Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
Generalized dynamic scaling for quantum critical relaxation in imaginary time.
Zhang, Shuyi; Yin, Shuai; Zhong, Fan
2014-10-01
We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
Maslennikov, Oleg V.; Nekorkin, Vladimir I. [Institute of Applied Physics of RAS, Nizhny Novgorod (Russian Federation)
2016-07-15
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
A theoretical study of the stress relaxation in HMX on the picosecond time scale
Long, Yao; Chen, Jun
2015-12-01
The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.
Sensitivity of the simulated precipitation to changes in convective relaxation time scale
S. K. Mishra
2010-10-01
Full Text Available The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU of Zhang and McFarlane (ZM cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3. In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed.
The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower- and mid- troposphere increases. On the other hand, the shallow convective precipitation (SCP and large-scale precipitation (LSP intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The
Lyulin, Alexey V; Michels, M A J
2007-08-24
Molecular-dynamics simulation is used to explore the influence of thermal and mechanical history of typical glassy polymers on their deformation. Polymer stress-strain and energy-strain developments have been followed for different deformation velocities, also in closed extension-recompression loops. The latter simulate for the first time the experimentally observed mechanical rejuvenation and overaging of polymers, and energy partitioning reveals essential differences between mechanical and thermal rejuvenation. All results can be qualitatively interpreted by considering the ratios of the relevant time scales: for cooling down, for deformation, and for segmental relaxation.
Hansen, Alexandar L.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)
2011-08-15
A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly {sup 13}C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale. Comparison of exchange parameters extracted for this folding 'reaction' using the present methodology with those obtained from more 'traditional' {sup 15}N and backbone carbonyl probes establishes the utility of the approach. The extracted excited state side-chain carbonyl chemical shifts indicate that the Asx/Glx side-chains are predominantly unstructured in the Im7 folding intermediate. However, several crucial salt-bridges that exist in the native structure appear to be already formed in the excited state, either in part or in full. This information, in concert with that obtained from existing backbone and side-chain methyl relaxation dispersion experiments, will ultimately facilitate a detailed description of the structure of the Im7 folding intermediate.
RELAXATION TIME LIMITS PROBLEM FOR HYDRODYNAMIC MODELS IN SEMICONDUCTOR SCIENCE
无
2007-01-01
In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.
Satoh, Katsuhiko
2013-03-07
Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.
C. A. Trepmann
2013-04-01
Full Text Available Experiments comprising sequences of deformation (at 300 or 600 °C and annealing at varying temperature (700 to 1100 °C, time (up to 144 h and stress (up to 1.5 GPa were carried out in a Griggs-type apparatus on natural olivine-rich peridotite samples to simulate deformation and recrystallization processes in deep shear zones that reach mantle depth as continuations of seismically active faults. The resulting olivine microfabrics were analysed by polarization and electron microscopy. Core-and-mantle like microstructures are the predominant result of our experiments simulating rapid stress relaxation (without or with minor creep after a high-stress deformation event: porphyroclasts (> 100 μm are surrounded by defect-poor recrystallized grains with a wide range in size (2 to 40 μm. Areas with smaller recrystallized grains (> 10 μm trace former high-strain zones generated during initial high-stress deformation even after annealing at a temperature of 1100 °C for 70 h. A weak crystallographic preferred orientation (CPO of recrystallized olivine grains is related to the orientation of the host crystals but appears unrelated to the strain field. Based on these findings, we propose that olivine microstructures in natural shear-zone peridotites with a large range in recrystallized grain size, localized fine-grained zones, and a weak CPO not related to the strain field are diagnostic for a sequence of high-stress deformation followed by recrystallization at low stresses, as to be expected in areas of seismic activity. We extended the classic Avrami-kinetics equation by accounting for time-dependent growth kinetics and constrained the involved parameters relying on our results and previously reported kinetics parameters. Extrapolation to natural conditions suggests that the observed characteristic microstructure may develop within as little as tens of years and less than ten thousands of years. These recrystallization microstructures have a great
Pasko, V. P.
2009-12-01
Thomas et al. [JGR, A12306, 2008] has reported lightning-driven electric (E) field pulses at 75-130 km altitude recorded during rocket experiment in 1995 from Wallops Island, Virginia. The measurements were compared to a 2D electromagnetic model of Cho and Rycroft [JASTP, 60,871,1998]. Thomas et al.[2008] indicated that the observed field magnitudes were an order of magnitude lower than predicted by the model and questioned validity of the electromagnetic pulse mechanism of elves. The goal of the present work, which utilizes Monte Carlo and FDTD electromagnetic modeling, is to emphasize range of validity of the local field approximation (LFA) employed in the Cho and Rycroft's [1998] model and other similar models for the cases when weak (~10 mV/m as reported in [Thomas et al., 2008]) E field pulses are considered. Glukhov et al. [GRL, 23, 2193, 1996] and Sukhorukov et al. [GRL, 23, 2911, 1996] performed Monte Carlo simulations for large E fields ~10V/m at typical altitudes of elves, which fully confirmed validity of models of elves based on LFA [Taranenko et al., GRL, 20, 2675, 1993; Inan et al., GRL, 23, 133, 1996]. We demonstrate that the time of relaxation of the momentum of the electron distributions subjected to the external E field scales approximately as 1/E and exceeds 10s of microseconds for E1 V/m when fast (10 kHz) processes are considered. The models of elves relying on LFA [e.g., Taranenko et al., 1993; Inan et al., 1996] generally require E>1 V/m for production of observable optical emissions at lower ionospheric altitudes and therefore remain valid, in agreement with original conclusions reached by Glukhov et al. [1996] and Sukhorukov et al. [1996]. Two additional factors may have contributed to the low field magnitudes reported in [Thomas et al., 2008]: 1) The measurements were conducted on September 2, 1995 around evening hours (9:22 PM local time) at which the lower ionosphere likely exhibited enhancement of electron density in comparison with
Time of relaxation in dusty plasma model
Timofeev, A. V.
2015-11-01
Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.
Relaxation Dynamics in Condensation on Weighted Scale-Free Networks
MENG Xin-He; TANG Ming; WANG Peng; LIU Zong-Hua
2008-01-01
Most of the realistic networks are weighted scale-free networks. How this structure influences the conden-sation on it is a challenging problem. Recently, we make a first step to discuss its condensation [Phys. Rev. E 74 (2006) 036101] and here we focus on its evolutionary process of phase transition. In order to show how the weighted transport influences the dynamical properties, we study the relaxation dynamics in a zero range process on weighted scale-free networks. We find that there is a hierarchical relaxation dynamics in the evolution and there is a scaling relation between the relaxation time and the jumping exponent. The relaxation dynamics can be illustrated by a mean-field equation. The theoretical predictions are confirmed by our numerical simulations.
First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins
Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.
2015-01-01
The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov State Model of the kinetics in the unfolded state and folding of the mini-protein NTL9 constructed from a 2.9 millisecond simulation provided by D. E. Shaw Research. PMID:26252709
Relaxation time in disordered molecular systems
Rocha, Rodrigo P. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC (Brazil); Freire, José A., E-mail: jfreire@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba-PR (Brazil)
2015-05-28
Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.
Rounded stretched exponential for time relaxation functions.
Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B
2009-12-01
A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)Cole-Cole plots for dielectric and shear stress relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).
Liu, Q
2016-01-01
In this paper, a three-dimensional (3D) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is presented for convection heat transfer in porous media at the representative elementary volume (REV) scale. The model is developed in the framework of the double-distribution-function (DDF) approach: an MRT-LB model of the density distribution function with the D3Q19 lattice (or D3Q15 lattice) is proposed to simulate the flow field based on the generalized non-Darcy model, while an MRT-LB model of the temperature distribution function with the D3Q7 lattice is proposed to simulate the temperature filed. The present model is employed to simulate mixed convection flow in a porous channel and natural convection in a cubical porous cavity. The numerical results demonstrate the effectiveness and accuracy of the present model in solving 3D convection heat transfer problems in porous media. The numerical results also demonstrate that the present model is approximately second-order accuracy in space. In addition, an ...
Electron-phonon relaxation time in ultrathin tungsten silicon film
Sidorova, M; Korneev, A; Chulkova, G; Korneeva, Yu; Mikhailov, M; Devizenko, Yu; Kozorezov, A; Goltsman, G
2016-01-01
Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Probing relaxation times in graphene quantum dots
Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph
2013-01-01
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294
Relaxation time measurements by an electronic method.
Brousseau, R.; Vanier, J.
1973-01-01
Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.
Petrov, Oleg V.; Stapf, Siegfried
2017-06-01
This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.
Anomalous divergence of a relaxation time in discontinuous shear thickening suspensions
Maharjan, Rijan
2016-01-01
We investigated the transient relaxation of a Discontinuous Shear Thickening (DST) suspension of cornstarch in water. Starting from a steady shear in a parallel plate rheometer, we stopped the top plate rotation and measured the transient stress relaxation. We found that at low effective packing fraction $\\phi_{eff}$, the suspensions exhibited a relaxation behavior consistent with a rheometric fluid in which the relaxation is determined by the steady-state viscosity. However, for larger $\\phi_{eff}$, we find up to two exponential relaxation regimes, which both become distinct from the rheometric model. The discrepancy between the measured relaxation times and the rheometric prediction was found to be as large as 4 orders of magnitude and diverges in the limit as $\\phi_{eff} \\rightarrow \\phi_c$, corresponding to the liquid solid transition, as the measured relaxation times diverge to infinity while the rheometric prediction approaches 0. In this limit, the measured relaxation time scales are on the order of $\\...
Internal relaxation time in immersed particulate materials
Rognon, P; Gay, C
2009-01-01
We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams.
Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature
Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth
2016-02-01
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α -relaxation regime.
Immersed boundary lattice Boltzmann model based on multiple relaxation times.
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
Relaxation therapy for insomnia: nighttime and day time effects.
Means, M K; Lichstein, K L; Epperson, M T; Johnson, C T
2000-07-01
We compared day time functioning in college students with and without insomnia and explored changes in day time functioning after progressive relaxation (PR) treatment for insomnia. Students with insomnia (SWI; n = 57) were compared to a control group of students not complaining of insomnia (SNI; n = 61) on self-reported sleep variables and five questionnaires: Insomnia Impact Scale (IIS), Dysfunctional Beliefs and Attitudes About Sleep Scale (DBAS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and Penn State Worry Questionnaire (PSWQ). SWI demonstrated significant impairment on all day time functioning and sleep measures compared to SNI. To investigate treatment effects on day time functioning, 28 SWI were randomly assigned to PR. Treated SWI were compared to untreated SWI and SNI at posttreatment. Treated participants improved sleep in comparison to untreated SWI, but failed to show significant improvements in day time functioning. Insomnia treatments focused on improving sleep may not improve day time functioning, or day time gains may emerge more slowly than sleep gains. This study documents the wide range of day time functioning complaints in young adults with insomnia and suggests that the goal of insomnia treatment should be to not only improve sleep but also to improve the subjective experience of day time functioning.
Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A A
2010-12-01
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl
Reactor flush time correction in relaxation experiments
den Otter, M.W.; Bouwmeester, Henricus J.M.; Boukamp, Bernard A.; Verweij, H.
2001-01-01
The present paper deals with the analysis of experimental data from conductivity relaxation experiments. It is shown that evaluation of the chemical diffusion and surface transfer coefficients for oxygen by use of this technique is possible only if accurate data for the conductivity transient can be
Determination of Relaxation Time of a Josephson Tunnel Junction
WEN Xue-Da; YU Yang
2008-01-01
We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.
Correlation of transverse relaxation time with structure of biological tissue
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Thermodynamic scaling of relaxation: insights from anharmonic elasticity
Bernini, S.; Puosi, F.; Leporini, D.
2017-04-01
Using molecular dynamics simulations of a molecular liquid, we investigate the thermodynamic scaling (TS) of the structural relaxation time {τα} in terms of the quantity T{ρ-{γ\\text{ts}}}} , where T and ρ are the temperature and density, respectively. The liquid does not exhibit strong virial–energy correlations. We propose a method for evaluating both the characteristic exponent {{γ\\text{ts}} and the TS master curve that uses experimentally accessible quantities that characterise the anharmonic elasticity and does not use details about the microscopic interactions. In particular, we express the TS characteristic exponent {γ\\text{ts}} in terms of the lattice Grüneisen parameter {γL} and the isochoric anharmonicity {δL} . An analytic expression of the TS master curve of {τα} with {δL} as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of 34 glassformers is satisfying. In a few cases, where thermodynamic data are available, we test (i) the predicted characteristic exponent {γ\\text{ts}} and (ii) the isochoric anharmonicity {δL} , as drawn by the best fit of the TS of the structural relaxation, against the available thermodynamic data. A linear relation between the isochoric fragility and the isochoric anharmonicity {δL} is found and compared favourably with the results of experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.
Relaxation time effects of wave ripples on tidal beaches
Austin, M. J.; Masselink, G.; O'Hare, T. J.; Russell, P. E.
2007-08-01
Seabed roughness due to wave ripples is a key factor in controlling sediment transport processes in the nearshore zone. Roughness is commonly considered a function of the ripple geometry, which in turn, can be predicted from sediment and hydrodynamic parameters. Existing ripple predictors consider the bed morphology to be in equilibrium with the hydrodynamics, whereas recent laboratory measurements show that the time scale for ripple development is of the order of tens of minutes to hours. Here we show that wave ripples on tidal beaches are significantly affected by relaxation time effects, with ripple height and length progressively increasing during the rising tide and remaining constant during the falling tide. Moreover, we examine the ripples in the context of existing empirical models and suggest how the temporal evolution over a tidal cycle may be predicted.
Chemical relaxation times in a hadron gas at finite temperature
Goity, J L
1993-01-01
The relaxation times of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations. Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of $10^{3}$ fm at temperatures around 100 MeV. As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.
Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times
Kosuke Hayashi
2012-06-01
Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.
Ice sheet growth with laterally varying bedrock relaxation time
van der Wal, Wouter; Vizcaino Rubio, Pablo; De Boer, Bas; van de Wal, Roderik
2017-04-01
Isostatic response of the bedrock, or glacial isostatic adjustment (GIA) in included in most ice sheet models. This is important because the surface elevation determines the mass balance and thereby implicitly also the strength of the mass balance feedback where higher surface elevation yields lower temperatures implying less melt and vice versa. Usually a single relaxation time or a set of relaxation times is used to model the response everywhere on Earth or at least for an entire ice sheet. In reality the viscosity in the Earth's mantle, and hence the relaxation time experienced by the ice, varies with location. Seismic studies indicate that several regions that were covered by ice during the last glacial cycle are underlain by mantle in which viscosity varies with orders of magnitude, such as Antarctica and North America. The question is whether such a variation of viscosity influences ice evolution. Several GIA models exist that can deal with 3D viscosity, but their large computation times make it nearly impossible to couple them to ice sheet models. Here we use the ANICE ice-sheet model (de Boer et al. 2013) with a simple bedrock-relaxation model in which a different relaxation time is used for separate regions. A temperature anomaly is applied to grow a schematic ice sheet on a flat earth, with other forcing mechanisms neglected. It is shown that in locations with a fast relaxation time of 300 years the equilibrium ice sheet is significantly thinner and narrower but also ice thickness in neighbouring regions (with the more standard relaxation time of 3000 years) is affected.
Real-time Relaxation of Condensates and Kinetics in Hot Scalar QED Landau Damping
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.
1998-01-01
The real time evolution of field condensates with soft length scales k^{-1}>(eT)^{-1} is solved in hot scalar electrodynamics. We rederive the HTL effective action using the techniques of non-equilibrium field theory for small amplitude condensates. We find that transverse gauge invariant condensates relax as 1/t^2 and longitudinal condensates associated with plasmon (charge density) excitations relax with 1/[t log^2 t ] behavior to asymptotic amplitudes that are determined by the quasiparticle poles. The relaxational dynamics and relevant time scales are determined by the global analytic structure of the retarded propagators. To leading order, the long-time behaviour is determined by the Landau discontinuities associated with off-shell processes. Landau damping follows from the contribution of such discontinuities. We derive the influence functional for the soft (gauge invariant) degrees of freedom by integrating out the hard scales in the HTL approximation and obtain consistently the Langevin equation, the ...
Mindfulness meditation and relaxation training increases time sensitivity.
Droit-Volet, S; Fanget, M; Dambrun, M
2015-01-01
Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing.
Experimental study on relaxation time in direction changing movement
Liu, Chi; Song, Weiguo; Fu, Libi; Lian, Liping; Lo, Siuming
2017-02-01
Controlled experiments were conducted to clarify the movement characteristics of pedestrians in direction changing processes. We track pedestrians' trajectories and map them into real space coordinates by the direct linear transformation method. In the acceleration process, the relaxation time and free moving speed in our experiments respectively equal 0.659 s and 1.540 m/s, which are consistent with those for Chinese participants in other experiments. Meanwhile, the values of relaxation time in the direction changing process are calculated by a derived equation from the concept of the social force model. It is observed that the relaxation time is not an invariable parameter, and tends to increase with an increase in the angular difference. Furthermore, results show that pedestrians are insensitive to a tiny angular difference between instantaneous velocity and desired velocity. These experimental results presented in this work can be applied in model development and validation.
Leporq, Benjamin; Le Troter, Arnaud; Le Fur, Yann; Salort-Campana, Emmanuelle; Guye, Maxime; Beuf, Olivier; Attarian, Shahram; Bendahan, David
2017-08-01
To evaluate the combination of a fat-water separation method with an automated segmentation algorithm to quantify the intermuscular fatty-infiltrated fraction, the relaxation times, and the microscopic fatty infiltration in the normal-appearing muscle. MR acquisitions were performed at 1.5T in seven patients with facio-scapulo-humeral dystrophy and eight controls. Disease severity was assessed using commonly used scales for the upper and lower limbs. The fat-water separation method provided proton density fat fraction (PDFF) and relaxation times maps (T 2* and T 1). The segmentation algorithm distinguished adipose tissue and normal-appearing muscle from the T 2* map and combined active contours, a clustering analysis, and a morphological closing process to calculate the index of fatty infiltration (IFI) in the muscle compartment defined as the relative amount of pixels with the ratio between the number of pixels within IMAT and the total number of pixels (IMAT + normal appearing muscle). In patients, relaxation times were longer and a larger fatty infiltration has been quantified in the normal-appearing muscle. T 2* and PDFF distributions were broader. The relaxation times were correlated to the Vignos scale whereas the microscopic fatty infiltration was linked to the Medwin-Gardner-Walton scale. The IFI was linked to a composite clinical severity scale gathering the whole set of scales. The MRI indices quantified within the normal-appearing muscle could be considered as potential biomarkers of dystrophies and quantitatively illustrate tissue alterations such as inflammation and fatty infiltration.
Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods
Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.
The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Distribution of relaxation times of relaxors: comparison with dipolar glasses
Banys, Juras; Grigalaitis, Robertas; Mikonis, Andrejus; Keburis, Povilas [Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius (Lithuania); Macutkevic, Jan [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania)
2009-12-15
In the present publication we report the results of dielectric spectroscopy investigations of two classes of materials - relaxor and dipolar glasses. As model relaxor was chosen (Pb{sub 1-x}La{sub x})(Zr{sub y}Ti{sub 1-y})O{sub 3} (PLZT 100(x/y/1-y)). The real distribution function of the relaxation times f ({tau}) of the relaxor ferroelectric ceramics PLZT 8/65/35 and 9.5/65/35 was calculated from the dielectric measurements results in the wide frequency range (10{sup 1}-10{sup 12} Hz). Below the Burns temperature T{sub B} {approx_equal} 620 K, when the clusters begin to appear on cooling, the distribution function of the relaxation times is symmetrically shaped. On cooling the dispersion and loss spectra strongly broaden and slow down, the f ({tau}) function becomes asymmetrically shaped and the second maximum appears. The width of the f ({tau}) function was calculated at different temperatures. The longest relaxation times diverge according to the Vogel-Fulcher law with the freezing temperature 299 K and 252 K for the 8/65/35 and 9.5/65/35 samples, respectively. The shortest relaxation time is about 10{sup -12} s and it remains almost temperature independent. Similar behaviour was observed in dipolar glasses betaine phosphate betaine phosphite (BP/BPI). Much more information was obtained from two dimensional distribution of the relaxation times. This confirmed Meyer-Neldel law in relaxors and dipolar glasses. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Gallavotti, G
2006-06-01
Entropy creation rate is introduced for a system interacting with thermostats (i.e., for a system subject to internal conservative forces interacting with "external" thermostats via conservative forces) and a fluctuation theorem for it is proved. As an application, a time scale is introduced, to be interpreted as the time over which irreversibility becomes manifest in a process leading from an initial to a final stationary state of a mechanical system in a general nonequilibrium context. The time scale is evaluated in a few examples, including the classical Joule-Thompson process (gas expansion in a vacuum).
The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay
Gong Ailing; Zeng Chunhua [Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Wang Hua, E-mail: zchh2009@126.com [Province Engineering Research Center of Industrial Energy Conservation and New Technology, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)
2011-08-01
In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter {lambda} can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay {tau}. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay {tau} increases below the critical value of {lambda}. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and {tau} increase, i.e. a noise intensity D or Q and a time delay {tau} exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of {lambda}. The noise correlation parameter {lambda} first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, {lambda} increases it.
Inversion of generalized relaxation time distributions with optimized damping parameter
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Carrier relaxation time divergence in single and double layer cuprates
Schneider, M. L.; Rast, S.; Onellion, M.; Demsar, J.; Taylor, A. J.; Glinka, Y.; Tolk, N. H.; Ren, Y. H.; Lüpke, G.; Klimov, A.; Xu, Y.; Sobolewski, R.; Si, W.; Zeng, X. H.; Soukiassian, A.; Xi, X. X.; Abrecht, M.; Ariosa, D.; Pavuna, D.; Krapf, A.; Manzke, R.; Printz, J. O.; Williamsen, M. S.; Downum, K. E.; Guptasarma, P.; Bozovic, I.
2003-12-01
We report the transient optical pump-probe reflectivity measurements on single and double layer cuprate single crystals and thin films of ten different stoichiometries. We find that with sufficiently low fluence the relaxation time (tauR) of all samples exhibits a power law divergence with temperature (T): tauR ∝ T^{-3 ± 0.5}. Further, the divergence has an onset temperature above the superconducting transition temperature for all superconducting samples. Possible causes of this divergence are discussed.
Relaxation Time and the Problem of the Pleistocene
Steven M. Holland
2013-04-01
Full Text Available Although changes in habitat area, driven by changes in sea level, have long been considered as a possible cause of marine diversity change in the Phanerozoic, the lack of Pleistocene extinction in the Californian Province has raised doubts, given the large and rapid sea-level changes during the Pleistocene. Neutral models of metacommunities presented here suggest that diversity responds rapidly to changes in habitat area, with relaxation times of a few hundred to a few thousand years. Relaxation time is controlled partly by metacommunity size, implying that different provinces or trophic levels might have measurably different responses to changes in habitable area. Geologically short relaxation times imply that metacommunities should be able to stay nearly in equilibrium with all but the most rapid changes in area. A simulation of the Californian Province during the Pleistocene confirms this, with the longest lags in diversity approaching 20 kyr. The apparent lack of Pleistocene extinction in the Californian Province likely results from the difficulty of sampling rare species, coupled with repopulation from adjacent deep-water or warm-water regions.
Babintsev, Ilya A.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.
2014-08-01
The eigenvalues and eigenvectors of the matrix of coefficients of the linearized kinetic equations applied to aggregation in surfactant solution determine the full spectrum of characteristic times and specific modes of micellar relaxation. The dependence of these relaxation times and modes on the total surfactant concentration has been analyzed for concentrations in the vicinity and well above the second critical micelle concentration (cmc2) for systems with coexisting spherical and cylindrical micelles. The analysis has been done on the basis of a discrete form of the Becker-Döring kinetic equations employing the Smoluchowsky diffusion model for the attachment rates of surfactant monomers to surfactant aggregates with matching the rates for spherical aggregates and the rates for large cylindrical micelles. The equilibrium distribution of surfactant aggregates in solution has been modeled as having one maximum for monomers, another maximum for spherical micelles and wide slowly descending branch for cylindrical micelles. The results of computations have been compared with the analytical ones known in the limiting cases from solutions of the continuous Becker-Döring kinetic equation. They demonstrated a fair agreement even in the vicinity of the cmc2 where the analytical theory looses formally its applicability.
Liu, Huabing; Nogueira d'Eurydice, Marcel; Obruchkov, Sergei; Galvosas, Petrik
2014-09-01
Pore length scales and pore surface relaxivities of rock cores with different lithologies were studied on a 2MHz Rock Core Analyzer. To determine the pore length scales of the rock cores, the high eigenmodes of spin bearing molecules satisfying the diffusion equation were detected with optimized encoding periods in the presence of internal magnetic fields Bin. The results were confirmed using a 64MHz NMR system, which supports the feasibility of high eigenmode detection at fields as low as 2MHz. Furthermore, this methodology was combined with relaxometry measurements to a two-dimensional experiment, which provides correlation between pore length and relaxation time. This techniques also yields information on the surface relaxivity of the rock cores. The estimated surface relaxivities were then compared to the results using an independent NMR method.
Krylov-subspace acceleration of time periodic waveform relaxation
Lumsdaine, A. [Univ. of Notre Dame, IN (United States)
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
Khmelinskii, I.; Makarov, V.
2017-08-01
We report experimental temperature and concentration dependences of the natural spin relaxation time of superparamagnetic Fe3O4 and hemozoin nanocrystals. We recorded the 1H NMR spectrum of 0.5% benzene dissolved in CS2 in function of superparamagnetic particle concentration and temperature, interpreting the 7.261 ± 0.002 ppm benzene line broadening. Our model for the line broadening includes natural, hyperfine magnetic dipole-dipole, and contact hyperfine contributions. The latter arises due to exchange interaction between benzene molecules and suspended nanoparticles. Estimated frequency of fluctuation in the 1 cm3 sample volume is in the 107 Hz scale. Estimated natural electron spin-lattice relaxation frequencies of the superparamagnetic nanocrystals using frequency of fluctuations, and developed theoretical model applied to analysis of experimental data are in good agreement between each other. Thus the presently developed approach may be used to study fluctuations and natural spin-lattice relaxation frequencies in different media.
Multiple-relaxation-time model for the correct thermohydrodynamic equations.
Zheng, Lin; Shi, Baochang; Guo, Zhaoli
2008-08-01
A coupling lattice Boltzmann equation (LBE) model with multiple relaxation times is proposed for thermal flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow, and the natural convection flow in a square cavity. It is found that the numerical results agree well with the analytical solutions and/or other numerical results.
Effective rotational correlation times of proteins from NMR relaxation interference
Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt
2006-01-01
Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.
The structure of precipitation fronts for finite relaxation time
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, NY (United States)
2006-11-15
When convection is parameterized in an atmospheric circulation model, what types of waves are supported by the parameterization? Several studies have addressed this question by finding the linear waves of simplified tropical climate models with convective parameterizations. In this paper's simplified tropical climate model, convection is parameterized by a nonlinear precipitation term, and the nonlinearity gives rise to precipitation front solutions. Precipitation fronts are solutions where the spatial domain is divided into two regions, and the precipitation (and other model variables) changes abruptly at the boundary of the two regions. In one region the water vapor is below saturation and there is no precipitation, and in the other region the water vapor is above saturation level and precipitation is nonzero. The boundary between the two regions is a free boundary that moves at a constant speed. It is shown that only certain front speeds are allowed. The three types of fronts that exist for this model are drying fronts, slow moistening fronts, and fast moistening fronts. Both types of moistening fronts violate Lax's stability criterion, but they are robustly realizable in numerical experiments that use finite relaxation times. Remarkably, here it is shown that all three types of fronts are robustly realizable analytically for finite relaxation time. All three types of fronts may be physically unreasonable if the front spans an unrealistically large physical distance; this depends on various model parameters, which are investigated below. From the viewpoint of applied mathematics, these model equations exhibit novel phenomena as well as features in common with the established applied mathematical theories of relaxation limits for conservation laws and waves in reacting gas flows. (orig.)
Remarks concerning bulk viscosity of hadron matter in relaxation time ansatz
Khvorostukhin, A.S., E-mail: hvorost@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu (Moldova, Republic of); Toneev, V.D. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Voskresensky, D.N. [National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow 115409 (Russian Federation)
2013-10-03
The bulk viscosity is calculated for hadron matter produced in heavy-ion collisions, being described in the relaxation time approximation within the relativistic mean-field-based model with scaled hadron masses and couplings. We show how different approximations used in the literature affect the result. Numerical evaluations of the bulk viscosity with three considered models deviate not much from each other confirming earlier results.
Hydration Dependence of Energy Relaxation Time for Cytochrome C
Ye, Shuji; Chen, Jing-Yin; Knab, Joseph R.; Markelz, Andrea
2006-03-01
Hydration plays a critical role in protein dynamics. Here we consider the effects of hydration on energy relaxation for an electronically excited heme protein cytochrome c. We measure the hydration dependence of energy relaxation time of cytochrome C films after photoexcitation in the Soret regionusing two-color pump/probe time resolved transmission measurements. Thin films were prepared from cytochrome C/ Trizma buffer solutions and mounted in a hydration controlled cell. We used 400nm (˜3 mW) to pump the B band and 800 nm (˜1 mW) to probe the III band. The III band corresponds to the charge-transfer transition between heme π and iron d orbital, and is assigned to the ground electronic state of the heme. Therefore this band can be used to probe the ground state population. Three separate dynamic components were observed: a very fast transient τ1 ˜ 200 fs; a several hundred femtosecond component (τ2); and a recovery of the ground state absorption(τ3). We find τ3 apparently decreases with decreasing hydration while τ1 and τ2 are independent of hydration.
Nonomura, Yoshihiko
2014-11-01
Nonequilibrium relaxation behaviors in the Ising model on a square lattice based on the Wolff algorithm are totally different from those based on local-update algorithms. In particular, the critical relaxation is described by the stretched-exponential decay. We propose a novel scaling procedure to connect nonequilibrium and equilibrium behaviors continuously, and find that the stretched-exponential scaling region in the Wolff algorithm is as wide as the power-law scaling region in local-update algorithms. We also find that relaxation to the spontaneous magnetization in the ordered phase is characterized by the exponential decay, not the stretched-exponential decay based on local-update algorithms.
Time course of corticospinal excitability and intracortical inhibition just before muscle relaxation
Tomotaka eSuzuki
2016-01-01
Full Text Available Using transcranial magnetic stimulation (TMS, we investigated how short-interval intracortical inhibition (SICI was involved with transient motor cortex excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction force after the go signal. In the simple reaction time paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials were recorded from the right first dorsal interosseous muscle. We analyzed the time course prior to the estimated relaxation reaction time, defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before relaxation reaction time, and motor evoked potentials were significantly greater in amplitude in the 60–80 ms period before relaxation reaction time than in the other intervals in single-pulse trials. TMS pulses did not effectively increase relaxation reaction time. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to motor cortex excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Tomadakis, Manolis M.; Robertson, Teri J.
2003-07-01
We present a random walk based investigation of the pore size probability distribution and its moments, the survival probability and mean survival time, and the principal relaxation time, for random and ordered arrays of cylindrical fibers of various orientation distributions. The dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size are found to increase with porosity, remain practically independent of the directionality of random fiber beds, and attain lower values for ordered arrays. Wide pore size distributions are obtained for random fiber structures and relatively narrow for ordered square arrays, all in very good agreement with theoretically predicted limiting values. Analytical results derived for the pore size probability and its lower moments for square arrays of fibers practically coincide with the corresponding simulation results. Earlier variational bounds on the mean survival time and principal relaxation time are obeyed by our numerical results in all cases, and are found to be quite sharp up to very high porosities. Dimensionless groups representing the deviation of such bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to the mean pore size [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all types of fiber structures, thus validated for the first time for anisotropic porous media.
Scale Invariance in Rain Time Series
Deluca, A.; Corral, A.
2009-09-01
In the last few years there have been pieces of evidence that rain events can be considered analogous to other nonequilibrium relaxation processes in Nature such as earthquakes, solar flares and avalanches. In this work we compare the probability densities of rain event size, duration, and recurrence times (i.e., drought periods) between one Mediterranean site and different sites worldwide. We test the existence of scale invariance in these distributions and the possibility of a universal scaling exponent, despite the different climatic characteristics of the different places.
A method for longitudinal relaxation time measurement in inhomogeneous fields
Chen, Hao; Cai, Shuhui; Chen, Zhong
2017-08-01
The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.
A 1-year time course study of the relaxation times and histology for irradiated rat lungs
Shioya, S.; Haida, M.; Fukuzaki, M.; Ono, Y.; Tsuda, M.; Ohta, Y.; Yamabayashi, H. (Tokai Univ. School of Medicine, Kanagawa (Japan))
1990-05-01
To investigate the NMR relaxation times for irradiated rat lung tissue, we measured T1 and T2 at 11 different times during the injury's 1-year time course. A biexponential analysis of T2 was used to determine T2 fast (T2f) and T2 slow (T2s). In addition, we measured water content and correlated changes in the relaxation times with pathological changes. The correlation indicates the following: (1) Shortly after irradiation, the biexponential T2 decay for 1/3 of the samples became monoexponential and there were no noticeable pathological changes observed using light microscopy. (2) During radiation pneumonitis, T2f and T2s were prolonged. This accompanied acute edematous changes and inflammatory cell infiltration. (3) Finally, during radiation fibrosis T1 shortened and collagen increased. We observed no significant correlation between relaxation time changes and water content changes throughout the 1-year time course.
Upper D region chemical kinetic modeling of LORE relaxation times
Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.
2016-04-01
The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.
Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics
Ruggieri, M; Chernodub, M
2016-01-01
We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es; Tienda-Luna, I. M.; Gámiz, F. [Departamento de Electrónica, Universidad de Granada, Av. Fuentenueva S/N, 18071–Granada (Spain)
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
Ovarian chocolate cysts. Staging with relaxation time in MR imaging
Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kitagaki, Hajime; Tanaka, Yutaka; Yamasaki, Katsuhito; Shimizu, Tadafumi; Kono, Michio.
1988-10-01
Accurate preoperative staging of ovarian chocolate cysts is very important because recent hormonal therapy has been effective in low stage patients. However, it has been difficult to assess the preoperative stage of ovarian chocolate cysts. We evaluated the diagnostic potential of MRI in preoperative staging of 15 overian chocolate cysts. It was well known that the older the ovarian chocolate cyst was the more iron content it had. We examined the iron contents effect on T1 and T2 relaxation times in surgically confirmed chocolate cysts (stage II: 3 cases, stage III: 3 cases and stage IV: 9 cases by AFS classification, 1985) employing the 0.15-T MR system and 200 MHz spectrometer. There was a positive linear relation between T1 of the lesion using the MR system (T1) and T1 of the resected contents using the spectrometer (sp-T1); r = 0.93. The same relation was revealed between T2 and sp-T2; r = 0.87. It was indicated that T1 and T2 using the MR system was accurate. There was a negative linear relation between T1 and the iron contents ( r = -0.81) but no relation between T2 and the iron contents. T1 was 412 +- 91 msec for stage II, 356 +- 126 msec for stage III and 208 +- 30 msec for stage IV. T1 for stage IV was shorter than that for stage II and III, statistically significant differences were noted (p < 0.05). Thus, T1 was useful in differentiating a fresh from an old ovarian chocolate cyst. We concluded that T1 relaxation time using the MR system was useful for the staging of an ovarian chocolate cyst without surgery.
Jensen's Functionals on Time Scales
Matloob Anwar
2012-01-01
Full Text Available We consider Jensen’s functionals on time scales and discuss its properties and applications. Further, we define weighted generalized and power means on time scales. By applying the properties of Jensen’s functionals on these means, we obtain several refinements and converses of Hölder’s inequality on time scales.
ZHANG Feng; CHEN Feng; TANG Guochun
2004-01-01
Scheduling unrelated parallel machines with controllable processing times subject to release times is investigated. Based on the convex quadratic programming relaxation and the randomized rounding strategy, a 2-approximation algorithm is obtained for a special case with the all-or-none property and then a 3-approximation algorithm is presented for general problem.
Pireaux, S
2007-01-01
The LISA mission is a space interferometer aiming at the detection of gravitational waves in the [$10^{-4}$,$10^{-1}$] Hz frequency band. In order to reach the gravitational wave detection level, a Time Delay Interferometry (TDI) method must be applied to get rid of (most of) the laser frequency noise and optical bench noise. This TDI analysis is carried out in terms of the coordinate time corresponding to the Barycentric Coordinate Reference System (BCRS), TCB, whereas the data at each of the three LISA stations is recorded in terms of each station proper time. We provide here the required proper time versus BCRS time transformation. We show that the difference in rate of station proper time versus TCB is of the order of $5 10^{-8}$. The difference between station proper times and TCB exhibits an oscillatory trend with a maximum amplitude of about $10^{-3}$ s.
Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A. A.
2010-01-01
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microse
Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A. A.
2010-01-01
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microse
Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A. A.
2010-01-01
To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of
Growth strains and stress relaxation in alumina scales during high temperature oxidation
Hou, P.Y.; Paulikas, A.P.; Veal, B.W.
2004-03-23
A novel X-ray technique was used, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory, to investigate the growth stresses in {alpha}-Al{sub 2}O{sub 3}. In-situ measurements of Debye-Scherrer diffraction patterns from the scale were recorded during oxidation and cooling, and the elliptical distortion of the diffraction rings was analyzed to yield the in-plane strain. Fe-28Al, Fe-40Al, Fe-40Al-0.2Hf, Fe-20Cr-10Al and Ni-50Al (at. %) were studied. Data were acquired in air at temperatures between 950-1100 C and during cool down. In all cases, the steady stage growth strain was relatively low (<0.1%) and was either tensile or compressive depending on the alloy. A higher tensile strain often existed during the initial oxidation period when transition alumina was present. Thermal stresses imposed on NiAl by reducing the sample temperature to 950 C for a period of time showed noticeable stress relaxation by creep. Different degrees of relaxation were also found during cooling depending on alloy composition and scale microstructure. On all Fe-based alloys, the first formed {alpha}-Al{sub 2}O{sub 3} was highly textured with the degree of texture decreasing with further oxidation. The relationships between stress development, scale wrinkling, oxide phase changes, and the effect of reactive element addition on growth stresses are discussed. Results are compared with other reports of growth stresses in Al{sub 2}O{sub 3} scales.
Wen-Hsien Li
2016-05-01
Full Text Available We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.
Determination of T1- and T2-relaxation times in the spleen of patients with splenomegaly
Thomsen, C; Josephsen, P; Karle, H
1990-01-01
Twenty-nine patients with known splenomegaly and seven healthy volunteers were examined. The T1 and T2 relaxation times were read out from a region of interest centrally in the spleen. Even though different mean T1 and T2 relaxation times were found between the groups, the great scatter and the c...... and the considerable overlap between the groups makes the contribution of relaxation time measurements to the differential diagnosis of splenomegaly of limited value....
Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin
2015-06-01
Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.
Fan, Fanghui; Mou, Tian; Nurhadi, Bambang; Roos, Yrjö H.
2016-01-01
Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-rel...
The time dependence of rock healing as a universal relaxation process, a tutorial
Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie
2017-01-01
The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80-100 ms before RRT, and MEPs were significantly greater in amplitude in the 60-80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
Multiple-relaxation-time lattice Boltzmann kinetic model for combustion.
Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun
2015-04-01
To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.
Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.
2012-01-01
This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam br
Relaxation Time of the Particle Beam with an Anisotropic Velocity Distribution
V.P. Vechirka
2012-11-01
Full Text Available The computer experiment for study of the relaxation time of the beam particles with an anisotropic velocity distribution is performed by the molecular dynamics. Obtained results agree with the characteristic times of thermal relaxation in plasma for the electronic coolers in modern storage rings.
Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study
Kjaer, L; Thomsen, C; Henriksen, O
1987-01-01
Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...
Stretched Exponential Relaxation in Disordered Complex Systems: Fractal Time Random Walk Model
Ekrem Aydmer
2007-01-01
We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the relaxation function has stretched exponential, i.e. the Kohlrausch-Williams-Watts character for a fractal time random walk process.
Vandewalle, S. [Caltech, Pasadena, CA (United States)
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints
Hilaire, Thibault
2009-01-01
This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...
Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.
Echinaka, Yuki; Ozeki, Yukiyasu
2016-10-01
The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.
Low Parametric Sensitivity Realizations with relaxed L2-dynamic-range-scaling constraints
Hilaire, Thibault
2009-01-01
This paper presents a new dynamic-range scaling for the implementation of filters/controllers in state-space form. Relaxing the classical L2-scaling constraints by specific fixed-point considerations allows for a higher degree of freedom for the optimal L2-parametric sensitivity problem. However, overflows in the implementation are still prevented. The underlying constrained problem is converted into an unconstrained problem for which a solution can be provided. This leads to realizations whi...
Estimation of Hot Electron Relaxation Time in GaN Using Hot Electron Transistors
Dasgupta, Sansaptak; Lu, Jing; Nidhi; Raman, Ajay; Hurni, Christophe; Gupta, Geetak; Speck, James S.; Mishra, Umesh K.
2013-03-01
In this paper, we report for the first time an estimation of hot electron relaxation time in GaN using electrical measurements. Hot electron transistors (HETs) with GaN as the base layer and different base-emitter barrier-height configurations and base thicknesses were fabricated. Common-base measurements were performed to extract the differential transfer ratio, and an exponential decay of the transfer ratio with increasing base thickness was observed. A hot electron mean free path was extracted from the corresponding exponential fitting and a relaxation time was computed, which, for low energy injection, matched well with theoretically predicted relaxation times based on longitudinal optical (LO) phonon scattering.
TRANSVERSAL INERTIAL EFFECT ON RELAXATION/RETARDATION TIME OF CEMENT MORTAR UNDER HARMONIC WAVE
Jue Zhu; Yonghui Cao; Jiankang Chen
2008-01-01
Under dynamic loading, the constitutive relation of the cement mortar will be signif-icantly affected by the transversal inertial effect of specimens with large diameters. In this paper,one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.
Time-fractional derivatives in relaxation processes: a tutorial survey
Mainardi, Francesco
2008-01-01
The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classical theory of linear viscoelasticity, we contrast these two types of fractional derivatives in their ability to take into account initial conditions in the constitutive equations of fractional order. We also provide historical notes on the origins of the Caputo derivative and on the use of fractional calculus in viscoelasticity.
Mantz, Adam B; Morris, R Glenn; Schmidt, Robert W
2016-01-01
This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e., massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and center-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behavior of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance, providing the first observati...
Tomadakis, Manolis M.; Robertson, Teri J.
2005-03-01
Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially
Spin relaxation time dependence on optical pumping in GaAs:Mn
Burobina, Veronika; Binek, Christian
2015-03-01
We analyze the dependence of electron spin relaxation time on optical pumping in a partially-compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, Utah 84112-0830 (United States); Binek, Ch. [Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska, P.O. Box 880299, Lincoln, Nebraska 68588-0299 (United States)
2014-04-28
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 10{sup 17} cm{sup −3}. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V.; Binek, Ch.
2014-04-01
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017 cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
El-Ballouli, Ala’a O.
2014-03-19
We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.
Li, Jingliang; Zhao, Kongshuang; Liu, Chunyan
2013-04-01
Dielectric properties of poly(acrylic acid)-graft-poly(ethylene oxide) (PAA-g-PEO) aqueous solution were measured as a function of concentration and temperature over a frequency range of 40 Hz to 110 MHz. After subtracting the contribution of electrode polarization, three relaxation processes were observed at about 20 kHz, 220 kHz, and 4 MHz, and they are named low-, mid- and high-frequency relaxation, respectively. The relaxation parameters of these three relaxations (dielectric increment Δɛ and relaxation time τ) showed scaling relations with the polyelectrolyte concentration. The mechanisms of the three relaxations were concluded in light of the scaling theory: The relaxations of low- and mid frequency were attributed to the fluctuation of condensed counterions, while the high-frequency relaxation was ascribed to the fluctuation of free counterions. Based on the dielectric measurements of varying temperatures, the thermodynamic parameters (enthalpy change ΔH and entropy change ΔS) of the three relaxations were calculated and these relaxation processes were also discussed from the microscopic thermodynamical view. In addition, the impacts of PEO side chains on the conformation of PAA-g-PEO chains were discussed. PEO side chains greatly strengthen the hydrogen-bonding interactions between PAA-g-PEO chains, resulting in the chains overlapping at a very low concentration and the formation of a hydrogen-bonding complex. Some physicochemical parameters of PAA-g-PEO molecules were calculated, including the overlap concentration, the effective charge of the chain, the friction coefficient, and the diffusion coefficient of hydrogen counterions.
Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction
Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo
2016-07-01
In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.
Integral equations on time scales
Georgiev, Svetlin G
2016-01-01
This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.
Wang, Li-Na; Tao, Hong; Zhao, Yue; Zhou, Yu-Qiu; Jiang, Xiu-Rong
2014-07-01
Clinical studies have shown that biofeedback-assisted relaxation positively influences the treatment outcomes of sleep disturbance. However, there are only few studies reporting the timing of relaxation training initiation, and the relationships between the timing of initiation and the effectiveness of relaxation remain unclear. The aim of this study was to determine the optimal timing for initiating nurse-led biofeedback-assisted relaxation on hospitalized coronary heart disease patients with sleep disturbance. An experimental pretest and repeated posttest design was used to compare the effectiveness of nurse-led biofeedback-assisted relaxation. A total of 128 patients with coronary heart disease were randomly assigned to 1 of 4 groups: morning group, night group, morning-night group, or control group. Outcome measures included self-report of sleep-related indicators, the scores of the Pittsburgh Sleep Quality Index (PSQI) and the Zung's Self-rating Anxiety Scale (SAS), and the dosage of sleep medication used. A 2-way analysis of variance and a simple effect test were used to analyze the differences among the 4 groups. No significant differences could be detected at baseline. Compared with the control group, the nurse-led biofeedback-assisted relaxation yielded a greater benefit for patients in the 3 intervention groups. Group and time factors (pretest-protest) could explain the variation in the effectiveness of this program (main effect P sleep latency, experienced fewer awakenings, reported higher sleep quality, and used significantly fewer sleep medications than the morning group did (F = 32.97, P sleep quality and decrease the need for of sleep medications in hospitalized patients with sleep disturbance.
Multi-scales nuclear spin relaxation of liquids in porous media
Korb, Jean-Pierre
2010-03-01
The magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T(ω) is a rich source of dynamical information for characterizing the molecular dynamics of liquids in confined environments. Varying the magnetic field changes the Larmor frequency ω, and thus the fluctuations to which the nuclear spin relaxation is sensitive. Moreover, this method permits a more complete characterization of the dynamics than the usual measurements as a function of temperature at fixed magnetic field strength, because many common solvent liquids have phase transitions that may alter significantly the character of the dynamics over the temperature range usually studied. Further, the magnetic field dependence of the spin-lattice relaxation rate, 1/T(ω), provides a good test of the theories that relate the measurement to the microdynamical behavior of the liquid. This is especially true in spatially confined systems where the effects of reduced dimensionality may force more frequent reencounters of the studied proton spin-bearing molecules with paramagnetic impurities at the pore surfaces that may alter the correlation functions that enter the relaxation equations in a fundamental way. We show by low field NMR relaxation that changing the amount of surface paramagnetic impurities leads to striking different pore-size dependences of the relaxation times T and T of liquids in pores. Here, we focus mainly on high surface area porous materials including calibrated porous silica glasses, granular packings, heterogeneous catalytic materials, cement-based materials and natural porous materials such as clay minerals and rocks. Recent highlights NMR relaxation works are reviewed for these porous materials, like continuous characterization of the evolving microstructure of various cementitious materials and measurement of wettability in reservoir carbonate rocks. Although, the recent applications of 2-dimensional T-T and T-z-store-T correlation experiments for characterization of
A new multiple-relaxation-time lattice Boltzmann model for incompressible flows in porous media
Liu, Qing; He, Chao
2013-01-01
In this paper, a two-dimensional eight-velocity (D2Q8) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy formulation. In the MRT-LB model, newly defined equilibrium moments are employed to account for the porosity of the porous media, and the linear and nonlinear drag forces of the media are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. The model is validated by simulating the 2D Poiseuille flow, Couette flow and lid-driven cavity flow in porous media. The numerical results are in excellent agreement with the analytical solutions and/or the well-documented data available in the literature.
Relaxation in distal and proximal arm muscles: a reaction time study.
Buccolieri, A; Avanzino, L; Trompetto, C; Abbruzzese, G
2003-02-01
To investigate whether the same mechanisms underlie muscle relaxation in proximal and distal arm muscles of normal subjects. Fourteen healthy subjects were studied using a simple visual reaction time paradigm. Relaxation reaction time (R-RT) and contraction reaction time (C-RT) were compared across different tasks involving distal (first dorsal interosseus, FDI, flexor carpi radialis, FCR) and proximal (biceps brachii, BB, triceps brachii, TR) arm muscles. Changes of FCR H-reflex before and during voluntary relaxation were investigated in two subjects. No significant difference was observed between R-RT and C-RT in the distal muscles. The R-RT was significantly shorter than C-RT in both the BB and TR muscles. The relaxation latency (R-RT) was significantly correlated to the subjects' age in all the muscles except the FDI. No inhibition of the FCR H-reflex could be observed in the 20 ms preceding muscle relaxation. Our findings suggest that neural mechanisms contribute differently to the relaxation of muscles with a different functional role. Voluntary relaxation in distal arm muscles is mainly related to the reduction of motor cortical output, while in proximal muscles a spinal disfacilitation is also present and possibly sustained by the modulation of presynaptic inhibition.
Source of non-arrhenius average relaxation time in glass-forming liquids
Dyre, Jeppe
1998-01-01
A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation time. This paper briefly reviews the classical phenomenological models for non-Arrhenius behavior the free volume model and the entropy model and critiques against these models. We...... are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a consequence of the fact that the instantaneous shear modulus increases upon cooling....
A Time scales Noether's theorem
Anerot, Baptiste; Cresson, Jacky; Pierret, Frédéric
2016-01-01
We prove a time scales version of the Noether's theorem relating group of symmetries and conservation laws. Our result extends the continuous version of the Noether's theorem as well as the discrete one and corrects a previous statement of Bartosiewicz and Torres in \\cite{BT}.
Dutta, Rituraj; Kumar, A.
2017-10-01
Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz–5 MHz and in the temperature range of 300 K–380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.
Time-dependent Jahn-Teller problem: Phonon-induced relaxation through conical intersection
Pae, Kaja, E-mail: kaja.pae@gmail.com; Hizhnyakov, Vladimir [Institute of Physics University of Tartu, Tartu (Estonia)
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Time-dependent Jahn-Teller problem: phonon-induced relaxation through conical intersection.
Pae, Kaja; Hizhnyakov, Vladimir
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
SEMI-DEFINITE RELAXATION ALGORITHM FOR SINGLE MACHINE SCHEDULING WITH CONTROLLABLE PROCESSING TIMES
CHEN FENG; ZHANG LIANSHENG
2005-01-01
The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.
Integrable Equations on Time Scales
Gurses, Metin; Guseinov, Gusein Sh.; Silindir, Burcu
2005-01-01
Integrable systems are usually given in terms of functions of continuous variables (on ${\\mathbb R}$), functions of discrete variables (on ${\\mathbb Z}$) and recently in terms of functions of $q$-variables (on ${\\mathbb K}_{q}$). We formulate the Gel'fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yield integrable equations over integers (difference equations) and over $q...
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
Ma, Qiang; Chen, Zhenqian; Liu, Hao
2017-07-01
In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB simulation is compared with the experimental data and the finite-element solution, and the transient concentration distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation point is prolonged inversely.
Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time.
Smith, Pieter E S; Donovan, Kevin J; Szekely, Or; Baias, Maria; Frydman, Lucio
2013-09-16
The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties, such as size, as well as on dynamic ones, such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently, a number of single-shot-inversion-recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here, we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Qing; He, Ya-Ling
2015-11-01
In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.
Liu, Qing
2015-01-01
In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid phase change interface is traced through the liquid fraction which is determined by the enthalpy method. The model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.
Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters
Appignanesi, G A; Rodriguez Fris, J A [Fisicoquimica, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina); Seccion de Fisicoquimica, Instituto de Quimica de la Universidad Nacional del Sur, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina)], E-mail: appignan@criba.edu.ar
2009-05-20
In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or {alpha} relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the {alpha} relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)
Bowler, R M; Yeh, C-L; Adams, S W; Ward, E J; Ma, R E; Dharmadhikari, S; Snyder, S A; Zauber, S E; Wright, C W; Dydak, U
2017-06-03
This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m(3). Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times. Copyright © 2017 Elsevier B.V. All rights reserved.
The short-time intramolecular dynamics of solutes in liquids. II. Vibrational population relaxation
Goodyear, Grant; Stratt, Richard M.
1997-08-01
Events such as the vibrational relaxation of a solute are often well described by writing an effective equation of motion—a generalized Langevin equation—which expresses the surrounding medium's influence on the intramolecular dynamics in terms of a friction and a fluctuating force acting on the solute. These quantities, though, can be obtained from the instantaneous normal modes (INMs) of the system when the relaxation takes place in a fluid, suggesting that we should be able to analyze in some detail the solvent motions driving the relaxation, at least for short times. In this paper we show that this promise can indeed be realized for the specific case of a vibrating diatomic molecule dissolved in an atomic solvent. Despite the relatively long times typical of vibrational population relaxation, it turns out that understanding the behavior of the vibrational friction at the short times appropriate to INMs (a few hundred femtoseconds) often suffices to predict T1 times. We use this observation to probe the dependence of these relaxation rates on thermodynamic conditions and to look at the molecular mechanisms underlying the process. We find that raising the temperature at any given density or raising the density at any given temperature will invariably increase the rate of energy relaxation. However, since these two trends may be in conflict in a typical constant-pressure laboratory experiment, we also find that it is possible to make sense of the "anomalous" inverted temperature dependence recently seen experimentally. We find, as well, that the INM theory—which has no explicit collisions built into it—predicts exactly the same density dependence as the venerable independent-binary-collision (IBC) theory (an intriguing result in view of recent claims that experimental observations of this kind of dependence provide support for the IBC theory). The actual mechanisms behind vibrational population relaxation are revealed by looking in detail at the
Multigrid waveform relaxation for the time-fractional heat equation
F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)
2017-01-01
textabstractIn this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense.
T2 relaxation time mapping of the cartilage cap of osteochondromas
Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)
2016-02-15
Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Mitchell, J., E-mail: JMitchell16@slb.com [Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL (United Kingdom); Chandrasekera, T. C. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom)
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water
Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.;
We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....
ARTICLES: Time-Dependent Stokes Shift from Solvent Dielectric Relaxation
Xu, Jing; Wang, Quan-de; Zhu, Quan; Fu, Ke-xiang; He, Fu-cheng; Li, Xiang-yuan
2010-06-01
The Stokes shift response function, which is related to the time dependent solvation energy, is calculated with the dielectric response function and a novel expression of nonequilibrium solvation energy. In the derivation, relationship between the polarization and the dielectric response function is used. With the dipole-in-a-sphere model applied to the system coumarin 343 and water as the solvent, encouraging agreement with the experimental data from Jimenez et al. is obtained [Nature 369, 471 (1994)].
Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio
Tao Jiang; Qiwei Gong; Ruofan Qiu; Anlin Wang
2014-10-01
An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce `spurious velocity’. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent simulations with different relaxation time ratios.
ZHENG SHAO-KUAN; CHEN ZHONG; CHEN ZHI-WEI; ZHONG JIAN-HUI
2001-01-01
A one-dimensional NMR method is presented for measuring the transverse relaxation time, T2,n, of intermolecular multiple quantum coherences (IMQCs) of coherence order n in highly polarized spin systems. The pulse sequence proposed in this paper effectively suppresses the effects of radiation damping, molecular diffusion, inhomogeneity of magnetic field, and variations of dipolar correlation distance, all of which may affect quantitation of T2,n. This pulse sequence can be used to measure not only IMQC transverse relaxation time T2,n(n ＞ 1) quickly and directly, but also the conventional transverse relaxation time. Experimental results demonstrate that the quantitative relationship between T2,n(n≥1) and T2 is T2,n≈T2/n. These results will be helpful for understanding the fundamental properties and mechanisms of IMQCs.
Conductivity and relaxation time of porous silicon using the Kramers-Kronig relation
Dariani, R.S., E-mail: dariani@alzahra.ac.ir; Tavakoli, F.
2015-01-01
To review the dielectric characteristics of porous silicon samples with various porosities, an equivalent circuit including a capacitor and parallel resistance was used. By applying AC voltage with a constant amplitude of 200 mV to the circuit and using impedance measurements of the samples between 10–100 KHz, the variations in the capacitance, dielectric function, refractive index, and resistance for the samples at room temperature and up to 350 °C were studied. The dielectric characteristics of the samples decreased with increasing frequency. In addition, with increasing temperature, the pore diameters increased, and the dielectric characteristics varied. In this paper, we demonstrate that the relaxation time and DC conductivity could be obtained using the Kramers-Kronig function and Hilbert transformation. Our results indicate that the relaxation time and DC conductivity increase with increasing porosity, and with increasing temperature, the relaxation time decreases and the DC conductivity increases.
Relaxation Study of N-Submitted Amides with Alcohol Mixtures by Time Domain Reflectometry
A. Arunkumar
2016-08-01
Full Text Available Using Time Domain Reflectometry (TDR, dielectric relaxation studies have been carried out on binary mixtures of amides (N-methylacetamide, N,N-dimethylacetamide with alcohols (1-butanol, 1-pentanol for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time is vary with the chain length of alcohols and substituted amides are noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values vary from negative to positive for all the systems indicating the solute-solvent interaction to exist between alcohols and substituted amides for all the dynamics of the mixture.
Effects of cross-correlated noises on the relaxation time of the bistable system
谢崇伟; 梅冬成
2003-01-01
The stationary correlation function and the associated relaxation time for a general system driven by crosscorrelated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of λ (the correlated intensity between noises)exhibits very different behaviours for α＜ D and for α＞ D (α and D, respectively, stand for the intensities of additive and multiplicative noises). When α＞ D, Tc increases with increasing λ. But when α＜ D, Tc increases with λ for the case of weak correlated noises and sharply decreases with λ for the case of strong correlated noises, and thus Tc-λ curve behaves with one extremum.
Source of non-arrhenius average relaxation time in glass-forming liquids
Dyre, Jeppe
1998-01-01
then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions......A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation time. This paper briefly reviews the classical phenomenological models for non-Arrhenius behavior the free volume model and the entropy model and critiques against these models. We...... are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a consequence of the fact that the instantaneous shear modulus increases upon cooling....
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt
2013-01-01
magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate......We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external...... the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...
Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds
Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2017-07-01
Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.
Time derivatives of the spectrum: Relaxing the stationarity assumption
Prieto, G. A.; Thomson, D. J.; Vernon, F. L.
2005-12-01
Spectrum analysis of seismic waveforms has played a significant role towards the understanding of multiple aspects of Earth structure and earthquake source physics. In recent years the multitaper spectrum estimation approach (Thomson, 1982) has been applied to geophysical problems providing not only reliable estimates of the spectrum, but also estimates of spectral uncertainties (Thomson and Chave, 1991). However, these improved spectral estimates were developed under the assumption of local stationarity and provide an incomplete description of the observed process. It is obvious that due to the intrinsic attenuation of the Earth, the amplitudes, and thus the frequency contents are changing with time as waves pass through a seismic station. There have been incredible improvements in different techniques to analyze non-stationary signals, including wavelet decomposition, Wigner-Ville spectrum and the dual-frequency spectrum. We apply one of the recently developed techniques, the Quadratic Inverse Theory (Thomson, 1990, 1994), combined with the multitaper technique to look at the time derivatives of the spectrum. If the spectrum is reasonably white in a certain bandwidth, using QI theory, we can estimate the derivatives of the spectrum at each frequency. We test synthetic signals to corroborate the approach and apply it the records of small earthquakes at local distances. This is a first approach to try and combine the classical spectrum analysis without the assumption of stationarity that is generally taken.
Deconfinement Phase Transition in an Expanding Quark system in Relaxation Time Approximation
Yang, Z; Yang, Zhenwei; Zhuang, Pengfei
2004-01-01
We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.
Geerdink, J.B.W.; Hoekstra, A.G.
2009-01-01
We compare the Lattice BGK, the Multiple Relaxation Times and the Entropic Lattice Boltzmann Methods for time harmonic flows. We measure the stability, speed and accuracy of the three models for Reynolds and Womersley numbers that are representative for human arteries. The Lattice BGK shows
Only through perturbation can relaxation times be estimated
Ditlevsen, Susanne; Lansky, Petr
2012-01-01
Estimation of model parameters is as important as model building, but is often neglected in model studies. Here we show that despite the existence of well known results on parameter estimation in a simple homogenous Ornstein-Uhlenbeck process, in most practical situations the methods suffer greatly...... from finite sample sizes and especially the estimator of the time constant of the system is degraded. Therefore an alternative solution is of paramount importance. We present such a solution based on perturbation of the system, observing trajectories far from equilibrium. The results are illustrated...... on computer experiments based on applications in neuroscience and pharmacokinetics, which show a striking improvement of the quality of estimation. The results are important for judicious designs of experiments to obtain maximal information from each data point, especially when samples are expensive...
Option pricing during post-crash relaxation times
Dibeh, Ghassan; Harmanani, Haidar M.
2007-07-01
This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.
Dielectric relaxation time and structure of bound water in biological materials
Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K.
1987-12-03
The dielectric behavior of living tissues and a number of biological materials was examined by new equipment of the time domain reflectometry method in a wide frequency range of 10/sup 7/-10/sup 10/ Hz. The authors found two peaks of Debye absorption around 100 MHz and 20 GHz for all the materials. The low-frequency absorption is probably due to bound water while the high-frequency absorption to free water. From the observed relaxation times of bound water a hypothesis is ventured on the structure of bound water and its relaxation mechanism.
Non-Fermi liquid behavior of thermal relaxation time in degenerate electron gas
Sarkar, Sreemoyee
2012-01-01
The thermal relaxation time ($\\tau_{\\kappa_{ee}}$) for the degenerate electron plasma has been calculated by incorporating non-Fermi liquid (NFL) corrections both for the thermal conductivity and specific heat capacity. Perturbative results are presented by making expansion in $T/m_D$ with next to leading order corrections. It is seen that unlike the normal Fermi liquid (FL) result where $\\tau_{\\kappa_{ee}}\\propto 1/T^2$, NFL corrections in leading order (LO) changes the temperature dependence of $\\tau_{\\kappa_{ee}}$ to 1/T. Incorporation of the phase space correction driven by the medium modified Fermion dispersion relation increases the relaxation time further.
Molecular motions and phase transitions. NMR relaxation times studies of several lecithins.
Bar-Adon, R; Gilboa, H
1981-01-01
The spin-lattice relaxation time, T1, and the dipolar energy relaxation time, TD, were measured as a function of temperature. The materials studied were samples of anhydrous L-dipalmitoyl lecithin, DL-dipalmitoyl lecithin, L-dimyristoyl lecithin, DL-dimyristoyl lecithin and their monohydrates, and of anhydrous egg yolk lecithin. It is shown that TD is a much more sensitive parameter than T1 for the determination of the Chapman phase transition. Comparison between T1 and TD provides informatio...
Separation of Time Scales in a Quantum Newton's Cradle
van den Berg, R.; Wouters, B.; Eliëns, S.; De Nardis, J.; Konik, R. M.; Caux, J.-S.
2016-06-01
We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.
Zhuo Qi Lee
Full Text Available Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees.
Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland
2016-09-01
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu
2016-05-01
One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).
Korchuganov, Denis S.; Gagnidze, Ivan E.; Tkach, Elena N.; Schulga, Alexey A.; Kirpichnikov, Mikhail P.; Arseniev, Alexander S. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation)], E-mail: aars@nmr.ru
2004-12-15
An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the determination of the protein rotational correlation time {tau}{sub R} from the heteronuclear relaxation data is proposed. The approach is based on a joint fit of relaxation data acquired at several viscosities of a protein solution. The method has been tested on computer simulated relaxation data as compared to the traditional {tau}{sub R} determination method from T{sub 1}/T{sub 2} ratio. The approach has been applied to ribonuclease barnase from Bacillus amyloliquefaciens dissolved in an aqueous solution and deuterated glycerol as a viscous component. The resulting rotational correlation time of 5.56 {+-} 0.01 ns and other rotational diffusion tensor parameters are in good agreement with those determined from T{sub 1}/T{sub 2} ratio.
Fragile-strong fluid crossover and universal relaxation times in a confined hard-disk fluid.
Yamchi, Mahdi Zaeifi; Ashwin, S S; Bowles, Richard K
2012-11-30
We show that a system of hard disks confined to a narrow channel exhibits a fragile-strong fluid crossover located at the maximum of the isobaric heat capacity and that the relaxation times for different channel widths fall onto a single master curve when rescaled by the relaxation times and temperatures of the crossover. Calculations of the configurational entropy and the inherent structure equation of state find that the crossover is related to properties of the jamming landscape for the model but that the Adam-Gibbs relation does not predict the relaxation behavior. We also show that a facilitated dynamics description of the system, where kinetically excited regions are identified with local packing arrangements of the disks, successfully describes the fragile-strong crossover.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study.
Mamisch, Tallal Charles; Hughes, Timothy; Mosher, Timothy J; Mueller, Christoph; Trattnig, Siegfried; Boesch, Chris; Welsch, Goetz Hannes
2012-03-01
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study
Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)
2012-03-15
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)
Wojnarowska, Z; Ngai, K L; Paluch, M
2014-12-01
The article reports the dependence of the conductivity relaxation on temperature T and pressure P in the canonical ionic glass former 0.4Ca(NO(3))(2)-0.6KNO(3)(CKN). At constant conductivity relaxation time τ(σ), the entire conductivity relaxation spectra obtained at widely different combinations of T and P superpose almost perfectly, and thus it is the ion-ion interaction but not thermodynamics that determines the frequency dispersion. Moreover, on vitrifying CKN by either elevating P or decreasing T, changes of P or T dependence of τ(σ) at the glass transition pressure P(g) and temperature T(g) are observed to occur at the same value, i.e., τ(σ)(P(g))=τ(σ)(T(g)), indicating that the relation between τ(σ) and the structural relaxation time τ(α) is also independent of P and T.
Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand
2017-10-01
In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.
Suanda, Sutara H.; Kumar, Nirnimesh; Miller, Arthur J.; Di Lorenzo, Emanuele; Haas, Kevin; Cai, Donghua; Edwards, Christopher A.; Washburn, Libe; Fewings, Melanie R.; Torres, Rachel; Feddersen, Falk
2016-10-01
In upwelling regions, wind relaxations lead to poleward propagating warm water plumes that are important to coastal ecosystems. The coastal ocean response to wind relaxation around Pt. Conception, CA is simulated with a Regional Ocean Model (ROMS) forced by realistic surface and lateral boundary conditions including tidal processes. The model reproduces well the statistics of observed subtidal water column temperature and velocity at both outer and inner-shelf mooring locations throughout the study. A poleward-propagating plume of Southern California Bight water that increases shelf water temperatures by ≈ 5°C is also reproduced. Modeled plume propagation speed, spatial scales, and flow structure are consistent with a theoretical scaling for coastal buoyant plumes with both surface-trapped and slope-controlled dynamics. Plume momentum balances are distinct between the offshore (>30 m depth) region where the plume is surface-trapped, and onshore of the 30 m isobath (within 5 km from shore) where the plume water mass extends to the bottom and is slope controlled. In the onshore region, bottom stress is important in the alongshore momentum equation and generates vertical vorticity that is an order of magnitude larger than the vorticity in the plume core. Numerical experiments without tidal forcing show that modeled surface temperatures are biased 0.5°C high, potentially affecting plume propagation distance and persistence.
Scaling and alpha-helix regulation of protein relaxation in a lipid bilayer
Qiu, Liming; Buie, Creighton; Cheng, Kwan Hon; Vaughn, Mark W.
2014-12-01
Protein conformation and orientation in the lipid membrane plays a key role in many cellular processes. Here we use molecular dynamics simulation to investigate the relaxation and C-terminus diffusion of a model helical peptide: beta-amyloid (Aβ) in a lipid membrane. We observed that after the helical peptide was initially half-embedded in the extracelluar leaflet of phosphatidylcholine (PC) or PC/cholesterol (PC/CHOL) membrane, the C-terminus diffused across the membrane and anchored to PC headgroups of the cytofacial lipid leaflet. In some cases, the membrane insertion domain of the Aβ was observed to partially unfold. Applying a sigmoidal fit to the process, we found that the characteristic velocity of the C-terminus, as it moved to its anchor site, scaled with θu-4/3, where θu is the fraction of the original helix that was lost during a helix to coil transition. Comparing this scaling with that of bead-spring models of polymer relaxation suggests that the C-terminus velocity is highly regulated by the peptide helical content, but that it is independent of the amino acid type. The Aβ was stabilized by the attachment of the positive Lys28 side chain to the negative phosphate of PC or 3β oxygen of CHOL in the extracellular lipid leaflet and of the C-terminus to its anchor site in the cytofacial lipid leaflet.
Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.
2015-08-01
Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including
Adrjanowicz, K.; Paluch, M.; Ngai, K. L.
2010-03-01
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural α-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state τα is so long that it cannot be measured but τβ, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the α-relaxation and the secondary β-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times τα and τβ, respectively. Thus, τα of Telmisartan were determined by monitoring the change of the dielectric β-loss, ɛ'', with physical aging time at temperatures well below the vitrification temperature. The values of τα were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its β-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the β-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The τα found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter βKWW - M = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with βKWW = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric constants, such as the Telmisartan studied.
Aso, Y; Yoshioka, S; Kojima, S
2000-03-01
Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.
Singh, Jaswinder
2013-12-01
The analysis of a three-dimensional (3-D) wavelength/time/space (W-T-S) asynchronous optical CDMA code family is presented considering MAI only under relaxed cross-correlation (λc ⩾ 1). Based on the code performance, it is shown that for code-limited systems (when W and/or T are non-prime), the number of generated codes and hence the supported users can be significantly increased by relaxing the cross-correlation constraint if a slight degradation in code performance can be tolerated.
Halpern, Laurence; Japhet, Caroline
2010-01-01
We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Robin or Ventcell transmission conditions. We analyze the semi-discretization in time with Discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite elements in space.
Dzik-Jurasz, A.S.K.; Leach, M.O.; Rowland, Ian John
2004-01-01
demonstrated that in the presence of competitive binding of other ligands for common binding sites on albumin, the 19F longitudinal relaxation time of 5-fluorouracil can increase by up to 340% from its value in the absence of the competing ligand. The relevance of the findings to in vivo studies is discussed...
MR pulse sequences for selective relaxation time measurements: a phantom study
Thomsen, C; Jensen, K E; Jensen, M
1990-01-01
a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short...
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short...
Wolf, RFE; Slooff, MJH; Go, KG; Kamman, RL
1997-01-01
During cold preservation for transplantation the tissue hydration state changes, It is not known whether such changes lead to altered relaxation times of P-31 nuclei with potential consequences for the quantification of tissue metabolites, Therefore, P-31 spectroscopic and proton T-1 relaxometric
Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Arnaudov, L.N.; Pelan, E.G.; Lips, A.
2012-01-01
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
2013-01-01
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation (WR) method based on block Krylov subspaces. Second, we compare this new WR-Krylov implementation against Krylov subspace methods combined with the shift and invert (SAI)
Analysis and Application of Distribution of Relaxation Times in Solid State Ionics
Boukamp, B.A.; Rolle, A.
2017-01-01
Three methods for obtaining a Distribution (Function) of Relaxation Times (DFRT) are compared, Fourier transform (FT), Tikhonov regularization (TR) and a multiple-(RQ) CNLS-fit. The FT method was written in the programming package ‘Borland Delphi’, for the Tikhonov regularization (TR) a freely avail
Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng; Xia, Changrong
2016-03-01
A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing discontinuities in the DRT, making it feasible to resolve the number and the nature of electrochemical processes without making assumptions.
Competition between surface relaxation and ballistic deposition models in scale free networks
La Rocca, Cristian E; Braunstein, Lidia A
2012-01-01
In this paper we study the scaling behavior of the fluctuations in the steady state $W_S$ with the system size $N$ for a surface growth process given by the competition between the surface relaxation (SRM) and the Ballistic Deposition (BD) models on degree uncorrelated Scale Free networks (SF), characterized by a degree distribution $P(k)\\sim k^{-\\lambda}$, where $k$ is the degree of a node. It is known that the fluctuations of the SRM model above the critical dimension ($d_c=2$) scales logarithmically with $N$ on euclidean lattices. However, Pastore y Piontti {\\it et. al.} [A. L. Pastore y Piontti {\\it et. al.}, Phys. Rev. E {\\bf 76}, 046117 (2007)] found that the fluctuations of the SRM model in SF networks scale logarithmically with $N$ for $\\lambda <3$ and as a constant for $\\lambda \\geq 3$. In this letter we found that for a pure ballistic deposition model on SF networks $W_S$ scales as a power law with an exponent that depends on $\\lambda$. On the other hand when both processes are in competition, we...
Tovbin, Yu. K.
2017-08-01
The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).
Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas
2014-11-11
NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2≈0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ≥10(-8) s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.
Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)
2017-01-15
The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.
Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor
Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.
2017-06-01
We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.
Time-resolved torsional relaxation of spider draglines by an optical technique.
Emile, Olivier; Le Floch, Albert; Vollrath, F.
2007-01-01
International audience; The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroi...
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2016-10-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2017-08-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging
Fabio Baselice
2014-01-01
Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.
Ahmadi R.
2012-01-01
Full Text Available In this work, a new approach is described for the calculation of the relaxation time and magnetic anisotropy energy of magnetic nanoparticles. Ferrofluids containing monodispersed magnetite nanoparticles were synthesized via hydrothermal method and then heated using the 10 kA/m external AC magnetic fields in three different frequencies: 10, 50 and 100 kHz. By measuring the temperature variations during the application of the magnetic field, the total magnetic time constant including both Brownian and Neel relaxation times can be calculated. By measuring the magnetic core size and hydrodynamic size of particles, the magnetic anisotropy can be calculated too. Synthesized ferrofluids were characterized via TEM, XRD, VSM and PCS techniques and the results were used for the mentioned calculations.
Relaxation and self-sustained oscillations in the time elapsed neuron network model
Pakdaman, Khashayar; Salort, Delphine
2011-01-01
The time elapsed model describes the firing activity of an homogeneous assembly of neurons thanks to the distribution of times elapsed since the last discharge. It gives a mathematical description of the probability density of neurons structured by this time. In an earlier work, based on generalized relative entropy methods, it is proved that for highly or weakly connected networks the model exhibits relaxation to the steady state and for moderately connected networks it is obtained numerical evidence of appearance of self-sustained periodic solutions. Here, we go further and, using the particular form of the model, we quantify the regime where relaxation to a stationary state occurs in terms of the network connectivity. To introduce our methodology, we first consider the case where the neurons are not connected and we give a new statement showing that total asynchronous firing of neurons appears asymptotically. In a second step, we consider the case with connections and give a low connectivity condition that...
Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)
2017-06-28
Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.
Fedorov, Dmitry V; Gradhand, Martin; Ostanin, Sergey; Maznichenko, Igor V; Ernst, Arthur; Fabian, Jaroslav; Mertig, Ingrid
2013-04-12
The effect of electron-impurity scattering on momentum and spin relaxation times in graphene is studied by means of relativistic ab initio calculations. Assuming carbon and silicon adatoms as natural impurities in graphene, we are able to simulate fast spin relaxation observed experimentally. We investigate the dependence of the relaxation times on the impurity position and demonstrate that C or Si adatoms act as real-space spin hot spots inducing spin-flip rates about 5 orders of magnitude larger than those of in-plane impurities. This fact confirms the hypothesis that the adatom-induced spin-orbit coupling leads to fast spin relaxation in graphene.
Measurement of interfacial area from NMR time dependent diffusion and relaxation measurements.
Fleury, M
2017-09-07
The interfacial area between two immiscible phases in porous media is an important parameter for describing and predicting 2 phase flow. Although present in several models, experimental investigations are sparse due to the lack of appropriate measurement techniques. We propose two NMR techniques for the measurement of oil-water interfacial area: (i) a time dependent NMR diffusion technique applicable in static conditions, similar to those used for the measurement of the solid specific surface of a porous media, and (ii) a fast relaxation technique applicable in dynamic conditions while flowing, based on an interfacial relaxation mechanism induced by the inclusion of paramagnetic salts in the water phase. For dodecane relaxing on doped water, we found an oil interfacial relaxivity of 1.8μm/s, large enough to permit the measurement of specific interfacial surface as small as 1000cm(2)/cm(3). We demonstrate both NMR techniques in drainage followed by imbibition, in a model porous media with a narrow pore size distribution. While flowing, we observe that the interfacial area is larger in imbibition than in drainage, implying a different organization of the oil phase. In a carbonate sample with a wide pore size distribution, we evidence the gradual invasion of the smallest pores as the oil-water pressure difference is increased. Copyright © 2017. Published by Elsevier Inc.
In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle
Thomsen, C; Jensen, K E; Henriksen, O
1989-01-01
The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...
Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia
Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)
2008-02-15
Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal
Bradley, T D; McFerran, J J; Jouin, J; Debord, B; Alharbi, M; Thomas, P; Gerome, F; Benabid, F
2015-01-01
We report on the measurement of ground state atomic polarization relaxation tile of Rb vapor confined in five different hypocycloidal core shape Kagome hollow core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in optical waveguide and deduce the contribution of the atom's dwell time at the core wall surface. In contrast with convetional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by the atom-wall collisional relaxation from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Shear viscosity to relaxation time ratio in SU(3) lattice gauge theory
Kohno, Yasuhiro; Kitazawa, Masakiyo
2011-01-01
We evaluate the ratio of the shear viscosity to the relaxation time of the shear flux above but near the critical temperature $T_c$ in SU(3) gauge theory on the lattice. The ratio is related to Kubo's canonical correlation of the energy-momentum tensor in Euclidean space with the relaxation time approximation and an appropriate regularization. Using this relation, the ratio is evaluated by direct measurements of the Euclidean observables on the lattice. We obtained the ratio with reasonable statistics for the range of temperature $1.3T_c \\lesssim T \\lesssim 4T_c$. We also found that the characteristic speed of the transverse plane wave in gluon media is almost constant, $v \\simeq 0.5$, for $T \\gtrsim 1.5T_c$, which is compatible with the causality in the second order dissipative hydrodynamics.
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
The generalized Phillips-Twomey method for NMR relaxation time inversion.
Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming
2016-10-01
The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.
Enthalpy Relaxation of a DGEBA Epoxy as a function of Time, Temperature, and Cooling Rate
Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.
2015-03-01
Enthalpy relaxation resulting from physical aging of a DGEBA epoxy, Epon 828, cross-linked with an amine curative, Jeffamine T-403, was studied for two isothermal aging temperatures at sequential aging times up to two weeks. Results were analyzed using the peak shift method to obtain the relaxation parameters β, δ (H*), and χ. The individual effects of cooling rate from the equilibrated state, aging time, and aging temperature were isolated to understand the initial state of the glassy epoxy and its evolution during physical aging. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Long-time scale spectral diffusion in PMMA: Beyond the TLS model?
Müller, J.; Haarer, D.; Khodykin, O. V.; Kharlamov, B. M.
1999-05-01
Spectral diffusion (SD) in PMMA doped with H 2-TPP is investigated at 4.2 K on a time scale of 3 ÷ 10 6 s via optical hole burning. Two contradictory (in frames of the TLS model) results are obtained. The first is the absence of aging effects which put the upper limit for the TLS relaxation times to tens of minutes. The second is an intensive superlogarithmic SD on the whole time scale of the experiment, which evidences the presence of very slow relaxations, independent of the sample history on the time scale of up to 2 months. The presented results provide the clear evidence of the deviation of SD behavior from the TLS model predictions at moderately low temperatures. The concept of structural relaxations is applied for a qualitative interpretation of the experimental data.
Chahid, M.; Benhamou, M. E-mail: benhamou.mabrouk@caramail.com
2000-08-01
The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T{sub i} to a final one T{sub f} very close to the critical temperature T{sub c}. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and {psi}. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and {psi}, a lowest-order coupling - Cphi (cursive,open) Greek{psi}, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters {delta}phi (cursive,open) Greek and {delta}{psi} from the equilibrium state. We find that this time dependence is completely controlled by two kinds of relaxation times {tau}{sub 1} and {tau}{sub 2}. The former is a long time and the second a short one, and they are associated, respectively, with long and local wavelength fluctuations. We find that, only the first relaxation time is relevant for physics, since it drives the system to undergo a phase transition. Spatial fluctuations are also taken into account. In this case, we find an explicit expression of the relaxation times, which are functions of temperature T, coupling constant C and wave vector q. We find that the critical mode is that given by the zero scattering-angle limit, i.e. q=0. Finally, we emphasize that the appearance of these two relaxation times is in good agreement with results reported in recent experimental work dealt with the Curie-Weiss paramagnet compound Li{sub x}Ni{sub 2-x}O{sub 2}, where the composition x is very close to 1.
Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times
Seta, Takeshi; Rojas, Roberto; Hayashi, Kosuke; Tomiyama, Akio
2014-02-01
In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multirelaxation time (MRT). The TRT is as effective in removing the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the δ function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re = 10, 20, and 40.
In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs
Driscoll, Sean J.; Mao, Haiqing; Li, Guoan [Massachusetts General Hospital/Harvard Medical School, Bioengineering Laboratory, Department of Orthopaedic Surgery, Boston, MA (United States); Zhong, Weiye [Massachusetts General Hospital/Harvard Medical School, Bioengineering Laboratory, Department of Orthopaedic Surgery, Boston, MA (United States); Second Xiangya Hospital and Central South University, Department of Spinal Surgery, Changsha, Hunan (China); Torriani, Martin [Massachusetts General Hospital/Harvard Medical School, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Wood, Kirkham B.; Cha, Thomas D. [Massachusetts General Hospital/Harvard Medical School, Spine Service, Department of Orthopaedic Surgery, Boston, MA (United States)
2016-03-15
Limited research exists on T2-mapping techniques for cervical intervertebral discs and its potential clinical utility. The objective of this research was to investigate the in-vivo T2-relaxation times of cervical discs, including C2-C3 through C7-T1. Ten asymptomatic subjects were imaged using a 3.0 T MR scanner and a sagittal multi-slice multi-echo sequence. Using the mid-sagittal image, intervertebral discs were divided into five regions-of-interest (ROIs), centered along the mid-line of the disc. Average T2 relaxation time values were calculated for each ROI using a mono-exponential fit. Differences in T2 values between disc levels and across ROIs of the same disc were examined. For a given ROI, the results showed a trend of increasing relaxation times moving down the spinal column, particularly in the middle regions (ROIs 2, 3 and 4). The C6-C7 and C7-T1 discs had significantly greater T2 values compared to superior discs (discs between C2 and C6). The results also showed spatial homogeneity of T2 values in the C3-C4, C4-C5, and C5-C6 discs, while C2-C3, C6-C7, and C7-T1 showed significant differences between ROIs. The findings indicate there may be inherent differences in T2-relaxation time properties between different cervical discs. Clinical evaluations utilizing T2-mapping techniques in the cervical spine may need to be level-dependent. (orig.)
Influence of Heat Sources and Relaxation Time on Temperature Distribution in Tissues
Sharma S.
2014-05-01
Full Text Available In the present study, the temperature fluctuations in tissues based on Penne’s bio-heat transfer equation is investigated by applying the Laplace and Hankel transforms. To get the solution in a physical form, a numerical inversion technique has been applied. The temporal and spatial distribution of temperature is investigated with the effect of relaxation time and is presented graphically.
Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)
2010-03-31
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric
Shan, Ming-Lei; Zhu, Chang-Ping; Yao, Cheng; Yin, Cheng; Jiang, Xiao-Yan
2016-10-01
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
Kikuchi, Yuta; Kunihiro, Teiji
2016-01-01
We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\\tau_i$ that admit physically natural interpretations. As an example, we apply our microscopic expressions to calculate the transport coefficients and the relaxation times of the cold fermionic atoms in a quantitative way, where the transition probability in the collision term is given explicitly in terms of the $s$-wave scattering length $a_s$. We thereby discuss the quantum statistical effects, temperature dependence, and scattering-length dependence of the first-order transport coefficients and the viscous relaxation times: It is shown tha...
Richert, Ranko
2017-02-01
On the basis of adiabatic calorimetry data and results obtained from dielectric relaxation studies in the presence of a high static electric field, the effects of temperature and electric field induced changes of the excess entropy are compared for the same sample: supercooled cresolphthalein dimethylether. A field induced reduction of the excess entropy by 45 mJ K-1 mol-1 at constant temperature increases the structural relaxation time by 0.75%, while the same entropy change originating from lowering the temperature at constant field increases the time constant by 3.5%. Therefore, there is no simple link connecting excess entropy and relaxation time that is independent of the control parameter that is used to modify the entropy. A consequence is that the Adam-Gibbs approach does not provide a quantitative prediction for how the dynamics of liquids depend on the electric field, and, more generally, on excess entropy. This work compares the dynamics for temperature versus field induced changes of isobaric excess entropy, thereby eliminating previous uncertainties arising from isochoric versus isobaric conditions and from unknown relations between thermodynamic, excess, and configurational entropies.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L.
2014-01-01
The dynamics properties of a new "next generation" model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ˜42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu [Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881 (United States)
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Matteo, C.L. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Avda. Paseo Colon 850, 1063 Buenos Aires (Argentina); Lambri, O.A. [Instituto de Fisica Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Laboratorio de Materiales, Escuela de Ing. Electrica, Universidad Nacional de Rosario, Avda. Pellegrini 250, (2000) Rosario (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Instituto de Fisica Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Laboratorio de Materiales, Escuela de Ing. Electrica, Universidad Nacional de Rosario, Avda. Pellegrini 250, (2000) Rosario (Argentina); Sorichetti, P.A. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Avda. Paseo Colon 850, 1063 Buenos Aires (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)
2008-07-01
The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs.
Time scale of stationary decoherence
Polonyi, Janos
2017-07-01
The decoherence of a test particle interacting with an ideal gas is studied by the help of the effective Lagrangian, derived in the leading order of the perturbation expansion and in order O (∂t2) . The stationary decoherence time is found to be comparable to or longer than the diffusion time. The decoherence time reaches its minimal value for classical, completely decohered environment, suggesting that physical decoherence is slowed down as compared with diffusion by the quantum coherence of the environment.
Multiple time scale based reduction scheme for nonlinear chemical dynamics
Das, D.; Ray, D. S.
2013-07-01
A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.
Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert
2014-05-28
The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.
Riviere, J. V.; Shokouhi, P.; Marone, C.; Elsworth, D.; Guyer, R. A.; Johnson, P. A.
2015-12-01
We study nonlinear elastic/acoustic phenomena in rocks at the laboratory scale, with the goal of understanding observations at crustal scales, for instance during strong ground motion and earthquake slip processes. In particular, a long-term goal is to relate microstructure of rocks/gouge to nonlinear acoustic properties. A dynamic perturbation with modest (i.e. acoustic) strain amplitude (10-6 Berea sandstone to explore short-term relaxation, down to 10-4s (DAE is the dynamic equivalent of measuring acoustic velocity as a function of applied pressure). We find that early recovery does not follow a logarithmic law, while some earlier studies based on resonance techniques and at times larger than 1s do exhibit log(t)-recovery. From this non-log(t) dataset, we extract a spectrum of relaxation rates and discuss the potential relation between characteristic rates and rock microstructure. We also discuss the possible links between transient elastic softening and transient increase in permeability due to dynamic perturbation.
Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J
2012-02-01
Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.
Direct Time-domain Observation of Conformational Relaxation in Gas-phase Cold Collisions
Drayna, Garrett K; Wang, Kenneth; Domingos, Sergio R; Eibengerber, Sandra; Doyle, John M; Patterson, David
2016-01-01
Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from $\\sigma=4.7(3.0)\\times10^{-18}\\:\\mathrm{cm}^{2}$ to $\\sigma>5\\times10^{-16}\\:\\mathrm{cm}^{2}$. Our method is applicable to a broad class of molecules and could be used to provide information about the potential en...
Dynamical theory of spin noise and relaxation - prospects for real time NMR measurements
Field, Timothy
2014-03-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the stochastic dynamics of individual spins. Spin fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments, and are observed as ``spin noise'' in the absence of any radio frequency (RF) excitation. Using stochastic calculus we develop a dynamical theory of spin noise and relaxation whose origins lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation, in terms of a modified spin density (MSD), distinct from the density matrix, which is necessary to describe non-ensemble averaged properties of spin systems. With the prospect of ultra-fast digitization, the role of spin noise in real time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this presentation we outline prospects for harnessing the recent dynamical theory in terms of spin noise measurement, with attention to real time properties.
Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia
Lima, Enio, E-mail: lima@cab.cnea.gov.ar; De Biasi, Emilio; Zysler, Roberto D.; Vasquez Mansilla, Marcelo; Mojica-Pisciotti, Mary L. [Centro Atómico Bariloche/CONICET (Argentina); Torres, Teobaldo E.; Calatayud, M. Pilar; Marquina, C.; Ricardo Ibarra, M.; Goya, Gerardo F. [Universidad de Zaragoza, Instituto de Nanociencia de Aragón INA (Spain)
2014-12-15
We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.
De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.
2001-01-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.
Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest pacific islands.
Diamond, J M
1972-11-01
When species diversity S on an island is displaced from the equilibrium value by injection or removal of species, S relaxes to equilibrium by an imbalance between immigration and extinction rates. Estimates of exponential relaxation times, t(r), for avifaunas of New Guinea satellite islands are calculated from analysis of four "experiments of nature": recolonization of exploded volcanoes, contraction in island area due to rising sea level, severing of land bridges, and disappearance of landbridge relict species. t(r) is in the range 3,000-18,000 years for avifaunas of islands of 50-3000 square miles (130-7800 km(2)), and increases with island area. Immigration coefficients decrease and extinction coefficients increase with increasing S. The results may be relevant to the design of rainforest preserves.
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such
Thermoelastic Thick Plate under Illumination of a Uniform Laser Beam with one Relaxation time
Ezzat. F. Henain
2013-05-01
Full Text Available The problem of thermoelasticity, based on the theory of Lord and Shulman (L-S with one relaxation time, is used to solve a one dimensional boundary value problem of a thick plate. The upper surface of the medium is taken as traction free and heated by a pulsed laser beam. The lower surface of the medium rests on a rigid and thermally isolated. The general solution is obtained in the Laplace transform domain. Approximate small time analytical solutions to temperature, stress and displacement are obtained. Results of this problem are presented graphically.
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Time-Resolved Torsional Relaxation of Spider Draglines by an Optical Technique
Emile, O.; Floch, A. Le; Vollrath, F.
2007-04-01
The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroin systems. Torsion opens the way to further investigations towards unraveling the tiny torque effects in biological molecules.
Elastic Models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, Jeppe C.
2006-05-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion.
T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.
Wiener, Edzard; Settles, Marcus; Diederichs, Gerd
2010-01-01
The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.
Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.
2016-09-01
We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Bienert, M; Kun, S Yu
2006-01-01
We estimate how accurate the phase relaxation time of quantum many-body systems can be determined from data on forward peaking of evaporating protons from a compound nucleus. The angular range and accuracy of the data needed for a reliable determination of the phase relaxation time are evaluated. The general method is applied to analyze the inelastic scattering of 18 MeV protons from Pt for which previously measured double differential cross sections for two angles in the evaporating domain of the spectra show a strong forward peaking. A new experiment for an improved determination of the phase relaxation time is proposed.
Time scale in quasifission reactions
Back, B.B.; Paul, P.; Nestler, J. [and others
1995-08-01
The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.
Stochastic dynamic equations on general time scales
Martin Bohner
2013-02-01
Full Text Available In this article, we construct stochastic integral and stochastic differential equations on general time scales. We call these equations stochastic dynamic equations. We provide the existence and uniqueness theorem for solutions of stochastic dynamic equations. The crucial tool of our construction is a result about a connection between the time scales Lebesgue integral and the Lebesgue integral in the common sense.
Some integral inequalities on time scales
Adnan Tuna; Servet Kutukcu
2008-01-01
In this article, we study the reverse Holder type inequality and Holder in-equality in two dimensional case on time scales. We also obtain many integral inequalities by using H(o)lder inequalities on time scales which give Hardy's inequalities as spacial cases.
Kalman plus weights: a time scale algorithm
Greenhall, C. A.
2001-01-01
KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.
Panczyk, Tomasz; Konczak, Lukasz; Zapotoczny, Szczepan; Szabelski, Pawel; Nowakowska, Maria
2015-01-01
In this work we have analyzed the influence of various factors on the transverse relaxation times T2 of water protons in suspension of magnetic nanoparticles. For that purpose we developed a full molecular dynamics force field which includes the effects of dispersion interactions between magnetic nanoparticles and water molecules, electrostatic interactions between charged nanoparticles and magnetic dipole-dipole and dipole-external field interactions. We also accounted for the magnetization reversal within the nanoparticles body frames due to finite magnetic anisotropy barriers. The force field together with the Langevin dynamics imposed on water molecules and the nanoparticles allowed us to monitor the dephasing of water protons in real time. Thus, we were able to determine the T2 relaxation times including the effects of the adsorption of water on the nanoparticles' surfaces, thermal fluctuations of the orientation of nanoparticles' magnetizations as well as the effects of the core-shell architecture of nanoparticles and their agglomeration into clusters. We found that there exists an optimal cluster size for which T2 is minimized and that the retardation of water molecules motion, due to adsorption on the nanoparticles surfaces, has some effect in the measured T2 times. The typical strengths of the external magnetic fields in MRI are enough to keep the magnetizations fixed along the field direction, however, in the case of low magnetic fields, we observed significant enhancement of T2 due to thermal fluctuations of the orientations of magnetizations. Copyright © 2014 Elsevier Inc. All rights reserved.
Relaxation time of the Cooper pairs near Tc in cuprate superconductors
Ramallo, M. V.; Carballeira, C.; Viña, J.; Veira, J. A.; Mishonov, T.; Pavuna, D.; Vidal, F.
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, τ0, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa2Cu3O7 - δ (Y-123) crystals. It is found that in this HTSC τ0 follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by τ0 = πhbar/[8kB(T - Tc0)].
ZHU Ping; CHEN Shi-Bo; MEI Dong-Cheng
2006-01-01
We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises.The expressions of C(s) and Tc are derived by means of the projection operator method,and effects of correlations between an additive noise and a multiplicative noise are discussed by numerical calculation.Based on the calculated results,it is found that the correlation strength λ between the additive noise and the multiplicative noise can enhance the fluctuation decay of the laser intensity.
One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time
Angail A. Samaan
2011-01-01
Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.
A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times
Fabio Baselice
2015-01-01
Full Text Available Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.
Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara
2014-09-09
Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.
Extending the EGP constitutive model for polymer glasses to multiple relaxation times
van Breemen, L. C. A.; Klompen, E. T. J.; Govaert, L. E.; Meijer, H. E. H.
2011-10-01
The one-mode EGP (Eindhoven glassy polymer) model captures the plastic flow at yield and post-yield quantitatively, but behaves poor in the non-linear viscoelastic pre-yield region. Since a proper description here is important in cases of complex loading and unloading situations, such as e.g. in indentation and scratching, an extension to non-linear modeling is required using a spectrum of relaxation times. It is shown that such a reference spectrum can be obtained from simple tensile tests. It shifts to shorter times under the influence of stress and is independent of the two important time-dependent processes in polymers: the strain rate applied during testing and the aging time during storage and use. The multi-mode model is critically tested and proves quantitative in describing the intrinsic polymer response and, based thereupon, in predicting the correct response in tensile testing, including necking, in flat tip indentation and in notched loading.
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
Time Scale in Least Square Method
Özgür Yeniay
2014-01-01
Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.
Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes
Tian Jinping; Yin Yingwu
2004-01-01
A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 ＞MgCl2 ＞CaCl2 ＞NaCl ＞KCl ＞LiClO4 ＞NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate
Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time
Mariana Bruno
2008-12-01
Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.
MRI-Based Visualization of the Relaxation Times of Early Somatic Embryos
Mikulka J.
2016-04-01
Full Text Available The large set of scientific activities supported by MRI includes, among others, the research of water and mineral compounds transported within a plant, the investigation of cellular processes, and the examination of the growth and development of plants. MRI is a method of major importance for the measurement of early somatic embryos (ESE during cultivation, and in this respect it offers several significant benefits discussed within this paper. We present the following procedures: non-destructive measurement of the volume and content of water during cultivation; exact three-dimensional differentiation between the ESEs and the medium; investigation of the influence of ions and the change of relaxation times during cultivation; and multiparametric segmentation of MR images to differentiate between embryogenic and non-embryogenic cells. An interesting technique consists in two-parameter imaging of the relaxation times of the callus; this method is characterized by tissue changes during cultivation at a microscopic level, which can be monitored non-destructively.
Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko
2007-09-01
It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.
Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.
Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J
1998-01-01
Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.
Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.
1986-01-01
It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.
Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues
Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine; Suda, Syuichi; Fukuzaki, Minoru
1994-12-01
We investigated the nuclear magnetic resonance (NMR) relaxation times, T{sub 1} and T{sub 2}, for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T{sub 1} and T{sub 2} for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T{sub 1} and T{sub 2} between adenocarcinoma and lung tissue. The values of T{sub 1} and T{sub 2} for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T{sub 1} and T{sub 2} are not specific to malignant tissues. (author).
Molecular Relaxation in Liquids
Bagchi, Biman
2012-01-01
This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs
Adolescent Time Attitude Scale: Adaptation into Turkish
Çelik, Eyüp; Sahranç, Ümit; Kaya, Mehmet; Turan, Mehmet Emin
2017-01-01
This research is aimed at examining the validity and reliability of the Turkish version of the Time Attitude Scale. Data was collected from 433 adolescents; 206 males and 227 females participated in the study. Confirmatory factor analysis performed to discover the structural validity of the scale. The internal consistency method was used for…
Hardy type inequalities on time scales
Agarwal, Ravi P; Saker, Samir H
2016-01-01
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...
The Second Noether Theorem on Time Scales
Malinowska, Agnieszka B.; Natália Martins
2013-01-01
We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the $h$ -calculus and the second Noether theorem for the $q$ -calculus.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
Prantner, Viktoria; Isaksson, Hanna; Nissi, Mikko J; Jurvelin, Jukka S [Department of Physics and Mathematics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Naervaeinen, Johanna; Groehn, Olli H J [Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Lammentausta, Eveliina [Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, 90029 OYS, Oulu (Finland); Avela, Janne, E-mail: hanna.isaksson@uef.f [Department of Biology of Physical Activity, University of Jyvaeskylae, PO Box 35, 40014 Jyvaeskylae (Finland)
2010-12-07
Nuclear magnetic resonance (NMR) spectroscopy provides a potential tool for non-invasive evaluation of the trabecular bone structure. The objective of this study was to determine the reproducibility of the NMR relaxation parameters (T{sub 2}, Carr-Purcel-T{sub 2}, T{sub 1}{rho}) for fat and water and relate those to the structural parameters obtained by micro-computed tomography ({mu}CT). Especially, we aimed to evaluate the effect of freezing on the relaxation parameters. For storing bone samples, freezing is the standard procedure during which the biochemical and cellular organization of the bone marrow may be affected. Bovine trabecular bone samples were stored at -20 {sup 0}C for 7 days and measured by NMR spectroscopy before and after freezing. The reproducibility of NMR relaxation parameters, as expressed by the coefficient of variation, ranged from 3.1% to 27.9%. In fresh samples, some correlations between NMR and structural parameters (Tb.N, Tb.Sp) were significant (e.g. the relaxation rate for T{sub 2} of fat versus Tb.Sp: r = -0.716, p < 0.01). Freezing did not significantly change the NMR relaxation times but the correlations between relaxation parameters and the {mu}CT structural parameters were not statistically significant after freezing, suggesting some nonsystematic alterations of the marrow structure. Therefore, the use of frozen bone samples for NMR relaxation studies may provide inferior information about the trabecular bone structure.
Akhmedshina, E. N.; Nefed'ev, L. A.; Garnaeva, G. I.
2016-09-01
The dependence of the time of the appearance of a Stark (gradient) echo response on the irreversible transverse relaxation time of a system in the nanosecond range and on the width of the excitation region of an inhomogeneously broadened line has been investigated. It has been shown that the use of nonresonant laser pulses with an artificially created spatial inhomogeneity makes it possible to determine the relaxation time in the nanosecond range from the time of the appearance of a Stark (gradient) echo response, which is a more accurate method than the method of determining the relaxation time from the decay of the intensity by varying time intervals of the exposure to inhomogeneous electromagnetic fields.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
Eltrudis, K.; Al-Ashouri, A.; Beckel, A.; Ludwig, A.; Wieck, A. D.; Geller, M.; Lorke, A.
2017-08-01
We have measured the spin relaxation time of an excited two-electron spin-triplet state into its singlet ground state in self-assembled InAs/GaAs quantum dots. We use a time-resolved measurement scheme that combines transconductance spectroscopy with spin-to-charge conversion to address the |s ↑,p ↑ 〉 triplet state, where one electron is in the quantum dot s-shell and a second one in the p-shell. The evaluation of the state-selective tunneling times from the dots into a nearby two-dimensional electron gas allows us to determine the s- and p-shell occupation and extract the relaxation time from a rate equation model. A comparably long triplet-to-singlet spin relaxation time of 25 μs is found.
Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions
Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek
2015-11-01
We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity ηsessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.
Time-resolved photoluminescence study of excitonic relaxation in one-dimensional systems
Tanino, H.; Rühle, W. W.; Takahashi, K.
1988-12-01
Self-trapped exciton luminescence of quasi-one-dimensional (1D) halogen-bridged mixed-valence platinum complexes [Pt(II) (EA)4][Pt(IV)Cl2(EA)4] Cl4.4H2O (EA=ethylamine) and [Pt(II)(en)2] [Pt(IV)Cl2(en)2](ClO4)4 (en=1,2-diaminoethane) are studied by time-resolved photoluminescence experiments. The lifetimes of the luminescence of self-trapped exciton are exceptionally short, of the order of 100 psec. We interpret the short lifetime by a ``giant oscillator strength'' caused by a strong coupling between the electron and hole of the 1D charge transfer exciton and an extended polaronlike character of the 1D state. The lifetimes of the broad luminescence and of the resonant Raman lines during the barrier-free relaxation process are both faster than 7 psec.
Probe Spin-Velocity Dependent New Interactions by Spin Relaxation Times of Polarized $^{3}He$ Gas
Zhang, Y; Peng, S M; Fu, C B; Guo, Hao; Liu, B Q; Yan, H
2014-01-01
We have studied how to constrain the $\\alpha\\vec{\\sigma}\\cdot\\vec{v}$ type interactions with the relaxation time of spin polarized noble gases in magnetic fields. Using the longest $T_{2}$ measured in the laboratory and the earth as the source, we obtained constraints on three new interactions. We present a new experimental upper bound to the vector-axial-vector($V_{VA}$) type interaction for ranges between $1\\sim10^{8}$m. In combination with the previous result, we set the most stringent experiment limits on $g_{V}g_{A}$ ranging from $\\sim\\mu m$ to $\\sim10^{8}$m. We improve the laboratory limit to the axial-axial-vector($V_{AA}$) type interaction by $\\sim2$ orders or more for distances below $\\sim1$cm. To our best knowledge, we report the first experiment upper limit on torsion induced by the earth on its surface.
Relaxation time of the Cooper pairs near T{sub c} in cuprate superconductors
Ramallo, M.V.; Carballeira, C.; Vina, J.; Veira, J.A.; Mishonov, T.; Pavuna, D.; Vidal, F. [Santiago de Compostela Univ. (Spain). Lab. de Bajas Temperaturas y Superconductividad
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, {tau}{sub 0}, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) crystals. It is found that in this HTSC {tau}{sub 0} follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by {tau}{sub 0} = {pi}{Dirac_h}[8k{sub B}(T-T{sub c0})]. (orig.)
Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows
Liu, Qing; Li, Dong
2015-01-01
In this paper, a non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method for simulating incompressible thermal flows is presented. In the method, the incompressible Navier-Stokes equations and temperature equation (or convection-diffusion equation) are solved separately by two different MRT-LB models, which are proposed based on non-orthogonal transformation matrices constructed in terms of some proper non-orthogonal basis vectors obtained from the combinations of the lattice velocity components. The macroscopic equations for incompressible thermal flows can be recovered from the present method through the Chapman-Enskog analysis in the incompressible limit. Numerical simulations of several typical two-dimensional problems are carried out to validate the present method. It is found that the present numerical results are in good agreement with the analytical solutions or other numerical results of previous studies. Furthermore, the grid convergence tests indicate that the present MRT-LB met...
Intracerebral pH affects the T2 relaxation time of brain tissue
Schilling, A.M.; Blankenburg, F.B.; Bernarding, J.; Heidenreich, J.O.; Wolf, K.J. [Department of Radiology, University Hospital Benjamin Franklin, Free University Berlin, Hindenburgdamm 30, 12200 Berlin (Germany)
2002-12-01
Signal changes in activated brain areas are detectable by MRI and MR spectroscopy (MRS). Shifts in pH occur during brain activation. Our aim was to investigate the relationship between changes in pH and T2 relaxation times. T2 was determined in vitro at 24 MHz in various liquids at different pH using a Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence. We also studied five Fisher rats were studied at 2.4 tesla with a double-tuneable surface coil. After baseline measurements, potassium cyanide was injected, producing intracerebral acidosis. Alternating series of 1H CPMG spin-echo sequences and 31P spectra were acquired. True T2 relaxation times were calculated from a CPMG multi-echo train. Changes in intracellular pH determined from 31P spectra. In vitro measurements demonstrated a correlation between T2 and pH that could be described by a quadratic fit curve. Depending on the initial pH, changes of 0.2 induced changes in T2 of up to 150 ms. In vivo measurements confirmed these findings. After intraperitoneal injection of a sublethal dose of cyanide, T2 decreased by about 5% in four cases, followed by recovery after 2 h. The in vitro measurements demonstrated that changes in pH can lead to significant signal change on T2- or T2*- weighted images. The dependence of T2 on pH in vitro was confirmed in vivo; it may contribute to signal change in activated brain areas. (orig.)
Gilani, Syed Irtiza Ali
2008-09-15
Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase
MECHANICAL RELAXATION TIME OF A TWO-COMPONENT EPOXY NETWORK-LiClO4 POLYMER ELECTROLYTE
PENG Xinsheng; WU Shuyun; CHEN Donglin
1993-01-01
The mechanical relaxation time of a two-component epoxy network-LiClO4 system as a polymer electrolyte was investigated.The network is composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG),wherein LiClO4 was incorporated and acts as both the ionic carrier and the curing catalyst.As the relaxation time is informative to the segmental mobility,which is known to be essential for ionic conductivity,the average relaxation times of the specimens were determined through master curve construction.Experimental results showed that the salt concentration,molecular weight of PEG in DGEPEG and DGEPEG/TGEG ratio have profound effect on the relaxation time of the specimen.Among these factors,the former reinforces the network hains,leading to lengthen the relaxation time,whereas the latter two are in favour of the chain flexibility and show an opposite effect.The findings was rationalized in terms of the free volume concept.
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
Paruthi, Archini; Misra, Superb K.
2017-08-01
The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.
Kumar, Deepak; Subburaj, Karupppasamy; Lin, Wilson; Karampinos, Dimitrios C; McCulloch, Charles E; Li, Xiaojuan; Link, Thomas M; Souza, Richard B; Majumdar, Sharmila
2013-12-01
Controlled laboratory study using a cross-sectional design. To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .21-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals.
Time invariant scaling in discrete fragmentation models
Giraud, B G; Giraud, B G; Peschanski, R
1994-01-01
Linear rate equations are used to describe the cascading decay of an initial heavy cluster into fragments. We consider moments of arbitrary orders of the mass multiplicity spectrum and derive scaling properties pertaining to their time evolution. We suggest that the mass weighted multiplicity is a suitable observable for the discovery of scaling. Numerical tests validate such properties, even for moderate values of the initial mass (nuclei, percolation clusters, jets of particles etc.). Finite size effects can be simply parametrized.
Multivariable dynamic calculus on time scales
Bohner, Martin
2016-01-01
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
Lin, D.P.; Feng, D.F.; Ngo, F.Q.H.; Kevan, L.
1976-11-15
Electron--electron double resonance (ELDOR) has been used to measure cross-relaxation times between trapped electrons and trapped radicals produced by ..gamma.. irradiation of 2-methyltetrahydrofuran and 3-methylhexane organic glasses. The cross-relaxation times are measured as a function of temperature, radiation dose, and the frequency difference ..delta..f of the microwave frequencies used. The cross-relaxation times are nearly temperature independent and depend on ..delta..f/sup 2/ at doses where the spin concentrations approach uniformity; these features indicate the dominance of single step over multistep cross-relaxation processes. Equations have been derived to relate the dipolar cross-relaxation distance to the measured cross-relaxation times, and it is suggested that the cross-relaxation line shape is Lorentzian in magnetically dilute systems. Typical electron--radical correlation distances in these organic glasses are 10 A. (AIP)
Solid State NMR Study of Polystyrene Nanolatex Particles(I) 13C Spin-Lattice Relaxation Time
无
2001-01-01
13C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.
Chahid, M
2000-01-01
The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T sub i to a final one T sub f very close to the critical temperature T sub c. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and psi. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and psi, a lowest-order coupling - Cphi (cursive,open) Greek psi, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters delta phi (cursive,open) Greek and delta psi from the equilibrium state. We find that this time dependence ...
Structure of Student Time Management Scale (STMS)
Balamurugan, M.
2013-01-01
With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…
Some Nonlinear Dynamic Inequalities on Time Scales
Wei Nian Li; Weihong Sheng
2007-11-01
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential equation, J. Math. Anal. Appl. 251 (2000) 736--751).
The Second Noether Theorem on Time Scales
Agnieszka B. Malinowska
2013-01-01
Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.
The second Noether theorem on time scale
Malinowska, Agnieszka B.; Martins, Natália
2014-01-01
We extend the second Noether theorem to variational problems on time scales. Our result provides as corollaries the classical second Noether theorem, the second Noether theorem for the $h$-calculus and the second Noether theorem for the $q$-calculus.
Some Nonlinear Integral Inequalities on Time Scales
Li Wei Nian
2007-01-01
Full Text Available The purpose of this paper is to investigate some nonlinear integral inequalities on time scales. Our results unify and extend some continuous inequalities and their corresponding discrete analogues. The theoretical results are illustrated by a simple example at the end of this paper.
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to Ne
Yoshioka, Sumie; Aso, Yukio; Osako, Tsutomu; Kawanishi, Toru
2008-10-01
In order to examine the possibility of determining the molecular mobility of hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation measurement, spin-spin relaxation and spin-lattice relaxation were measured for the 11 API hydrates listed in the Japanese Pharmacopeia using pulsed (1)H-NMR. For hydration water that has relatively high mobility and shows Lorentzian decay, molecular mobility as determined by spin-spin relaxation time (T(2)) was correlated with ease of evaporation under both nonisothermal and isothermal conditions, as determined by DSC and water vapor sorption isotherm analysis, respectively. Thus, T(2) may be considered a useful parameter which indicates the molecular mobility of hydration water. In contrast, for hydration water that has low mobility and shows Gaussian decay, T(2) was found not to correlate with ease of evaporation under nonisothermal conditions, which suggests that in this case, the molecular mobility of hydration water was too low to be determined by T(2). A wide range of water mobilities was found among API hydrates, from low mobility that could not be evaluated by NMR relaxation time, such as that of the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated by this method, such as that of the water molecules in ceftazidime hydrate. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.
2013-09-01
This paper concerns with the possibilities of computational intelligence application for simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases by pulsed photoacoustics. Results regarding the application of neural computing through the use of feed-forward multilayer perception networks are presented. Feed-forward multilayer perception networks are trained in an offline batch training regime to estimate simultaneously, and in real-time, the laser beam spatial profile (profile shape class) and the vibrational-to-translational relaxation time from given (theoretical) photoacoustic signals. The proposed method significantly shortens the time required for the simultaneous determination of the laser beam spatial profile and relaxation time and has the advantage of accurately calculating the aforementioned quantities.
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
WIERDA, JMKH; VANDENBROEK, L; PROOST, JH; VERBAAN, BW; HENNIS, PJ
1993-01-01
In a randomized study, we evaluated lag time (time from the end of injection of muscle relaxant until the first depression of the train-of-four response [TOF]), onset time (time from the end of injection of muscle relaxant until the maximum depression of the first twitch of the TOF [T1]), neuromuscu
Existence of the transverse relaxation time in optically excited bulk semiconductors
Zhang Hai-Chao; Lin Wei-Zhu; Wang Yu-Zhu
2006-01-01
Two basic types of depolarization mechanisms,carrier-carrier (CC) and carrier-phonon (CP) scattering,are investigated in optically excited bulk semiconductors (3D),in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements.The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1-COSx),wherex are the scattering angles.Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach,and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations.These formulas,which reveal the trivial role of the Coulomb screening effect in the depolarization processes,are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.
Structural relaxation time and cooling rate of a melt in the glass transition region
Sanditov, D. S.; Sydykov, B. S.
2015-03-01
The nature of the parameter involved in the Bartenev equation qτg = C relating the cooling rate of a glass-forming melt to its structural relaxation time in the glass transition region is discussed on the basis of the Volkenshtein-Ptitsyn theory using a number of known relationships. It is established that parameter C for amorphous substances with the same fragility is linearly temperature dependent. This parameter is shown to equal the narrow temperature range δ T g characterizing the liquid-glass transition region (by Nemilov); i.e., C = δ T g. It is concluded that δ T g for most glassy systems is only ˜0.7% of the glass transition temperature T g. The narrowness of temperature range δ T g is explained by the small fluctuation volume fraction f g "frozen" at the glass transition temperature. The concept of a close relationship between constant C and the structural order at T g (i.e., the characteristic of the inner state of a nonequilibrium "frozen" amorphous system) is developed.
Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell
2013-01-01
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.
Socratous, Josephine; Watanabe, Shun; Banger, Kulbinder K.; Warwick, Christopher N.; Branquinho, Rita; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Sirringhaus, Henning
2017-01-01
Despite the success of exploiting the properties of amorphous oxide semiconductors for device applications, the charge transport in these materials is still not clearly understood. The observation of a definite Hall voltage suggests that electron transport in the conduction band is free-electron-like. However, the temperature dependence of the Hall and field-effect mobilities cannot be explained using a simple bandlike model. Here, we perform gated Hall effect measurements in field-effect transistors, which allow us to make two independent estimates of the charge carrier concentration and determine the Hall factor providing information on the energy dependence of the relaxation time. We demonstrate that the Hall factor in a range of sputtered and solution-processed quaternary amorphous oxides, such as a-InGaZnO, is close to two, while in ternary oxides, such as InZnO, it is near unity. This suggests that quaternary elements like Ga act as strong ionized impurity scattering centers in these materials.
Doeblin, Patrick, E-mail: Patrick.doeblin@charite.de [Department of Cardiology, Charité – Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin (Germany); Schilling, Rene, E-mail: rene.schilling@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Wagner, Moritz, E-mail: moritz.wagner@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Luhur, Reny, E-mail: renyluhur@yahoo.com [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Huppertz, Alexander, E-mail: alexander.huppertz@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Imaging Science Institute, Charité, Berlin (Germany); Hamm, Bernd, E-mail: bernd.hamm@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Taupitz, Matthias, E-mail: matthias.taupitz@harite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); and others
2014-04-15
Purpose: To evaluate T1-relaxation times of chronic myocardial infarction (CMI) using gadobutrol and gadopentetate dimeglumine (Gd-DTPA) over time and to determine the optimal imaging window for late enhancement imaging with both contrast agents. Material and methods: Twelve patients with CMI were prospectively included and examined on a 1.5 T magnetic resonance (MR) system using relaxivity-adjusted doses of gadobutrol (0.15 mmol/kg) and Gd-DTPA (0.2 mmol/kg) in random order. T1-relaxation times of remote myocardium (RM), infarcted myocardium (IM), and left ventricular cavity (LVC) were assessed from short-axis TI scout imaging using the Look–Locker approach and compared intraindividually using a Wilcoxon paired signed-rank test (α < 0.05). Results: Within 3 min of contrast agent administration (CA), IM showed significantly lower T1-relaxation times than RM with both contrast agents, indicating beginning cardiac late enhancement. Differences between gadobutrol and Gd-DTPA in T1-relaxation times of IM and RM were statistically not significant through all time points. However, gadobutrol led to significantly higher T1-relaxation times of LVC than Gd-DTPA from 6 to 9 min (220 ± 15 ms vs. 195 ± 30 ms p < 0.01) onwards, resulting in a significantly greater ΔT1 of IM to LVC at 9–12 min (−20 ± 35 ms vs. 0 ± 35 ms, p < 0.05) and 12–15 min (−25 ± 45 ms vs. −10 ± 60 ms, p < 0.05). Using Gd-DTPA, comparable ΔT1 values were reached only after 25–35 min. Conclusion: This study indicates good delineation of IM to RM with both contrast agents as early as 3 min after administration. However, we found significant differences in T1 relaxation times with greater ΔT1 IM–LVC using 0.15 mmol/kg gadobutrol compared to 0.20 mmol/kg Gd-DTPA after 9–15 min post-CA suggesting earlier differentiability of IM and LVC using gadobutrol.
Long Spin Relaxation and Coherence Times of Electrons In Gated Si/SiGe Quantum Dots
He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.
2012-02-01
Single electron spin states in semiconductor quantum dots are promising candidate qubits. We report the measurement of 250 μs relaxation (T1) and coherence (T2) times of electron spins in gated Si/SiGe quantum dots at 350 mK. The experiments used conventional X-band (10 GHz) pulsed electron spin resonance (pESR), on a large area (3.5 x 20 mm^2) dual-gate undoped high mobility Si/SiGe heterostructure sample, which was patterned with 2 x 10^8 quantum dots using e-beam lithography. Dots having 150 nm radii with a 700 nm period are induced in a natural Si quantum well by the gates. The measured T1 and T2 at 350 mK are much longer than those of free 2D electrons, for which we measured T1 to be 10 μs and T2 to be 6.5 μs in this gated sample. The results provide direct proof that the effects of a fluctuating Rashba field have been greatly suppressed by confining the electrons in quantum dots. From 0.35 K to 0.8 K, T1 of the electron spins in the quantum dots shows little temperature dependence, while their T2 decreased to about 150 μs at 0.8 K. The measured 350 mK spin coherence time is 10 times longer than previously reported for any silicon 2D electron-based structures, including electron spins confined in ``natural quantum dots'' formed by potential disorder at the Si/SiO2ootnotetextS. Shankar et al., Phys. Rev. B 82, 195323 (2010) or Si/SiGe interface, where the decoherence appears to be controlled by spin exchange.
Kjaer, L; Henriksen, O
1988-01-01
(PSIR) sequence with TR varying between 0.24 and 8.0 s. The median T1 relaxation times obtained in cortical grey matter and cerebrospinal fluid were significantly shorter in the IR experiments at TR = 2 s than in those carried out at TR = 4 s. Concerning white matter the discrepancy was much less...
van Dijk, H; Hermens, Hermanus J.
Objective: To examine the combined effect of age and timing of augmented feedback on learning muscle relaxation. Performing a gross motor task, subjects had to lower their trapezius muscle activity using the electromyographic signal as visual myofeedback. Design: Healthy subjects (16 young adults:
Significance of time scale differences in psychophysics.
Klonowski, W
2009-02-01
We present modeling of both rational processes (thoughts) and emotional processes (feelings) on a two-dimensional lattice and on extremely simplified two-dimensional phase space of the brain. Our purpose is to analyze influence of differences in time-scales of various types of processes. In particular, we show that no 'central executive structure' between consciousness and unconsciousness, the existence of which was suggested by psychologists, is not needed.
Scaling of light and dark time intervals.
Marinova, J
1978-01-01
Scaling of light and dark time intervals of 0.1 to 1.1 s is performed by the mehtod of magnitude estimation with respect to a given standard. The standards differ in duration and type (light and dark). The light intervals are subjectively estimated as longer than the dark ones. The relation between the mean interval estimations and their magnitude is linear for both light and dark intervals.
Special Issue on Time Scale Algorithms
2008-01-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...Paris at the BIPM in 2002 (see Metrologia 40 (3), 2003) • 5th Symposium: in San Fernando, Spain at the ROA in 2008. The early symposia were concerned
Liquidity crises on different time scales
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Spurious Small-Scale Structure & Discreteness-Driven Relaxation in Cosmological Simulations
Power, Chris; Obreschkow, Danail; Hobbs, Alexander; Lewis, Geraint F
2016-01-01
There is strong evidence that cosmological N-body simulations dominated by Warm Dark Matter (WDM) contain spurious or unphysical haloes, most readily apparent as regularly spaced low-mass haloes strung along filaments. We show that spurious haloes are a feature of traditional N-body simulations of cosmological structure formation models, including WDM and Cold Dark Matter (CDM) models, in which gravitational collapse proceeds in an initially anisotropic fashion, and arises naturally as a consequence of discreteness-driven relaxation. We demonstrate this using controlled N-body simulations of plane-symmetric collapse and show that spurious haloes are seeded at shell crossing by localised velocity perturbations induced by the discrete nature of the density field, and that their characteristic separation should be approximately the mean inter-particle separation of the N-body simulation, which is fixed by the mass resolution within the volume. Using cosmological N-body simulations in which particles are split in...
Boddy, A M; McGowen, M R; Sherwood, C C; Grossman, L I; Goodman, M; Wildman, D E
2012-05-01
There is a well-established allometric relationship between brain and body mass in mammals. Deviation of relatively increased brain size from this pattern appears to coincide with enhanced cognitive abilities. To examine whether there is a phylogenetic structure to such episodes of changes in encephalization across mammals, we used phylogenetic techniques to analyse brain mass, body mass and encephalization quotient (EQ) among 630 extant mammalian species. Among all mammals, anthropoid primates and odontocete cetaceans have significantly greater variance in EQ, suggesting that evolutionary constraints that result in a strict correlation between brain and body mass have independently become relaxed. Moreover, ancestral state reconstructions of absolute brain mass, body mass and EQ revealed patterns of increase and decrease in EQ within anthropoid primates and cetaceans. We propose both neutral drift and selective factors may have played a role in the evolution of brain-body allometry.
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Salgado, J; Pisarski, Rob D.
1998-01-01
The real time evolution of field condensates is solved for small and large field amplitudes in scalar theories.For small amplitudes,the quantum equations of motion for the condensate can be linearized and solved by Laplace transform. The late time evolution turns to be determined by the singularities in the complex plane (one-particle poles, two- and multi- particle cuts, Landau cuts for non-zero initial temperature). In hot scalar electrodynamics, we solve the real time evolution of field condensates with soft length scales \\sim k^{-1}>(eT)^{-1}. Transverse gauge invariant condensates relax as 1/t^2 to amplitudes determined by the quasiparticle poles. We rederive the HTL action using the non-equilibrium field theory techniques.In the nonlinear regime (for large initial energy densities) we analyze the dynamics of dissipation and relaxation in scalar theory after linear unstabilities are shut-off by the quantum back-reaction. A new time scale emerges that separates the linear from the non-linear regimes. This...
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
uncertain dynamic systems on time scales
V. Lakshmikantham
1995-01-01
Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.
Time-Scale Invariant Audio Data Embedding
Mansour Mohamed F
2003-01-01
Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K., E-mail: akshch@list.ru [Department of Statistical Physics, Faculty of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvoretz, St. Petersburg 198504 (Russian Federation)
2015-09-28
We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.
Mukaimoto, Takahiro; Semba, Syun; Inoue, Yosuke; Ohno, Makoto
2014-01-01
The purpose of this study was to examine the changes in the metabolic state of quadriceps femoris muscles using transverse relaxation time (T2), measured by muscle functional magnetic resonance (MR) imaging, after inactive or active recovery exercises with different intensities following high-intensity knee-extension exercise. Eight healthy men performed recovery sessions with four different conditions for 20 min after high-intensity knee-extension exercise on separate days. During the recovery session, the participants conducted a light cycle exercise for 20 min using a cycle (50%, 70% and 100% of the lactate threshold (LT), respectively: active recovery), and inactive recovery. The MR images of quadriceps femoris muscles were taken before the trial and after the recovery session every 30 min for 120 min. The percentage changes in T2 for the rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT were significantly lower than those in either inactive recovery or 100% LT. There were no significant differences in those for vastus lateralis and vastus intermedius muscles among the four trials. The percentage changes in T2 of rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in either inactive recovery or 100% LT. Those of vastus lateralis and vastus intermedius muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in 100% LT. Although the changes in T2 after active recovery exercises were not uniform in exercised muscles, the results of this study suggest that active recovery exercise with the intensities below LT are more effective to recover the metabolic state of quadriceps femoris muscles after intense exercise than with either intensity at LT or inactive recovery.
Herrera, Adriana P.; Polo-Corrales, Liliana [Department of Chemical Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Chavez, Ermides; Cabarcas-Bolivar, Jari [Department of Physics, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Uwakweh, Oswald N.C. [Department of General Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Rinaldi, Carlos, E-mail: crinaldi@uprm.edu [Department of Chemical Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States)
2013-02-15
nanoparticles that relax through a single relaxation mechanism. The resulting nanoparticles would be suitable for sensors based on the Brownian relaxation mechanism and in determining mechanical properties of complex fluids at the size scale of the nanoparticles. - Graphical Abstract: The aging time of the oleate precursor influenced the crystal structure, size, magnetic properties, and AC susceptibility of cobalt ferrite nanoparticles synthesized by the thermal decomposition method, resulting in crossing of the in-phase {chi} Prime and out-of-phase {chi} Double-Prime components of the complex susceptibility, an attribute of a collection of nanoparticles with a single dominant magnetic relaxation mechanism. Highlights: Black-Right-Pointing-Pointer Effect of aging of an iron-cobalt oleate precursor on properties of CoFe{sub 2}O{sub 4} nanoparticles was evaluated. Black-Right-Pointing-Pointer Aging of the iron-cobalt oleate resulted in changes in its thermo physical properties. Black-Right-Pointing-Pointer Nanoparticles obtained with precursor aged for 2 days showed evidence of an impurity phase. Black-Right-Pointing-Pointer Aging for 15-30 days resulted in nanoparticles with predominantly Brownian magnetic relaxation.
Vazina, A. A.; Gadzhiev, A. M.; Gerasimov, V. S.; Gorbunova, N. P.; Sergienko, P. M.; Korneev, V. N.; Aulchenko, V. M.; Baru, S. E.
1995-02-01
The use of the modern time-resolved X-ray diffraction and sample technique has played an important role in studying muscle structures during contraction at various physiological conditions. We represent time-resolved X-ray data on equatorial diffraction and tension response of the frog sartorius muscle during relaxation. The measurements of the time-course of the intensity change of reflections (1,0), (1,1) and the background under them give a possibility to study the effect of potentiation of contraction by repetitive stimulation in fresh and tired muscles. Model calculations of meridional diffraction patterns for various configurations of cross-bridges in the relaxation phase were carried out.
Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid
Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom;
2013-01-01
asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...
A stable and accurate relaxation technique using multiple penalty terms in space and time
Frenander, Hannes; Nordström, Jan
2017-09-01
A new method for data relaxation based on weak imposition of external data is introduced. The technique is simple, easy to implement, and the resulting numerical scheme is unconditionally stable. Numerical experiments show that the error growth naturally present in long term simulations can be prevented by using the new technique.
Discounting in Games across Time Scales
Krishnendu Chatterjee
2010-06-01
Full Text Available We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes, then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value.
Discounting in Games across Time Scales
Chatterjee, Krishnendu; 10.4204/EPTCS.25.6
2010-01-01
We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value.
Extension of gyrokinetics to transport time scales
Parra, Felix I
2013-01-01
Gyrokinetic simulations have greatly improved our theoretical understanding of turbulent transport in fusion devices. Most gyrokinetic models in use are delta-f simulations in which the slowly varying radial profiles of density and temperature are assumed to be constant for turbulence saturation times, and only the turbulent electromagnetic fluctuations are calculated. New massive simulations are being built to self-consistently determine the radial profiles of density and temperature. However, these new codes have failed to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, are only valid for delta-f simulations that do not reach the longer transport time scales necessary to evolve radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric radial electric field is a challenging problem requiring substantial modifications to gyrokinetic treatments. In this thesis, I study the effect of turbulence o...
Relaxation of liquid bridge after droplets coalescence
Jiangen Zheng
2016-11-01
Full Text Available We investigate the relaxation of liquid bridge after the coalescence of two sessile droplets resting on an organic glass substrate both experimentally and theoretically. The liquid bridge is found to relax to its equilibrium shape via two distinct approaches: damped oscillation relaxation and underdamped relaxation. When the viscosity is low, damped oscillation shows up, in this approach, the liquid bridge undergoes a damped oscillation process until it reaches its stable shape. However, if the viscous effects become significant, underdamped relaxation occurs. In this case, the liquid bridge relaxes to its equilibrium state in a non-periodic decay mode. In depth analysis indicates that the damping rate and oscillation period of damped oscillation are related to an inertial-capillary time scale τc. These experimental results are also testified by our numerical simulations with COMSOL Multiphysics.
Spur in pico-second time scales
Gopinathan, C.; Girija, G. (Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.)
1983-01-01
The spur diffusion model of aqueous radiation chemistry, proposed in 1953, had run into difficulties with the development of pico-second pulse radiolysis in the late 1960s and early seventies. Using the same values for spur parameters, it was impossible to get good agreement with e/sup -/sub(aq) and OH decay in pico and nano second time scales as well as the steady state molecular product yield measurements. This inconsistency was removed by us by assuming that for a given number of dissociations, a number of radii values for the spur are possible, these radii values being related in a gaussian manner. This new approach proved highly successful in getting agreement between the predictions of the spur diffusion model and the pulse radiolysis results as well as the steady state molecular product yield measurements. Our computations have been extended to cover the entire range of spurs from a single dissociation spur to a thirty dissociation spur. Here again agreement with experimental results is good. This approach also gives interesting insights about the spur formation processes in pico and possibly femto second time scales. We have calculated rate constants for the reactions involving the 'precursor' of the hydrated electron with a number of ions.
I. V. Glazunov
2016-01-01
Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns.
Kühne Titus
2010-07-01
Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.
Ethofer, Thomas; Mader, Irina; Seeger, Uwe; Helms, Gunther; Erb, Michael; Grodd, Wolfgang; Ludolph, Albert; Klose, Uwe
2003-12-01
In vivo longitudinal relaxation times of N-acetyl compounds (NA), choline-containing substances (Cho), creatine (Cr), myo-inositol (mI), and tissue water were measured at 1.5 and 3 T using a point-resolved spectroscopy (PRESS) sequence with short echo time (TE). T(1) values were determined in six different brain regions: the occipital gray matter (GM), occipital white matter (WM), motor cortex, frontoparietal WM, thalamus, and cerebellum. The T(1) relaxation times of water protons were 26-38% longer at 3 T than at 1.5 T. Significantly longer metabolite T(1) values at 3 T (11-36%) were found for NA, Cho, and Cr in the motor cortex, frontoparietal WM, and thalamus. The amounts of GM, WM, and cerebrospinal fluid (CSF) within the voxel were determined by segmentation of a 3D image data set. No influence of tissue composition on metabolite T(1) values was found, while the longitudinal relaxation times of water protons were strongly correlated with the relative GM content. Copyright 2003 Wiley-Liss, Inc.
Papaléo, R. M.; Leal, R.; Carreira, W. H.; Barbosa, L. G.; Bello, I.; Bulla, A.
2006-09-01
We report on measurements of relaxation times of nanometer-sized deformations resulting from the impact of individual energetic ions on poly(methyl methacrylate) surfaces at temperatures close to and below the glass transition Tg . The temporal evolution of the dimensions of the deformations is well described by a stretched exponential function, but with relaxation times τ(T) many orders of magnitude smaller than bulk values at the same T . The local Tg was around 86°C , roughly 30°C below the conventional bulk Tg . At the vicinity of the local Tg , τ(T) follows the Vogel-Fulcher type of T dependence, but at lower T a transition towards a less steep behavior is seen.
Intraband relaxation time in wurtzite InGaN quantum-well lasers and comparison with experiment
Park, S H
1999-01-01
The intraband relaxation time for wurtzite (WZ) 3.5-nm In sub 0 sub . sub 1 sub 5 Ga sub 0 sub . sub 8 sub 5 N/In sub 0 sub . sub 0 sub 2 Ga sub 0 sub . sub 9 sub 8 N quantum well (QW) lasers is investigated theoretically. The results are also compared with those obtained from fitting the experimental data with a non-Markovian gain model with many-body effects. An intraband relaxation time of 25 fs is obtained from the comparison with experiment, which is in reasonably good agreement with the calculated value of 20 fs at the subband edge. These values are significantly shorter than those (40 - 100 sf) reported for zinc-blende crystals, such as InP and GaAs. This is because the hole effective masses of GaN are larger than those of GaAs and InP.
SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats
Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)
2015-06-15
Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)
Yao, Weiwu; Qu, Nan; Lu, Zhihua; Yang, Shixun [Shanghai Jiaotong University, Department of Radiology, Shanghai (China)
2009-11-15
We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3{+-}27.7, 458.0{+-}55.9, 405.9{+-}57.3, and 357.9{+-}36.7 respectively (p<0.001). The mean T2 relaxation times of the four groups were: 37.8{+-}3.3, 44.0{+-}8.5, 50.9{+-}9.5, and 57.4{+-}4.8 respectively (p<0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p<0.001). No significant differences between the normal and OA groups using MTR were noted. T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding. (orig.)
Li Kai; Yang Shanlin
2008-01-01
A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time.Models and relaxations are collected.Most of these problems are NP-hard,in the strong sense,or open problems,therefore approximation algorithms are studied.The review reveals that there exist some potential areas worthy of further research.
Marzola, Luca; Raidal, Martti
2016-11-01
Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.
EDITORIAL: Special issue on time scale algorithms
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
Polarized alkali vapor with minute-long transverse spin-relaxation time
Balabas, Misha; Ledbetter, Micah; Budker, Dmitry
2010-01-01
We demonstrate lifetimes of atomic populations and coherences in excess of 60 seconds in alkali vapor cells with inner walls coated with an alkene material. This represents two orders of magnitude improvement over the best paraffin coatings. Such anti-relaxation properties will likely lead to substantial improvements in atomic clocks, magnetometers, quantum memory, and enable sensitive studies of collisional effects and precision measurements of fundamental symmetries.
Measurement of relaxation times by NMR-CT of electric superconductivity
Shimizu, Koji; Yoshitoshi, Motosada (Shimadzu Corp., Kyoto (Japan)); Narise, Shoji; Hirakawa, Kogi
1984-08-01
Relaxation curves of T/sub 1/ in various tissues of the brain in patients with cerebral tumor and in healthy controls were obtained by saturation-recovery and inversion-recovery methods, whereby T/sub 1/ values were calculated. The results obtained were in good agreement with in vitro measurement results of excised brain tissues. Prolongation of T/sub 1/ values was evidently observed with increasing the strength of static magnetic field.
Xue, Yuting; Mishra, Brijes; Gao, Danqing
2017-09-01
Field observations have demonstrated that roof failure occurs spatially in a mine from the time of excavation. It is suspected that time-dependent deformation propagates failure in the rock mass. In this paper, the relaxation test is used to study variation in the time-dependent property of rock and the consequent effect on time-dependent roof failure. This investigation uses a numerical simulation in 3DEC. The relaxation equation is developed from Burgers model. Variations in the time-dependent property in the post-failure region show negligible variation and, therefore, are averaged to represent the time-dependent property of the failed rock. Finally, these parameters are used in the numerical simulation of underground excavations. Two groups of parameters are used to represent the time-dependent property for pre- and post-failure conditions. FISH functions within 3DEC are used to monitor the state of each zone. Once failure is detected, the parameters are changed to the values corresponding to failed rock. The results show that the new relaxation model accurately predicts the time-dependent propagation of the failure zone. The variation of the time-dependent parameters significantly affects the rock mass behavior and roof convergence.
Dreher, Wolfgang; Bardenhagen, Ingo; Huang, Li; Bäumer, Marcus
2016-04-01
Modern NMR imaging systems used for biomedical research are equipped with B0 gradient systems with strong maximum gradient strength and short switching time enabling (1)H NMR measurements of samples with very short transverse relaxation times. However, background signal originating from non-optimized RF coils may hamper experiments with ultrashort delays between RF excitation and signal reception. We demonstrate that two simple means, outer volume suppression and the use of shaped B0 fields produced by higher-order shim coils, allow a considerable suppression of disturbing background signals. Thus, the quality of NMR images acquired at ultrashort or zero echo time is improved and systematic errors in quantitative data evaluation are avoided. Fields of application comprise MRI with ultrashort echo time or relaxation time analysis, for both biomedical research and characterizing porous media filled with liquids or gases.
Time Horizon and Social Scale in Communication
Krantz, D. H.
2010-12-01
In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large
Scaling Fire Regimes in Space and Time.
Falk, D. A.
2004-12-01
Spatial and temporal variability are important properties of the forest fire regimes of coniferous forests of southwestern North America. We use a variety of analytical techniques to examine scaling in a surface fire regime in the Jemez Mountains of northern New Mexico, USA, based on an original data set collected from Monument Canyon Research Natural Area (MCN). Spatio-temporal scale dependence in the fire regime can be analyzed quantitatively using statistical descriptors of the fire regime, such as fire frequency and mean fire interval. We describe a theory of the event-area (EA) relationship, an extension of the species-area relationship for events distributed in space and time; the interval-area (IA) relationship, is a related form for fire intervals. We use the EA and IA to demonstrate scale dependence in the MCN fire regime. The slope and intercept of these functions are influenced by fire size, frequency, and spatial distribution, and thus are potentially useful metrics of spatio-temporal synchrony of events in the paleofire record. Second, we outline a theory of fire interval probability, working from first principles in fire ecology and statistics. Fires are conditional events resulting from the interaction of multiple contingent factors that must be satisfied for an event to occur. Outcomes of this kind represent a multiplicative process for which a lognormal model is the limiting distribution. We examine the application of this framework to two probability models, the Weibull and lognormal distributions, which can be used to characterize the distribution of fire intervals over time. Lastly, we present a general model for the collector's curve, with application to the theory and effects of sample size in fire history. Sources of uncertainty in fire history can be partitioned into an error typology; analytical methods used in fire history (particularly the formation of composite fire records) are designed to minimize certain types of error in inference
Stress relaxation in viscous soft spheres.
Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P
2017-09-27
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Relaxing the Electroweak Scale: the Role of Broken dS Symmetry
Patil, Subodh P
2016-01-01
Recently, a novel mechanism to address the hierarchy problem has been proposed \\cite{Graham:2015cka}, where the hierarchy between weak scale physics and any putative `cutoff' $M$ is translated into a parametrically large field excursion for the so-called relaxion field, driving the Higgs mass to values much less than $M$ through cosmological dynamics. In its simplest incarnation, the relaxion mechanism requires nothing beyond the standard model other than an axion (the relaxion field) and an inflaton. In this note, we critically re-examine the requirements for successfully realizing the relaxion mechanism and point out that parametrically larger field excursions can be obtained for a given number of e-folds by simply requiring that the background break exact de Sitter invariance. We discuss several corollaries of this observation, including the interplay between the upper bound on the scale $M$ and the order parameter $\\epsilon$ associated with the breaking of dS symmetry, and entertain the possibility that t...
Bello, A.; Laredo, E.; Grimau, M.
1999-11-01
The existence of a distribution of relaxation times has been widely used to describe the relaxation function versus frequency in glass-forming liquids. Several empirical distributions have been proposed and the usual method is to fit the experimental data to a model that assumes one of these functions. Another alternative is to extract from the experimental data the discrete profile of the distribution function that best fits the experimental curve without any a priori assumption. To test this approach a Monte Carlo algorithm using the simulated annealing is used to best fit simulated dielectric loss data, ɛ''(ω), generated with Cole-Cole, Cole-Davidson, Havriliak-Negami, and Kohlrausch-Williams-Watts (KWW) functions. The relaxation times distribution, G(ln(τ)), is obtained as an histogram that follows very closely the analytical expression for the distributions that are known in these cases. Also, the temporal decay functions, φ(t), are evaluated and compared to a stretched exponential. The method is then applied to experimental data for α-polyvinylidene fluoride over a temperature range 233 Kflouride (PVDF) is found to be 87, which characterizes this polymer as a relatively structurally strong material.
Liu, Y H; Hawk, R M; Ramaprasad, S
1995-01-01
RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.
Henriksen, O; de Certaines, J D; Spisni, A;
1993-01-01
T1 and T2 relaxation times are fundamental parameters for signal contrast behaviour in MRI. A number of ex vivo relaxometry studies have dealt with the magnetic field dispersion of T1. By means of multicenter study within the frame of the COMAC BME Concerted Action on Tissue Characterization by MRI...... and MRS, the in vivo field dispersion of T1 and T2 has been measured in order to evaluate whether ex vivo data are representative for the in vivo situation. Brain, skeletal muscle, and liver of healthy human volunteers were studied. Fifteen MR units with a field strength ranging from 0.08 T to 1.5 T took...... part in the trial, which comprised 218 volunteers. All the MR systems were tested for measurement accuracy using the Eurospin TO5 test object. The measured relaxation data were subsequently corrected according to the obtained calibration curves. The results showed a clear field dispersion of T1...
Weston, Joseph; Waintal, Xavier
2016-04-01
We report on a "source-sink" algorithm which allows one to calculate time-resolved physical quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the nonequilibrium Green's function formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of generalized Schrödinger equations that include an additional "source" term (coming from the time-dependent perturbation) and an absorbing "sink" term (the electrodes). The algorithm execution time scales linearly with both system size and simulation time, allowing one to simulate large systems (currently around 106 degrees of freedom) and/or large times (currently around 105 times the smallest time scale of the system). As an application we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and recover the multiple Andreev reflection physics. We also discuss two intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is found for short junctions; a voltage pulse produces an oscillating current which, in the absence of electromagnetic environment, does not relax.
Träber, Frank; Block, Wolfgang; Lamerichs, Rolf; Gieseke, Jürgen; Schild, Hans H
2004-05-01
To measure 1H relaxation times of cerebral metabolites at 3 T and to investigate regional variations within the brain. Investigations were performed on a 3.0-T clinical whole-body magnetic resonance (MR) system. T2 relaxation times of N-acetyl aspartate (NAA), total creatine (tCr), and choline compounds (Cho) were measured in six brain regions of 42 healthy subjects. T1 relaxation times of these metabolites and of myo-inositol (Ins) were determined in occipital white matter (WM), the frontal lobe, and the motor cortex of 10 subjects. T2 values of all metabolites were markedly reduced with respect to 1.5 T in all investigated regions. T2 of NAA was significantly (P motor cortex (247 +/- 13 msec) than in occipital WM (301 +/- 18 msec). T2 of the tCr methyl resonance showed a corresponding yet less pronounced decrease (162 +/- 16 msec vs. 178 +/- 9 msec, P = 0.021). Even lower T2 values for all metabolites were measured in the basal ganglia. Metabolite T1 relaxation times at 3.0 T were not significantly different from the values at 1.5 T. Transverse relaxation times of the investigated cerebral metabolites exhibit an inverse proportionality to magnetic field strength, and especially T2 of NAA shows distinct regional variations at 3 T. These can be attributed to differences in relative WM/gray matter (GM) contents and to local paramagnetism. Copyright 2004 Wiley-Liss, Inc.
Relaxation Dynamics in Heme Proteins.
Scholl, Reinhard Wilhelm
A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the
Propagation of plane waves in thermoelastic cubic crystal material with two relaxation times
Rajneesh Kumar; Manjeet Singh
2007-01-01
A problem concerned with the reflection and refraction of thermoelastic plane waves an imperfect interface between two generalized thermally conducting cutimes has been investigated.The generalized thermoelastic theory with two relaxation of retiected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness,transverse stiffness,themlal contact conductance,slip and welded boundaries. Amplitude ratios of different reflected and graphically for different incident waves.It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.
Zhongliang Zu; Qi Liu; Yanming Yu; Song Gao; Shanglian Bao
2008-01-01
Driven equilibrium single pulse observation of T1(DESPOT1)is a rapid spin-lattice relaxation constant(T1)mapping technique in magnetic resonance imaging(MRI).However,DESPOT1 is very sensitive to flip angle(FA)inhomogeneity,resulting in T1 inaccuracy.Here,a five-point DESPOTl method is proposed to reduce the sensitivity to FA inhomogeneity through FA measurement and calibra-tion.Phantom and in vivo experiments are performed to validate the technique.As a result.a rapid and accurate T1 mapping is acquired by using the proposed five-point DESPOT1 method.
Fluctuations of a surface relaxation model in interacting scale free networks
Torres, Marcos F; Braunstein, Lidia A
2016-01-01
Isolated complex networks has been studied deeply in the last decades due to the fact that many real systems can be modeled using these type of structures. However, it is well known that the behavior of a system not only depends on itself, but usually also depends on the dynamics of other structures. For this reason, interacting complex networks and the processes developed on them have been the focus of study of many researches in the last years. One of the most studied subjects in this type of structures is the Synchronization problem, which is important in a wide variety of processes in real systems. In this manuscript we study the synchronization of two interacting scale-free networks, in which each node has $ke$ dependency links with different nodes in the other network. We map the synchronization problem with an interface growth, by studying the fluctuations in the steady state of a scalar field defined in both networks. We find that as $ke$ slightly increases from $ke=0$, there is a really significant d...
Fluctuations of a surface relaxation model in interacting scale free networks
Torres, M. F.; La Rocca, C. E.; Braunstein, L. A.
2016-12-01
Isolated complex networks have been studied deeply in the last decades due to the fact that many real systems can be modeled using these types of structures. However, it is well known that the behavior of a system not only depends on itself, but usually also depends on the dynamics of other structures. For this reason, interacting complex networks and the processes developed on them have been the focus of study of many researches in the last years. One of the most studied subjects in this type of structures is the Synchronization problem, which is important in a wide variety of processes in real systems. In this manuscript we study the synchronization of two interacting scale-free networks, in which each node has ke dependency links with different nodes in the other network. We map the synchronization problem with an interface growth, by studying the fluctuations in the steady state of a scalar field defined in both networks. We find that as ke slightly increases from ke = 0, there is a really significant decreasing in the fluctuations of the system. However, this considerable improvement takes place mainly for small values of ke, when the interaction between networks becomes stronger there is only a slight change in the fluctuations. We characterize how the dispersion of the scalar field depends on the internal degree, and we show that a combination between the decreasing of this dispersion and the integer nature of our growth model are the responsible for the behavior of the fluctuations with ke.
Buehler, Martin G.; Campbell, Zachary J.; Carter, Brady P.
2017-02-01
Dielectric relaxation methods are applicable to powdery materials such as carbohydrates. These materials have relaxations that occur in the milli-Hz range while samples are held at fixed temperatures and fixed water activities, a w, (relativity humidity). Under proper conditions these materials undergo physical changes where the initially glassy powder transitions to an amorphous equilibrium state at the glass transition temperature, T g. Determining this transition involves characterizing the boundary curve (T g versus a w) which determines T g and a w conditions where materials are stable with long-shelf life or unstable with very a short shelf-life. This paper serves to illustrate multiple methodologies which can be used to characterize glass transition from frequency-spectra. Three methodologies are described: peak-broadening, peak-shift, and single-frequency. The new single frequency method not only provides results that identical to those of the peak-shift method but increases the data acquisition speeds by a factor of 5. This method is illustrated on polydextrose, a common sugar substitute. The information gathered can then be used to construct the boundary curve which is used to characterize the shelf-life of a material at various conditions.
Madhukar N Shinde; Ravindra B Talware; Pravin G Hudge; Yogesh S Joshi; Ashok C Kumbharkhane
2012-02-01
The complex permittivity, static dielectric constant and relaxation time for 1,3-propanediol, 1,4-dioxane and their mixtures have been studied using time domain reﬂectometry (TDR). The excess permittivity, excess inverse relaxation time and Kirkwood correlation factor have also been determined at various concentrations of dioxane. Hydrogen bonded theory was applied to compute the correlation terms for the mixtures. The Bruggeman model for the nonlinear case has been ﬁtted to the dielectric data for mixtures.
Scaling of Langevin and molecular dynamics persistence times of nonhomogeneous fluids.
Olivares-Rivas, Wilmer; Colmenares, Pedro J
2012-01-01
The existing solution for the Langevin equation of an anisotropic fluid allowed the evaluation of the position-dependent perpendicular and parallel diffusion coefficients, using molecular dynamics data. However, the time scale of the Langevin dynamics and molecular dynamics are different and an ansatz for the persistence probability relaxation time was needed. Here we show how the solution for the average persistence probability obtained from the backward Smoluchowski-Fokker-Planck equation (SE), associated to the Langevin dynamics, scales with the corresponding molecular dynamics quantity. Our SE perpendicular persistence time is evaluated in terms of simple integrals over the equilibrium local density. When properly scaled by the perpendicular diffusion coefficient, it gives a good match with that obtained from molecular dynamics.
The effect of timing of intravenous muscle relaxant on the quality of double-contrast barium enema
Elson, E.M.; Campbell, D.M.; Halligan, S.; Shaikh, I.; Davitt, S.; Bartram, C.I
2000-05-01
AIM: To determine whether the timing of buscopan administration during double-contrast barium enema examination (DCBE) affects diagnostic quality. MATERIALS AND METHODS: In a prospective setting, 100 consecutive adult out-patients referred for DCBE received 20 mg buscopan (hyoscine-N-butylbromide) intravenously, either before infusion of barium suspension (Group A) or after barium infusion and gas insufflation (Group B). A subjective assessment of ease of contrast medium infusion was made at the time of examination and the films subsequently analysed by two radiologists unaware of the mode of relaxant administration, who noted the quality of mucosal coating and made subjective and objective measurements of segmental distension. RESULTS: There was no significant difference in screening times, infusion difficulty or colonic contrast medium coating between the two groups. Subjective assessment of distension of the caecum, ascending colon, transverse colon and rectum were not significantly different. Patients receiving intravenous relaxant after barium and gas infusion had less subjective descending (P = 0.05) and sigmoid (P = 0.04) colon distension, but there was no significant difference with respect to maximal bowel diameter in any of the segments measured. CONCLUSION: The timing of intravenous administration during DCBE is likely to have no significant effect on the diagnostic quality of the study. Elson, E.M. (2000)
Lai WL
2010-01-01
Full Text Available Abstract Ground penetrating radar (GPR was used to characterize the frequency-dependent dielectric relaxation phenomena in ordinary Portland cement (OPC hydration in concrete changing from fresh to hardened state. The study was experimented by measuring the changes of GPR A-scan waveforms over a period of 90 days, and processed the waveforms with short-time Fourier transform (STFT in joint time-frequency analysis (JTFA domain rather than a conventional time or frequency domain alone. The signals of the direct wave traveled at the concrete surface and the reflected wave from an embedded steel bar were transformed with STFT, in which the changes of peak frequency over ages were tracked. The peak frequencies were found to increase with ages and the patterns were found to match closely with primarily the well-known OPC hydration process and secondarily, the evaporation effect. The close match is contributed to the simultaneous effects converting free to bound water over time, on both conventional OPC hydration and dielectric relaxation mechanisms.
Detection of crossover time scales in multifractal detrended fluctuation analysis
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Noether theorem for Birkhoffian systems on time scales
Song, Chuan-Jing; Zhang, Yi
2015-10-01
Birkhoff equations on time scales and Noether theorem for Birkhoffian system on time scales are studied. First, some necessary knowledge of calculus on time scales are reviewed. Second, Birkhoff equations on time scales are obtained. Third, the conditions for invariance of Pfaff action and conserved quantities are presented under the special infinitesimal transformations and general infinitesimal transformations, respectively. Fourth, some special cases are given. And finally, an example is given to illustrate the method and results.
Tapia, O
2012-01-01
Femtosecond torsional relaxation processes experimentally detected and recently reported by Clark et al. (Nature Phys. 8,225 (2012)) are theoretically dissected with a Hilbert/Fock quantum physical (QP) framework incorporating entanglement of photon/matter base states overcoming standard semi-classic vibrational descriptions. The quantum analysis of a generic Z/E (cis/trans) isomerization in abstract QP terms shed light to fundamental roles played by photonic spin and excited electronic singlet coupled to triplet states. It is shown that one photon activation cannot elicit femtosecond phenomenon, while a two-photon pulse would do. Estimated time scales for the two-photon case indicate the process to lie between a slower than electronic Franck-Condon-like transition yet faster than (semi-classic) vibration relaxation ones.
Benchenane-Mehor, Halima, E-mail: halima_mehor_2000@yahoo.fr [Laboratoire CaSiCCE, Département de Génie Electrique, ENSET-Oran, B.P. 1523, El M’Naouer, 31000 Oran (Algeria); Laboratoire de Microphysique et de Nanophysique (LaMiN), Département de Physique-Chimie, ENSET-Oran, B.P. 1523 EL M’Naouer, 31000 Oran (Algeria); Soufi, Manil M.; Saiter, Jean-Marc; Benzohra, Mohamed [Laboratoire LECAP-AMME, EA 4528, Université de Rouen, Faculté des Sciences, Avenue de l' Université BP 12, 76801 Saint Etienne du Rouvray (France)
2013-03-01
The temporal technique analysis by a simplex optimization method of isothermal transient depolarization current measurements (Simplex-TSDC) is presented for the study of the glass transition domain of different polymers. The advantage of the present method compared to the classical TSDC is that it gives direct results comparable to the experiment and allows a good estimate of the relaxation time close to the glass transition temperature in dielectric thin films. The present method also allows a direct determination of two relaxation times corresponding to a fast and a slow dynamics; and then confirms the heterogeneous character of the molecular relaxation dynamics.
Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation.
Zhang, Y; Lapert, M; Sugny, D; Braun, M; Glaser, S J
2011-02-07
We consider the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence of relaxation and radiation damping effects, whose dynamics is governed by nonlinear equations generalizing the standard linear Bloch equations. For a single spin, the optimal control strategy can be fully characterized analytically. However, in order to take into account the inhomogeneity of the static magnetic field, an ensemble of isochromats at different frequencies must be considered. For this case, numerically optimized pulse sequences are computed and the dynamics under the corresponding optimal field is experimentally demonstrated using nuclear magnetic resonance techniques.
Zhi-Yong Wu
2014-07-01
Full Text Available The objective of this present study is to propose an approach to predict mass transfer time relaxation parameter for boiling simulation on the shell-side of LNG spiral wound heat exchanger (SWHE. The numerical model for the shell-side of LNG SWHE was established. For propane and ethane, a predicted value of mass transfer time relaxation parameter was presented through the equivalent evaporation simulations and was validated by the Chisholm void fraction correlation recommended under various testing conditions. In addition, heat transfer deviations between simulations using the predicted value of mass transfer time relaxation parameter and experiments from Aunan were investigated. The boiling characteristics of SWHE shell-side were also visualized based on the simulations with VOF model. The method of predicting mass transfer time relaxation parameter may be well applicable to various phase change simulations.
A Quaternary Geomagnetic Instability Time Scale
Singer, B. S.
2013-12-01
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought
Le Chatelier's principle with multiple relaxation channels
Gilmore, R.; Levine, R. D.
1986-05-01
Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.
Spin relaxation in nanowires by hyperfine coupling
Echeverria-Arrondo, C. [Department of Physical Chemistry, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); Sherman, E.Ya. [Department of Physical Chemistry, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE Basque Foundation for Science, 48011 Bilbao, Bizkaia (Spain)
2012-08-15
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Duarte, Max; Massot, Marc; Bourdon, Anne; Descombes, Stéphane; Dumont, Thierry
2011-01-01
This paper presents a new resolution strategy for multi-scale gas discharge simulations based on a second order time adaptive integration and space adaptive multiresolution. A classical fluid model is used to model plasma discharges, considering drift-diffusion equations and electric field computation. The proposed numerical method provides a time-space accuracy control of the solution, and thus, an effective accurate resolution independent of the fastest physical time scale. Important improvement of computational efficiency is achieved whenever the required time steps go beyond standard stability constraints associated with mesh size or source time scales for the resolution of drift-diffusion equations, whereas stability constraint related to dielectric relaxation time scale is respected but with second order precision. Numerical illustrations show that the strategy can be efficiently applied to simulate propagation of highly nonlinear ionizing waves as streamer discharges, as well as highly multi-scale nano...
Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc
2017-03-01
Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.
Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno; Fries, Peter
2017-01-01
Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2(⁎) may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2(⁎) in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2(⁎). Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 (-/-)) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2(⁎) correlate differently to disease severity and etiology of liver fibrosis. T2(⁎) shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 (-/-) mice. Measurements of T1 and T2(⁎) may therefore facilitate discrimination between different stages and causes of liver fibrosis.
Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno
2017-01-01
Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 −/−) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 −/− mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis. PMID:28194423
Andreas Müller
2017-01-01
Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.
The effects of proteoglycan and type II collagen on T1rho relaxation time of articular cartilage
Choi, Won Seok; Yoo, Hye Jin; Hong, Sung Hwan; Choi, Ja Young [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)
2015-02-15
To evaluate the effects of proteoglycan and type II collagen within articular cartilage on T1rho relaxation time of articular cartilage. This study was exempted by the institutional and animal review boards, and informed consent was not required. Twelve porcine patellae were assigned to three groups of control, trypsin-treated (proteoglycan-degraded), or collagenase-treated (collagen-degraded). The T1rho images were obtained with a 3 tesla magnetic resonance imaging scanner with a single loop coil. Statistical differences were detected by analysis of variance to evaluate the effects of the enzyme on T1rho relaxation time. Safranin-O was used to stain proteoglycan in the articular cartilage and immunohistochemical staining was performed for type II collagen. Mean T1rho values of the control, trypsin-treated, and collagenase-treated groups were 37.72 +/- 5.82, 57.53 +/- 8.24, and 45.08 +/- 5.31 msec, respectively (p < 0.001). Histology confirmed a loss of proteoglycan and type II collagen in the trypsin- and collagenase-treated groups. Degradation of proteoglycans and collagen fibers in the articular cartilage increased the articular cartilage T1rho value.
Nagasawa, Sh
2017-02-01
Paperboards are recognized to be important raw materials for packaging industry due to their advantages such as high strength-to-weight ratio, recyclability. Regarding the development of advanced packaging materials and the requirement of smart formed products, a study of sheet’s response behaviour is necessary for expanding the advanced converting industry. After introducing a couple of past research works concerned crease technologies, a fundamental mechanisms of crease deformation is reviewed using the scoring depth and the folding angle of a paperboard. Since one of important forming characteristics is a time-dependent stress relaxation or time-delayed strain during a fold/unfold process, the author’s experimental approaches for estimating a short term (less than 10 seconds) dynamic deformation behaviour of creased paperboard are discussed.
Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.
2016-09-01
Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.
Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.
2013-01-01
The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627
Master equation for the Unruh-DeWitt detector and the universal relaxation time in de Sitter space
Fukuma, Masafumi; Sugishita, Sotaro
2013-01-01
de Sitter space is known to have a thermal character. This can be best seen by an Unruh-DeWitt detector which stays in the Poincare patch and interacts with a scalar field in the Bunch-Davies vacuum. However, since the Bunch-Davies vacuum is the ground state only at the infinite past, if the scalar field starts in the ground state at a finite past, an Unruh-DeWitt detector then will feel as if it is in a medium that is not in thermodynamic equilibrium and that undergoes a relaxation to the equilibrium corresponding to the Bunch-Davies vacuum. In this paper, we first develop a general framework to treat such circumstances and write down the master equation which completely describes the finite time evolution of the density matrix of an Unruh-DeWitt detector in arbitrary background geometry. We then apply this framework to an ideal detector in de Sitter space which can get adjusted to its environment instantaneously, and show that the density distribution of the detector certainly exhibits a relaxation to the G...
Patrícia D Oliveira
Full Text Available The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums by an analysis of the overlap (c* and aggregation (c** concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers.
Abad, Laura; Bermejo, Dionisio; Herrero, Víctor J.; Santos, J.; Tanarro, Isabel
1997-01-01
The relaxation of the energy stored in the translational and rotational degrees of freedom of N2 and CH4 in the course of free jet expansions has been experimentally studied. Rotational temperatures along the expansion axis were obtained by means of stimulated Raman spectroscopy, and terminal flow velocities and translational temperatures were determined from supersonic beam time-of-flight measurements. From these measurements low-temperature cross sections for rotational relaxation have been...
Climate change relaxes the time constraints for late-born offspring in a long-distance migrant.
Tomotani, Barbara M; Gienapp, Phillip; Beersma, Domien G M; Visser, Marcel E
2016-09-28
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Local Observability of Systems on Time Scales
Zbigniew Bartosiewicz
2013-01-01
unified way using the language of real analytic geometry, ideals of germs of analytic functions, and their real radicals. It is shown that some properties related to observability are preserved under various discretizations of continuous-time systems.
Long-time data storage: relevant time scales
Elwenspoek, Miko C.
2011-01-01
Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habit
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.
Lidorikis, Elefterios; Bachlechner, Martina E.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2005-09-01
A hybrid atomistic-continuum simulation approach has been implemented to study strain relaxation in lattice-mismatched Si/Si3N4 nanopixels on a Si(111) substrate. We couple the molecular-dynamics (MD) and finite-element simulation approaches to provide an atomistic description near the interface and a continuum description deep into the substrate, increasing the accessible length scales and greatly reducing the computational cost. The results of the hybrid simulation are validated against full multimillion-atom MD simulations. We find that strain relaxation in Si/Si3N4 nanopixels may occur through the formation of a network of interfacial domain boundaries reminiscent of interfacial misfit dislocations. They result from the nucleation of domains of different interfacial bonding at the free edges and corners of the nanopixel, and subsequent to their creation they propagate inwards. We follow the motion of the domain boundaries and estimate a propagation speed of about ˜2.5×103m/s . The effects of temperature, nanopixel architecture, and film structure on strain relaxation are also investigated. We find: (i) elevated temperature increases the interfacial domain nucleation rates; (ii) a thin compliant Si layer between the film and the substrate plays a beneficial role in partially suppressing strain relaxation; and (iii) additional control over the interface morphology may be achieved by varying the film structure.
KUMAR, DEEPAK; SOUZA, RICHARD B.; SINGH, JUSTIN; CALIXTO, NATHANIEL E.; NARDO, LORENZO; LINK, THOMAS M.; LI, XIAOJUAN; MAJUMDAR, SHARMILA
2015-01-01
STUDY DESIGN Cross-sectional. OBJECTIVES To investigate the association between knee loading–related osteoarthritis (OA) risk factors (obesity, malalignment, and physical activity) and medial knee laminar (superficial and deep) T1rho and T2 relaxation times. BACKGROUND The interaction of various modifiable loading-related knee risk factors and cartilage health in knee OA is currently not well known. METHODS Participants with and without knee OA (n = 151) underwent magnetic resonance imaging at 3 T for superficial and deep cartilage T1rho and T2 magnetic resonance relaxation times in the medial femur (MF) and medial tibia (MT). Other variables included radiographic Kellgren-Lawrence (KL) grade, alignment, pain and symptoms using the Knee injury and Osteoarthritis Outcome Score, and physical activity using the International Physical Activity Questionnaire (IPAQ). Individuals with a KL grade of 4 were excluded. Group differences were calculated using 1-way analysis of variance, adjusting for age and body mass index. Linear regression models were created with age, sex, body mass index, alignment, KL grade, and the IPAQ scores to predict the laminar T1rho and T2 times. RESULTS Total IPAQ scores were the only significant predictors among the loading-related variables for superficial MF T1rho (P = .005), deep MT T1rho (P = .026), and superficial MF T2 (P = .049). Additionally, the KL grade predicted the superficial MF T1rho (P = .023) and deep MT T1rho (P = .022). CONCLUSION Higher physical activity levels and worse radiographic severity of knee OA, but not obesity or alignment, were associated with worse cartilage composition. PMID:25353261
OSCILLATION FOR NONAUTONOMOUS NEUTRAL DYNAMIC DELAY EQUATIONS ON TIME SCALES
无
2006-01-01
The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z+ of positive integers and for differential equations when the time scale is the set R of real numbers.
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
Zhang Qiang
2008-01-01
The dynamics of discrete time delayed Hopfield neural networks is investigated.By using a difference inequality combining with the linear matrix inequality,a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found.The result obtained holds not only for constant delay but also for time-varying delays.
Nuclear disassembly time scales using space time correlations
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others
1996-09-01
The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.
Nemati Hasan
2011-01-01
Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.
Macías-Hernández, Salvador Israel; Miranda-Duarte, Antonio; Ramírez-Mora, Isabel; Cortés-González, Socorro; Morones-Alba, Juan Daniel; Olascoaga-Gómez, Andrea; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania Inés; Cruz-Medina, Eva
2016-08-01
The objective of this study is to correlate T2 relaxation time (T2RT), measured by magnetic resonance imaging (MRI) with quadriceps and hamstring strength in young participants with risk factors for knee osteoarthritis (OA). A descriptive cross-sectional study was conducted with participants between 20 and 40 years of age, without diagnosis of knee OA. Their T2 relaxation time was measured through MRI, and their muscle strength (MS) was measured with an isokinetic dynamometer. Seventy-one participants were recruited, with an average age of 28.3 ± 5.5 years; 39 (55 %) were females. Negative correlations were found between T2RT and quadriceps peak torque (QPT) in males in the femur r = -0.46 (p = 0.01), tibia r = -0.49 (p = 0.02), and patella r = -0.44 (p = 0.01). In women, correlations were found among the femur r = -0.43 (p = 0.01), tibia r = -0.61 (p = 0.01), and patella r = -0.32 (p = 0.05) and among hamstring peak torque (HPT), in the femur r = -0.46 (p = 0.01), hamstring total work (HTW) r = -0.42 (p = 0.03), and tibia r = -0.33 (p = 0.04). Linear regression models showed good capacity to predict T2RT through QPT in both genders. The present study shows that early changes in femoral, tibial, and patellar cartilage are significantly correlated with MS, mainly QPT, and that these early changes might be explained by MS, which could play an important role in pre-clinical phases of the disease.
Pachowsky, Milena L; Trattnig, Siegfried; Apprich, Sebastian; Mauerer, Andreas; Zbyn, Stephan; Welsch, Goetz H
2013-11-01
The purpose of our study was to assess T2 and T2* relaxation time values of patella cartilage in healthy volunteers using three different coils at 3.0 Tesla MRI and their influence on the quantitative values. Fifteen volunteers were examined on the same 3-Tesla MR unit using three different coils: (i) a dedicated eight-channel knee phased-array coil; (ii) an eight-channel multi-purpose coil, and (iii) a one-channel 1H surface coil. T2 and T2* relaxation time measurements were prepared by a multi-echo spinecho respectively a gradient-echo sequence. A semi-automatic region-of-interest analysis was performed for patella cartilage. To allow stratification, a subregional analysis was carried out (deep-superficial cartilage layer). Statistical analysis-of-variance was performed. The mean quantitative T2 values showed statistically significant differences in all comparison combinations. The differences between the mean quantitative T2* values were slightly less pronounced than the T2 evaluation and only the comparison between (i) and (ii) showed a significant difference. The results of T2 and T2* values showed, independent of the used coil, higher values in the superficial zone compared to the deep zone (p < 0.05). Looking at the signal alterations, all coils showed clearly higher values (and thus more signal alterations as a sign of noise) in the deep layer. The validation of the reliability showed a high intra-class correlation coefficient and hence a very high plausibility (ICC was between 0.870 and 0.905 for T2 mapping and between 0.879 and 0.888 for T2* mapping). The present results demonstrate that biochemical T2 and T2* mapping is significantly dependent on the utilized coil.
Furuichi, M.; Nishiura, D.
2016-12-01
The complex dynamics of granular system is an essential part of natural processes such as crystal rich magma flow, accretion prism formation or tsunami sedimentation. Numerical modeling with Discrete Element Method (DEM) is an effective approach for understanding granular dynamics especially when the contact between particles induces strongly non-linear rheology (e.g. DEM-CFD simulation for magma reservoir [Bergantz et.al., Nature geo, 2015, Furuichi and Nishiura, G-cubed, 2014]). In Moving Lagrangian particle methods like DEM, a large number of particles is required to obtain an accurate solution. Therefore, an efficient parallelization of the code is important to handle huge particles system on HPC. However, since particles move around during the simulation, the workload between the different MPI processes becomes imbalance when using static sub-domains. To overcome this limitation, we present a new dynamic load balancing algorithms applicable to particle simulation methods such as DEM and Smoothed Particle Hydrodynamics (SPH) [Furuichi and Nishiura submitted to Comput. Phys. Comm.]. Our method utilizes flexible orthogonal domain decomposition in which the domain is divided into columns, each of which independently defines rectangle sub-domains by rows. We regard the difference of the executed time between neighbor logical processes as the residual of nonlinear problem of the domain change. The load balancing is attained by minimizing the residual within the framework of the iterative non-linear solver combined with the multi-grid level technique for the local relaxation. Scalability tests attest that the algorithm demonstrates close-to-optimal strong and weak scalability on the K-computer and the Earth Simulator. This result holds for even as well as uneven particle distribution, including different types of particles and heterogeneous computer architecture. We performed a DEM simulation with over 2 billion particles for demonstrating the proposed scheme. The
Long-Time Data Storage: Relevant Time Scales
Miko C. Elwenspoek
2011-02-01
Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.
Kockova, Radka; Kacer, Petr; Pirk, Jan; Maly, Jiri; Sukupova, Lucie; Sikula, Viktor; Kotrc, Martin; Barciakova, Lucia; Honsova, Eva; Maly, Marek; Kautzner, Josef; Sedmera, David; Penicka, Martin
2016-04-25
The aim of our study was to investigate the relationship between the cardiac magnetic resonance (CMR)-derived native T1 relaxation time and myocardial extracellular volume (ECV) fraction and the extent of diffuse myocardial fibrosis (DMF) on targeted myocardial left ventricular (LV) biopsy. The study population consisted of 40 patients (age 63±8 years, 65% male) undergoing valve and/or ascending aorta surgery for severe aortic stenosis (77.5%), root dilatation (7.5%) or valve regurgitation (15%). The T1 relaxation time was assessed in the basal interventricular septum pre- and 10-min post-contrast administration using the modified Look-Locker Inversion recovery sequence prior to surgery. LV myocardial biopsy specimen was obtained during surgery from the basal interventricular septal segment matched with the T1 mapping assessment. The percentage of myocardial collagen was quantified using picrosirius red staining. The average percentage of myocardial collagen was 22.0±14.8%. Both native T1 relaxation time with cutoff value ≥1,010 ms (sensitivity=90%, specificity=73%, area under the curve=0.82) and ECV with cutoff value ≥0.32 (sensitivity=80%, specificity=90%, area under the curve=0.85) showed high accuracy to identify severe (>30%) DMF. The native T1 relaxation time showed significant correlation with LV mass (P<0.01). Native T1 relaxation time and ECV at 10 min after contrast administration are accurate markers of DMF. (Circ J 2016; 80: 1202-1209).
Kim, Hee Kyung; Laor, Tal; Wong, Brenda [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Horn, Paul S. [University of Cincinnati, Cincinnati (United States)
2010-06-15
To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. Eleven boys with DMD (age range: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.
Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times
Andres, Björn; Köthe, Ullrich; Bonea, Andreea; Nadler, Boaz; Hamprecht, Fred A.
The purpose of image segmentation is to partition the pixel grid of an image into connected components termed segments such that (i) each segment is homogenous and (ii) for any pair of adjacent segments, their union is not homogenous. (If it were homogenous the segments should be merged). We propose a rigorous definition of segment homogeneity which is scale-free and adaptive to the geometry of segments. We motivate this definition using random walk theory and show how segment homogeneity facilitates the quantification of violations of the conditions (i) and (ii) which are referred to as under-segmentation and over-segmentation, respectively. We describe the theoretical foundations of our approach and present a proof of concept on a few natural images.
Khan, Sabeel M.; Hammad, M.; Sunny, D. A.
2017-08-01
In this article, the influence of thermal relaxation time and chemical reaction is studied on the MHD upper-convected viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation for the first time in the literature. The flow-governing equations are formulated and are converted into their respective ordinary differential equations (ODEs) with the application of similarity functions. The resulting system of coupled nonlinear ODEs is solved along with the prescribed conditions at boundary using a finite-difference code in MATLAB. Influence of chemical reaction, thermal relaxation time and internal material parameter on the macroscopic and micropolar velocities as well as on the temperature and concentration profiles is examined along with other physical parameters ( e.g., magnetic parameter, Eckert number, Prandtl number and fluid relaxation time). The accuracy of the obtained numerical solution is shown by comparing the physical parameters of interest with particular cases of existing results in the literature.
2016-01-01
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829
Grueneisen relaxation photoacoustic microscopy
Wang, Lidai; Zhang, Chi; Wang, Lihong V.
2014-01-01
The temperature-dependent property of the Grueneisen parameter has been employed in photoacoustic imaging mainly to measure tissue temperature. Here we explore this property using a different approach and develop Grueneisen-relaxation photoacoustic microscopy (GR-PAM), a technique that images non-radiative absorption with confocal optical resolution. GR-PAM sequentially delivers two identical laser pulses with a micro-second-scale time delay. The first laser pulse generates a photoacoustic signal and thermally tags the in-focus absorbers. Owing to the temperature dependence of the Grueneisen parameter, when the second laser pulse excites the tagged absorbers within the thermal relaxation time, a photoacoustic signal stronger than the first one is produced. GR-PAM detects the amplitude difference between the two co-located photoacoustic signals, confocally imaging the non-radiative absorption. We greatly improved axial resolution from 45 µm to 2.3 µm and at the same time slightly improved lateral resolution from 0.63 µm to 0.41 µm. In addition, the optical sectioning capability facilitates the measurement of the absolute absorption coefficient without fluence calibration. PMID:25379919
Cory Wyatt
2015-10-01
Conclusion: T1ρ imaging at 7T has been established as a viable imaging method for the differentiation of degenerated cartilage despite previous concerns over specific absorption rate and imaging time. The potential increased sensitivity of T1ρ and T2 imaging at 7T may be useful for future studies in the development of OA.
Maulik, Romit
2016-01-01
In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...
Vďačný, Peter
2015-08-01
The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes.
Bounds of Certain Dynamic Inequalities on Time Scales
Deepak B. Pachpatte
2014-10-01
Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.
Temperature dependence of fluctuation time scales in spin glasses
Kenning, Gregory G.; Bowen, J.; Sibani, Paolo;
2010-01-01
Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...
Zhen-Hua Chai; Tian-Shou Zhao
2012-01-01
In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.
Langer, S F J; Habazettl, H; Kuebler, W M; Pries, A R
2005-01-01
The left ventricular isovolumic pressure decay, obtained by cardiac catheterization, is widely characterized by the time constant tau of the exponential regression p(t)=Pomega+(P0-Pomega)exp(-t/tau). However, several authors prefer to prefix Pomega=0 instead of coestimating the pressure asymptote empirically; others present tau values estimated by both methods that often lead to discordant results and interpretation of lusitropic changes. The present study aims to clarify the relations between the tau estimates from both methods and to decide for the more reliable estimate. The effect of presetting a zero asymptote on the tau estimate was investigated mathematically and empirically, based on left ventricular pressure decay data from isolated ejecting rat and guinea pig hearts at different preload and during spontaneous decrease of cardiac function. Estimating tau with preset Pomega=0 always yields smaller values than the regression with empirically estimated asymptote if the latter is negative and vice versa. The sequences of tau estimates from both methods can therefore proceed in reverse direction if tau and Pomega change in opposite directions between the measurements. This is exemplified by data obtained during an increasing preload in spontaneously depressed isolated hearts. The estimation of the time constant of isovolumic pressure fall with a preset zero asymptote is heavily biased and cannot be used for comparing the lusitropic state of the heart in hemodynamic conditions with considerably altered pressure asymptotes.
Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco
2011-06-01
When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal
Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T
Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)
1994-08-01
In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)
Richardson, P. M.; Voice, A. M.; Ward, I. M.
2013-12-01
Longitudinal relaxation (T1) measurements of 19F, 7Li, and 1H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D; Schick, Fritz
2010-09-01
The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.
Forecasting Electrical Load Using a Multi-time-scale Approach
RINGWOOD John; Murray, F.T.
1999-01-01
This paper describes the application of a multi-time-scale technique to the modelling and forecasting of short-term electrical load. The multi-time-scale technique is based on adjusting the underlying short sampling period forecast time series with specific target points and possible aggregated demand. This allows not only improvement of the short sampling period forecast, but also focuses on weighting the accuracy of the forecast at certain critical points e.g. the ov...
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi (National Inst. for Physiological Sciences, Okazaki, Aichi (Japan))
1989-08-01
Spin-lattice relaxation time (T{sub 1}) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T{sub 1}) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T{sub 1} values. T{sub 1} values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15 {plus minus} 0.02 sec (beta-ATP in the liver) to 8.5 {plus minus} 1.6 sec (PDE in the kidney). T{sub 1} value of beta-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T{sub 1} values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of {sup 13}P spectra, and for correcting distortions of signal intensities in the spectra. (author).
Liquidity spillover in international stock markets through distinct time scales.
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.
Extreme reaction times determine fluctuation scaling in human color vision
Medina, José M.; Díaz, José A.
2016-11-01
In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.
Relaxation properties in classical diamagnetism
Carati, A.; Benfenati, F.; Galgani, L.
2011-06-01
It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.
Mechanical Relaxation of Metallic Glasses: An Overview of Experimental Data and Theoretical Models
Chaoren Liu
2015-06-01
Full Text Available Relaxation phenomena in glasses are a subject of utmost interest, as they are deeply connected with their structure and dynamics. From a theoretical point of view, mechanical relaxation allows one to get insight into the different atomic-scale processes taking place in the glassy state. Focusing on their possible applications, relaxation behavior influences the mechanical properties of metallic glasses. This paper reviews the present knowledge on mechanical relaxation of metallic glasses. The features of primary and secondary relaxations are reviewed. Experimental data in the time and frequency domain is presented, as well as the different models used to describe the measured relaxation spectra. Extended attention is paid to dynamic mechanical analysis, as it is the most important technique allowing one to access the mechanical relaxation behavior. Finally, the relevance of the relaxation behavior in the mechanical properties of metallic glasses is discussed.
Scaling of the Time Dependent SGEMP Boundary Layer.
constant in time or rises like any given power of time a single solution suffices for all fluxes. For a more realistic time history with a finite FWHM, the equations reduce to a single parameter family, the parameter being the ratio of the pulse FWHM to the characteristic plasma period. For the time behavior, the unit of time is taken as the FWHM. Both the scaled Boltzmann Equation and Newton’s Equations are
AFSC/ABL: Ugashik sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...
The limit order book on different time scales
Eisler, Zoltan; Lillo, Fabrizio
2007-01-01
Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.
The limit order book on different time scales
Eisler, Zoltán; Kertész, János; Lillo, Fabrizio
2007-06-01
Financial markets can be described on several time scales. We use data from the limit order book of the London Stock Exchange (LSE) to compare how the fluctuation dominated microstructure crosses over to a more systematic global behavior.
BOUNDARY VALUE PROBLEM TO DYNAMIC EQUATION ON TIME SCALE
无
2011-01-01
In this paper we consider a nonlinear first-order boundary value problem on a time scale. The existence results of three positive solutions are obtained using fixed point theorems. Finally,examples are presented to illustrate the main results.
AFSC/ABL: Naknek sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....
Liu, Ding; Huang, Weichao; Zhang, Ni
2017-07-01
A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
Ding Liu
2017-07-01
Full Text Available A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM combined with the finite difference method (FDM is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr numbers, within the range of 105 ∼ 107, and different high Reynolds (Re numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
Fraind, Alicia M; Ryzhkov, Lev R; Tovar, John D
2016-02-11
We present a study to probe the formation of localized aromatic sextets and their effects on the charge transport properties in polymers with acene cores. Bithiophene-acene copolymers containing benzene, naphthalene, or anthracene as acene cores were synthesized using Yamamoto polymerization. Drop-casted polymer films were chemically doped and analyzed using high frequency saturation transfer EPR (HF ST-EPR), a method which has proven useful in the study of conducting polymers. The spin-spin and spin-lattice relaxation times were determined for these polymers at low temperatures (4 to 20 K) and used to obtain inter- and intrachain spin diffusion rates and conductivities. Similar interchain spin diffusion rates were seen across all polymer systems; however, anthracene containing polymer poly(hexylTTATT) was found to have the largest intrachain spin diffusion rate. The poly(hexylTTATT) intrachain spin diffusion rate may be artificially high if the anthracene ring restricts the diffusion of spin to the hexylated quaterthiophene segment in poly(hexylTTATT) whereas the spins diffuse through the acene cores in the benzene and naphthalene derivatives. Alternatively, as both the spin diffusion rates and conductivities vary unpredictably with temperature, it is possible that the π-electron localization previously seen in the anthracene core could be relieved at lower temperatures.
Baranowski, M; Woźniak-Braszak, A; Jurga, K
2011-01-01
This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio. Copyright © 2010 Elsevier Inc. All rights reserved.
Ammar, Sami; Pernaudat, Guillaume; Trépanier, Jean-Yves
2017-08-01
The interdependence of surface tension and density ratio is a weakness of pseudo-potential based lattice Boltzmann models (LB). In this paper, we propose a 3D multi-relaxation time (MRT) model for multiphase flows at large density ratios. The proposed model is capable of adjusting the surface tension independently of the density ratio. We also present the 3D macroscopic equations recovered by the proposed forcing scheme. A high order of isotropy for the interaction force is used to reduce the amplitude of spurious currents. The proposed 3D-MRT model is validated by verifying Laplace's law and by analyzing its thermodynamic consistency and the oscillation period of a deformed droplet. The model is then applied to the simulation of the impact of a droplet on a dry surface. Impact dynamics are determined and the maximum spread factor calculated for different Reynolds and Weber numbers. The numerical results are in agreement with data published in the literature. The influence of surface wettability on the spread factor is also investigated. Finally, our 3D-MRT model is applied to the simulation of the impact of a droplet on a wet surface. The propagation of transverse waves is observed on the liquid surface.
González Sagardoy, María Ujué; González Díez, Yolanda; González Sotos, Luisa
2002-01-01
Strain evolution during In0.2Ga0.8As/GaAs (001) growth by molecular beam epitaxy has been monitored in real time. We have detected that three main relaxation stages, related to different mechanisms, take place during growth, and we have obtained the thickness range where those mechanisms are active. The in situ measured relaxation behavior in the plastic stages has been described by means of a simple equilibrium model that takes into account dislocations generation and interaction between the...
Signatures of discrete scale invariance in Dst time series
Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Anastasiadis, Anastasios; Athanasopoulou, Labrini; Eftaxias, Konstantinos
2011-07-01
Self-similar systems are characterized by continuous scale invariance and, in response, the existence of power laws. However, a significant number of systems exhibits discrete scale invariance (DSI) which in turn leads to log-periodic corrections to scaling that decorate the pure power law. Here, we present the results of a search of log-periodic corrections to scaling in the squares of Dst index increments which are taken as proxies of the energy dissipation rate in the magnetosphere. We show that Dst time series exhibit DSI and discuss the consequence of this feature, as well as the possible implications of Dst DSI on space weather forecasting efforts.
SHEN Ka
2009-01-01
We demonstrate that the peak in the density dependence of electron spin relaxation time in n-type bulk GaAs in the metallic regime predicted by Jiang and Wu[Phys.Rev.B 79 (2009) 125206]has been realized experimentally in the latest work[arXiv:0902.0270]by Krauβ et al.
Eto, Ayumu; Kinoshita, Yoshimasa; Matsumoto, Yoshihisa; Kiyomi, Fumiaki; Iko, Minoru; Nii, Kouhei; Tsutsumi, Masanori; Sakamoto, Kimiya; Aikawa, Hiroshi; Kazekawa, Kiyoshi
2016-11-01
Black-blood magnetic resonance imaging (BB-MRI) is useful for the characterization and assessment of carotid artery plaques. The plaque-to-muscle signal intensity (SI) ratio (plaque/muscle ratio [PMR]) is used widely to evaluate plaques. However, the correlation between the PMR and the T1 relaxation time needs to be determined. We measured the T1 relaxation time of carotid plaques using T1 mapping and compared the results with the PMR on BB-MRI scans. Between April 2014 and July 2015, 20 patients with carotid artery stenosis were treated by carotid artery stenting. All patients underwent preoperative magnetic resonance plaque imaging. The ratio of the plaque SI to the sternocleidomastoid muscle was calculated on T1-weighted BB-MRI scans. T1 mapping was performed in the region where the vessel was narrowest using the inversion recovery technique. The T1 relaxation time was recorded to determine whether there was a correlation with the PMR. The plaque T1 value was 577.3 ± 143.2 milliseconds; the PMR value obtained on BB-MRI scans was 1.23 ± .27. There was a statistically significant decrease in the T1 value as the PMR increased (P relaxation time was well correlated with the PMR on BB-MRI scans, the evaluation of vulnerable plaques using the PMR was reliable and convenient. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Eichmueller, Christian; Skrynnikov, Nikolai R. [Purdue University, Department of Chemistry (United States)], E-mail: nikolai@purdue.edu
2005-08-15
A new off-resonance spin-lock experiment to record relaxation dispersion profiles of amide protons is presented. The sensitivity-enhanced HSQC-type sequence is designed to minimize the interference from cross-relaxation effects and ensure that the dispersion profiles in the absence of {mu}s-ms time-scale dynamics are flat. Toward this end (i) the proton background is eliminated by sample deuteration (Ishima et al., 1998), (ii) {sup 1}H spin lock is applied to two-spin modes 2(H{sub x}Sin {theta} + H{sub z}Cos {theta})N{sub z}, and (iii) the tilt angle {theta} {approx} 35 deg. is maintained throughout the series of measurements (Desvaux et al. Mol. Phys., 86 (1995) 1059). The relaxation dispersion profiles recorded in this manner sample a wide range of effective rf field strengths (up to and in excess of 20 kHz) which makes them particularly suitable for studies of motions on the time scale {<=}100 {mu}s. The new experiment has been tested on the Ca{sup 2+}-loaded regulatory domain of cardiac troponin C. Many residues show pronounced dispersions with remarkably similar correlation times of 30 {mu}s. Furthermore, these residues are localized in the regions that have been previously implicated in conformational changes (Spyracopoulos et al. Biochemistry, 36 (1997) 12138)
Characteristic Time Scales of Characteristic Magmatic Processes and Systems
Marsh, B. D.
2004-05-01
Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these
Exponentials and Laplace transforms on nonuniform time scales
Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.
2016-10-01
We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.
Quantitative study of MR T1 and T2 relaxation times and 1 HMRS in gray matter of normal adult brain
范国光; 吴振华; 潘诗农; 郭启勇
2003-01-01
Objective To evaluate magnetic resonance (MR) Imaging and 1 H magnetic resonance spectroscopy (1 HMRS) in the study of normal biochemical process of the brain, as well as differentiation of normal senile brain from cerebral diseases related to senility. Methods One hundred and eighty healthy adult volunteers were selected for MR examination and 60 other healthy subjects for 1 HMRS examination. Ages of subjects ranged from 18 to 80 years. They were divided into six age groups. A 0.35 T superconductive MR system was used to perform MR examination. Point resolved spectroscopy sequence was required for 1 HMRS. The metabolites in the spectra included: N-acetylaspartate (NAA), choline compounds (CHO), creatine compounds (CR), myo-inositol (MI), glutamate and glutamine (Glu-n). Results In 180 cases of MR, the shortest T2 relaxation time occurred in the deep gray matter within the same age group while the length of T1 relaxation time was ordered from low to high compared to age groups. T2 relaxation time decreased as age increased. The peaks, ordered from high to low, were as follows in 60 cases of 1 HMRS: NAA, CR, CHO, MI, Glu-n. The ratios of NAA/CR and Glu-n/CR were higher in the senile age group, while that of MI/CR was lower. The ratio of CHO/CR was increased as age decreased. The ratio of NAA/CR and MI/CR gradually decreased in relation to movement from the anterior to the posterior part of the brain; the ratio of CHO/CR was highest in the occipital cortex. Correlation of T1 relaxation time and partial metabolite ratios to age were present in gray matter.Conclusions Quantitative studies of MR T1 and T2 relaxation times and 1 HMRS are essential to evaluation of normal myelinization processes, neuronal integrity and age-related biochemical changes in the brain.
Fairbanks, Ethan Jefferson
1994-01-01
Off-resonance spin locking makes use of the novel relaxation time T_{1rho} ^{rm off}, which may be useful in characterizing breast disease. Knowledge of T _{rm 1rho}^{rm off} is essential for optimization of spin -locking imaging methods. The purpose of this work was to develop an optimal imaging technique for in vivo measurement of T_{rm 1rho}^ {rm off}. Measurement of T _{1rho}^{rm off } using conventional methods requires long exam times which are not suitable for patients. Exam time may be shortened by utilizing a one-shot method developed by Look and Locker, making in vivo measurements possible. The imaging method consisted of a 180^circ inversion pulse followed by a series of small-angle alpha pulses to tip a portion of the longitudinal magnetization into the transverse plane for readout. During each relaxation interval (between alpha pulses), a spin-locking pulse was applied off-resonance to achieve T_ {1rho}^{rm off} relaxation. The value of T_{rm 1rho}^{rm off} was then determined using a three-parameter non-linear least-squares fitting procedure. Values of T_ {1rho}^{rm off} were measured for normal and pathologic breast tissues at several resonant offsets. These measurements revealed that image contrast can be manipulated by altering the resonant offset of the spin-locking pulse. Whereas T _1 relaxation times were nearly identical for normal and cancerous tissues, T_{1 rho}^{rm off} relaxation times differed significantly. These results may be useful in improving image contrast in magnetic resonance imaging.
Controllability of multiplex, multi-time-scale networks
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified
Mainali, Laxman; Feix, Jimmy B; Hyde, James S; Subczynski, Witold K
2011-10-01
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T(1)(-1)) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T(1)(-1) can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T(1)(-1) profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R(⊥), obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T(1)(-1) and R(⊥) profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).
Inferring Patterns in Network Traffic: Time Scales and Variations
2014-10-21
2014 Carnegie Mellon University Inferring Patterns in Network Traffic : Time Scales and Variation Soumyo Moitra smoitra@sei.cmu.edu...number. 1. REPORT DATE 21 OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inferring Patterns in Network Traffic : Time...method and metrics for Situational Awareness • SA Monitoring trends and changes in traffic • Analysis over time Time series data analysis • Metrics
Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series
S. Roques
2005-09-01
Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
Time scale bias in erosion rates of glaciated landscapes.
Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe
2016-10-01
Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.
Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang
2017-10-01
The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the ;time-scale; for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.
Time scales and species coexistence in chaotic flows
Galla, Tobias
2016-01-01
Empirical observations in marine ecosystems have suggested a balance of biological and advection time scales as a possible explanation of species coexistence. To characterise this scenario, we measure the time to fixation in neutrally evolving populations in chaotic flows. Contrary to intuition the variation of time scales does not interpolate straightforwardly between the no-flow and well-mixed limits; instead we find that fixation is the slowest at intermediate Damk\\"ohler numbers, indicating long-lasting coexistence of species. Our analysis shows that this slowdown is due to spatial organisation on an increasingly modularised network. We also find that diffusion can either slow down or speed up fixation, depending on the relative time scales of flow and evolution.
Grasping Deep Time with Scaled Space in Personal Environs
Jacobsen, B. H.
2014-01-01
the history of geology and evolution. The present project differs from these examples in that the scaling of time is fixed, and the scale is defined so that 1 mm represents the life expectancy of a young person, i.e. 100 years. At this scale, written history fits on a credit card, 1 m measures the time...... of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...
Auroral Substorm Time Scales: Seasonal and IMF Variations
Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)
2002-01-01
The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.
Tunneling time scale of under-the-barrier forerunners
García-Calderón, G; Garcia-Calderon, Gaston; Villavicencio, Jorge
2002-01-01
Time-dependent analytical solutions to Schr\\"{o}dinger's equation with quantum shutter initial conditions are used to investigate the issue of the tunneling time of forerunners in rectangular potential barriers. By using a time-frequency analysis, we find the existence of a regime characterized by the opacity of the barrier, where the maximum peak of a forerunner in time domain corresponds to a genuine tunneling process. The corresponding time scale represents the tunneling time of the forerunner through the classically forbidden region.
Thermodynamics constrains allometric scaling of optimal development time in insects.
Michael E Dillon
Full Text Available Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1 the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2 numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of
Common scaling patterns in intertrade times of U. S. stocks.
Ivanov, Plamen Ch; Yuen, Ainslie; Podobnik, Boris; Lee, Youngki
2004-05-01
We analyze the sequence of time intervals between consecutive stock trades of thirty companies representing eight sectors of the U.S. economy over a period of 4 yrs. For all companies we find that: (i) the probability density function of intertrade times may be fit by a Weibull distribution, (ii) when appropriately rescaled the probability densities of all companies collapse onto a single curve implying a universal functional form, (iii) the intertrade times exhibit power-law correlated behavior within a trading day and a consistently greater degree of correlation over larger time scales, in agreement with the correlation behavior of the absolute price returns for the corresponding company, and (iv) the magnitude series of intertrade time increments is characterized by long-range power-law correlations suggesting the presence of nonlinear features in the trading dynamics, while the sign series is anticorrelated at small scales. Our results suggest that independent of industry sector, market capitalization and average level of trading activity, the series of intertrade times exhibit possibly universal scaling patterns, which may relate to a common mechanism underlying the trading dynamics of diverse companies. Further, our observation of long-range power-law correlations and a parallel with the crossover in the scaling of absolute price returns for each individual stock, support the hypothesis that the dynamics of transaction times may play a role in the process of price formation.
无
2006-01-01
In this paper, using the theory of topological degree and Liapunov functional methods, the authors study the competitive neural networks with time delays and different time scales and present some criteria of global robust stability for this neural network model.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Shioya, Sumie; Kurita, Daisaku; Haida, Munetaka; Tanigaki, Toshimori; Kutsuzawa, Tomoko; Ohta, Yasuyo [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine; Fukuzaki, Minoru
1997-05-01
To determine the transverse relaxation time (T{sub 2}) of biological tissues in nuclear magnetic resonance measurements, the Carr-Purcell-Meiboom-Gill (CPMG) method has been recommended to avoid the effect of external magnetic field inhomogeneity on T{sub 2} values. However, a dependence of T{sub 2} on the interpulse delay time (IPDT) in the CPMG measurements has been shown for biological tissues. The present study examined the dependence of the T{sub 2} on IPDT for muscle, lung (passively collapsed or degassed), and brain tissues. It was found that the CPMG T{sub 2} of the lung was strongly dependent upon the IPDT, in contrast to muscle and brain tissues. The IPDT dependence of the CPMG T{sub 2} for lung tissue, which was lessened by degassing, was affected by the magnetic field inhomogeneity due to air-tissue interfaces, but not by the spin-locking effect, since the T{sub 2} measured by the Carr-Purcell-Freeman-Hill (CPFH) method did not show this dependence. These results should aid in the evaluation of T{sub 2} values for biological tissues measured under various conditions and by different techniques. (author)
A new method for multi-exponential inversion of NMR relaxation measurements
WANG; Zhongdong; XIAO; Lizhi; LIU; Tangyan
2004-01-01
A new method for multi-exponential inversion to NMR T1 and T2 relaxation time distributions is suggested and tested. Inversion results are compared with MAP-II which is based on SVD algorithm and widely accepted in the industry. Inversed NMR relaxation spectra that have different pre-assigned relaxation times from echo trains with different SNR confirm that the new method with 16 to 64 equally spaced time constants in logarithm scale will ensure the relaxation distribution. Testing results show that the new inversion algorithm is a valuable tool for rock core NMR experimental analysis and NMR logging data process and interpretation.
Time-dependent scaling patterns in high frequency financial data
Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso
2016-10-01
We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Mixing Time Scales in a Supernova-Driven Interstellar Medium
D'Avillez, M A; Avillez, Miguel A. de; Low, Mordecai-Mark Mac
2002-01-01
We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time ...
Modelling of UV radiation variations at different time scales
J. L. Borkowski
2008-03-01
Full Text Available Solar UV radiation variability in the period 1976–2006 is discussed with respect to the relative changes in the solar global radiation, ozone content, and cloudiness. All the variables were decomposed into separate components, representing variations of different time scales, using wavelet multi-resolution decomposition. The response of the UV radiation to the changes in the solar global radiation, ozone content, and cloudiness depends on the time scale, therefore, it seems reasonable to model separately the relation between UV and explanatory variables at different time scales. The wavelet components of the UV series are modelled and summed to obtain the fit of observed series. The results show that the coarser time scale components can be modelled with greater accuracy than fine scale components and the fitted values calculated by this method are in better agreement with observed values than values calculated by the regression method, in which variables were not decomposed. The residual standard error in the case of modelling with the use of wavelets is reduced by 14% in comparison to the regression method without decomposition.
Evaluation of scaling invariance embedded in short time series.
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Time scales of crystal mixing in magma mushes
Schleicher, Jillian M.; Bergantz, George W.; Breidenthal, Robert E.; Burgisser, Alain
2016-02-01
Magma mixing is widely recognized as a means of producing compositional diversity and preconditioning magmas for eruption. However, the processes and associated time scales that produce the commonly observed expressions of magma mixing are poorly understood, especially under crystal-rich conditions. Here we introduce and exemplify a parameterized method to predict the characteristic mixing time of crystals in a crystal-rich magma mush that is subject to open-system reintrusion events. Our approach includes novel numerical simulations that resolve multiphase particle-fluid interactions. It also quantifies the crystal mixing by calculating both the local and system-wide progressive loss of the spatial correlation of individual crystals throughout the mixing region. Both inertial and viscous time scales for bulk mixing are introduced. Estimated mixing times are compared to natural examples and the time for basaltic mush systems to become well mixed can be on the order of 10 days.
Time scales for molecule formation by ion-molecule reactions
Langer, W. D.; Glassgold, A. E.
1976-01-01
Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.
Beralso e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos
2017-09-01
The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov–Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov–Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker–Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.
Short—Time Scaling of Variable Ordering of OBDDs
龙望宁; 闵应骅; 等
1997-01-01
A short-time scaling criterion of variable ordering of OBDDs is proposed.By this criterion it is easy and fast to determine which one is better when several variable orders are given,especially when they differ 10% or more in resulted BDD size from each other.An adaptive variable order selection method,based on the short-time scaling criterion,is also presented.The experimental results show that this method is efficient and it makes the heuristic variable ordering methods more practical.
Multiple time scales of fluvial processes—theory and applications
无
2011-01-01
Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-l...
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Nonlinear triple-point problems on time scales
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke; Luo, Yiping
2014-04-01
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Olivares-Quiroz, Luis; Garcia-Colin, Leopoldo S
2009-10-01
In this work, we derive an analytical expression for the relaxation time tau as a function of temperature T for myoglobin protein (Mb, PDB:1MBN) in the high temperature limit (T>T(g)=200K). The method is based on a modified version of the Adam-Gibbs theory (AG theory) for the glass transition in supercooled liquids and an implementation of differential geometry techniques. This modified version of the AG theory takes into account that the entropic component in protein's denaturation has two major sources: a configurational contribution DeltaS(c) due to the unfolding of the highly ordered native state N and a hydration contribution DeltaS(hyd) arising from the exposure of non-polar residues to direct contact with solvent polar molecules. Our results show that the configurational contribution DeltaS(c) is temperature-independent and one order of magnitude smaller than its hydration counterpart DeltaS(hyd) in the temperature range considered. The profile obtained for log tau(T) from T=200 K to T=300 K exhibits a non-Arrhenius behavior characteristic of alpha relaxation mechanisms in hydrated proteins and glassy systems. This result is in agreement with recent dielectric spectroscopy data obtained for hydrated myoglobin, where at least two fast relaxation processes in the high temperature limit have been observed. The connection between the relaxation process calculated here and the experimental results is outlined.
Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan
2017-09-11
Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.
Nagel, Hannes; Janke, Wolfhard
2016-05-01
Driven diffusive systems such as the zero-range process (ZRP) and the pair-factorized steady states (PFSS) stochastic transport process are versatile tools that lend themselves to the study of transport phenomena on a generic level. While their mathematical structure is simple enough to allow significant analytical treatment, they offer a variety of interesting phenomena. With appropriate dynamics, the ZRP and PFSS models feature a condensation transition where, for a supercritical density, the translational symmetry breaks spontaneously and excess particles form a single-site or spatially extended condensate, respectively. In this paper we numerically study the typical time scales of the two stages of this condensation process: Nucleation and coarsening. Nucleation is the first stage of condensation where the bulk system relaxes to its stationary distribution and droplet nuclei form in the system. These droplets then gradually grow or evaporate in the coarsening regime to coalesce in a single condensate when the system finally relaxes to the stationary state. We use the ZRP condensation model to discuss the choice of the estimation method for the nucleation time scale and present scaling exponents for the ZRP and PFSS condensation models with respect to the choice of the typical droplet nuclei mass. We then proceed to present scaling exponents in the coarsening regime of the ZRP for partially asymmetric dynamics and the PFSS model for symmetric and asymmetric dynamics.
Weis, Jan; Kullberg, Joel; Ahlström, Håkan
2017-04-17
To evaluate the feasibility of an expiration multiple breath-hold (1) H-MRS technique to measure glycogen (Glycg), choline-containing compounds (CCC), and lipid relaxation times T1 , T2 , and their concentrations in normal human liver. Thirty healthy volunteers were recruited. Experiments were performed at 3T. Multiple expiration breath-hold single-voxel point-resolved spectroscopy (PRESS) technique was used for localization. Water-suppressed spectra were used for the estimation of Glycg, CCC, lipid methylene (CH2 )n relaxation times and concentrations. Residual water lines were removed by the Hankel Lanczos singular value decomposition filter. After phase correction and frequency alignment, spectra were averaged and processed by LCModel. Summed signals of Glycg resonances H2H4', H3, and H5 between 3.6 and 4 ppm were used to estimate their apparent relaxation times and concentration. Glycg, CCC, and lipid content were estimated from relaxation corrected spectral intensity ratios to unsuppressed water line. Relaxation times were measured for liver Glycg (T1 , 892 ± 126 msec; T2 , 13 ± 4 msec), CCC (T1 , 842 ± 75 msec; T2 , 50 ± 5 msec), lipid (CH2 )n (T1 , 402 ± 19 msec; T2 , 52 ± 3 msec), and water (T1 , 990 ± 89 msec; T2 , 30 ± 2 msec). Mean CCC and lipid concentrations of healthy liver were 7.8 ± 1.3 mM and 15.8 ± 23.6 mM, respectively. Glycg content was found lower in the morning (48 ± 21 mM) compared to the afternoon (145 ± 50 mM). Multiple breath-hold (1) H-MRS together with dedicated postprocessing is a feasible technique for the quantification of liver Glycg, CCC, and lipid relaxation times and concentrations. 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Midfrontal theta tracks action monitoring over multiple interactive time scales.
Cohen, Michael X
2016-11-01
Quickly detecting and correcting mistakes is a crucial brain function. EEG studies have identified an idiosyncratic electrophysiological signature of online error correction, termed midfrontal theta. Midfrontal theta has so far been investigated over the fast time-scale of a few hundred milliseconds. But several aspects of behavior and brain activity unfold over multiple time scales, displaying "scale-free" dynamics that have been linked to criticality and optimal flexibility when responding to changing environmental demands. Here we used a novel line-tracking task to demonstrate that midfrontal theta is a transient yet non-phase-locked response that is modulated by task performance over at least three time scales: a few hundred milliseconds at the onset of a mistake, task performance over a fixed window of the previous 5s, and scale-free-like fluctuations over many tens of seconds. These findings provide novel evidence for a role of midfrontal theta in online behavioral adaptation, and suggest new approaches for linking EEG signatures of human executive functioning to its neurobiological underpinnings.
Fantazzini, Paola; Galassi, Francesca [Department of Physics, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Bortolotti, Villiam [Department of DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna (Italy); Brown, Robert J S [953 West Bonita Avenue, Claremont, CA 91711-4193 (United States); Vittur, Franco, E-mail: paola.fantazzini@unibo.it [Department of Life Sciences, University of Trieste, via Giorgeri 1, 24137 (Italy)
2011-06-15
When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T{sub 1} relaxation data are obtained for low-mobility ('solid') macromolecular {sup 1}H and for higher-mobility ('liquid') {sup 1}H by the separation of these components in free induction decays, with {alpha} denoting the solid/liquid {sup 1}H ratio. When quasi-continuous distributions of relaxation times (T{sub 1}) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T{sub 1}, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with {alpha}>1, the exchange leads to small negative peaks at short T{sub 1} times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with {alpha}<<1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit
Lim, Ae Ran; Kim, Sun Ha
2017-05-01
The structural geometry around the 133Cs nuclei in Cs2BBr4 (B = 57Co, 63Cu, and 65Zn) was investigated by examining the chemical shifts and spin-lattice relaxation times in a rotating frame. Two crystallographically inequivalent Cs(1) and Cs(2) sites were differentiated. The spin-lattice relaxation times T1ρ of 133Cs nuclei in three crystals were measured to obtain detailed information about their structural dynamics. Cs(1) surrounded by eleven bromide ions was found to have a longer relaxation time than Cs(2) surrounded by nine bromide ions. The nuclear magnetic resonance (NMR) results were compared to previously reported results for Cs2BCl4. The halogen species in Cs2BX4 (X = Br, Cl) was not found to influence the relaxation time, whereas the B metal ion (B = Co, Cu, and Zn) was found to alter the relaxation time mechanism.
Stephenson, Jack D.
1960-01-01
This report describes a technique which combines theory and experiments for determining relaxation times in gases. The technique is based on the measurement of shapes of the bow shock waves of low-fineness-ratio cones fired from high-velocity guns. The theory presented in the report provides a means by which shadowgraph data showing the bow waves can be analyzed so as to furnish effective relaxation times. Relaxation times in air were obtained by this technique and the results have been compared with values estimated from shock tube measurements in pure oxygen and nitrogen. The tests were made at velocities ranging from 4600 to 12,000 feet per second corresponding to equilibrium temperatures from 35900 R (19900 K) to 6200 R (34400 K), under which conditions, at all but the highest temperatures, the effective relaxation times were determined primarily by the relaxation time for oxygen and nitrogen vibrations.
Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad
2016-08-01
Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.
Satellite attitude prediction by multiple time scales method
Tao, Y. C.; Ramnath, R.
1975-01-01
An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.
Linear Scaling Real Time TDDFT in the CONQUEST Code
O'Rourke, Conn
2014-01-01
The real time formulation of Time Dependent Density Functional Theory (RT-TDDFT) is implemented in the linear scaling density functional theory code CONQEST. Proceeding through the propagation of the density matrix, as opposed to the Kohn-Sham orbitals, it is possible to reduced the computational workload. Imposing a cut-off on the density matrix the effort can be made to scale linearly with the size of the system under study. Propagation of the reduced density matrix in this manner provides direct access to the optical response of very large systems, which would be otherwise impractical to obtain using the standard formulations of TDDFT. We discuss our implementation and present several benchmark tests illustrating the validity of the method, and the factors affecting its accuracy. Finally we illustrate the effect of density matrix truncation on the optical response, and illustrate that computational load scales linearly with the system size.
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
El Ghazi, Haddou; Jorio, Anouar
2014-10-01
By means of a combination of Quantum Genetic Algorithm and Hartree-Fock-Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N-GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity.
El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE My Youssef, Rabat (Morocco); Jorio, Anouar [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco)
2014-10-01
By means of a combination of Quantum Genetic Algorithm and Hartree–Fock–Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N–GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity.
MULTISCALE HOMOGENIZATION OF NONLINEAR HYPERBOLIC EQUATIONS WITH SEVERAL TIME SCALES
Jean Louis Woukeng; David Dongo
2011-01-01
We study the multiscale homogenization of a nonlinear hyperbolic equation in a periodic setting. We obtain an accurate homogenization result. We also show that as the nonlinear term depends on the microscopic time variable, the global homogenized problem thus obtained is a system consisting of two hyperbolic equations. It is also shown that in spite of the presence of several time scales, the global homogenized problem is not a reiterated one.
李根; 唐春安; 李连崇
2013-01-01
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-effciency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains the convergence and inherent paral-lelism consistent with the original form. Ideally, the computation can be reduced nearly by 50% as compared with the original algorithm. It is suitable for high-performance computing with its inherent basic high-effciency operations. By comparing with the nu-merical results, it is shown that the proposed method has the best performance.
Improved jet noise modeling using a new acoustic time scale
Azarpeyvand, M.; Self, R.H.; Golliard, J.
2006-01-01
To calculate the noise emanating from a turbulent flow (such as a jet flow) using Lighthill's analogy, knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales and convecti
Quadratic Lyapunov Function and Exponential Dichotomy on Time Scales
ZHANG JI; LIU ZHEN-XIN
2011-01-01
In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△ ＝ A(t)x on time scales.Moreover, for the nonlinear perturbed equation x△ ＝ A(t)x + f(t,x) we give the instability of the zero solution when f is sufficiently small.
Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling
Birmingham, Daniel; Birmingham, Danny; Sen, Siddhartha
2000-01-01
We study the formation of BTZ black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.
Speech Compensation for Time-Scale-Modified Auditory Feedback
Ogane, Rintaro; Honda, Masaaki
2014-01-01
Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…
Wind power impacts and electricity storage - a time scale perspective
Hedegaard, Karsten; Meibom, Peter
2012-01-01
technologies – batteries, flow batteries, compressed air energy storage, electrolysis combined with fuel cells, and electric vehicles – are moreover categorised with respect to the time scales at which they are suited to support wind power integration. While all of these technologies are assessed suitable...
Gott time machines, BTZ black hole formation, and choptuik scaling
Birmingham; Sen
2000-02-07
We study the formation of Banados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.
Exponential stability of dynamic equations on time scales
Raffoul Youssef N
2005-01-01
Full Text Available We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given.
Zhuo, Congshan; Sagaut, Pierre
2017-06-01
In this paper, a variant of the acoustic multipole source (AMS) method is proposed within the framework of the lattice Boltzmann method. A quadrupole term is directly included in the stress system (equilibrium momentum flux), and the dependency of the quadrupole source in the inviscid limit upon the fortuitous discretization error reported in the works of E. M. Viggen [Phys. Rev. E 87, 023306 (2013)PLEEE81539-375510.1103/PhysRevE.87.023306] is removed. The regularized lattice Boltzmann (RLB) method with this variant AMS method is presented for the 2D and 3D acoustic problems in the inviscid limit, and without loss of generality, the D3Q19 model is considered in this work. To assess the accuracy and the advantage of the RLB scheme with this AMS for acoustic point sources, the numerical investigations and comparisons with the multiple-relaxation-time (MRT) models and the analytical solutions are performed on the 2D and 3D acoustic multipole point sources in the inviscid limit, including monopoles, x dipoles, and xx quadrupoles. From the present results, the good precision of this AMS method is validated, and the RLB scheme exhibits some superconvergence properties for the monopole sources compared with the MRT models, and both the RLB and MRT models have the same accuracy for the simulations of acoustic dipole and quadrupole sources. To further validate the capability of the RLB scheme with AMS, another basic acoustic problem, the acoustic scattering from a solid cylinder presented at the Second Computational Aeroacoustics Workshop on Benchmark Problems, is numerically considered. The directivity pattern of the acoustic field is computed at r=7.5; the present results agree well with the exact solutions. Also, the effects of slip and no-slip wall treatments within the regularized boundary condition on this pure acoustic scattering problem are tested, and compared with the exact solution, the slip wall treatment can present a better result. All simulations demonstrate
Martínez García, Julio Cesar; Tamarit Mur, José Luis; Rzosca, S. J.
2011-01-01
Recently, Nielsen et al. [J. Chem. Phys. 130, 154508 (2009); Philos. Mag. 88, 4101 (2008)] demonstrated a universal pattern for the high frequency wing of the loss curve for primary relaxation time on approaching the glass transition for organic liquids. In this contribution it is presented that a similar universality occurs for glass-forming liquid crystals and orientationally disordered crystals (plastic crystals). Empirical correlations of the found behavior are also briefly di...
Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R
2012-12-01
Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1.
Gao, Ying; Erokwu, Bernadette O; DeSantis, David A; Croniger, Colleen M; Schur, Rebecca M; Lu, Lan; Mariappuram, Jose; Dell, Katherine M; Flask, Chris A
2016-01-01
Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1 = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.
2011-01-01
Recently, Nielsen et al. [J. Chem. Phys. 130, 154508 (2009); Philos. Mag. 88, 4101 (2008)] demonstrated a universal pattern for the high frequency wing of the loss curve for primary relaxation time on approaching the glass transition for organic liquids. In this contribution it is presented that a similar universality occurs for glass-forming liquid crystals and orientationally disordered crystals (plastic crystals). Empirical correlations of the found behavior are also briefly di...
Farrokhi, Shawn; Colletti, Patrick M; Powers, Christopher M
2011-02-01
The origin of patellofemoral pain (PFP) may be associated with the inability of the patellofemoral joint cartilage to absorb and distribute patellofemoral joint forces. When compared with a pain-free control group, young active women with PFP will demonstrate differences in their baseline patellar cartilage thickness and transverse (T2) relaxation time, as well as a less adaptive response to an acute bout of joint loading. Controlled laboratory study; Level of evidence, 3. Ten women between the ages of 23 to 37 years with PFP and 10 sex-, age-, and activity-matched pain-free controls participated. Quantitative magnetic resonance imaging of the patellofemoral joint was performed at baseline and after participants performed 50 deep knee bends. Differences in baseline cartilage thickness and T2 relaxation time, as well as the postexercise change in patellar cartilage thickness and T2 relaxation time, were compared between groups. Individuals with PFP demonstrated reductions in baseline cartilage thickness of 14.0% and 14.1% for the lateral patellar facet and total patellar cartilage, respectively. Similarly, individuals with PFP exhibited significantly lower postexercise cartilage thickness change for the lateral patellar facet (2.1% vs 8.9%) and the total patellar cartilage (4.4% vs 10.0%) when compared with the control group. No group differences in baseline or postexercise change in T2 relaxation time were found. The findings suggest that a baseline reduction in patellar cartilage thickness and a reduced deformational behavior of patellar cartilage following an acute bout of loading are associated with presence of PFP symptoms.
Yulmetyev, R M; Hänggi, P; Khusaenova, E V; Shimojo, S; Yulmetyeva, D G
2006-01-01
To analyze the crucial role of the fluctuation and relaxational effects in the human brain functioning we have studied a some statistical quantifiers that support the informational characteristics of neuromagnetic responses of magnetoencephalographic (MEG) signals. The signals to a flickering stimulus of different color combinations has been obtained from a group of control subjects which is contrasted with those for a patient with photosensitive epilepsy (PSE). We have revealed that the existence of the specific stratification of the phase clouds and the concomitant relaxation singularities of the corresponding nonequilibrium processes of chaotic behavior of the signals in the separate areas for a patient most likely shows the pronounced zones responsible the appearance of PSE.
New technique for single-scan T1 measurements using solid echoes. [for spin-lattice relaxation time
Burum, D. P.; Elleman, D. D.; Rhim, W. K.
1978-01-01
A simple technique for single-scan T1 measurements in solids is proposed and analyzed for single exponential spin-lattice relaxation. In this technique, the direct spin heating caused by the sampling process is significantly reduced in comparison with conventional techniques by utilizing the 'solid echo' to refocus the magnetization. The applicability of this technique to both the solid and liquid phases is demonstrated.
Human learning: Power laws or multiple characteristic time scales?
Gottfried Mayer-Kress
2006-09-01
Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.
Real-time simulation of large-scale floods
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
Time Scales and Tidal Effects in Minor Mergers
Yu Lu; Jian-Yan Wei
2003-01-01
We use controlled N-body simulation to investigate the dynamical processes (dynamical friction, tidal truncation, etc.) involved in the merging of small satellites into bigger halos. We confirm the validity of some analytic formulae proposed earlier based on simple arguments. For rigid satellites represented by softened point masses, the merging time scale depends on both the orbital shape and concentration of the satellite. The dependence on orbital ellipticity is roughly a power law, as suggested by Lacey & Cole, and the dependence on satellite concentration is similar to that proposed by White. When merging satellites are represented by non-rigid objects, Tidal effects must be considered. We found that material beyond the tidal radius are stripped off. The decrease in the satellite mass might mean an increase in the merging time scale, but in fact, the merging time is decreased,because the stripped-off material carries away a proportionately larger amount of of orbital energy and angular momentum.
Cognitive componets of speech at different time scales
Feng, Ling; Hansen, Lars Kai
2007-01-01
Cognitive component analysis (COCA) is defined as unsupervised grouping of data leading to a group structure well aligned with that resulting from human cognitive activity. We focus here on speech at different time scales looking for possible hidden ‘cognitive structure’. Statistical regularities......, assumed to model the basic representation of the human auditory system. The basic features are aggregated in time to obtain features at longer time scales. Simple energy based filtering is used to achieve a sparse representation. Our hypothesis is now basically ecological: We hypothesize that features...... that are essentially independent in a reasonable ensemble can be efficiently coded using a sparse independent component representation. The representations are indeed shown to be very similar between supervised learning (invoking cognitive activity) and unsupervised learning (statistical regularities), hence lending...
Nonlinear scale space with spatially varying stopping time.
Gilboa, Guy
2008-12-01
A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.
Terrestrial carbon-nitrogen interactions across time-scales
Zaehle, Sönke; Sickel, Kerstin
2017-04-01
Through its role in forming amino acids, nitrogen (N) plays a fundamental role in terrestrial biogeochemistry, affecting for instance the photosynthetic rate of a leaf, and the amount of leaf area of a plant; with further consequences for quasi instantaneous terrestrial biophysical properties and fluxes. Because of the high energy requirements of transforming atmospheric N2 to biologically available form, N is generally thought to be limiting terrestrial productivity. Experimental evidence and modelling studies suggest that in temperate and boreal ecosystems, this N-"limitation" affects plant production at scales from days to decades, and potentially beyond. Whether these interactions play a role at longer timescales, such as during the transition from the last glacial maximum to the holocene, is currently unclear. To address this question, we present results from a 22000 years long simulation with dynamic global vegetation model including a comprehensive treatment of the terrestrial carbon and nitrogen balance and their interactions (using the OCN-DGVM) driven by monthly, transient climate forcing obtained from the CESM climate model (TRACE). OCN couples carbon and nitrogen processes at the time-scale of hours, but simulates a comprehensive nitrogen balance as well as vegetation dynamics with time-scales of centuries and beyond. We investigate in particular, whether (and at with time scale) carbon-nitrogen interactions cause important lags in the response of the terrestrial biosphere to changed climate, and which processes (such as altered N inputs from fixation or altered losses through leaching and denitrification) contribute to these lags.
Energy and time determine scaling in biological and computer designs.
Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie
2016-08-19
Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'.
An Extensible Timing Infrastructure for Adaptive Large-scale Applications
Stark, Dylan; Goodale, Tom; Radke, Thomas; Schnetter, Erik
2007-01-01
Real-time access to accurate and reliable timing information is necessary to profile scientific applications, and crucial as simulations become increasingly complex, adaptive, and large-scale. The Cactus Framework provides flexible and extensible capabilities for timing information through a well designed infrastructure and timing API. Applications built with Cactus automatically gain access to built-in timers, such as gettimeofday and getrusage, system-specific hardware clocks, and high-level interfaces such as PAPI. We describe the Cactus timer interface, its motivation, and its implementation. We then demonstrate how this timing information can be used by an example scientific application to profile itself, and to dynamically adapt itself to a changing environment at run time.
Anomalous multiphoton photoelectric effect in ultrashort time scales.
Kupersztych, J; Raynaud, M
2005-09-30
In a multiphoton photoelectric process, an electron needs to absorb a given number of photons to escape the surface of a metal. It is shown for the first time that this number is not a constant depending only on the characteristics of the metal and light, but varies with the interaction duration in ultrashort time scales. The phenomenon occurs when electromagnetic energy is transferred, via ultrafast excitation of electron collective modes, to conduction electrons in a duration less than the electron energy damping time. It manifests itself through a dramatic increase of electron production.
Multi-Scale Dissemination of Time Series Data
Guo, Qingsong; Zhou, Yongluan; Su, Li
2013-01-01
In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time-series...
The Available Time Scale: Measuring Foster Parents' Available Time to Foster
Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.
2009-01-01
This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…
QUALITATIVE BEHAVIORS OF LINEAR TIME-INVARIANT DYNAMIC EQUATIONS ON TIME SCALES
无
2010-01-01
We investigate the type of singularity and qualitative structure of solutions to a time-invariant linear dynamic system on time scales. The results truly unify the qualitative behaviors of the system on the continuous and discrete times with any step size.
Arif, M; Sadlier, M; Rajenderkumar, D; James, J; Tahir, T
2017-06-01
Psychotherapeutic interventions have been adopted effectively in the management of tinnitus for a long time. This study compared mindfulness meditation and relaxation therapy for management of tinnitus. In this randomised controlled trial, patients were recruited for five sessions of mindfulness meditation or five sessions of relaxation therapy. Patients' responses were evaluated using the Tinnitus Reaction Questionnaire as a primary outcome measure, and the Hospital Anxiety and Depression Scale, visual analogue scale and a health status indicator as secondary outcome measures. A total of 86 patients were recruited. Thirty-four patients completed mindfulness meditation and 27 patients completed relaxation therapy. Statistically significant improvement was seen in all outcome measures except the health status indicator in both treatment groups. The change in treatment scores was greater in the mindfulness meditation group than in the relaxation therapy group. This study suggests that although both mindfulness meditation and relaxation therapy are effective in the management of tinnitus, mindfulness meditation is superior to relaxation therapy.
Asaji, Tetsuo, E-mail: asaji@chs.nihon-u.ac.jp [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)
2013-05-15
The temperature dependences of spin-lattice relaxation time T{sub 1} of {sup 35}Cl and {sup 37}Cl NQR were studied for the co-crystal of tetramethylpyrazine (TMP) with chloranilic acid (H{sub 2}ca), TMP-H{sub 2}ca, in which one-dimensional hydrogen bonding is formed by alternate arrangement of TMP and H{sub 2}ca. The isotope ratio {sup 37}Cl T{sub 1} / {sup 35}Cl T{sub 1} was determined to be 1.0 {+-} 0.1 above ca. 290 K where a steep decrease of spin-lattice relaxation time T{sub 1} with increasing temperature was observed. In this temperature range it is suggested that the relaxation is originated from the slow fluctuation of electric field gradient (EFG). Beside EFG fluctuation due to the external-charge-density fluctuation, the small angle reorientation of the quantization axis triggered by a proton transfer motion between N...H-O and N-H...O hydrogen bonding states is proposed.