i intracellular solution, permeabilization of the plasma membrane by a Ca 2+ ionophore) all of which produced impairment of excitation-contraction coupling. The charge movement was reduced from 20.2 ± 1.24 to 9.9 ± 0.94 nC/μF meanwhile the Ca 2+ release flux was reduced from 13.5 + 0.7 to 2.2 ± 0.3 μM/ms (n = 33). This suggests that a significant fraction of the DHPRs that remained functional, could not activate RyRs, and were therefore presumably disconnected. These results are broadly consistent with the original reports in skinned fibers. Uncoupling was prevented by the addition to the intracellular solution of the protease inhibitor leupeptin. In approximately 40 % of the uncoupled cells we observed that the [Ca 2+ ] i transient continued to rise after the voltage clamp pulse was turned off. This loss of control by membrane voltage suggests that the uncoupled release channels might have another mechanism of activation, likely by Ca 2+ .

  8. Structure of the CLC-1 chloride channel from Homo sapiens.

    Science.gov (United States)

    Park, Eunyong; MacKinnon, Roderick

    2018-05-29

    CLC channels mediate passive Cl - conduction, while CLC transporters mediate active Cl - transport coupled to H + transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl - conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl - at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl - affinity distinguish CLC channels and transporters. © 2018, Park & MacKinnon.

  9. Ion Channels in Leukocytes

    Science.gov (United States)

    1991-07-01

    muscle k142), heart muscle (80), bo- are released. In recent years much has been learned vine pulmonar arter endothelial cells (251), and rat about the...b3 Zn or cytes from cystic fibrosis patients lack a Cl current that Ni (1 mM)-added to the cytoplasmic side of the mem- can be acti% ated b3 the...that at37’C hu- to be defectiv.- in cystic fibrosis (55, 277), and Chen et al. man T-cell CiL channels are active at rest, implies that (25) have shown

  10. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels

    Directory of Open Access Journals (Sweden)

    Cerrone Cabanos

    2017-08-01

    Full Text Available Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphatidic acid (PA has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1. Anionic lipids PA and phosphatidylglycerol (PG bind dose dependently (9.1 and 96 μM, respectively and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.

  11. Tracking of fission products release during refueling operations

    International Nuclear Information System (INIS)

    Agarwal, Sharad; Prajapat, M.K.; Vyas, Shyam; Hussain, S.A.

    2001-01-01

    It has been always observed that the release of fission products increase during refueling operations. At RAPP-3 and 4 an attempt has been made to follow-up the change in fission products activity release at each stage of refueling operation and quantification of concentrations of various radionuclides. This exercise was also extended to refueling operation of the channels containing suspected failed fuel. A level of FPNG ( 133 Xe) was observed to increase by a factor of about 10-40 during refueling of failed channel as compared to healthy channel. It can be concluded that by monitoring FPNG levels in exhaust status of the healthiness of spent fuel can be found out. This report discusses in detail the experiment conducted for this purpose. (author)

  12. Inferior Olive HCN1 Channels Coordinate Synaptic Integration and Complex Spike Timing

    Directory of Open Access Journals (Sweden)

    Derek L.F. Garden

    2018-02-01

    Full Text Available Cerebellar climbing-fiber-mediated complex spikes originate from neurons in the inferior olive (IO, are critical for motor coordination, and are central to theories of cerebellar learning. Hyperpolarization-activated cyclic-nucleotide-gated (HCN channels expressed by IO neurons have been considered as pacemaker currents important for oscillatory and resonant dynamics. Here, we demonstrate that in vitro, network actions of HCN1 channels enable bidirectional glutamatergic synaptic responses, while local actions of HCN1 channels determine the timing and waveform of synaptically driven action potentials. These roles are distinct from, and may complement, proposed pacemaker functions of HCN channels. We find that in behaving animals HCN1 channels reduce variability in the timing of cerebellar complex spikes, which serve as a readout of IO spiking. Our results suggest that spatially distributed actions of HCN1 channels enable the IO to implement network-wide rules for synaptic integration that modulate the timing of cerebellar climbing fiber signals.

  13. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    Science.gov (United States)

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  14. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  15. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Science.gov (United States)

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  16. The Nav1.2 channel is regulated by GSK3

    Science.gov (United States)

    James, Thomas F.; Nenov, Miroslav N.; Wildburger, Norelle C.; Lichti, Cheryl; Luisi, Jonathan; Vergara, Fernanda; Panova-Electronova, Neli I.; Nilsson, Carol L.; Rudra, Jai; Green, Thomas A.; Labate, Demetrio; Laezza, Fernanda

    2015-01-01

    Background Phosphorylation plays an essential role in regulating the voltage-gated sodium (Nav) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Nav channels. Herein, we posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Nav channels. Methods We used patch-clamp electrophysiology to record sodium currents from Nav1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. Results We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Nav1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Nav1.2-encoded currents. Neither mRNA nor total protein expression were changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Nav1.2 channel indicates that cell surface expression of CD4-Nav1.2-Ctail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T1966 at the C-terminal tail of Nav1.2. Conclusion These findings provide evidence for a new mechanism by which GSK3 modulate Nav channel function via its C-terminal tail. General Significance These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders. PMID:25615535

  17. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    Science.gov (United States)

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation.

    Science.gov (United States)

    Glasscock, Edward; Voigt, Niels; McCauley, Mark D; Sun, Qiang; Li, Na; Chiang, David Y; Zhou, Xiao-Bo; Molina, Cristina E; Thomas, Dierk; Schmidt, Constanze; Skapura, Darlene G; Noebels, Jeffrey L; Dobrev, Dobromir; Wehrens, Xander H T

    2015-09-01

    Voltage-gated Kv1.1 channels encoded by the Kcna1 gene are traditionally regarded as being neural-specific with no known expression or intrinsic functional role in the heart. However, recent studies in mice reveal low-level Kv1.1 expression in heart and cardiac abnormalities associated with Kv1.1-deficiency suggesting that the channel may have a previously unrecognized cardiac role. Therefore, this study tests the hypothesis that Kv1.1 channels are associated with arrhythmogenesis and contribute to intrinsic cardiac function. In intra-atrial burst pacing experiments, Kcna1-null mice exhibited increased susceptibility to atrial fibrillation (AF). The atria of Kcna1-null mice showed minimal Kv1 family ion channel remodeling and fibrosis as measured by qRT-PCR and Masson's trichrome histology, respectively. Using RT-PCR, immunocytochemistry, and immunoblotting, KCNA1 mRNA and protein were detected in isolated mouse cardiomyocytes and human atria for the first time. Patients with chronic AF (cAF) showed no changes in KCNA1 mRNA levels relative to controls; however, they exhibited increases in atrial Kv1.1 protein levels, not seen in paroxysmal AF patients. Patch-clamp recordings of isolated human atrial myocytes revealed significant dendrotoxin-K (DTX-K)-sensitive outward current components that were significantly increased in cAF patients, reflecting a contribution by Kv1.1 channels. The concomitant increases in Kv1.1 protein and DTX-K-sensitive currents in atria of cAF patients suggest that the channel contributes to the pathological mechanisms of persistent AF. These findings provide evidence of an intrinsic cardiac role of Kv1.1 channels and indicate that they may contribute to atrial repolarization and AF susceptibility.

  19. Apo calmodulin binding to the L-type voltage-gated calcium channel Cav1.2 IQ peptide

    International Nuclear Information System (INIS)

    Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf

    2007-01-01

    The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca v 1.2 subunit has been shown to bind both calcium-loaded (Ca 2+ CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca 2+ CaM can bind to the intact channel

  20. Reliability assessment of PARR-1 renovated I and C system startup channel-b

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M.A.; Habib, M.A.; Iqbal, M.

    1991-11-20

    The report covers the reliability assessment of the startup channel-B of the PARR-1 renovated instrumentation and Control. For startup channel-A, a separate report (DNSRP-10(7)/88) was prepared in 1988. As the modules are of different origins in both the channels, a separate calculation was necessary. In the report the overall unreliability of the startup channel has been calculated by considering 1 out of 2 operation mode. In the assessment, the reliability calculations for the channel has been performed using similar assumptions as used in the authors' report on startup channel-A. For the analysis the Component Count Method (CCM) was applied. Comparison of results for channel-A and channel-B were made.

  1. An association between RBMX, a heterogeneous nuclear ribonucleoprotein, and ARTS-1 regulates extracellular TNFR1 release

    International Nuclear Information System (INIS)

    Adamik, Barbara; Islam, Aminul; Rouhani, Farshid N.; Hawari, Feras I.; Zhang Jing; Levine, Stewart J.

    2008-01-01

    The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1β-mediated inducible proteolytic cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1β-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains

  2. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels.

    Directory of Open Access Journals (Sweden)

    Valentina Taiakina

    Full Text Available NSCaTE is a short linear motif of (xWxxx(I or Lxxxx, composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA, but disappears in high buffer conditions (10 mM EGTA. Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.

  3. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  4. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus neurons of aged rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress, although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin, and it is blocked by capsazepine (CPZ). The beta-amyloid plaque induces oxidative stress in hippocampus. SCOP can result in augmented ROS release in hippocampal neurons, leading to Ca 2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca 2+ provided that intracellular Ca 2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Se reduced TRPM2 and TRPV1 channel activation through the modulation of aging oxidative reactions and Se-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.

  5. LRRK2 regulates voltage-gated calcium channel function.

    Directory of Open Access Journals (Sweden)

    Cade eBedford

    2016-05-01

    Full Text Available Voltage-gated Ca2+ (CaV channels enable Ca2+ influx in response to membrane depolarization. CaV2.1 channels are localized to the presynaptic membrane of many types of neurons where they are involved in triggering neurotransmitter release. Several signaling proteins have been identified as important CaV2.1 regulators including protein kinases, G-proteins and Ca2+ binding proteins. Recently, we discovered that leucine rich repeat kinase 2 (LRRK2, a protein associated with inherited Parkinson’s disease, interacts with specific synaptic proteins and influences synaptic transmission. Since synaptic proteins functionally interact with CaV2.1 channels and synaptic transmission is triggered by Ca2+ entry via CaV2.1, we investigated whether LRRK2 could impact CaV2.1 channel function. CaV2.1 channel properties were measured using whole cell patch clamp electrophysiology in HEK293 cells transfected with CaV2.1 subunits and various LRRK2 constructs. Our results demonstrate that both wild type LRRK2 and the G2019S LRRK2 mutant caused a significant increase in whole cell Ca2+ current density compared to cells expressing only the CaV2.1 channel complex. In addition, LRRK2 expression caused a significant hyperpolarizing shift in voltage-dependent activation while having no significant effect on inactivation properties. These functional changes in CaV2.1 activity are likely due to a direct action of LRRK2 as we detected a physical interaction between LRRK2 and the β3 CaV channel subunit via coimmunoprecipitation. Furthermore, effects on CaV2.1 channel function are dependent on LRRK2 kinase activity as these could be reversed via treatment with a LRRK2 inhibitor. Interestingly, LRRK2 also augmented endogenous voltage-gated Ca2+ channel function in PC12 cells suggesting other CaV channels could also be regulated by LRRK2. Overall, our findings support a novel physiological role for LRRK2 in regulating CaV2.1 function that could have implications for how

  6. Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1.

    Science.gov (United States)

    Stanley, Elise F; Reese, Tom S; Wang, Gary Z

    2003-10-01

    Neurotransmitter release sites at the freeze-fractured frog neuromuscular junction are composed of inner and outer paired rows of large membrane particles, the putative calcium channels, anchored by the ribs of an underlying protein scaffold. We analysed the locations of the release site particles as a reflection of the scaffold structure, comparing particle distributions in secreting terminals with those where secretion was blocked with botulinum toxin A, which cleaves a small segment off SNAP-25, or botulinum toxin C1, which cleaves the cytoplasmic domain of syntaxin. In the idle terminal the inner and outer paired rows were located approximately 25 and approximately 44 nm, respectively, from the release site midline. However, adjacent to vesicular fusion sites both particle rows were displaced towards the midline by approximately 25%. The intervals between the particles along each row were examined by a nearest-neighbour approach. In control terminals the peak interval along the inner row was approximately 17 nm, consistent with previous reports and the spacing of the scaffold ribs. While the average distance between particles in the outer row was also approximately 17 nm, a detailed analysis revealed short 'linear clusters' with a approximately 14 nm interval. These clusters were enriched at vesicle fusion sites, suggesting an association with the docking sites, and were eliminated by botulinum C1, but not A. Our findings suggest, first, that the release site scaffold ribs undergo a predictable, and possibly active, shortening during exocytosis and, second, that at the vesicle docking site syntaxin plays a role in the cross-linking of the rib tips to form the vesicle docking sites.

  7. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P. J.; Marriott, D. B.; Boarder, M. R.

    1989-01-01

    1. It has been suggested that neuronal voltage-sensitive calcium channels (VSCC) may be divided into dihydropyridine (DHP)-sensitive (L) and DHP-insensitive (N and T), and that both the L and the N type channels are attenuated by the peptide blocker omega-conotoxin. Here the effects of omega-conotoxin on release of noradrenaline and uptake of calcium in bovine adrenal chromaffin cells were investigated. 2. Release of noradrenaline in response to 25 mM K+, 65 mM K+, 10 nM bradykinin or 10 microM prostaglandin E1 was not affected by omega-conotoxin in the range 10 nM-1 microM. 3. 45Ca2+ uptake stimulated by high K+ and prostaglandin was attenuated by 1 microM nitrendipine and enhanced by 1 microM Bay K 8644; these calcium fluxes were not modified by 20 nM omega-conotoxin. 4. With superfused rat brain striatal slices in the same medium as the above cell studies, release of dopamine in response to 25 mM K+ was attenuated by 20 nM omega-conotoxin. 5. These results show that in these neurone-like cells, release may be effected by calcium influx through DHP-sensitive but omega-conotoxin-insensitive VSCC, a result inconsistent with the suggestion that omega-conotoxin blocks both L-type and N-type neuronal calcium channels. PMID:2470457

  8. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  9. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    Science.gov (United States)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  10. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels.

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Gnanasambandam

    Full Text Available Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2 form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1 for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35-55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.

  11. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    Science.gov (United States)

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  12. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia.

    Science.gov (United States)

    Beam, Teresa A; Loudermilk, Emily F; Kisor, David F

    2017-02-01

    A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca 2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace. Copyright © 2017 the American Physiological Society.

  13. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Matthew T Dickerson

    Full Text Available Glucose-stimulated insulin secretion (GSIS relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN. Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased

  14. Purification of the functional plant membrane channel KAT1

    International Nuclear Information System (INIS)

    Hibi, Takao; Aoki, Shiho; Oda, Keisuke; Munemasa, Shintaro; Ozaki, Shunsuke; Shirai, Osamu; Murata, Yoshiyuki; Uozumi, Nobuyuki

    2008-01-01

    The inward-rectifying K + channel KAT1 is expressed mainly in Arabidopsis thaliana guard cells. The purification of functional KAT1 has never been reported. We investigated the extraction of the plant K + channel KAT1 with different detergents, as an example for how to select detergents for purifying a eukaryotic membrane protein. A KAT1-GFP fusion protein was used to screen a library of 46 detergents for the effective solubilization of intact KAT1. Then, a 'test set' of three detergents was picked for further analysis, based on their biochemical characteristics and availability. The combination use of the selected detergents enabled the effective purification of functional KAT1 with affinity and gel-filtration chromatography

  15. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.

    Science.gov (United States)

    Hou, Shangwei; Xu, Rong; Heinemann, Stefan H; Hoshi, Toshinori

    2008-03-11

    Carbon monoxide (CO) is a lethal gas, but it is also increasingly recognized as a physiological signaling molecule capable of regulating a variety of proteins. Among them, large-conductance Ca(2+)- and voltage-gated K(+) (Slo1 BK) channels, important in vasodilation and neuronal firing, have been suggested to be directly stimulated by CO. However, the molecular mechanism of the stimulatory action of CO on the Slo1 BK channel has not been clearly elucidated. We report here that CO reliably and repeatedly activates Slo1 BK channels in excised membrane patches in the absence of Ca(2+) in a voltage-sensor-independent manner. The stimulatory action of CO on the Slo1 BK channel requires an aspartic acid and two histidine residues located in the cytoplasmic RCK1 domain, and the effect persists under the conditions known to inhibit the conventional interaction between CO and heme in other proteins. We propose that CO acts as a partial agonist for the high-affinity divalent cation sensor in the RCK1 domain of the Slo1 BK channel.

  16. Heteromeric ASIC channels composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death

    Science.gov (United States)

    Sherwood, Thomas W.; Lee, Kirsten G.; Gormley, Matthew G.; Askwith, Candice C.

    2011-01-01

    Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the central nervous system and activation of ASIC1a homomeric channels induces neuronal death following local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that co-expression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the non-selective potassium channel blockers tetraethylammonium (TEA) and barium. In addition, steady-state desensitization is induced at more basic pH values and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Further, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury following stroke. PMID:21715637

  17. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  18. THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01

    International Nuclear Information System (INIS)

    Magnier, E. A.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Kaiser, N.; Kudritzki, R.-P.; Morgan, J. S.; Sweeney, W. E.; Schlafly, E.; Finkbeiner, D.; Juric, M.; Stubbs, C. W.; Price, P. A.

    2013-01-01

    As of 2012 January 21, the Pan-STARRS 1 3π Survey has observed the 3/4 of the sky visible from Hawaii with a minimum of 2 and mean of 7.6 observations in five filters, g P1 , r P1 , i P1 , z P1 , y P1 . Now at the end of the second year of the mission, we are in a position to make an initial public release of a portion of this unprecedented data set. This article describes the PS1 Photometric Ladder, Release 12.01. This is the first of a series of data releases to be generated as the survey coverage increases and the data analysis improves. The Photometric Ladder has rungs every hour in right ascension and at four intervals in declination. We will release updates with increased area coverage (more rungs) from the latest data set until the PS1 survey and the final re-reduction are completed. The currently released catalog presents photometry of ∼1000 objects per square degree in the rungs of the ladder. Saturation occurs at g P1 , r P1 , i P1 ∼ 13.5; z P1 ∼ 13.0; and y P1 ∼ 12.0. Photometry is provided for stars down to g P1 , r P1 , i P1 ∼ 19.1 in the AB system. This data release depends on the rigid 'Ubercal' photometric calibration using only the photometric nights, with systematic uncertainties of (8.0, 7.0, 9.0, 10.7, 12.4) mmag in (g P1 , r P1 , i P1 , z P1 , y P1 ). Areas covered only with lower quality nights are also included, and have been tied to the Ubercal solution via relative photometry; photometric accuracy of the non-photometric regions is lower and should be used with caution.

  19. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    Science.gov (United States)

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  20. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  2. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  3. Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers

    Science.gov (United States)

    Tao, Xiao; MacKinnon, Roderick

    2010-01-01

    Summary Voltage-dependent K+ channels play key roles in shaping electrical signaling in both excitable as well as non-excitable cells. These channels open and close in response to the voltage changes across the cell membrane. Many studies have been carried out in order to understand the voltage sensing mechanism. Our laboratory recently determined the atomic structures of a mammalian voltage-dependent K+ channel Kv1.2 and a mutant of Kv1.2 named the ‘paddle-chimera’ channel, in which the voltage sensor paddle was transferred from Kv2.1 to Kv1.2. These two structures provide atomic descriptions of voltage-dependent channels with unprecedented clarity. Until now the functional integrity of these two channels biosynthesized in yeast cells have not been assessed. Here we report the electrophysiological and pharmacological properties of Kv1.2 and the paddle chimera channels in planar lipid bilayers. We demonstrate that Pichia yeast produce ‘normally functioning’ mammalian voltage-dependent K+ channels with qualitatively similar features to the Shaker K+ channel in the absence of the N-terminal inactivation gate, and that the paddle chimera mutant channel functions as well as Kv1.2. We find, however, that in several respects the Kv1.2 channel exhibits functional properties that are distinct from Kv1.2 channels reported in the literature. PMID:18638484

  4. miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries.

    Science.gov (United States)

    Mondejar-Parreño, Gema; Callejo, María; Barreira, Bianca; Morales-Cano, Daniel; Esquivel-Ruiz, Sergio; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2018-05-02

    ■The expression of miR-1 is increased in lungs from the Hyp/Su5416 PAH rat model. ■PASMC from this animal model are more depolarised and show decreased expression and activity of Kv1.5. ■miR-1 directly targets Kv1.5 channels, reduces Kv1.5 activity and induces membrane depolarization. ■Antagomir-1 prevents Kv1.5 channel downregulation and the depolarization induced by hypoxia/Su5416 exposition. Impairment of voltage-dependent potassium channel (Kv) plays a central role in the development of cardiovascular diseases, including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the 3'-UTR region of specific mRNAs. The aim of this study was to analyze the effects of miR-1 on Kv channel function in pulmonary arteries (PA). Kv channel activity was studied in PA from healthy animals transfected with miR-1 or scrambled-miR. Kv currents were studied using the whole-cell configuration of patch-clamp technique. The characterization of the Kv1.5 currents was performed with the selective inhibitor DPO-1. miR-1 expression was increased and Kv1.5 channels were decreased in lungs from a rat model of PAH induced by hypoxia and Su5416. miR-1 transfection increased cell capacitance, reduced Kv1.5 currents and induced membrane depolarization in isolated pulmonary artery smooth muscle cells (PASMCs). Luciferase reporter assay indicated that KCNA5, which encodes Kv1.5 channels, is a direct target gene of miR-1. Incubation of PA with Su5416 and hypoxia (3% O 2 ) increased miR-1 and induced a decline in Kv1.5 currents, which was prevented by antagomiR-1. In conclusion, these data indicate that miR-1 induces PASMC hypertrophy and reduces the activity and expression of Kv channels, suggesting a pathophysiological role in PAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain

    OpenAIRE

    Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.

    2016-01-01

    Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nocicep...

  6. Interaction between Red Yeast Rice and CYP450 Enzymes/P-Glycoprotein and Its Implication for the Clinical Pharmacokinetics of Lovastatin

    Directory of Open Access Journals (Sweden)

    Chia-Hao Chen

    2012-01-01

    Full Text Available Red yeast rice (RYR can reduce cholesterol through its active component, lovastatin. This study was to investigate the pharmacokinetic properties of lovastatin in RYR products and potential RYR-drug interactions. Extracts of three registered RYR products (LipoCol Forte, Cholestin, and Xuezhikang were more effective than pure lovastatin in inhibiting the activities of cytochrome P450 enzymes and P-glycoprotein. Among CYP450 enzymes, RYR showed the highest inhibition on CYP1A2 and CYP2C19, with comparable inhibitory potencies to the corresponding typical inhibitors. In healthy volunteers taking the RYR product LipoCol Forte, the pharmacokinetic properties of lovastatin and lovastatin acid were linear in the dose range of 1 to 4 capsules taken as a single dose and no significant accumulation was observed after multiple dosing. Concomitant use of one LipoCol Forte capsule with nifedipine did not change the pharmacokinetics of nifedipine. Yet, concomitant use of gemfibrozil with LipoCol Forte resulted in a significant increase in the plasma concentration of lovastatin acid. These findings suggest that the use of RYR products may not have effects on the pharmacokinetics of concomitant comedications despite their effects to inhibit the activities of CYP450 enzymes and P-gp, whereas gemfibrozil affects the pharmacokinetics of lovastatin acid when used concomitantly with RYR products.

  7. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  8. Investigation of the transient receptor potential vanilloid 1 (TRPV1) ion channel

    OpenAIRE

    Winter Zoltán

    2013-01-01

    The aims of this research were to determine sensory modalities that may be lost after the RTX treatment of newborn or adult mice, to dissect potential side-effect(s) of molecular neurosurgery, to gather information about the structure and function of the channel by investigating the effects of M2+ on the TRPV1 and by collecting the literature data on the functionally important point mutations of the channel for prospective in silico modeling. The findings of the research work can be summa...

  9. MISTRAL V1.1.1: assessing doses from atmospheric releases in normal and off-normal conditions

    International Nuclear Information System (INIS)

    David Kerouanton; Patrick Devin; Malvina Rennesson

    2006-01-01

    Protecting the environment and the public from radioactive and chemical hazards has always been a top priority for all companies operating in the nuclear domain. In this scope, SGN provides all the services the nuclear industry needs in environmental studies especially in relation to the impact assessment in normal operating conditions and risk assessment in off-normal conditions. In order to quantify dose impact on members of the public due to atmospheric releases, COGEMA and SGN developed MISTRAL V1.1.1 code. Dose impact depends strongly on dispersion of radionuclides in atmosphere. The main parameters involved in dispersion characterization are wind velocity and direction, rain, diffusion conditions, coordinates of the point of observation and stack elevation. MISTRAL code implements DOURY and PASQUILL Gaussian plume models which are widely used in the scientific community. These models, applicable for distances of transfer ranging from 100 m up to 30 km, are used to calculate atmospheric concentration and deposit at different distances from the point of release. MISTRAL allows the use of different dose regulations or dose coefficient databases such as: - ICRP30 and ICPR71 for internal doses (inhalation, ingestion) - Despres/Kocher database or US-EPA Federal Guidance no.12 (ICPR72 for noble gases) for external exposure (from plume or ground). The initial instant of the release can be considered as the origin of time or a date format can be specified (could be useful in a crisis context). While the context is specified, the user define the meteorological conditions of the release. In normal operating mode (routine releases), the user gives the annual meteorological scheme. The data can be recorded in the MISTRAL meteorological database. In off-normal conditions mode, MISTRAL V1.1 allows the use of successive release stages for which the user gives the duration, the meteorological conditions, that is to say stability class, wind speed and direction and rainfall

  10. The interaction of mammalian Class C Vps with nSec-1/Munc18-a and syntaxin 1A regulates pre-synaptic release

    International Nuclear Information System (INIS)

    Kim, Bong Yoon; Sahara, Yoshinori; Yamamoto, Akitsugu; Kominami, Eiki; Kohsaka, Shinichi; Akazawa, Chihiro

    2006-01-01

    Membrane docking and fusion in neurons is a highly regulated process requiring the participation of a large number of SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) and SNARE-interacting proteins. We found that mammalian Class C Vps protein complex associated specifically with nSec-1/Munc18-a, and syntaxin 1A both in vivo and in vitro. In contrast, VAMP2 and SNAP-25, other neuronal core complex proteins, did not interact. When co-transfected with the human growth hormone (hGH) reporter gene, mammalian Class C Vps proteins enhanced Ca 2+ -dependent exocytosis, which was abolished by the Ca 2+ -channel blocker nifedipine. In hippocampal primary cultures, the lentivirus-mediated overexpression of hVps18 increased asynchronous spontaneous synaptic release without changing mEPSCs. These results indicate that mammalian Class C Vps proteins are involved in the regulation of membrane docking and fusion through an interaction with neuronal specific SNARE molecules, nSec-1/Munc18-a and syntaxin 1A

  11. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes

    DEFF Research Database (Denmark)

    Andreasen, Ditte; Friis, Ulla G; Uhrenholt, Torben R

    2006-01-01

    Voltage-dependent Ca2+ channels Cav1.2 (L type) and Cav2.1 (P/Q type) are expressed in vascular smooth muscle cells (VSMCs) and are important for the contraction of renal resistance vessels. In the present study we examined whether native renal VSMCs coexpress L-, P-, and Q-type Ca2+ currents...... microscopy revealed expression of both channels in all of the smooth muscle cells. Whole-cell patch clamp on single preglomerular VSMCs from mice showed L-, P-, and Q-type currents. Blockade of the L-type currents by calciseptine (20 nmol/L) inhibited 35.6+/-3.9% of the voltage-dependent Ca2+ current......-type and P-type channels inhibited 58.0+/-11.8%, and simultaneous inhibition of L-, P-, and Q-type channels led to blockade (88.7+/-5.6%) of the Ca2+ current. We conclude that aortic and renal preglomerular smooth muscle cells express L-, P-, and Q-type voltage-dependent Ca2+ channels in the rat and mouse....

  12. Experimental study of the IPR-R1 TRIGA reactor power channels responses

    International Nuclear Information System (INIS)

    Mesquita, Henrique F.A.; Ferreira, Andrea V.

    2015-01-01

    The IPR-R1 nuclear reactor installed at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil, is a Mark I TRIGA reactor (Training, Research, Isotopes, General Atomics) and became operational on November of 1960. The reactor has four irradiation devices: a rotary specimen rack with 40 irradiation channels, the central tube, and two pneumatic transfer tubes. The nuclear reactor is operated in a power range between zero and 100 kW. The instrumentation for IPR-R1 operation is mainly composed of four neutronic channels for power measurements. The aim of this work is to investigate the responses of neutronic channels of IPR-R1, Linear, Log N and Percent Power channels, and to check their linearity. Gold foils were activated at low powers (0.125-1.000 kW), and cobalt foils were activated at high powers (10-100kW). For each sample irradiated at rotary specimen rack, another one was irradiated at the same time at the pneumatic transfer tube-2. The obtained results allowed evaluating the linearity of the neutronic channels responses. (author)

  13. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    Science.gov (United States)

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  14. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  15. Role of TRPV1 channels in ischemia/reperfusion-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Lan Chen

    Full Text Available OBJECTIVES: Transient receptor potential vanilloid 1 (TRPV1 -positive sensory nerves are widely distributed in the kidney, suggesting that TRPV1-mediated action may participate in the regulation of renal function under pathophysiological conditions. Stimulation of TRPV1 channels protects against ischemia/reperfusion (I/R-induced acute kidney injury (AKI. However, it is unknown whether inhibition of these channels is detrimental in AKI or not. We tested the role of TRPV1 channels in I/R-induced AKI by modulating these channels with capsaicin (TRPV1 agonist, capsazepine (TRPV1 antagonist and using Trpv1-/- mice. METHODS AND RESULTS: Anesthetized C57BL/6 mice were subjected to 25 min of renal ischemia and 24 hrs of reperfusion. Mice were pretreated with capsaicin (0.3 mg/kg body weight or capsazepine (50 mg/kg body weight. Capsaicin ameliorated the outcome of AKI, as measured by serum creatinine levels, tubular damage,neutrophil gelatinase-associated lipocalin (NGAL abundance and Ly-6B.2 positive polymorphonuclear inflammatory cells in injured kidneys. Neither capsazepine nor deficiency of TRPV1 did deteriorate renal function or histology after AKI. Measurements of endovanilloids in kidney tissue indicate that 20-hydroxyeicosatetraeonic acid (20-HETE or epoxyeicosatrienoic acids (EETs are unlikely involved in the beneficial effects of capsaicin on I/R-induced AKI. CONCLUSIONS: Activation of TRPV1 channels ameliorates I/R-induced AKI, but inhibition of these channels does not affect the outcome of AKI. Our results may have clinical implications for long-term safety of renal denervation to treat resistant hypertension in man, with respect to the function of primary sensory nerves in the response of the kidney to ischemic stimuli.

  16. Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Andersen, Rune Wederkinck; Olesen, Søren-Peter

    2009-01-01

    Pharmacological activation of the large-conductance Ca(2+)-activated K(+) channel (KCa1.1) in the cardiac inner mitochondrial membrane has been found to protect the heart against ischemia reperfusion injuries. However, there are concerns about the selectivity of the pharmacological tools used...... to modulate the channel. Here, we address this issue by synthesising a methylated analogue of the tool KCa1.1 channel activator NS11021. The compound (NS13558) is designed as a structurally closely related and biologically inactive analogue of NS11021. NS13558 did not elicit any significant opening of cloned...... human KCa1.1 channels, but maintained comparable biological activity towards other cardiac ion channels as compared to NS11021. In isolated perfused rat hearts subjected to ischemia-reperfusion, infarct size was reduced from 29% in control to 7% in NS11021 treated hearts. In comparison, the inactive...

  17. Glycosylation of alpha(2)delta(1) subunit: a sweet talk with Ca(v)1.2 channels

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Weiss, Norbert

    2016-01-01

    Roč. 35, č. 3 (2016), s. 239-242 ISSN 0231-5882 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * Ca(v)1.2 channel * ancillary subunit * alpha(2)delta(1) subunit * glycosylation * trafficking Subject RIV: CE - Biochemistry Impact factor: 1.170, year: 2016

  18. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.

    Science.gov (United States)

    Beckmann, Anja; Grissmer, Alexander; Krause, Elmar; Tschernig, Thomas; Meier, Carola

    2016-03-01

    Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.

  19. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  20. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-01-01

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  1. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    Science.gov (United States)

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  2. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Science.gov (United States)

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  3. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1 in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Cathy Chia-Yu Huang

    Full Text Available In the retina, the L-type voltage-gated calcium channels (L-VGCCs are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.

  4. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.

    Science.gov (United States)

    Cairns, Simeon P; Borrani, Fabio

    2015-11-01

    Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline

  5. Predictive techniques for river channel evolution and maintenance

    Science.gov (United States)

    Nelson, J.M.

    1996-01-01

    Predicting changes in alluvial channel morphology associated with anthropogenic and natural changes in flow and/or sediment supply is a critical part of the management of riverine systems. Over the past few years, advances in the understanding of the physics of sediment transport in conjunction with rapidly increasing capabilities in computational fluid dynamics have yielded now approaches to problems in river mechanics. Techniques appropriate for length scales ranging from reaches to bars and bedforms are described here. Examples of the use of these computational approaches are discussed for three cases: (1) the design of diversion scenarios that maintain channel morphology in steep cobble-bedded channels in Colorado, (2) determination of channel maintenance flows for the preservation of channel islands in the Snake River in Idaho, and (3) prediction of the temporal evolution of deposits in lateral separation zones for future assessment of the impacts of various dam release scenarios on lateral separation deposits in the Colorado River in Grand Canyon. With continued development of their scientific and technical components, the methodologies described here can provide powerful tools for the management of river environments in the future.

  6. 16-channel DWDM based on 1D defect mode nonlinear photonic crystal

    Science.gov (United States)

    Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun

    2018-05-01

    We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).

  7. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  8. Eag1 channels as potential early-stage biomarkers of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chávez-López MG

    2016-09-01

    Full Text Available María de Guadalupe Chávez-López,1 Violeta Zúñiga-García,1 Julio Isael Pérez-Carreón,2 Arturo Avalos-Fuentes,3 Yesenia Escobar,4 Javier Camacho1 1Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2Instituto Nacional de Medicina Genómica, 3Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 4Centro de Investigación Clínica Acelerada Sc, Mexico City, Mexico Abstract: Hepatocellular carcinoma (HCC is a major cause of cancer death worldwide. HCC is usually asymptomatic at potential curative stages, and it has very poor prognosis if detected later. Thus, the identification of early biomarkers and novel therapies is essential to improve HCC patient survival. Ion channels have been proposed as potential tumor markers and therapeutic targets for several cancers including HCC. Especially, the ether à-go-go-1 (Eag1 voltage-gated potassium channel has been suggested as an early marker for HCC. Eag1 is overexpressed during HCC development from the cirrhotic and the preneoplastic lesions preceding HCC in a rat model. The channel is also overexpressed in human HCC. Astemizole has gained great interest as a potential anticancer drug because it targets several proteins involved in cancer including Eag1. Actually, in vivo studies have shown that astemizole may have clinical utility for HCC prevention and treatment. Here, we will review first some general aspects of HCC including the current biomarkers and therapies, and then we will focus on Eag1 channels as promising tools in the early diagnosis of HCC. Keywords: ion channels, Eag1, hepatocellular carcinoma, astemizole, diethylnitrosamine

  9. A Tour de Force: The Discovery, Properties, and Function of Piezo Channels.

    Science.gov (United States)

    Gottlieb, P A

    2017-01-01

    Mechanical transducers appear throughout cell biology and are used to convert mechanical stress into chemical or electrical signals that allow the cell to respond to environmental changes. In the past six years, a eukaryotic mechanical channel family with two members, Piezo1 and Piezo2, has been identified. Piezo1 was shown to be a cation-selective channel that does not require ancillary proteins for activity. Mouse Piezo1 is large, with over 2500 amino acids, and is not homologous to other ion channels. Both piezo channels have rapid voltage-dependent inactivation with a reversal potential near 0mV. The CryoEm structure of Piezo1 at 4.8Å shows trimer stoichiometry. Since the discovery of the piezo channels, their roles in the physiological response of cells have started to emerge. Significant progress has been made in understanding the intrinsic properties of the channels and how these properties are modulated by cytoskeletal elements. Specific diseases, such as hereditary xerocytosis affecting red blood cells, have mutations in Piezo1 that alter the cell's response to force, typically slowing inactivation and introducing a latency for activation. A number of physiological functions for piezo channels have been identified. These range from sensing the stiffness of surrounding substrate, to the response to light touch, to serotonin release from the gut. This review provides a general overview of the properties and roles of Piezo1 and Piezo2 in eukaryotic mechanotransduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. ACRR fission product release tests: ST-1 and ST-2

    International Nuclear Information System (INIS)

    Allen, M.D.; Stockman, H.W.; Reil, K.O.; Grimley, A.J.; Camp, W.J.

    1988-01-01

    Two experiments (ST-1 and ST-2) have been performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNLA) to obtain time-resolved data on the release of fission products from irradiated fuels under light water reactor (LWR) severe accident conditions. Both experiments were conducted in a highly reducing environment at maximum fuel temperatures of greater than 2400 K. These experiments were designed specifically to investigate the effect of increased total pressure on fission product release; ST-1 was performed at approximately 0.16 MPa and ST-2 was run at 1.9 MPa, whereas other parameters were matched as closely as possible. Release rate data were measured for Cs, I, Ba, Sr, Eu, Te, and U. The release rates were higher than predicted by existing codes for Ba, Sr, Eu, and U. Te release was very low, but Te did not appear to be sequestered by the zircaloy cladding; it was evenly distributed in the fuel. In addition, in posttest analysis a unique fuel morphology (fuel swelling) was observed which may have enhanced fission product release, especially in the high pressure test (ST-2). These data are compared with analytical results from the CORSOR correlation and the VICTORIA computer model

  11. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    Science.gov (United States)

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and pIGF-1 level 30min after the start of suckling (pIGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and pIGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biophysical characterization of Vpu from HIV-1 suggests a channel-pore dualism.

    Science.gov (United States)

    Mehnert, T; Routh, A; Judge, P J; Lam, Y H; Fischer, D; Watts, A; Fischer, W B

    2008-03-01

    Vpu from HIV-1 is an 81 amino acid type I integral membrane protein which consists of a cytoplasmic and a transmembrane (TM) domain. The TM domain is known to alter membrane permeability for ions and substrates when inserted into artificial membranes. Peptides corresponding to the TM domain of Vpu (Vpu(1-32)) and mutant peptides (Vpu(1-32)-W23L, Vpu(1-32)-R31V, Vpu(1-32)-S24L) have been synthesized and reconstituted into artificial lipid bilayers. All peptides show channel activity with a main conductance level of around 20 pS. Vpu(1-32)-W23L has a considerable flickering pattern in the recordings and longer open times than Vpu(1-32). Whilst recordings for Vpu(1-32)-R31V are almost indistinguishable from those of the WT peptide, recordings for Vpu(1-32)-S24L do not exhibit any noticeable channel activity. Recordings of WT peptide and Vpu(1-32)-W23L indicate Michaelis-Menten behavior when the salt concentration is increased. Both peptide channels follow the Eisenman series I, indicative for a weak ion channel with almost pore like characteristics. 2007 Wiley-Liss, Inc.

  13. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  14. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  15. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    Science.gov (United States)

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  16. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    Science.gov (United States)

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  17. Kv10.1 potassium channel: from the brain to the tumors.

    Science.gov (United States)

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  18. Emerging role of the KCNT1 Slack channel in intellectual disability.

    Science.gov (United States)

    Kim, Grace E; Kaczmarek, Leonard K

    2014-01-01

    The sodium-activated potassium KNa channels Slack and Slick are encoded by KCNT1 and KCNT2, respectively. These channels are found in neurons throughout the brain, and are responsible for a delayed outward current termed I KNa. These currents integrate into shaping neuronal excitability, as well as adaptation in response to maintained stimulation. Abnormal Slack channel activity may play a role in Fragile X syndrome, the most common cause for intellectual disability and inherited autism. Slack channels interact directly with the fragile X mental retardation protein (FMRP) and I KNa is reduced in animal models of Fragile X syndrome that lack FMRP. Human Slack mutations that alter channel activity can also lead to intellectual disability, as has been found for several childhood epileptic disorders. Ongoing research is elucidating the relationship between mutant Slack channel activity, development of early onset epilepsies and intellectual impairment. This review describes the emerging role of Slack channels in intellectual disability, coupled with an overview of the physiological role of neuronal I KNa currents.

  19. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    Science.gov (United States)

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  20. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  1. S1 constrains S4 in the voltage sensor domain of Kv7.1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Yoni Haitin

    Full Text Available Voltage-gated K(+ channels comprise a central pore enclosed by four voltage-sensing domains (VSDs. While movement of the S4 helix is known to couple to channel gate opening and closing, the nature of S4 motion is unclear. Here, we substituted S4 residues of Kv7.1 channels by cysteine and recorded whole-cell mutant channel currents in Xenopus oocytes using the two-electrode voltage-clamp technique. In the closed state, disulfide and metal bridges constrain residue S225 (S4 nearby C136 (S1 within the same VSD. In the open state, two neighboring I227 (S4 are constrained at proximity while residue R228 (S4 is confined close to C136 (S1 of an adjacent VSD. Structural modeling predicts that in the closed to open transition, an axial rotation (approximately 190 degrees and outward translation of S4 (approximately 12 A is accompanied by VSD rocking. This large sensor motion changes the intra-VSD S1-S4 interaction to an inter-VSD S1-S4 interaction. These constraints provide a ground for cooperative subunit interactions and suggest a key role of the S1 segment in steering S4 motion during Kv7.1 gating.

  2. Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression

    Directory of Open Access Journals (Sweden)

    Mats Wiedemann

    2015-10-01

    Full Text Available The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight. In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h, the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

  3. Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET.

    Science.gov (United States)

    Lee, Jay-Ron; Shieh, Ru-Chi

    2009-03-06

    Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.

  4. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    Science.gov (United States)

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  5. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  6. Tritium and helium release from beryllium pebbles neutron-irradiated up to 230appm tritium and 3000appm helium

    Directory of Open Access Journals (Sweden)

    Vladimir Chakin

    2016-12-01

    Full Text Available Study of tritium and helium release from beryllium pebbles with diameters of 0.5 and 1mm after high-dose neutron irradiation at temperatures of 686–968K was performed. The release rate always has a single peak, and the peak temperatures at heating rates of 0.017K/s and 0.117K/s lie in the range of 1100–1350K for both tritium and helium release. The total tritium release from 1mm pebbles decreases considerably by increasing the irradiation temperature. The total tritium release from 0.5mm pebbles is less than that from 1mm pebbles and remains constant regardless of the irradiation temperature. At high irradiation temperatures, open channels are formed which contribute to the enhanced tritium release.

  7. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  8. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    Science.gov (United States)

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  9. Protective roles for potassium SK/KCa2 channels in microglia and neurons

    Directory of Open Access Journals (Sweden)

    Amalia M Dolga

    2012-11-01

    Full Text Available New concepts on potassium channel function in neuroinflammation suggest that they regulate mechanisms of microglial activation, including intracellular calcium homeostasis, morphological alterations, pro-inflammatory cytokine release, antigen presentation, and phagocytosis. Although little is known about voltage independent potassium channels in microglia, special attention emerges on small (SK/KCNN1-3/KCa2 and intermediate (IK/KCNN4/KCa3.1-conductance calcium-activated potassium channels as regulators of microglial activation in the field of research on neuroinflammation and neurodegeneration. In particular, recent findings suggested that SK/KCa2 channels, by regulating calcium homeostasis, may elicit a dual mechanism of action with protective properties in neurons and inhibition of inflammatory responses in microglia. Thus, modulating SK/KCa2 channels and calcium signaling may provide novel therapeutic strategies in neurological disorders, where neuronal cell death and inflammatory responses concomitantly contribute to disease progression. Here, we review the particular role of SK/KCa2 channels for [Ca2+]i regulation in microglia and neurons, and we discuss the potential impact for further experimental approaches addressing novel therapeutic strategies in neurological diseases, where neuronal cell death and neuroinflammatory processes are prominent.

  10. Spontaneous release from mossy fiber terminals inhibits Ni2+-sensitive T-type Ca2+ channels of CA3 pyramidal neurons in the rat organotypic hippocampal slice.

    Science.gov (United States)

    Reid, Christopher A; Xu, Shenghong; Williams, David A

    2008-01-01

    Mossy fibers (axons arising from dentate granule cells) form large synaptic contacts exclusively onto the proximal apical dendrites of CA3 pyramidal neurons. They can generate large synaptic currents that occur in close proximity to the soma. These properties mean that active conductance in the proximal apical dendrite could have a disproportionate influence on CA3 pyramidal neuron excitability. Ni(2+)-sensitive T-type Ca(2+) channels are important modulators of dendritic excitability. Here, we use an optical approach to determine the contribution of Ni(2+) (100 microM)-sensitive Ca(2+) channels to action potential (AP) elicited Ca(2+) flux in the soma, proximal apical and distal apical dendrites. At resting membrane potentials Ni(2+)-sensitive Ca(2+) channels do not contribute to the Ca(2+) signal in the proximal apical dendrite, but do contribute in the other cell regions. Spontaneous release from mossy fiber terminals acting on 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive postsynaptic channels underlies a tonic inhibition of Ni(2+)-sensitive channels. Chelating Zn(2+) with CaEDTA blocks CNQX-sensitive changes in Ca(2+) flux implicating a mechanistic role of this ion in T-type Ca(2+) channel block. To test if this inhibition influenced excitability, progressively larger depolarizing pulses were delivered to CA3 pyramidal neurons. CNQX significantly reduced the size of the depolarizing step required to generate APs and increased the absolute number of APs per depolarizing step. This change in AP firing was completely reversed by the addition of Ni(2+). This mechanism may reduce the impact of T-type Ca(2+) channels in a region where large synaptic events are common.

  11. Fluoxetine Blocks Nav1.5 Channels via a Mechanism Similar to That of Class 1 Antiarrhythmics

    Science.gov (United States)

    Poulin, Hugo; Bruhova, Iva; Timour, Quadiri; Theriault, Olivier; Beaulieu, Jean-Martin; Frassati, Dominique

    2014-01-01

    The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na+ currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 μM) and its optical isomers had a similar IC50 [40 and 47 μM for the (+) and (−) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 μM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na+ channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders. PMID:25028482

  12. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  13. Ablation of CaV2.1 Voltage-Gated Ca2+ Channels in Mouse Forebrain Generates Multiple Cognitive Impairments

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels located at the presynaptic membrane are known to control a multitude of Ca2+-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic CaV2.1 mouse models. Global CaV2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of CaV2.1 Ca2+ channels for complex behaviour in adult mice. Consequently we established a forebrain specific CaV2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of CaV2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific CaV2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional CaV2.1 knock-out model that is most suitable for analysing the in vivo functions of CaV2.1 in the adult murine forebrain. PMID:24205277

  14. Topology of transmembrane channel-like gene 1 protein.

    Science.gov (United States)

    Labay, Valentina; Weichert, Rachel M; Makishima, Tomoko; Griffith, Andrew J

    2010-10-05

    Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels.

  15. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity.

    Science.gov (United States)

    Fruscione, Floriana; Valente, Pierluigi; Sterlini, Bruno; Romei, Alessandra; Baldassari, Simona; Fadda, Manuela; Prestigio, Cosimo; Giansante, Giorgia; Sartorelli, Jacopo; Rossi, Pia; Rubio, Alicia; Gambardella, Antonio; Nieus, Thierry; Broccoli, Vania; Fassio, Anna; Baldelli, Pietro; Corradi, Anna; Zara, Federico; Benfenati, Fabio

    2018-04-01

    See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage

  16. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity

    Science.gov (United States)

    Fruscione, Floriana; Valente, Pierluigi; Sterlini, Bruno; Romei, Alessandra; Baldassari, Simona; Fadda, Manuela; Prestigio, Cosimo; Giansante, Giorgia; Sartorelli, Jacopo; Rossi, Pia; Rubio, Alicia; Gambardella, Antonio; Nieus, Thierry; Broccoli, Vania; Fassio, Anna; Baldelli, Pietro; Corradi, Anna; Zara, Federico

    2018-01-01

    Abstract See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article. Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of

  17. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  18. SkyMapper Southern Survey: First Data Release (DR1)

    Science.gov (United States)

    Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang

    2018-02-01

    We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.

  19. Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats

    Directory of Open Access Journals (Sweden)

    Ling-Yun Wu

    2017-06-01

    Full Text Available Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH. Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet.Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20, SAH group (n = 20, SAH + LV-Scramble-ShRNA group (n = 20, SAH + LV-ShRNA-Panx1 group (n = 20, SAH + LV-NC group (n = 20, and SAH + LV-Panx1-EGFP group (n = 20. The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v. at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test.Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis.Conclusion: Pannexin-1 channels may

  20. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  1. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  2. Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries

    DEFF Research Database (Denmark)

    Chadha, Preet S; Zunke, Friederike; Davis, Alison J

    2012-01-01

    The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature.......The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature....

  3. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  4. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal.

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2015-04-15

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca(2+)-activated Cl(-) channels. We investigated the hypothesis that the Ca(2+) responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca(2+) stores. ICC, obtained from the small intestine of Kit(+/copGFP) mice, were studied under voltage and current clamp to determine the effects of blocking Ca(2+) uptake into stores and release of Ca(2+) via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca(2+) concentration, suggesting that pacemaker activity depends on Ca(2+) dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca(2+) from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. Copyright © 2015 the American Physiological Society.

  5. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  6. Numerical study of natural convection heat transfer in a horizontal channel provided with rectangular blocks releasing uniform heat flux and mounted on its lower wall

    International Nuclear Information System (INIS)

    Bakkas, M.; Amahmid, A.; Hasnaoui, M.

    2008-01-01

    Two-dimensional laminar steady natural convection in a horizontal channel with the upper wall maintained cold at a constant temperature and the lower one provided with rectangular heating blocks, periodically distributed, has been studied numerically. The blocks are connected with adiabatic segments and their surfaces are assumed to release a uniform heat flux. The study is performed using air as the working fluid (Pr = 0.72). The spacing between the blocks is maintained constant (C = l'/H' = 0.5) while the Rayleigh number and the relative height of the blocks are respectively varied in the ranges 10 2 ≤ Ra ≤ 2 x 10 6 and 1/8 ≤ B = h'/H' ≤ 1/2. The effect of the computational domain length on the multiplicity of solutions is investigated. Flow and temperature fields are also produced for various combinations of the governing parameters. It is demonstrated that, depending on the length of the computational domain and the governing parameters, different flow structures can be obtained

  7. Feedbacks among Floods, Pioneer Woody Vegetation, and Channel Change in Sand-Bed Rivers: Insights from Field Studies of Controlled Flood Releases and Models

    Science.gov (United States)

    Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.; Stella, J. C.; Bywater-Reyes, S.; Kiu, L.; Skorko, K.

    2012-04-01

    To investigate feedbacks between flow, geomorphic processes, and pioneer riparian vegetation in sand-bed rivers, we are combining field, hydraulic modeling, and laboratory simulations. Field studies have examined the response of woody riparian seedlings and channel morphology to prescribed dam-released floods that have been designed in part to maintain a native riparian woodland system on the Bill Williams River, Arizona, USA. Through monitoring of floods over a 7-year period, we have observed temporal and spatial variations in channel response. Floods have produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach with greater sediment supply. We also have observed that as vegetation grows beyond the seedling stage, its stabilizing effect on bars and its drag effect on flow progressively increases, such that floods of similar sizes but at different times may produce markedly different downstream responses as a function of vegetation characteristics. We also observed greater mortality among nonnative Tamarix spp. (tamarisk) seedlings than among native Salix gooddingii (Goodding's willow) seedlings, likely as a result of the greater first-year growth of willow relative to tamarisk. Combining field observations with modeling predictions of local hydraulics for the flood events we have studied is being used to draw linkages between hydraulics, channel change, and plant response at the patch and bar scale. In addition, mechanistic linkages are being examined using a field-scale laboratory stream channel, where seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) were planted and subjected to floods with varying sediment feed rate and plant configurations. The floods conveyed by our model channel were generally insufficient to scour the woody seedlings we planted, but changes in bar size and

  8. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Johan Holmkvist

    Full Text Available BACKGROUND: Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1 have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897 on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean+/-SD: (CC 277+/-160 vs. (AC 280+/-164 vs. (AA 299+/-200 pmol/l, p = 0.008 after an oral glucose load, insulinogenic index (29.6+/-17.4 vs. 30.2+/-18.7vs. 32.2+/-22.1, p = 0.007, incremental area under the insulin curve (20,477+/-12,491 vs. 20,503+/-12,386 vs. 21,810+/-14,685, p = 0.02 among the 4,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified for the less common diabetes risk alleles of rs2237892, rs2237897, or rs2283228. CONCLUSION: The minor C-allele of rs2237895 of KCNQ1, which has a prevalence of about 42% among Caucasians was associated with reduced measures of insulin release following an oral glucose load suggesting that the increased risk of type 2 diabetes, previously reported for this variant, likely is mediated through an impaired beta cell function.

  9. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    Science.gov (United States)

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  10. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Xianjie Wen

    Full Text Available There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca(2+ ([Ca2+]i, cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation.

  11. Nuclear energy release from fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Souza, S.R. [Instituto de Física, Universidade Federal do Rio de Janeiro Cidade Universitária, Caixa Postal 68528, 21945-970 Rio de Janeiro (Brazil); Tsang, M.B. [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); National Superconducting Cyclotron Laboratory and Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Feng-Shou, E-mail: fszhang@bnu.edu.cn [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 (China)

    2016-08-15

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting {sup 230,232}Th and {sup 235,238}U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for {sup 230,232}Th and {sup 235,238}U are around 0.7–0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  12. Proton channel HVCN1 is required for effector functions of mouse eosinophils

    Science.gov (United States)

    2013-01-01

    Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768

  13. 26 CFR 301.6325-1 - Release of lien or discharge of property.

    Science.gov (United States)

    2010-04-01

    ... sale before satisfaction of any Federal tax liens or claims of the United States. (4) Right of... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Release of lien or discharge of property. 301....6325-1 Release of lien or discharge of property. (a) Release of lien—(1) Liability satisfied or...

  14. Assessment of Fuel Analysis Methodology and Fission Product Release for 37-Element Fuel by Using the Latest IST Codes during Stagnation Feeder Break in CANDU

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jung, Jong Yeob

    2009-09-01

    Feeder break accident is regarded as one of the design basis accident in CANDU reactor which results in a fuel failure. For a particular range of inlet feeder break sizes, the flow in the channel is reduced sufficiently that the fuel and fuel channel integrity can be significantly affected to have damage in the affected channel, while the remainder of the core remains adequately cooled. The flow in the downstream channel can be more or less stagnated due to a balance between pressure at the break on the upstream side and the reverse driving pressure between the break and the downstream end. In the extreme, this can lead to rapid fuel heatup and fuel damage and failure of the fuel channel similar to that associated with a severe channel flow blockage. Such an inlet feeder break scenario is called a stagnation break. In this report, the fuel analysis methodology and the assessment results of fission product inventory and release during the stagnation feeder break are described for conservatively assumed limiting channel. The accident was assumed to be occurred in the refurbished Wolsong unit 1 and the latest safety codes were used in the analysis. Fission product inventories during the steady state were calculated by using ELESTRES-IST 1.2 code. The whole analysis process was carried out by a script file which was programmed by Perl language. The perl script file was programmed to make all ELESTRES input files for each bundle and each ring based on the given power-burnup history and thermal-hydraulic conditions of the limiting channel and to perform the fuel analysis automatically. The fission product release during the transient period of stagnation feeder break was evaluated by applying Gehl model. The amounts of each isotope's release are conservatively evaluated for additional 2 seconds after channel failure. The calculated fission product releases are provided to the following dose assessment as a source term

  15. Modeling within- and across-channel processes in comodulation masking release

    DEFF Research Database (Denmark)

    Dau, Torsten; Piechowiak, Tobias; Ewert, Stephan D

    2013-01-01

    al., J. Acoust. Soc. Am. 124, 422-438 (2008)] was used and extended by an across-channel modulation processing stage according to Piechowiak et al. [J. Acoust. Soc. Am. 121, 2111-2126 (2007)]. Five experimental paradigms were considered: CMR with a broadband noise masker as a function of the masker...

  16. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).

    Science.gov (United States)

    Plattner, H; Sehring, I M; Mohamed, I K; Miranda, K; De Souza, W; Billington, R; Genazzani, A; Ladenburger, E-M

    2012-05-01

    The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    OpenAIRE

    Yang, Fan; Xiao, Xian; Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 ? resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were c...

  18. LABCORE post release 1.0 development system project management plan

    International Nuclear Information System (INIS)

    Rich, H.S.

    1994-01-01

    The LABCORE post release 1.0 development system project management plan (SPMP) is the primary planning document governing the development of specific enhancements to the LABCORE project. The mission of the Westinghouse Hanford Company (WHC) laboratories is changing from supporting the 200 Area chemical processing plants for process control, waste management, and effluent monitoring to supporting environmental restoration and regulatory compliance commitments. The LABCORE program was implemented as the key element for meeting the commitments by upgrading the laboratories through the implementation of an Automated Data Processing improvement program in January 1994. Scope for LABCORE release 1.0 consisted of hardware and software implementation required to support a minimum number of analyses (Single-Shell Tank [SST] analysis at 222S Laboratory and Performance Evaluation samples at the Waste Sampling Characterization Facility laboratory) using manual entry of data, and to support routine laboratory functions, common to all laboratories. LABCORE post release 1.0 enhancements will expand the functionality presented to the laboratory. Post release 1.0 enhancements will also address the integration of a database for Analytical Services Program Integration, budgeting, and scheduling offices into LABCORE

  19. BK channel activators and their therapeutic perspectives

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Olesen, Søren-Peter; Rønn, Lars C B

    2014-01-01

    in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After...

  20. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    Science.gov (United States)

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  2. The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit.

    Science.gov (United States)

    Kozuka, Takashi; Chaya, Taro; Tamalu, Fuminobu; Shimada, Mariko; Fujimaki-Aoba, Kayo; Kuwahara, Ryusuke; Watanabe, Shu-Ichi; Furukawa, Takahisa

    2017-10-11

    Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1 -/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development. SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate

  3. Critical heat fluxes and liquid distribution in annular channels in the dispersion-annular flow

    International Nuclear Information System (INIS)

    Boltenko, Eh.A.; Pomet'ko, R.S.

    1984-01-01

    On the basis of using the dependence of intensity of total mass transfer between the flux nucleus and wall film obtained for tubes with uniform heat release and taking into account the peculiarities of mass transfer between the flux nucleus and wall film in annular channels the technique for calculating the liquid distribution and critical capacity of annular channels with internal, external and bilateral heating at uniform and non-uniform heat release over the length is proposed. The calculation of annular channels critical capacity according to the suggested technique is performed. A satisfactory agreement of calculation results with the experimental data is attained

  4. Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum

    Science.gov (United States)

    López-Sanjurjo, Cristina I.; Tovey, Stephen C.; Prole, David L.; Taylor, Colin W.

    2013-01-01

    Summary Most intracellular Ca2+ signals result from opening of Ca2+ channels in the plasma membrane or endoplasmic reticulum (ER), and they are reversed by active transport across these membranes or by shuttling Ca2+ into mitochondria. Ca2+ channels in lysosomes contribute to endo-lysosomal trafficking and Ca2+ signalling, but the role of lysosomal Ca2+ uptake in Ca2+ signalling is unexplored. Inhibition of lysosomal Ca2+ uptake by dissipating the H+ gradient (using bafilomycin A1), perforating lysosomal membranes (using glycyl-L-phenylalanine 2-naphthylamide) or lysosome fusion (using vacuolin) increased the Ca2+ signals evoked by receptors that stimulate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] formation. Bafilomycin A1 amplified the Ca2+ signals evoked by photolysis of caged Ins(1,4,5)P3 or by inhibition of ER Ca2+ pumps, and it slowed recovery from them. Ca2+ signals evoked by store-operated Ca2+ entry were unaffected by bafilomycin A1. Video-imaging with total internal reflection fluorescence microscopy revealed that lysosomes were motile and remained intimately associated with the ER. Close association of lysosomes with the ER allows them selectively to accumulate Ca2+ released by Ins(1,4,5)P3 receptors. PMID:23097044

  5. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  6. The Pan-STARRS1 Survey Data Release

    Science.gov (United States)

    Chambers, Kenneth C.; Pan-STARRS Team

    2017-01-01

    The first Pan-STARRS1 Science Mission is complete and an initial Data Release 1, or DR1, including a database of measured attributes, stacked images, and metadata of the 3PI Survey, will be available from the STScI MAST archive. This release will contain all stationary objects with mean and stack photometry registered on the GAIA astrometric frame.The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of both DR1 and the second data release DR2, to follow in the spring of 2017, will be presented. DR2 will add all time domain data and individual warped images. We will also report on the status of the Pan-STARRS2 Observatory and ongoing science with Pan-STARRS. The science from the PS1 surveys has included results in many t fields of astronomy from Near Earth Objects to cosmology.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grants No. NNX08AR22G, NNX12AR65G, NNX14AM74G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National Science Foundation under Grant No. AST

  7. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  8. One channel bolometric diagnostic for TBR-1 tokamak

    International Nuclear Information System (INIS)

    Silveira, R.M.; Vannucci, A.; Silva, R.P. da; Machida, M.

    1993-01-01

    One channel bolometric diagnostic has been designed and built for the TBR-1 tokamak to measure the machine radiation power loss. The detector, a thinistor, was calibrated and its characteristics experimentally determined. In this work the first results obtained with the bolometer are presented and discussed. (author)

  9. Importance of vesicle release stochasticity in neuro-spike communication.

    Science.gov (United States)

    Ramezani, Hamideh; Akan, Ozgur B

    2017-07-01

    Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.

  10. Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive

    Science.gov (United States)

    Garver, Hannah; Galligan, James J.; Fink, Gregory D.

    2011-01-01

    Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca2+ channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension. PMID:21131476

  11. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    Science.gov (United States)

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  12. Physical interaction of junctophilin and the CaV1.1 C terminus is crucial for skeletal muscle contraction.

    Science.gov (United States)

    Nakada, Tsutomu; Kashihara, Toshihide; Komatsu, Masatoshi; Kojima, Katsuhiko; Takeshita, Toshikazu; Yamada, Mitsuhiko

    2018-04-24

    Close physical association of Ca V 1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation-contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the JM targeting of LTCCs is unexplored. Junctophilin 1 (JP1) and JP2 stabilize the JM by bridging the sarcolemmal and SR membranes. Here, we examined the roles of JPs in localization and function of LTCCs. Knockdown of JP1 or JP2 in cultured myotubes inhibited LTCC clustering at the JM and suppressed evoked Ca 2+ transients without disrupting JM structure. Coimmunoprecipitation and GST pull-down assays demonstrated that JPs physically interacted with 12-aa residues in the proximal C terminus of the Ca V 1.1. A JP1 mutant lacking the C terminus including the transmembrane domain (JP1ΔCT) interacted with the sarcolemmal/T-tubule membrane but not the SR membrane. Expression of this mutant in adult mouse muscles in vivo exerted a dominant-negative effect on endogenous JPs, impairing LTCC-RyR coupling at triads without disrupting JM morphology, and substantially reducing Ca 2+ transients without affecting SR Ca 2+ content. Moreover, the contractile force of the JP1ΔCT-expressed muscle was dramatically reduced compared with the control. Taken together, JPs recruit LTCCs to the JM through physical interaction and ensure robust ECC at triads in skeletal muscle.

  13. Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain

    Science.gov (United States)

    Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.; Brierley, Stuart M.; Basbaum, Allan I.; Bosmans, Frank; King, Glenn F.; Julius, David

    2016-01-01

    Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nociception and pain has not been explored. We exploit these probes to demonstrate that Nav1.1-expressing fibers are modality-specific nociceptors: their activation elicits robust pain behaviors without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibers also express Nav1.1 and show enhanced toxin sensitivity in a model of irritable bowel syndrome. Altogether, these findings establish an unexpected role for Nav1.1 in regulating the excitability of sensory nerve fibers that underlie mechanical pain. PMID:27281198

  14. Structural basis for KV7.1/KCNEx interactions in the IKs channel complex

    DEFF Research Database (Denmark)

    Lundby, Alicia; Tseng, Gea-Ny; Schmitt, Nicole

    2010-01-01

    The cardiac I(Ks) current is involved in action potential repolarization, where its primary function is to limit action potential prolongation during sympathetic stimulation. The I(Ks) channel is mainly composed of K(V)7.1 ion channels associated with KCNE1 auxiliary subunits. The availability of...

  15. A novel PKD2L1 C-terminal domain critical for trimerization and channel function.

    Science.gov (United States)

    Zheng, Wang; Hussein, Shaimaa; Yang, JungWoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen

    2015-03-30

    As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.

  16. Studies of two naturally occurring compounds which effect release of acetylcholine from synaptosomes

    International Nuclear Information System (INIS)

    Koenig, M.L.

    1985-01-01

    Two naturally occurring compounds which effect the release of neurotransmitter from synaptosomes have been purified to apparent homogeneity. Iotrochotin (IOT) isolated from wound exudate of the Caribbean purple bleeder sponge promotes release in a manner that is independent of the extracellular Ca 2+ ion concentration. Leptinotarsin (LPT-d), a protein taken from hemolymph of the Colorado potato beetle, Leptinotarsa decemlineata, stimulates Ca 2+ -dependent release. IOT is slightly acidic and has a molecular weight of approximately 18 kD. [ 3 H]acetylcholine which has been introduced into synaptosomes as [ 3 H]choline can be released by IOT. The toxin releasable pool of labelled neurotransmitter is not depleted by depolarization of the synaptosomes with high potassium, and therefore seems to be primarily extravesicular. LPT-d is a larger protein (molecular weight = 45 kD) than IOT, and seems to effect primarily vesicular release by opening at least one type of presynaptic Ca 2+ channel. The facilitatory effects of the toxin on synaptosomal release can be inhibited by inorganic Ca 2+ channel antagonists, but are not generally affected by organic antagonists

  17. TRP Channels as Therapeutic Targets in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    Andrea Zsombok

    2016-08-01

    Full Text Available During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP channels were identified in tissues and organs important for the control of whole body metabolism. A variety of TRP channels has been shown to play a role in the regulation of hormone release, energy expenditure, pancreatic function, and neurotransmitter release in control, obese and/or diabetic conditions. Moreover, dietary supplementation of natural ligands of TRP channels has been shown to have potential beneficial effects in obese and diabetic conditions. These findings raised the interest and likelihood for potential drug development. In this mini-review, we discuss possibilities for better management of obesity and diabetes mellitus based on TRP-dependent mechanisms.

  18. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  19. T-type Ca(2+) channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure

    DEFF Research Database (Denmark)

    Svenningsen, Per; Andersen, Kenneth; Thuesen, Anne D

    2014-01-01

    nitric oxide synthase (eNOS) in arteries from wild type mice. Nitric oxide release measured as DAF fluorescence and cGMP levels were significantly lower in depolarized Cav3.1(-/-) compared to wild type arteries. In summary, the absence of T-type Cav3.1 channels attenuates NO-dependent dilatation...

  20. 6 CFR 7.23 - Emergency release of classified information.

    Science.gov (United States)

    2010-01-01

    ... Classified Information Non-disclosure Form. In emergency situations requiring immediate verbal release of... information through approved communication channels by the most secure and expeditious method possible, or by...

  1. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    Science.gov (United States)

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  2. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    Science.gov (United States)

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  3. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  4. Direct proton conductance through the TRPV1 pore and multimerization of TRPV channel subunits

    OpenAIRE

    Hellwig, Nicole Barbara

    2010-01-01

    TRPV1-induced intracellular acidification: The vanilloid receptor-related transient receptor potential channels (TRPV) belong to the superfamily of hexahelical cation channels and are integral components of thermosensation, pain perception and Ca2+-reabsorption in kidney and intestine. The vanilloid receptor (TRPV1), a poorly selective cation channel, is expressed in dorsal root ganglion (DRG) neurons and is regulated by diverse stimuli including capsaicin, endovanilloids and heat. Since a...

  5. Subcellular localization of the delayed rectifier K(+) channels KCNQ1 and ERG1 in the rat heart

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Borger; Møller, Morten; Knaus, Hans-Günther

    2003-01-01

    In the heart, several K(+) channels are responsible for the repolarization of the cardiac action potential, including transient outward and delayed rectifier K(+) currents. In the present study, the cellular and subcellular localization of the two delayed rectifier K(+) channels, KCNQ1 and ether...

  6. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    2007-06-01

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  7. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    Science.gov (United States)

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.

  8. TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function.

    Science.gov (United States)

    Ives, Stephen J; Park, Song Young; Kwon, Oh Sung; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Richardson, Russell S

    2017-09-01

    What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV 1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV 1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α 1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV 1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV 1 activation and known endogenous activators (anandamide, reactive oxygen species, H + , etc.), TRPV 1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV 1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV 1 agonist) and without (control). Specifically, phenylephrine (α 1 -adrenergic receptor agonist), dexmedetomidine (α 2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV 1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tension max (LT max ) and capsaicin, 21 ± 5%LT max ] and dexmedetomidine (control, 29 ± 12%LT max and capsaicin, 2 ± 3%LT max ), while robustly enhancing maximal

  9. Characterization of the chicken inward rectifier K+ channel IRK1/Kir2.1 gene

    Directory of Open Access Journals (Sweden)

    Locke Emily

    2004-11-01

    Full Text Available Abstract Background Inward rectifier potassium channels (IRK contribute to the normal function of skeletal and cardiac muscle cells. The chick inward rectifier K+ channel cIRK1/Kir2.1 is expressed in skeletal muscle, heart, brain, but not in liver; a distribution similar but not identical to that of mouse Kir2.1. We set out to explore regulatory domains of the cIRK1 promoter that enhance or inhibit expression of the gene in different cell types. Results We cloned and characterized the 5'-flanking region of cIRK1. cIRK1 contains two exons with splice sites in the 5'-untranslated region, a structure similar to mouse and human orthologs. cIRK1 has multiple transcription initiation sites, a feature also seen in mouse. However, while the chicken and mouse promoter regions share many regulatory motifs, cIRK1 possesses a GC-richer promoter and a putative TATA box, which appears to positively regulate gene expression. We report here the identification of several candidate cell/tissue specific cIRK1 regulatory domains by comparing promoter activities in expressing (Qm7 and non-expressing (DF1 cells using in vitro transcription assays. Conclusion While multiple transcription initiation sites and the combinatorial function of several domains in activating cIRK1 expression are similar to those seen in mKir2.1, the cIRK1 promoter differs by the presence of a putative TATA box. In addition, several domains that regulate the gene's expression differentially in muscle (Qm7 and fibroblast cells (DF1 were identified. These results provide fundamental data to analyze cIRK1 transcriptional mechanisms. The control elements identified here may provide clues to the tissue-specific expression of this K+ channel.

  10. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties.

    Directory of Open Access Journals (Sweden)

    Stefania Averaimo

    Full Text Available Chloride intracellular Channel 1 (CLIC1 is a metamorphic protein that changes from a soluble cytoplasmic protein into a transmembrane protein. Once inserted into membranes, CLIC1 multimerises and is able to form chloride selective ion channels. Whilst CLIC1 behaves as an ion channel both in cells and in artificial lipid bilayers, its structure in the soluble form has led to some uncertainty as to whether it really is an ion channel protein. CLIC1 has a single putative transmembrane region that contains only two charged residues: arginine 29 (Arg29 and lysine 37 (Lys37. As charged residues are likely to have a key role in ion channel function, we hypothesized that mutating them to neutral alanine to generate K37A and R29A CLIC1 would alter the electrophysiological characteristics of CLIC1. By using three different electrophysiological approaches: i single channel Tip-Dip in artificial bilayers using soluble recombinant CLIC1, ii cell-attached and iii whole-cell patch clamp recordings in transiently transfected HEK cells, we determined that the K37A mutation altered the single-channel conductance while the R29A mutation affected the single-channel open probability in response to variation in membrane potential. Our results show that mutation of the two charged amino acids (K37 and R29 in the putative transmembrane region of CLIC1 alters the biophysical properties of the ion channel in both artificial bilayers and cells. Hence these charged residues are directly involved in regulating its ion channel activity. This strongly suggests that, despite its unusual structure, CLIC1 itself is able to form a chloride ion channel.

  11. Myocardial production and release of MCP-1 and SDF-1 following myocardial infarction: differences between mice and man

    Directory of Open Access Journals (Sweden)

    Palasubramaniam Dharshan

    2011-09-01

    Full Text Available Abstract Background Stem cell homing to the heart is mediated by the release of chemo-attractant cytokines. Stromal derived factor -1 alpha (SDF-1a and monocyte chemotactic factor 1(MCP-1 are detectable in peripheral blood after myocardial infarction (MI. It remains unknown if they are produced by, and released from, the heart in order to attract stem cells to repair the damaged myocardium. Methods Murine hearts were studied for expression of MCP-1 and SDF-1a at day 3 and day 28 following myocardial infarction to determine whether production is increased following MI. In addition, we studied the coronary artery and coronary sinus (venous blood from patients with normal coronary arteries, stable coronary artery disease (CAD, unstable angina and MI to determine whether these cytokines are released from the heart into the systemic circulation following MI. Results Both MCP-1 and SDF-1a are constitutively produced and released by the heart. MCP-1 mRNA is upregulated following murine experimental MI, but SDF-1a is suppressed. There is less release of SDF-1a into the systemic circulation in patients with all stages of CAD including MI, mimicking the animal model. However MCP-1 release from the human heart following MI is also suppressed, which is the exact opposite of the animal model. Conclusions SDF-1a and MCP-1 release from the human heart are suppressed following MI. In the case of SDF-1a, the animal model appropriately reflects the human situation. However, for MCP-1 the animal model is the exact opposite of the human condition. Human observational studies like this one are paramount in guiding translation from experimental studies to clinical trials.

  12. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  13. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    Science.gov (United States)

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A possible CO2 conducting and concentrating mechanism in plant stomata SLAC1 channel.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO(2 and HCO(3(- concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO(2 conducting and concentrating mechanism of the SLAC1 is proposed. METHODOLOGY: The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1 provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pK(a values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO(2 and anion HCO(3(- are computed based on the chemical equilibrium theory. CONCLUSIONS: The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO(2 concentration is enhanced around 10(4 times by the pH difference between these regions, and CO(2 is stored in the hydrophobic region, which is a CO(2 pool. The pH driven CO(2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl(- and NO(3(- from inside to outside. SLAC1 may be a pathway providing CO(2 for photosynthesis in the guard cells.

  15. Channel Control-Blade Interference Management at LaSalle 1 and 2 during 2007 and 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cantonwine, Paul; Crawford, Doug; Downs, Mike [Global Nuclear Fuels, PO Box 780, Wilmington, NC 28402 (United States); Joe, Bertrum [GE-Hitachi, 1989 Little Orchard St., San Jose, CA 95125-1030 (United States); Bahensky, Ted [GE-Hitachi, PO Box 780, Wilmington, NC 28402 (United States); Reimer, John [Exelon Nuclear, 2601 North 21st Road, Marseilles, Il 61341-9757 (United States); Hoz, Carlos del la; Petersen, Ken [Exelon Nuclear, 4300 Winfield Road, Warrenville, IL 60555 (United States); Reitmeyer, Mike [Exelon Nuclear, 200 Exelon Way, Kennett Square, PA 19348 (United States); Morris, Jeff; Zbib, Ali [AREVA NP, 2101 Horn Rapids Road, Richland, WA. 99354 (United States)

    2009-06-15

    This paper provides a summary of the operational experience at LaSalle 1 and LaSalle 2 regarding channel control-blade interference that occurred in 2007 and 2008. Channel distortion data from LaSalle 1 provides a characterization of distortion in all four bundles in cells that experienced channel interference and cells that did not. Also, this paper provides a new channel distortion management strategy implemented at LaSalle 2 that avoided a mid-cycle outage. LaSalle 1 and LaSalle 2 are GE designed Boiling Water Reactors (BWR/5 Type) that generate 1195 MW electric. During 2007 and 2008, each core had 1. and 3. Cycle AREVA ATTRIUM{sup TM} 10 fuel with 100 mil Zr-2 channels and 2. Cycle GNF GE14 fuel with 120/75 mil Zr-2 channels. As a result of the channel control-blade interference observed in 2007 and 2008, two peripheral cells in LaSalle 1 and two (1 peripheral and 1 interior) cells in LaSalle 2 were declared inoperable. The first observations of channel control-blade friction occurred in September 2007 in LaSalle 1 about 6 months prior to the end of a 2-year cycle. LaSalle 2 had started up approximately 6 months earlier and had 18 months left the cycle. The initial observations (eventually seven cells with no-settle conditions were observed in LaSalle) were limited to the peripheral cells where fluence gradient-induced bow was the dominant distortion mechanism. However, near the end of cycle in LaSalle 1 in January 2008, a number of interior cells were unexpectedly found to not settle. These were later determined to be a result of shadow corrosion-induced bow. Further testing to determine the extent of condition found a total of nine interior cells that failed the no-settle criterion. These unexpected observations instigated a significant response that resulted in an extensive expansion of the work scope for the upcoming outage that began on February 4, 2008. Specifically, a large channel measurement campaign and a large re-channeling campaign were added. The

  16. Pre-Slaughter Stress Affects Ryanodine Receptor Protein Gene Expression and the Water-Holding Capacity in Fillets of the Nile Tilapia.

    Directory of Open Access Journals (Sweden)

    Elenice S R Goes

    Full Text Available Current study evaluated the effect of pre-slaughter stress on serum cortisol levels, pH, colorimetry, water-holding capacity (WHC and gene expression of ryanodine receptors (RyR1 and RyR3 in the Nile tilapia. A 3x4 factorial scheme experiment was conducted comprising three densities (100, 200, 400 kg/m³ with four transportation times (60, 120, 180, and 240 minutes.Transportation times alone reduced cortisol levels up to 180 minutes, followed by increased WHC and mRNA expression, RyR1 and RyR3 (200 kg/m³ density. No effect of density x transportation time interacted on the evaluated parameters. Results provided the first evidence that pre-slaughter stress affected ryanodine gene expression receptors and, consequently, the water-holding capacity in tilapia fillets.

  17. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells

    Science.gov (United States)

    Sakata, Ichiro; Park, Won-Mee; Walker, Angela K.; Piper, Paul K.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri

    2012-01-01

    The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain. PMID:22414807

  18. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    Science.gov (United States)

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  19. The Function of the Novel Mechanical Activated Ion Channel Piezo1 in the Human Osteosarcoma Cells

    OpenAIRE

    Jiang, Long; Zhao, Yi-ding; Chen, Wei-xiang

    2017-01-01

    Background The Piezo1 protein ion channel is a novel mechanical activated ion channel which is related to mechanical signal transduction. However, the function of the mechanically activated ion channel Piezo1 had not been explored. In this study, we explored the function of the Piezo1 ion channel in human osteosarcoma (OS) cells related to apoptosis, invasion, and the cell proliferation. Material/Methods Reverse transcription polymerase chain reaction (RT-PCR) and western-blotting were used t...

  20. Expression and contributions of the Kir2.1 inward-rectifier K+ channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states

    Directory of Open Access Journals (Sweden)

    Doris eLam

    2015-05-01

    Full Text Available When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1 to anti-inflammatory, alternative (M2 and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca2+-dependent. In many cell types, the membrane potential and driving force for Ca2+ influx are regulated by inward-rectifier K+ channels, including Kir2.1, which is prevalent in microglia. However, it is not known whether Kir2.1 expression and contributions are altered in anti-inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca2+ entry, proliferation and migration of rat microglia. Kir2.1 (KCNJ2 transcript expression, current amplitude, and proliferation were comparable in unstimulated microglia and following alternative activation (IL-4 stimulated and acquired deactivation (IL-10 stimulated. To examine functional roles of Kir2.1 in microglia, we first determined that ML133 was more effective than the commonly used blocker, Ba2+; i.e., ML133 was potent (IC50=3.5 M and voltage independent. Both blockers slightly increased proliferation in unstimulated or IL-4 (but not IL-10-stimulated microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more effective. In all three activation states, blocking Kir2.1 with ML133 dramatically reduced Ca2+ influx through Ca2+-release-activated Ca2+ (CRAC channels. Thus, Kir2.1 channel activity is necessary for microglial Ca2+ signaling and migration under resting and anti-inflammatory states but the channel weakly inhibits proliferation.

  1. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  2. Design of a controlled release system of OP-1 and TGF-β1 based in microparticles of sodium alginate and release characterization by HPLC-UV.

    Science.gov (United States)

    Oliva-Rodríguez, Ricardo; Pérez-Urizar, José; Dibildox-Alvarado, Estela; Martínez-Saldaña, María Consolación; Avelar-González, Francisco Javier; Flores-Reyes, Héctor; Pozos-Guillén, Amaury de Jesús; Guerrero-Barrera, Alma Lilián

    2011-12-01

    A new system for sustained release of growth factors, such as osteogenic protein 1 (OP-1) and transforming growth factor β1 (TGF-β1), intended to repair and promote dental tissue regeneration in rats was designed and characterized in this work. The release system was made with microparticles of sodium alginate, produced by ionic gelling dripping technique. The release profiles of OP-1 and TGF-β1 from biopolymer matrix were determined by high-performance liquid chromatography (HPLC), and with this purpose, an HPLC-UV method was developed. About 80% of each growth factor was released in the first 24 h, reaching almost 100% in 168 h. The system was tested during the tissue repair in rat molars in comparison with calcium hydroxide and both growth factors not encapsulated. The dentin sialoprotein (DSP) was used as a repair marker. It was detected by immunohistochemistry, after 14- and 28-d post-treatment. X (2) test (p ≤ 0.001) and Fisher exact test (p ≤ 0.05) were applied for assessment of the amount of immunostaining. The treatment with encapsulated OP-1 showed an increased DSP immunostaining after 14 d and did not find any significant difference with the immunostaining observed for calcium hydroxide treatment. Treatment with TGF-β1 did not show significant difference with calcium hydroxide. Treatment with both factors OP-1 and TGF-β1 showed higher DSP immunostaining in comparison with calcium hydroxide treatment. In conclusion, the combination of both growth factors encapsulated showed more DSP immunostaining in comparison with each one separated, either encapsulated or not.

  3. Single molecule microscopy on Store-Operated Calcium channels

    International Nuclear Information System (INIS)

    Madl, J.

    2011-01-01

    Store-Operated Calcium Entry is essential for many signaling processes in non-excitable cells. The best studied Store-Operated Calcium current is the Calcium-Release-Activated-Calcium (CRAC) current in T-cells and mast cells, with Orai1 representing the essential pore forming subunit. Functional CRAC channels in store-depleted cells are composed of four Orai1 subunits. However, the stoichiometric composition in resting cells is still discussed controversially: both a tetrameric and a dimeric stoichiometry of resting-state Orai1 have been reported for immobilized or immobile Orai1 proteins. The aim of this thesis was to design a more versatile approach that allows reliable determination of the subunit stoichiometry of mobile Orai1 channels. The motive for this approach is that mobile sub-fractions of the entire Orai1 population provide the cleanest pool of data, devoid of contributions e.g. from immobile Orai1 clusters or Orai1-loaded vesicles attached to the plasma membrane. Moreover, resting-state Orai1 is predominantly mobile, and mobility appears critical for the lateral redistribution which occurs upon store depletion. The method per se is based on single molecule fluorescence microscopy and brightness analysis. Orai1 proteins were fused to a monomeric variant of Green Fluorescent Protein (mGFP) and over-expressed in a human cell line (T24). The 1:1 labeling stoichiometry allows using the brightness of individual Orai1-mGFP channels as a direct measure of the pore stoichiometry. Due to over-expression a potential mixing with endogenous Orai1 can be neglected. However, over-expression of Orai1-mGFP results in channel densities that are too high to allow for resolving single channels using diffraction limited optical microscopy. In order to overcome this challenge, I developed an experimental strategy that allows reduction of the density of actively fluorescent Orai1-mGFP channels without altering the labeling stoichiometry. In order to reduce the surface density

  4. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  5. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    Science.gov (United States)

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  6. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  7. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    Science.gov (United States)

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Chinese red yeast rice (Monascus purpureus for primary hyperlipidemia: a meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Grimsgaard Sameline

    2006-11-01

    Full Text Available Abstract Extracts of Chinese red yeast rice (RYR, a traditional dietary seasoning of Monascus purpureus contains several active ingredients including lovastatin, and several trials of its possible lipid-lowering effects have been conducted. This meta-analysis assesses the effectiveness and safety of RYR preparations on lipid modification in primary hyperlipidemia. We included randomized controlled trials testing RYR preparation, compared with placebo, no treatment, statins, or other active lipid-lowering agents in people with hyperlipidemia through searching PubMed, CBMdisk, TCMLARS, the Cochrane Library, and AMED up to December 2004. Ninety-three randomized trials (9625 participants were included and three RYR preparations (Cholestin, Xuezhikang and Zhibituo were tested. The methodological quality of trial reports was generally low in terms of generation of the allocation sequence, allocation concealment, blinding, and intention-to-treat. The combined results showed significant reduction of serum total cholesterol levels (weighted mean difference -0.91 mmol/L, 95% confidence interval -1.12 to -0.71, triglycerides levels (-0.41 mmol/L, -0.6 to -0.22, and LDL-cholesterol levels (-0.73 mmol/L, -1.02 to -0.043, and increase of HDL-cholesterol levels (0.15 mmol/L, 0.09 to 0.22 by RYR treatment compared with placebo. The lipid modification effects appeared to be similar to pravastatin, simvastatin, lovastatin, atorvastatin, or fluvastatin. Compared with non-statin lipid lowering agents, RYR preparations appeared superior to nicotinate and fish oils, but equal to or less effective than fenofibrate and gemfibrozil. No significant difference in lipid profile was found between Xuezhikang and Zhibituo. RYR preparations were associated with non-serious adverse effects such as dizziness and gastrointestinal discomfort. Current evidence shows short-term beneficial effects of RYR preparations on lipid modification. More rigorous trials are needed, and long

  9. Physical Hydraulic Model of Side-Channel Spillway of Lambuk DAM, Bali

    Science.gov (United States)

    Harifa, A. C.; Sholichin, M.; Othman, F. B.

    2013-12-01

    The spillway is among the most important structures of a dam project. A spillway is designed to prevent overtopping of a dam at a place that is not designed for overtopping. Side-channel spillways are commonly used to release water flow from a reservoir in places where the sides are steep and have a considerable height above the dam. Experimental results were collected with a hydraulic model of the side-channel spillway for releasing the peak overflow of Lambuk Dam. This dam is, located on the Lambuk River, which is a tributary of the Yeh Hoo River ~ 34.6 km north of Denpasar on the island of Bali. The bituminous geomembrane faced dam is 24 m in height, with a 35-m wide spillway. The length of the side channel is 35 m long, with 58 m of transition channel, 67.37 m of chuteway channel and 22.71 m of stilling basin. The capacity of the spillway is 231.91 m3/s and the outlet works capacity is 165.28 m3/s. The reservoir is designed for irrigation and water supply. The purpose of this study was to optimize the designed of the structure and to ensure its safe operation. In hydraulic model may help the decision-makers to visualize the flow field before selecting a ';suitable' design. The hydraulic model study was performed to ensure passage of the maximum discharge at maximum reservoir capacity; to study the spillway approach conditions, water surface profiles, and flow patterns in the chuteway; and to reveal potential demerits of the proposed hydraulic design of various structures and explore solutions. The model was constructed at 1 : 40 scale, Reservoir topography was modeled using concrete, the river bed using sand and some gravel, the river berm using concrete, and the spillway and channel using Plexiglas. Water was measured using Rectangular contracted weir. Design floods (with return period in year) were Q2 = 111.40 m3/s, Q5 = 136.84 m3/s, Q10 = 159.32 m3/s, Q25 = 174.61 m3/s, Q50 = 185.13 m3/s, Q100 = 198.08 m3/s, Q200 = 210.55 m3/s, Q1000 = 231.91 m3/s and the

  10. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.

  11. Modulation of release of [3H]acetylcholine in the major pelvic ganglion of the rat.

    Science.gov (United States)

    Somogyi, G T; de Groat, W C

    1993-06-01

    Cholinergic modulation of [3H]acetylcholine release evoked by electrical stimulation was studied in the rat major pelvic ganglion, which was prelabeled with [3H]choline. Acetylcholine (ACh) release was independent of the frequency of stimulation; 0.3 Hz produced the same volley output as 10 Hz. Tetrodotoxin (1 microM) or omission of Ca2+ from the medium abolished ACh release. The M1 receptor agonist (4-hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride (McN-A 343, 50 microM) increased release (by 136%), whereas the M2 muscarinic agonist oxotremorine (1 microM) decreased ACh release (by 22%). The muscarinic antagonists, atropine (1 microM) or pirenzepine (M1 selective, 1 microM), did not change ACh release. However, pirenzepine (1 microM) blocked the facilitatory effect of McN-A 343, and atropine (1 microM) blocked the inhibitory effect of oxotremorine. The cholinesterase inhibitor physostigmine (1-5 microM), the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10 microM), and the nicotinic antagonist D-tubocurarine (50 microM) did not change ACh release. 4-Aminopyridine, a K+ channel blocker, significantly increased the release (by 146%). Seven days after decentralization of the major pelvic ganglion, the evoked release of ACh was abolished. It is concluded that release of ACh occurs from the preganglionic nerve terminals rather than from the cholinergic cell bodies and is not modulated by actions of endogenous ACh on either muscarinic or nicotinic autoreceptors. These data confirm and extend previous electrophysiological findings indicating that synapses in the major pelvic ganglion have primarily a relay function.

  12. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  13. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    Science.gov (United States)

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  14. A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm-1

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Korolkova, Yuliya V; Grunnet, Morten

    2003-01-01

    The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1...... had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles...... of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed...

  15. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    Science.gov (United States)

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  16. PKC and AMPK regulation of Kv1.5 potassium channels

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells....

  17. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  18. Mechanisms of renin release from juxtaglomerular cells

    DEFF Research Database (Denmark)

    Skøtt, O; Salomonsson, Max; Sellerup Persson, Anja

    1991-01-01

    In microdissected, nonperfused afferent arterioles changes in intravascular pressure did not affect renin secretion. On the contrary, renin release from isolated afferent arterioles perfused in a free-flow system has been reported to be sensitive to simultaneous changes in luminal pressure and fl....... Hence local blood flow may be involved in the baroreceptor control of renin release. If flow is sensed, the sensor is likely to be located near the endothelial cell layer, where ion channels have been shown to be influenced by variations in shear stress....

  19. Verification of the linearity of the IPR-R1 TRIGA reactor power channels

    International Nuclear Information System (INIS)

    Souza, Rose Mary Gomes do Prado; Campolina, Daniel de Almeida Magalhaes

    2013-01-01

    The aim of this paper is to verify the linearity of the three power channels of the IPR-R1 TRIGA reactor. Located at Nuclear Technology Development Center-CDTN in Belo Horizonte, the IPR-R1 reactor is a typical 100 kW Mark I light-water reactor cooled by natural convection. When the experiments were performed, the reactor core had 59 fuel elements, containing 8% by weight of uranium enriched to 20% in 235 U. The core has cylindrical configuration with an annular graphite reflector. The responses of the detectors of the Linear, Log N and Percent Power channels were compared with the responses of detectors which only depend on the overall neutron flux within the reactor. Gold and cobalt foils were activated at low and high powers, respectively, and the specific count results were compared with measurements performed, simultaneously, with a fission chamber, and with the power registered by the three channels. The results show that the Linear channel responds linearly up to 100 kW, and the Log N channel responses are linear at low powers. In the range of high power, the Log N and the Percent Power channels exhibit linearity only from 10 kW to 50 kW. (author)

  20. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  1. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    Science.gov (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  2. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel.

    Science.gov (United States)

    Zaydman, Mark A; Kasimova, Marina A; McFarland, Kelli; Beller, Zachary; Hou, Panpan; Kinser, Holly E; Liang, Hongwu; Zhang, Guohui; Shi, Jingyi; Tarek, Mounir; Cui, Jianmin

    2014-12-23

    Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore.

  3. Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel

    Science.gov (United States)

    Zaydman, Mark A; Kasimova, Marina A; McFarland, Kelli; Beller, Zachary; Hou, Panpan; Kinser, Holly E; Liang, Hongwu; Zhang, Guohui; Shi, Jingyi; Tarek, Mounir; Cui, Jianmin

    2014-01-01

    Voltage-gated ion channels generate electrical currents that control muscle contraction, encode neuronal information, and trigger hormonal release. Tissue-specific expression of accessory (β) subunits causes these channels to generate currents with distinct properties. In the heart, KCNQ1 voltage-gated potassium channels coassemble with KCNE1 β-subunits to generate the IKs current (Barhanin et al., 1996; Sanguinetti et al., 1996), an important current for maintenance of stable heart rhythms. KCNE1 significantly modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et al., 2012; Abbott, 2014). These changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent interactions that functionally couple the voltage-sensing domains (VSDs) to the pore. DOI: http://dx.doi.org/10.7554/eLife.03606.001 PMID:25535795

  4. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    Science.gov (United States)

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  5. Testing the behaviour of different kinetic models for uptake/release of radionuclides between water and sediments when implemented in a marine dispersion model

    International Nuclear Information System (INIS)

    Perianez, R.

    2004-01-01

    Three kinetic models for adsorption/release of 137 Cs between water and sediments have been tested when they are included in a previously validated dispersion model of the English Channel. Radionuclides are released to the Channel from La Hague nuclear fuel reprocessing plant (France). The kinetic models are a 1-step model consisting of a single reversible reaction, a 2-step model consisting of two consecutive reversible reactions and an irreversible model consisting of three parallel reactions: two reversible and one irreversible. The models have been tested under three typical situations that correspond to the source terms that can generally be found: instantaneous release, continuous release and redissolution of radionuclides from contaminated sediments. Differences between the models become more evident when contact times between water and sediments are larger (continuous release) and in the case of redissolution from sediments. Time scales for the redissolution process are rather different between the three models. The 1-step model produces a redissolution that is too fast when compared with experimental evidence. The irreversible model requires that saturation effects of the irreversible phase are included. Probably, the 2-step model represents the best compromise between ease and level of detail of the description of sorption/release processes

  6. Tight connection between fission gas discharge channels

    International Nuclear Information System (INIS)

    Jung, W.; Peehs, M.; Rau, P.; Krug, W.; Stechemesser, H.

    1978-01-01

    The invention is concerned with the tight connection between the fission gas discharge channel, leading away from the support plate of a gas-cooled reactor, and the top of the fuel element suspended from this support plate. The closure is designed to be gas-tight for the suspended as well as for the released fuel element. The tight connection has got an annular body resting on the core support plate in the mouth region of the fission gas discharge channel. This body is connected with the fission gas discharge channel in the fuel element top fitting via a gas-tight part and supported by a compression spring. Care is taken for sealing if the fuel element is removal. (RW) [de

  7. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels*

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. PMID:26637352

  8. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry.

    Science.gov (United States)

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H

    2014-06-03

    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na(+) channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers.

  9. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  10. The human immunodeficiency virus-1 protein Tat and its discrete fragments evoke selective release of acetylcholine from human and rat cerebrocortical terminals through species-specific mechanisms.

    Science.gov (United States)

    Feligioni, Marco; Raiteri, Luca; Pattarini, Roberto; Grilli, Massimo; Bruzzone, Santina; Cavazzani, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2003-07-30

    The effect of the human immunodeficiency virus-1 protein Tat was investigated on neurotransmitter release from human and rat cortical nerve endings. Tat failed to affect the release of several neurotransmitters, such as glutamate, GABA, norepinephrine, and others, but it evoked the release of [3H]ACh via increase of cytosolic [Ca2+]. In human nerve terminals, the Tat effect partly depends on Ca2+ entry through voltage-sensitive Ca2+ channels, because Cd2+ halved the Tat-evoked release. Activation of group I metabotropic glutamate receptors (mGluR) and mobilization of Ca2+ from IP3-sensitive intraterminal stores are also involved, because the Tat effect was prevented by mGluR antagonists 2-methyl-6-(phenylethynyl)pyridine hydrochloride and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester and by the IP3 receptor antagonists heparin and xestospongin C. Furthermore, the group I selective mGlu agonist (RS)-3,5-dihydroxyphenylglycine enhanced [3H]ACh release. In rat nerve terminals, the Tat-evoked release neither depends on external Ca2+ ions entry nor on IP3-mediated mechanisms. Tat seems to cause mobilization of Ca2+ from ryanodine-sensitive internal stores because its effect was prevented by both 8-bromo-cyclic adenosine diphosphate-ribose and dantrolene. The Tat-evoked release from human synaptosomes was mimicked by the peptide sequences Tat 32-62, Tat 49-86, and Tat 41-60. In contrast, the Tat 49-86 and Tat 61-80 fragments, but not the Tat 32-62 fragment, were active in rat synaptosomes. In conclusion, Tat elicits Ca2+-dependent [3H]ACh release by species-specific intraterminal mechanisms by binding via discrete amino acid sequences to different receptive sites on human and rat cholinergic terminals.

  11. ApoA-I induces S1P release from endothelial cells through ABCA1 and SR-BI in a positive feedback manner.

    Science.gov (United States)

    Liu, Xing; Ren, Kun; Suo, Rong; Xiong, Sheng-Lin; Zhang, Qing-Hai; Mo, Zhong-Cheng; Tang, Zhen-Li; Jiang, Yue; Peng, Xiao-Shan; Yi, Guang-Hui

    2016-12-01

    Sphingosine-1-phosphate (S1P), which has emerged as a pivotal signaling mediator that participates in the regulation of multiple cellular processes, is derived from various cells, including vascular endothelial cells. S1P accumulates in lipoproteins, especially HDL, and the majority of free plasma S1P is bound to HDL. We hypothesized that HDL-associated S1P is released through mechanisms associated with the HDL maturation process. ApoA-I, a major HDL apolipoprotein, is a critical factor for nascent HDL formation and lipid trafficking via ABCA1. Moreover, apoA-I is capable of promoting bidirectional lipid movement through SR-BI. In the present study, we confirmed that apoA-I can facilitate the production and release of S1P by HUVECs. Furthermore, we demonstrated that ERK1/2 and SphK activation induced by apoA-I is involved in the release of S1P from HUVECs. Inhibitor and siRNA experiments showed that ABCA1 and SR-BI are required for S1P release and ERK1/2 phosphorylation induced by apoA-I. However, the effects triggered by apoA-I were not suppressed by inhibiting ABCA1/JAK2 or the SR-BI/Src pathway. S1P released due to apoA-I activation can stimulate the (ERK1/2)/SphK1 pathway through S1PR (S1P receptor) 1/3. These results indicated that apoA-I not only promotes S1P release through ABCA1 and SR-BI but also indirectly activates the (ERK1/2)/SphK1 pathway by releasing S1P to trigger their receptors. In conclusion, we suggest that release of S1P induced by apoA-I from endothelial cells through ABCA1 and SR-BI is a self-positive-feedback process: apoA-I-(ABCA1 and SR-BI)-(S1P release)-S1PR-ERK1/2-SphK1-(S1P production)-(more S1P release induced by apoA-I).

  12. Modulated Hawking radiation and a nonviolent channel for information release

    OpenAIRE

    Giddings, Steven B.

    2014-01-01

    Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective ...

  13. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  14. Classification of H2O2 as a Neuromodulator that Regulates Striatal Dopamine Release on a Subsecond Time Scale

    Science.gov (United States)

    2012-01-01

    Here we review evidence that the reactive oxygen species, hydrogen peroxide (H2O2), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H2O2 generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H2O2 suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H2O2 levels; (2) H2O2 is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H2O2 is activity dependent; (4) H2O2 generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K+ (KATP) channels on DA axons; and (5) the amplitude of H2O2-dependent inhibition of DA release is attenuated by enzymatic degradation of H2O2, but the subsecond time course is determined by H2O2 diffusion rate and/or KATP-channel kinetics. In the dorsal striatum, neuromodulatory H2O2 is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H2O2 occur in other regions and cell types, as well, consistent with the widespread expression of KATP and other H2O2-sensitive channels throughout the CNS. PMID:23259034

  15. The Dark Energy Survey Data Release 1

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, T.M.C.; et al.

    2018-01-09

    We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single epoch images, coadded images, coadded source catalogs, and associated products and services assembled over the first three years of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (August 2013 to February 2016) by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ~5,000 sq. deg. of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of g = 1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.90 arcsec FWHM, a photometric precision of < 1% in all bands, and an astrometric precision of 151 mas. The median coadded catalog depth for a 1.95" diameter aperture at S/N = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 mag. DES DR1 includes nearly 400M distinct astronomical objects detected in ~10,000 coadd tiles of size 0.534 sq. deg. produced from ~39,000 individual exposures. Benchmark galaxy and stellar samples contain ~310M and ~ 80M objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive coadd image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.

  16. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Notice of release of Syn1 Tall Fescue

    Science.gov (United States)

    The Agricultural Research Service, U.S. Department of Agriculture announces the release of Syn1 tall fescue [Festuca arundinacea (syn., Lolium arundinaceum Darbyshire; Schedonorus phoenix (Scop.) Holub)] (PI xxxx, PI xxxx) germplasm developed by Dr. Bryan K. Kindiger at the USDA-ARS Grazinglands Res...

  18. Evidence for functional diversity between the voltage-gated proton channel Hv1 and its closest related protein HVRP1.

    Directory of Open Access Journals (Sweden)

    Iris H Kim

    Full Text Available The Hv1 channel and voltage-sensitive phosphatases share with voltage-gated sodium, potassium, and calcium channels the ability to detect changes in membrane potential through voltage-sensing domains (VSDs. However, they lack the pore domain typical of these other channels. NaV, KV, and CaV proteins can be found in neurons and muscles, where they play important roles in electrical excitability. In contrast, VSD-containing proteins lacking a pore domain are found in non-excitable cells and are not involved in neuronal signaling. Here, we report the identification of HVRP1, a protein related to the Hv1 channel (from which the name Hv1 Related Protein 1 is derived, which we find to be expressed primarily in the central nervous system, and particularly in the cerebellum. Within the cerebellar tissue, HVRP1 is specifically expressed in granule neurons, as determined by in situ hybridization and immunohistochemistry. Analysis of subcellular distribution via electron microscopy and immunogold labeling reveals that the protein localizes on the post-synaptic side of contacts between glutamatergic mossy fibers and the granule cells. We also find that, despite the similarities in amino acid sequence and structural organization between Hv1 and HVRP1, the two proteins have distinct functional properties. The high conservation of HVRP1 in vertebrates and its cellular and subcellular localizations suggest an important function in the nervous system.

  19. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    Science.gov (United States)

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. 21 CFR 610.1 - Tests prior to release required for each lot.

    Science.gov (United States)

    2010-04-01

    ....1 Section 610.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... release required for each lot. No lot of any licensed product shall be released by the manufacturer prior... considered in determining whether or not the test results meet the test objective, except that a test result...

  1. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP

  2. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    Science.gov (United States)

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.

  3. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts.

    Directory of Open Access Journals (Sweden)

    Maki Tsumura

    Full Text Available Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP melastatin subfamily member 8 (TRPM8 and ankyrin subfamily member 1 (TRPA1 channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+ concentration ([Ca(2+]i. Icilin-, WS3-, or WS12-induced [Ca(2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+]i elicited by allyl isothiocyanate (AITC was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+]i increase. Low-temperature stimuli elicited [Ca(2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.

  4. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Fernández-Mariño

    Full Text Available Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51% the tungstate-produced reduction of platelet-derived growth factor (PDGF-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.

  5. El Tor hemolysin of Vibrio cholerae O1 forms channels in planar lipid bilayer membranes.

    Science.gov (United States)

    Ikigai, H; Ono, T; Iwata, M; Nakae, T; Shimamura, T

    1997-05-15

    We investigated the channel formation by El Tor hemolysin (molecular mass, 65 kDa) of Vibrio cholerae O1 biotype El Tor in planar lipid bilayers. The El Tor hemolysin channel exhibited asymmetric and hyperbolic membrane current with increasing membrane potential, meaning that the channel is voltage dependent. The zero-current membrane potential measured in KCI solution showed that permeability ratio PK+/PCl- was 0.16, indicating that the channel is 6-fold more anion selective over cation. The hemolysin channel frequently flickered in the presence of divalent cations, suggesting that the channel spontaneously opens and closes. These data imply that the El Tor hemolysin damages target cells by the formation of transmembrane channels and, consequently, is the cause of osmotic cytolysis.

  6. Ablation of Ca(V2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Robert Theodor Mallmann

    Full Text Available Voltage-gated Ca(V2.1 (P/Q-type Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V2.1 mouse models. Global Ca(V2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V2.1 in the adult murine forebrain.

  7. Experimental test results of multi-channel test rig of T1 test section, 5

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takase, Kazuyuki; Miyamoto, Yoshiaki

    1990-09-01

    Channel blockage test on a fuel column of the high temperature engineering test reactor (HTTR) has been performed under the helium gas atmosphere at a high temperature and a high pressure in order to obtain safety data on flow rate and temperature distributions in the fuel column with the multi-channel test rig of the fuel stack test section (T 1 ) in HENDEL. In the test, one of 12 fuel channels was blockaded to 90% of flow area at the channel inlet. Experimental results showed that the helium gas flow rate in the blockaded channel was 28%∼33% lower than the average flow rate for Reynolds number from 2300 to 14000 in isothermal flow. When simulated fuel rods were heated, the flow rate in the blockaded channel did not decrease down in comparison with the isothermal flow. This is due to that the heat generated in the fuel rods conducts to the other fuel channels in graphite fuel blocks, so that accelerated pressure losses in the fuel channels change with helium gas temperatures. (author)

  8. Mechanisms of Chinese Red Yeast Rice Inhibition of Prostate Cancer Growth

    Science.gov (United States)

    2009-10-01

    following treatment with LV and RYR. MATERIALS AND METHODS Extract and standard preparation Chinese RYR powder purchased from Botanica Bio- Science (Ojai...RYR diet contains 5% of RYR powder ( Botanica Bioscience, Ojai, CA) with the modified AIN93G diet. For lovastatin diet, lovastatin (Mylan

  9. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and hERG......1b, have been shown to be co-expressed in human cardiomyocytes. In this paper, we present the electrophysiological characterization of hERG1a, hERG1b, and co-expressed hERG1a/b channels in a mammalian expression system using the whole-cell patch clamp technique. We also quantified the messenger RNA...... (mRNA) levels of hERG1a and hERG1b in human cardiac tissue, and based on the expressed ratios, we evaluated the resulting currents in Xenopus laevis oocytes. Compared to hERG1a channels, activation was faster for both hERG1b and hERG1a/b channels. The deactivation kinetics was greatly accelerated...

  10. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1993-01-01

    differences in the mode of action of the two depolarizing stimuli were reflected in the properties of the increase in [Ca++]i elicited by 55 mM K+ and 100 microM glutamate, respectively. The K(+)-induced increase in [Ca++]i was reduced by both verapamil and Ca(++)-free media whereas the corresponding...... neurotransmitter glutamate (100 microM). Both depolarizing stimuli exerted prompt increases in the release of preloaded [3H]GABA as well as in [Ca++]i. However, the basic properties of transmitter release and the increase in [Ca++]i under a variety of conditions were different during stimulation with K...... was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  11. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels.

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-02-26

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action.

    Science.gov (United States)

    Degroot, Aldemar; Köfalvi, Attila; Wade, Mark R; Davis, Richard J; Rodrigues, Ricardo J; Rebola, Nelson; Cunha, Rodrigo A; Nomikos, George G

    2006-10-01

    Evidence indicates that blockade of cannabinoid receptors increases acetylcholine (ACh) release in brain cortical regions. Although it is assumed that this type of effect is mediated through CB1 receptor (CB1R) antagonism, several in vitro functional studies recently have suggested non-CB1R involvement. In addition, neither the precise neuroanatomical site nor the exact mechanisms underlying this effect are known. We thoroughly examined these issues using a combination of systemic and local administration of CB1R antagonists, different methods of in vivo microdialysis, CB1R knockout (KO) mice, tissue measurements of ACh, and immunochemistry. First, we showed that systemic injections of the CB1R antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR-141716A) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) dose-dependently increased hippocampal ACh efflux. Likewise, local hippocampal, but not septal, infusions of SR141716A or AM251 increased hippocampal ACh release. It is noteworthy that the stimulatory effects of systemically administered CB1R antagonists on hippocampal ACh release were completely abolished in CB1R KO mice. CB1R KO mice had similar basal but higher stress-enhanced hippocampal ACh levels compared with wild-type controls. It is interesting that dopamine D1 receptor antagonism counteracted the stimulatory effect of CB1R blockade on hippocampal ACh levels. Finally, immunohistochemical methods revealed that a high proportion of CB1R-positive nerve terminals were found in hippocampus and confirmed the colocalization of CB1 receptors with cholinergic and dopaminergic nerve terminals. In conclusion, hippocampal ACh release may specifically be controlled through CB1Rs located on both cholinergic and dopaminergic neuronal projections, and CB1R antagonism increases hippocampal ACh release, probably through both a direct

  13. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens.

    Science.gov (United States)

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-08-01

    Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.

  14. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    Directory of Open Access Journals (Sweden)

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  15. Loss of Transient Receptor Potential Ankyrin 1 Channel Deregulates Emotion, Learning and Memory, Cognition, and Social Behavior in Mice.

    Science.gov (United States)

    Lee, Kuan-I; Lin, Hui-Ching; Lee, Hsueh-Te; Tsai, Feng-Chuan; Lee, Tzong-Shyuan

    2017-07-01

    The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.

  16. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    Science.gov (United States)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  17. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer.

    Science.gov (United States)

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2013-10-11

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.

  18. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide

    Directory of Open Access Journals (Sweden)

    István Z. Bátai

    2018-02-01

    Full Text Available Transient receptor potential ankyrin 1 (TRPA1 non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS. In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline. Animals were treated intraperitoneally with POLY (17 µmol/kg or DMTS (250 µmol/kg or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron–SOM axis. While antinociceptive effects of

  19. KCNE4 is an inhibitory subunit to Kv1.1 and Kv1.3 potassium channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hannne B; Hay-Schmidt, Anders

    2003-01-01

    is detected in the heart and in five different parts of the brain. Having the broad distribution of Kv1 channels in mind, the demonstrated inhibitory property of KCNE4-subunits could locally and/or transiently have a dramatic influence on cellular excitability and on setting resting membrane potentials....

  20. Calcium channel agonists and antagonists regulate protein phosphorylation in intact synaptosomes

    International Nuclear Information System (INIS)

    Robinson, P.J.; Lovenberg, Walter

    1986-01-01

    Protein phosphorylation in intact synaptosomes is highly sensitive to alterations in calcium fluxes and was used to probe the possible mechanism of action of the calcium channel agonist BAY K 8644 and antagonists verapamil and nifedipine. These agents (at 1μM) all increased the basal phosphorylation of a specific set of 4 synaptosomal phosphoproteins termed P139, P124, P96 and P60, but did not alter depolarization-dependent protein phosphorylation. The increases could not be explained by a direct stimulation of protein kinases and appears unrelated to the known effects of these + drugs on K + -stimulated neuro-transmitter release. This finding may reveal a possible new mechanism of action for drugs which interact with calcium channels. (Author)

  1. From press release to news: mapping the framing of the 2009 H1N1 A influenza pandemic.

    Science.gov (United States)

    Lee, Seow Ting; Basnyat, Iccha

    2013-01-01

    Pandemics challenge conventional assumptions about health promotion, message development, community engagement, and the role of news media. To understand the use of press releases in news coverage of pandemics, this study traces the development of framing devices from a government public health agency's press releases to news stories about the 2009 H1N1 A influenza pandemic. The communication management of the H1N1 pandemic, an international news event with local implications, by the Singapore government is a rich locus for understanding the dynamics of public relations, health communication, and journalism. A content analysis shows that the evolution of information from press release to news is marked by significant changes in media frames, including the expansion and diversification in dominant frames and emotion appeals, stronger thematic framing, more sources of information, conversion of loss frames into gain frames, and amplification of positive tone favoring the public health agency's position. Contrary to previous research that suggests that government information subsidies passed almost unchanged through media gatekeepers, the news coverage of the pandemic reflects journalists' selectivity in disseminating the government press releases and in mediating the information flow and frames from the press releases.

  2. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  3. QUEST2: Release 1: Project plan deliverable set

    International Nuclear Information System (INIS)

    Braaten, F.D.

    1995-01-01

    This Project Management Plan combines the project management deliverables from the P+ methodology which are applicable to Release 1 of the QUEST2 work. This consolidation reflects discussions with WHC QA regarding an appropriate method for ensuring that P+ deliverables fulfill the intent of WHC-CM-3-10 and QR-19

  4. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L; Suozzo, M; Ryan, K A; Napp, D; Schneider, A S

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  5. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    Science.gov (United States)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  6. Effects of elevated line sources on turbulent mixing in channel flow

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2016-11-01

    Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.

  7. Data acquisition backbone core DABC release v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski-Musch, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    The new experiments at FAIR require new concepts of data acquisition systems for the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a general purpose software framework developed for the implementation of such data acquisition systems. A DABC application consists of functional components like data input, combiner, scheduler, event builder, filter, analysis and storage which can be configured at runtime. Application specific code including the support of all kinds of data channels (front-end systems) is implemented by C++ program plug-ins. DABC is also well suited as environment for various detector and readout components test beds. A set of DABC plug-ins has been developed for the FAIR experiment CBM (Compressed Baryonic Matter) at GSI. This DABC application is used as DAQ system for test beamtimes. Front-end boards equipped with n-XYTER ASICs and ADCs are connected to read-out controller boards (ROC). From there the data is sent over Ethernet (UDP), or over optics and PCIe interface cards into Linux PCs. DABC does the controlling, event building, archiving and data serving. The first release of DABC was published in 2009 and is available under GPL license.

  8. TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions

    Directory of Open Access Journals (Sweden)

    Guangda Peng

    2016-10-01

    Full Text Available The transient receptor potential cation channel, subfamily A, member 1 (TRPA1 is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1 have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1.

  9. Voltage-Gated Sodium Channel β11B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β11B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β11B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β11B subunits in cardiac physiology and pathophysiology.

  10. Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    SANDOR GYÖRKE

    2004-01-01

    Full Text Available Calsequestrin (CASQ2 is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR. Mutations in the cardiac calsequestrin gene (CASQ2 have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca2+-induced Ca2+ release (CICR and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.

  11. Identification of a tetrameric assembly domain in the C terminus of heat-activated TRPV1 channels.

    Science.gov (United States)

    Zhang, Feng; Liu, Shuang; Yang, Fan; Zheng, Jie; Wang, KeWei

    2011-04-29

    Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.

  12. TRANTHAC-1: transient thermal-hydraulic analysis code for HTGR core of multi-channel model

    International Nuclear Information System (INIS)

    Sato, Sadao; Miyamoto, Yoshiaki

    1980-08-01

    The computer program TRANTHAC-1 is for predicting thermal-hydraulic transient behavior in HTGR's core of pin-in-block type fuel elements, taking into consideration of the core flow distribution. The program treats a multi-channel model, each single channel representing the respective column composed of fuel elements. The fuel columns are grouped in flow control regions; each region is provided with an orifice assembly. In the region, all channels are of the same shape except one channel. Core heat is removed by downward flow of the control through the channel. In any transients, for given time-dependent power, total core flow, inlet coolant temperature and coolant pressure, the thermal response of the core can be determined. In the respective channels, the heat conduction in radial and axial direction are represented. And the temperature distribution in each channel with the components is calculated. The model and usage of the program are described. The program is written in FORTRAN-IV for computer FACOM 230-75 and it is composed of about 4,000 cards. The required core memory is about 75 kilowords. (author)

  13. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    Science.gov (United States)

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  14. Voltage-gated potassium channel (K(v) 1) autoantibodies in patients with chagasic gut dysmotility and distribution of K(v) 1 channels in human enteric neuromusculature (autoantibodies in GI dysmotility).

    Science.gov (United States)

    Hubball, A W; Lang, B; Souza, M A N; Curran, O D; Martin, J E; Knowles, C H

    2012-08-01

    Autoantibodies directed against specific neuronal antigens are found in a significant number of patients with gastrointestinal neuromuscular diseases (GINMDs) secondary to neoplasia. This study examined the presence of antineuronal antibodies in idiopathic GINMD and GINMD secondary to South American Trypanosomiasis. The GI distribution of voltage-gated potassium channels (VGKCs) was also investigated. Seventy-three patients were included in the study with diagnoses of primary achalasia, enteric dysmotility, chronic intestinal pseudo-obstruction, esophageal or colonic dysmotility secondary to Chagas' disease. Sera were screened for specific antibodies to glutamic acid decarboxylase, voltage-gated calcium channels (VGCCs; P/Q subtype), nicotinic acetylcholine receptors (nAChRs; α3 subtype), and voltage-gated potassium channels (VGKCs, K(V) 1 subtype) using validated immunoprecipitation assays. The distribution of six VGKC subunits (K(V) 1.1-1.6), including those known to be antigenic targets of anti-VGKC antibodies was immunohistochemically investigated in all main human GI tract regions. Three patients (14%) with chagasic GI dysmotility were found to have positive anti-VGKC antibody titers. No antibodies were detected in patients with idiopathic GINMD. The VGKCs were found in enteric neurons at every level of the gut in unique yet overlapping distributions. The VGKC expression in GI smooth muscle was found to be limited to the esophagus. A small proportion of patients with GI dysfunction secondary to Chagas' disease have antibodies against VGKCs. The presence of these channels in the human enteric nervous system may have pathological relevance to the growing number of GINMDs with which anti-VGKC antibodies have been associated. © 2012 Blackwell Publishing Ltd.

  15. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    Science.gov (United States)

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  16. Dopamine inhibits maitotoxin-stimulated pituitary 45Ca2+ efflux and prolactin release

    International Nuclear Information System (INIS)

    Login, I.S.; Judd, A.M.; MacLeod, R.M.

    1986-01-01

    The authors examined the hypothesis that dopaminergic inhibition of prolactin release is coupled to modulation of cellular calcium flux. Dispersed female rat pituitary cells were prelabeled in 45 Ca 2+ and perifused to determine simultaneously fractional calcium efflux and prolactin release, as stimulated by maitotoxin, a calcium channel activator. The integrated response of each parameter to 5 ng/ml maitotoxin was obtained in individual perifusion columns in the absence or presence of various concentrations of dopamine. Maitotoxin-stimulated calcium efflux was suppressed by dopamine concentrations of 0.01 μM and greater and achieved a maximal effect at ∼0.1 μM, at which calcium efflux was reduced by 50%. Maitotoxin-stimulated prolactin release was inhibited by 0.03 μM dopamine and greater concentrations, and at a concentration of ∼10.0 μM dopamine the effect became maximal at ∼85% suppression. Haloperidol (0.1 μM) blocked the effects of 0.1 μM dopamine on both parameters. Simultaneous suppression of maitotoxin-stimulated calcium efflux and prolactin release by concentrations of dopamine within the nonomolar range suggests that dopamine receptor activation is negatively coupled to modulation of calcium flux in the physiological regulation of prolactin secretion

  17. Two standards - CSA-N288.1 and USNRC regulatory guides 1.109, 1.111 for chronic atmospheric releases from nuclear facilities - compared

    International Nuclear Information System (INIS)

    Peterson, S-R.

    1997-05-01

    Although the Canadian Standards Association's 'Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities', CSA-N288.1-M87 (CSA 1987) can be used to license CANDU (CANadian Deuterium Uranium) reactors sold off-shore, in practice purchasers may wish to use the United States Regulatory Guides (RG) 1.109 (United States Nuclear Regulatory Commission 1977a) and 1.111 (USNRC 1977b) to calculate doses from routine atmospheric releases to members of a critical group. When differences in dose predictions are found between the two standards, CSA-N288.1 comes under attack. This paper explains the differences between the two models. The two atmospheric dispersion models were compared for a ground level release and an elevated release such as from CANDU 6. For a ground level release, CSA's dilution factors were slightly more than half of RG's. For the elevated release, following recommendations in each guide, CSA's dilution coefficient is higher than RG's within 1000 m of the stack and only slightly lower farther away. All differences can be accounted for by different mathematical formulations and assumptions about height at which wind speed is measured. Ingestion, inhalation, immersion and external doses predicted by the two models were compared for unit release (Bq s -1 ) and for realistic source terms of a suite of 33 radionuclides commonly released from both CANDUs and Pressurized Water Reactors (PWRs). To demonstrate real differences in the models, ingestion doses for the two models were compared using the CSA diet in both models and CSA predictions were recalculated to account for decay which occurs between harvest and ingestion in RG. Once all assumptions are equalized, there is very little difference in dose predictions of the two models that cannot be explained by different parameter values. Both models have outdated dose conversion factors, and the use of improved numbers will

  18. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  19. Integrated 1 GHz 4-channel InP phasar based WDM-receiver with Si bipolar frontend array

    NARCIS (Netherlands)

    Steenbergen, C.A.M.; Vreede, de L.C.N.; Dam, van C.; Scholtes, T.L.M.; Smit, M.K.; Tauritz, J.L.; Pedersen, J.W.; Moerman, I.; Verbeek, B.H.; Baets, R.G.F.

    1995-01-01

    An integrated 4-channel WDM-receiver frontend with 1 GHz channel bandwidth is described. The receiver consists of an integrated wavelength demultiplexer with photodiodes in InP technology connected through bond wires with a 4 channel Si bipolar transimpedance amplifier mounted on an epoxy board. The

  20. Basal activity of voltage-gated Ca(2+) channels controls the IP3-mediated contraction by α(1)-adrenoceptor stimulation of mouse aorta segments.

    Science.gov (United States)

    Leloup, Arthur J; Van Hove, Cor E; De Meyer, Guido R Y; Schrijvers, Dorien M; Fransen, Paul

    2015-08-05

    α1-Adrenoceptor stimulation of mouse aorta causes intracellular Ca(2+) release from sarcoplasmic reticulum Ca(2+) stores via stimulation of inositoltriphosphate (IP3) receptors. It is hypothesized that this Ca(2+) release from the contractile and IP3-sensitive Ca(2+) store is under the continuous dynamic control of time-independent basal Ca(2+) influx via L-type voltage-gated Ca(2+) channels (LCC) residing in their window voltage range. Mouse aortic segments were α1-adrenoceptor stimulated with phenylephrine in the absence of external Ca(2+) (0Ca) to measure phasic isometric contractions. They gradually decreased with time in 0Ca, were inhibited with 2-aminoethoxydiphenyl borate, and declined with previous membrane potential hyperpolarization (levcromakalim) or with previous inhibition of LCC (diltiazem). Former basal stimulation of LCC with depolarization (15 mM K(+)) or with BAY K8644 increased the subsequent phasic contractions by phenylephrine in 0Ca. Although exogenous NO (diethylamine NONOate) reduced the phasic contractions by phenylephrine, stimulation of endothelial cells with acetylcholine in 0Ca failed to attenuate these phasic contractions. Finally, inhibition of the basal release of NO with N(Ω)-nitro-L-arginine methyl ester also attenuated the phasic contractions by phenylephrine. Results indicated that α1-adrenoceptor stimulation with phenylephrine causes phasic contractions, which are controlled by basal LCC and endothelial NO synthase activity. Endothelial NO release by acetylcholine was absent in 0Ca. Given the growing interest in the active regulation of arterial compliance, the dependence of contractile SR Ca(2+) store-refilling in basal conditions on the activity of LCC and basal eNOS may contribute to a more thorough understanding of physiological mechanisms leading to arterial stiffness. Copyright © 2015. Published by Elsevier B.V.