Model for calculating shock loading and release paths for multicomponent geologic media
International Nuclear Information System (INIS)
Butkovich, T.R.; Moran, B.; Burton, D.E.
1981-07-01
A model has been devised to calculate shock Hugoniots and release paths off the Hugoniots for multicomponent rocks containing silicate, carbonate, and water. Hugoniot equations of state are constructed from relatively simple measurements of rock properties including bulk density, grain density of the silicate component, and weight fractions of water and carbonate. Release paths off the composite Hugoniot are calculated by mixing release paths off the component Hugoniots according to their weight fractions. If the shock imparts sufficient energy to the component to cause vaporization, a gas equation of state is used to calculate the release paths. For less energetic shocks, the rock component will unload like a solid or liquid, taking into account the irreversible removal of air-filled porosity
Analytical model for release calculations in solid thin-foils ISOL targets
Energy Technology Data Exchange (ETDEWEB)
Egoriti, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Politecnico di Milano, Department of Energy, CeSNEF-Nuclear Engineering Division, Via Ponzio, 34/3, 20133 Milano (Italy); Boeckx, S. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); ICTEAM Inst., Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Ghys, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Houngbo, D., E-mail: donald.houngbo@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Department of Flow, Heat and Combustion Mechanics, Gent University (UGent), St.-Pietersnieuwstraat 41, B-9000 Gent (Belgium); Popescu, L. [Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)
2016-10-01
A detailed analytical model has been developed to simulate isotope-release curves from thin-foils ISOL targets. It involves the separate modeling of diffusion and effusion inside the target. The former has been modeled using both first and second Fick's law. The latter, effusion from the surface of the target material to the end of the ionizer, was simulated with the Monte Carlo code MolFlow+. The calculated delay-time distribution for this process was then fitted using a double-exponential function. The release curve obtained from the convolution of diffusion and effusion shows good agreement with experimental data from two different target geometries used at ISOLDE. Moreover, the experimental yields are well reproduced when combining the release fraction with calculated in-target production.
Macroscopic calculational model of fission gas release from water reactor fuels
International Nuclear Information System (INIS)
Uchida, Masaki
1993-01-01
Existing models for estimating fission gas release rate usually have fuel temperature as independent variable. Use of fuel temperature, however, often brings an excess ambiguity in the estimation because it is not a rigorously definable quantity as a function of heat generation rate and burnup. To derive a mathematical model that gives gas release rate explicitly as a function of design and operational parameters, the Booth-type diffusional model was modified by changing the character of the diffusion constant from physically meaningful quantity into a mere mathematical parameter, and also changing its temperature dependency into power dependency. The derived formula was found, by proper choice of arbitrary constants, to satisfactorily predict the release rates under a variety of irradiation histories up to a burnup of 60,000 MWd/t. For simple power histories, the equation can be solved analytically by defining several transcendental functions, which enables simple calculation of release rate using graphs. (author)
International Nuclear Information System (INIS)
Strenge, D.L.; Watson, E.C.; Droppo, J.G.
1976-06-01
The development of technological bases for siting nuclear fuel cycle facilities requires calculational models and computer codes for the evaluation of risks and the assessment of environmental impact of radioactive effluents. A literature search and review of available computer programs revealed that no one program was capable of performing all of the great variety of calculations (i.e., external dose, internal dose, population dose, chronic release, accidental release, etc.). Available literature on existing computer programs has been reviewed and a description of each program reviewed is given
Energy Technology Data Exchange (ETDEWEB)
Strenge, D.L.; Watson, E.C.; Droppo, J.G.
1976-06-01
The development of technological bases for siting nuclear fuel cycle facilities requires calculational models and computer codes for the evaluation of risks and the assessment of environmental impact of radioactive effluents. A literature search and review of available computer programs revealed that no one program was capable of performing all of the great variety of calculations (i.e., external dose, internal dose, population dose, chronic release, accidental release, etc.). Available literature on existing computer programs has been reviewed and a description of each program reviewed is given.
International Nuclear Information System (INIS)
Thykier-Nielsen, S.
1980-07-01
A brief description is given of the model used at Risoe for calculating the consequences of releases of radioactive material to the atmosphere. The model is based on the Gaussian plume model, and it provides possibilities for calculation of: doses to individuals, collective doses, contamination of the ground, probability distribution of doses, and the consequences of doses for give dose-risk relationships. The model is implemented as a computer program PLUCON2, written in ALGOL for the Burroughs B6700 computer at Risoe. A short description of PLUCON2 is given. (author)
The fast multiple-path NUCTRAN model -- Calculating the radionuclide release from a repository
International Nuclear Information System (INIS)
Romero, L.; Moreno, L.; Neretnieks, I.
1995-01-01
The NUCTRAN model has been applied to the Swedish KBS-3 nuclear waste repository concept, where the migration of radionuclides is through various barriers and pathways. The escape of the nuclides from the canister occurs through a small hole. This hole controls the release of nuclides from the repository. NUCTRAN is a useful tool to calculate the nonstationary transport in a repository for high-level nuclear waste. The advantage of this model is the use of a coarse compartmentalization of the repository, which makes it flexible and easy to adapt to different geometries. The several radionuclide release calculations made with NUCTRAN have shown the capability of this to handle different situations rapidly and easily. The particularity of these calculations is the high accuracy obtained by using a coarse compartmentalization of the Swedish KBS-3 repository and the small requirements of computing time. At short times for short-lived nuclides, the calculated releases are exaggerated. The error can be considerably reduced by an additional subdivision of large compartments into a few compartments
Development and application of the PBMR fission product release calculation model
International Nuclear Information System (INIS)
Merwe, J.J. van der; Clifford, I.
2008-01-01
At PBMR, long-lived fission product release from spherical fuel spheres is calculated using the German legacy software product GETTER. GETTER is a good tool when performing calculations for fuel spheres under controlled operating conditions, including irradiation tests and post-irradiation heat-up experiments. It has proved itself as a versatile reactor analysis tool, but is rather cumbersome when used for accident and sensitivity analysis. Developments in depressurized loss of forced cooling (DLOFC) accident analysis using GETTER led to the creation of FIssion Product RElease under accident (X) conditions (FIPREX), and later FIPREX-GETTER. FIPREX-GETTER is designed as a wrapper around GETTER so that calculations can be carried out for large numbers of fuel spheres with design and operating parameters that can be stochastically varied. This allows full Monte Carlo sensitivity analyses to be performed for representative cores containing many fuel spheres. The development process and application of FIPREX-GETTER in reactor analysis at PBMR is explained and the requirements for future developments of the code are discussed. Results are presented for a sample PBMR core design under normal operating conditions as well as a suite of design-base accident events, illustrating the functionality of FIPREX-GETTER. Monte Carlo sensitivity analysis principles are explained and presented for each calculation type. The plan and current status of verification and validation (V and V) is described. This is an important and necessary process for all software and calculation model development at PBMR
A set of integrated environmental transport and diffusion models for calculating hazardous releases
International Nuclear Information System (INIS)
Pepper, D.W.
1996-01-01
A set of numerical transport and dispersion models is incorporated within a graphical interface shell to predict hazardous material released into the environment. The visual shell (EnviroView) consists of an object-oriented knowledge base, which is used for inventory control, site mapping and orientation, and monitoring of materials. Graphical displays of detailed sites, building locations, floor plans, and three-dimensional views within a room are available to the user using a point and click interface. In the event of a release to the environment, the user can choose from a selection of analytical, finite element, finite volume, and boundary element methods, which calculate atmospheric transport, groundwater transport, and dispersion within a building interior. The program runs on 486 personal computers under WINDOWS
Comparison of numerical models for calculating dispersion from accidental releases of pollutants
Energy Technology Data Exchange (ETDEWEB)
Pepper, D W [Savannah River Lab., Aiken, SC; Cooper, R E; Baker, A J
1982-01-01
A modular, data-based system approach has been developed to facilitate computational simulation of multi-dimensional pollutant dispersion in atmospheric, steam, estuary, and groundwater applications. This system is used to assess effects of accidental releases of pollutants to the environment. Model sophistication ranges from simple statistical to complex three-dimensional numerical methods. The system used specifies desired degree of model sophistication from a terminal. The model used depends on the particular type of problem being solved, and on a basis of merit related to computer cost. The results of prediction for several model problems are presented.
Radionuclide release calculations for SAR-08
International Nuclear Information System (INIS)
Thomson, Gavin; Miller, Alex; Smith, Graham; Jackson, Duncan
2008-04-01
Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)
Radionuclide release calculations for SAR-08
Energy Technology Data Exchange (ETDEWEB)
Thomson, Gavin; Miller, Alex; Smith, Graham; Jackson, Duncan (Enviros Consulting Ltd, Wolverhampton (United Kingdom))
2008-04-15
Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)
Energy Technology Data Exchange (ETDEWEB)
Strenge, D L; Baker, D A; Droppo, J G; McPherson, R B; Napier, B A; Nieves, L A; Soldat, J K
1980-05-01
Models are described for use in site-specific environmental consequence analysis of nuclear reactor accidents of Classes 3 through 9. The models presented relate radioactivity released to resulting doses, health effects, and costs of remedial actions. Specific models are presented for the major exposure pathways of airborne releases, waterborne releases and direct irradiation from activity within the facility buildings, such as the containment. Time-dependent atmospheric dispersion parameters, crop production parameters and other variable parameters are used in the models. The environmental effects are analyzed for several accident start times during the year.
Calculation of tritium release from reactor's stack
International Nuclear Information System (INIS)
Akhadi, M.
1996-01-01
Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)
A compartment model for nuclide release calculation in the near-and far-field of a HLW repository
International Nuclear Information System (INIS)
Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Hahn, Pil Soo
2004-01-01
The HLW-relevant R and D program for disposal of high-level radioactive waste has been carried out at Korea Atomic Energy Research Institute (KAERI) since early 1997, from which a conceptual Korea Reference Repository System for direct disposal of nuclear spent fuel is to be introduced by the end of 2007. A preliminary reference geologic repository concept considering such established criteria and requirements as spent fuel and generic site characteristics in Korea was roughly envisaged in 2003. Not only to demonstrate how much a reference repository is safe in the generic point of view with several possible scenarios and cases associated with a preliminary repository concept by conducting calculations for nuclide release and transport in the near - and far - field components of the repository, even though sufficient information has not been available that much yet, but also to show a appropriate methodology by which both a generic and site - specific safety assessment could be performed for further in - depth development of Korea reference repository concept, nuclide release calculation study for various nuclide release cases is mandatory. To this end a similar study done and yet limited for the near - field release case has been extended to the case including far - field system by introducing some more geosphere compartments. Advective and longitudinal dispersive nuclide transports along the fracture with matrix diffusion as well as several retention mechanisms and nuclide ingrowth has been added
International Nuclear Information System (INIS)
Cruz L, C. A.
2015-01-01
In the present thesis, the software DERA (Dispersion of Radioactive Effluents into the Atmosphere) was developed in order to calculate the equivalent dose, external and internal, associated with the release of radioactive effluents into the atmosphere from a nuclear facility. The software describes such emissions in normal operation, and not considering the exceptional situations such as accidents. Several tools were integrated for describing the dispersion of radioactive effluents using site meteorological information (average speed and wind direction and the stability profile). Starting with the calculation of the concentration of the effluent as a function of position, DERA estimates equivalent doses using a set of EPA s and ICRP s coefficients. The software contains a module that integrates a database with these coefficients for a set of 825 different radioisotopes and uses the Gaussian method to calculate the effluents dispersion. This work analyzes how adequate is the Gaussian model to describe emissions type -puff-. Chapter 4 concludes, on the basis of a comparison of the recommended correlations of emissions type -puff-, that under certain conditions (in particular with intermittent emissions) it is possible to perform an adequate description using the Gaussian model. The dispersion coefficients (σ y and σ z ), that using the Gaussian model, were obtained from different correlations given in the literature. Also in Chapter 5 is presented the construction of a particular correlation using Lagrange polynomials, which takes information from the Pasquill-Gifford-Turner curves (PGT). This work also contains a state of the art about the coefficients that relate the concentration with the equivalent dose. This topic is discussed in Chapter 6, including a brief description of the biological-compartmental models developed by the ICRP. The software s development was performed using the programming language Python 2.7, for the Windows operating system (the XP
ELSA: A simplified code for fission product release calculations
International Nuclear Information System (INIS)
Manenc, H.; Notley, M.J.
1996-01-01
During a light water reactor severe accident, fission products are released from the overheated core as it progressively degrades. A new computer module named ELSA is being developed to calculate fission product release. The authors approach is to model the key phenomena, as opposed to more complete mechanistic approaches. Here they present the main features of the module. Different release mechanisms have been identified and are modeled in ELSA, depending on fission product volatility: diffusion seems to govern the release of the highly volatile species if fuel oxidation is properly accounted for, whereas mass transport governs that of lower volatility fission products and fuel volatilization that of the practically involatile species
International Nuclear Information System (INIS)
Strenge, D.L.; Acharya, S.; Baker, D.A.; Droppo, J.G.; McPherson, R.B.
1980-05-01
Models are described for use in site-specific environmental consequence analysis of nuclear reactor accidents of Classes 3 through 9. The models presented relate radioactivity released to resulting doses, health effects, and costs of remedial actions. Specific models are presented for the major exposure pathways of airborne releases, waterborne releases and direct irradiation from activity within the facility buildings, such as the containment. Time-dependent atmospheric dispersion parameters, crop production parameters, and other variable parameters are used in the models. The environmental effects are analyzed for several accident start times during the year. Several remedial actions are considered
International Nuclear Information System (INIS)
Bass, B.R.; Bryson, J.W.
1983-02-01
Certain studies of fracture phenomena, such as pressurized-thermal-shock of cracked structures, require that crack tip parameters be determined for combined thermal and mechanical loads. A method is proposed here that modifies the isothermal formulation of deLorenzi to account for thermal strains in cracked bodies. The formulation has been implemented in the virtual-crack-extension program ORVIRT (Oak Ridge VIRTual-Crack-Extension). Program ORVIRT performs energy release rate calculations for both 2- and 3-dimensional nonlinear models of crack configurations in engineering structures. Two applications of the ORVIRT program are described. In the first, semielliptical surface cracks in an experimental test vessel are analyzed under elastic-plastic conditions using the finite element method. The second application is a thick-walled test vessel subjected to combined pressure and thermal shock loading
Tritium transport calculations for the IFMIF Tritium Release Test Module
Energy Technology Data Exchange (ETDEWEB)
Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro
2014-10-15
Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the
Tritium transport calculations for the IFMIF Tritium Release Test Module
International Nuclear Information System (INIS)
Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro
2014-01-01
Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the
Calculations in support of a potential definition of large release
International Nuclear Information System (INIS)
Hanson, A.L.; Davis, R.E.; Mubayi, V.
1994-05-01
The Nuclear Regulatory Commission has stated a hierarchy of safety goals with the qualitative safety goals as Level I of the hierarchy, backed up by the quantitative health objectives as Level II and the large release guideline as Level III. The large release guideline has been stated in qualitative terms as a magnitude of release of the core inventory whose frequency should not exceed 10 -6 per reactor year. However, the Commission did not provide a quantitative specification of a large release. This report describes various specifications of a large release and focuses, in particular, on an examination of releases which have a potential to lead to one prompt fatality in the mean. The basic information required to set up the calculations was derived from the simplified source terms which were obtained from approximations of the NUREG-1150 source terms. Since the calculation of consequences is affected by a large number of assumptions, a generic site with a (conservatively determined) population density and meteorology was specified. At this site, various emergency responses (including no response) were assumed based on information derived from earlier studies. For each of the emergency response assumptions, a set of calculations were performed with the simplified source terms; these included adjustments to the source terms, such as the timing of the release, the core inventory, and the release fractions of different radionuclides, to arrive at a result of one mean prompt fatality in each case. Each of the source terms, so defined, has the potential to be a candidate for a large release. The calculations show that there are many possible candidate source terms for a large release depending on the characteristics which are felt to be important
Underground water stress release models
Li, Yong; Dang, Shenjun; Lü, Shaochuan
2011-08-01
The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.
Temperature Calculations in the Coastal Modeling System
2017-04-01
ERDC/CHL CHETN-IV-110 April 2017 Approved for public release; distribution is unlimited . Temperature Calculations in the Coastal Modeling...tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature
International Nuclear Information System (INIS)
Raskob, W.; Hasemann, I.
1992-08-01
This report documents conditions, data and results of dose calculations for accidental and normal operation releases of tritium and activation products, performed within the NET subtask SEP2.2 ('NET-Benchmark') of the European Fusion Technology Programme. For accidental releases, the computer codes UFOTRI and COSYMA for assessing the radiological consequences, have been applied for both deterministic and probabilistic calculations. The influence on dose estimates of different release times (2 minutes / 1 hour), two release heights (10 m / 150 m), two chemical forms of tritium (HT/HTO), and two different model approaches for the deposition velocity of HTO on soil was investigated. The dose calculations for normal operation effluents were performed using the tritium model of the German regulatory guidelines, parts of the advanced dose assessment model NORMTRI still under development, and the statistical atmospheric dispersion model ISOLA. Accidental and normal operation source terms were defined as follows: 10g (3.7 10 15 Bq) for accidental tritium releases, 10 Ci/day (3.7 10 11 Bq/day) for tritium releases during normal operation and unit releases of 10 9 Bq for accidental releases of activation products and fission products. (orig./HP) [de
Preliminary calculations of release rates from spent fuel in a tuff repository
International Nuclear Information System (INIS)
Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.
1991-01-01
Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs
Equilibrium fission model calculations
International Nuclear Information System (INIS)
Beckerman, M.; Blann, M.
1976-01-01
In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling
Energy Technology Data Exchange (ETDEWEB)
Denis, A; Piotrkowski, R [Argentine Atomic Energy Commission, Buenos Aires (Argentina)
1997-08-01
The hypothesis contained in the model developed in this work are as follows. The UO{sub 2} is considered as a collection of spherical grains. Nuclear reactions produce fission gases, mainly Xe and Kr, within the grains. Due to the very low solubility of these gases in UO{sub 2}, intragranular bubbles are formed, of a few nanometers is size. The bubbles are assumed to be immobile and to act as traps which capture gas atoms. Free atoms diffuse towards the grain boundaries, where they give origin to intergranular, lenticular bubbles, of the order of microns. The gas atoms in bubbles, either inter or intragranular, can re-enter the matrix through the mechanism of resolution induced by fission fragment impact. The amount of gas stored in intergranular bubbles grows up to a saturation value. Once saturation is reached, intergranular bubbles inter-connect and the gas in excess is released through different channels to the external surface of the fuel. The resolution of intergranular bubbles particularly affects the region of the grain adjacent to the grain boundary. During grain growth, the grain boundary traps the gas atoms, either free or in intragranular bubbles, contained in the swept volume. The grain boundary is considered as a perfect sink, i.e. the gas concentration is zero at that surface of the grain. Due to the spherical symmetry of the problem, the concentration gradient is null at the centre of the grain. The diffusion equation was solved using the implicit finite difference method. The initial solution was analytically obtained by the Laplace transform. The calculations were performed at different constant temperatures and were compared with experimental results. They show the asymptotic growth of the grain radius as a function of burnup, the gas distribution within the grain at every instant, the growth of the gas content at the grain boundary up to the saturation value and the fraction of gas released by the fuel element referred to the total gas generated
International Nuclear Information System (INIS)
Strenge, D.L.; Peloquin, R.A.
1981-04-01
The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested
Modelling isothermal fission gas release
International Nuclear Information System (INIS)
Uffelen, P. van
2002-01-01
The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A
Radionuclide release calculations for selected severe accident scenarios
International Nuclear Information System (INIS)
Denning, R.S.; Leonard, M.T.; Cybulskis, P.; Lee, K.W.; Kelly, R.F.; Jordan, H.; Schumacher, P.M.; Curtis, L.A.
1990-08-01
This report provides the results of source term calculations that were performed in support of the NUREG-1150 study. ''Severe Accident Risks: An Assessment for Five US Nuclear Power Plants.'' This is the sixth volume of a series of reports. It supplements results presented in the earlier volumes. Analyses were performed for three of the NUREG-1150 plants: Peach Bottom, a Mark I, boiling water reactor; Surry, a subatmospheric containment, pressurized water reactor; and Sequoyah, an ice condenser containment, pressurized water reactor. Complete source term results are presented for the following sequences: short term station blackout with failure of the ADS system in the Peach Bottom plant; station blackout with a pump seal LOCA for the Surry plant; station blackout with a pump seal LOCA in the Sequoyah plant; and a very small break with loss of ECC and spray recirculation in the Sequoyah plant. In addition, some partial analyses were performed which did not require running all of the modules of the Source Term Code Package. A series of MARCH3 analyses were performed for the Surry and Sequoyah plants to evaluate the effects of alternative emergency operating procedures involving primary and secondary depressurization on the progress of the accident. Only thermal-hydraulic results are provided for these analyses. In addition, three accident sequences were analyzed for the Surry plant for accident-induced failure of steam generator tubes. In these analyses, only the transport of radionuclides within the primary system and failed steam generator were examined. The release of radionuclides to the environment is presented for the phase of the accident preceding vessel meltthrough. 17 refs., 176 figs., 113 tabs
International Nuclear Information System (INIS)
Smith, P.D.
1978-02-01
A special purpose computer program, TRAFIC, is presented for calculating the release of metallic fission products from an HTGR core. The program is based upon Fick's law of diffusion for radioactive species. One-dimensional transient diffusion calculations are performed for the coated fuel particles and for the structural graphite web. A quasi steady-state calculation is performed for the fuel rod matrix material. The model accounts for nonlinear adsorption behavior in the fuel rod gap and on the coolant hole boundary. The TRAFIC program is designed to operate in a core survey mode; that is, it performs many repetitive calculations for a large number of spatial locations in the core. This is necessary in order to obtain an accurate volume integrated release. For this reason the program has been designed with calculational efficiency as one of its main objectives. A highly efficient numerical method is used in the solution. The method makes use of the Duhamel superposition principle to eliminate interior spatial solutions from consideration. Linear response functions relating the concentrations and mass fluxes on the boundaries of a homogeneous region are derived. Multiple regions are numerically coupled through interface conditions. Algebraic elimination is used to reduce the equations as far as possible. The problem reduces to two nonlinear equations in two unknowns, which are solved using a Newton Raphson technique
International Nuclear Information System (INIS)
Ondra, Frantisek; Vasko, Marek; Necas, Vladimir
2012-01-01
The article presents methodology of external exposure calculation for reuse of conditional released materials from decommissioning using VISIPLAN 3D ALARA planning tool. Production of rails has been used as an example application of proposed methodology within the CONRELMAT project. The article presents a methodology for determination of radiological, material, organizational and other conditions for conditionally released materials reuse to ensure that workers and public exposure does not breach the exposure limits during scenario's life cycle (preparation, construction and operation of scenario). The methodology comprises a proposal of following conditions in the view of workers and public exposure: - radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, - specific deployment of conditionally released materials eventually shielding materials, workers and public during the scenario's life cycle, - organizational measures concerning time of workers or public stay in the vicinity on conditionally released materials for individual performed scenarios and nuclide vectors. The above mentioned steps of proposed methodology have been applied within the CONRELMAT project. Exposure evaluation of workers for rail production is introduced in the article as an example of this application. Exposure calculation using VISIPLAN 3D ALARA planning tool was done within several models. The most exposed profession for scenario was identified. On the basis of this result, an increase of radionuclide concentration in conditional released material was proposed more than two times to 681 Bq/kg without no additional safety or organizational measures being applied. After application of proposed safety and organizational measures (additional shielding, geometry changes and limitation of work duration) it is possible to increase concentration of radionuclide in conditional released material more than ten times to 3092 Bq/kg. Storage
Modelling transient energy release from molten fuel coolant interaction debris
International Nuclear Information System (INIS)
Fletcher, D.F.
1984-05-01
A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)
International Nuclear Information System (INIS)
Cardile, F.P.; Bangart, R.L.; Collins, J.T.
1978-06-01
The Intergovernmental Maritime Consultative Organization IMCO) is currently preparing guidelines concerning the safety of nuclear-powered merchant ships. An important aspect of these guidelines is the determination of the releases of radioactive material in effluents from these ships and the control exercised by the ships over these releases. To provide a method for the determination of these releases, the NRC staff has developed a computerized model, the NMS-GEFF Code, which is described in the following chapters. The NMS-GEFF Code calculates releases of radioactive material in gaseous effluents for nuclear-powered merchant ships using pressurized water reactors
Measurement and calculation of radon releases from uranium mill tailings
International Nuclear Information System (INIS)
1992-01-01
The mining and milling of uranium ores produces large quantities of radioactive wastes. Although relatively small in magnitude compared to tailings from metal mining and extraction processes, the present worldwide production of such tailings exceeds 20 million tonnes annually. There is thus a need to ensure that the environmental and health risks from these materials are reduced to an acceptable level. This report has been written as a complement to another publication entitled Current Practices for the Management and Confinement of Uranium Mill Tailings, IAEA Technical Reports Series No. 335, which provides a general overview of all the important factors in the siting, design and construction of tailings impoundments, and in the overall management of tailings with due consideration give to questions of the release of pollutants from tailings piles. The present report provides a comprehensive overview of the release, control and monitoring of radon, including computational methods. The report was first drafted in 1989 and was then reviewed at an Advisory Group meeting in 1990. 42 refs, 9 figs, 3 tabs
Realistic methods for calculating the releases and consequences of a large LOCA
International Nuclear Information System (INIS)
Stephenson, W.; Dutton, L.M.C.; Handy, B.J.; Smedley, C.
1992-01-01
This report describes a calculational route to predict realistic radiological consequences for a successfully terminated large-loss-of-coolant accident (LOCA) at a pressurized-water reactor (PWR). All steps in the calculational route are considered. For each one, a brief comment is made on the significant differences between the methods of calculation that were identified in the benchmark studies and recommendations are made for the methods and data for carrying out realistic calculations. These are based on the best supportable methods and data and the technical basis for each recommendation is given. Where the lack of well-validated methods or data means that the most realistic method that can be justified is considered to be very conservative, the need for further research is identified. The behaviour of inorganic iodine and the removal of aerosols from the atmosphere of the reactor building are identified as areas of particular importance. Where the retention of radioactivity is sensitive to design features, these are identified and, for the most importance features, the impact of different designs on the release of activity is indicated. The predictions of the proposed model are calculated for each stage and compared with the releases of activity predicted by the licensing methods that were used in the earlier benchmark studies. The conservative nature of the latter is confirmed. Methods and data are also presented for calculating the resulting doses to members of the public of the National Radiological Protection Boards as a result of work carried out by several national bodies in the UK. Other, equally acceptable, models are used in other countries of the Community and some examples are given
Discussion on the methods for calculation release limits for low-level radioactive waste
International Nuclear Information System (INIS)
Cao Fengbo; Liu Xiaochao
2012-01-01
The release request for low-level radioactive waste are briefly described in this paper. Associating with the conditions of low-level radioactive waste of some radioactive waste processing station, the methods and gist for calculating release limits for low-level radioactive waste with national release limits and annual effective dose limit for the public or the occupation are discussed. Then release limits for the low-level radioactive waste are also proposed. (authors)
Selection of Hydrological Model for Waterborne Release
International Nuclear Information System (INIS)
Blanchard, A.
1999-01-01
This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the Design Basis and Beyond Design Basis accidents to be used in the future study
Energy Technology Data Exchange (ETDEWEB)
Napier, Bruce A.; Eslinger, Paul W.; Tolstykh, Evgenia I.; Vorobiova, Marina I.; Tokareva, Elena E.; Akhramenko, Boris N.; Krivoschapov, Victor A.; Degteva, Marina O.
2017-11-01
Time-dependent thyroid doses were reconstructed for Techa River Cohort members living near the Mayak production facilities from 131I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131I to the air from production facilities; 2) model the transport of 131I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131I in soil, water, and food products (environmental media); and 4) calculate individual doses by matching appropriate lifestyle and consumption data for the individual to concentrations of 131I in environmental media. The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. The 131I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131I dose estimates is low enough for this approach to be used in regional epidemiological studies.
SECURE-400 MW: Failure analysis and calculation of release
International Nuclear Information System (INIS)
Bento, J.-P.
1978-11-01
The environmental effects of SECURE-400 MW has been investigated for normal operation and after an accident. When calculating the doses during normal operation it has been assumed that 0.1 % of the fuel elements in the core have fuel cladding damages. The doses after an accident have been calculated only for the cases when there might be an effect on the environment: accidents at change of fuel, fracture of the biggest gas pipe and fracture of the main coolant loop. The result of the investigation is that a core melting accident in SECURE 400 is impossible due to the design of the different systems. Other typs of accidents which might happen will give extremly low doses to the environment. The doses will not differ significantly from doses during normal operation. (K.K.)
Validation of kinetic modeling of progesterone release from polymeric membranes
Directory of Open Access Journals (Sweden)
Analia Irma Romero
2018-01-01
Full Text Available Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone (Prg controlled release from poly-3-hydroxybutyric acid (PHB membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion (AIC was used to find the equation with best-fit. A simple relation between mass and drug released rate was found, which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes.
Considerations in modeling fission gas release during normal operation
International Nuclear Information System (INIS)
Rumble, E.T.; Lim, E.Y.; Stuart, R.G.
1977-01-01
The EPRI LWR fuel rod modeling code evaluation program analyzed seven fuel rods with experimental fission gas release data. In these cases, rod-averged burnups are less than 20,000 MWD/MTM, while the fission gas release fractions range roughly from 2 to 27%. Code results demonstrate the complexities in calculating fission gas release in certain operating regimes. Beyond this work, the behavior of a pre-pressurized PWR rod is simulated to average burnups of 40,000 MWD/MTM using GAPCON-THERMAL-2. Analysis of the sensitivity of fission gas release to power histories and release correlations indicate the strong impact that LMFBR type release correlations induce at high burnup. 15 refs
Screening calculations for radioactive waste releases from non-nuclear facilities
International Nuclear Information System (INIS)
Xu, Shulan; Soederman, Ann-Louis
2009-02-01
A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 μSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 μSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment plant
International Nuclear Information System (INIS)
Strenge, D.L.; Watson, E.C.; Houston, J.R.
1975-06-01
A computer program, SUBDOSA, was developed for calculating external γ and β doses to individuals from the accidental release of radionuclides to the atmosphere. Characteristics of SUBDOSA are: doses from both γ and β radiation are calculated as a function of depth in tissue, summed and reported as skin, eye, gonadal, and total body dose; doses are calculated for releases within each of several release time intervals and nuclide inventories and atmospheric dispersion conditions are considered for each time interval; radioactive decay is considered during the release and/or transit using a chain decay scheme with branching to account for transitions to and from isomeric states; the dose from gamma radiation is calculated using a numerical integration technique to account for the finite size of the plume; and the program computes and lists the normalized air concentrations at ground level as a function of distance from the point of release. (auth)
Modelling vesicular release at hippocampal synapses.
Directory of Open Access Journals (Sweden)
Suhita Nadkarni
2010-11-01
Full Text Available We study local calcium dynamics leading to a vesicle fusion in a stochastic, and spatially explicit, biophysical model of the CA3-CA1 presynaptic bouton. The kinetic model for vesicle release has two calcium sensors, a sensor for fast synchronous release that lasts a few tens of milliseconds and a separate sensor for slow asynchronous release that lasts a few hundred milliseconds. A wide range of data can be accounted for consistently only when a refractory period lasting a few milliseconds between releases is included. The inclusion of a second sensor for asynchronous release with a slow unbinding site, and thereby a long memory, affects short-term plasticity by facilitating release. Our simulations also reveal a third time scale of vesicle release that is correlated with the stimulus and is distinct from the fast and the slow releases. In these detailed Monte Carlo simulations all three time scales of vesicle release are insensitive to the spatial details of the synaptic ultrastructure. Furthermore, our simulations allow us to identify features of synaptic transmission that are universal and those that are modulated by structure.
A simple operational gas release and swelling model. Pt. 1
International Nuclear Information System (INIS)
Wood, M.H.; Matthews, J.R.
1980-01-01
A new and simple model of fission gas release and swelling has been developed for oxide nuclear fuel under operational conditions. The model, which is to be incorporated into a fuel element behaviour code, is physically based and applicable to fuel at both thermal and fast reactor ratings. In this paper we present that part of the model describing the behaviour of intragranular gas: a future paper will detail the treatment of the grain boundary gas. The results of model calculations are compared with recent experimental observations of intragranular bubble concentrations and sizes, and gas release from fuel irradiated under isothermal conditions. Good agreement is found between experiment and theory. (orig.)
Selection of Hydrological Model for Waterborne Release
International Nuclear Information System (INIS)
Blanchard, A.
1999-01-01
Following a request from the States of South Carolina and Georgia, downstream radiological consequences from postulated accidental aqueous releases at the three Savannah River Site nonreactor nuclear facilities will be examined. This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the accidents to be used in the future study
Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR
Energy Technology Data Exchange (ETDEWEB)
Fish, B.R.
2001-08-07
Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.
Energy Technology Data Exchange (ETDEWEB)
Andre, B.; Ducros, G.; Leveque, J.P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique; Osborne, M.F.; Lorenz, R.A. [Oak Ridge National Lab., TN (United States); Maro, D. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations
1995-12-31
Experimental programs in the United States and France have followed similar paths in supplying much of the data needed to analyze severe accidents. Both the HI/VI program, conducted at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (NRC), and the HEVA/VERCORS program, supported by IPSN-Commissariat a l`Energie Atomique (CEA) and carried out at the Centre d`Etudes Nucleaires de Grenoble, have studied fission product release from light water reactor (LWR) fuel samples during test sequences representative of severe accidents. Recognizing that more accurate data, i.e., a better defined source term, could reduce the safety margins included in the rather conservative source terms originating from WASH-1400, the primary objective of these programs has been to improve the data base concerning fission product release and behavior at high temperatures. To facilitate the comparison, a model based on fission product diffusion mechanisms that was developed at ORNL and adapted with CEA experimental data is proposed. This CEA model is compared with the ORNL experimental data in a blind test. The two experimental programs used similar techniques in out-of-pile studies. Highly irradiated fuel samples were heated in radiofrequency induction furnaces to very high temperatures (up to 2700 K at ORNL and 2750 K at CEA) in oxidizing (H{sub 2}O), reducing (H{sub 2}) or mixed (H{sub 2}O+H{sub 2}) environments. The experimental parameters, which were chosen from calculated accident scenarios, did not duplicate specific accidents, but rather emphasized careful control of test conditions to facilitate extrapolation of the results to a wide variety of accident situations. This paper presents a broad and consistent database from ORNL and CEA release results obtained independently since the early 1980`S. A comparison of CORSOR and CORSOR Booth calculations, currently used in safety analysis, and the experimental results is presented and
Geochemistry Model Validation Report: Material Degradation and Release Model
Energy Technology Data Exchange (ETDEWEB)
H. Stockman
2001-09-28
The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).
Geochemistry Model Validation Report: Material Degradation and Release Model
International Nuclear Information System (INIS)
Stockman, H.
2001-01-01
The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17)
Atmospheric dispersion models of radioactivity releases
International Nuclear Information System (INIS)
Oza, R.B.
2016-01-01
In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions
International Nuclear Information System (INIS)
Fryer, L.S.
1978-12-01
TIRION 4 is the most recent program in a series designed to calculate the consequences of releasing radioactive material to the atmosphere. A brief description of the models used in the program and full details of the various control cards necessary to run TIRION 4 are given. (author)
Vojtyla, P
2005-01-01
The document describes generic models for environmental impact assessments of releases of radioactive substances from CERN facilities. Except for few models developed in the Safety Commission, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calculations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the Safety Commission.
Recommendations for DSD model calculations
International Nuclear Information System (INIS)
Cvelbar, F.
1999-01-01
The latest achievements of the DSD (direct-semidirect) capture model, such as the extension to unbound final states or to densely distributed bound states, and the introduction of the consistent DSD model are reviewed. Recommendations for the future use of the model are presented. (author)
Screening calculations for radioactive waste releases from non-nuclear facilities
Energy Technology Data Exchange (ETDEWEB)
Shulan Xu; Soederman, Ann-Louis
2009-02-15
A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 muSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 muSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment
Modeling of radiation doses from chronic aqueous releases
International Nuclear Information System (INIS)
Watts, J.R.
1976-01-01
A general model and corresponding computer code were developed to calculate personnel dose estimates from chronic releases via aqueous pathways. Potential internal dose pathways are consumption of water, fish, crustacean, and mollusk. Dose prediction from consumption of fish, crustacean, or mollusk is based on the calculated radionuclide content of the water and applicable bioaccumulation factor. 70-year dose commitments are calculated for whole body, bone, lower large intestine of the gastrointestinal tract, and six internal organs. In addition, the code identifies the largest dose contributor and the dose percentages for each organ-radionuclide combination in the source term. The 1974 radionuclide release data from the Savannah River Plant were used to evaluate the dose models. The dose predicted from the model was compared to the dose calculated from radiometric analysis of water and fish samples. The whole body dose from water consumption was 0.45 mrem calculated from monitoring data and 0.61 mrem predicted from the model. Tritium contributed 99 percent of this dose. The whole body dose from fish consumption was 0.20 mrem calculated from monitoring data and 0.14 mrem from the model. Cesium-134,137 was the principal contributor to the 70-year whole body dose from fish consumption
Use of OND-86 recommendations for calculation of the Shelter radioactive release
International Nuclear Information System (INIS)
Bogatov, S.A.
2000-01-01
A model of radioactive release from the Shelter has been considered under current operation conditions. Integral assessment of current dust release has been done on the base of natural ventilation rate. Model predictions are consistent (20% accuracy) with experimental results of air contamination measurements at the earth surface. 12 refs., 1 tab., 6 figs
Transition Models for Engineering Calculations
Fraser, C. J.
2007-01-01
While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
Comparative calculations and validation studies with atmospheric dispersion models
International Nuclear Information System (INIS)
Paesler-Sauer, J.
1986-11-01
This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de
International Nuclear Information System (INIS)
Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.
1978-12-01
The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment
Dose Assessment Model for Chronic Atmospheric Releases of Tritium
International Nuclear Information System (INIS)
Shen Huifang; Yao Rentai
2010-01-01
An improved dose assessment model for chronic atmospheric releases of tritium was proposed. The proposed model explicitly considered two chemical forms of tritium.It was based on conservative assumption of transfer of tritiated water (HTO) from air to concentration of HTO and organic beam tritium (OBT) in vegetable and animal products.The concentration of tritium in plant products was calculated based on considering dividedly leafy plant and not leafy plant, meanwhile the concentration contribution of tritium in the different plants from the tritium in soil was taken into account.Calculating the concentration of HTO in animal products, average water fraction of animal products and the average weighted tritium concentration of ingested water based on the fraction of water supplied by each source were considered,including skin absorption, inhalation, drinking water and food.Calculating the annual doses, the ingestion doses were considered, at the same time the contribution of inhalation and skin absorption to the dose was considered. Concentrations in foodstuffs and dose of annual adult calculated with the specific activity model, NEWTRI model and the model proposed by the paper were compared. The results indicate that the model proposed by the paper can predict accurately tritium doses through the food chain from chronic atmospheric releases. (authors)
Calculation of gas release from DC and AC arc furnaces in a foundry
Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.
2016-12-01
A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.
Experiment calculated ascertainment of factors affecting the energy release in IGR reactor core
International Nuclear Information System (INIS)
Kurpesheva, A.M.; Zhotabayev, Zh.R.
2006-01-01
Full text: At present energy supply resources problem is important. Nuclear reactors can, of course, solve this problem, but at the same time there is another issue, concerning safety exploitation of nuclear reactors. That is why, for the last seven years, such experiments as 'Investigation of the processes, conducting severe accidents with core melting' are being carried out at our IGR (impulse graphite reactor) reactor. Leaving out other difficulties of such experiments, it is necessary to notice, that such experiments require more accurate IGR core energy release calculations. The final aim of the present research is verification and correction of the existing method or creation of new method of IGR core energy release calculation. IGR reactor is unique and there is no the same reactor in the world. Therefore, application of the other research reactor methods here is quite useful. This work is based on evaluation of factors affecting core energy release (physical weight of experimental device, different configuration of reactor core, i.e. location of absorbers, initial temperature of core, etc), as well as interference of absorbers group. As it is known, energy release is a value of integral reactor power. During experiments with rays, Reactor power depends on currents of ion production chambers (IPC), located round the core. It is worth to notice that each ion production chamber (IPC) in the same start-up has its own ratio coefficient between IPC current and reactor present power. This task is complicated due to 'IPC current - reactor power' ratio coefficients, that change continuously, probably, because of new loading of experimental facility and different position of control rods. That is why, in order to try about reactor power, before every start-up, we have to re-determine the 'IPC current - reactor power' ratio coefficients for each ion production chamber (IPC). Therefore, the present work will investigate the behavior of ratio coefficient within the
Modelling of contaminant release from a uranium mine tailings site
International Nuclear Information System (INIS)
Kahnt, Rene; Metschies, Thomas
2007-01-01
Available in abstract form only. Full text of publication follows: Uranium mining and milling continuing from the early 1960's until 1990 close to the town of Seelingstaedt in Eastern Germany resulted in 4 tailings impoundments with a total tailings volume of about 105 Mio. m 3 . Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. At present the tailings impoundments are reshaped and covered. For the identification of suitable remediation options predictions of the contaminant release for different remediation scenarios have to be made. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using the software GOLDSIM. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a k d -approach was implemented to describe the contaminant release and transport within the hydraulic system. For uranium as the relevant contaminant the simple approach takes into account additional geochemical conditions influencing the mobility. Alternatively the model approach allows to include the results of detailed geochemical modelling of the individual tailings zones which is than used as source term for the modelling of the contaminant transport in the aquifer and to the receiving streams. (authors)
Calculation models for a nuclear reactor
International Nuclear Information System (INIS)
Tashanii, Ahmed Ali
2010-01-01
Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)
Precipitates/Salts Model Sensitivity Calculation
International Nuclear Information System (INIS)
Mariner, P.
2001-01-01
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO 2 ) on the chemical evolution of water in the drift
Calculation of the Fission Product Release for the HTR-10 based on its Operation History
International Nuclear Information System (INIS)
Xhonneux, A.; Druska, C.; Struth, S.; Allelein, H.-J.
2014-01-01
Since the first criticality of the HTR-10 test reactor in 2000, a rather complex operation history was performed. As the HTR-10 is the only pebble bed reactor in operation today delivering experimental data for HTR simulation codes, an attempt was made to simulate the whole reactor operation up to the presence. Special emphasis was put on the fission product release behaviour as it is an important safety aspect of such a reactor. The operation history has to be simulated with respect to the neutronics, fluid mechanics and depletion to get a detailed knowledge about the time-dependent nuclide inventory. In this paper we report about such a simulation with VSOP 99/11 and our new fission product release code STACY. While STACY (Source Term Analysis Code System) so far was able to calculate the fission product release rates in case of an equilibrium core and during transients, it now can also be applied to running-in-phases. This coupling demonstrates a first step towards an HCP Prototype. Based on the published power histogram of the HTR-10 and additional information about the fuel loading and shuffling, a coupled neutronics, fluid dynamics and depletion calculation was performed. Special emphasis was put on the complex fuel-shuffling scheme within both VSOP and STACY. The simulations have shown that the HTR-10 up to now generated about 2580 MWd while reshuffling the core about 2.3 times. Within this paper, STACY results for the equilibrium core will be compared with FRESCO-II results being published by INET. Compared to these release rates, which are based on a few user defined life histories, in this new approach the fission product release rates of Ag-110m, Cs-137, Sr-90 and I-131 have been simulated for about 4000 tracer pebbles with STACY. For the calculation of the HTR-10 operation history time-dependent release rates are being presented as well. (author)
Model cross section calculations using LAHET
International Nuclear Information System (INIS)
Prael, R.E.
1992-01-01
The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented
Evaluation of the dose assessment models for routine radioactive releases to the environment
International Nuclear Information System (INIS)
Rossi, J.
1998-05-01
The aim of the work was to evaluate the needs of development concerning the dose calculation models for routine releases and application of the models for exceptional release situations at the NPP plants operated by Imatran Voima Ltd. and Teollisuuden Voima Ltd. in Finland. First, the differences of the calculation models concerning input data, models themselves and output are considered. Subsequently some single features like importance of nuclides in exposure pathways due to change of the release composition, dose calculation for children and importance of time period of particle releases are considered. The existing dose calculation model used by the radiation safety authorities is aimed at a tool for checking the results from calculations of doses arising from routine releases by the power companies. Characteristics of an independent, foreign model and its suitability for safety authorities for dose calculations of releases in normal operation is also assessed. The needs of improvements in the existing calculation models and characteristics of a comprehensive model for safety authorities are discussed as well
International Nuclear Information System (INIS)
Kazakov, E.K.; Chernukhina, G.M.
1974-01-01
Results of calculation of the temperature distribution in an annular fuel element at transient thermal conductivity and heat release values are given. The calculation has been carried out by the mesh technique with the third-order boundary conditions for the inner surface assumed and with heat fluxes and temperatures at the zone boundaries to be equal. Three variants of solving the problem of a stationary temperature field are considered for failed fuel elements with clad flaking or cracks. The results obtained show the nonuniformity of the fuel element temperature field to depend strongly on the perturbation parameter at transient thermal conductivity and heat release values. In case of can flaking at a short length, the core temperature rises quickly after flaking. While evaluating superheating, one should take into account the symmetry of can flaking [ru
Hybrid reduced order modeling for assembly calculations
International Nuclear Information System (INIS)
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-01-01
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Youngsuk, E-mail: ysbang00@fnctech.com [FNC Technology, Co. Ltd., Yongin-si (Korea, Republic of); Abdel-Khalik, Hany S., E-mail: abdelkhalik@purdue.edu [Purdue University, West Lafayette, IN (United States); Jessee, Matthew A., E-mail: jesseema@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mertyurek, Ugur, E-mail: mertyurek@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2015-12-15
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
A Novel Hybrid Similarity Calculation Model
Directory of Open Access Journals (Sweden)
Xiaoping Fan
2017-01-01
Full Text Available This paper addresses the problems of similarity calculation in the traditional recommendation algorithms of nearest neighbor collaborative filtering, especially the failure in describing dynamic user preference. Proceeding from the perspective of solving the problem of user interest drift, a new hybrid similarity calculation model is proposed in this paper. This model consists of two parts, on the one hand the model uses the function fitting to describe users’ rating behaviors and their rating preferences, and on the other hand it employs the Random Forest algorithm to take user attribute features into account. Furthermore, the paper combines the two parts to build a new hybrid similarity calculation model for user recommendation. Experimental results show that, for data sets of different size, the model’s prediction precision is higher than the traditional recommendation algorithms.
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Stochastic Modeling of Radioactive Material Releases
Energy Technology Data Exchange (ETDEWEB)
Andrus, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pope, Chad [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was
Stochastic Modeling of Radioactive Material Releases
International Nuclear Information System (INIS)
Andrus, Jason; Pope, Chad
2015-01-01
Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was
Use of ELOCA.Mk5 to calculate transient fission product release from CANDU fuel elements
International Nuclear Information System (INIS)
Walker, J.R.; de Vaal, J.W.; Arimescu, V.I.; McGrady, T.G.; Wong, C.
1992-04-01
A change in fuel element power output, or a change in heat transfer conditions, will result in an immediate change in the temperature distribution in a fuel element. The temperature distribution change will be accompanied by concomitant changes in fuel stress distribution that lead, in turn, to a release of fission products to the fuel-to-sheath gap. It is important to know the inventory of fission products in the fuel-to-sheath gap, because this inventory is a major component of the source term for many postulated reactor accidents. ELOCA.Mk5 is a FORTRAN-77 computer code that has been developed to estimate transient releases to the fuel-to-sheath gap in CANDU reactors. ELOCA.Mk5 is an integration of the FREEDOM fission product release model into the ELOCA fuel element thermo-mechanical code. The integration of FREEDOM into ELOCA allows ELOCA.Mk5 to model the feedback mechanisms between the fission product release and the thermo-mechanical response of the fuel element. This paper describes the physical model, gives details of the ELOCA.Mkt code, and describes the validation of the model. We demonstrate that the model gives good agreement with experimental results for both steady state and transient conditions
Modeling a point-source release of 1,1,1-trichloroethane using EPA's SCREEN model
International Nuclear Information System (INIS)
Henriques, W.D.; Dixon, K.R.
1994-01-01
Using data from the Environmental Protection Agency's Toxic Release Inventory 1988 (EPA TRI88), pollutant concentration estimates were modeled for a point source air release of 1,1,1-trichloroethane at the Savannah River Plant located in Aiken, South Carolina. Estimates were calculating using the EPA's SCREEN model utilizing typical meteorological conditions to determine maximum impact of the plume under different mixing conditions for locations within 100 meters of the stack. Input data for the SCREEN model were then manipulated to simulate the impact of the release under urban conditions (for the purpose of assessing future landuse considerations) and under flare release options to determine if these parameters lessen or increase the probability of human or wildlife exposure to significant concentrations. The results were then compared to EPA reference concentrations (RfC) in order to assess the size of the buffer around the stack which may potentially have levels that exceed this level of safety
Precipitates/Salts Model Sensitivity Calculation
Energy Technology Data Exchange (ETDEWEB)
P. Mariner
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.
Release modes and processes relevant to source-term calculations at Yucca Mountain
International Nuclear Information System (INIS)
Apted, M.J.
1994-01-01
The feasibility of permanent disposal of radioactive high-level waste (HLW) in repositories located in deep geologic formations is being studied world-wide. The most credible release pathway is interaction between groundwater and nuclear waste forms, followed by migration of radionuclide-bearing groundwater to the accessible environment. Under hydrologically unsaturated conditions, vapor transport of volatile radionuclides is also possible. The near-field encompasses the waste packages composed of engineered barriers (e.g. man-made materials, such as vitrified waste forms, corrosion-resistant containers), while the far-field includes the natural barriers (e.g. host rock, hydrologic setting). Taken together, these two subsystems define a series of multiple, redundant barriers that act to assure the safe isolation of nuclear waste. In the U.S., the Department of energy (DOE) is investigating the feasibility of safe, long-term disposal of high-level nuclear waste at the Yucca Mountain site in Nevada. The proposed repository horizon is located in non-welded tuffs within the unsaturated zone (i.e. above the water table) at Yucca Mountain. The purpose of this paper is to describe the source-term models for radionuclide release from waste packages at Yucca Mountain site. The first section describes the conceptual release modes that are relevant for this site and waste package design, based on a consideration of the performance of currently proposed engineered barriers under expected and unexpected conditions. No attempt is made to asses the reasonableness nor probability of occurrence for any specific release mode. The following section reviews the waste-form characteristics that are required to model and constrain the release of radionuclides from the waste package. The next section present mathematical models for the conceptual release modes, selected from those that have been implemented into a probabilistic total system assessment code developed for the Electric Power
ANS-5.4 fission gas release model. I. Noble gases at high temperature
International Nuclear Information System (INIS)
Noble, L.D.
1979-01-01
A correlation to describe the release of volatile radioactive fission products has been developed by the ANS Working Group (ANS 5.4) on Fuel Plenum Activity. The model for release at higher temperatures is identical in form to conventional diffusion equations, but the effective diffusion coefficient incorporates an explicit dependence upon exposure. Because applicable radioactive release data is limited, parameters in the model were determined from stable fission measurements, and calculated or measured fuel temperatures. Although the model predicts high release, particularly at higher exposures, values for many cases of interest are considerably less than the 100% assumed in some accident analyses: providing potential for removal of unnecessary conservations
Energy Technology Data Exchange (ETDEWEB)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
EARTHWORK VOLUME CALCULATION FROM DIGITAL TERRAIN MODELS
Directory of Open Access Journals (Sweden)
JANIĆ Milorad
2015-06-01
Full Text Available Accurate calculation of cut and fill volume has an essential importance in many fields. This article shows a new method, which has no approximation, based on Digital Terrain Models. A relatively new mathematical model is developed for that purpose, which is implemented in the software solution. Both of them has been tested and verified in the praxis on several large opencast mines. This application is developed in AutoLISP programming language and works in AutoCAD environment.
Comparison of US/FRG accident condition models for HTGR fuel failure and radionuclide release
International Nuclear Information System (INIS)
Verfondern, K.
1991-03-01
The objective was to compare calculation models used in safety analyses in the US and FRG which describe fission product release behavior from TRISO coated fuel particles under core heatup accident conditions. The frist step performed is the qualitative comparison of both sides' fuel failure and release models in order to identify differences and similarities in modeling assumptions and inputs. Assumptions of possible particle failure mechanisms under accident conditions (SiC degradation, pressure vessel) are principally the same on both sides though they are used in different modeling approaches. The characterization of a standard (= intact) coated particle to be of non-releasing (GA) or possibly releasing (KFA/ISF) type is one of the major qualitative differences. Similar models are used regarding radionuclide release from exposed particle kernels. In a second step, a quantitative comparison of the calculation models was made by assessing a benchmark problem predicting particle failure and radionuclide release under MHTGR conduction cooldown accident conditions. Calculations with each side's reference method have come to almost the same failure fractions after 250 hours for the core region with maximum core heatup temperature despite the different modeling approaches of SORS and PANAMA-I. The comparison of the results of particle failure obtained with the Integrated Failure and Release Model for Standard Particles and its revision provides a 'verification' of these models in this sense that the codes (SORS and PANAMA-II, and -III, respectively) which were independently developed lead to very good agreement in the predictions. (orig./HP) [de
REITP3-Hazard evaluation program for heat release based on thermochemical calculation
Energy Technology Data Exchange (ETDEWEB)
Akutsu, Yoshiaki.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering; Kawakatsu, Yuichi. [Oji Paper Corp., Tokyo (Japan); Wada, Yuji. [National Institute for Resources and Environment, Tsukuba (Japan); Yoshida, Tadao. [Hosei University, Tokyo (Japan). College of Engineering
1999-06-30
REITP3-A hazard evaluation program for heat release besed on thermochemical calculation has been developed by modifying REITP2 (Revised Estimation of Incompatibility from Thermochemical Properties{sup 2)}. The main modifications are as follows. (1) Reactants are retrieved from the database by chemical formula. (2) As products are listed in an external file, the addition of products and change in order of production can be easily conducted. (3) Part of the program has been changed by considering its use on a personal computer or workstation. These modifications will promote the usefulness of the program for energy hazard evaluation. (author)
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Y.; Abdel-Khalik, H. S. [North Carolina State University, Raleigh, NC (United States); Jessee, M. A.; Mertyurek, U. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Modelling of drug release from ensembles of aspirin microcapsules ...
African Journals Online (AJOL)
Purpose: In order to determine the drug release profile of an ensemble of aspirin crystals or microcapsules from its particle distribution a mathematical model that considered the individual release characteristics of the component single particles was developed. The model assumed that under sink conditions the release ...
Model and calculations for net infiltration
International Nuclear Information System (INIS)
Childs, S.W.; Long, A.
1992-01-01
In this paper a conceptual model for calculating net infiltration is developed and implemented. It incorporates the following important factors: viability of climate for the next 10,000 years, areal viability of net infiltration, and important soil/plant factors that affect the soil water budget of desert soils. Model results are expressed in terms of occurrence probabilities for time periods. In addition the variability of net infiltration is demonstrated both for change with time and differences among three soil/hydrologic units present at the site modeled
Nuclide release calculation in the near-field of a reference HLW repository
International Nuclear Information System (INIS)
Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung
2004-01-01
The HLW-relevant R and D program for disposal of high-level radioactive waste has been carried out at Korea Atomic Energy Research Institute (KAERI) since early 1997 in order to develop a conceptual Korea Reference Repository System for direct disposal of nuclear spent fuel by the end of 2007. A preliminary reference geologic repository concept considering such established criteria and requirements as waste and generic site characteristics in Korea was roughly envisaged in 2003 focusing on the near-field components of the repository system. According to above basic repository concept, which is similar to that of Swedish KBS-3 repository, the spent fuel is first encapsulated in corrosion resistant canisters, even though the material has not yet been determined, and then emplaced into the deposition holes surrounded by high density bentonite clay in tunnels constructed at a depth of about 500 m in a stable plutonic rock body. Not only to demonstrate how much a reference repository is safe in the generic point of view with several possible scenarios and cases associated with a preliminary repository concept by conducting calculations for nuclide release and transport in the near-field components of the repository, even though enough information has not been available that much yet, but also to show a methodology by which a generic safety assessment could be performed for further development of Korea reference repository concept, nuclide release calculation study strongly seems to be necessary
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
LOFC fission product release and circulating activity calculations for gas-cooled reactors
International Nuclear Information System (INIS)
Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.
1977-01-01
The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay
Selection of models to calculate the LLW source term
International Nuclear Information System (INIS)
Sullivan, T.M.
1991-10-01
Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab
Flavor release measurement from gum model system.
Ovejero-López, Isabel; Haahr, Anne-Mette; van den Berg, Frans; Bredie, Wender L P
2004-12-29
Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio-scaled using the signal from acetone in the breath of subjects. Next, APCI-MS and sensory TI curves are smoothed by low-pass filtering. Principal component analysis of the individual curves is used to display graphically the product differentiation by APCI-MS or TI signals. It is shown that differences in gum composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory adaptation and sensitivity differences of human perception versus APCI-MS detection might explain the divergence between the two dynamic measurement methods.
International Nuclear Information System (INIS)
Hotson, J.; Stacey, A.; Nair, S.
1980-07-01
The basic methodology incorporated in the POPFOOD computer code is described, which may be used to calculate equilibrium collective dose rates associated with continuous atmospheric releases and arising from consumption of a broad range of food products. The standard data libraries associated with the code are also described. These include a data library, based on the 1972 agricultural census, describing the spatial distribution of production, in England, Wales and Scotland, of the following food products: milk; beef and veal; pork bacon and ham; poultrymeat; eggs; mutton and lamb; root vegetables; green vegetables; fruit; cereals. Illustrative collective dose calculations were made for the case of 1 Ci per year emissions of 131 I, tritium and 14 C from a typical rural UK site. The calculations indicate that the ingestion pathway results in a greater collective dose than that via inhalation, with the contributions from consumption of root and green vegetables, and cereals being of comparable significance to that from liquid milk consumption, in all three cases. (author)
Matrix model calculations beyond the spherical limit
International Nuclear Information System (INIS)
Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.
1993-01-01
We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)
Interpretation and modelling of fission product Ba and Mo releases from fuel
Brillant, G.
2010-02-01
The release mechanisms of two fission products (namely barium and molybdenum) in severe accident conditions are studied using the VERCORS experimental observations. Barium is observed to be mostly released under reducing conditions while molybdenum release is most observed under oxidizing conditions. As well, the volatility of some precipitates in fuel is evaluated by thermodynamic equilibrium calculations. The polymeric species (MoO 3) n are calculated to largely contribute to molybdenum partial pressure and barium volatility is greatly enhanced if the gas atmosphere is reducing. Analytical models of fission product release from fuel are proposed for barium and molybdenum. Finally, these models have been integrated in the ASTEC/ELSA code and validation calculations have been performed on several experimental tests.
Development of Dynamic Environmental Effect Calculation Model
International Nuclear Information System (INIS)
Jeong, Chang Joon; Ko, Won Il
2010-01-01
The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed
Critical groups vs. representative person: dose calculations due to predicted releases from USEXA
Energy Technology Data Exchange (ETDEWEB)
Ferreira, N.L.D., E-mail: nelson.luiz@ctmsp.mar.mil.br [Centro Tecnologico da Marinha (CTM/SP), Sao Paulo, SP (Brazil); Rochedo, E.R.R., E-mail: elainerochedo@gmail.com [Instituto de Radiprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Mazzilli, B.P., E-mail: mazzilli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-07-01
The critical group cf Centro Experimental Aramar (CEA) site was previously defined based 00 the effluents releases to the environment resulting from the facilities already operational at CEA. In this work, effective doses are calculated to members of the critical group considering the predicted potential uranium releases from the Uranium Hexafluoride Production Plant (USEXA). Basically, this work studies the behavior of the resulting doses related to the type of habit data used in the analysis and two distinct situations are considered: (a) the utilization of average values obtained from official institutions (IBGE, IEA-SP, CNEN, IAEA) and from the literature; and (b) the utilization of the 95{sup tb} percentile of the values derived from distributions fit to the obtained habit data. The first option corresponds to the way that data was used for the definition of the critical group of CEA done in former assessments, while the second one corresponds to the use of data in deterministic assessments, as recommended by ICRP to estimate doses to the so--called 'representative person' . (author)
Critical groups vs. representative person: dose calculations due to predicted releases from USEXA
International Nuclear Information System (INIS)
Ferreira, N.L.D.; Rochedo, E.R.R.; Mazzilli, B.P.
2013-01-01
The critical group cf Centro Experimental Aramar (CEA) site was previously defined based 00 the effluents releases to the environment resulting from the facilities already operational at CEA. In this work, effective doses are calculated to members of the critical group considering the predicted potential uranium releases from the Uranium Hexafluoride Production Plant (USEXA). Basically, this work studies the behavior of the resulting doses related to the type of habit data used in the analysis and two distinct situations are considered: (a) the utilization of average values obtained from official institutions (IBGE, IEA-SP, CNEN, IAEA) and from the literature; and (b) the utilization of the 95 tb percentile of the values derived from distributions fit to the obtained habit data. The first option corresponds to the way that data was used for the definition of the critical group of CEA done in former assessments, while the second one corresponds to the use of data in deterministic assessments, as recommended by ICRP to estimate doses to the so--called 'representative person' . (author)
Cost Calculation Model for Logistics Service Providers
Directory of Open Access Journals (Sweden)
Zoltán Bokor
2012-11-01
Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly
Effective hamiltonian calculations using incomplete model spaces
International Nuclear Information System (INIS)
Koch, S.; Mukherjee, D.
1987-01-01
It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations
Development of DUST: A computer code that calculates release rates from a LLW disposal unit
International Nuclear Information System (INIS)
Sullivan, T.M.
1992-01-01
Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed
Model for fission-product calculations
International Nuclear Information System (INIS)
Smith, A.B.
1984-01-01
Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined
Calculations of Fission Gas Release During Ramp Tests Using Copernic Code
Energy Technology Data Exchange (ETDEWEB)
Tong, Liu [Nuclear Fuel R and D Center, China Nuclear Power Technology Research Institute (CNPRI) (China)
2013-03-15
The report performed under IAEA research contract No.15951 describes the results of fuel performance evaluation of LWR fuel rods operated at ramp conditions using the COPERNIC code developed by AREVA. The experimental data from the Third Riso Fission Gas Project and the Studsvik SUPER-RAMP Project presented in the IFPE database of the OECD/NEA has been utilized for assessing the code itself during simulation of fission gas release (FGR). Standard code models for LWR fuel were used in simulations with parameters set properly in accordance with relevant test reports. With the help of data adjustment, the input power histories are restructured to fit the real ones, so as to ensure the validity of FGR prediction. The results obtained by COPERNIC show that different models lead to diverse predictions and discrepancies. By comparison, the COPERNIC V2.2 model (95% Upper bound) is selected as the standard FGR model in this report and the FGR phenomenon is properly simulated by the code. To interpret the large discrepancies of some certain PK rods, the burst effect of FGR which is taken into consideration in COPERNIC is described and the influence of the input power histories is extrapolated. In addition, the real-time tracking capability of COPERNIC is tested against experimental data. In the process of investigation, two main dominant factors influencing the measured gas release rate are described and different mechanisms are analyzed. With the limited predicting capacity, accurate predictions cannot be carried out on abrupt changes of FGR during ramp tests by COPERNIC and improvements may be necessary to some relevant models. (author)
Modelling biocide release based on coating properties
Erich, S.J.F.; Baukh, V.
2016-01-01
Growth of micro-organisms on coated substrates is a common problem, since it reduces the performance of materials, in terms of durability as well as aesthetics. In order to prevent microbial growth biocides are frequently added to coatings. Unfortunately, early release of these biocides reduces the
Methodology for calculating radiation doses from radioactivity released to the environment
International Nuclear Information System (INIS)
Killough, G.G.; McKay, L.R.
1976-03-01
This document represents a compilation of the principal environmental transport and dosimetry models developed, adapted, and implemented by the Radiological Analyses and Applications Group of the Environmental Sciences Division of the Oak Ridge National Laboratory. The transport of released radioactivity through the natural environment is discussed in four sections: atmospheric dispersion, resuspension of material by wind action, terrestrial transport, and movement of material in underground water seepage. The discussion of dose to man and biota is divided into internal and external exposure sections. And finally, a developmental model (CONDOS) which estimates the dose to a population resulting from the manufacture, storage, distribution, use, and disposal of consumer products which contain radioactivity is described. Numerous tables are included
Acceleration methods and models in Sn calculations
International Nuclear Information System (INIS)
Sbaffoni, M.M.; Abbate, M.J.
1984-01-01
In some neutron transport problems solved by the discrete ordinate method, it is relatively common to observe some particularities as, for example, negative fluxes generation, slow and insecure convergences and solution instabilities. The commonly used models for neutron flux calculation and acceleration methods included in the most used codes were analyzed, in face of their use in problems characterized by a strong upscattering effect. Some special conclusions derived from this analysis are presented as well as a new method to perform the upscattering scaling for solving the before mentioned problems in this kind of cases. This method has been included in the DOT3.5 code (two dimensional discrete ordinates radiation transport code) generating a new version of wider application. (Author) [es
Application of CFD dispersion calculation in risk based inspection for release of H2S
International Nuclear Information System (INIS)
Sharma, Pavan K.; Vinod, Gopika; Singh, R.K.; Rao, V.V.S.S.; Vaze, K.K.
2011-01-01
In atmospheric dispersion both deterministic and probabilistic approached have been used for addressing design and regulatory concerns. In context of deterministic calculations the amount of pollutants dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analysis based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. In context of probabilistic methods applying risk based inspection (wherein consequence of failure from each component needs to be assessed) are becoming popular. Consequence evaluation in a process plant is a crucial task. Often the number of components considered for life management will be too huge. Also consequence evaluation of all the components proved to be laborious task. The present paper is the results of joint collaborative work from deterministic and probabilistic modelling group working in the field of atmospheric dispersion. Even though API 581 has simplified qualitative approach, regulators find the some of the factors, in particular, quantity factor, not suitable for process plants. Often dispersion calculations for heavy gas are done with very simple model which can not take care of density based atmospheric dispersion. This necessitates a new approach with a CFD based technical basis is proposed, so that the range of quantity considered along with factors used can be justified. The present paper is aimed at bringing out some of the distinct merits and demerits of the CFD based models. A brief account of the applications of such CFD codes reported in literature is also presented in the paper. This paper describes the approach devised and demonstrated for the said issue with emphasis of CFD calculations. (author)
International Nuclear Information System (INIS)
Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.
1996-01-01
Simulations were conducted to analyze the sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of the advective release from waste packages under dripping fractures. The first conceptual model assumed that dripping water directly contacts the waste form inside the 'failed' waste package, and radionuclides are released from the EBS by advection. The second conceptual model assumed that dripping water is diverted around the 'failed' waste package (because of the presence of corrosion products plugging the perforations) and dripping water is prevented from directly contacting the waste form. In the second model, radionuclides were assumed to transport through the perforations by diffusion, and, once outside the waste package, to be released from the EBS by advection. The second model was to incorporate more realism into the EBS release calculations. For the case with the second EBS release model, most radionuclides had significantly lower peak EBS release rates (from at least one to several orders of magnitude) than with the first EBS release model. The impacts of the alternative EBS release models were greater for the radionuclides with a low solubility (or solubility-limited radionuclides) than for the radionuclides with a high solubility (or waste form dissolution-limited radionuclides). The analyses indicated that the EBS release model representing advection through a 'failed' waste package (the first EBS release model) may be too conservative in predicting the EBS performance. One major implication from this sensitivity study was that a 'failed' waste package container with multiple perforations may still be able to perform effectively as an important barrier to radionuclide release. (author)
Release model for black liquor droplet; Mustalipeaepisaran vapautumismalli
Energy Technology Data Exchange (ETDEWEB)
Saastamoinen, J. [VTT Energy, Espoo (Finland)
1997-10-01
The release of sodium, potassium, chlorine and sulphur from black liquor droplets during pyrolysis, combustion and gasification is studied by modelling work. A model for drying, pyrolysis and swelling of black liquor has been developed earlier. A submodel for the release of sulphur, which takes place at temperatures below 500 deg C has been incorporated to this model. A previous model for the combustion and gasification of char particles has been further developed to account for the effect of sodium, potassium and chlorine. A model for the release of these components as function of time has been developed. (orig.)
A model of propagating calcium-induced calcium release mediated by calcium diffusion
Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.
1989-01-01
The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium
Recent research on stishovite: Hugoniot and partial release Z experiments and DFT EOS calculations.
Energy Technology Data Exchange (ETDEWEB)
Furnish, Michael D.; Shulenburger, Luke; Desjarlais, Michael; Fei, Yingwei
2018-04-01
We have conducted a series of ride-along experiments on the Z facility to ascertain the Hugoniot of silica centered in the stishovite phase over a range 0.4 - 1.0 TPa, together with partial release states produced at the interface between the sample and a fused silica window. The stishovite samples were synthesized in a large-volume multi-anvil press at 15 GPa and 1773 K, with an initial density of 4.29 gm/cc. The new Z experiments on stishovite fill in a gap between gas gun experiments and NIF experiments. The states are compared with the Hugoniots of quartz and fused silica for inferences as to EOS. They are generally consistent with Sesame 7360 predictions. Sound speed constraints from these data are discussed. The new Hugoniot data cross over the melting curve of stishovite; together with the partial-release data and predictions from density-functional theory modeling, they provide insights into the properties of solid and liquid under extreme conditions. These data are fundamentally important for understanding the interior of silicate-based super-Earths.
Modeling of fission product release in integral codes
International Nuclear Information System (INIS)
Obaidurrahman, K.; Raman, Rupak K.; Gaikwad, Avinash J.
2014-01-01
The Great Tohoku earthquake and tsunami that stroke the Fukushima-Daiichi nuclear power station in March 11, 2011 has intensified the needs of detailed nuclear safety research and with this objective all streams associated with severe accident phenomenology are being revisited thoroughly. The present paper would cover an overview of state of art FP release models being used, the important phenomenon considered in semi-mechanistic models and knowledge gaps in present FP release modeling. Capability of FP release module, ELSA of ASTEC integral code in appropriate prediction of FP release under several diversified core degraded conditions will also be demonstrated. Use of semi-mechanistic fission product release models at AERB in source-term estimation shall be briefed. (author)
Computational modeling and analysis of iron release from macrophages.
Directory of Open Access Journals (Sweden)
Alka A Potdar
2014-07-01
Full Text Available A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+ through ferroportin (FPN, the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp, oxidizes ferrous to ferric ion. Apo-transferrin (Tf, the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can
Building an Efficient Model for Afterburn Energy Release
Energy Technology Data Exchange (ETDEWEB)
Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L
2012-02-03
Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.
Relative Release-to-Birth Indicators for Investigating TRISO Fuel Fission Gas Release Models
International Nuclear Information System (INIS)
Harp, Jason M.; Hawari, Ayman I.
2008-01-01
TRISO microsphere fuel is the fundamental fuel unit for Very High Temperature Reactors (VHTR). A single TRISO particle consists of an inner kernel of uranium dioxide or uranium oxycarbide surrounded by layers of pyrolytic carbon and silicon carbide. If the silicon carbide layer fails, fission products, especially the noble fission gases Kr and Xe, will begin to escape the failed particle. The release of fission gas is usually quantified by measuring the ratio of the released activity (R) to the original birth activity (B), which is designated as the R/B ratio. In this work, relative Release-to-Birth indicators (I) are proposed as a technique for interpreting the results of TRISO irradiation experiments. By implementing a relative metric, it is possible to reduce the sensitivity of the indicators to instrumental uncertainties and variations in experimental conditions. As an example, relative R/B indicators are applied to the interpretation of representative data from the Advanced Gas Reactor-1 TRISO fuel experiment that is currently taking place at the Advanced Test Reactor of Idaho National Laboratory. It is shown that the comparison of measured to predicted relative R/B indicators (I) gives insight into the physics of release and helps validate release models. Different trends displayed by the indicators are related to the mechanisms of fission gas release such as diffusion and recoil. The current analysis shows evidence for separate diffusion coefficients for Kr and Xe and supports the need to account for recoil release. (authors)
International Nuclear Information System (INIS)
2002-01-01
1 - Description of program or function: IODES is a dynamic linear compartment model of the global iodine cycle which estimates long-term doses and dose commitments to the world population from releases of 129 I to the environment. The global environment is divided into different compartments comprising the atmosphere, hydrosphere, lithosphere, and terrestrial biosphere. The global transport of iodine is described by means of time-invariant fractional transfer rates between the environmental compartments. The fractional transfer rates for 129 I are determined primarily from available data on compartment inventories and fluxes for naturally occurring stable iodine and from data on the global hydrologic cycle. The dose to the world population is estimated from the calculated compartment inventories of 129 I, the known compartment inventories of stable iodine, a pathway analysis of the intake of iodine by a reference individual, dose conversion factors for inhalation and ingestion, and an estimate of the world population. For an assumed constant population of 12.21 billion beyond the year 2075, the estimated population dose commitment is 2 x 105 man-rem/Ci. 2 - Methods: IODES calculates 129 I inventories in the different environmental compartments and individual and population doses as a function of time after a release to the environment by solving a set of simultaneous first-order linear differential equations using numerical methods. 3 - Restrictions on the complexity of the problem: - The subroutine LSODE for solving the differential equations is provided online at the ORNL computer center and, thus, is not included in the IODES code package. If the LSODE routine is not available to the user, then an appropriate differential equation routine must be supplied by the user, and the initialization of parameters and the call statement for LSODE in the main program must be changed accordingly
International Nuclear Information System (INIS)
Martin, R.C.
1991-01-01
A simple model for diffusion through the silicon carbide layer of TRISO particles is applied to the data for accident condition testing of fuel spheres for the High-Temperature Reactor program of the Federal Republic of Germany (FRG). Categorization of sphere release of 137 Cs based on fast neutron fluence permits predictions of release with an accuracy comparable to that of the US/FRG accident condition fuel performance model. Calculations are also performed for 85 Kr, 90 Sr, and 110m Ag. Diffusion of cesium through SiC suggests that models of fuel failure should consider fuel performance during repeated accident condition thermal cycling. Microstructural considerations in models of fission product release are discussed. The neutron-induced segregation of silicon within the SiC structure is postulated as a mechanism for enhanced fission product release during accident conditions. As oxygen-enhanced SiC decomposition mechanism is also discussed. (author). 12 refs, 11 figs, 2 tabs
International Nuclear Information System (INIS)
Suh, K.Y.
1989-10-01
A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO 2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs
Calculation notes in support of ammonia releases from waste tank ventilation systems
International Nuclear Information System (INIS)
Wojdac, L.F.
1996-01-01
Ammonia is generated in waste tanks via the degradation of nitrogen compounds. The ammonia is released from the liquids by a mechanism which is dependent on temperature, pH, ionic strength and ammonia concentration. The release of ammonia to the environment occurs via diffusion of ammonia through a stagnant air mass and into the ventilation system
Factors affecting calculations of dose resulting from a tritium release into the atmosphere
International Nuclear Information System (INIS)
Otaduy, P.; Easterly, C.E.; Booth, R.S.; Jacobs, D.G.
1976-01-01
Tritium releases in the form of HT represent a lower hazard to man than releases as HTO. However, during movement in the environment, HT is converted into HTO. The effects of the conversion rate on calcultions of dose are described, and a general method is presented for determining the dose from tritium for various conversion rates and relative HTO/HT risk factors
International Nuclear Information System (INIS)
Edy-Sulistyono
1996-01-01
Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment
Comparison of source-term calculations using the AREST and SYVAC-Vault models: [Final report
International Nuclear Information System (INIS)
Apted, M.J.; Engel, D.W.; Garisto, N.C.; LeNeveu, D.M.
1988-07-01
A comparison of the calculated radionuclide release from a waste package in a geologic repository has been performed using the verified SYVAC-Vault Model and AREST Model. the purpose of this comparison is to further establish the credibility of these codes for predictive performance assessment and to identify improvements that may be required. A reference case for a Canadian conceptual design with spent fuel as the waste form was chosen to make an initial comparison. The results from the two models were in good agreement, including peak release rates, time to reach peak release, and long term release rates. Differences in results from the two models are attributed to differences in computational approaches. Studies of the effects of sorption, convective flow, distributed containment failure, and precipitation are identified as key areas for further comparisons and are currently in progress. 11 refs., 3 figs., 5 tabs
Recent research on stishovite: Hugoniot and partial release Z experiments and DFT EOS calculations
Furnish, Michael; Shulenburger, Luke; Desjarlais, Michael; Fei, Yingwei
2017-06-01
We have conducted a series of ride-along experiments on the Z facility to ascertain the Hugoniot of silica centered in the stishovite phase over a range 0.4 - 1.0 TPa, together with partial release states produced at the interface between the sample and a fused silica window. The stishovite samples were synthesized in a large-volume multi-anvil press at 15 GPa and 1773 K, with an initial density of 4.29 gm/cc. The new Z experiments on stishovite fill in a gap between gas gun experiments and NIF experiments. The states are compared with the Hugoniots of quartz and fused silica for inferences as to EOS. They are generally consistent with Sesame 7360 predictions. Sound speed constraints from these data are discussed. The new Hugoniot data cross over the melting curve of stishovite, providing insight into the properties of solid and liquid under extreme conditions in conjunction with predictions from density-functional theory modeling. These data are fundamentally important for understanding the interior of silicate-based super-Earths. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Directory of Open Access Journals (Sweden)
Xiao Qinghua
2016-03-01
Full Text Available Based on energy theory, energy release rate (EER and local energy release rate (LEER, a new index called FERR (Fractional Energy Release Rate is proposed, and this method can not only evaluate the risk of rock burst, but also can point out the location of high risk and the scale of rockburst. The FERR index is applied to the TBM assembling tunnel in Jinping Hydro Power Station II to evaluate the scale and intensity of rockburst, as well as the location where rockburst occurs. With FDM method adopted, the energy release rate of 3 excavation plans are calculated and the scale and risk of rockburst is evaluated, and the location of high risk of rockburst is also mapped. With FERR used in the evaluation, the rockburst is nicely controlled which ensured the safety and construction schedule of the project.
International Nuclear Information System (INIS)
Miller, C.; Little, C.A.
1982-08-01
The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases
Energy Technology Data Exchange (ETDEWEB)
Van Hove, W.; Van Laeken, K.; Bartsoen, L. [Belgatom, Brussels (Belgium)] [and others
1995-09-01
To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with time dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.
Modelling the release behaviour of cesium during severe fuel degradation
International Nuclear Information System (INIS)
Lewis, B.J.; Andre, B.; Morel, B.
1995-01-01
An analytical model has been applied to describe the diffusional release of fission product cesium from Zircaloy-clad fuel under high-temperature reactor accident conditions. The present treatment accounts for the influence of the atmosphere (i.e., changing oxygen potential) on the state of fuel oxidation and the release kinetics. The effects of fuel dissolution on the volatile release behaviour (under reducing conditions) is considered in terms of earlier crucible experiments and a simple model based on bubble coalescence and transport in metal pools. The model has been used to interpret the cesium release kinetics observed in steam and hydrogen experiments at the Vertical Irradiation (VI) Facility in the Oak Ridge National Laboratory and at the HEVA/VERCORS Facility in the Commissariat a l'Energie Atomique. (author)
Helium release rates and ODH calculations from RHIC magnet cooling line failure
Energy Technology Data Exchange (ETDEWEB)
Liaw, C.J.; Than, Y.; Tuozzolo, J.
2011-03-28
A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.
Concurrent algorithms for nuclear shell model calculations
International Nuclear Information System (INIS)
Mackenzie, L.M.; Macleod, A.M.; Berry, D.J.; Whitehead, R.R.
1988-01-01
The calculation of nuclear properties has proved very successful for light nuclei, but is limited by the power of the present generation of computers. Starting with an analysis of current techniques, this paper discusses how these can be modified to map parallelism inherent in the mathematics onto appropriate parallel machines. A prototype dedicated multiprocessor for nuclear structure calculations, designed and constructed by the authors, is described and evaluated. The approach adopted is discussed in the context of a number of generically similar algorithms. (orig.)
International Nuclear Information System (INIS)
Xhonneux, Andre; Allelein, Hans-Josef
2014-01-01
The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR
Energy Technology Data Exchange (ETDEWEB)
Cruz L, C. A.
2015-07-01
In the present thesis, the software DERA (Dispersion of Radioactive Effluents into the Atmosphere) was developed in order to calculate the equivalent dose, external and internal, associated with the release of radioactive effluents into the atmosphere from a nuclear facility. The software describes such emissions in normal operation, and not considering the exceptional situations such as accidents. Several tools were integrated for describing the dispersion of radioactive effluents using site meteorological information (average speed and wind direction and the stability profile). Starting with the calculation of the concentration of the effluent as a function of position, DERA estimates equivalent doses using a set of EPA s and ICRP s coefficients. The software contains a module that integrates a database with these coefficients for a set of 825 different radioisotopes and uses the Gaussian method to calculate the effluents dispersion. This work analyzes how adequate is the Gaussian model to describe emissions type -puff-. Chapter 4 concludes, on the basis of a comparison of the recommended correlations of emissions type -puff-, that under certain conditions (in particular with intermittent emissions) it is possible to perform an adequate description using the Gaussian model. The dispersion coefficients (σ{sub y} and σ{sub z}), that using the Gaussian model, were obtained from different correlations given in the literature. Also in Chapter 5 is presented the construction of a particular correlation using Lagrange polynomials, which takes information from the Pasquill-Gifford-Turner curves (PGT). This work also contains a state of the art about the coefficients that relate the concentration with the equivalent dose. This topic is discussed in Chapter 6, including a brief description of the biological-compartmental models developed by the ICRP. The software s development was performed using the programming language Python 2.7, for the Windows operating system (the
CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere
International Nuclear Information System (INIS)
Jagger, S.F.
1987-01-01
1 - Description of program or function: The situation modelled is as follows. A dense gas emerges from a source such that it can be considered to emerge through a rectangular area, placed in the vertical plane and perpendicular to the plume direction, which assumes that of the ambient wind. The gas flux at the source, and in every plane perpendicular to the plume direction, is constant in time and a stationary flow field has been attained. For this to apply, the characteristic time of release must be much larger than that for dispersal of the contaminant. The plume can be thought to consist of a number of rectangular elements or 'puffs' emerging from the source at regular time intervals. The model follows the development of these puffs at a series of downwind points. These puffs are immediately assumed to advect with the ambient wind at their half-height. The plume also slumps due to the action of gravity and is allowed to entrain air through its sides and top surface. Spreading of a fluid element is caused by pressure differences across this element and since the pressure gradient in the wind direction is small, the resulting pressure differences and slumping velocities are small also, thus permitting this convenient approximation. Initially, as the plume slumps, its vertical dimension decreases and with it the slumping velocity and advection velocity. Thus the plume advection velocity varies as a function of downwind distance. With the present steady state modelling, and to satisfy continuity constraints, there must be consequent adjustment of plume height. Calculation of this parameter from the volume flux ensures this occurs. As the cloud height begins to grow, the advection velocity increases and the plume height decreases accordingly. With advection downwind, the cloud gains buoyancy by entraining air and, if the cloud is cold, by absorbing heat from the ground. Eventually the plume begins to disperse as would a passive pollutant, through the action of
Shell model calculations for exotic nuclei
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1991-01-01
A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs
A model for the release of low-volatility fission products in oxidizing conditions
International Nuclear Information System (INIS)
Cox, D.S.; Hunt, C.E.L.; Liu, Z.; Keller, N.A.; Barrand, R.D.; O'Connor, R.F.
1991-07-01
A thermodynamic and kinetic model has been developed for calculating low-volatility fission-product releases from UO 2 at high temperatures in oxidizing conditions. Volatilization of the UO 2 matrix is assumed to be the rate controlling process. Oxidation kinetics of the UO 2 are modelled by either interfacial rate control, gas phase oxidant transport control, or solid-state diffusion of oxygen. The vapour pressure of UO 3 in equilibrium with the oxidizing fuel is calculated from thermodynamic data, and volatilization rates are determined using a model for forced convective mass transport. Low-volatility fission-product releases are calculated from the volume of vapourized fuel. Model calculations are conservative compared to experimental data for Zr, La, Ce and Nb fission-product releases from irradiated UO 2 exposed to air at 1973-2350 K. The implications of this conservatism are discussed in terms of possible rate control by processes other than convective mass transport of UO 3 . Coefficients for effective surface area (based on experimental data) and for heterogeneous rate controlling reaction kinetics are introduced to facilitate agreement between calculations and the experimental data.
Uncertainty calculation in transport models and forecasts
DEFF Research Database (Denmark)
Manzo, Stefano; Prato, Carlo Giacomo
Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...
Applied exposure modeling for residual radioactivity and release criteria
International Nuclear Information System (INIS)
Lee, D.W.
1989-01-01
The protection of public health and the environment from the release of materials with residual radioactivity for recycle or disposal as wastes without radioactive contents of concern presents a formidable challenge. Existing regulatory criteria are based on technical judgment concerning detectability and simple modeling. Recently, exposure modeling methodologies have been developed to provide a more consistent level of health protection. Release criteria derived from the application of exposure modeling methodologies share the same basic elements of analysis but are developed to serve a variety of purposes. Models for the support of regulations for all applications rely on conservative interpretations of generalized conditions while models developed to show compliance incorporate specific conditions not likely to be duplicated at other sites. Research models represent yet another type of modeling which strives to simulate the actual behavior of released material. In spite of these differing purposes, exposure modeling permits the application of sound and reasoned principles of radiation protection to the release of materials with residual levels of radioactivity. Examples of the similarities and differences of these models are presented and an application to the disposal of materials with residual levels of uranium contamination is discussed. 5 refs., 2 tabs
Transient modeling of electrochemically assisted CO2 capture and release
DEFF Research Database (Denmark)
Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.
2017-01-01
to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking......The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model...
MUDMAP: Simulation model for releases from offshore platforms
International Nuclear Information System (INIS)
Anon.
1994-01-01
The present article deals with a Norwegian developed simulation model dubbed MUDMAP. MUDMAP is a numerical model that simulates releases of drill muds and cuttings, produced water and other substances from offshore platforms. The model is envisioned as an advanced tool to assist in the rapid design and placement of intakes and release pipes on platforms, as well as in evaluating potential long-term impacts in the water and on the sea floor. MUDMAP allows rapid visual/graphical analysis of potential alternative solutions under various realistic environmental conditions, and for planning and executing platform monitoring projects. 4 figs
Shell model calculations at superdeformed shapes
International Nuclear Information System (INIS)
Nazarewicz, W.; Dobaczewski, J.; Van Isacker, P.
1991-01-01
Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three dimensional harmonic oscillator. The classifications and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. The ''superdeformed'' symmetries lead to new quantum numbers and new effective interactions that can be employed in microscopic calculations. New classification schemes can be directly related to certain geometrical properties of the nuclear shape. 63 refs., 7 figs
International Nuclear Information System (INIS)
Iijima, Toshinori; Shiraishi, Tadao
1979-10-01
For environmental doses from routine releases of LWRs effluents to meet the Criterion 'As Low As is Practicable (ALAP)', Japan Atomic Energy Commission (JAEC) established a series of guides, the first for 'Dose Objectives' (May 1975), the second for models and parameters for calculating the environmental doses to compare with the 'Dose Objectives' (September 1976), and the third providing onsite meteorological programs, statistics of the data obtained and atmospheric dispersion models (June 1977). JAERI has developed a computer code, designated as ANDOSE, for calculating annual releases of radioactive gaseous and liquid effluents and, then, total body doses and thyroid doses to individuals around sites on the basis of these guides. The total body doses are from radioactive noble gases as well as from radioactive materials taken with marine food. For the calculation of thyroid doses are taken into account exposure pathways via inhalation and ingestion of leafy vegetables, cow's milk and marine food. The age-specific thyroid doses are evaluated. The doses are summed up when multisource or multisite conditions need to be evaluated (Nuclear Safety Bureau's requirement). In the present report, are described source-term models, environmental transport models and dose models used in the code, of which most are provided in the guides but some are complemented by the authors, the functions of ANDOSE and the manual for users of the code. The program lists and the latter two guides mentioned above are included in the appendices. (author)
An investigation of fission models for high-energy radiation transport calculations
International Nuclear Information System (INIS)
Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.
1983-07-01
An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)
Models for Automated Tube Performance Calculations
International Nuclear Information System (INIS)
Brunkhorst, C.
2002-01-01
High power radio-frequency systems, as typically used in fusion research devices, utilize vacuum tubes. Evaluation of vacuum tube performance involves data taken from tube operating curves. The acquisition of data from such graphical sources is a tedious process. A simple modeling method is presented that will provide values of tube currents for a given set of element voltages. These models may be used as subroutines in iterative solutions of amplifier operating conditions for a specific loading impedance
International Nuclear Information System (INIS)
Rossi, J.; Valkama, I.
1985-01-01
A model for estimating radiation doses resulting from long range atmospheric transport of released radionuclides in accidents is precented. The model (TRADOS) is able to treat changing diffusion conditions. For example the plume can be exposed to temporary rain, changes in turbulence and mixing depth. This can result in considerable changes in individual doses. The method is applied to an example trajectory and the doses caused by a serious reactor accident are calculated
An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code
Energy Technology Data Exchange (ETDEWEB)
Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha
2003-03-01
An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.
Fission product release from nuclear fuel I. Physical modelling in the ASTEC code
International Nuclear Information System (INIS)
Brillant, G.; Marchetto, C.; Plumecocq, W.
2013-01-01
Highlights: • Physical modeling of FP and SM release in ASTEC is presented. • The release is described as solid state diffusion within fuel for high volatile FP. • The release is described as FP vaporisation for semi volatile FP. • The release is described as fuel vaporisation for low volatile FP. • ASTEC validation is presented in the second paper. - Abstract: This article is the first of a series of two articles dedicated to the mechanisms of fission product release from a degraded core as they are modelled in the ASTEC code. The ASTEC code aims at simulating severe accidents in nuclear reactors from the initiating event up to the radiological consequences on the environment. This code is used for several applications such as nuclear plant safety evaluation including probabilistic studies and emergency preparedness. To cope with the requirements of robustness and low calculation time, the code is based on a semi-empirical approach and only the main limiting phenomena that govern the release from intact rods and from debris beds are considered. For solid fuel, fission products are classified into three groups, depending on their degree of volatility. The kinetics of volatile fission products release depend on the rate-limiting process of solid-state diffusion through fuel grains. For semi-volatile fission products, the release from the open fuel porosities is assumed to be governed by vaporisation and mass transfer processes. The key phenomenon for the release of low volatile fission products is supposed to be fuel volatilisation. A similar approach is used for the release of fission products from a rubble bed. An in-depth validation of the code including both analytical and integral experiments is the subject of the second article
Beyond standard model calculations with Sherpa
Energy Technology Data Exchange (ETDEWEB)
Hoeche, Stefan [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Kuttimalai, Silvan [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Siegert, Frank [Institut fuer Kern- und Teilchenphysik, TU Dresden, Dresden (Germany)
2015-03-01
We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level. (orig.)
Center for Integrated Nanotechnologies (CINT) Chemical Release Modeling Evaluation
Energy Technology Data Exchange (ETDEWEB)
Stirrup, Timothy Scott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-12-20
This evaluation documents the methodology and results of chemical release modeling for operations at Building 518, Center for Integrated Nanotechnologies (CINT) Core Facility. This evaluation is intended to supplement an update to the CINT [Standalone] Hazards Analysis (SHA). This evaluation also updates the original [Design] Hazards Analysis (DHA) completed in 2003 during the design and construction of the facility; since the original DHA, additional toxic materials have been evaluated and modeled to confirm the continued low hazard classification of the CINT facility and operations. This evaluation addresses the potential catastrophic release of the current inventory of toxic chemicals at Building 518 based on a standard query in the Chemical Information System (CIS).
International Nuclear Information System (INIS)
Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G
2008-01-01
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity
Energy Technology Data Exchange (ETDEWEB)
Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)
2008-04-21
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.
International Nuclear Information System (INIS)
Poley, A.D.
1996-02-01
NUDOS is a computer program that can be used to evaluate the consequences of airborne releases of radioactive material. The consequences which can be evaluated are individual dose and associated radiological risk, collective dose and the contamination of land. The code is capable of dealing with both continuous (routine) and accidental releases. For accidental releases both deterministic and probabilistic calculations can be performed, and the impact and effectiveness of emergency actions can be evaluated. This report contains a description of the models contained in NUDOS92 and the recommended values for the input parameters of these models. Additionally, a short overview is given of the future model improvement planned for the next NUDOS-version. (orig.)
Steady-state and transient fission gas release and swelling model for LIFE-4
International Nuclear Information System (INIS)
Villalobos, A.; Liu, Y.Y.; Rest, J.
1984-06-01
The fuel-pin modeling code LIFE-4 and the mechanistic fission gas behavior model FASTGRASS have been coupled and verified against gas release data from mixed-oxide fuels which were transient tested in the TREAT reactor. Design of the interface between LIFE-4 and FASTGRASS is based on an earlier coupling between an LWR version of LIFE and the GRASS-SST code. Fission gas behavior can significantly affect steady-state and transient fuel performance. FASTGRASS treats fission gas release and swelling in an internally consistent manner and simultaneously includes all major mechanisms thought to influence fission gas behavior. The FASTGRASS steady-state and transient analysis has evolved through comparisons of code predictions with fission-gas release and swelling data from both in- and ex-reactor experiments. FASTGRASS was chosen over other fission-gas behavior models because of its availability, its compatibility with the LIFE-4 calculational framework, and its predictive capability
Modeling release of chemicals from multilayer materials into food
Directory of Open Access Journals (Sweden)
Huang Xiu-Ling
2016-01-01
Full Text Available The migration of chemicals from materials into food is predictable by various mathematical models. In this article, a general mathematical model is developed to quantify the release of chemicals through multilayer packaging films based on Fick's diffusion. The model is solved numerically to elucidate the effects of different diffusivity values of different layers, distribution of chemical between two adjacent layers and between material and food, mass transfer at the interface of material and food on the migration process.
Model calculations for electrochemically etched neutron detectors
International Nuclear Information System (INIS)
Pitt, E.; Scharmann, A.; Werner, B.
1988-01-01
Electrochemical etching has been established as a common method for visualisation of nuclear tracks in solid state nuclear track detectors. Usually the Mason equation, which describes the amplification of the electrical field strength at the track tip, is used to explain the treeing effect of electrochemical etching. The yield of neutron-induced tracks from electrochemically etched CR-39 track detectors was investigated with respect to the electrical parameters. A linear dependence on the response from the macroscopic field strength was measured which could not be explained by the Mason equation. It was found that the reality of a recoil proton track in the detector does not fit the boundary conditions which are necessary when the Mason equation is used. An alternative model was introduced to describe the track and detector geometry in the case of a neutron track detector. The field strength at the track tip was estimated with this model and compared with the experimental data, yielding good agreement. (author)
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.
Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri
2015-10-01
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts
Model calculation of thermal conductivity in antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.
2015-11-01
A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.
Directory of Open Access Journals (Sweden)
Mircia Eleonora
2015-12-01
Full Text Available Pentoxifylline is a xanthine derivative used in the treatment of peripheral vascular disease, which because of its pharmacokinetic and pharmacologic profile is an ideal candidate for the development of extended release formulations. The aim of this study is to present a kinetic analysis of the pentoxifylline release from different extended release tablets formulations, using mechanistic and empirical kinetic models. A number of 28 formulations were prepared and analysed; the analysed formulations differed in the nature of the matrix forming polymers (hydrophilic, lipophilic, inert and in their concentrations. Measurements were conducted in comparison with the reference product Trental 400 mg (Aventis Pharma. The conditions for the dissolution study were according to official regulations of USP 36: apparatus no. 2, dissolution medium water, volume of dissolution medium is 1,000 mL, rotation speed is 50 rpm, spectrophotometric assay at 274 nm. Six mathematical models, five mechanistic (0 orders, 1st-order release, Higuchi, Hopfenberg, Hixson-Crowell and one empirical (Peppas, were fitted to pentoxifylline dissolution profile from each pharmaceutical formulation. The representative model describing the kinetics of pentoxifylline release was the 1st-order release, and its characteristic parameters were calculated and analysed.
CMS Partial Releases Model, Tools, and Applications. Online and Framework-Light Releases
Jones, Christopher D; Meschi, Emilio; Shahzad Muzaffar; Andreas Pfeiffer; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth
2009-01-01
The CMS Software project CMSSW embraces more than a thousand packages organized in subsystems for analysis, event display, reconstruction, simulation, detector description, data formats, framework, utilities and tools. The release integration process is highly automated by using tools developed or adopted by CMS. Packaging in rpm format is a built-in step in the software build process. For several well-defined applications it is highly desirable to have only a subset of the CMSSW full package bundle. For example, High Level Trigger algorithms that run on the Online farm, and need to be rebuilt in a special way, require no simulation, event display, or analysis packages. Physics analysis applications in Root environment require only a few core libraries and the description of CMS specific data formats. We present a model of CMS Partial Releases, used for preparation of the customized CMS software builds, including description of the tools used, the implementation, and how we deal with technical challenges, suc...
Glass operational file. Operational models and integration calculations
International Nuclear Information System (INIS)
Ribet, I.
2004-01-01
This document presents the operational choices of dominating phenomena, hypotheses, equations and numerical data of the parameters used in the two operational models elaborated for the calculation of the glass source terms with respect to the waste packages considered: existing packages (R7T7, AVM and CEA glasses) and future ones (UOX2, UOX3, UMo, others). The overall operational choices are justified and demonstrated and a critical analysis of the approach is systematically proposed. The use of the operational model (OPM) V 0 → V r , realistic, conservative and robust, is recommended for glasses with a high thermal and radioactive load, which represent the main part of the vitrified wastes. The OPM V 0 S, much more overestimating but faster to parameterize, can be used for the long-term behaviour forecasting of glasses with low thermal and radioactive load, considering today's lack of knowledge for the parameterization of a V 0 → V r type OPM. Efficiency estimations have been made for R7T7 glasses (OPM V 0 → V r ) and AVM glasses (OPM V 0 S), which correspond to more than 99.9% of the vitrified waste packages activity. The very contrasted results obtained, illustrate the importance of the choice of operational models: in conditions representative of a geologic disposal, the estimation of R7T7-type package lifetime exceeds several hundred thousands years. Even if the estimated lifetime of AVM packages is much shorter (because of the overestimating character of the OPM V 0 S), the release potential radiotoxicity is of the same order as the one of R7T7 packages. (J.S.)
Developments in consequence modelling of accidental releases of hazardous materials
Boot, H.
2012-01-01
The modelling of consequences of releases of hazardous materials in the Netherlands has mainly been based on the “Yellow Book”. Although there is no updated version of this official publication, new insights have been developed during the last decades. This article will give an overview of new
Dose estimation models for environmental tritium released from fusion facilities
International Nuclear Information System (INIS)
Murata, Mikio
1993-01-01
Various mathematical models are being developed to predict the behavior of HT released to the natural environment and their consequent impact. This report outlines models and the major findings of HT field release studies in France and Canada. The models are constructed to incorporate the key processes thought to be responsible for the formation of atmospheric HTO from a release of HT. It has been established from the experiments that HT oxidized in surface soil is incorporated almost entirely into soil water as HTO. This tritium may be reemitted to the atmosphere in the form of HTO through exchange of soil and atmospheric moisture as well as through the bulk water mass flux from the soil the atmosphere due to evaporation and transpiration. The direct conversion of HT to HTO in air and direct uptake of HT by vegetation are expected to be negligible for the time and space scales of interest in considering short duration releases. HTO emitted to the atmosphere is can further exchange with soil and vegetation water. Validation of these models against experimental data is conducted to demonstrate their credibility. It may be concluded that further laboratory and field works are needed in order to develop a sufficiently good understanding of the dependence of the key processes on environmental factors (including diurnal cycling and seasonality) to allow the rates of the processes to be predicted from a knowledge of environmental conditions. (author)
International Nuclear Information System (INIS)
Hrncir, Tomas; Panik, Michal; Necas, Vladimir
2011-01-01
Considerable amount of solid radioactive waste with radioactivity slightly above the limits for unconditional release is generated during the decommissioning of the nuclear installations. Conditional release deals with precisely this type of materials with activity slightly above limits in order to save considerable financial resources, which would be otherwise spend on treatment, conditioning and disposal of these materials at appropriate repository. The basic principles of conditional release as well as possibilities of reusing of the conditionally released materials are described. One of these possibilities of the reusing was chosen and application proposal of conditional release of metal waste - steel reinforcement in the concrete, which could be used for construction of motorway tunnels, was created. The computer code Visiplan 4.0 3D ALARA planning tool software was used for the calculation of effective individual dose for personnel constructing the tunnel and for critical group related to scenario. Particular models for individual scenarios of conditional release have been developed within the scope of this software code. The aim of the paper is to determine a level of the radioactivity of conditional released materials to avoid over exceeding the value of annual individual effective dose 10μSv/year established by international recommendations. (author)
Radionuclide release calculations for selected severe accident scenarios. PWR, ice condenser design
Energy Technology Data Exchange (ETDEWEB)
Denning, R S; Gieseke, J A; Cybulskis, P; Lee, K W; Jordan, H; Curtis, L A; Kelly, R F; Kogan, V; Schumacher, P M
1986-07-01
This report presents results of analyses of the environmental releases of fission products (source terms) for severe accident scenarios in a pressurized water reactor with an ice-condenser containment. The analyses were performed to support the Severe Accident Risk Reduction/Risk Rebaselining Program (SARRP) which is being undertaken for the U.S. Nuclear Regulatory Commission by Sandia National Laboratories. In the SARRP program, risk estimates are being generated for a number of reference plant designs. The Sequoyah Plant has been used in this study as an example of a PWR ice-condenser plant. (author)
International Nuclear Information System (INIS)
Denning, R.S.; Gieseke, J.A.; Cybulskis, P.; Lee, K.W.; Jordan, H.; Curtis, L.A.; Kelly, R.F.; Kogan, V.; Schumacher, P.M.
1986-07-01
This report presents results of analyses of the enviromental releases of fission products (source terms) for severe accident scenarios in a pressurized water reactor with a subatmospheric containment design. The analyses were performed to support the Severe Accident Risk Reduction/Risk Rebaselining Program (SARRP) which is being undertaken for the US Nuclear Regulatory Commission by Sandia National Laboratories. In the SARRP program, risk estimates are being generated for a number of reference plant designs. the Surry plant has been used in this study as the reference plant for a subatmospheric design
Novel Caffeic Acid Nanocarrier: Production, Characterization, and Release Modeling
Directory of Open Access Journals (Sweden)
Milad Fathi
2013-01-01
Full Text Available This paper deals with the development of novel nanocarriers using layer by layer carbohydrate coating of caffeic acid loaded solid lipid nanoparticles (SLNs to improve stability and colon delivery of the poorly water-soluble caffeic acid. Three biopolymers (chitosan, alginate, and pectin in different concentrations (0.1, 0.25, and 0.5% were electrostatically coated over the SLN surface. The size and zeta potential of produced nanocarriers were measured using photon correlation spectroscopy. Mathematical models (i.e., zero-order, first-order, Higuchi, Ritger-Peppas, reciprocal powered time, Weibull, and quadratic models were used to describe the release and kinetic modeling in gastrointestinal solution (GIS. Also, antioxidant activity of caffeic acid during the release in GIS was investigated using DPPH and reducing activity methods. The prepared treatments coated by alginate-chitosan as well as pectin-chitosan coated SLN at the concentration of 0.1% showed nanosized bead; the latter efficiently retarded the release of caffeic acid in gastric media up to 2.5 times higher than that of SLN. Zeta potential values of coated samples were found to significantly increase in comparison to SLN indicating the higher stability of produced nanocarriers. Antioxidant activity of caffeic acid after gastric release did not result in the same trend as observed for caffeic acid release from different treatments; however, in line with less caffeic acid release in the intestine solution by the effect of coating, lower antioxidant activity was determined at the end stage of the experiment.
Standard Model theory calculations and experimental tests
International Nuclear Information System (INIS)
Cacciari, M.; Hamel de Monchenault, G.
2015-01-01
To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings
Three-dimensional calculations of charge neutralization by neutral gas release
International Nuclear Information System (INIS)
Mandell, M.J.; Jongeward, G.A.; Katz, I.
1993-01-01
There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data
A 'Puff' dispersion model for routine and accidental releases
International Nuclear Information System (INIS)
Grsic, Z.; Rajkovic, B.; Milutinovic, P.
1999-01-01
A Puff dispersion model for accidental or routine releases is presented. This model was used as a constitutive part of an automatic meteorological station.All measured quantities are continuously displayed on PC monitor in a digital and graphical form, they are averaging every 10 minutes and sending to the civil information center of Belgrade. In the paper simulation of a pollutant plume dispersion from The oil refinery 'Pancevo', on April 18 th 1999 is presented. (author)
Swartjes F; ECO
2003-01-01
Twenty scenarios, differing with respect to land use, soil type and contaminant, formed the basis for calculating human exposure from soil contaminants with the use of models contributed by seven European countries (one model per country). Here, the human exposures to children and children
International Nuclear Information System (INIS)
Karlberg, O.
1995-02-01
Doses to critical groups from the activity released from swedish reactors were modelled in 1983. In this report these calculations are compared to doses calculated (using the same assumptions as in the 1983 model) from the activity measured in the water recipient. The study shows that the model overestimates activity in biota and sediments, which was expected, since the model was constructed to be conservative. 13 refs, 5 figs, 6 tabs
International Nuclear Information System (INIS)
Ponting, A.C.; Nair, S.
1984-04-01
A concept extensively used in studying the consequences of accidental atmospheric radioactive releases is that of the Complementary Cumulative Distribution Function, CCDF. Various methods of calculating CCDFs have been developed with particular applications in putting degraded core accidents in perspective and in identifying release sequences leading to high risks. This note compares three methods with specific reference to their accuracy and computational efficiency. For two of the methods (that used in the US Reactor Safety Study code CRAC2 and extended version of that method), the effects of varying the sector width and considering site-specific population distributions have been determined. For the third method it is only necessary to consider the effects of site-specific population distributions. (author)
Release and diffusional modeling of metronidazole lipid matrices.
Ozyazici, Mine; Gökçe, Evren H; Ertan, Gökhan
2006-07-01
In this study, the first aim was to investigate the swelling and relaxation properties of lipid matrix on diffusional exponent (n). The second aim was to determine the desired release profile of metronidazole lipid matrix tablets. We prepared metronidazole lipid matrix granules using Carnauba wax, Beeswax, Stearic acid, Cutina HR, Precirol ATO 5, and Compritol ATO 888 by hot fusion method and pressed the tablets of these granules. In vitro release test was performed using a standard USP dissolution apparatus I (basket method) with a stirring rate of 100 rpm at 37 degrees C in 900 ml of 0.1 N hydrochloric acid, adjusted to pH 1.2, as medium for the formulations' screening. Hardness, diameter-height ratio, friability, and swelling ratio were determined. Target release profile of metronidazole was also drawn. Stearic acid showed the highest and Carnauba wax showed the lowest release rates in all formulations used. Swelling ratios were calculated after the dissolution of tablets as 9.24%, 6.03%, 1.74%, and 1.07% for Cutina HR, Beeswax, Precirol ATO 5, and Compritol ATO 888, respectively. There was erosion in Stearic acid, but neither erosion nor swelling in Carnauba wax, was detected. According to the power law analysis, the diffusion mechanism was expressed as pure Fickian for Stearic acid and Carnauba wax and the coupling of Fickian and relaxation contributions for other Cutina HR, Beeswax, Compritol ATO 888, and Precirol ATO 5 tablets. It was found that Beeswax (kd=2.13) has a very close drug release rate with the target profile (kt=1.95). Our results suggested that swelling and relaxation properties of lipid matrices should be examined together for a correct evaluation on drug diffusion mechanism of insoluble matrices.
MAXDOSE-SR: A routine release atmospheric dose model used at SRS
International Nuclear Information System (INIS)
Simpkins, A.A.
2000-01-01
MAXDOSE-SR is a PC version of the dosimetry code MAXIGASP, which was used to calculate doses to the maximally exposed offsite individual for routine atmospheric releases of radioactive material at the Savannah River Site (SRS). Complete code description, verification of models, and user's manual have been included in this report. Minimal input is required to run the program, and site specific parameters are used when possible
Precipitates/Salts Model Calculations for Various Drift Temperature Environments
International Nuclear Information System (INIS)
Marnier, P.
2001-01-01
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b)
International Nuclear Information System (INIS)
Nielsen, S.P.; Gryning, S.E.; Thykier-Nielsen, S.; Karlberg, O.; Lyck, E.
1984-01-01
The paper presents work from a series of atmospheric dispersion experiments in May 1981 at the Ringhals nuclear power plant in Sweden. The aim of the project was to obtain short-term observations of concentrations and gamma-ray exposures from stack effluents and to compare these results with corresponding values calculated from computer models. Two tracers, sulphurhexafluoride (SF 6 ) and radioactive noble gases, were released from a 110-m stack and detected at ground level downwind at distances of 3-4 km. Calculations were made with two Gaussian plume models: PLUCON developed at Riso National Laboratory and UNIDOSE developed at Studsvik Energiteknik AB. (orig.)
DIGA/NSL new calculational model in slab geometry
International Nuclear Information System (INIS)
Makai, M.; Gado, J.; Kereszturi, A.
1987-04-01
A new calculational model is presented based on a modified finite-difference algorithm, in which the coefficients are determined by means of the so-called gamma matrices. The DIGA program determines the gamma matrices and the NSL program realizes the modified finite difference model. Both programs assume slab cell geometry, DIGA assumes 2 energy groups and 3 diffusive regions. The DIGA/NSL programs serve to study the new calculational model. (author)
International Nuclear Information System (INIS)
Liu Yuanzhong
1993-01-01
The calculations of the release of radionuclides to environment are the basis of environmental impact assessment during the normal operation of a module high temperature gas-cooled reactor of the Institute of Nuclear Energy Technology, Tsinghua University, China. According to the features of the reactor it is pointed out that only five sources of the airborne radioactive materials released to environment are important. They are: (1) the activation of the air in the reactor cavity; (2) the escape from the primary coolant systems; (3) the release of radioactively contaminated helium from storage tanks; (4) the release of radioactively contaminated helium from the gas evacuation system of fuel load and unload system; (5) the leakage of the vapour from water-steam loop. In accordance with five release sources the calculating methods of radionuclides released to environment are worked out respectively and the respective calculating formulas are derived for the normal operation of the reactor
A universal calculation model for the controlled electric transmission line
International Nuclear Information System (INIS)
Zivzivadze, O.; Zivzivadze, L.
2009-01-01
Difficulties associated with the development of calculation models are analyzed, and the ways of resolution of these problems are given. A version of the equivalent circuit as a six-pole network, the parameters of which do not depend on the angle of shift Θ between the voltage vectors of circuits is offered. The interrelation between the parameters of the equivalent circuit and the transmission constants of the line was determined. A universal calculation model for the controlled electric transmission line was elaborated. The model allows calculating the stationary modes of lines of such classes at any angle of shift Θ between the circuits. (author)
Formal modelling and verification of interlocking systems featuring sequential release
DEFF Research Database (Denmark)
Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan
2017-01-01
In this article, we present a method and an associated toolchain for the formal verification of the new Danish railway interlocking systems that are compatible with the European Train Control System (ETCS) Level 2. We have made a generic and reconfigurable model of the system behaviour and generic...... safety properties. This model accommodates sequential release - a feature in the new Danish interlocking systems. To verify the safety of an interlocking system, first a domain-specific description of interlocking configuration data is constructed and validated. Then the generic model and safety...
International Nuclear Information System (INIS)
Verfondern, K.; Mueller, D.
1991-01-01
Computer codes for modelling the fission product release behavior of spherical fuel elements for High Temperature Reactors (HTR) have been developed for the purpose of being used in risk analyses for HTRs. An important part of the validation and verification procedure for these calculation models is the theoretical investigation of accident simulation experiments which have been conducted in the KueFA test facility in the Hot Cells at KFA. The paper gives a presentation of the basic modeling and the calculational results of fission product release from modern German HTR fuel elements in the temperature range 1600-1800 deg. C using the TRISO coated particle failure model PANAMA and the diffusion model FRESCO. Measurements of the transient release behavior for cesium and strontium and of their concentration profiles after heating have provided informations about diffusion data in the important retention barriers of the fuel: silicon carbide and matrix graphite. It could be shown that the diffusion coefficients of both cesium and strontium in silicon carbide can significantly be reduced using a factor in the range of 0.02 - 0.15 compared to older HTR fuel. Also in the development of fuel element graphite, a tendency towards lower diffusion coefficients for both nuclides can be derived. Special heating tests focussing on the fission gases and iodine release from the matrix contamination have been evaluated to derive corresponding effective diffusion data for iodine in fuel element graphite which are more realistic than the iodine transport data used so far. Finally, a prediction of krypton and cesium release from spherical fuel elements under heating conditions will be given for fuel elements which at present are irradiated in the FRJ2, Juelich, and which are intended to be heated at 1600/1800 deg. C in the KueFA furnace in near future. (author). 7 refs, 11 figs
ECP evaluation by water radiolysis and ECP model calculations
Energy Technology Data Exchange (ETDEWEB)
Hanawa, S.; Nakamura, T.; Uchida, S. [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan); Kus, P.; Vsolak, R.; Kysela, J. [Nuclear Research Inst. Rez plc, Rez (Czech Republic)
2010-07-01
In-pile ECP measurements data was evaluated by water radiolysis calculations. The data was obtained by using an in-pile loop in an experimental reactor, LVR-15, at the Nuclear Research Institute (NRI) in Czech Republic. Three types of ECP sensors, a Pt electrode, an Ag/AgCl sensor and a zirconia membrane sensor containing Ag/Ag{sub 2}O were used at several levels of the irradiation rig at various neutron flux and gamma rates. For water radiolysis calculation, the in-pile loop was modeled to several nodes following their design specifications, operating conditions such as flow rates, dose rate distributions of neutron and gamma-ray and so on. Concentration of chemical species along the water flow was calculated by a radiolysis code, WRAC-J. The radiolysis calculation results were transferred to an ECP model. In the model, anodic and cathodic current densities were calculated with combination of an electrochemistry model and an oxide film growth model. The measured ECP data were compared with the radiolysis/ECP calculation results, and applicability the of radiolysis model was confirmed. In addition, anomalous phenomenon appears in the in-pile loop was also investigated by radiolysis calculations. (author)
International Nuclear Information System (INIS)
Rider, J.L.; Beal, S.K.
1977-04-01
A model was developed to estimate the radiation dose commitments received by people in the vicinity of a facility that releases radionuclides into the atmosphere. This model considers dose commitments resulting from immersion in the plume, ingestion of contaminated food, inhalation of gaseous and suspended radioactivity, and exposure to ground deposits. The dose commitments from each of these pathways is explicitly considered for each radionuclide released into the atmosphere and for each daughter of each released nuclide. Using the release rate of only the parent radionuclide, the air and ground concentrations of each daughter are calculated for each position of interest. This is considered to be a significant improvement over other models in which the concentrations of daughter radionuclides must be approximated by separate releases
Model calculations of nuclear data for biologically-important elements
International Nuclear Information System (INIS)
Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.
1994-05-01
We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed
Recommendations on dose buildup factors used in models for calculating gamma doses for a plume
International Nuclear Information System (INIS)
Hedemann Jensen, P.; Thykier-Nielsen, S.
1980-09-01
Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)
Flavor perception and aroma release from model dairy desserts.
Lethuaut, Laurent; Weel, Koen G C; Boelrijk, Alexandra E M; Brossard, Chantal D
2004-06-02
Six model dairy desserts, with three different textures and two sucrose levels, were equally flavored with a blend of four aroma compounds [ethyl pentanoate, amyl acetate, hexanal, and (E)-2-hexenal] and evaluated by a seven person panel in order to study whether the sensory perception of the flavor and the aroma release during eating varied with the textural characteristics or the sweetness intensity of the desserts. The sensory perception was recorded by the time intensity (TI) method, while the in vivo aroma release was simultaneously measured by the MS-nose. Considering the panel as a whole, averaged flavor intensity increased with sucrose level and varied with the texture of the desserts. Depending on the aroma compound, the averaged profile of in vivo aroma release varied, but for each aroma compound, averaged aroma release showed no difference with the sucrose level and little difference with the texture of the desserts. Perceptual sweetness-aroma interactions were the main factors influencing perception whatever the texture of the desserts.
The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations
DEFF Research Database (Denmark)
Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi
2018-01-01
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction...... to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been...... calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site....
Probabilistic consequence model of accidenal or intentional chemical releases.
Energy Technology Data Exchange (ETDEWEB)
Chang, Y.-S.; Samsa, M. E.; Folga, S. M.; Hartmann, H. M.
2008-06-02
In this work, general methodologies for evaluating the impacts of large-scale toxic chemical releases are proposed. The potential numbers of injuries and fatalities, the numbers of hospital beds, and the geographical areas rendered unusable during and some time after the occurrence and passage of a toxic plume are estimated on a probabilistic basis. To arrive at these estimates, historical accidental release data, maximum stored volumes, and meteorological data were used as inputs into the SLAB accidental chemical release model. Toxic gas footprints from the model were overlaid onto detailed population and hospital distribution data for a given region to estimate potential impacts. Output results are in the form of a generic statistical distribution of injuries and fatalities associated with specific toxic chemicals and regions of the United States. In addition, indoor hazards were estimated, so the model can provide contingency plans for either shelter-in-place or evacuation when an accident occurs. The stochastic distributions of injuries and fatalities are being used in a U.S. Department of Homeland Security-sponsored decision support system as source terms for a Monte Carlo simulation that evaluates potential measures for mitigating terrorist threats. This information can also be used to support the formulation of evacuation plans and to estimate damage and cleanup costs.
Radionuclide release rates from spent fuel for performance assessment modeling
International Nuclear Information System (INIS)
Curtis, D.B.
1994-01-01
In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments
In-Drift Microbial Communities Model Validation Calculations
Energy Technology Data Exchange (ETDEWEB)
D. M. Jolley
2001-09-24
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.
In-Drift Microbial Communities Model Validation Calculation
Energy Technology Data Exchange (ETDEWEB)
D. M. Jolley
2001-10-31
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
D.M. Jolley
2001-12-18
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.
In-Drift Microbial Communities Model Validation Calculations
International Nuclear Information System (INIS)
Jolley, D.M.
2001-01-01
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
International Nuclear Information System (INIS)
D.M. Jolley
2001-01-01
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data
Forecasting consequences of accidental release: how reliable are current assessment models
International Nuclear Information System (INIS)
Rohwer, P.S.; Hoffman, F.O.; Miller, C.W.
1983-01-01
This paper focuses on uncertainties in model output used to assess accidents. We begin by reviewing the historical development of assessment models and the associated interest in uncertainties as these evolutionary processes occurred in the United States. This is followed by a description of the sources of uncertainties in assessment calculations. Types of models appropriate for assessment of accidents are identified. A summary of results from our analysis of uncertainty is provided in results obtained with current methodology for assessing routine and accidental radionuclide releases to the environment. We conclude with discussion of preferred procedures and suggested future directions to improve the state-of-the-art of radiological assessments
Dose calculation for atmospheric releases from a nuclear accident using RAMS/HYPACT
International Nuclear Information System (INIS)
Tamura, Junji; Tomita, Kenichi; Homma, Toshimitsu
2004-01-01
This paper describes the investigation of uncertainties in the structure of the atmospheric dispersion/deposition model used in the probabilistic accident consequence assessment code, OSCAAR. To investigate these uncertainties, we have introduced the more sophisticated computer codes, RAMS and HYPACT, which were widely used in the research field of atmospheric phenomena. In this work, the capabilities of the HYPACT model were extended for use in accident consequence assessments. The preliminary comparison between the predictions by OSCAAR and those by RAMS/HYPACT were conducted for both individual and collective consequences in terms of probabilistic results. (author)
Hualien forced vibration calculation with a finite element model
International Nuclear Information System (INIS)
Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.
1995-01-01
The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs
The accuracy of heavy ion optical model calculations
International Nuclear Information System (INIS)
Kozik, T.
1980-01-01
There is investigated in detail the sources and magnitude of numerical errors in heavy ion optical model calculations. It is shown on example of 20 Ne + 24 Mg scattering at Esub(LAB)=100 MeV. (author)
NLOM - a program for nonlocal optical model calculations
International Nuclear Information System (INIS)
Kim, B.T.; Kyum, M.C.; Hong, S.W.; Park, M.H.; Udagawa, T.
1992-01-01
A FORTRAN program NLOM for nonlocal optical model calculations is described. It is based on a method recently developed by Kim and Udagawa, which utilizes the Lanczos technique for solving integral equations derived from the nonlocal Schroedinger equation. (orig.)
Experimental evaluation of analytical penumbra calculation model for wobbled beams
International Nuclear Information System (INIS)
Kohno, Ryosuke; Kanematsu, Nobuyuki; Yusa, Ken; Kanai, Tatsuaki
2004-01-01
The goal of radiotherapy is not only to apply a high radiation dose to a tumor, but also to avoid side effects in the surrounding healthy tissue. Therefore, it is important for carbon-ion treatment planning to calculate accurately the effects of the lateral penumbra. In this article, for wobbled beams under various irradiation conditions, we focus on the lateral penumbras at several aperture positions of one side leaf of the multileaf collimator. The penumbras predicted by an analytical penumbra calculation model were compared with the measured results. The results calculated by the model for various conditions agreed well with the experimental ones. In conclusion, we found that the analytical penumbra calculation model could predict accurately the measured results for wobbled beams and it was useful for carbon-ion treatment planning to apply the model
A methodology for constructing the calculation model of scientific spreadsheets
Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.
2015-01-01
Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi
2002-01-01
Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)
International Nuclear Information System (INIS)
Lee, C.E.; Apperson, C.E. Jr.; Foley, J.E.
1976-10-01
The report describes an analytic containment building model that is used for calculating the leakage into the environment of each isotope of an arbitrary radioactive decay chain. The model accounts for the source, the buildup, the decay, the cleanup, and the leakage of isotopes that are gas-borne inside the containment building
Volume 1: Calculating potential to emit releases and doses for FEMP's and NOCs; FINAL
International Nuclear Information System (INIS)
HILL, J.S.
1999-01-01
The purpose of this document is to provide Hanford Site facilities a handbook for estimating potential emissions and the subsequent offsite doses. General guidelines and information are provided to assist personnel in estimating emissions for use with U.S. Department of Energy (DOE) facility effluent monitoring plans (FEMPs) and regulatory notices of construction (NOCs), per 40 Code of Federal Regulations (CFR) Part 61, Subpart H, and Washington Administrative Code (WAC) Chapter 246-247 requirements. This document replaces Unit Dose Calculation Methods and Summary of Facility Effluent Monitoring Plan Determinations (WHC-EP-0498). Meteorological data from 1983 through 1996, 13-year data set, was used to develop the unit dose factors provided by this document, with the exception of two meteorological stations. Meteorological stations 23 and 24, located at Gable Mountain and the 100-F Area, only have data from 1986 through 1996, 10-year data set. The scope of this document includes the following: Estimating emissions and resulting effective dose equivalents (EDE) to a facility's nearest offsite receptor (NOR) for use with NOCs under 40 CFR Part 61, Subpart H, requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with NOCs under the WAC Chapter 246-247 requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with FEMPs and FEMP determinations under DOE Orders 5400.1 and 5400.5 requirements
Modelling of Pb release during Portland cement alteration
Energy Technology Data Exchange (ETDEWEB)
Benard, A. [INERIS Mediterrannee, F-13545 Aix En Provence 04 (France); Rose, J.; Borschneck, D.; Bottero, J.Y. [Univ Paul Cezanne, CNRS, UMR 6635, CEREGE, IFR PMSE 112, F-13545 Aix En Provence, (France); Hazemann, J.L. [CNRS, Cristallog Lab, F-38042 Grenoble 09 (France); Proux, O. [Univ Grenoble 1, CNRS, UMR, LGIT, F-38400 St Martin Dheres (France); Trotignon, L. [CEA Cadarache, DTN, SMTM, Lab Modelisat Transferts Environm, 13 - Saint Paul lez Durance (France); Nonat, A. [Univ Bourgogne, CNRS, UMR 5613, Fac Sci Mirande, Lab Rech Reactivite Solides, F-21078 Dijon (France); Chateau, L. [ADEME, F-49004 Angers (France)
2009-07-01
Complex cementitious matrices undergo weathering with environmental exchange and can release metallic pollutants during alteration. The molecular mechanisms responsible for metal release are difficult to identify, though this is necessary if such processes are to be controlled. The present study determines and models the molecular mechanisms of Pb release during Portland cement leaching. As Pb release is strongly related to its speciation (i.e. atomic environment and the nature of bearing phases), the first objective of the present study was to investigate the evolution of Pb retention sites together with the evolution of the cement mineralogy during leaching. Complementary and efficient investigation tools were used, namely X-ray diffraction, micro-X-ray fluorescence and X-ray absorption fine structures. The second objective was to reproduce our results with a reactive transport code (CHESS/HYTEC) in order to test the proposed speciation model of Pb. Combined results indicate that in both the unaltered core and the altered layer of the leached cement, Pb(II) would be retained through C-S-H 'nano-structure', probably linked to a Q(1) or Q(2P) silicate tetrahedra. Moreover in the altered layer, the presence of Fe atoms in the atomic environment of Pb is highly probable. Unfortunately little is known about Fe phases in cement, which makes the interpretation difficult. Can Fe-substituted hydrogranet (C(3)AH(6)) be responsible for Pb retention? Modelling results were consistent with Pb retention through C-S-H in layers and also in an additional, possibly Fe-containing, Pb-retention phase in the altered layer. (authors)
Mathematical models for calculating radiation dose to the fetus
International Nuclear Information System (INIS)
Watson, E.E.
1992-01-01
Estimates of radiation dose from radionuclides inside the body are calculated on the basis of energy deposition in mathematical models representing the organs and tissues of the human body. Complex models may be used with radiation transport codes to calculate the fraction of emitted energy that is absorbed in a target tissue even at a distance from the source. Other models may be simple geometric shapes for which absorbed fractions of energy have already been calculated. Models of Reference Man, the 15-year-old (Reference Woman), the 10-year-old, the five-year-old, the one-year-old, and the newborn have been developed and used for calculating specific absorbed fractions (absorbed fractions of energy per unit mass) for several different photon energies and many different source-target combinations. The Reference woman model is adequate for calculating energy deposition in the uterus during the first few weeks of pregnancy. During the course of pregnancy, the embryo/fetus increases rapidly in size and thus requires several models for calculating absorbed fractions. In addition, the increases in size and changes in shape of the uterus and fetus result in the repositioning of the maternal organs and in different geometric relationships among the organs and the fetus. This is especially true of the excretory organs such as the urinary bladder and the various sections of the gastrointestinal tract. Several models have been developed for calculating absorbed fractions of energy in the fetus, including models of the uterus and fetus for each month of pregnancy and complete models of the pregnant woman at the end of each trimester. In this paper, the available models and the appropriate use of each will be discussed. (Author) 19 refs., 7 figs
International Nuclear Information System (INIS)
1991-04-01
This standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The radionuclides considered are those associated with substances having the greatest potential for becoming airborne in reactor accidents: tritium (HTO), noble gases and their daughters, radioiodines, and certain radioactive particulates (Cs, Ru, Sr, Te). The standard focuses on the calculation of radiation doses for external exposures from radioactive material in the cloud; internal exposures for inhalation of radioactive material in the cloud and skin penetration of tritium; and external exposures from radionuclides deposited on the ground. It uses as modified Gaussian plume model to evaluate the time-integrated concentration downwind. (52 refs., 12 tabs., 21 figs.)
International Nuclear Information System (INIS)
Hu, T.A.
2007-01-01
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.
International Nuclear Information System (INIS)
Hisamatsu, Shun'ichi; Iyogi, Takashi; Inaba, Jiro; Chiang, Jing-Hsien; Suwa, Hiroji; Koide, Mitsuo
2007-01-01
A dose evaluation model was developed for radionuclides released from the spent nuclear fuel reprocessing plant which is located in Rokkasho, Aomori Prefecture, and now undergoing test operation. The dose evaluation model suitable for medium- and long-term dose assessments for both prolonged and short-term releases of radionuclides to the atmosphere was developed on the PC. The ARAC-2, a particle tracing type dispersion model coupled with 3-D wind field calculation by a mass conservative model, was adopted as the atmospheric dispersion model. The terrestrial transfer model included movement in soil and groundwater as well as an agricultural and livestock farming system. The available site-specific social and environmental characteristics were incorporated in the model. Growing of the crops was also introduced and radionuclides absorbed were calculated from weight increase from the start of deposition to harvest, and transfer factors. Most of the computer code system of the models was completed by 2005, and this paper reports the results of the development. (author)
Evacuation emergency response model coupling atmospheric release advisory capability output
International Nuclear Information System (INIS)
Rosen, L.C.; Lawver, B.S.; Buckley, D.W.; Finn, S.P.; Swenson, J.B.
1983-01-01
A Federal Emergency Management Agency (FEMA) sponsored project to develop a coupled set of models between those of the Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) system and candidate evacuation models is discussed herein. This report describes the ARAC system and discusses the rapid computer code developed and the coupling with ARAC output. The computer code is adapted to the use of color graphics as a means to display and convey the dynamics of an emergency evacuation. The model is applied to a specific case of an emergency evacuation of individuals surrounding the Rancho Seco Nuclear Power Plant, located approximately 25 miles southeast of Sacramento, California. The graphics available to the model user for the Rancho Seco example are displayed and noted in detail. Suggestions for future, potential improvements to the emergency evacuation model are presented
Model for calculating the boron concentration in PWR type reactors
International Nuclear Information System (INIS)
Reis Martins Junior, L.L. dos; Vanni, E.A.
1986-01-01
A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt
International Nuclear Information System (INIS)
Schick, W.C. Jr.; Milani, S.; Duncombe, E.
1980-03-01
A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model
Mathematical modeling of drug release from lipid dosage forms.
Siepmann, J; Siepmann, F
2011-10-10
Lipid dosage forms provide an interesting potential for controlled drug delivery. In contrast to frequently used poly(ester) based devices for parenteral administration, they do not lead to acidification upon degradation and potential drug inactivation, especially in the case of protein drugs and other acid-labile active agents. The aim of this article is to give an overview on the current state of the art of mathematical modeling of drug release from this type of advanced drug delivery systems. Empirical and semi-empirical models are described as well as mechanistic theories, considering diffusional mass transport, potentially limited drug solubility and the leaching of other, water-soluble excipients into the surrounding bulk fluid. Various practical examples are given, including lipid microparticles, beads and implants, which can successfully be used to control the release of an incorporated drug during periods ranging from a few hours up to several years. The great benefit of mechanistic mathematical theories is the possibility to quantitatively predict the effects of different formulation parameters and device dimensions on the resulting drug release kinetics. Thus, in silico simulations can significantly speed up product optimization. This is particularly useful if long release periods (e.g., several months) are targeted, since experimental trial-and-error studies are highly time-consuming in these cases. In the future it would be highly desirable to combine mechanistic theories with the quantitative description of the drug fate in vivo, ideally including the pharmacodynamic efficacy of the treatments. Copyright © 2011 Elsevier B.V. All rights reserved.
Model for Microcapsule Drug Release with Ultrasound-Activated Enhancement.
Tsao, Nadia H; Hall, Elizabeth A H
2017-11-14
Microbubbles and microcapsules of silane-polycaprolactone (SiPCL) have been filled with a fluorescent acridium salt (lucigenin) as a model for a drug-loaded delivery vehicle. The uptake and delivery were studied and compared with similar microbubbles and microcapsules of silica/mercaptosilica (S/M/S). Positively charged lucigenin was encapsulated through an electrostatic mechanism, following a Type I Langmuir isotherm as expected, but with an additional multilayer uptake that leads to a much higher loading for the SiPCL system (∼280 μg/2.4 × 10 9 microcapsules compared with ∼135 μg/2.4 × 10 9 microcapsules for S/M/S). Whereas the lucigenin release from the S/M/S bubbles and capsules loaded below the solubility limit is consistent with diffusion from a monolithic structure, the SiPCL structures show distinct release patterns; the Weibull function predicts a general trend for diffusion from normal Euclidean space at short times tending toward diffusion out of fractal spaces with increasing time. As a slow release system, the dissolution time (T d ) increases from 1 to 2 days for the S/M/S and for the low concentration, loaded SiPCl vehicles to ∼10 days for the high loaded microcapsules. However, T d can be reduced on insonation to 2 days, indicating the potential to gain control over the local enhanced release with ultrasound. This was tested for a docetaxel model and its effect on C4-2B prostate cancer cells, showing improved cell toxicity for concentrations below the normal EC 50 in solution.
Microbial Communities Model Parameter Calculation for TSPA/SR
International Nuclear Information System (INIS)
D. Jolley
2001-01-01
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed
A model to calculate the burn of gadolinium in PWR
International Nuclear Information System (INIS)
Sannazzaro, L.R.
1983-01-01
A cell model to calculate the burnup of a PWR fuel element with gadolinium as a poison, projected by KWU, is presented. With the model proposed, the burn of the gadolinium isotopes is analyzed, as well as the effect of these isotopes in the fuel element behaviour. The results obtained with this cell model are compared with those obtained by a conventional cell model. (E.G.) [pt
International Nuclear Information System (INIS)
Hu Erbang
1988-01-01
A series (22) of atmospheric tracer experiments with 100m release height have been performed at the kernforschungszentrum karlsruhe (KfK) of West Germany over a terrain of major roughness (Z 0 = 1.5 m). The concentration data of the tracers are statistically analysed in which 5 methods of stability classification are used. The results show that the normalized diffusion factors predicted by Gaussian plume dispersion model is in good agreement with the observed ones for elevated releases over a terrain of major roughness. Differnent sets of dispersion parameters could be obtained for the same series of atmospheric tracer experiments if different methods of classification are applied. The same method of stability classification should be used for the application of these dispersion parameters to evaluate the environment impact
Energy Technology Data Exchange (ETDEWEB)
Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club; Pourgol-Mohammad, Mohammad [Sahand Univ. of Technology, Tabriz (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)
2017-03-15
This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.
Modeling Inhalational Tularemia: Deliberate Release and Public Health Response
Hall, Ian M.; Leach, Steve
2011-01-01
Two epidemic modeling studies of inhalational tularemia were identified in the published literature, both demonstrating the high number of potential casualties that could result from a deliberate aerosolized release of the causative agent in an urban setting. However, neither study analyzed the natural history of inhalational tularemia nor modeled the relative merits of different mitigation strategies. We first analyzed publicly available human/primate experimental data and reports of naturally acquired inhalational tularemia cases to better understand the epidemiology of the disease. We then simulated an aerosolized release of the causative agent, using airborne dispersion modeling to demonstrate the potential number of casualties and the extent of their spatial distribution. Finally, we developed a public health intervention model that compares 2 mitigation strategies: targeting antibiotics at symptomatic individuals with or without mass distribution of antibiotics to potentially infected individuals. An antibiotic stockpile that is sufficient to capture all areas where symptomatic individuals were infected is likely to save more lives than treating symptomatic individuals alone, providing antibiotics can be distributed rapidly and their uptake is high. However, with smaller stockpiles, a strategy of treating symptomatic individuals alone is likely to save many more lives than additional mass distribution of antibiotics to potentially infected individuals. The spatial distribution of symptomatic individuals is unlikely to coincide exactly with the path of the dispersion cloud if such individuals are infected near their work locations but then seek treatment close to their homes. The optimal mitigation strategy will depend critically on the size of the release relative to the stockpile level and the effectiveness of treatment relative to the speed at which antibiotics can be distributed. PMID:22044315
batman: BAsic Transit Model cAlculatioN in Python
Kreidberg, Laura
2015-11-01
I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .
Modeling of molten core-concrete interactions and fission-product release
International Nuclear Information System (INIS)
Norkus, J.K.; Corradini, M.L.
1991-09-01
The study of molten core-concrete interaction is important in estimating the possible consequences of a severe nuclear reactor accident. CORCON-Mod2 is a computer program which models the thermal, chemical, and physical phenomena associated with molten core-concrete interactions. Models have been added to extend and improve the modeling of these phenomena. An ideal solution chemical equilibrium methodology is presented to predict the fission-product vaporization release. Additional chemical species have been added, and the calculation of chemical equilibrium has been expanded to the oxidic layer and to the mixed layer configuration. Recent experiments performed at Argonne National Laboratory are compared to CORCON predictions of melt temperature, erosion depth, and release fraction of fission products. The results consistently underpredicted the melt temperatures and erosion rates. However, the predictions of release of Te, Ba, Sr, and U were good. A sensitivity study of the effects of initial temperature, concrete type, use of the mixing option, degree of zirconium oxidation, cavity size, and amount of control material on erosion, gas production, and release of radioactive materials was performed for a PWR and a BWR. The initial melt temperature had the greatest effect on the results of interest. Concrete type and cavity size also had important effects. 78 refs., 35 figs., 40 tabs
Energy Technology Data Exchange (ETDEWEB)
Kelmers, A.D.; Hightower, J.R.
1987-05-01
Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.
Comparison of Calculation Models for Bucket Foundation in Sand
DEFF Research Database (Denmark)
Vaitkunaite, Evelina; Molina, Salvador Devant; Ibsen, Lars Bo
The possibility of fast and rather precise preliminary offshore foundation design is desirable. The ultimate limit state of bucket foundation is investigated using three different geotechnical calculation tools: [Ibsen 2001] an analytical method, LimitState:GEO and Plaxis 3D. The study has focused...... on resultant bearing capacity of variously embedded foundation in sand. The 2D models, [Ibsen 2001] and LimitState:GEO can be used for the preliminary design because they are fast and result in a rather similar bearing capacity calculation compared with the finite element models of Plaxis 3D. The 2D models...
Statistical Model Calculations for (n,γ Reactions
Directory of Open Access Journals (Sweden)
Beard Mary
2015-01-01
Full Text Available Hauser-Feshbach (HF cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well-observed result that diﬀerent nuclear input models sensitively aﬀect HF cross section calculations. Less well known however are the eﬀects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, back-shift and giant dipole parameters, as well as eﬀects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the eﬀects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative eﬀects of these model details will be discussed.
COCO-1: model for assessing the cost of offsite consequences of accidental releases of radioactivity
International Nuclear Information System (INIS)
Haywood, S.M.; Robinson, C.A.; Heady, C.
1991-09-01
This report describes a new model, called COCO-1 (Cost Of Consequences Offsite), for assessing the offsite economic consequences of an accident involving the release of radioactive material. The costs calculated are a measure of the benefit foregone as a result of the accident, and in addition to tangible monetary costs the model attempts to include costs arising from the effect of the accident on individuals, for instance the disruption caused by the loss of homes. The approach has limitations, which are discussed, but offers a broadly applicable and robust technique for estimating the economic impact of most accidents. (author)
International Nuclear Information System (INIS)
Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.
1995-01-01
During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences
Interacting boson model: Microscopic calculations for the mercury isotopes
Energy Technology Data Exchange (ETDEWEB)
Druce, C.H.; Pittel, S.; Barrett, B.R.; Duval, P.D.
1987-05-15
Microscopic calculations of the parameters of the proton--neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka--Arima--Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l = 4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels. copyright 1987 Academic Press, Inc.
The interacting boson model: Microscopic calculations for the mercury isotopes
Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.
1987-05-01
Microscopic calculations of the parameters of the proton-neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka-Armia-Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l=4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels.
Optimal Height Calculation and Modelling of Noise Barrier
Directory of Open Access Journals (Sweden)
Raimondas Grubliauskas
2011-04-01
Full Text Available Transport is one of the main sources of noise having a particularly strong negative impact on the environment. In the city, one of the best methods to reduce the spread of noise in residential areas is a noise barrier. The article presents noise reduction barrier adaptation with empirical formulas calculating and modelling noise distribution. The simulation of noise dispersion has been performed applying the CadnaA program that allows modelling the noise levels of various developments under changing conditions. Calculation and simulation is obtained by assessing the level of noise reduction using the same variables. The investigation results are presented as noise distribution isolines. The selection of a different height of noise barriers are the results calculated at the heights of 1, 4 and 15 meters. The level of noise reduction at the maximum overlap of data, calculation and simulation has reached about 10%.Article in Lithuanian
Simplified analytical model to simulate radionuclide release from radioactive waste trenches
International Nuclear Information System (INIS)
Sa, Bernardete Lemes Vieira de
2001-01-01
In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)
Recoil corrected bag model calculations for semileptonic weak decays
International Nuclear Information System (INIS)
Lie-Svendsen, Oe.; Hoegaasen, H.
1987-02-01
Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large
Optical model calculations with the code ECIS95
Energy Technology Data Exchange (ETDEWEB)
Carlson, B V [Departamento de Fisica, Instituto Tecnologico da Aeronautica, Centro Tecnico Aeroespacial (Brazil)
2001-12-15
The basic features of elastic and inelastic scattering within the framework of the spherical and deformed nuclear optical models are discussed. The calculation of cross sections, angular distributions and other scattering quantities using J. Raynal's code ECIS95 is described. The use of the ECIS method (Equations Couplees en Iterations Sequentielles) in coupled-channels and distorted-wave Born approximation calculations is also reviewed. (author)
Use of nuclear reaction models in cross section calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1975-03-01
The design of fusion reactors will require information about a large number of neutron cross sections in the MeV region. Because of the obvious experimental difficulties, it is probable that not all of the cross sections of interest will be measured. Current direct and pre-equilibrium models can be used to calculate non-statistical contributions to neutron cross sections from information available from charged particle reaction studies; these are added to the calculated statistical contribution. Estimates of the reliability of such calculations can be derived from comparisons with the available data. (3 tables, 12 figures) (U.S.)
Realistic shell-model calculations for Sn isotopes
International Nuclear Information System (INIS)
Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.
1997-01-01
We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)
Approximate dynamic fault tree calculations for modelling water supply risks
International Nuclear Information System (INIS)
Lindhe, Andreas; Norberg, Tommy; Rosén, Lars
2012-01-01
Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.
A fission gas release model for MOX fuel and its verification
International Nuclear Information System (INIS)
Koo, Y.H.; Sohn, D.S.; Strijov, P.
2000-01-01
A fission gas release model for MOX fuel has been developed based on a model for UO 2 fuel. Using the concept of equivalent cell, the model considers the uneven distribution of Pu within the fuel matrix and a number of Pu-rich particles that could lead to a non-uniform fission rate and fission gas distribution across the fuel pellet. The model has been incorporated into a code, COSMOS, and some parametric studies were made to analyze the effect of the size and Pu content of Pu-rich agglomerates. The model was then applied to the experimental data obtained from the FIGARO program, which consisted of the base irradiation of MOX fuels in the BEZNAU-1 PWR and the subsequent irradiation of four refabricated fuel segments in the Halden reactor. The calculated gas releases show good agreement with the measured ones. In addition, the present analysis indicates that the microstructure of the MOX fuel used in the FIGARO program is such that it has produced little difference in terms of gas release compared with UO 2 fuel. (author)
A model to calculate exposure from radioactive discharges into the coastal waters of Northern Europe
International Nuclear Information System (INIS)
Clark, M.J.; Grimwood, P.D.; Camplin, W.C.
1980-11-01
A regional marine model is described which can be used to estimate the exposure of populations as a result of the discharge of radioactive effluents into the coastal waters of Northern Europe. The model simulates the dispersion of radionuclides in marine waters, Their interaction with marine sediments and the concentration mechanisms occurring in seafoods. There is a local/regional interface defined in the modelling approach whereby releases are assumed to first enter a local marine compartment prior to widespread dispersion in coastal waters. Depletion mechanisms operate within both the local and regional environments influencing the fraction of radionuclide release which contributes to collective exposure. General results of the regional marine model are presented in a form which can be combined with independent local marine models; collective intakes per unit release of various radionuclides into coastal waters are given for a series of integration times. For caesium-137 and plutonium-239 collective effective dose equivalent commitments have been calculated using a defined local marine model. Some general conclusions have been drawn from the results and there is some discussion of the various features of the modelling approach. (author)
Comparison of the performance of net radiation calculation models
DEFF Research Database (Denmark)
Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.
2009-01-01
. The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...
EMPIRE-II statistical model code for nuclear reaction calculations
Energy Technology Data Exchange (ETDEWEB)
Herman, M [International Atomic Energy Agency, Vienna (Austria)
2001-12-15
EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)
Evaluation of calculational and material models for concrete containment structures
International Nuclear Information System (INIS)
Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.
1984-01-01
A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)
Precipitates/Salts Model Calculations for Various Drift Temperature Environments
Energy Technology Data Exchange (ETDEWEB)
P. Marnier
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).
Modeling corrosion and constituent release from a metal waste form
International Nuclear Information System (INIS)
Bauer, T. H.; Fink, J. K.; Abraham, D. P.; Johnson, I.; Johnson, S. G.; Wigeland, R. A.
2000-01-01
Several ANL ongoing experimental programs have measured metal waste form (MWF) corrosion and constituent release. Analysis of this data has initiated development of a consistent and quantitative phenomenology of uniform aqueous MWF corrosion. The effort so far has produced a preliminary fission product and actinide release model based on measured corrosion rates and calibrated by immersion test data for a 90 C J-13 and concentrated J-13 solution environment over 1-2 year exposure times. Ongoing immersion tests of irradiated and unirradiated MWF samples using more aggressive test conditions and improved tracking of actinides will serve to further validate, modify, and expand the application base of the preliminary model-including effects of other corrosion mechanisms. Sample examination using both mechanical and spectrographic techniques will better define both the nature and durability of the protective barrier layer. It is particularly important to assess whether the observations made with J-13 solution at 900 C persist under more aggressive conditions. For example, all the multiplicative factors in Table 1 implicitly assume the presence of protective barriers. Under sufficiently aggressive test conditions, such protective barriers may very well be altered or even eliminated
The models of internal dose calculation in ICRP
International Nuclear Information System (INIS)
Nakano, Takashi
1995-01-01
There are a lot discussions about internal dose calculation in ICRP. Many efforts are devoted to improvement in models and parameters. In this report, we discuss what kind of models and parameters are used in ICRP. Models are divided into two parts, the dosimetric model and biokinetic model. The former is a mathematical phantom model, and it is mainly developed in ORNL. The results are used in many researchers. The latter is a compartment model and it has a difficulty to decide the parameter values. They are not easy to estimate because of their age dependency. ICRP officially sets values at ages of 3 month, 1 year, 5 year, 10 year, 15 year and adult, and recommends to get values among ages by linear age interpolate. But it is very difficult to solve the basic equation with these values, so we calculate by use of computers. However, it has complex shame and needs long CPU time. We should make approximated equations. The parameter values include much uncertainty because of less experimental data, especially for a child. And these models and parameter values are for Caucasian. We should inquire whether they could correctly describe other than Caucasian. The body size affects the values of calculated SAF, and the differences of metabolism change the biokinetic pattern. (author)
Local-scale modelling of the releases of 137-Cs and 90-Sr from Fukushima NPP into the Pacific Ocean
International Nuclear Information System (INIS)
Raul, Perianez
2013-01-01
The dispersion of 137-Cs and 90-Sr released from Fukushima nuclear power plant to the sea after the March 11th 2011 tsunami has been studied using a numerical model. The 3D dispersion model consists of an advection/diffusion equation with terms describing uptake/release reactions between water and seabed sediments. The dispersion model has been fed with daily currents provided by JCOPE2 ocean model. Seabed sediment 137-Cs computed patterns have been compared with observations. The impact of tides and of atmospheric deposition on sediment contamination has been evaluated as well. First simulations carried out for Sr-90 are described. An evaluation of the amount of this radionuclide released to the sea has been made using a numerical model for the first time. Calculated vertical profiles of this radionuclide have been compared with measured ones. Finally, the variability in 90-Sr/137-Cs activity ratios has been analysed with the model
International Nuclear Information System (INIS)
2012-01-01
The Chernobyl 131 I Release Working Group (IWG) which was established within the framework of the EMRAS Programme continues some of the more traditional work of previous international programmes that were aimed at increasing confidence in methods and models for the assessment of radiation exposure related to the environmental releases. There is still very little information regarding the quantitative relationship between radiation dose to the thyroid from Chernobyl and the risk of thyroid cancer. The uncertainty combined with individual estimates of radiation dose constitutes a crucial point in establishing this relationship, since, any release of radioiodine into environment creates wide range of uncertainty for internal dose assessments. The 131 I scenarios provide an excellent opportunity to compare a number of modelling approaches to a single assessment problem, in a dose reconstruction context. Nine experts in environmental modelling participated in the Plavsk Scenario dealing with areas of assessment modelling for which the capabilities are not yet well established. One could observes the remarkably improvement in models performance comparing with previous radioiodine scenarios. Predictions of the various models were within a factor of three of the observations, discrepancies between the estimates of average doses to thyroid produced by most participant not exceeded a factor of ten. The process of testing independent model calculations against independent data set also provided useful information to the originators of the test data.
Interactions of model biomolecules. Benchmark CC calculations within MOLCAS
Energy Technology Data Exchange (ETDEWEB)
Urban, Miroslav [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava, Slovakia and Department of Physical and Theoretical Chemistry, Faculty of Natural Scie (Slovakia); Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Hobza, Pavel [Institute of Organic Chemistry and Biochemistry and Center for Complex Molecular Systems and biomolecules, Academy of Sciences of the Czech Republic, Prague (Czech Republic)
2015-01-22
We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.
International Nuclear Information System (INIS)
Alvarez, M.C.; Garzon, L.
1990-01-01
In this paper a practical dispersion model is presented, which permits to calculate, in Spain, the concentration of natural radionuclides released to the atmosphere from coal power plants. To apply the model it is necessary to know the following data: emission rates, dry deposition velocity, scavenging coefficient, mixing layer height, together with climatological frequency data relating to wind speed and wind direction (to determinate trajectories from a given source) in the areas examined. Meteorological data can be obtained from meteorological stations across Spain. (Author)
Improvement of the model for surface process of tritium release from lithium oxide
International Nuclear Information System (INIS)
Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro
2000-01-01
Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model
Laminated materials with plastic interfaces: modeling and calculation
International Nuclear Information System (INIS)
Sandino Aquino de los Ríos, Gilberto; Castañeda Balderas, Rubén; Diaz Diaz, Alberto; Duong, Van Anh; Chataigner, Sylvain; Caron, Jean-François; Ehrlacher, Alain; Foret, Gilles
2009-01-01
In this paper, a model of laminated plates called M4-5N and validated in a previous paper is modified in order to take into account interlaminar plasticity by means of displacement discontinuities at the interfaces. These discontinuities are calculated by adapting a 3D plasticity model. In order to compute the model, a Newton–Raphson-like method is employed. In this method, two sub-problems are considered: one is linear and the other is non-linear. In the linear problem the non-linear equations of the model are linearized and the calculations are performed by making use of a finite element software. By iterating the resolution of each sub-problem, one obtains after convergence the solution of the global problem. The model is then applied to the problem of a double lap, adhesively bonded joint subjected to a tensile load. The adhesive layer is modeled by an elastic–plastic interface. The results of the M4-5N model are compared with those of a commercial finite element software. A good agreement between the two computation techniques is obtained and validates the non-linear calculations proposed in this paper. Finally, the numerical tool and a delamination criterion are applied to predict delamination onset in composite laminates
Use of results from microscopic methods in optical model calculations
International Nuclear Information System (INIS)
Lagrange, C.
1985-11-01
A concept of vectorization for coupled-channel programs based upon conventional methods is first presented. This has been implanted in our program for its use on the CRAY-1 computer. In a second part we investigate the capabilities of a semi-microscopic optical model involving fewer adjustable parameters than phenomenological ones. The two main ingredients of our calculations are, for spherical or well-deformed nuclei, the microscopic optical-model calculations of Jeukenne, Lejeune and Mahaux and nuclear densities from Hartree-Fock-Bogoliubov calculations using the density-dependent force D1. For transitional nuclei deformation-dependent nuclear structure wave functions are employed to weigh the scattering potentials for different shapes and channels [fr
Serotonin synthesis, release and reuptake in terminals: a mathematical model
Directory of Open Access Journals (Sweden)
Best Janet
2010-08-01
Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to
Precision calculations in supersymmetric extensions of the Standard Model
International Nuclear Information System (INIS)
Slavich, P.
2013-01-01
This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)
International Nuclear Information System (INIS)
Paschoa, A.S.
1997-01-01
Full text: Scenarios concerning accidental releases of radionuclides into water bodies can be found in the open literature, mostly in connection with nuclear power plants located either onshore or inland. However, meager attention has been given to nuclear reactors used as energy sources for propulsion at sea, which are also subject to accidents. Such potential accidents may involve the loss of part of the reactor core to the surrounding water body. In addition of the initial instantaneous releases, one can estimate delayed source terms based on the rate at which radionuclides are dissolved or leached from the solidified material, like part of the core or structural materials in contact with water. Most of such solidified material might be a mixture of uranium, zirconium, iron, calcium, silica, fission and activation products, and transuranium elements as oxides, forming a glassy type solid. Transport models were used to calculate radionuclide concentrations in water resulting from short and delayed source terms. Oceanographic data used in the calculations were taken either from the open literature or from unclassified reports of the Brazilian Navy, being, however, as generic as possible. Time-dependent concentration functions for radionuclides in aquatic food following an accidental release reflect the net result of intake and elimination processes. However, to avoid the complexities of multiple parameters involved in such processes, the model accounts only for trophic transfer of radionuclides, and yet avoids the necessity of analyzing the details of each transfer step used to determine fish, crustacea, molluscs and seaweed accumulation. Swimming and other aquatic sports are not included in the model used for dose calculations because of theirs relatively low importance in comparison with the pathways concerning ingestion of aquatic food
Modelling intragranular fission gas release in irradiation of sintered LWR UO2 fuel
International Nuclear Information System (INIS)
Loesoenen, Pekka
2002-01-01
A model for the release of stable fission gases by diffuion from sintered LWR UO 2 fuel grains is presented. The model takes into account intragranular gas bubble behaviour as a function of grain radius. The bubbles are assumed to be immobile and the gas migrates to grain boundaries by diffusion of single gas atoms. The intragranular bubble population in the model at low burn-ups or temperatures consists of numerous small bubbles. The presence of the bubbles attenuates the effective gas atom diffusion coefficient. Rapid coarsening of the bubble population in increased burn-up at elevated temperatures weakens significantly the attenuation of the effective diffusion coefficient. The solution method introduced in earlier papers, locally accurate method, is enhanced to allow accurate calculation of the intragranular gas behaviour in time varying conditions without excessive computing time. Qualitatively the detailed model can predict the gas retention in the grain better than a more simple model
Do calculated conflicts in microsimulation model predict number of crashes?
Dijkstra, Atze; Marchesini, Paula; Bijleveld, Frits; Kars, Vincent; Drolenga, Hans; Maarseveen, Martin Van
2010-01-01
A microsimulation model and its calculations are described, and the results that are subsequently used to determine indicators for traffic safety are presented. The method demonstrates which changes occur at the level of traffic flow (number of vehicles per section of road) and at the vehicle level
A shell-model calculation in terms of correlated subsystems
International Nuclear Information System (INIS)
Boisson, J.P.; Silvestre-Brac, B.
1979-01-01
A method for solving the shell-model equations in terms of a basis which includes correlated subsystems is presented. It is shown that the method allows drastic truncations of the basis to be made. The corresponding calculations are easy to perform and can be carried out rapidly
TTS-Polttopuu - cost calculation model for fuelwood
International Nuclear Information System (INIS)
Naett, H.; Ryynaenen, S.
1999-01-01
The TTS-Institutes's Forestry Department has developed a computer based cost-calculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation, chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486- level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY-research programme. (orig.)
Calculation of extreme wind atlases using mesoscale modeling. Final report
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Badger, Jake
This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies as explai...
Overview of models allowing calculation of activity coefficients
Energy Technology Data Exchange (ETDEWEB)
Jaussaud, C.; Sorel, C
2004-07-01
Activity coefficients must be estimated to accurately quantify the extraction equilibrium involved in spent fuel reprocessing. For these calculations, binary data are required for each electrolyte over a concentration range sometimes exceeding the maximum solubility. The activity coefficients must be extrapolated to model the behavior of binary supersaturated aqueous solution. According to the bibliography, the most suitable models are based on the local composition concept. (authors)
International Nuclear Information System (INIS)
Anspaugh, L.R.; Goldman, M.; Catlin, R.J.
1987-01-01
The Chernobyl accident released a large amount of highly fractionated radioactive debris, including approximately 89 PBq of 137 Cs. We calculated the resulting collective dose commitment to the Northern Hemisphere via the pathways of external exposure and ingestion of radionuclides withd food. We developed a rural/urban model of external dose and we used the PATHWAY model for ingestion. The results are a collective dose commitment of 630,000 person-Gy over the first year and 1,200,000 person-Gy over 50 years. 13 refs., 1 tab
Sensitivity study of the Continuous Release Dispersion Model (CRDM) for radioactive pollutants
International Nuclear Information System (INIS)
Camacho, F.
1987-08-01
The Continuous Release Dispersion Model (CRDM) is used to calculate spatial distribution of pollutants and their radiation doses in the event of accidental releases of radioactive material from Nuclear Generation Stations. A sensitivity analysis of the CRDM was carried out to develop a method for quantifying the expected output uncertainty due to inaccuracies and uncertainties in the input values. A simulation approach was used to explore the behaviour of the sensitivity functions. It was found that the most sensitive variable is wind speed, the least sensitive is the ambient temperature, and that largest values of normalized concentrations are likely to occur for small values of wind speed and highly stable atmospheric conditions. It was also shown that an error between 10% and 25% should be expected in the output values for a 1% overall error in the input values, and this factor could be much larger in certain situations
The Updated BaSTI Stellar Evolution Models and Isochrones. I. Solar-scaled Calculations
Hidalgo, Sebastian L.; Pietrinferni, Adriano; Cassisi, Santi; Salaris, Maurizio; Mucciarelli, Alessio; Savino, Alessandro; Aparicio, Antonio; Silva Aguirre, Victor; Verma, Kuldeep
2018-04-01
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 M ⊙, 22 initial chemical compositions between [Fe/H] = ‑3.20 and +0.45, with helium to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site.
International Nuclear Information System (INIS)
Bergstroem, U.
1983-05-01
The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)
International Nuclear Information System (INIS)
Crabol, B.; Romeo, E.; Nester, K.
1992-01-01
In case of an accident in a nuclear power plant near the French-German border different schemes for dispersion calculations in both countries will currently be applied. An intercomparison of these schemes initiated from the German-French Commission for the safety of nuclear installations (DFK) revealed in some meteorological situations large differences in the resulting concentrations for radionuclides. An ad hoc working group was installed by the DFK with the mandate to analyse the reasons for the different model results and also to consider new theoretical concepts. The working group has agreed to apply a Gaussian puff model for emergency response calculations. The results of the model based on turbulence parameterization via similarity approach or spectral theory - have been compared with tracer experiments for different emission heights and atmospheric stability regimes. As a reference the old modelling approaches have been included in the study. The simulations with the similarity approach and the spectral theory show a slightly better agreement to the measured concentration data than the schemes used in the past. Instead of diffusion categories both new approaches allow a continuous characterization of the atmospheric dispersion conditions. Because the spectral approach incorporates the sampling time of the meteorological data as an adjustable parameter thereby offering the possibility to adjust the dispersion model to different emission scenarios this turbulence parameterization scheme will be foreseen as the basis for a joint French-German puff model
Air modelling as an alternative to sampling for low-level radioactive airborne releases
International Nuclear Information System (INIS)
Morgenstern, M.Y.; Hueske, K.
1995-01-01
This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparing the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940's by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown
Shell model calculations for stoichiometric Na β-alumina
International Nuclear Information System (INIS)
Wang, J.C.
1985-01-01
Walker and Catlow recently reported the results of their shell model calculations for the structure and transport of Na β-alumina (Naβ). The main computer programs used by Walker and Catlow for their calculations are PLUTO and HADES III. The latter, a recent version of HADES II written for cubic crystals, is believed to be applicable to defects in crystals of both cubic and hexagonal symmetry. PLUTO is usually used in calculating properties of perfect crystals before defects are introduced into the structure. Walker and Catlow claim that, in some respects, their models are superior to those of Wang et al. Yet, their results are quite different from those observed experimentally. In this work these differences are investigated by using a computer program designed to calculate lattice energies for s Naβ using the same shell model parameters adopted by Walker and Catlow. The core and shell positions of all ions, as well as the lattice parameters, were fully relaxed. The calculated energy difference between aBR and BR sites (0.33 eV) is about twice as large as that reported by Walker and Catlow. The present results also show that the relaxed oxygen ion positions next to the conduction plane in this case are displaced from their observed sites reported. When the core-shell spring constant of the oxygen ion was adjusted to minimize these displacements, the above-mentioned energy difference increased to about 0.56 eV. These results cast doubt on the fluid conduction plane structure suggested by Walker and Catlow and on the defect structure and activation energy obtained from their calculations
International Nuclear Information System (INIS)
Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias
2012-01-01
The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.
A model for short and medium range dispersion of radionuclides released to the atmosphere
International Nuclear Information System (INIS)
Clarke, R.H.
1979-09-01
A Working Group was established to give practical guidance on the estimation of the dispersion of radioactive releases to the atmosphere. The dispersion is estimated in the short and medium range, that is from about 100 m to a few tens of kilometres from the source, and is based upon a Gaussian plume model. A scheme is presented for categorising atmospheric conditions and values of the associated dispersion parameters are given. Typical results are presented for releases in specific meteorological conditions and a scheme is included to allow for durations of release of up to 24 hours. Consideration has also been given to predicting longer term average concentrations, typically annual averages, and results are presented which facilitate site specific calculations. The results of the models are extended to 100 km from the source, but the increasing uncertainty with which results may be predicted beyond a few tens of kilometres from the source is emphasised. Three technical appendices provide some of the rationale behind the decisions made in adopting the various models in the proposed dispersion scheme. (author)
Cluster model calculations of alpha decays across the periodic table
International Nuclear Information System (INIS)
Merchant, A.C.; Buck, B.
1988-10-01
The cluster model of Buck, Dover and Vary has been used to calculate partial widths for alpha decay from the ground states of all nuclei for which experimental measurements exist. The cluster-core potential is represented by a simple three-parameter form having fixed diffuseness, a radius which scales as A 1/3 and a depth which is adjusted to fit the Q-value of the particular decay. The calculations yield excellent agreement with the vast majority of the available data, and some typical examples are presented. (author) [pt
Modelling of Control Bars in Calculations of Boiling Water Reactors
International Nuclear Information System (INIS)
Khlaifi, A.; Buiron, L.
2004-01-01
The core of a nuclear reactor is generally composed of a neat assemblies of fissile material from where neutrons were descended. In general, the energy of fission is extracted by a fluid serving to cool clusters. A reflector is arranged around the assemblies to reduce escaping of neutrons. This is made outside the reactor core. Different mechanisms of reactivity are generally necessary to control the chain reaction. Manoeuvring of Boiling Water Reactor takes place by controlling insertion of absorbent rods to various places of the core. If no blocked assembly calculations are known and mastered, blocked assembly neutronic calculation are delicate and often treated by case to case in present studies [1]. Answering the question how to model crossbar for the control of a boiling water reactor ? requires the choice of a representation level for every chain of variables, the physical model, and its representing equations, etc. The aim of this study is to select the best applicable parameter serving to calculate blocked assembly of a Boiling Water Reactor. This will be made through a range of representative configurations of these reactors and used absorbing environment, in order to illustrate strategies of modelling in the case of an industrial calculation. (authors)
Modelling and parallel calculation of a kinetic boundary layer
International Nuclear Information System (INIS)
Perlat, Jean Philippe
1998-01-01
This research thesis aims at addressing reliability and cost issues in the calculation by numeric simulation of flows in transition regime. The first step has been to reduce calculation cost and memory space for the Monte Carlo method which is known to provide performance and reliability for rarefied regimes. Vector and parallel computers allow this objective to be reached. Here, a MIMD (multiple instructions, multiple data) machine has been used which implements parallel calculation at different levels of parallelization. Parallelization procedures have been adapted, and results showed that parallelization by calculation domain decomposition was far more efficient. Due to reliability issue related to the statistic feature of Monte Carlo methods, a new deterministic model was necessary to simulate gas molecules in transition regime. New models and hyperbolic systems have therefore been studied. One is chosen which allows thermodynamic values (density, average velocity, temperature, deformation tensor, heat flow) present in Navier-Stokes equations to be determined, and the equations of evolution of thermodynamic values are described for the mono-atomic case. Numerical resolution of is reported. A kinetic scheme is developed which complies with the structure of all systems, and which naturally expresses boundary conditions. The validation of the obtained 14 moment-based model is performed on shock problems and on Couette flows [fr
Diffusion theory model for optimization calculations of cold neutron sources
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations
Mathematical modeling of gonadotropin-releasing hormone signaling.
Pratap, Amitesh; Garner, Kathryn L; Voliotis, Margaritis; Tsaneva-Atanasova, Krasimira; McArdle, Craig A
2017-07-05
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are G q -coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A hierarchical stress release model for synthetic seismicity
Bebbington, Mark
1997-06-01
We construct a stochastic dynamic model for synthetic seismicity involving stochastic stress input, release, and transfer in an environment of heterogeneous strength and interacting segments. The model is not fault-specific, having a number of adjustable parameters with physical interpretation, namely, stress relaxation, stress transfer, stress dissipation, segment structure, strength, and strength heterogeneity, which affect the seismicity in various ways. Local parameters are chosen to be consistent with large historical events, other parameters to reproduce bulk seismicity statistics for the fault as a whole. The one-dimensional fault is divided into a number of segments, each comprising a varying number of nodes. Stress input occurs at each node in a simple random process, representing the slow buildup due to tectonic plate movements. Events are initiated, subject to a stochastic hazard function, when the stress on a node exceeds the local strength. An event begins with the transfer of excess stress to neighboring nodes, which may in turn transfer their excess stress to the next neighbor. If the event grows to include the entire segment, then most of the stress on the segment is transferred to neighboring segments (or dissipated) in a characteristic event. These large events may themselves spread to other segments. We use the Middle America Trench to demonstrate that this model, using simple stochastic stress input and triggering mechanisms, can produce behavior consistent with the historical record over five units of magnitude. We also investigate the effects of perturbing various parameters in order to show how the model might be tailored to a specific fault structure. The strength of the model lies in this ability to reproduce the behavior of a general linear fault system through the choice of a relatively small number of parameters. It remains to develop a procedure for estimating the internal state of the model from the historical observations in order to
Analytical model for calculation of the thermo hydraulic parameters in a fuel rod assembly
Energy Technology Data Exchange (ETDEWEB)
Cesna, B., E-mail: benas@mail.lei.l [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos g. 3, LT-44403 Kaunas (Lithuania)
2010-11-15
Research highlights: {yields} Proposed calculation model can be used for rapid calculation of the bundles with rods spaced by wire wrapping or honey type spacer grids. {yields} Model estimate three flow cross mixture mechanisms. {yields} Program DARS is enable to analyses experimental results. - Abstract: The paper presents the procedure of the cellular calculation of thermo hydraulic parameters of a single-phase gas flow in a fuel rod assembly. The procedure is implemented in the DARS program. The program is intended for calculation of the distribution of the gaseous coolant parameters and wall temperatures in case of arbitrary, geometrically specified, arrangement of the rods in fuel assembly and in case of arbitrary, functionally specified in space, heat release in the rods. In mathematical model the flow cross-section of the channel of intricate shape is conventionally divided to elementary cells formed by straight lines, which connect the centers of rods. Within the limits of a single cell the coolant parameters and the temperature of the corresponding part of the rod surface are assumed constant. The entire fuel assembly is viewed as a system of parallel interconnected channels. Program DARS is illustrated by calculation of a temperature mode of 85-rod assembly with spacers of wire wrapping on the rods.
Predictive property models for use in design of controlled release of pesticides
DEFF Research Database (Denmark)
Suné, Nuria Muro; Gani, Rafiqul; Bell, G.
2005-01-01
A model capable of predicting the release of an Active Ingredient (AI) from a specific device would be very useful in the field of pesticide controlled release technology for design purposes. For the release of an AI from a microcapsule a mathematical model is briefly presented here, as an introd...
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
Bang, Youngsuk
Reduced order modeling (ROM) has been recognized as an indispensable approach when the engineering analysis requires many executions of high fidelity simulation codes. Examples of such engineering analyses in nuclear reactor core calculations, representing the focus of this dissertation, include the functionalization of the homogenized few-group cross-sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, etc. This is done via assembly calculations which are executed many times to generate the required functionalization for use in the downstream core calculations. Other examples are sensitivity analysis used to determine important core attribute variations due to input parameter variations, and uncertainty quantification employed to estimate core attribute uncertainties originating from input parameter uncertainties. ROM constructs a surrogate model with quantifiable accuracy which can replace the original code for subsequent engineering analysis calculations. This is achieved by reducing the effective dimensionality of the input parameter, the state variable, or the output response spaces, by projection onto the so-called active subspaces. Confining the variations to the active subspace allows one to construct an ROM model of reduced complexity which can be solved more efficiently. This dissertation introduces a new algorithm to render reduction with the reduction errors bounded based on a user-defined error tolerance which represents the main challenge of existing ROM techniques. Bounding the error is the key to ensuring that the constructed ROM models are robust for all possible applications. Providing such error bounds represents one of the algorithmic contributions of this dissertation to the ROM state-of-the-art. Recognizing that ROM techniques have been developed to render reduction at different levels, e.g. the input parameter space, the state space, and the response space, this dissertation offers a set of novel
International Nuclear Information System (INIS)
Meacham, J.E.
2008-01-01
This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).
International Nuclear Information System (INIS)
Meacham, J.E.
2009-01-01
This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).
TTS-Polttopuu - cost calculation model for fuelwood
International Nuclear Information System (INIS)
Naett, H.; Ryynaenen, S.
1998-01-01
The TTS-Institutes's Forestry Department has developed a computer based costcalculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486-level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY Research Programme. (orig.)
Calculations of dose distributions using a neural network model
International Nuclear Information System (INIS)
Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J
2005-01-01
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map
Homeostatic mechanisms in dopamine synthesis and release: a mathematical model
Directory of Open Access Journals (Sweden)
Nijhout H Frederik
2009-09-01
Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed
Model and calculation of in situ stresses in anisotropic formations
Energy Technology Data Exchange (ETDEWEB)
Yuezhi, W.; Zijun, L.; Lixin, H. [Jianghan Petroleum Institute, (China)
1997-08-01
In situ stresses in transversely isotropic material in relation to wellbore stability have been investigated. Equations for three horizontal in- situ stresses and a new formation fracture pressure model were described, and the methodology for determining the elastic parameters of anisotropic rocks in the laboratory was outlined. Results indicate significantly smaller differences between theoretically calculated pressures and actual formation pressures than results obtained by using the isotropic method. Implications for improvements in drilling efficiency were reviewed. 13 refs., 6 figs.
Perturbation theory instead of large scale shell model calculations
International Nuclear Information System (INIS)
Feldmeier, H.; Mankos, P.
1977-01-01
Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de
Calculation of relativistic model stars using Regge calculus
International Nuclear Information System (INIS)
Porter, J.
1987-01-01
A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)
International Nuclear Information System (INIS)
Guillermier, Pierre; Daniel, Lucile; Gauthier, Laurent
2009-01-01
To support AREVA NP in its design on HTR reactor and its HTR fuel R and D program, the Commissariat a l'Energie Atomique developed the ATLAS code (Advanced Thermal mechanicaL Analysis Software) with the objectives: - to quantify, with a statistical approach, the failed particle fraction and fission product release of a HTR fuel core under normal and accidental conditions (compact or pebble design). - to simulate irradiation tests or benchmark in order to compare measurements or others code results with ATLAS evaluation. These two objectives aim at qualifying the code in order to predict fuel behaviour and to design fuel according to core performance and safety requirements. A statistical calculation uses numerous deterministic calculations. The finite element method is used for these deterministic calculations, in order to be able to choose among three types of meshes, depending on what must be simulated: - One-dimensional calculation of one single particle, for intact particles or particles with fully debonded layers. - Two-dimensional calculations of one single particle, in the case of particles which are cracked, partially debonded or shaped in various ways. - Three-dimensional calculations of a whole compact slice, in order to simulate the interactions between the particles, the thermal gradient and the transport of fission products up to the coolant. - Some calculations of a whole pebble, using homogenization methods are being studied. The temperatures, displacements, stresses, strains and fission product concentrations are calculated on each mesh of the model. Statistical calculations are done using these results, taking into account ceramic failure mode, but also fabrication tolerances and material property uncertainties, variations of the loads (fluence, temperature, burn-up) and core data parameters. The statistical method used in ATLAS is the importance sampling. The model of migration of long-lived fission products in the coated particle and more
A real-time PUFF-model for accidental releases in complex terrain
International Nuclear Information System (INIS)
Thykier-Nielsen, S.; Mikkelsen, T.; Larsen, S.E.; Troen, I.; Baas, A.F. de; Kamada, R.; Skupniewicz, C.; Schacher, G.
1990-01-01
LINCOM-RIMPUFF, a combined flow/puff model, was developed at Riso National Laboratory for the Vandenberg AFB Meteorology and Plume Dispersion Handbook and is suitable as is for real time response to emergency spills and vents of gases and radionuclides. LINCOM is a linear, diagnostic, spectral, potential flow model which extends the Jackson-Hunt theory of non-hydrostatic, adiabatic wind flow over hills to the mesoscale domain. It is embedded in a weighted objective analysis (WOA) of real-time Vandenberg tower winds and may be used in ultra-high speed lookup table mode. The mesoscale dispersion model RIMPUFF is a flexible Gaussian puff model equipped with computer-time effective features for terrain and stability-dependent dispersion parameterization, plume rise formulas, inversion and ground-level reflection capabilities and wet/dry (source) depletion. It can treat plume bifurcation in complex terrain by using a puff-splitting scheme. It allows the flow-model to compute the larger scale wind field, reserving turbulent diffusion calculations for the sub-grid scale. In diagnostic mode toxic exposure are well assessed via the release of a single initial puff. With optimization, processing time for RIMPUFF should be on the order of 2 CPU minutes or less on a PC-system. In prognostic mode with shifting winds, multiple puff releases may become necessary, thereby lengthening processing time
Structure-dynamic model verification calculation of PWR 5 tests
International Nuclear Information System (INIS)
Engel, R.
1980-02-01
Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Ordinary Mathematical Models in Calculating the Aviation GTE Parameters
Directory of Open Access Journals (Sweden)
E. A. Khoreva
2017-01-01
Full Text Available The paper presents the analytical review results of the ordinary mathematical models of the operating process used to study aviation GTE parameters and characteristics at all stages of its creation and operation. Considers the mathematical models of the zero and the first level, which are mostly used when solving typical problems in calculating parameters and characteristics of engines.Presents a number of practical problems arising in designing aviation GTE for various applications.The application of mathematical models of the zero-level engine can be quite appropriate when the engine is considered as a component in the aircraft system to estimate its calculated individual flight performance or when modeling the flight cycle of the aircrafts of different purpose.The paper demonstrates that introduction of correction functions into the first-level mathematical models in solving typical problems (influence of the Reynolds number, characteristics deterioration of the units during the overhaul period of engine, as well as influence of the flow inhomogeneity at the inlet because of manufacturing tolerance, etc. enables providing a sufficient engineering estimate accuracy to reflect a realistic operating process in the engine and its elements.
Freeway travel speed calculation model based on ETC transaction data.
Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang
2014-01-01
Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers.
Model-based computer-aided design for controlled release of pesticides
DEFF Research Database (Denmark)
Muro Sunè, Nuria; Gani, Rafiqul; Bell, G.
2005-01-01
In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available, ...... extended models have been developed and implemented into a computer-aided system. The total model consisting of the property models embedded into the release models are then employed to study the release of different combinations of AIs and polymer-based microcapsules.......In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available...
Mathematical model of kinetostatithic calculation of flat lever mechanisms
Directory of Open Access Journals (Sweden)
A. S. Sidorenko
2016-01-01
Full Text Available Currently widely used graphical-analytical methods of analysis largely obsolete, replaced by various analytical methods using computer technology. Therefore, of particular interest is the development of a mathematical model kinetostatical calculation mechanisms in the form of library procedures of calculation for all powered two groups Assyrians (GA and primary level. Before resorting to the appropriate procedure that computes all the forces in the kinematic pairs, you need to compute inertial forces, moments of forces of inertia and all external forces and moments acting on this GA. To this end shows the design diagram of the power analysis for each species GA of the second class, as well as the initial link. Finding reactions in the internal and external kinematic pairs based on equilibrium conditions with the account of forces of inertia and moments of inertia forces (Dalembert principle. Thus obtained equations of kinetostatical for their versatility have been solved by the Cramer rule. Thus, for each GA of the second class were found all 6 unknowns: the forces in the kinematic pairs, the directions of these forces as well as forces the shoulders. If we study kinetostatic mechanism with parallel consolidation of two GA in the initial link, in this case, power is the geometric sum of the forces acting on the primary link from the discarded GA. Thus, the obtained mathematical model kinetostatical calculation mechanisms in the form of libraries of mathematical procedures for determining reactions of all GA of the second class. The mathematical model kinetostatical calculation makes it relatively simple to implement its software implementation.
Hirarchical emotion calculation model for virtual human modellin - biomed 2010.
Zhao, Yue; Wright, David
2010-01-01
This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.
Modeling and Calculation of Dent Based on Pipeline Bending Strain
Directory of Open Access Journals (Sweden)
Qingshan Feng
2016-01-01
Full Text Available The bending strain of long-distance oil and gas pipelines can be calculated by the in-line inspection tool which used inertial measurement unit (IMU. The bending strain is used to evaluate the strain and displacement of the pipeline. During the bending strain inspection, the dent existing in the pipeline can affect the bending strain data as well. This paper presents a novel method to model and calculate the pipeline dent based on the bending strain. The technique takes inertial mapping data from in-line inspection and calculates depth of dent in the pipeline using Bayesian statistical theory and neural network. To verify accuracy of the proposed method, an in-line inspection tool is used to inspect pipeline to gather data. The calculation of dent shows the method is accurate for the dent, and the mean relative error is 2.44%. The new method provides not only strain of the pipeline dent but also the depth of dent. It is more benefit for integrity management of pipeline for the safety of the pipeline.
International Nuclear Information System (INIS)
Carny, P.; Suchon, D.; Smejkalova, E.; Fabova, V.
2009-01-01
ESTE AI is a program for calculation of radiation doses caused by effluents in routine releases to the atmosphere and to the hydrosphere. Doses to the members of critical groups of inhabitants in the vicinity of NPP are calculated and as a result, critical group is determined. The program enables to calculate collective doses as well. Collective doses to the inhabitants living in the vicinity of the NPP are calculated. ESTE AI calculates doses to the whole population of Slovakia from the effluents of the specific plant. In this calculation, global nuclides are included and assumed, as well. The program enables to calculate and to document beyond-border radiological impacts of effluents caused by routine operation of NPP. ESTE AI was approved by the 'Public Health Authority of the Slovak Republic' and is used as legal instrument by Slovenske elektrarne a.s., NPP Bohunice. (authors)
International Nuclear Information System (INIS)
Carny, P.; Suchon, D.; Smejkalova, E.; Fabova, V.
2008-01-01
ESTE AI is a program for calculation of radiation doses caused by effluents in routine releases to the atmosphere and to the hydrosphere. Doses to the members of critical groups of inhabitants in the vicinity of NPP are calculated and as a result, critical group is determined. The program enables to calculate collective doses as well. Collective doses to the inhabitants living in the vicinity of the NPP are calculated. ESTE AI calculates doses to the whole population of Slovakia from the effluents of the specific plant. In this calculation, global nuclides are included and assumed, as well. The program enables to calculate and to document beyond-border radiological impacts of effluents caused by routine operation of NPP. ESTE AI was approved by the 'Public Health Authority of the Slovak Republic' and is used as legal instrument by Slovenske elektrarne a.s., NPP Bohunice. (authors)
International Nuclear Information System (INIS)
Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.
1996-01-01
The first model assumed that dripping water directly contacts the waste form inside the ''failed'' waste package and radionuclides are released from the EBS by advection. The second model assumed that dripping water is diverted around the package (because of corrosion products plugging the perforations), thereby being prevented from directly contacting the waste form. In the second model, radionuclides were assumed to diffuse through the perforations, and, once outside the waste package, to be released from the EBS by advection. For the case with the second EBS release model, most radionuclides had lower peak EBS release rates than with the first model. Impacts of the alternative EBS release models were greater for the radionuclides with low solubility. The analysis indicated that the EBS release model representing advection through a ''failed'' waste package (the first model) may be too conservative; thus a ''failed'' waste package container with multiple perforations may still be an important barrier to radionuclide release
Controlled release of free-falling test models
Fife, W. J.; Holway, H. P.
1970-01-01
Releasing device, powered by a drill motor through an adjustable speed reducer, has a spinning release head with three retractable spring-loaded fingers. The fingers are retracted by manual triggering of a cable at the motor end of the unit.
Theoretical model for calculation of molecular stopping power
International Nuclear Information System (INIS)
Xu, Y.J.
1984-01-01
A modified local plasma model based on the work of Linhard-Winther, Bethe, Brown, and Walske is established. The Gordon-Kim's molecular charged density model is employed to obtain a formula to evaluate the stopping power of many useful molecular systems. The stopping power of H 2 and He gas was calculated for incident proton energy ranging from 100 KeV to 2.5 MeV. The stopping power of O 2 , N 2 , and water vapor was also calculated for incident proton energy ranging from 40 keV to 2.5 MeV. Good agreement with experimental data was obtained. A discussion of molecular effects leading to departure from Bragg's rule is presented. The equipartition rule and the effect of nuclear momentum recoiling in stopping power are also discussed in the appendix. The calculation procedure presented hopefully can easily be extended to include the most useful organic systems such as the molecules composed of carbon, nitrogen, hydrogen and oxygen which are useful in radiation protection field
Total energy calculations from self-energy models
International Nuclear Information System (INIS)
Sanchez-Friera, P.
2001-06-01
Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-03-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.
Use of realistic anthropomorphic models for calculation of radiation dose in nuclear medicine
International Nuclear Information System (INIS)
Stabin, Michael G.; Emmons, Mary A.; Fernald, Michael J.; Brill, A.B.; Segars, W.Paul
2008-01-01
Anthropomorphic phantoms based on simple geometric structures have been used in radiation dose calculations for many years. We have now developed a series of anatomically realistic phantoms representing adults and children using body models based on non-uniform rational B-spline (NURBS), with organ and body masses based on the reference values given in ICRP Publication 89. Age-dependent models were scaled and shaped to represent the reference individuals described in ICRP 89 (male and female adults, newborns, 1-, 5-, 10- and 15-year-olds), using a software tool developed in Visual C++. Voxel-based versions of these models were used with GEANT4 radiation transport codes for calculation of specific absorbed fractions (SAFs) for internal sources of photons and electrons, using standard starting energy values. Organ masses in the models were within a few % of ICRP reference masses, and physicians reviewed the models for anatomical realism. Development of individual phantoms was much faster than manual segmentation of medical images, and resulted in a very uniform standardized phantom series. SAFs were calculated on the Vanderbilt multi node computing network (ACCRE). Photon and electron SAFs were calculated for all organs in all models, and were compared to values from similar phantoms developed by others. Agreement was very good in most cases; some differences were seen, due to differences in organ mass and geometry. This realistic phantom series represents a possible replacement for the Cristy/Eckerman series of the 1980's. Both phantom sets will be included in the next release of the OLINDA/EXM personal computer code, and the new phantoms will be made generally available to the research community for other uses. Calculated radiation doses for diagnostic and therapeutic radiopharmaceuticals will be compared with previous values. (author)
Improved SVR Model for Multi-Layer Buildup Factor Calculation
International Nuclear Information System (INIS)
Trontl, K.; Pevec, D.; Smuc, T.
2006-01-01
The accuracy of point kernel method applied in gamma ray dose rate calculations in shielding design and radiation safety analysis is limited by the accuracy of buildup factors used in calculations. Although buildup factors for single-layer shields are well defined and understood, buildup factors for stratified shields represent a complex physical problem that is hard to express in mathematical terms. The traditional approach for expressing buildup factors of multi-layer shields is through semi-empirical formulas obtained by fitting the results of transport theory or Monte Carlo calculations. Such an approach requires an ad-hoc definition of the fitting function and often results with numerous and usually inadequately explained and defined correction factors added to the final empirical formula. Even more, finally obtained formulas are generally limited to a small number of predefined combinations of materials within relatively small range of gamma ray energies and shield thicknesses. Recently, a new approach has been suggested by the authors involving one of machine learning techniques called Support Vector Machines, i.e., Support Vector Regression (SVR). Preliminary investigations performed for double-layer shields revealed great potential of the method, but also pointed out some drawbacks of the developed model, mostly related to the selection of one of the parameters describing the problem (material atomic number), and the method in which the model was designed to evolve during the learning process. It is the aim of this paper to introduce a new parameter (single material buildup factor) that is to replace the existing material atomic number as an input parameter. The comparison of two models generated by different input parameters has been performed. The second goal is to improve the evolution process of learning, i.e., the experimental computational procedure that provides a framework for automated construction of complex regression models of predefined
Freight Calculation Model: A Case Study of Coal Distribution
Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.
2018-03-01
Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.
Nuclear model calculations on cyclotron production of {sup 51}Cr
Energy Technology Data Exchange (ETDEWEB)
Kakavand, Tayeb [Imam Khomeini International Univ., Qazvin (Iran, Islamic Republic of). Dept. of Physics; Aboudzadeh, Mohammadreza [Nuclear Science and Technology Research Institute/AEOI, Karaj (Iran, Islamic Republic of). Agricultural, Medical and Industrial Research School; Farahani, Zahra; Eslami, Mohammad [Zanjan Univ. (Iran, Islamic Republic of). Dept. of Physics
2015-12-15
{sup 51}Cr (T{sub 1/2} = 27.7 d), which decays via electron capture (100 %) with 320 keV gamma emission (9.8 %), is a radionuclide with still a large application in biological studies. In this work, ALICE/ASH and TALYS nuclear model codes along with some adjustments are used to calculate the excitation functions for proton, deuteron, α-particle and neutron induced on various targets leading to the production of {sup 51}Cr radioisotope. The production yields of {sup 51}Cr from various reactions are determined using the excitation function calculations and stopping power data. The results are compared with corresponding experimental data and discussed from point of view of feasibility.
Optical model calculation of neutron-nucleus scattering cross sections
International Nuclear Information System (INIS)
Smith, M.E.; Camarda, H.S.
1980-01-01
A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs
Dispersion modeling of accidental releases of toxic gases - utility for the fire brigades.
Stenzel, S.; Baumann-Stanzer, K.
2009-09-01
Several air dispersion models are available for prediction and simulation of the hazard areas associated with accidental releases of toxic gases. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for effective presentation of results. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios”), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Viennese fire brigade, OMV Refining & Marketing GmbH and Synex Ries & Greßlehner GmbH. RETOMOD was funded by the KIRAS safety research program of the Austrian Ministry of Transport, Innovation and Technology (www.kiras.at). The main tasks of this project were 1. Sensitivity study and optimization of the meteorological input for modeling of the hazard areas (human exposure) during the accidental toxic releases. 2. Comparison of several model packages (based on reference scenarios) in order to estimate the utility for the fire brigades. For the purpose of our study the following models were tested and compared: ALOHA (Areal Location of Hazardous atmosphere, EPA), MEMPLEX (Keudel av-Technik GmbH), Trace (Safer System), Breeze (Trinity Consulting), SAM (Engineering office Lohmeyer). A set of reference scenarios for Chlorine, Ammoniac, Butane and Petrol were proceed, with the models above, in order to predict and estimate the human exposure during the event. Furthermore, the application of the observation-based analysis and forecasting system INCA, developed in the Central Institute for Meteorology and Geodynamics (ZAMG) in case of toxic release was
A new mechanistic and engineering fission gas release model for a uranium dioxide fuel
International Nuclear Information System (INIS)
Lee, Chan Bock; Yang, Yong Sik; Kim, Dae Ho; Kim, Sun Ki; Bang, Je Geun
2008-01-01
A mechanistic and engineering fission gas release model (MEGA) for uranium dioxide (UO 2 ) fuel was developed. It was based upon the diffusional release of fission gases from inside the grain to the grain boundary and the release of fission gases from the grain boundary to the external surface by the interconnection of the fission gas bubbles in the grain boundary. The capability of the MEGA model was validated by a comparison with the fission gas release data base and the sensitivity analyses of the parameters. It was found that the MEGA model correctly predicts the fission gas release in the broad range of fuel burnups up to 98 MWd/kgU. Especially, the enhancement of fission gas release in a high-burnup fuel, and the reduction of fission gas release at a high burnup by increasing the UO 2 grain size were found to be correctly predicted by the MEGA model without using any artificial factor. (author)
Puff-trajectory modelling for long-duration releases
International Nuclear Information System (INIS)
Underwood, B.Y.
1988-01-01
This investigation considers some aspects of the interpretation and application of the puff-trajectory technique which is increasingly being considered for use in accident consequence assessment. It firsthigh lights the problems of applying the straight-line Gaussian model to releases of many hours duration and the drawbacks of using the ad hoc technique of multiple straight-line plumes, thereby pointing to the advantages of allowing curved trajectories. A number of fundamental questions are asked about the conventional puff-trajectory approach such as: what is the justification for using ensemble-average spread parameters (σ values) in constructing particular realizations of the concentration field and to what sampling time should these σ values correspond. These questions are answered in the present work by returning to basics: an interpretation of the puff-trajectory method is developed which establishes a correspondence between the omission of wind-field fluctuations with period below a given value in the generation of trajectories and the achievable spatial resolution of the estimates of time-integrated concentration. In application to accident consequence assessment, this focusses attention on what spatial resolution is necessary for particular consequence types or is implicit in the computational discretization employed
Lee, Tae Geol; Park, Seung C.; Kim, Myung Soo
1996-03-01
Mass-analyzed ion kinetic energy (MIKE) spectrum of CHO+ generated in the unimolecular dissociation of CH2OH+ was measured. Kinetic energy release distribution (KERD) was evaluated by analyzing the spectrum according to the algorithm developed previously. The average kinetic energy release evaluated from the distribution was extraordinarily large, 1.63 eV, corresponding to 75% of the reverse barrier of the reaction. A global analytical potential energy surface was constructed such that the experimental energetics was represented and that various features in the ab initio potential energy surface were closely reproduced. Classical trajectory calculation was carried out with the global analytical potential energy surface to investigate the causes for the extraordinarily large kinetic energy release. Based on the detailed dynamical calculations, it was found that the strained bending forces at the transition state and strengthening of the CO bond from double to triple bond character were mainly responsible for such a significant kinetic energy release. In addition, the dissociation products H2 and CHO+ ion were found to be rotationally excited in the trajectory calculations. This was attributed to the asymmetry of the transition state and the release of asymmetric bending forces. Also, the bending vibrational modes of CHO+ and the H2 stretching mode, which are coupled with the bending coordinates, were found to be moderately excited.
Integrated environmental modeling system for noble gas releases at the Savannah River Plant
International Nuclear Information System (INIS)
Cooper, R.E.
1973-01-01
The Savannah River Plant (SRP) is a large nuclear complex engaged in varied activities and is the AEC's major site for the production of weapons material. As a result of these activities, there are continuous and intermittent releases of radioactive gases to the atmosphere. Of these releases, the noble gases constitute about 11 percent of the total man-rem exposure to the population out to a distance of 100 km. Although SRP has an extensive radiological monitoring program, an environmental modeling system is necessary for adequately estimating effects on the environment. The integrated environmental modeling system in use at SRP consists of a series of computer programs that generate and use a library of environmental effects data as a function of azimuth and distance. Annual average atmospheric dispersion and azimuthal distribution of material assumed to be released as unit sources is estimated from a 2-year meteorological data base--assuming an arbitrary point of origin. The basic library of data consists of: ground-level concentrations according to isotope, and whole body gamma dose calculations that account for the total spatial distribution at discrete energy levels. These data are normalized to tritium measurements, and are subsequently used to generate similar library data that pertain to specific source locations, but always with respect to the same population grid. Thus, the total additive effects from all source points, both on- and off-site, can be estimated. The final program uses the library data to estimate population exposures for specified releases and source points for the nuclides of interest (including noble gases). Multiple source points are considered within a single pass to obtain the integrated effects from all sources
Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release
Flegg, Mark B.
2013-01-01
The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration
Stenzel, S.; Baumann-Stanzer, K.
2009-04-01
Dispersion modeling of accidental releases of toxic gases - Comparison of the models and their utility for the fire brigades. Sirma Stenzel, Kathrin Baumann-Stanzer In the case of accidental release of hazardous gases in the atmosphere, the emergency responders need a reliable and fast tool to assess the possible consequences and apply the optimal countermeasures. For hazard prediction and simulation of the hazard zones a number of air dispersion models are available. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for display the results, they are easy to use and can operate fast and effective during stress situations. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios"), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. There are also possibilities for model direct coupling to automatic meteorological stations, in order to avoid uncertainties in the model output due to insufficient or incorrect meteorological data. Another key problem in coping with accidental toxic release is the relative width spectrum of regulations and values, like IDLH, ERPG, AEGL, MAK etc. and the different criteria for their application. Since the particulate emergency responders and organizations require for their purposes unequal regulations and values, it is quite difficult to predict the individual hazard areas. There are a quite number of research studies and investigations coping with the problem, anyway the end decision is up to the authorities. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Vienna fire brigade, OMV Refining & Marketing GmbH and
A relativistic point coupling model for nuclear structure calculations
International Nuclear Information System (INIS)
Buervenich, T.; Maruhn, J.A.; Madland, D.G.; Reinhard, P.G.
2002-01-01
A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock approximations. Different fitting strategies for the determination of the parameters have been applied and the quality of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field approaches both formally and in the context of applications to ground-state properties of known and superheavy nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order Fierz transformation are discussed briefly. (author)
Model for calculation of electrostatic contribution into protein stability
Kundrotas, Petras; Karshikoff, Andrey
2003-03-01
Existing models of the denatured state of proteins consider only one possible spatial distribution of protein charges and therefore are applicable to a limited number of cases. In this presentation a more general framework for the modeling of the denatured state is proposed. It is based on the assumption that the titratable groups of an unfolded protein can adopt a quasi-random distribution, restricted by the protein sequence. The model was tested on two proteins, barnase and N-terminal domain of the ribosomal protein L9. The calculated free energy of denaturation, Δ G( pH), reproduces the experimental data essentially better than the commonly used null approximation (NA). It was demonstrated that the seemingly good agreement with experimental data obtained by NA originates from the compensatory effect between the pair-wise electrostatic interactions and the desolvation energy of the individual sites. It was also found that the ionization properties of denatured proteins are influenced by the protein sequence.
Physical model and calculation code for fuel coolant interactions
International Nuclear Information System (INIS)
Goldammer, H.; Kottowski, H.
1976-01-01
A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)
Intravascular brachytherapy: a model for the calculation of the dose
International Nuclear Information System (INIS)
Pirchio, Rosana; Martin, Gabriela; Rivera, Elena; Cricco, Graciela; Cocca, Claudia; Gutierrez, Alicia; Nunez, Mariel; Bergoc, Rosa; Guzman, Luis; Belardi, Diego
2002-01-01
In this study we present the radiation dose distribution for a theoretical model with Montecarlo simulation, and based on an experimental model developed for the study of the prevention of restenosis post-angioplasty employing intravascular brachytherapy. In the experimental in vivo model, the atherosclerotic plaques were induced in femoral arteries of male New Zealand rabbits through surgical intervention and later administration of cholesterol enriched diet. For the intravascular irradiation we employed a 32P source contained within the balloon used for the angioplasty. The radiation dose distributions were calculated using the Monte Carlo code MCNP4B according to a segment of a simulated artery. We studied the radiation dose distribution in the axial and radial directions for different thickness of the atherosclerotic plaques. The results will be correlated with the biologic effects observed by means of histological analysis of the irradiated arteries (Au)
International Nuclear Information System (INIS)
Nair, S.
1984-04-01
Various methods are described which have been incorporated in the FOODWEB module of the CEGB's NECTAR environmental code and are currently being used within CEGB to assess ingestion doses from consumption of terrestrial foods following an atmospheric radioactive release. Four foodchain models which have been developed within CEGB are fully described and results of typical calculations presented. Also given are the results of a validation of the dynamic model against measured 90 Sr and 137 Cs levels in milk in the U.K. resulting from weapons fallout. Methods are also described for calculating individual and population doses from ingestion using the results of the model calculations. The population dose calculations utilise a data base describing the spatial distribution of production of a wide range of agricultural products. The development of such a data base for Great Britain is described, based on the 1972 land use and livestock census, and maps are presented for each agricultural product. (U.K.)
A thermodynamic/mass-transport model for the release of ruthenium from irradiated fuel
International Nuclear Information System (INIS)
Garisto, F.; Iglesias, F.C.; Hunt, C.E.L.
1990-01-01
Some postulated nuclear reactor accidents lead to fuel failures and hence release of fission products into the primary heat transport system (PHTS). To determine the consequences of such accidents, it is important to understand the behavior of fission products both in the PHTS and in the reactor containment building. Ruthenium metal has a high boiling point and is nonvolatile under reducing conditions. However, under oxidizing conditions ruthenium can form volatile oxides at relatively low temperatures and, hence, could escape from failed fuel and enter the containment building. The ruthenium radioisotope Ru-106 presents a potentially significant health risk if it is released outside the reactor containment building. Consequently, it is important to understand the behavior of ruthenium during a nuclear reactor accident. The authors review the thermodynamic behavior of ruthenium at high temperatures. The qualitative behavior of ruthenium, predicted using thermodynamic calculations, is then compared with experimental results from the Chalk River Nuclear Laboratories (CRNL). Finally, a simple thermodynamic/mass-transport model is proposed to explain the release behavior of ruthenium in a steam atmosphere
International Nuclear Information System (INIS)
Kaiser, G.D.
1976-11-01
A brief description is given of the contents of TIRION, which is a computer program that has been written for use in calculations of the consequences of releasing radioactive material to the atmosphere. This is followed by a section devoted to an account of the control and data cards that make up the input to TIRION. (author)
International Nuclear Information System (INIS)
SCOTT, D.L.
1999-01-01
To more fully characterize the vadose zone near Single Shell Tank 241-SX-115, another borehole will be drilled and sampled by using reverse circulation drilling equipment. Compressed air propels the drill and sweeps out cuttings. Dose calculations in this document are performed for an unmitigated airborne release from the drill string. Doses were found not to exceed TWRS risk guideline values
MODEL OF FEES CALCULATION FOR ACCESS TO TRACK INFRASTRUCTURE FACILITIES
Directory of Open Access Journals (Sweden)
M. I. Mishchenko
2014-12-01
Full Text Available Purpose. The purpose of the article is to develop a one- and two-element model of the fees calculation for the use of track infrastructure of Ukrainian railway transport. Methodology. On the basis of this one can consider that when planning the planned preventive track repair works and the amount of depreciation charges the guiding criterion is not the amount of progress it is the operating life of the track infrastructure facilities. The cost of PPTRW is determined on the basis of the following: the classification track repairs; typical technological processes for track repairs; technology based time standards for PPTRW; costs for the work of people, performing the PPTRW, their hourly wage rates according to the Order 98-Ts; the operating cost of machinery; regulated list; norms of expenditures and costs of materials and products (they have the largest share of the costs for repairs; railway rates; average distances for transportation of materials used during repair; standards of general production expenses and the administrative costs. Findings. The models offered in article allow executing the objective account of expenses in travelling facilities for the purpose of calculation of the proved size of indemnification and necessary size of profit, the sufficient enterprises for effective activity of a travelling infrastructure. Originality. The methodological bases of determination the fees (payments for the use of track infrastructure on one- and two-element base taking into account the experience of railways in the EC countries and the current transport legislation were grounded. Practical value. The article proposes the one- and two-element models of calculating the fees (payments for the TIF use, accounting the applicable requirements of European transport legislation, which provides the expense compensation and income formation, sufficient for economic incentives of the efficient operation of the TIE of Ukrainian railway transport.
Practical model for the calculation of multiply scattered lidar returns
International Nuclear Information System (INIS)
Eloranta, E.W.
1998-01-01
An equation to predict the intensity of the multiply scattered lidar return is presented. Both the scattering cross section and the scattering phase function can be specified as a function of range. This equation applies when the cloud particles are larger than the lidar wavelength. This approximation considers photon trajectories with multiple small-angle forward-scattering events and one large-angle scattering that directs the photon back toward the receiver. Comparisons with Monte Carlo simulations, exact double-scatter calculations, and lidar data demonstrate that this model provides accurate results. copyright 1998 Optical Society of America
The calculation of exchange forces: General results and specific models
International Nuclear Information System (INIS)
Scott, T.C.; Babb, J.F.; Dalgarno, A.; Morgan, J.D. III
1993-01-01
In order to clarify questions about the calculation of the exchange energy of a homonuclear molecular ion, an analysis is carried out of a model problem consisting of the one-dimensional limit of H 2 + . It is demonstrated that the use of the infinite polarization expansion for the localized wave function in the Holstein--Herring formula yields an approximate exchange energy which at large internuclear distances R has the correct leading behavior to O(e -R ) and is close to but not equal to the exact exchange energy. The extension to the n-dimensional double-well problem is presented
International Nuclear Information System (INIS)
Verfondern, K.; Martin, R.C.; Moormann, R.
1993-01-01
The previous status report released in 1987 on reference data and calculation models for fission product transport in High-Temperature, Gas-Cooled Reactor (HTGR) safety analyses has been updated to reflect the current state of knowledge in the German HTGR program. The content of the status report has been expanded to include information from other national programs in HTGRs to provide comparative information on methods of analysis and the underlying database for fuel performance and fission product transport. The release and transport of fission products during normal operating conditions and during the accident scenarios of core heatup, water and air ingress, and depressurization are discussed. (orig.) [de
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
Thermophysical modeling of volatile fission product release from a debris pool
International Nuclear Information System (INIS)
Yun, J. I.; Suh, K. Y.; Kang, C. S.
1999-01-01
A model is described for fission product release from the debris pool in the lower plenum of the reactor pressure vessel. In the pool, turbulent natural convection flow is formed due to homogeneous internal heat generation. Using the best-known correlations, heat transfer at the curved bottom and the top of the pool may be calculated. Volatile fission product gases in the pool nucleate and diffuse to bubbles. Both the homogeneous nucleation and heterogeneous nucleation are considered. The bubble nucleation, growth, coalescence and loss due to rise is modeled pursuant to bubble dynamics. If the pressure and temperature of the pool are very high, homogeneous nucleation that accounts for effect of decrease in the pool pressure can occur. The effect of the bubble-to-pool interfacial tension and the pool pressure on the nucleation rate is investigated in this work
System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors
International Nuclear Information System (INIS)
Moiseyev, A.V.
2008-01-01
There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)
System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors
Energy Technology Data Exchange (ETDEWEB)
Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)
2008-07-01
There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)
An evaluation of gas release modelling approaches as to their applicability in fuel behaviour models
International Nuclear Information System (INIS)
Mattila, L.J.; Sairanen, R.T.
1980-01-01
The release of fission gas from uranium oxide fuel to the voids in the fuel rod affects in many ways the behaviour of LWR fuel rods both during normal operating conditions including anticipated transients and during off-normal and accident conditions. The current trend towards significantly increased discharge burnup of LWR fuel will increase the importance of fission gas release considerations both from the design and safety viewpoints. In the paper fission gas release models are classified to 5 categories on the basis of complexity and physical sophistication. For each category, the basic approach common to the models included in the category is described, a few representative models of the category are singled out and briefly commented in some cases, the advantages and drawbacks of the approach are listed and discussed and conclusions on the practical feasibility of the approach are drawn. The evaluation is based on both literature survey and our experience in working with integral fuel behaviour models. The work has included verification efforts, attempts to improve certain features of the codes and engineering applications. The classification of fission gas release models regarding their applicability in fuel behaviour codes can of course be done only in a coarse manner. The boundaries between the different categories are vague and a model may be well refined in a way which transfers it to a higher category. Some current trends in fuel behaviour research are discussed which seem to motivate further extensive efforts in fission product release modelling and are certain to affect the prioritizing of the efforts. (author)
Uncertainty analysis of multiple canister repository model by large-scale calculation
International Nuclear Information System (INIS)
Tsujimoto, K.; Okuda, H.; Ahn, J.
2007-01-01
A prototype uncertainty analysis has been made by using the multiple-canister radionuclide transport code, VR, for performance assessment for the high-level radioactive waste repository. Fractures in the host rock determine main conduit of groundwater, and thus significantly affect the magnitude of radionuclide release rates from the repository. In this study, the probability distribution function (PDF) for the number of connected canisters in the same fracture cluster that bears water flow has been determined in a Monte-Carlo fashion by running the FFDF code with assumed PDFs for fracture geometry. The uncertainty for the release rate of 237 Np from a hypothetical repository containing 100 canisters has been quantitatively evaluated by using the VR code with PDFs for the number of connected canisters and the near field rock porosity. The calculation results show that the mass transport is greatly affected by (1) the magnitude of the radionuclide source determined by the number of connected canisters by the fracture cluster, and (2) the canister concentration effect in the same fracture network. The results also show the two conflicting tendencies that the more fractures in the repository model space, the greater average value but the smaller uncertainty of the peak fractional release rate is. To perform a vast amount of calculation, we have utilized the Earth Simulator and SR8000. The multi-level hybrid programming method is applied in the optimization to exploit high performance of the Earth Simulator. The Latin Hypercube Sampling has been utilized to reduce the number of samplings in Monte-Carlo calculation. (authors)
Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders
2011-10-10
The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Determination of appropriate models and parameters for premixing calculations
Energy Technology Data Exchange (ETDEWEB)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-15
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.
Determination of appropriate models and parameters for premixing calculations
International Nuclear Information System (INIS)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-01
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested
Calculating excess lifetime risk in relative risk models
International Nuclear Information System (INIS)
Vaeth, M.; Pierce, D.A.
1990-01-01
When assessing the impact of radiation exposure it is common practice to present the final conclusions in terms of excess lifetime cancer risk in a population exposed to a given dose. The present investigation is mainly a methodological study focusing on some of the major issues and uncertainties involved in calculating such excess lifetime risks and related risk projection methods. The age-constant relative risk model used in the recent analyses of the cancer mortality that was observed in the follow-up of the cohort of A-bomb survivors in Hiroshima and Nagasaki is used to describe the effect of the exposure on the cancer mortality. In this type of model the excess relative risk is constant in age-at-risk, but depends on the age-at-exposure. Calculation of excess lifetime risks usually requires rather complicated life-table computations. In this paper we propose a simple approximation to the excess lifetime risk; the validity of the approximation for low levels of exposure is justified empirically as well as theoretically. This approximation provides important guidance in understanding the influence of the various factors involved in risk projections. Among the further topics considered are the influence of a latent period, the additional problems involved in calculations of site-specific excess lifetime cancer risks, the consequences of a leveling off or a plateau in the excess relative risk, and the uncertainties involved in transferring results from one population to another. The main part of this study relates to the situation with a single, instantaneous exposure, but a brief discussion is also given of the problem with a continuous exposure at a low-dose rate
Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials.
Song, Runsheng; Qin, Yuwei; Suh, Sangwon; Keller, Arturo A
2017-11-07
Most existing life-cycle release models for engineered nanomaterials (ENM) are static, ignoring the dynamics of stock and flows of ENMs. Our model, nanoRelease, estimates the annual releases of ENMs from manufacturing, use, and disposal of a product explicitly taking stock and flow dynamics into account. Given the variabilities in key parameters (e.g., service life of products and annual release rate during use) nanoRelease is designed as a stochastic model. We apply nanoRelease to three ENMs (TiO 2 , SiO 2 and FeO x ) used in paints and coatings through seven product applications, including construction and building, household and furniture, and automotive for the period from 2000 to 2020 using production volume and market projection information. We also consider model uncertainties using Monte Carlo simulation. Compared with 2016, the total annual releases of ENMs in 2020 will increase by 34-40%, and the stock will increase by 28-34%. The fraction of the end-of-life release among total release flows will increase from 11% in 2002 to 43% in 2020. As compared to static models, our dynamic model predicts about an order of magnitude lower values for the amount of ENM released from this sector in the near-term while stock continues to build up in the system.
Recent Developments in No-Core Shell-Model Calculations
International Nuclear Information System (INIS)
Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.
2009-01-01
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Recent Developments in No-Core Shell-Model Calculations
Energy Technology Data Exchange (ETDEWEB)
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Modeling and calculation of open carbon dioxide refrigeration system
International Nuclear Information System (INIS)
Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong
2015-01-01
Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration
International Nuclear Information System (INIS)
Davis, P.A.
1997-01-01
Models that simulate the transport and behaviour of radionuclides in the environment are used extensively in the nuclear industry for safety and licensing purposes. They are needed to calculate derived release limits for new and operating facilities, to estimate consequences following hypothetical accidents and to help manage a real emergency. But predictions generated for these purposes are essentially meaningless unless they are accompanied by a quantitative estimate of the confidence that can be placed in them. For example, in an emergency where there has been an accidental release of radioactivity to the atmosphere, decisions based on a validated model with small uncertainties would likely be very different from those based on an untested model, or on one with large uncertainties. This paper begins with a discussion of some general methods for establishing the credibility of model predictions. The focus will be on environmental transport models but the principles apply to models of all kinds. Establishing the credibility of a model is not a trivial task, It involves a number of tasks including face validation, verification, experimental validation and sensitivity and uncertainty analyses. The remainder of the paper will present quantitative results relating to the credibility of environmental transport models. Model formation, choice of parameter values and the influence of the user will all be discussed as sources of uncertainty in predictions. The magnitude of uncertainties that must be expected in various applications of the models will be presented. The examples used throughout the paper are drawn largely from recent work carried out in BIOMOVS and VAMP. (DM)
Sensitivity analysis on a dose-calculation model for the terrestrial food-chain pathway
International Nuclear Information System (INIS)
Abdel-Aal, M.M.
1994-01-01
Parameter uncertainty and sensitivity were applied to the U.S. Regulatory Commission's (NRC) Regulatory Guide 1.109 (1977) models for calculating the ingestion dose via a terrestrial food-chain pathway in order to assess the transport of chronically released, low-level effluents from light-water reactors. In the analysis, we used the generation of latin hypercube samples (LHS) and employed a constrained sampling scheme. The generation of these samples is based on information supplied to the LHS program for variables or parameters. The actually sampled values are used to form vectors of variables that are commonly used as inputs to computer models for the purpose of sensitivity and uncertainty analysis. Regulatory models consider the concentrations of radionuclides that are deposited on plant tissues or lead to root uptake of nuclides initially deposited on soil. We also consider concentrations in milk and beef as a consequence of grazing on contaminated pasture or ingestion of contaminated feed by dairy and beef cattle. The radionuclides Sr-90 and Cs-137 were selected for evaluation. The most sensitive input parameters for the model were the ground-dispersion parameter, release rates of radionuclides, and soil-to-plant transfer coefficients of radionuclides. (Author)
International Nuclear Information System (INIS)
Carrette, F.; Guinard, L.; Pieraggi, B.
2002-01-01
The radioactivity in the primary circuit arises mainly from the activation of corrosion products in the core of pressurised water reactors; corrosion products dissolve from the oxide scales developed on steam generator tubes of alloy 690. The controlling and modelling of this process require a detailed knowledge of the microstructure and chemical composition of oxide scales as well as the kinetics of their corrosion and dissolution. Alloy 690 was studied as tubes and sheets, with three various surface states (as-received, cold-worked, electropolished). Corrosion tests were performed at 325 C and 155 bar in primary water conditions (B/Li - 1000/2 ppm, [H 2 ] 30 cm 3 .kg -1 TPN, [O 2 ] < 5 ppb); test durations ranged between 24 and 2160 hours. Corrosion tests in the TITANE loop provided mainly corrosion and oxidation kinetics, and tests in the BOREAL loop yielded release kinetics. This study revealed asymptotic type kinetics. Characterisation of the oxide scales grown in representative conditions of the primary circuit was performed by several techniques (SEM, TEM, SIMS, XPS, GIXRD). These analyses revealed the essential role of the fine grained cold-worked scale present on as-received and cold-worked materials. This scale controls the corrosion and release phenomena. The kinetic study and the characterisation of the oxide scales contributed to the modelling of the corrosion/release process. A growth/dissolution model was proposed for corrosion product scales grown in non-saturated dynamic fluid. This model provided the temporal evolution of oxide scales and release kinetics for different species (Fe, Ni, Cr). The model was validated for several surface states and several alloys. (authors)
International Nuclear Information System (INIS)
Cera, E.; Merino, J.; Bruno, J.
2000-01-01
We have developed a conceptual and numerical model to calculate release of selected radionuclides from spent fuel under repository condition. This has been done in the framework of the Enresa 2000 performance assessment exercise. The model has been developed based on kinetic mass balance equations in order to study the evolution of the spent fuel water interface as a function of time. Several processes have been kinetically modelled: congruent dissolution, radioactive decay, ingrowth and water turnover in the gap. The precipitation/redissolution of secondary solid phases has been taken into account from a thermodynamic point of view. Both approaches have been coupled and the resulting equations solved for a number of radionuclides in both, a conservative and realistic approach. The results show three distinct groups of radionuclides based on their release behaviour: a first group is composed of radioisotopes of highly insoluble elements (e. g., Pu, Am, Pd) whose concentration in the gap is mainly controlled by their solubility and therefore their evolution is identical in both cases. Secondly, a set of radionuclides from soluble elements under these conditions (e. g., I, Cs, Ra) show concentrations kinetically controlled, decreasing with time following the congruent dissolution trend. Their release concentrations are one order of magnitude larger in the conservative case than in the realistic case. Finally, a third group has been identified (e. g., Se, Th, Cm) where a mixed behaviour takes place: initially their solubility limiting phases control their concentration in the gap but the situation reverts to a kinetic control as the chemical conditions change and the secondary precipitates become totally dissolved. The fluxes of the different radionuclides are also given as an assessment of the source term in the performance assessment. (Author)
Computational models for probabilistic neutronic calculation in TADSEA
International Nuclear Information System (INIS)
Garcia, Jesus A.R.; Curbelo, Jesus P.; Hernandez, Carlos R.G.; Oliva, Amaury M.; Lira, Carlos A.B.O.
2013-01-01
The Very High Temperature Reactor is one of the main candidates for the next generation of nuclear power plants. In pebble bed reactors, the fuel is contained within graphite pebbles in the form of TRISO particles, which form a randomly packed bed inside a graphite-walled cylindrical cavity. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite. In order to simulate the TADSEA correctly, the double heterogeneity of the system must be considered. It consists on randomly located pebbles into the core and randomly located TRISO particles into the fuel pebbles. These features are often neglected due to the difficulty to model with MCNP code. The main reason is that there is a limited number of cells and surfaces to be defined. In this paper a computational tool, which allows to get a new geometrical model for fuel pebble to neutronic calculation with MCNPX, was presented. The heterogeneity of system is considered, and also the randomly located TRISO particles inside the pebble. There are also compared several neutronic computational models for TADSEA's fuel pebbles in order to study heterogeneity effects. On the other hand the boundary effect given by the intersection between the pebble surface and the TRISO particles could be significative in the multiplicative properties. A model to study this e ect is also presented. (author)
Volume-based geometric modeling for radiation transport calculations
International Nuclear Information System (INIS)
Li, Z.; Williamson, J.F.
1992-01-01
Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed
Development of nuclear models for higher energy calculations
International Nuclear Information System (INIS)
Bozoian, M.; Siciliano, E.R.; Smith, R.D.
1988-01-01
Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs
Updated thermal model using simplified short-wave radiosity calculations
International Nuclear Information System (INIS)
Smith, J.A.; Goltz, S.M.
1994-01-01
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Updated thermal model using simplified short-wave radiosity calculations
Energy Technology Data Exchange (ETDEWEB)
Smith, J. A.; Goltz, S. M.
1994-02-15
An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Background and derivation of ANS-5.4 standard fission product release model. Technical report
International Nuclear Information System (INIS)
1982-01-01
ANS Working Group 5.4 was established in 1974 to examine fission product releases from UO2 fuel. The scope of ANS-5.4 was narrowly defined to include the following: (1) Review available experimental data on release of volatile fission products from UO2 and mixed-oxide fuel; (2) Survey existing analytical models currently being applied to lightwater reactors; and (3) Develop a standard analytical model for volatile fission product release to the fuel rod void space. Place emphasis on obtaining a model for radioactive fission product releases to be used in assessing radiological consequences of postulated accidents
Dose apportionment using statistical modeling of the effluent release
International Nuclear Information System (INIS)
Datta, D.
2011-01-01
Nuclear power plants are always operated under the guidelines stipulated by the regulatory body. These guidelines basically contain the technical specifications of the specific power plant and provide the knowledge of the discharge limit of the radioactive effluent into the environment through atmospheric and aquatic route. However, operational constraints sometimes may violate the technical specification due to which there may be a failure to satisfy the stipulated dose apportioned to that plant. In a site having multi facilities sum total of the dose apportioned to all the facilities should be constrained to 1 mSv/year to the members of the public. Dose apportionment scheme basically stipulates the limit of the gaseous and liquid effluent released into the environment. Existing methodology of dose apportionment is subjective in nature that may result the discharge limit of the effluent in atmospheric and aquatic route in an adhoc manner. Appropriate scientific basis for dose apportionment is always preferable rather than judicial basis from the point of harmonization of establishing the dose apportionment. This paper presents an attempt of establishing the discharge limit of the gaseous and liquid effluent first on the basis of the existing value of the release of the same. Existing release data for a few years (for example 10 years) for any nuclear power station have taken into consideration. Bootstrap, a resampling technique, has been adopted on this data sets to generate the population which subsequently provide the corresponding population distribution of the effluent release. Cumulative distribution of the population distribution obtained is constructed and using this cumulative distribution, 95th percentile (upper bound) of the discharge limit of the radioactive effluents is computed. Dose apportioned for a facility is evaluated using this estimated upper bound of the release limit. Paper describes the detail of the bootstrap method in evaluating the
Development, description and validation of a Tritium Environmental Release Model (TERM).
Jeffers, Rebecca S; Parker, Geoffrey T
2014-01-01
Tritium is a radioisotope of hydrogen that exists naturally in the environment and may also be released through anthropogenic activities. It bonds readily with hydrogen and oxygen atoms to form tritiated water, which then cycles through the hydrosphere. This paper seeks to model the migration of tritiated species throughout the environment - including atmospheric, river and coastal systems - more comprehensively and more consistently across release scenarios than is currently in the literature. A review of the features and underlying conceptual models of some existing tritium release models was conducted, and an underlying aggregated conceptual process model defined, which is presented. The new model, dubbed 'Tritium Environmental Release Model' (TERM), was then tested against multiple validation sets from literature, including experimental data and reference tests for tritium models. TERM has been shown to be capable of providing reasonable results which are broadly comparable with atmospheric HTO release models from the literature, spanning both continuous and discrete release conditions. TERM also performed well when compared with atmospheric data. TERM is believed to be a useful tool for examining discrete and continuous atmospheric releases or combinations thereof. TERM also includes further capabilities (e.g. river and coastal release scenarios) that may be applicable to certain scenarios that atmospheric models alone may not handle well. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cluster model calculations of the solid state materials electron structure
International Nuclear Information System (INIS)
Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.
1997-01-01
Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs
Calculational models of close-spaced thermionic converters
International Nuclear Information System (INIS)
McVey, J.B.
1983-01-01
Two new calculational models have been developed in conjunction with the SAVTEC experimental program. These models have been used to analyze data from experimental close-spaced converters, providing values for spacing, electrode work functions, and converter efficiency. They have also been used to make performance predictions for such converters over a wide range of conditions. Both models are intended for use in the collisionless (Knudsen) regime. They differ from each other in that the simpler one uses a Langmuir-type formulation which only considers electrons emitted from the emitter. This approach is implemented in the LVD (Langmuir Vacuum Diode) computer program, which has the virtue of being both simple and fast. The more complex model also includes both Saha-Langmuir emission of positive cesium ions from the emitter and collector back emission. Computer implementation is by the KMD1 (Knudsen Mode Diode) program. The KMD1 model derives the particle distribution functions from the Vlasov equation. From these the particle densities are found for various interelectrode motive shapes. Substituting the particle densities into Poisson's equation gives a second order differential equation for potential. This equation can be integrated once analytically. The second integration, which gives the interelectrode motive, is performed numerically by the KMD1 program. This is complicated by the fact that the integrand is often singular at one end point of the integration interval. The program performs a transformation on the integrand to make it finite over the entire interval. Once the motive has been computed, the output voltage, current density, power density, and efficiency are found. The program is presently unable to operate when the ion richness ratio β is between about .8 and 1.0, due to the occurrence of oscillatory motives
International Nuclear Information System (INIS)
Mueller, R.G.
1987-06-01
Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de
Models and methods to evaluate consequences of the release of airborne radioactivity from NNPs
International Nuclear Information System (INIS)
Anh, T.H.
1989-01-01
To examine the radioactive contamination and possible consequences of a nuclear power plant on living organisms during its operation periodes, the computer programmes were elaborated for assessing its fluences on the environment. The authors have resolved the following problems: i) Calculation of fission product inventories in the reactor core; ii) Calculation of the atmospheric dispersion of the released radionuclides under the meteorological conditions as well as the deposition of the radioactive substances on the soil; iii) Calculation of the irradiation doses
Energy Technology Data Exchange (ETDEWEB)
Suh, Kyung Suk; Park, Ki Hyun; Min, Byung Il; Kim, Sora; Yang, Byung Mo [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-05-15
It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.
Modelling and assessment of accidental oil release from damaged subsea pipelines.
Li, Xinhong; Chen, Guoming; Zhu, Hongwei
2017-10-15
This paper develops a 3D, transient, mathematical model to estimate the oil release rate and simulate the oil dispersion behavior. The Euler-Euler method is used to estimate the subsea oil release rate, while the Eulerian-Lagrangian method is employed to track the migration trajectory of oil droplets. This model accounts for the quantitative effect of backpressure and hole size on oil release rate, and the influence of oil release rate, oil density, current speed, water depth and leakage position on oil migration is also investigated in this paper. Eventually, the results, e.g. transient release rate of oil, the rise time of oil and dispersion distance are determined by above-mentioned model, and the oil release and dispersion behavior under different scenarios is revealed. Essentially, the assessment results could provide a useful guidance for detection of leakage positon and placement of oil containment boom. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling the release of E. coli D21g with transients in water content
Transients in water content are well known to mobilize colloids that are retained in the vadose zone. However, there is no consensus on the proper model formulation to simulate colloid release during drainage and imbibition. We present a model that relates colloid release to changes in the air-water...
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...
International Nuclear Information System (INIS)
Keum, D.K.; Lee, H.S.; Choi, H.J.; Kang, H.S.; Lee, C.W.
2004-01-01
In this paper a dynamic compartment model is presented to estimate the transfer of radionuclides deposited on rice-fields after an accidental release. The present model includes a surface water compartment and a direct shoot-base absorption from the surface water to the rice plant to account for the flooded condition of rice-fields, which are major features discriminating the present model from the existing model. In order to test the validity of model, a number of simulated Cs-137 deposition experiments were performed while growing rice-plant in a green house. For the experiments the radionuclide was indirectly treated in the root zone soil before transplanting and on the surface water without a direct contamination of rice-plant after transplanting. In the first year of deposition the shoot-base absorption was a predominant process for the transfer of radionuclide into rice when the radionuclide was treated on the surface water, and from the second year, the root-uptake was dominant. The model calculation predicted reasonably well the first year experimental result showing the importance of shoot base absorption as well as the concentration of rice-body and grain measured from respective rice-plant grown consecutively on the contaminated soils for years. (author)
Calculating ε'/ε in the standard model
International Nuclear Information System (INIS)
Sharpe, S.R.
1988-01-01
The ingredients needed in order to calculate ε' and ε are described. Particular emphasis is given to the non-perturbative calculations of matrix elements by lattice methods. The status of the electromagnetic contribution to ε' is reviewed. 15 refs
Modeling the wind-fields of accidental releases with an operational regional forecast model
International Nuclear Information System (INIS)
Albritton, J.R.; Lee, R.L.; Sugiyama, G.
1995-01-01
The Atmospheric Release Advisory Capability (ARAC) is an operational emergency preparedness and response organization supported primarily by the Departments of Energy and Defense. ARAC can provide real-time assessments of atmospheric releases of radioactive materials at any location in the world. ARAC uses robust three-dimensional atmospheric transport and dispersion models, extensive geophysical and dose-factor databases, meteorological data-acquisition systems, and an experienced staff. Although it was originally conceived and developed as an emergency response and assessment service for nuclear accidents, the ARAC system has been adapted to also simulate non-radiological hazardous releases. For example, in 1991 ARAC responded to three major events: the oil fires in Kuwait, the eruption of Mt. Pinatubo in the Philippines, and the herbicide spill into the upper Sacramento River in California. ARAC's operational simulation system, includes two three-dimensional finite-difference models: a diagnostic wind-field scheme, and a Lagrangian particle-in-cell transport and dispersion scheme. The meteorological component of ARAC's real-time response system employs models using real-time data from all available stations near the accident site to generate a wind-field for input to the transport and dispersion model. Here we report on simulation studies of past and potential release sites to show that even in the absence of local meteorological observational data, readily available gridded analysis and forecast data and a prognostic model, the Navy Operational Regional Atmospheric Prediction System, applied at an appropriate grid resolution can successfully simulate complex local flows
Comparative analysis of calculation models of railway subgrade
Directory of Open Access Journals (Sweden)
I.O. Sviatko
2013-08-01
Full Text Available Purpose. In transport engineering structures design, the primary task is to determine the parameters of foundation soil and nuances of its work under loads. It is very important to determine the parameters of shear resistance and the parameters, determining the development of deep deformations in foundation soils, while calculating the soil subgrade - upper track structure interaction. Search for generalized numerical modeling methods of embankment foundation soil work that include not only the analysis of the foundation stress state but also of its deformed one. Methodology. The analysis of existing modern and classical methods of numerical simulation of soil samples under static load was made. Findings. According to traditional methods of analysis of ground masses work, limitation and the qualitative estimation of subgrade deformations is possible only indirectly, through the estimation of stress and comparison of received values with the boundary ones. Originality. A new computational model was proposed in which it will be applied not only classical approach analysis of the soil subgrade stress state, but deformed state will be also taken into account. Practical value. The analysis showed that for accurate analysis of ground masses work it is necessary to develop a generalized methodology for analyzing of the rolling stock - railway subgrade interaction, which will use not only the classical approach of analyzing the soil subgrade stress state, but also take into account its deformed one.
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, O [Chugoku Electric Power Co. Inc., Hiroshima (Japan); Sawaguchi, Y; Kaneko, M
1979-03-01
A computer code, designated GAMMA-CLOUD, has been developed by specialists of electric power companies to meet requests from the companies to have a unified means of calculating annual external doses from routine releases of radioactive gaseous effluents from nuclear power plants, based on the Japan Atomic Energy Commission's guides for environmental dose evaluation. GAMMA-CLOUD is written in FORTRAN language and its required capacity is less than 100 kilobytes. The average ..gamma..-exposure at an observation point can be calculated within a few minutes with comparable precision to other existing codes.
Accurate Holdup Calculations with Predictive Modeling & Data Integration
Energy Technology Data Exchange (ETDEWEB)
Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Cacuci, Dan [Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering
2017-04-03
In facilities that process special nuclear material (SNM) it is important to account accurately for the fissile material that enters and leaves the plant. Although there are many stages and processes through which materials must be traced and measured, the focus of this project is material that is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate over time into significant quantities. Accurately estimating the holdup is essential for proper SNM accounting (vis-à-vis nuclear non-proliferation), criticality and radiation safety, waste management, and efficient plant operation. Usually it is not possible to directly measure the holdup quantity and location, so these must be inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple source configurations and crude radiation transport models aided by ad hoc correction factors. This project seeks an alternate method of performing measurement-based holdup calculations using a predictive model that employs state-of-the-art radiation transport codes capable of accurately simulating such situations. Inverse and data assimilation methods use the forward transport model to search for a source configuration that best matches the measured data and simultaneously provide an estimate of the level of confidence in the correctness of such configuration. In this work the holdup problem is re-interpreted as an inverse problem that is under-determined, hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting inverse problem. This approach rates possible solutions according to their plausibility given the measurements and initial information. This is accomplished through the use of Bayes’ Theorem that resolves the issue of multiple solutions by giving an estimate of the probability of observing each possible solution. To use
International Nuclear Information System (INIS)
Washington, K.E.; Carroll, D.E.
1988-01-01
Models for concrete outgassing have been developed and incorporated into a developmental version of the CONTAIN code for the assessment of corium behavior in reactor cavities. The resultant code, referred to as CONTAIN/OR in order to distinguish it from the released version of CONTAIN, has the capability to model transient heat conduction and concrete outgassing in core-concrete interaction problems. This study focused on validation and assessment of the outgassing model through comparisons with other concrete response codes. In general, the model is not mechanistic; however, there are certain important processes and feedback effects that are treated rigorously. The CONTAIN outgassing model was compared against two mechanistic concrete response codes (USINT and SLAM). Gas release and temperature profile predictions for several concrete thicknesses and heating rates were performed with acceptable agreement seen in each case. The model was also applied to predict corium behavior in a reactor cavity for a hypothetical severe accident scenario. In this calculation, gases evolving from the concrete during nonablating periods fueled exothermic Zr chemical reactions in the corium. Higher corium temperatures and more concrete ablation were observed when compared with that seen when concrete outgassing was neglected. Even though this result depends somewhat upon the makeup of the corium sources and the concrete type in the cavity, it does show that concrete outgassing can be important in the modeling of corium behavior in reactor cavities. In particular, the need to expand the traditional role of CORCON from steady-state ablation to the consideration of more transient events is clearly evident as a result of this work. 5 refs., 11 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Martens, Reinhard; Bruecher, Wenzel; Richter, Cornelia; Sentuc, Florence; Sogalla, Martin; Thielen, Harald
2012-02-15
In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SGB) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of nonradioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. In the context of the research project 3608S05005 possibilities for an upgrade of ARTM were investigated and implemented as far as possible to the program system. The work program comprises the validation and evaluation of ARTM, the implementation of technical-scientific extensions of the model system and the continuation of experience exchange between developers and users. In particular, the suitability of the model approach for simulations of radiological consequences according to the German SBG and the representation of the influence of buildings typical for nuclear power stations have been validated and further evaluated. Moreover, post-processing modules for calculation of dose-relevant decay products and for dose calculations have been developed and implemented. In order to continue the experience feedback and exchange, a web page has been established and maintained. Questions by users and other feedback have been dealt with and a common workshop has been held. The continued development and validation of ARTM has strengthened the basis for applications of this model system in line with the German regulations AVV and SBG. Further activity in this field can contribute to maintain and
The role of a detailed aqueous phase source release model in the LANL area G performance assessment
Energy Technology Data Exchange (ETDEWEB)
Vold, E.L.; Shuman, R.; Hollis, D.K. [Los Alamos National Lab., NM (United States)] [and others
1995-12-31
A preliminary draft of the Performance Assessment for the Los Alamos National Laboratory (LANL) low-level radioactive waste disposal facility at Area G is currently being completed as required by Department of Energy orders. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase transport from the waste package volumes. Nuclide quantities are sorted down to four waste package release categories for modeling: rapid release, soil, concrete/sludge, and corrosion. Geochemistry for the waste packages was evaluated in terms of the equilibrium coefficients, Kds, and elemental solubility limits, Csl, interpolated from the literature. Percolation calculations for the base case closure cover show a highly skewed distribution with an average of 4 mm/yr percolation from the disposal unit bottom. The waste release model is based on a compartment representation of the package efflux, and depends on package size, percolation rate or Darcy flux, retardation coefficient, and moisture content.
Groundwater flow modelling under ice sheet conditions. Scoping calculations
Energy Technology Data Exchange (ETDEWEB)
Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))
2010-10-15
The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the
Groundwater flow modelling under ice sheet conditions. Scoping calculations
International Nuclear Information System (INIS)
Jaquet, O.; Namar, R.; Jansson, P.
2010-10-01
The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the
International Nuclear Information System (INIS)
Becker, B.H.
2002-01-01
A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA
Review of models used for determining consequences of UF6 release: Model evaluation report. Volume 2
International Nuclear Information System (INIS)
Nair, S.K.; Chambers, D.B.; Park, S.H.; Radonjic, Z.R.; Coutts, P.T.; Lewis, C.J.; Hammonds, J.S.; Hoffman, F.O.
1997-11-01
Three uranium hexafluoride-(UF 6 -) specific models--HGSYSTEM/UF 6 , Science Application International Corporation, and RTM-96; three dense-gas models--DEGADIS, SLAB, and the Chlorine Institute methodology; and one toxic chemical model--AFTOX--are evaluated on their capabilities to simulate the chemical reactions, thermodynamics, and atmospheric dispersion of UF 6 released from accidents at nuclear fuel-cycle facilities, to support Integrated Safety Analysis, Emergency Response Planning, and Post-Accident Analysis. These models are also evaluated for user-friendliness and for quality assurance and quality control features, to ensure the validity and credibility of the results. Model performance evaluations are conducted for the three UF 6 -specific models, using field data on releases of UF 6 and other heavy gases. Predictions from the HGSYSTEM/UF 6 and SAIC models are within an order of magnitude of the field data, but the SAIC model overpredicts beyond an order of magnitude for a few UF 6 -specific data points. The RTM-96 model provides overpredictions within a factor of 3 for all data points beyond 400 m from the source. For one data set, however, the RTM-96 model severely underpredicts the observations within 200 m of the source. Outputs of the models are most sensitive to the meteorological parameters at large distances from the source and to certain source-specific and meteorological parameters at distances close to the source. Specific recommendations are being made to improve the applicability and usefulness of the three models and to choose a specific model to support the intended analyses. Guidance is also provided on the choice of input parameters for initial dilution, building wake effects, and distance to completion of UF 6 reaction with water
On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies
International Nuclear Information System (INIS)
Mikhin, V.I.; Zhukov, A.V.
1985-01-01
One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements
International Nuclear Information System (INIS)
Wienhold, P.; Waelbroeck, F.s; Winter, J.; Ali-Khan, I.
1980-12-01
The tritium inventory in the wall, its escape via permeation and its release in general are evaluated during the operation and later shut-down phases of a tokamak like INTOR by means of the PERI code. No real tritium problem arises after shut-down: simple outgasing techniques at wall temperatures Tsub(W) of approx. 500 0 C should decrease the tritium release rate down to a sufficient low level. Very serious problems are on the other hand expected to arise in the areas of inventory and permeation of tritium during the operation phase: one has the choice between e.g. operating at Tsub(W) = 350 0 C with a quasi-stationary tritium inventory of some 100 grams and a permeation flux phisub(p) approx. 1 gram/day or increasing Tsub(W) to 500 0 C, reducing the inventory down to some grams, but have then a leakage rate by permeation of 35 grams/day. For Tsub(W) = 100 0 C the tritium release into the torus will be intolerable. These figures are confirmed by preliminary measurements on Inconel 600. A suggestion is made as to how to alleviate the problem. (orig.) [de
Calculation of real optical model potential for heavy ions in the framework of the folding model
International Nuclear Information System (INIS)
Goncharov, S.A.; Timofeyuk, N.K.; Kazacha, G.S.
1987-01-01
The code for calculation of a real optical model potential in the framework of the folding model is realized. The program of numerical Fourier-Bessel transformation based on Filon's integration rule is used. The accuracy of numerical calculations is ∼ 10 -4 for a distance interval up to a bout (2.5-3) times the size of nuclei. The potentials are calculated for interactions of 3,4 He with nuclei from 9 Be to 27 Al with different effective NN-interactions and densities obtained from electron scattering data. Calculated potentials are similar to phenomenological potentials in Woods-Saxon form. With calculated potentials the available elastic scattering data for the considered nuclei in the energy interval 18-56 MeV are analysed. The needed renormalizations for folding potentials are < or approx. 20%
Models for calculation of dissociation energies of homonuclear diatomic molecules
International Nuclear Information System (INIS)
Brewer, L.; Winn, J.S.
1979-08-01
The variation of known dissociation energies of the transition metal diatomics across the Periodic Table is rather irregular like the bulk sublimation enthalpy, suggesting that the valence-bond model for bulk metallic systems might be applicable to the gaseous diatomic molecules and the various intermediate clusters. Available dissociation energies were converted to valence-state bonding energies considering various degrees of promotion to optimize the bonding. The degree of promotion of electrons to increase the number of bonding electrons is smaller than for the bulk, but the trends in bonding energy parallel the behavior found for the bulk metals. Thus using the established trends in bonding energies for the bulk elements, it was possible to calculate all unknown dissociation energies to provide a complete table of dissociation energies for all M 2 molecules from H 2 to Lr 2 . For solids such as Mg, Al, Si and most of the transition metals, large promotion energies are offset by strong bonding between the valence state atoms. The main question is whether bonding in the diatomics is adequate to sustain extensive promotion. The most extreme example for which a considerable difference would be expected between the bulk and the diatomics would be that of the Group IIA and IIB metals. The first section of this paper which deals with the alkaline earths Mg and Ca demonstrates a significant influence of the excited valence state even for these elements. The next section then expands the treatment to transition metals
Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode
Directory of Open Access Journals (Sweden)
P. Seibert
2004-01-01
Full Text Available The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.. The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
a kinematic model for calculating the magnitude of angular ...
African Journals Online (AJOL)
BARTH EKWUEME
material falling into a gravitational source at their centers. Depending ... transportation of angular momentum to outer portion of the accretion ... ∆r1 of the first body is. ∆. ∆. E ... This is the basic action of the accretion disk; energy is released as.
International Nuclear Information System (INIS)
Knowles, M.K.; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.
2000-01-01
The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. This paper presents a review of the evolution of these models during the regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided
International Nuclear Information System (INIS)
Knowles, M.K; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.
2000-01-01
The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. The paper presents a review of the evolution of these models during regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided
International Nuclear Information System (INIS)
Tierney, M.S.
1991-11-01
The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico, is a research and development facility to demonstrate safe disposal of defense-generated transuranic waste. The US Department of Energy will designate WIPP as a disposal facility if it meets the US Environmental Protection Agency's standard for disposal of such waste; the standard includes a requirement that estimates of cumulative releases of radioactivity to the accessible environment be incorporated in an overall probability distribution. The WIPP Project has chosen an approach to calculation of an overall probability distribution that employs the concept of scenarios for release and transport of radioactivity to the accessible environment. This report reviews the use of Monte Carlo methods in the calculation of an overall probability distribution and presents a logical and mathematical foundation for use of the scenario concept in such calculations. The report also draws preliminary conclusions regarding the shape of the probability distribution for the WIPP system; preliminary conclusions are based on the possible occurrence of three events and the presence of one feature: namely, the events ''attempted boreholes over rooms and drifts,'' ''mining alters ground-water regime,'' ''water-withdrawal wells provide alternate pathways,'' and the feature ''brine pocket below room or drift.'' Calculation of the WIPP systems's overall probability distributions for only five of sixteen possible scenario classes that can be obtained by combining the four postulated events or features
An advanced model for spreading and evaporation of accidentally released hazardous liquids on land
Trijssenaar-Buhre, I.J.M.; Sterkenburg, R.P.; Wijnant-Timmerman, S.I.
2009-01-01
Pool evaporation modelling is an important element in consequence assessment of accidentally released hazardous liquids. The evaporation rate determines the amount of toxic or flammable gas released into the atmosphere and is an important factor for the size of a pool fire. In this paper a
An advanced model for spreading and evaporation of accidentally released hazardous liquids on land
Trijssenaar-Buhre, I.J.M.; Wijnant-Timmerman, S.L.
2008-01-01
Pool evaporation modelling is an important element in consequence assessment of accidentally released hazardous liquids. The evaporation rate determines the amount of toxic or flammable gas released into the atmosphere and is an important factor for the size of a pool fire. In this paper a
The COST model for calculation of forest operations costs
Ackerman, P.; Belbo, H.; Eliasson, L.; Jong, de J.J.; Lazdins, A.; Lyons, J.
2014-01-01
Since the late nineteenth century when high-cost equipment was introduced into forestry there has been a need to calculate the cost of this equipment in more detail with respect to, for example, cost of ownership, cost per hour of production, and cost per production unit. Machine cost calculations
Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.
Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran
2013-05-01
With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.
Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.
Hanford tank residual waste - Contaminant source terms and release models
International Nuclear Information System (INIS)
Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.
2011-01-01
Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the
Improvements in the model of neutron calculations for research reactors
International Nuclear Information System (INIS)
Calzetta, Osvaldo; Leszczynski, Francisco
1987-01-01
Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results are researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements, by one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author) [es
Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers
Directory of Open Access Journals (Sweden)
Like Zeng
2011-01-01
Full Text Available Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.
A review of mathematical modeling and simulation of controlled-release fertilizers.
Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N
2018-02-10
Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.
Pest persistence and eradication conditions in a deterministic model for sterile insect release.
Gordillo, Luis F
2015-01-01
The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.
International Nuclear Information System (INIS)
Ainsworth, T.L.
1983-01-01
The Δ(1232) plays an important role in determining the properties of nuclear and neutron matter. The effects of the Δ resonance are incorporated explicitly by using a coupled channel formalism. A method for constraining a lowest order variational calculation, appropriate when nucleon internal degrees of freedom are made explicity, is presented. Different N-N potentials were calculated and fit to phase shift data and deuteron properties. The potentials were constructed to test the relative importance of the Δ resonance on nuclear properties. The symmetry energy and incompressibility of nuclear matter are generally reproduced by this calculation. Neutron matter results lead to appealing neutron star models. Fermi liquid parameters for 3 He are calculated with a model that includes both direct and induced terms. A convenient form of the direct interaction is obtained in terms of the parameters. The form of the direct interaction ensures that the forward scattering sum rule (Pauli principle) is obeyed. The parameters are adjusted to fit the experimentally determined F 0 /sup s/, F 0 /sup a/, and F 1 /sup s/ Landau parameters. Higher order Landau parameters are calculated by the self-consistent solution of the equations; comparison to experiment is good. The model also leads to a preferred value for the effective mass of 3 He. Of the three parameters only one shows any dependence on pressure. An exact sum rule is derived relating this parameter to a specific summation of Landau parameters
International Nuclear Information System (INIS)
Eckerman, K.F.; Congel, F.J.; Roecklein, A.K.; Pasciak, W.J.
1980-06-01
The document is a user's guide for the GASPAR code, a computer program written for the evaluation of radiological impacts due to the release of radioactive material to the atmosphere during normal operation of light water reactors. The GASPAR code implements the radiological impact models of NRC Regulatory Guide 1.109, Revision 1, for atmospheric releases. The code is currently used by NRC in reactor licensing evaluations to estimate (1) the collective or population dose to the population within a 50-mile radius of a facility, (2) the total collective dose to the U.S. population, and (3) the maximum individual doses at selected locations in the vicinity of the plant
Validation of a marine dispersion model for the calculation of doses to the European population
International Nuclear Information System (INIS)
Cabianca, T.; Bexon, A.P.
1999-01-01
The validation described in this paper focused on three radionuclides: Cs- 137 , Tc- 99 and Pu-2 39 . Historical discharges of these three radionuclides from the main European nuclear installations, Sellafield Cap de la Hague and Dounreay from the beginning of the operations up to 1995 were included in this study. Input into the North European water system as a result of fallout from nuclear weapons tests and the Chernobyl accident were also incorporated. Radionuclide concentrations predicted by the model in seawater, sediments and seafood up to 1995 were compared with measurements taken by different organisations in the waters of the European Continental Shelf and in the Arctic Ocean. Radionuclide concentrations calculated in various compartments were compared with average measurements taken in the same areas. The validation generally showed good agreement between the model predictions and the observations. Better results were obtained closer to the release point but no systematic over or under prediction by the model was found. A best fit analysis of the transfer rates was also carried out for all three radionuclides and the results of this exercise compared with the values currently used in the model
International Nuclear Information System (INIS)
Agethen, K.; Koch, M.K.
2016-04-01
The present report is the 3 rd Technical Report within the research project ''ASMO'' founded by the German Federal Ministry for Economic Affairs and Energy (BMWi 1501433) and projected at the Chair of Energy Systems and Energy Economics (LEE) within the workgroup Reactor Simulation and Safety at the Ruhr-Universitaet Bochum (RUB). The focus in this report is set on the release of fission products and the contribution to the source term, which is formed in the late phase after failure of the reactor pressure vessel during MCCI. By comparing the RUB simulation results including the fission product release rates with further simulations of GRS and VEIKI it can be indicated that the simulations have a high sensitivity in respect to the melting point temperature. It can be noted that the release rates are underestimated for most fission product species with the current model. Especially semi-volatile fission products and the lanthanum release is underestimated by several orders of magnitude. Based on the ACE experiment L2, advanced considerations are presented concerning the melt temperature, the gas temperature, the segregation and a varied melt configuration. Furthermore, the influence of the gas velocity is investigated. This variation of the gas velocity causes an underestimation of the release rates compared to the RUB base calculation. A model extension to oxidic species for lanthanum and ruthenium shows a significant improvement of the simulation results. In addition, the MEDICIS module has been enhanced to document the currently existing species, are displayed in a *.ist-file. This expansion shows inconsistencies between the melt composition and the fission product composition. Based on these results, there are still some difficulties regarding the release of fission products in the MEDICIS module and the interaction with the material data base (MOB) which needs further investigation.
Formal Modeling and Verification of Interlocking Systems Featuring Sequential Release
DEFF Research Database (Denmark)
Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan
2015-01-01
In this paper, we present a method and an associated tool suite for formal verification of the new ETCS level 2 based Danish railway interlocking systems. We have made a generic and reconfigurable model of the system behavior and generic high-level safety properties. This model accommodates seque...... SMT based bounded model checking (BMC) and inductive reasoning, we are able to verify the properties for model instances corresponding to railway networks of industrial size. Experiments also show that BMC is efficient for finding bugs in the railway interlocking designs....
Formal Modeling and Verification of Interlocking Systems Featuring Sequential Release
DEFF Research Database (Denmark)
Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan
2014-01-01
In this paper, we present a method and an associated tool suite for formal verification of the new ETCS level 2 based Danish railway interlocking systems. We have made a generic and reconfigurable model of the system behavior and generic high-level safety properties. This model accommodates seque...... SMT based bounded model checking (BMC) and inductive reasoning, we are able to verify the properties for model instances corresponding to railway networks of industrial size. Experiments also show that BMC is efficient for finding bugs in the railway interlocking designs....
International Nuclear Information System (INIS)
Piet, S.J.; Kazimi, M.S.
1979-07-01
The bases for various models concerned with all phases of estimating doses from routine tritium releases from fusion reactors have been examined. The implications of uncertainties in parameters and assumptions for the uncertainty of the calculated doses and resulting maximum permissible releases are presented. Global dispersion models are most affected by the assumptions made concerning movement, such as the role of the ocean as a sink. Dose models were generally found to agree within a factor of two, with the largest variation due to agricultural data. Plant tritium flow studies are the least developed and require substantial improvement in the data base. Based on two possible arbitrary global standards, the maximum allowable releases were found to range from 1.6 to 20,000 Ci/day. The local criteria imply releases between 5 and 20 Ci/day
Multiscale numerical modeling of Ce3+-inhibitor release from novel corrosion protection coatings
International Nuclear Information System (INIS)
Trenado, Carlos; Wittmar, Matthias; Veith, Michael; Strauss, Daniel J; Rosero-Navarro, Nataly C; Aparicio, Mario; Durán, Alicia; Castro, Yolanda
2011-01-01
A novel hybrid sol–gel coating has recently been introduced as an alternative to high toxic chromate-based corrosion protection systems. In this paper, we propose a multiscale computational model to estimate the amount and time scale of inhibitor release of the active corrosion protection coating. Moreover, we study the release rate under the influence of parameters such as porosity and viscosity, which have recently been implicated in the stability of the coating. Numerical simulations obtained with the model predicted experimental release tests and recent findings on the compromise between inhibitor concentration and the stability of the coating
Abnormal glutamate release in aged BTBR mouse model of autism.
Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun
2015-01-01
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.
International Nuclear Information System (INIS)
Brown, M.J.; Arya, S.P.; Snyder, W.H.
1993-01-01
The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs
Formal modelling and verification of interlocking systems featuring sequential release
DEFF Research Database (Denmark)
Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan
2017-01-01
checking (BMC) and inductive reasoning, it is verified that the generated model instance satisfies the generated safety properties. Using this method, we are able to verify the safety properties for model instances corresponding to railway networks of industrial size. Experiments show that BMC is also...
Two-step two-stage fission gas release model
International Nuclear Information System (INIS)
Kim, Yong-soo; Lee, Chan-bock
2006-01-01
Based on the recent theoretical model, two-step two-stage model is developed which incorporates two stage diffusion processes, grain lattice and grain boundary diffusion, coupled with the two step burn-up factor in the low and high burn-up regime. FRAPCON-3 code and its in-pile data sets have been used for the benchmarking and validation of this model. Results reveals that its prediction is in better agreement with the experimental measurements than that by any model contained in the FRAPCON-3 code such as ANS 5.4, modified ANS5.4, and Forsberg-Massih model over whole burn-up range up to 70,000 MWd/MTU. (author)
Energy Technology Data Exchange (ETDEWEB)
Gulati, Karan [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia); Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M. [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Atkins, Gerald J., E-mail: gerald.atkins@adelaide.edu.au [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Losic, Dusan, E-mail: dusan.losic@adelaide.edu.au [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)
2016-12-01
There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. - Highlights: • Ti wire with titania nanotubes (TNTs) are proposed as ‘in-bone’ therapeutic implants. • 3D cell culture model is used to confirm therapeutic efficacy of drug releasing implants. Osteoblasts migrated and firmly attached to the TNTs and the micro-scale cracks. • Tailorable drug loading from few nanograms to several hundred
Comparison of standard fast reactor calculations (Baker model)
Energy Technology Data Exchange (ETDEWEB)
Voropaev, A I; Van' kov, A A; Tsybulya, A M
1978-12-01
Compared are standard fast reactor calculations performed at different laboratories using several nuclear data files: BNAB-70 and OSKAR-75 (the USSR), CARNAVAL-4 (France), FD-5 (Great Britain), KFK-INR (West Germany), ENDF/B4 (the USA). Three fuel compositions were chosen: (1) /sup 239/Pu and /sup 238/U; (2) /sup 239/Pu, /sup 238/U and fission products; (3) /sup 239/Pu, /sup 240/Pu, /sup 238/U and fission products. Medium temperature was 300K. The calculations have been conducted in the diffusion approximation. Data on critical masses and breeding ratios are tabulated. Discrepancies in the calculations of all the characteristics are small since all the countries possess practically the same nuclear data files.
International Nuclear Information System (INIS)
1989-09-01
This Standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear facility following a hypothetical accident. The specific radionuclides considered in the Standard are those associated with substances having the greatest potential for becoming airborne in reactor accidents (eg, tritium (HTO), noble gases and their daughters (Kr-Rb, Xe-Cs), and radioiodines (I)); and certain radioactive particulates (eg, Cs, Ru, Sr, Te) that may become airborne under exceptional circumstances
Calculational advance in the modeling of fuel-coolant interactions
International Nuclear Information System (INIS)
Bohl, W.R.
1982-01-01
A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials
Maxdose-SR and popdose-SR routine release atmospheric dose models used at SRS
Energy Technology Data Exchange (ETDEWEB)
Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trimor, P. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-07-28
MAXDOSE-SR and POPDOSE-SR are used to calculate dose to the offsite Reference Person and to the surrounding Savannah River Site (SRS) population respectively following routine releases of atmospheric radioactivity. These models are currently accessed through the Dose Model Version 2014 graphical user interface (GUI). MAXDOSE-SR and POPDOSE-SR are personal computer (PC) versions of MAXIGASP and POPGASP, which both resided on the SRS IBM Mainframe. These two codes follow U.S. Nuclear Regulatory Commission (USNRC) Regulatory Guides 1.109 and 1.111 (1977a, 1977b). The basis for MAXDOSE-SR and POPDOSE-SR are USNRC developed codes XOQDOQ (Sagendorf et. al 1982) and GASPAR (Eckerman et. al 1980). Both of these codes have previously been verified for use at SRS (Simpkins 1999 and 2000). The revisions incorporated into MAXDOSE-SR and POPDOSE-SR Version 2014 (hereafter referred to as MAXDOSE-SR and POPDOSE-SR unless otherwise noted) were made per Computer Program Modification Tracker (CPMT) number Q-CMT-A-00016 (Appendix D). Version 2014 was verified for use at SRS in Dixon (2014).
Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric
2013-09-10
The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. Copyright © 2013 Elsevier B.V. All rights reserved.
Thrash, Marvin E; Pinto, Neville G
2006-09-08
The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.
International Nuclear Information System (INIS)
Leech, N.A.; Smith, M.R.; Pearce, J.H.; Ellis, W.E.; Beatham, N.
1990-01-01
This paper reviews the development of fission gas release modelling in thermal reactor fuel (both steady-state and transient) and in particular, illustrates the way in which experimental data have been, and continue to be, the main driving force behind model development. To illustrate this point various aspects of fuel performance are considered: temperature calculation, steady-state and transient fission gas release, grain boundary gas atom capacity and microstructural phenomena. The sources of experimental data discussed include end-of-life fission gas release measurements, instrumented fuel assemblies (e.g. rods with internal pressure transducers, fuel centre thermocouples), swept capsule experiments, out-of-pile annealing experiments and microstructural techniques applied during post-irradiation evaluation. In the case of the latter, the benefit of applying many observation and analysis techniques on the same fuel samples (the approach adopted at NRL Windscale) is emphasized. This illustrates a shift of emphasis in the modelling field from the development of large, complex thermo-mechanical computer codes to the assessment of key experimental data in order to develop and evaluate sub-models which correctly predict the observed behaviour. (author)
Fission-product release modelling in the ASTEC integral code: the status of the ELSA module
International Nuclear Information System (INIS)
Plumecocq, W.; Kissane, M.P.; Manenc, H.; Giordano, P.
2003-01-01
Safety assessment of water-cooled nuclear reactors encompasses potential severe accidents where, in particular, the release of fission products (FPs) and actinides into the reactor coolant system (RCS) is evaluated. The ELSA module is used in the ASTEC integral code to model all releases into the RCS. A wide variety of experiments is used for validation: small-scale CRL, ORNL and VERCORS tests; large-scale Phebus-FP tests; etc. Being a tool that covers intact fuel and degraded states, ELSA is being improved maximizing the use of information from degradation modelling. Short-term improvements will include some treatment of initial FP release due to intergranular inventories and implementing models for release of additional structural materials (Sn, Fe, etc.). (author)
Model for absorption and release of gaseous materials by forest canopies
International Nuclear Information System (INIS)
Murphy, C.E. Jr.
1976-01-01
A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere
Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water
International Nuclear Information System (INIS)
Johnson, David W.; Cornwell, John B.
2007-01-01
Current interest in the shipment of liquefied natural gas (LNG) has renewed the debate about the safety of shipping large volumes of flammable fuels. The size of a spreading pool following a release of LNG from an LNG tank ship has been the subject of numerous papers and studies dating back to the mid-1970s. Several papers have presented idealized views of how the LNG would be released and spread across a quiescent water surface. There is a considerable amount of publicly available material describing these idealized releases, but little discussion of how other flammable fuels would behave if released from similar sized ships. The purpose of this paper is to determine whether the models currently available from the United States Federal Energy Regulatory Commission (FERC) can be used to simulate the release, spreading, vaporization, and pool fire impacts for materials other than LNG, and if so, identify which material-specific parameters are required. The review of the basic equations and principles in FERC's LNG release, spreading, and burning models did not reveal a critical fault that would prevent their use in evaluating the consequences of other flammable fluid releases. With the correct physical data, the models can be used with the same level of confidence for materials such as LPG and gasoline as they are for LNG
Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.
Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L
2011-06-01
The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.
Energy Technology Data Exchange (ETDEWEB)
Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)
2017-05-24
Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).
International Nuclear Information System (INIS)
Verfondern, Karl; Sumita, Junya; Ueta, Shohei; Sawa, Kazuhiro
2001-03-01
For the prediction of fuel performance and fission product release behavior in the High Temperature Engineering Test Reactor, HTTR of the Japan Atomic Energy Research Institute(JAERI), during its normal operation, calculation tools were applied as have been used at the Research Center Juelich (FZJ) in safety analyses for pebble-bed HTGR designs. Calculations were made assuming the HTTR operation with a nominal operation time of 660 efpd including a 110 efpd period with elevated fuel temperatures. Fuel performance calculations by the PANAMA code with given fuel temperature distribution in the core have shown that the additional failure level of about 5x10 -6 is expected which is about twice as much as the as-fabricated through-coatings failure level. Under the extreme safety design conditions, the predicted particle failure fraction in the core increases to about 1x10 -3 in maximum. The diffusive release of metallic fission products from the fuel primarily occurs in the core layer with the maximum fuel temperature (layer 3) whereas there is hardly any contribution from layer 1 except for the recoil fraction. Silver most easily escapes the fuel; the predicted release fractions from the fuel compacts are 10% (expected) and 50% (safety design). The figures for strontium (expected: 1.5x10 -3 ), safety design: 3.1x10 -2 ) and cesium (5.6x10 -4 , 2.9x10 -2 ) reveal as well a significant fraction to originate already from intact particles. Comparison with the calculation based on JAERI's diffusion model for cesium shows a good agreement for the release behavior from the particles. The differences in the results can be explained mainly by the different diffusion coefficients applied. The release into the coolant can not modelled because of the influence of the gap between compact and graphite sleeve lowering the release by a factor of 3 to 10. For the prediction of performance and fission product release behavior of advanced ZrC TRISO particles, more experimental work is
Application of mathematical modeling in sustained release delivery systems.
Grassi, Mario; Grassi, Gabriele
2014-08-01
This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
Sörgel, Matthias; Trebs, Ivonne; Wu, Dianming; Held, Andreas
2015-04-01
Vertical mixing ratio profiles of nitrous acid (HONO) were measured in a clearing and on the forest floor in a rural forest environment (in the south-east of Germany) by applying a lift system to move the sampling unit of the LOng Path Absorption Photometer (LOPAP) up and down. For the forest floor, HONO was found to be predominantly deposited, whereas net deposition was dominating in the clearing only during nighttime and net emissions were observed during daytime. For selected days, net fluxes of HONO were calculated from the measured profiles using the aerodynamic gradient method. The emission fluxes were in the range of 0.02 to 0.07 nmol m-2 s-1, and, thus were in the lower range of previous observations. These fluxes were compared to the strengths of postulated HONO sources and to the amount of HONO needed to sustain photolysis in the boundary layer. Laboratory measurements of different soil samples from both sites revealed an upper limit for soil biogenic HONO emission fluxes of 0.025 nmol m-2 s-1. HONO formation by light induced NO2 conversion was calculated to be below 0.03 nmol m-2 s-1 for the investigated days, which is comparable to the potential soil fluxes. Due to light saturation at low irradiance, this reaction pathway was largely found to be independent of light intensity, i.e. it was only dependent on ambient NO2. We used three different approaches based on measured leaf nitrate loadings for calculating HONO formation from HNO3 photolysis. While the first two approaches based on empirical HONO formation rates yielded values in the same order of magnitude as the estimated fluxes, the third approach based on available kinetic data of the postulated pathway failed to produce noticeable amounts of HONO. Estimates based on reported cross sections of adsorbed HNO3 indicate that the lifetime of adsorbed HNO3 was only about 15 min, which would imply a substantial renoxification. Although the photolysis of HNO3 was significantly enhanced at the surface, the
Calculation of the 3D density model of the Earth
Piskarev, A.; Butsenko, V.; Poselov, V.; Savin, V.
2009-04-01
The study of the Earth's crust is a part of investigation aimed at extension of the Russian Federation continental shelf in the Sea of Okhotsk Gathered data allow to consider the Sea of Okhotsk' area located outside the exclusive economic zone of the Russian Federation as the natural continuation of Russian territory. The Sea of Okhotsk is an Epi-Mesozoic platform with Pre-Cenozoic heterogeneous folded basement of polycyclic development and sediment cover mainly composed of Paleocene - Neocene - Quaternary deposits. Results of processing and complex interpretation of seismic, gravity, and aeromagnetic data along profile 2-DV-M, as well as analysis of available geological and geophysical information on the Sea of Okhotsk region, allowed to calculate of the Earth crust model. 4 layers stand out (bottom-up) in structure of the Earth crust: granulite-basic (density 2.90 g/cm3), granite-gneiss (limits of density 2.60-2.76 g/cm3), volcanogenic-sedimentary (2.45 g/cm3) and sedimentary (density 2.10 g/cm3). The last one is absent on the continent; it is observed only on the water area. Density of the upper mantle is taken as 3.30 g/cm3. The observed gravity anomalies are mostly related to the surface relief of the above mentioned layers or to the density variations of the granite-metamorphic basement. So outlining of the basement blocks of different constitution preceded to the modeling. This operation is executed after Double Fourier Spectrum analysis of the gravity and magnetic anomalies and following compilation of the synthetic anomaly maps, related to the basement density and magnetic heterogeneity. According to bathymetry data, the Sea of Okhotsk can be subdivided at three mega-blocks. Taking in consideration that central Sea of Okhotsk area is aseismatic, i.e. isostatic compensated, it is obvious that Earth crust structure of these three blocks is different. The South-Okhotsk depression is characteristics by 3200-3300 m of sea depths. Moho surface in this area is at
Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw
2017-04-30
The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.
A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter
Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel
2017-01-01
The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.
Modeling comodulation masking release using an equalization cancellation mechanism
DEFF Research Database (Denmark)
Piechowiak, Tobias; Ewert, Stephan; Dau, Torsten
of the study investigates the relation between CMR and envelope-based binaural masking level differences (BMLD), using narrowband noise maskers and classical across-channel configurations (like N0Spi, N0Sm). In the second part, a model is presented that explicitly simulates CMR whereby the EC mechanism...
Progress in tritium retention and release modeling for ceramic breeders
International Nuclear Information System (INIS)
Raffray, A.R.; Federici, G.; Billone, M.C.; Tanaka, S.
1994-01-01
Tritium behavior in ceramic breeder blankets is a key design issue for this class of blanket because of its impact on safety and fuel self-sufficiency. Over the past 10-15 years, substantial theoretical and experimental efforts have been dedicated world-wide to develop a better understanding of tritium transport in ceramic breeders. Models that are available today seem to cover reasonably well all the key physical transport and trapping mechanisms. They have allowed for reasonable interpretation and reproduction of experimental data and have helped in pointing out deficiencies in material property data base, in providing guidance for future experiments, and in analyzing blanket tritium behavior. This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described along with the more recent and sophisticated models developed to help understand them. Recent experimental data are highlighted and model calibration and validation discussed. Finally, example applications to blanket cases are shown as illustration of progress in the prediction of ceramic breeder blanket tritium inventory
Modeling E. coli Release And Transport In A Creek During Artificial High-Flow Events
Yakirevich, A.; Pachepsky, Y. A.; Gish, T. J.; Cho, K.; Shelton, D. R.; Kuznetsov, M. Y.
2012-12-01
In-stream fate and transport of E. coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. coli release and transport from soil sediment in a creek bed both during and after high water flow events. The artificial high-water flow events were created by releasing 60-80 m3 of city water on a tarp-covered stream bank at a rate of 60 L/s in four equal allotments in July of 2008, 2009 and 2010. The small first-order creek used in this study is part of the Beaver Dam Creek Tributary and is located at the USDA Optimizing Production inputs for Economic and Environmental Enhancement (OPE3) research site, in Beltsville, Maryland. In 2009 and 2010 a conservative tracer difluorobenzoic acid (DFBA) was added to the released water. Specifically, water flow rates, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at the ends of the three in-stream weirs reaching a total length of 630 m. Sediment particle size distributions and the streambed E. coli concentrations were measured along a creek before and after experiment. The observed DFBA breakthrough curves (BTCs) exhibited long tails after the water pulse and tracer peaks indicating that transient storage might be an important element of the in-stream transport process. Turbidity and E. coli BTCs also exhibited long tails indicative of transient storage and low rates of settling caused by re-entrainment. Typically, turbidity peaked prior to E. coli and returned to lower base-line levels more rapidly. A one-dimensional model was applied to simulate water flow, E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for advection-dispersion, lateral inflow/outflow, exchange with the transient storage
Release of Fluconazole from Contact Lenses Using a Novel In Vitro Eye Model.
Phan, Chau-Minh; Bajgrowicz, Magdalena; Gao, Huayi; Subbaraman, Lakshman N; Jones, Lyndon W
2016-04-01
Rapid drug release followed by a plateau phase is a common observation with drug delivery from contact lenses (CLs) when evaluated in a vial. The aim of this study was to compare the release of fluconazole from seven commercially available daily disposable CLs using a conventional vial-based method with a novel in vitro eye model. An eye model was created using two 3-dimensional printed molds, which were filled with polydimethylsiloxane to obtain an inexpensive model that would mimic the eyeball and eyelid. The model was integrated with a microfluidic syringe pump, and the flow-through was collected in a 12-well microliter plate. Four commercial daily disposable conventional hydrogels (nelfilcon A, omafilcon A, etafilcon A, ocufilcon B) and three silicone hydrogels (somofilcon A, narafilcon A, delefilcon A) were evaluated. These CLs were incubated with fluconazole for 24 h. The drug release was measured in a vial containing 4.8 mL of phosphate-buffered saline and in the polydimethylsiloxane eye model with a 4.8-mL tear flow across 24 h. Overall, conventional hydrogel CLs had a higher uptake and release of fluconazole than silicone hydrogel CLs (p eye model (p eye model under low tear volume was sustained and did not reach a plateau across 24 h (p eyes with fungal keratitis may have increased tearing, which would significantly accelerate drug release.
Power plant reliability calculation with Markov chain models
International Nuclear Information System (INIS)
Senegacnik, A.; Tuma, M.
1998-01-01
In the paper power plant operation is modelled using continuous time Markov chains with discrete state space. The model is used to compute the power plant reliability and the importance and influence of individual states, as well as the transition probabilities between states. For comparison the model is fitted to data for coal and nuclear power plants recorded over several years. (orig.) [de
Calculation of single chain cellulose elasticity using fully atomistic modeling
Xiawa Wu; Robert J. Moon; Ashlie Martini
2011-01-01
Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...
Energy Technology Data Exchange (ETDEWEB)
Eichler, B.; Neuhausen, J
2004-06-01
An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead
Model calculation for energy loss in ion-surface collisions
International Nuclear Information System (INIS)
Miraglia, J.E.; Gravielle, M.S.
2003-01-01
The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces
Freedom: a transient fission-product release model for radioactive and stable species
International Nuclear Information System (INIS)
Macdonald, L.D.; Lewis, B.J.; Iglesias, F.C.
1989-05-01
A microstructure-dependent fission-gas release and swelling model (FREEDOM) has been developed for UO 2 fuel. The model describes the transient release behaviour for both the radioactive and stable fission-product species. The model can be applied over the full range of operating conditions, as well as for accident conditions that result in high fuel temperatures. The model accounts for lattice diffusion and grain-boundary sweeping of fusion products to the grain boundaries, where the fission gases accumulate in grain-face bubbles as a result of vacancy diffusion. Release of fission-gas to the free void of the fuel element occurs through the interlinkage of bubbles and cracks on the grain boundaries. This treatment also accounts for radioactive chain decay and neutron-induced transmutation effects. These phenomena are described by mass balance equations which are numerically solved using a moving-boundary, finite-element method with mesh refinement. The effects of grain-face bubbles on fuel swelling and fuel thermal conductivity are included in the ELESIM fuel performance code. FREEDOM has an accuracy of better than 1% when assessed against an analytic solution for diffusional release. The code is being evaluated against a fuel performance database for stable gas release, and against sweep-gas and in-cell fission-product release experiments at Chalk River for active species
Energy Technology Data Exchange (ETDEWEB)
Connan, O.; Hebert, D.; Solier, L.; Voiseux, C.; Lamotte, M.; Laguionie, P.; Maro, D.; Thomas, L. [IRSN/PRP-ENV/SERIS/LRC (France)
2014-07-01
Atmospheric dispersion of pollutant or radionuclides in stratified meteorological condition, i.e. especially when weather conditions are very stable, mainly at night, is still poorly understood and not well apprehended by the operational atmospheric dispersion models. However, correctly predicting the dispersion of a radioactive plume, and estimating the radiological consequences for the population, following an unplanned atmospheric release of radionuclides are crucial steps in an emergency response. To better understand dispersion in these special weather conditions, IRSN performed a series of 22 air sampling campaigns between 2010 and 2013 in the vicinity of the La Hague nuclear reprocessing plant (AREVA - NC, France), at distances between 200 m and 3000 m from the facility. Krypton-85 ({sup 85}Kr), a b-and g-emitting radionuclide, released during the reprocessing of spent nuclear fuel was used as a non-reactive tracer of radioactive plumes. Experimental campaigns were realized in stability class stable or very stable (E or F according to Pasquill classification) 18 times, and in neutral conditions (D according to Pasquill classification) 4 times. During each campaign, Krypton-85 real time measurement were made to find the plume around the plant, and then integrated samples (30 min) were collected in bag perpendicularly to the assumed wind direction axis. After measurement by gamma spectrometry, we have, when it was possible, estimate the point of impact and the width of the plume. The objective was to estimate the horizontal dispersion (width) of the plume at ground level in function of the distance and be able to calculate atmospheric transfer coefficients. In a second step, objective was to conclude on the use of common model and on their uncertainties. The results will be presented in terms of impact on the near-field. They will be compared with data obtained in previous years in neutral atmospheric conditions, and finally the results will be confronted with
Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin
2017-07-01
The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.
Modeling of modification experiments involving neutral-gas release
International Nuclear Information System (INIS)
Bernhardt, P.A.
1983-01-01
Many experiments involve the injection of neutral gases into the upper atmosphere. Examples are critical velocity experiments, MHD wave generation, ionospheric hole production, plasma striation formation, and ion tracing. Many of these experiments are discussed in other sessions of the Active Experiments Conference. This paper limits its discussion to: (1) the modeling of the neutral gas dynamics after injection, (2) subsequent formation of ionosphere holes, and (3) use of such holes as experimental tools
Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.
Risser, Steven Michael
This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb
Retraction: Calculation and modeling of the energy released in result of water freezing process (WFP
Directory of Open Access Journals (Sweden)
M. Ghodsi Hassanabad
Full Text Available This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal.After a thorough investigation, the Editors have concluded that the acceptance of this article was based upon the positive advice of at least one illegitimate reviewer report. The report was submitted from an email account which was provided to the journal as a suggested reviewer during the submission of the article. Although purportedly a real reviewer account, the Editors have concluded that this was not of an appropriate, independent reviewer.This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the reviewers whose identities were assumed and to the readers of the journal that this deception was not detected during the submission process.Further, no reason has been provided for the addition of the author names M. Ghodsi Hassanabad and A. Dehghani Mehrbadi to the authorship of the revised article.
International Nuclear Information System (INIS)
Bang, Young Seok; Cheong, Aeju; Woo, Sweng Woong
2014-01-01
Confirmation of the performance of the SIT with FD should be based on thermal-hydraulic analysis of LBLOCA and an adequate and physical model simulating the SIT/FD should be used in the LBLOCA calculation. To develop such a physical model on SIT/FD, simulation of the major phenomena including flow distribution of by standpipe and FD should be justified by full scale experiment and/or plant preoperational testing. Author's previous study indicated that an approximation of SIT/FD phenomena could be obtained by a typical system transient code, MARS-KS, and using 'accumulator' component model, however, that additional improvement on modeling scheme of the FD and standpipe flow paths was needed for a reasonable prediction. One problem was a depressurizing behavior after switchover to low flow injection phase. Also a potential to release of nitrogen gas from the SIT to the downstream pipe and then reactor core through flow paths of FD and standpipe has been concerned. The intrusion of noncondensible gas may have an effect on LBLOCA thermal response. Therefore, a more reliable model on SIT/FD has been requested to get a more accurate prediction and a confidence of the evaluation of LBLOCA. The present paper is to discuss an improvement of modeling scheme from the previous study. Compared to the existing modeling, effect of the present modeling scheme on LBLOCA cladding thermal response is discussed. The present study discussed the modeling scheme of SIT with FD for a realistic simulation of LBLOCA of APR1400. Currently, the SIT blowdown test can be best simulated by the modeling scheme using 'pipe' component with dynamic area reduction. The LBLOCA analysis adopting the modeling scheme showed the PCT increase of 23K when compared to the case of 'accumulator' component model, which was due to the flow rate decrease at transition phase low flow injection and intrusion of nitrogen gas to the core. Accordingly, the effect of SIT/FD modeling
Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.
Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P
2017-12-01
The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
International Nuclear Information System (INIS)
Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)
Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang
2016-01-01
Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of
Energy Technology Data Exchange (ETDEWEB)
Rovny, Sergey I.; Mokrov, Y.; Stukalov, Pavel M.; Beregich, D. A.; Teplyakov, I. I.; Anspaugh, L. R.; Napier, Bruce A.
2009-10-23
The Mayak Production Association (MPA) was established in the late 1940s in accordance with a special Decree of the USSR Government for the production of nuclear weapons. In early years of MPA operation, due to the lack of experience and absence of effective methods of RW management, the enterprise had extensive routine (designed) and non-routine (accidental) releases of gaseous radioactive wastes to the atmosphere. These practices resulted in additional technogenic radiation exposure of residents inhabiting populated areas near the MPA. The primary objective of ongoing studies under JCCRER Project 1.4 is to estimate doses to the residents of Ozersk due to releases of radioactive substances from the stacks of MPA. Preliminary scoping studies have demonstrated that releases of radioactive iodine (131I) from the stacks of the Mayak Radiochemical Plant represented the major contribution to the dose to residents of Ozersk and of other nearby populated areas. The behavior of 131I in the environment and of 131I migration through biological food chains (vegetation-cows-milk-humans) indicated a need for use of special mathematical models to perform the estimation of radiation doses to the population. The goal of this work is to select an appropriate model of the iodine migration in biological food chains and to justify numerical values of the model parameters.
Energy Technology Data Exchange (ETDEWEB)
Golovin, Y., E-mail: nano@tsutmb.ru [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation); Golovin, D. [G.R. Derzhavin Tambov State University (Russian Federation); Klyachko, N.; Majouga, A.; Kabanov, A. [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation)
2017-02-15
Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.
International Nuclear Information System (INIS)
Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.
2017-01-01
Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.
Saylor, David M; Craven, Brent A; Chandrasekar, Vaishnavi; Simon, David D; Brown, Ronald P; Sussman, Eric M
2018-04-01
Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel ions to local tissues and systemic circulation are not well understood. To address this uncertainty, we have developed a multi-scale (material, tissue, and system) biokinetic model. The model links nickel release from an implanted cardiovascular device to concentrations in peri-implant tissue, as well as in serum and urine, which can be readily monitored. The model was parameterized for a specific cardiovascular implant, nitinol septal occluders, using in-vitro nickel release test results, studies of ex-vivo uptake into heart tissue, and in-vivo and clinical measurements from the literature. Our results show that the model accurately predicts nickel concentrations in peri-implant tissue in an animal model and in serum and urine of septal occluder patients. The congruity of the model with these data suggests it may provide useful insight to establish nickel exposure limits and interpret biomonitoring data. Finally, we use the model to predict local and systemic nickel exposure due to passive release from nitinol devices produced using a wide range of manufacturing processes, as well as general relationships between release rate and exposure. These relationships suggest that peri-implant tissue and serum levels of nickel will remain below 5 μg/g and 10 μg/l, respectively, in patients who have received implanted nitinol cardiovascular devices provided the rate of nickel release per device surface area does not exceed 0.074 μg/(cm 2 d) and is less than 32 μg/d in total. The uncertainty in whether in-vitro tests used to evaluate metal ion release from medical products are representative of clinical environments is one of the largest roadblocks to establishing the associated patient risk. We have developed and validated a multi
Carbon dioxide fluid-flow modeling and injectivity calculations
Burke, Lauri
2011-01-01
At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.
Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models.
Directory of Open Access Journals (Sweden)
Saman Mohammadi
Full Text Available In this study, we compared, for the first time, the release of a 432 kDa prostaglandin F2a analogue drug, Latanoprost, from commercially available contact lenses using in vitro models with corneal epithelial cells. Conventional polyHEMA-based and silicone hydrogel soft contact lenses were soaked in drug solution (131 μg = ml solution in phosphate buffered saline. The drug release from the contact lens material and its diffusion through three in vitro models was studied. The three in vitro models consisted of a polyethylene terephthalate (PET membrane without corneal epithelial cells, a PET membrane with a monolayer of human corneal epithelial cells (HCEC, and a PET membrane with stratified HCEC. In the cell-based in vitro corneal epithelium models, a zero order release was obtained with the silicone hydrogel materials (linear for the duration of the experiment whereby, after 48 hours, between 4 to 6 μg of latanoprost (an amount well within the range of the prescribed daily dose for glaucoma patients was released. In the absence of cells, a significantly lower amount of drug, between 0.3 to 0.5 μg, was released, (p <0:001. The difference observed in release from the hydrogel lens materials in the presence and absence of cells emphasizes the importance of using an in vitro corneal model that is more representative of the physiological conditions in the eye to more adequately characterize ophthalmic drug delivery materials. Our results demonstrate how in vitro models with corneal epithelial cells may allow better prediction of in vivo release. It also highlights the potential of drug-soaked silicone hydrogel contact lens materials for drug delivery purposes.
Analysis of railroad tank car releases using a generalized binomial model.
Liu, Xiang; Hong, Yili
2015-11-01
The United States is experiencing an unprecedented boom in shale oil production, leading to a dramatic growth in petroleum crude oil traffic by rail. In 2014, U.S. railroads carried over 500,000 tank carloads of petroleum crude oil, up from 9500 in 2008 (a 5300% increase). In light of continual growth in crude oil by rail, there is an urgent national need to manage this emerging risk. This need has been underscored in the wake of several recent crude oil release incidents. In contrast to highway transport, which usually involves a tank trailer, a crude oil train can carry a large number of tank cars, having the potential for a large, multiple-tank-car release incident. Previous studies exclusively assumed that railroad tank car releases in the same train accident are mutually independent, thereby estimating the number of tank cars releasing given the total number of tank cars derailed based on a binomial model. This paper specifically accounts for dependent tank car releases within a train accident. We estimate the number of tank cars releasing given the number of tank cars derailed based on a generalized binomial model. The generalized binomial model provides a significantly better description for the empirical tank car accident data through our numerical case study. This research aims to provide a new methodology and new insights regarding the further development of risk management strategies for improving railroad crude oil transportation safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ghodke, Shailesh Adinath; Sonawane, Shirish Hari; Bhanvase, Bharat Apparao; Mishra, Satyendra; Joshi, Kalpana Shrikant
2015-04-01
The present work deals with encapsulation of fragrance molecule in inorganic nanocontainers substrate and investigation of its prolonged release at different pH condition. The nanocontainers used were aluminosilicate clay (Halloysite) having cylindrical shape with outside diameter in the range of 30-50 nm, 15 nm lumen and length equal to 800 ± 300 nm. Rosewater absolute was used as a sample fragrance for loading in nanocontainer and delivery purpose. The fragrance loaded nanocontainers were coated with a thin layer of polyelectrolyte i.e. Polyacrylic Acid (PAA). The structural characteristics of prepared nanocontainers were determined by using Fourier Transform Intra-red Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA) and UV spectroscopy analysis. Release of fragrance molecules in the aqueous medium was monitored for 24 h. The fragrance release was found to be responsive as the amount of fragrance release increases with increase in pH value from 3 to 7. Fragrance release has been studied by using various permeation kinetic models such as zero order, first order, Hixson-Crowell, Higuchi, Korsmeyer-Peppas and Hopfenberg models. Korsemyer-Peppas shows the best fit (R2 = 0.9544) compared to other kinetic model for the release of fragrance from nanocontainers.
Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates
International Nuclear Information System (INIS)
Poineau, Frederic; Tamalis, Dimitri
2016-01-01
The isotope 99 Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β - = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99 Tc ( 99 Tc → 99 Ru + β - ). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling
Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates
Energy Technology Data Exchange (ETDEWEB)
Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)
2016-08-01
The isotope ^{99}Tc is an important fission product generated from nuclear power production. Because of its long half-life (t_{1/2} = 2.13 ∙ 10^{5} years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of ^{99}Tc (^{99}Tc → ^{99}Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the
Quark model calculations of current correlators in the nonperturbative domain
International Nuclear Information System (INIS)
Celenza, L.S.; Shakin, C.M.; Sun, W.D.
1995-01-01
The authors study the vector-isovector current correlator in this work, making use of a generalized Nambu-Jona-Lasinio (NJL) model. In their work, the original NJL model is extended to describe the coupling of the quark-antiquark states to the two-pion continuum. Further, a model for confinement is introduced that is seen to remove the nonphysical cuts that appear in various amplitudes when the quark and antiquark go on mass shell. Quite satisfactory results are obtained for the correlator. The authors also use the correlator to define a T-matrix for confined quarks and discuss a rho-dominance model for that T-matrix. It is also seen that the Bethe-Salpeter equation that determines the rho mass (in the absence of the coupling to the two-pion continuum) has more satisfactory behavior in the generalized model than in the model without confinement. That improved behavior is here related to the absence of the q bar q cut in the basic quark-loop integral of the generalized model. In this model, it is seen how one may work with both quark and hadron degrees of freedom, with only the hadrons appearing as physical particles. 12 refs., 16 figs., 1 tab
Real-time dispersion calculation using the Lagrange model LASAT
International Nuclear Information System (INIS)
Janicke, L.
1987-01-01
The LASAT (Lagrange Simulation of Aerosol Transport) dispersion model demonstrates pollutant transport in the atmosphere by simulating the paths of representative random samples of pollutant particles on the computer as natural as possible. The author demonstrates the generated particle paths and refers to literature for details of the model algorithm. (DG) [de
Long-Term Calculations with Large Air Pollution Models
DEFF Research Database (Denmark)
Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.
1999-01-01
Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...
Oceanographic model and radiological basis for control of radionuclide releases
International Nuclear Information System (INIS)
Hagen, A.A.
1984-01-01
Since it first prepared the provisional Definition of high-level radioactive waste unsuitable for dumping at sea and Recommendations for those radioactive wastes dumped under special permit in 1974, the IAEA has kept the Definition and Recommendations under continuing review. The oceanographic basis for the definition is being re-evaluated, based on a 1983 Report from the IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution (GESAMP), and the radiological basis is being updated, based on a Report from an IAEA Advisory Group Meeting held in 1982. The differences in the current radiological and oceanographic bases and the updating of both the GESAMP Report on modelling and the review of the radiological basis are delineated. In addition, a discussion of the future course of the Agency's activities in this area is given. (author)
Reliability of a Novel Model for Drug Release from 2D HPMC-Matrices
Directory of Open Access Journals (Sweden)
Rumiana Blagoeva
2010-04-01
Full Text Available A novel model of drug release from 2D-HPMC matrices is considered. Detailed mathematical description of matrix swelling and the effect of the initial drug loading are introduced. A numerical approach to solution of the posed nonlinear 2D problem is used on the basis of finite element domain approximation and time difference method. The reliability of the model is investigated in two steps: numerical evaluation of the water uptake parameters; evaluation of drug release parameters under available experimental data. The proposed numerical procedure for fitting the model is validated performing different numerical examples of drug release in two cases (with and without taking into account initial drug loading. The goodness of fit evaluated by the coefficient of determination is presented to be very good with few exceptions. The obtained results show better model fitting when accounting the effect of initial drug loading (especially for larger values.
Subsurface oil release field experiment - observations and modelling of subsurface plume behaviour
International Nuclear Information System (INIS)
Rye, H.; Brandvik, P.J.; Reed, M.
1996-01-01
An experiment was conducted at sea, in which oil was released from 107 metres depth, in order to study plume behaviour. The objective of the underwater release was to simulate a pipeline leakage without gas and high pressure and to study the behaviour of the rising plume. A numerical model for the underwater plume behaviour was used for comparison with field data. The expected path of the plume, the time expected for the plume to reach the sea surface and the width of the plume was modelled. Field data and the numerical model were in good agreement. 10 refs., 2 tabs., 9 figs
Ferland, G. J.; Chatzikos, M.; Guzmán, F.; Lykins, M. L.; van Hoof, P. A. M.; Williams, R. J. R.; Abel, N. P.; Badnell, N. R.; Keenan, F. P.; Porter, R. L.; Stancil, P. C.
2017-10-01
We describe the 2017 release of the spectral synthesis code Cloudy, summarizing the many improvements to the scope and accuracy of the physics which have been made since the previous release. Exporting the atomic data into external data files has enabled many new large datasets to be incorporated into the code. The use of the complete datasets is not realistic for most calculations, so we describe the limited subset of data used by default, which predicts significantly more lines than the previous release of Cloudy. This version is nevertheless faster than the previous release, as a result of code optimizations. We give examples of the accuracy limits using small models, and the performance requirements of large complete models. We summarize several advances in the H- and He-like iso-electronic sequences and use our complete collisional-radiative models to establish the densities where the coronal and local thermodynamic equilibrium approximations work.
A review of Higgs mass calculations in supersymmetric models
DEFF Research Database (Denmark)
Draper, P.; Rzehak, H.
2016-01-01
The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...
Directory of Open Access Journals (Sweden)
Gilles Feron
Full Text Available For human beings, the mouth is the first organ to perceive food and the different signalling events associated to food breakdown. These events are very complex and as such, their description necessitates combining different data sets. This study proposed an integrated approach to understand the relative contribution of main food oral processing events involved in aroma release during cheese consumption. In vivo aroma release was monitored on forty eight subjects who were asked to eat four different model cheeses varying in fat content and firmness and flavoured with ethyl propanoate and nonan-2-one. A multiblock partial least square regression was performed to explain aroma release from the different physiological data sets (masticatory behaviour, bolus rheology, saliva composition and flux, mouth coating and bolus moistening. This statistical approach was relevant to point out that aroma release was mostly explained by masticatory behaviour whatever the cheese and the aroma, with a specific influence of mean amplitude on aroma release after swallowing. Aroma release from the firmer cheeses was explained mainly by bolus rheology. The persistence of hydrophobic compounds in the breath was mainly explained by bolus spreadability, in close relation with bolus moistening. Resting saliva poorly contributed to the analysis whereas the composition of stimulated saliva was negatively correlated with aroma release and mostly for soft cheeses, when significant.
Use of phosphorus release batch tests for modelling an EBPR pilot plant
DEFF Research Database (Denmark)
Tykesson, E.; Aspegren, H.; Henze, Mogens
2002-01-01
The aim of this study was to evaluate how routinely performed phosphorus release tests could be used when modelling enhanced biological phosphorus removal (EBPR) using activated sludge models such as ASM2d. A pilot plant with an extensive analysis programme was used as basis for the simulations...
Models used in the SFR1 SAR-08 and KBS-3H safety assessments for calculation of C-14 doses
International Nuclear Information System (INIS)
Avila, R.; Proehl, G.
2008-03-01
This report presents a set of simplified models for assessment of human exposures resulting from potential underground releases of C-14. These models were used in the SFR1 SAR08 and KBS-3H safety assessments. The proposed models can be used to assess continuous, as well as pulse-like C-14 releases, to various types of biosphere objects: forest ecosystems, agricultural lands, sea basins and lakes. It is also possible to make assessments of exposures resulting from the use of contaminated fresh waters, for example from an impacted well, for irrigation of vegetables. Models are also proposed for scenarios where lakes and sea basins are transformed into terrestrial objects due to land rise, filling of lakes and other natural or human induced processes. The exposure pathways considered in dose calculations with the models are: ingestion of contaminated food and water for both terrestrial and aquatic ecosystems, inhalation of contaminated air for terrestrial ecosystems. The exposure by external irradiation is not considered, as C-14 is a pure low energy beta emitter. The report provides an overview of the behaviour of C-14 in the environment, including an outline of the conceptual assumptions implicit in the proposed models. The proposed models are based on the so-called specific activity approach, which has been recommended by the UNSCEAR and the IAEA for assessment of doses resulting from C-14 releases to the environment from nuclear installations. The equations for estimation of the C-14 specific activities in environmental compartments have been derived from a combination of several realistic and conservative assumptions, which are documented and justified in the report. The models can be used in safety assessments of geological repositories of radioactive waste, to carry out cautious, but still not over conservative dose estimations, which can be compared with regulatory dose constrains. Comparative studies with the models indicate that the worse case situations
A simple model for calculating air pollution within street canyons
Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.
2014-04-01
This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.
Calculation of the fermionic determinant in the Schwinger model
International Nuclear Information System (INIS)
Dias, S.A.; Linhares, C.A.
1991-01-01
We compute explicitly the fermionic determinant and the effective action for the generalized Schwinger model in two dimensions and compare it with respective results for the particular cases of the Schwinger, chiral Schwinger and axial Schwinger models. The parameters that signal the ambiguity in the regularization scheme fo the determinant are introduced through the point-splitting method. The Wess-Zumino functional is also obtained and compared with the known expressions for the above-mentioned particular cases. (author)
Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model
Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman
2014-04-01
The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
DEFF Research Database (Denmark)
Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn
2003-01-01
and the method can be used to measure breath from the nose. A mathematical model of the data was developed to give a quantitative method for description and characterization of the release of flavor compounds. The release profiles consisted of two sequences, one for a chewing period, and one for a phasing out...... process. The proposed method for modeling provided a reasonable description of the release process. In addition to flavor compounds, this new interface and mathematical application could provide information on chemicals in the human breath which could be interesting, for example, within medical diagnosis....... with that of the flavor detection threshold. An application study on the release of menthone and menthol from chewing gum by a group of six test persons was performed. Flavored chewing gum was used as a model matrix because of the long chewing periods and the simplicity of the system. It is concluded that the interface...
A mathematical model for interpreting in vitro rhGH release from laminar implants.
Santoveña, A; García, J T; Oliva, A; Llabrés, M; Fariña, J B
2006-02-17
Recombinant human growth hormone (rhGH), used mainly for the treatment of growth hormone deficiency in children, requires daily subcutaneous injections. The use of controlled release formulations with appropriate rhGH release kinetics reduces the frequency of medication, improving patient compliance and quality of life. Biodegradable implants are a valid alternative, offering the feasibility of a regular release rate after administering a single dose, though it exists the slight disadvantage of a very minor surgical operation. Three laminar implant formulations (F(1), F(2) and F(3)) were produced by different manufacture procedures using solvent-casting techniques with the same copoly(D,L-lactic) glycolic acid (PLGA) polymer (Mw=48 kDa). A correlation in vitro between polymer matrix degradation and drug release rate from these formulations was found and a mathematical model was developed to interpret this. This model was applied to each formulation. The obtained results where explained in terms of manufacture parameters with the aim of elucidate whether drug release only occurs by diffusion or erosion, or by a combination of both mechanisms. Controlling the manufacture method and the resultant changes in polymer structure facilitates a suitable rhGH release profile for different rhGH deficiency treatments.
An hydrodynamic model for the calculation of oil spills trajectories
Energy Technology Data Exchange (ETDEWEB)
Paladino, Emilio Ernesto; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Dinamica dos Fluidos Computacionais]. E-mails: emilio@sinmec.ufsc.br; maliska@sinmec.ufsc.br
2000-07-01
The aim of this paper is to present a mathematical model and its numerical treatment to forecast oil spills trajectories in the sea. The knowledge of the trajectory followed by an oil slick spilled on the sea is of fundamental importance in the estimation of potential risks for pipeline and tankers route selection, and in combating the pollution using floating barriers, detergents, etc. In order to estimate these slicks trajectories a new model, based on the mass and momentum conservation equations is presented. The model considers the spreading in the regimes when the inertial and viscous forces counterbalance gravity and takes into account the effects of winds and water currents. The inertial forces are considered for the spreading and the displacement of the oil slick, i.e., is considered its effects on the movement of the mass center of the slick. The mass loss caused by oil evaporation is also taken into account. The numerical model is developed in generalized coordinates, making the model easily applicable to complex coastal geographies. (author)
Uncertain hybrid model for the response calculation of an alternator
International Nuclear Information System (INIS)
Kuczkowiak, Antoine
2014-01-01
The complex structural dynamic behavior of alternator must be well understood in order to insure their reliable and safe operation. The numerical model is however difficult to construct mainly due to the presence of a high level of uncertainty. The objective of this work is to provide decision support tools in order to assess the vibratory levels in operation before to restart the alternator. Based on info-gap theory, a first decision support tool is proposed: the objective here is to assess the robustness of the dynamical response to the uncertain modal model. Based on real data, the calibration of an info-gap model of uncertainty is also proposed in order to enhance its fidelity to reality. Then, the extended constitutive relation error is used to expand identified mode shapes which are used to assess the vibratory levels. The robust expansion process is proposed in order to obtain robust expanded mode shapes to parametric uncertainties. In presence of lack-of knowledge, the trade-off between fidelity-to-data and robustness-to-uncertainties which expresses that robustness improves as fidelity deteriorates is emphasized on an industrial structure by using both reduced order model and surrogate model techniques. (author)
Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release
Energy Technology Data Exchange (ETDEWEB)
Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Piggott, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lobaugh, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, Lydia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, Kristen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-07-22
This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.
Model for calculation of concentration and load on behalf of accidents with radioactive materials
International Nuclear Information System (INIS)
Janssen, L.A.M.; Heugten, W.H.H. van
1987-04-01
In the project 'Information- and calculation-system for disaster combatment', by order of the Dutch government, a demonstration model has been developed for a diagnosis system for accidents. In this demonstration a model is used to calculate the concentration- and dose-distributions caused by incidental emissions of limited time. This model is described in this report. 4 refs.; 2 figs.; 3 tabs
A model to assess exposure from releases of radioactivity into the seas of northern Europe
International Nuclear Information System (INIS)
Clark, M.J.; Webb, G.A.M.
1981-01-01
A regional marine model is described which can be used to estimate the exposure of populations as a result of the discharge of radioactive effluents into the coastal waters of northern Europe. The model simulates the dispersion of radionuclides in marine waters, their interaction with marine sediments and the concentration mechanisms occurring in seafoods. A local/regional interface is included whereby releases are assumed to first enter a local marine compartment before widespread dispersion in coastal waters. Depletion mechanisms operate within both the local and regional environments influencing the fraction of radionuclide release which contributes to collective exposure. In general, results of the regional model are expressed as collective intakes of activity from ingestion of marine seafoods. These quantities can be converted into collective doses per unit discharge, given a knowledge of local depletion factors and the dose per unit intake of radionuclides. Results for caesium-137 and plutonium-239 released into United Kingdom coastal waters are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Lewis, B.J., E-mail: lewibre@gmail.com [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 (Canada); Chan, P.K.; El-Jaby, A. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 (Canada); Iglesias, F.C.; Fitchett, A. [Candesco Division of Kinectrics Inc., 26 Wellington Street East, 3rd Floor, Toronto, Ontario M5E 1S2 (Canada)
2017-06-15
A review of fission product release theory is presented in support of fuel-failure monitoring analysis for the characterization and location of defective fuel. This work is used to describe: (i) the development of the steady-state Visual-DETECT code for coolant activity analysis to characterize failures in the core and the amount of tramp uranium; (ii) a generalization of this model in the STAR code for prediction of the time-dependent release of iodine and noble gas fission products to the coolant during reactor start-up, steady-state, shutdown, and bundle-shifting manoeuvres; (iii) an extension of the model to account for the release of fission products that are delayed-neutron precursors for assessment of fuel-failure location; and (iv) a simplification of the steady-state model to assess the methodology proposed by WANO for a fuel reliability indicator for water-cooled reactors.
A calculation model for the noise from steel railway bridges
Janssens, M.H.A.; Thompson, D.J.
1996-01-01
The sound level of a train crossing a steel railway bridge is usually about 10 dB higher than on plain track. In the Netherlands there are many such bridges which, for practical reasons, cannot be replaced by more intrinsically quiet concrete bridges. A computational model is described for the
Reactor accident calculation models in use in the Nordic countries
International Nuclear Information System (INIS)
Tveten, U.
1984-01-01
The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. In the first part of the report short descriptions of the various models are given. A systematic list by subject is then given. In the main body of the report chapter and subchapter headings are by subject. (Auth.)
A calculation model for a HTR core seismic response
International Nuclear Information System (INIS)
Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.
1975-01-01
The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de
Glass viscosity calculation based on a global statistical modelling approach
Energy Technology Data Exchange (ETDEWEB)
Fluegel, Alex
2007-02-01
A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.
Semiclassical calculation for collision induced dissociation. II. Morse oscillator model
International Nuclear Information System (INIS)
Rusinek, I.; Roberts, R.E.
1978-01-01
A recently developed semiclassical procedure for calculating collision induced dissociation probabilities P/sup diss/ is applied to the collinear collision between a particle and a Morse oscillator diatomic. The particle--diatom interaction is described with a repulsive exponential potential function. P/sup diss/ is reported for a system of three identical particles, as a function of collision energy E/sub t/ and initial vibrational state of the diatomic n 1 . The results are compared with the previously reported values for the collision between a particle and a truncated harmonic oscillator. The two studies show similar features, namely: (a) there is an oscillatory structure in the P/sup diss/ energy profiles, which is directly related to n 1 ; (b) P/sup diss/ becomes noticeable (> or approx. =10 -3 ) for E/sub t/ values appreciably higher than the energetic threshold; (c) vibrational enhancement (inhibition) of collision induced dissociation persists at low (high) energies; and (d) good agreement between the classical and semiclassical results is found above the classical dynamic threshold. Finally, the convergence of P/sup diss/ for increasing box length is shown to be rapid and satisfactory
International Nuclear Information System (INIS)
Lucas, Donald D.; Simpson, Matthew; Cameron-Smith, Philip; Baskett, Ronald L.
2017-01-01
Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 10 3 ), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km x 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best match
Energy Technology Data Exchange (ETDEWEB)
Lucas, Donald D.; Simpson, Matthew; Cameron-Smith, Philip; Baskett, Ronald L. [Lawrence Livermore National Laboratory, Livermore, CA (United States)
2017-07-01
Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 10{sup 3}), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km x 2 km area of possible locations, the actual location is determined to within 200 m. The start time is determined to within 5 min out of 2 h, and the duration to within 50 min out of 4 h. Over a range of release amounts of 10 to 1000 kg, the estimated amount exceeds the actual amount of 146 kg by only 32 kg. The inversion also estimates probabilities of different WRF configurations. To best
Approximate models for neutral particle transport calculations in ducts
International Nuclear Information System (INIS)
Ono, Shizuca
2000-01-01
The problem of neutral particle transport in evacuated ducts of arbitrary, but axially uniform, cross-sectional geometry and isotropic reflection at the wall is studied. The model makes use of basis functions to represent the transverse and azimuthal dependences of the particle angular flux in the duct. For the approximation in terms of two basis functions, an improvement in the method is implemented by decomposing the problem into uncollided and collided components. A new quadrature set, more suitable to the problem, is developed and generated by one of the techniques of the constructive theory of orthogonal polynomials. The approximation in terms of three basis functions is developed and implemented to improve the precision of the results. For both models of two and three basis functions, the energy dependence of the problem is introduced through the multigroup formalism. The results of sample problems are compared to literature results and to results of the Monte Carlo code, MCNP. (author)
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
Model calculation of the scanned field enhancement factor of CNTs
International Nuclear Information System (INIS)
Ahmad, Amir; Tripathi, V K
2006-01-01
The field enhancement factor of a carbon nanotube (CNT) placed in a cluster of CNTs is smaller than an isolated CNT because the electric field on one tube is screened by neighbouring tubes. This screening depends on the length of the CNTs and the spacing between them. We have derived an expression to compute the field enhancement factor of CNTs under any positional distribution of CNTs using a model of a floating sphere between parallel anode and cathode plates. Using this expression we can compute the field enhancement factor of a CNT in a cluster (non-uniformly distributed CNTs). This expression is used to compute the field enhancement factor of a CNT in an array (uniformly distributed CNTs). Comparison has been shown with experimental results and existing models
Quark model calculation of charmed baryon production by neutrinos
International Nuclear Information System (INIS)
Avilez, C.; Kobayashi, T.; Koerner, J.G.
1976-11-01
We study the neutrino production of 25 low-lying charmed baryon resonances in the four flavour quark model. The mass difference of ordinary and charmed quarks is explicitly taken into account. The quark model is used to determine the spectrum of the charmed baryon resonances and the q 2 = 0 values of the weak current transition matrix elements. These transition matrix elements are then continued to space-like q 2 -values by a generalized meson dominance ansatz for a set of suitably chosen invariant form factors. We find that the production of the L = 0 states C 0 , C 1 and C 1 * is dominant, with the C 0 produced most copiously. For L = 1, 2 the Jsup(P) = 3/2 - 5/2 + charm states are dominant. We give differential cross sections, total cross sections and energy integrated total cross sections using experimental neutrino fluxes. (orig./BJ) [de
Directory of Open Access Journals (Sweden)
Witkowski Kazimierz
2017-01-01
Full Text Available The paper analyzes the possibility to use the electronic type indicators in the diagnosis of marine engines. It has been shown that in-depth analysis of indicator diagrams would be useful – calculation of heat release characteristics. To make this possible, measuring indicated systems should meet a number of important requirements in or-der to ensure that they can be used for the diagnostic purposes. These includes: high precision sensors for the measurement of cylinder pressure, high speed and accuracy of measuring and recording of measured values. These also includes reliable determination of the top dead center piston (TDC. In order to demonstrate the impact of positional error TDC, simulation study was conducted in which indicated diagrams were used, obtained on a medium-speed four-stroke marine diesel engine type A25/30 and the low-speed two-stroke marine diesel engine type RTA76, Sulzer company.
International Nuclear Information System (INIS)
Sweeton, F.H.
1975-09-01
The CUEX (Cumulative Exposure Index) relates the concentrations of various nuclides in the environment to assigned annual dose limits. A computer code has been written to calculate this index for stack releases of radioactivity. This report is written to illustrate how the code in its present form can be applied to a particular reactor. The data used here are from the Haddam Neck (Connecticut Yankee) Nuclear Power Plant, a relatively large plant that has been in operation for 6 years. The results show that the highest exposure expected from the actual releases of gaseous 85 Kr, 133 Xe, 131 I, and 3 H is about 0.2 percent of the as low as practicable limits set by the Nuclear Regulatory Commission. Of the nuclides considered, 133 Xe is by far the most important; the chief mode of exposure to this nuclide is submersion in air. In the case of 131 I the main exposure route is external irradiation from the activity on the ground except for the special case of the thyroid for which about 70 per []ent of the exposure arises from ingestion. (auth)
Microscopic calculation of parameters of the sdg interacting boson model for 104-110Pd isotopes
International Nuclear Information System (INIS)
Liu Yong
1995-01-01
The parameters of the sdg interacting boson model Hamiltonian are calculated for the 104-110 Pd isotopes. The calculations utilize the microscopic procedure based on the Dyson boson mapping proposed by Yang-Liu-Qi and extended to include the g boson effects. The calculated parameters reproduce those values from the phenomenological fits. The resulting spectra are compared with the experimental spectra
Energy Technology Data Exchange (ETDEWEB)
Reiche, Tatiana; Becker, Dirk-Alexander
2014-09-15
The aim of the work was the development of a module for the code RepoTREND that allows the evaluation of radiation exposure in the biosphere. The selection of the characteristics relevant for the risk assessment is described. The program module bioTREND is based on the results of fission product release and dispersion calculations and a separate biosphere modeling. Exposure data (annual effective doses and organ doses) can be calculated for individuals and collectives. Optional is the calculation of radiotoxicity concentrations and radiotoxicity fluxes. Several recommendations for the improvement of the calculation module are included.
Computer-aided and predictive models for design of controlled release of pesticides
DEFF Research Database (Denmark)
Suné, Nuria Muro; Gani, Rafiqul
2004-01-01
In the field of pesticide controlled release technology, a computer based model that can predict the delivery of the Active Ingredient (AI) from fabricated units is important for purposes of product design and marketing. A model for the release of an M from a microcapsule device is presented...... in this paper, together with a specific case study application to highlight its scope and significance. The paper also addresses the need for predictive models and proposes a computer aided modelling framework for achieving it through the development and introduction of reliable and predictive constitutive...... models. A group-contribution based model for one of the constit