Inversion of generalized relaxation time distributions with optimized damping parameter
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Distribution of relaxation times of relaxors: comparison with dipolar glasses
Banys, Juras; Grigalaitis, Robertas; Mikonis, Andrejus; Keburis, Povilas [Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius (Lithuania); Macutkevic, Jan [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania)
2009-12-15
In the present publication we report the results of dielectric spectroscopy investigations of two classes of materials - relaxor and dipolar glasses. As model relaxor was chosen (Pb{sub 1-x}La{sub x})(Zr{sub y}Ti{sub 1-y})O{sub 3} (PLZT 100(x/y/1-y)). The real distribution function of the relaxation times f ({tau}) of the relaxor ferroelectric ceramics PLZT 8/65/35 and 9.5/65/35 was calculated from the dielectric measurements results in the wide frequency range (10{sup 1}-10{sup 12} Hz). Below the Burns temperature T{sub B} {approx_equal} 620 K, when the clusters begin to appear on cooling, the distribution function of the relaxation times is symmetrically shaped. On cooling the dispersion and loss spectra strongly broaden and slow down, the f ({tau}) function becomes asymmetrically shaped and the second maximum appears. The width of the f ({tau}) function was calculated at different temperatures. The longest relaxation times diverge according to the Vogel-Fulcher law with the freezing temperature 299 K and 252 K for the 8/65/35 and 9.5/65/35 samples, respectively. The shortest relaxation time is about 10{sup -12} s and it remains almost temperature independent. Similar behaviour was observed in dipolar glasses betaine phosphate betaine phosphite (BP/BPI). Much more information was obtained from two dimensional distribution of the relaxation times. This confirmed Meyer-Neldel law in relaxors and dipolar glasses. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Petrov, Oleg V.; Stapf, Siegfried
2017-06-01
This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.
Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin
2015-06-01
Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.
Relaxation Time of the Particle Beam with an Anisotropic Velocity Distribution
V.P. Vechirka
2012-11-01
Full Text Available The computer experiment for study of the relaxation time of the beam particles with an anisotropic velocity distribution is performed by the molecular dynamics. Obtained results agree with the characteristic times of thermal relaxation in plasma for the electronic coolers in modern storage rings.
Analysis and Application of Distribution of Relaxation Times in Solid State Ionics
Boukamp, B.A.; Rolle, A.
2017-01-01
Three methods for obtaining a Distribution (Function) of Relaxation Times (DFRT) are compared, Fourier transform (FT), Tikhonov regularization (TR) and a multiple-(RQ) CNLS-fit. The FT method was written in the programming package ‘Borland Delphi’, for the Tikhonov regularization (TR) a freely avail
Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng; Xia, Changrong
2016-03-01
A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing discontinuities in the DRT, making it feasible to resolve the number and the nature of electrochemical processes without making assumptions.
Tomadakis, Manolis M.; Robertson, Teri J.
2003-07-01
We present a random walk based investigation of the pore size probability distribution and its moments, the survival probability and mean survival time, and the principal relaxation time, for random and ordered arrays of cylindrical fibers of various orientation distributions. The dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size are found to increase with porosity, remain practically independent of the directionality of random fiber beds, and attain lower values for ordered arrays. Wide pore size distributions are obtained for random fiber structures and relatively narrow for ordered square arrays, all in very good agreement with theoretically predicted limiting values. Analytical results derived for the pore size probability and its lower moments for square arrays of fibers practically coincide with the corresponding simulation results. Earlier variational bounds on the mean survival time and principal relaxation time are obeyed by our numerical results in all cases, and are found to be quite sharp up to very high porosities. Dimensionless groups representing the deviation of such bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to the mean pore size [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all types of fiber structures, thus validated for the first time for anisotropic porous media.
Influence of Heat Sources and Relaxation Time on Temperature Distribution in Tissues
Sharma S.
2014-05-01
Full Text Available In the present study, the temperature fluctuations in tissues based on Penne’s bio-heat transfer equation is investigated by applying the Laplace and Hankel transforms. To get the solution in a physical form, a numerical inversion technique has been applied. The temporal and spatial distribution of temperature is investigated with the effect of relaxation time and is presented graphically.
Tomadakis, Manolis M.; Robertson, Teri J.
2005-03-01
Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially
Bello, A.; Laredo, E.; Grimau, M.
1999-11-01
The existence of a distribution of relaxation times has been widely used to describe the relaxation function versus frequency in glass-forming liquids. Several empirical distributions have been proposed and the usual method is to fit the experimental data to a model that assumes one of these functions. Another alternative is to extract from the experimental data the discrete profile of the distribution function that best fits the experimental curve without any a priori assumption. To test this approach a Monte Carlo algorithm using the simulated annealing is used to best fit simulated dielectric loss data, ɛ''(ω), generated with Cole-Cole, Cole-Davidson, Havriliak-Negami, and Kohlrausch-Williams-Watts (KWW) functions. The relaxation times distribution, G(ln(τ)), is obtained as an histogram that follows very closely the analytical expression for the distributions that are known in these cases. Also, the temporal decay functions, φ(t), are evaluated and compared to a stretched exponential. The method is then applied to experimental data for α-polyvinylidene fluoride over a temperature range 233 Kflouride (PVDF) is found to be 87, which characterizes this polymer as a relatively structurally strong material.
Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K., E-mail: akshch@list.ru [Department of Statistical Physics, Faculty of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvoretz, St. Petersburg 198504 (Russian Federation)
2015-09-28
We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.
Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.
2013-01-01
The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627
Patrícia D Oliveira
Full Text Available The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums by an analysis of the overlap (c* and aggregation (c** concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers.
Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco
2011-06-01
When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal
Fantazzini, Paola; Galassi, Francesca [Department of Physics, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Bortolotti, Villiam [Department of DICAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna (Italy); Brown, Robert J S [953 West Bonita Avenue, Claremont, CA 91711-4193 (United States); Vittur, Franco, E-mail: paola.fantazzini@unibo.it [Department of Life Sciences, University of Trieste, via Giorgeri 1, 24137 (Italy)
2011-06-15
When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T{sub 1} relaxation data are obtained for low-mobility ('solid') macromolecular {sup 1}H and for higher-mobility ('liquid') {sup 1}H by the separation of these components in free induction decays, with {alpha} denoting the solid/liquid {sup 1}H ratio. When quasi-continuous distributions of relaxation times (T{sub 1}) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T{sub 1}, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with {alpha}>1, the exchange leads to small negative peaks at short T{sub 1} times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with {alpha}<<1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Time of relaxation in dusty plasma model
Timofeev, A. V.
2015-11-01
Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.
Trzmiel, J; Weron, K; Placzek-Popko, E [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Janczura, J [Hugo Steinhaus Center for Stochastic Methods and Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)
2009-08-26
In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd{sub 1-x}Mn{sub x}Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric alpha-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent alpha decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.
Correlation of transverse relaxation time with structure of biological tissue
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Relaxation time in disordered molecular systems
Rocha, Rodrigo P. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC (Brazil); Freire, José A., E-mail: jfreire@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba-PR (Brazil)
2015-05-28
Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.
Chemical relaxation times in a hadron gas at finite temperature
Goity, J L
1993-01-01
The relaxation times of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations. Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of $10^{3}$ fm at temperatures around 100 MeV. As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.
Rounded stretched exponential for time relaxation functions.
Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B
2009-12-01
A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)Cole-Cole plots for dielectric and shear stress relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).
Distribution of NMR relaxations in a random Heisenberg chain.
Shiroka, T; Casola, F; Glazkov, V; Zheludev, A; Prša, K; Ott, H-R; Mesot, J
2011-04-01
NMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations. This distribution, which is reflected in a stretched exponential NMR relaxation, exhibits a progressive broadening with decreasing temperature, caused by a growing inequivalence of magnetic sites. Compelling independent evidence for the influence of randomness is also obtained from magnetization data and Monte Carlo calculations. These results suggest the formation of random-singlet states in this class of materials, as previously predicted by theory.
Schwarz waveform relaxation algorithm for heat equations with distributed delay
Wu Shu-Lin
2016-01-01
Full Text Available Heat equations with distributed delay are a class of mathematic models that has wide applications in many fields. Numerical computation plays an important role in the investigation of these equations, because the analytic solutions of partial differential equations with time delay are usually unavailable. On the other hand, duo to the delay property, numerical computation of these equations is time-consuming. To reduce the computation time, we analyze in this paper the Schwarz waveform relaxation algorithm with Robin transmission conditions. The Robin transmission conditions contain a free parameter, which has a significant effect on the convergence rate of the Schwarz waveform relaxation algorithm. Determining the Robin parameter is therefore one of the top-priority matters for the study of the Schwarz waveform relaxation algorithm. We provide new formula to fix the Robin parameter and we show numerically that the new Robin parameter is more efficient than the one proposed previously in the literature.
Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times
Kosuke Hayashi
2012-06-01
Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.
Martínez García, Julio Cesar; Tamarit Mur, José Luis; Rzosca, S. J.
2011-01-01
Recently, Nielsen et al. [J. Chem. Phys. 130, 154508 (2009); Philos. Mag. 88, 4101 (2008)] demonstrated a universal pattern for the high frequency wing of the loss curve for primary relaxation time on approaching the glass transition for organic liquids. In this contribution it is presented that a similar universality occurs for glass-forming liquid crystals and orientationally disordered crystals (plastic crystals). Empirical correlations of the found behavior are also briefly di...
2011-01-01
Recently, Nielsen et al. [J. Chem. Phys. 130, 154508 (2009); Philos. Mag. 88, 4101 (2008)] demonstrated a universal pattern for the high frequency wing of the loss curve for primary relaxation time on approaching the glass transition for organic liquids. In this contribution it is presented that a similar universality occurs for glass-forming liquid crystals and orientationally disordered crystals (plastic crystals). Empirical correlations of the found behavior are also briefly di...
Probing relaxation times in graphene quantum dots
Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph
2013-01-01
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294
Relaxation time measurements by an electronic method.
Brousseau, R.; Vanier, J.
1973-01-01
Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.
RELAXATION TIME LIMITS PROBLEM FOR HYDRODYNAMIC MODELS IN SEMICONDUCTOR SCIENCE
无
2007-01-01
In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.
First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins
Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.
2015-01-01
The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov State Model of the kinetics in the unfolded state and folding of the mini-protein NTL9 constructed from a 2.9 millisecond simulation provided by D. E. Shaw Research. PMID:26252709
Internal relaxation time in immersed particulate materials
Rognon, P; Gay, C
2009-01-01
We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams.
Left ventricle segmentation in MRI via convex relaxed distribution matching.
Nambakhsh, Cyrus M S; Yuan, Jing; Punithakumar, Kumaradevan; Goela, Aashish; Rajchl, Martin; Peters, Terry M; Ayed, Ismail Ben
2013-12-01
A fundamental step in the diagnosis of cardiovascular diseases, automatic left ventricle (LV) segmentation in cardiac magnetic resonance images (MRIs) is still acknowledged to be a difficult problem. Most of the existing algorithms require either extensive training or intensive user inputs. This study investigates fast detection of the left ventricle (LV) endo- and epicardium surfaces in cardiac MRI via convex relaxation and distribution matching. The algorithm requires a single subject for training and a very simple user input, which amounts to a single point (mouse click) per target region (cavity or myocardium). It seeks cavity and myocardium regions within each 3D phase by optimizing two functionals, each containing two distribution-matching constraints: (1) a distance-based shape prior and (2) an intensity prior. Based on a global measure of similarity between distributions, the shape prior is intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive a fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed algorithm relaxes the need for costly pose estimation (or registration) procedures and large training sets, and can tolerate shape deformations, unlike template (or atlas) based priors. Our formulation leads to a challenging problem, which is not directly amenable to convex-optimization techniques. For each functional, we split the problem into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Unlike related graph-cut approaches, the proposed convex-relaxation solution can be parallelized to reduce substantially the computational time for 3D domains (or higher), extends directly to high dimensions, and does not have the grid-bias problem. Our parallelized implementation on a graphics processing unit (GPU) demonstrates that the proposed algorithm
Immersed boundary lattice Boltzmann model based on multiple relaxation times.
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
Reactor flush time correction in relaxation experiments
den Otter, M.W.; Bouwmeester, Henricus J.M.; Boukamp, Bernard A.; Verweij, H.
2001-01-01
The present paper deals with the analysis of experimental data from conductivity relaxation experiments. It is shown that evaluation of the chemical diffusion and surface transfer coefficients for oxygen by use of this technique is possible only if accurate data for the conductivity transient can be
Determination of Relaxation Time of a Josephson Tunnel Junction
WEN Xue-Da; YU Yang
2008-01-01
We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.
Evaluating Distributed Timing Constraints
Kristensen, C.H.; Drejer, N.
1994-01-01
In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems.......In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems....
Time constant of logarithmic creep and relaxation
Nabarro, FRN
2001-07-15
Full Text Available of logarithmic creep have been proposed, the work-hardening of a set of barriers to dislocation motion, all having the same activation energy, or the progressive exhaustion of the weaker barriers in a set which has a distribution of activation energies...
Ice sheet growth with laterally varying bedrock relaxation time
van der Wal, Wouter; Vizcaino Rubio, Pablo; De Boer, Bas; van de Wal, Roderik
2017-04-01
Isostatic response of the bedrock, or glacial isostatic adjustment (GIA) in included in most ice sheet models. This is important because the surface elevation determines the mass balance and thereby implicitly also the strength of the mass balance feedback where higher surface elevation yields lower temperatures implying less melt and vice versa. Usually a single relaxation time or a set of relaxation times is used to model the response everywhere on Earth or at least for an entire ice sheet. In reality the viscosity in the Earth's mantle, and hence the relaxation time experienced by the ice, varies with location. Seismic studies indicate that several regions that were covered by ice during the last glacial cycle are underlain by mantle in which viscosity varies with orders of magnitude, such as Antarctica and North America. The question is whether such a variation of viscosity influences ice evolution. Several GIA models exist that can deal with 3D viscosity, but their large computation times make it nearly impossible to couple them to ice sheet models. Here we use the ANICE ice-sheet model (de Boer et al. 2013) with a simple bedrock-relaxation model in which a different relaxation time is used for separate regions. A temperature anomaly is applied to grow a schematic ice sheet on a flat earth, with other forcing mechanisms neglected. It is shown that in locations with a fast relaxation time of 300 years the equilibrium ice sheet is significantly thinner and narrower but also ice thickness in neighbouring regions (with the more standard relaxation time of 3000 years) is affected.
Mindfulness meditation and relaxation training increases time sensitivity.
Droit-Volet, S; Fanget, M; Dambrun, M
2015-01-01
Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing.
Electron-phonon relaxation time in ultrathin tungsten silicon film
Sidorova, M; Korneev, A; Chulkova, G; Korneeva, Yu; Mikhailov, M; Devizenko, Yu; Kozorezov, A; Goltsman, G
2016-01-01
Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.
Experimental study on relaxation time in direction changing movement
Liu, Chi; Song, Weiguo; Fu, Libi; Lian, Liping; Lo, Siuming
2017-02-01
Controlled experiments were conducted to clarify the movement characteristics of pedestrians in direction changing processes. We track pedestrians' trajectories and map them into real space coordinates by the direct linear transformation method. In the acceleration process, the relaxation time and free moving speed in our experiments respectively equal 0.659 s and 1.540 m/s, which are consistent with those for Chinese participants in other experiments. Meanwhile, the values of relaxation time in the direction changing process are calculated by a derived equation from the concept of the social force model. It is observed that the relaxation time is not an invariable parameter, and tends to increase with an increase in the angular difference. Furthermore, results show that pedestrians are insensitive to a tiny angular difference between instantaneous velocity and desired velocity. These experimental results presented in this work can be applied in model development and validation.
Time-dependent Jahn-Teller problem: Phonon-induced relaxation through conical intersection
Pae, Kaja, E-mail: kaja.pae@gmail.com; Hizhnyakov, Vladimir [Institute of Physics University of Tartu, Tartu (Estonia)
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Time-dependent Jahn-Teller problem: phonon-induced relaxation through conical intersection.
Pae, Kaja; Hizhnyakov, Vladimir
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods
Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.
The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Carrier relaxation time divergence in single and double layer cuprates
Schneider, M. L.; Rast, S.; Onellion, M.; Demsar, J.; Taylor, A. J.; Glinka, Y.; Tolk, N. H.; Ren, Y. H.; Lüpke, G.; Klimov, A.; Xu, Y.; Sobolewski, R.; Si, W.; Zeng, X. H.; Soukiassian, A.; Xi, X. X.; Abrecht, M.; Ariosa, D.; Pavuna, D.; Krapf, A.; Manzke, R.; Printz, J. O.; Williamsen, M. S.; Downum, K. E.; Guptasarma, P.; Bozovic, I.
2003-12-01
We report the transient optical pump-probe reflectivity measurements on single and double layer cuprate single crystals and thin films of ten different stoichiometries. We find that with sufficiently low fluence the relaxation time (tauR) of all samples exhibits a power law divergence with temperature (T): tauR ∝ T^{-3 ± 0.5}. Further, the divergence has an onset temperature above the superconducting transition temperature for all superconducting samples. Possible causes of this divergence are discussed.
Relaxation Time and the Problem of the Pleistocene
Steven M. Holland
2013-04-01
Full Text Available Although changes in habitat area, driven by changes in sea level, have long been considered as a possible cause of marine diversity change in the Phanerozoic, the lack of Pleistocene extinction in the Californian Province has raised doubts, given the large and rapid sea-level changes during the Pleistocene. Neutral models of metacommunities presented here suggest that diversity responds rapidly to changes in habitat area, with relaxation times of a few hundred to a few thousand years. Relaxation time is controlled partly by metacommunity size, implying that different provinces or trophic levels might have measurably different responses to changes in habitable area. Geologically short relaxation times imply that metacommunities should be able to stay nearly in equilibrium with all but the most rapid changes in area. A simulation of the Californian Province during the Pleistocene confirms this, with the longest lags in diversity approaching 20 kyr. The apparent lack of Pleistocene extinction in the Californian Province likely results from the difficulty of sampling rare species, coupled with repopulation from adjacent deep-water or warm-water regions.
Vibrational state distribution and relaxation of vinoxy radicals
Su, Hongmei; Bersohn, Richard
2001-07-01
The vinoxy radical ṡCH2CHO is a product of the reaction of O(3P) atoms with terminal alkenes and can also be made by photodissociation of an alkyl vinyl ether. In either case it is formed in a vibrationally excited state. The nascent radical displays a rich electronic spectrum to the red of its X→B band origin consisting of bands originating from vibrationally excited states. Some transitions, true "hot bands," terminate on the vibrationless B state; others, sequence bands, terminate on vibrationally excited B states. The spectra become unobservably weak at a certain energy. The difference between that energy and the energy of the band origin is roughly the maximum vibrational energy in the radical. This is 5600 cm-1 for the vinoxy produced by photodissociation of ethyl vinyl ether at 193 nm and 3200 cm-1 for the product of the reaction of O(3P) with ethylene, propene, 1-butene, and 1-pentene. There is a remarkable cooling of the vibrations as the hydrocarbon chain lengthens. The average vibrational energy of the vinoxy product of the reaction O(3P) with ethylene, propene, 1-butene, and 1-pentene is 2100, 1800, 1570, and 1180 cm-1, respectively. This cooling implies that the reaction complex lives long enough for internal vibrational relaxation to occur. The average vibrational energy in the reaction-produced vinoxy is small, which implies that there is considerable kinetic energy. The time dependence of the intensity of the hot bands measures the relaxation rates of different energies, some of which are the energies of a single vibrational state. The ground-state population increases monotonically to an asymptote. The population of most states grows with time and then decays. The growth is due to a cascading from upper states. The populations of the highest energy states decay monotonically; the still higher energy states are almost unpopulated. These results prove that the relaxation proceeds stepwise. The magnitude of the step, ˜200-300 cm-1, can be
Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)
2017-06-28
Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.
Krylov-subspace acceleration of time periodic waveform relaxation
Lumsdaine, A. [Univ. of Notre Dame, IN (United States)
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
Chashei, I. V.; Fahr, H. J.
Charge-exchange processes between interstellar H-/O-atoms and protons of the bulk of the interstellar plasma flow downstream of the outer bowshock in the heliospheric interface induce secondary ions leading to non-relaxated velocity distribution functions. The relaxation of these freshly induced ions towards an equilibrium distribution occurs due to Coulomb interactions and wave-particle interactions with the background turbulence. Since Coulomb interactions are of low relevance, we study here in detail the effect of wave-particle interactions. To find the turbulence levels in the interface we consider the MHD-wave transformation at the outer shock surface between the interface and the local interstellar plasma. The turbulence in the outer interface region is shown to be dominated by incompressible Alfvén waves both for cases of quasiparallel and quasiperpendicular shocks. Also we show that waves propagating towards the shock are more intensive than those propagating away from it. The level of Alfvén turbulence in the interface is estimated using the recent data on local interstellar turbulence deduced from observations of interstellar scintillations of distant radiosources. Two proton relaxation processes are considered: quasilinear resonant interactions with Alfvén waves and non-linear self-induced wave-particle scattering. The corresponding diffusion coefficients are estimated, and typical time periods for protons and oxygen ions relaxation are shown to be of the same order of magnitude as H-/O-atoms passage time over the extent of the interface. This indicates that perturbed ion distribution functions must be expected there.
Theoretical Delay Time Distributions
Nelemans, Gijs; Bours, Madelon
2012-01-01
We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of type Ia supernova progenitors. We also compare the results of the different research groups and conclude that although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this cannot explain all the differences.
Theoretical Delay Time Distributions
Nelemans, Gijs; Toonen, Silvia; Bours, Madelon
2013-01-01
We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.
Leporq, Benjamin; Le Troter, Arnaud; Le Fur, Yann; Salort-Campana, Emmanuelle; Guye, Maxime; Beuf, Olivier; Attarian, Shahram; Bendahan, David
2017-08-01
To evaluate the combination of a fat-water separation method with an automated segmentation algorithm to quantify the intermuscular fatty-infiltrated fraction, the relaxation times, and the microscopic fatty infiltration in the normal-appearing muscle. MR acquisitions were performed at 1.5T in seven patients with facio-scapulo-humeral dystrophy and eight controls. Disease severity was assessed using commonly used scales for the upper and lower limbs. The fat-water separation method provided proton density fat fraction (PDFF) and relaxation times maps (T 2* and T 1). The segmentation algorithm distinguished adipose tissue and normal-appearing muscle from the T 2* map and combined active contours, a clustering analysis, and a morphological closing process to calculate the index of fatty infiltration (IFI) in the muscle compartment defined as the relative amount of pixels with the ratio between the number of pixels within IMAT and the total number of pixels (IMAT + normal appearing muscle). In patients, relaxation times were longer and a larger fatty infiltration has been quantified in the normal-appearing muscle. T 2* and PDFF distributions were broader. The relaxation times were correlated to the Vignos scale whereas the microscopic fatty infiltration was linked to the Medwin-Gardner-Walton scale. The IFI was linked to a composite clinical severity scale gathering the whole set of scales. The MRI indices quantified within the normal-appearing muscle could be considered as potential biomarkers of dystrophies and quantitatively illustrate tissue alterations such as inflammation and fatty infiltration.
Multiple-relaxation-time model for the correct thermohydrodynamic equations.
Zheng, Lin; Shi, Baochang; Guo, Zhaoli
2008-08-01
A coupling lattice Boltzmann equation (LBE) model with multiple relaxation times is proposed for thermal flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow, and the natural convection flow in a square cavity. It is found that the numerical results agree well with the analytical solutions and/or other numerical results.
Effective rotational correlation times of proteins from NMR relaxation interference
Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt
2006-01-01
Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.
The structure of precipitation fronts for finite relaxation time
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, NY (United States)
2006-11-15
When convection is parameterized in an atmospheric circulation model, what types of waves are supported by the parameterization? Several studies have addressed this question by finding the linear waves of simplified tropical climate models with convective parameterizations. In this paper's simplified tropical climate model, convection is parameterized by a nonlinear precipitation term, and the nonlinearity gives rise to precipitation front solutions. Precipitation fronts are solutions where the spatial domain is divided into two regions, and the precipitation (and other model variables) changes abruptly at the boundary of the two regions. In one region the water vapor is below saturation and there is no precipitation, and in the other region the water vapor is above saturation level and precipitation is nonzero. The boundary between the two regions is a free boundary that moves at a constant speed. It is shown that only certain front speeds are allowed. The three types of fronts that exist for this model are drying fronts, slow moistening fronts, and fast moistening fronts. Both types of moistening fronts violate Lax's stability criterion, but they are robustly realizable in numerical experiments that use finite relaxation times. Remarkably, here it is shown that all three types of fronts are robustly realizable analytically for finite relaxation time. All three types of fronts may be physically unreasonable if the front spans an unrealistically large physical distance; this depends on various model parameters, which are investigated below. From the viewpoint of applied mathematics, these model equations exhibit novel phenomena as well as features in common with the established applied mathematical theories of relaxation limits for conservation laws and waves in reacting gas flows. (orig.)
Zhuo Qi Lee
Full Text Available Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees.
Distribution function in the description of relaxation phenomena
Brecht, M.; Klösgen, B.; Reichle, C.;
1999-01-01
with an exact Debye behaviour to be ascribed to the distinct species of different permanent electric dipoles, respectively, a separation into two or more single contributions of dispersion and absorption responses of the electric permittivity may prove to be unsatisfying. Instead, as for the interlamellar water...... adjacent to cell membranes, a distribution of correlation times has to be taken into account to describe the experimentally found additional line broadening in the absorption, the less steep slope in the dispersion curves and the loss of symmetry. Appropiate distribution functions are introduced...
Hydration Dependence of Energy Relaxation Time for Cytochrome C
Ye, Shuji; Chen, Jing-Yin; Knab, Joseph R.; Markelz, Andrea
2006-03-01
Hydration plays a critical role in protein dynamics. Here we consider the effects of hydration on energy relaxation for an electronically excited heme protein cytochrome c. We measure the hydration dependence of energy relaxation time of cytochrome C films after photoexcitation in the Soret regionusing two-color pump/probe time resolved transmission measurements. Thin films were prepared from cytochrome C/ Trizma buffer solutions and mounted in a hydration controlled cell. We used 400nm (˜3 mW) to pump the B band and 800 nm (˜1 mW) to probe the III band. The III band corresponds to the charge-transfer transition between heme π and iron d orbital, and is assigned to the ground electronic state of the heme. Therefore this band can be used to probe the ground state population. Three separate dynamic components were observed: a very fast transient τ1 ˜ 200 fs; a several hundred femtosecond component (τ2); and a recovery of the ground state absorption(τ3). We find τ3 apparently decreases with decreasing hydration while τ1 and τ2 are independent of hydration.
Measurement of interfacial area from NMR time dependent diffusion and relaxation measurements.
Fleury, M
2017-09-07
The interfacial area between two immiscible phases in porous media is an important parameter for describing and predicting 2 phase flow. Although present in several models, experimental investigations are sparse due to the lack of appropriate measurement techniques. We propose two NMR techniques for the measurement of oil-water interfacial area: (i) a time dependent NMR diffusion technique applicable in static conditions, similar to those used for the measurement of the solid specific surface of a porous media, and (ii) a fast relaxation technique applicable in dynamic conditions while flowing, based on an interfacial relaxation mechanism induced by the inclusion of paramagnetic salts in the water phase. For dodecane relaxing on doped water, we found an oil interfacial relaxivity of 1.8μm/s, large enough to permit the measurement of specific interfacial surface as small as 1000cm(2)/cm(3). We demonstrate both NMR techniques in drainage followed by imbibition, in a model porous media with a narrow pore size distribution. While flowing, we observe that the interfacial area is larger in imbibition than in drainage, implying a different organization of the oil phase. In a carbonate sample with a wide pore size distribution, we evidence the gradual invasion of the smallest pores as the oil-water pressure difference is increased. Copyright © 2017. Published by Elsevier Inc.
Time course of corticospinal excitability and intracortical inhibition just before muscle relaxation
Tomotaka eSuzuki
2016-01-01
Full Text Available Using transcranial magnetic stimulation (TMS, we investigated how short-interval intracortical inhibition (SICI was involved with transient motor cortex excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction force after the go signal. In the simple reaction time paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials were recorded from the right first dorsal interosseous muscle. We analyzed the time course prior to the estimated relaxation reaction time, defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before relaxation reaction time, and motor evoked potentials were significantly greater in amplitude in the 60–80 ms period before relaxation reaction time than in the other intervals in single-pulse trials. TMS pulses did not effectively increase relaxation reaction time. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to motor cortex excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Relaxation therapy for insomnia: nighttime and day time effects.
Means, M K; Lichstein, K L; Epperson, M T; Johnson, C T
2000-07-01
We compared day time functioning in college students with and without insomnia and explored changes in day time functioning after progressive relaxation (PR) treatment for insomnia. Students with insomnia (SWI; n = 57) were compared to a control group of students not complaining of insomnia (SNI; n = 61) on self-reported sleep variables and five questionnaires: Insomnia Impact Scale (IIS), Dysfunctional Beliefs and Attitudes About Sleep Scale (DBAS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and Penn State Worry Questionnaire (PSWQ). SWI demonstrated significant impairment on all day time functioning and sleep measures compared to SNI. To investigate treatment effects on day time functioning, 28 SWI were randomly assigned to PR. Treated SWI were compared to untreated SWI and SNI at posttreatment. Treated participants improved sleep in comparison to untreated SWI, but failed to show significant improvements in day time functioning. Insomnia treatments focused on improving sleep may not improve day time functioning, or day time gains may emerge more slowly than sleep gains. This study documents the wide range of day time functioning complaints in young adults with insomnia and suggests that the goal of insomnia treatment should be to not only improve sleep but also to improve the subjective experience of day time functioning.
Relaxation time effects of wave ripples on tidal beaches
Austin, M. J.; Masselink, G.; O'Hare, T. J.; Russell, P. E.
2007-08-01
Seabed roughness due to wave ripples is a key factor in controlling sediment transport processes in the nearshore zone. Roughness is commonly considered a function of the ripple geometry, which in turn, can be predicted from sediment and hydrodynamic parameters. Existing ripple predictors consider the bed morphology to be in equilibrium with the hydrodynamics, whereas recent laboratory measurements show that the time scale for ripple development is of the order of tens of minutes to hours. Here we show that wave ripples on tidal beaches are significantly affected by relaxation time effects, with ripple height and length progressively increasing during the rising tide and remaining constant during the falling tide. Moreover, we examine the ripples in the context of existing empirical models and suggest how the temporal evolution over a tidal cycle may be predicted.
Generalized dynamic scaling for quantum critical relaxation in imaginary time.
Zhang, Shuyi; Yin, Shuai; Zhong, Fan
2014-10-01
We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
A method for longitudinal relaxation time measurement in inhomogeneous fields
Chen, Hao; Cai, Shuhui; Chen, Zhong
2017-08-01
The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.
A 1-year time course study of the relaxation times and histology for irradiated rat lungs
Shioya, S.; Haida, M.; Fukuzaki, M.; Ono, Y.; Tsuda, M.; Ohta, Y.; Yamabayashi, H. (Tokai Univ. School of Medicine, Kanagawa (Japan))
1990-05-01
To investigate the NMR relaxation times for irradiated rat lung tissue, we measured T1 and T2 at 11 different times during the injury's 1-year time course. A biexponential analysis of T2 was used to determine T2 fast (T2f) and T2 slow (T2s). In addition, we measured water content and correlated changes in the relaxation times with pathological changes. The correlation indicates the following: (1) Shortly after irradiation, the biexponential T2 decay for 1/3 of the samples became monoexponential and there were no noticeable pathological changes observed using light microscopy. (2) During radiation pneumonitis, T2f and T2s were prolonged. This accompanied acute edematous changes and inflammatory cell infiltration. (3) Finally, during radiation fibrosis T1 shortened and collagen increased. We observed no significant correlation between relaxation time changes and water content changes throughout the 1-year time course.
Relaxation and self-sustained oscillations in the time elapsed neuron network model
Pakdaman, Khashayar; Salort, Delphine
2011-01-01
The time elapsed model describes the firing activity of an homogeneous assembly of neurons thanks to the distribution of times elapsed since the last discharge. It gives a mathematical description of the probability density of neurons structured by this time. In an earlier work, based on generalized relative entropy methods, it is proved that for highly or weakly connected networks the model exhibits relaxation to the steady state and for moderately connected networks it is obtained numerical evidence of appearance of self-sustained periodic solutions. Here, we go further and, using the particular form of the model, we quantify the regime where relaxation to a stationary state occurs in terms of the network connectivity. To introduce our methodology, we first consider the case where the neurons are not connected and we give a new statement showing that total asynchronous firing of neurons appears asymptotically. In a second step, we consider the case with connections and give a low connectivity condition that...
Upper D region chemical kinetic modeling of LORE relaxation times
Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.
2016-04-01
The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.
Anomalous divergence of a relaxation time in discontinuous shear thickening suspensions
Maharjan, Rijan
2016-01-01
We investigated the transient relaxation of a Discontinuous Shear Thickening (DST) suspension of cornstarch in water. Starting from a steady shear in a parallel plate rheometer, we stopped the top plate rotation and measured the transient stress relaxation. We found that at low effective packing fraction $\\phi_{eff}$, the suspensions exhibited a relaxation behavior consistent with a rheometric fluid in which the relaxation is determined by the steady-state viscosity. However, for larger $\\phi_{eff}$, we find up to two exponential relaxation regimes, which both become distinct from the rheometric model. The discrepancy between the measured relaxation times and the rheometric prediction was found to be as large as 4 orders of magnitude and diverges in the limit as $\\phi_{eff} \\rightarrow \\phi_c$, corresponding to the liquid solid transition, as the measured relaxation times diverge to infinity while the rheometric prediction approaches 0. In this limit, the measured relaxation time scales are on the order of $\\...
Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics
Ruggieri, M; Chernodub, M
2016-01-01
We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es; Tienda-Luna, I. M.; Gámiz, F. [Departamento de Electrónica, Universidad de Granada, Av. Fuentenueva S/N, 18071–Granada (Spain)
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
Ovarian chocolate cysts. Staging with relaxation time in MR imaging
Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kitagaki, Hajime; Tanaka, Yutaka; Yamasaki, Katsuhito; Shimizu, Tadafumi; Kono, Michio.
1988-10-01
Accurate preoperative staging of ovarian chocolate cysts is very important because recent hormonal therapy has been effective in low stage patients. However, it has been difficult to assess the preoperative stage of ovarian chocolate cysts. We evaluated the diagnostic potential of MRI in preoperative staging of 15 overian chocolate cysts. It was well known that the older the ovarian chocolate cyst was the more iron content it had. We examined the iron contents effect on T1 and T2 relaxation times in surgically confirmed chocolate cysts (stage II: 3 cases, stage III: 3 cases and stage IV: 9 cases by AFS classification, 1985) employing the 0.15-T MR system and 200 MHz spectrometer. There was a positive linear relation between T1 of the lesion using the MR system (T1) and T1 of the resected contents using the spectrometer (sp-T1); r = 0.93. The same relation was revealed between T2 and sp-T2; r = 0.87. It was indicated that T1 and T2 using the MR system was accurate. There was a negative linear relation between T1 and the iron contents ( r = -0.81) but no relation between T2 and the iron contents. T1 was 412 +- 91 msec for stage II, 356 +- 126 msec for stage III and 208 +- 30 msec for stage IV. T1 for stage IV was shorter than that for stage II and III, statistically significant differences were noted (p < 0.05). Thus, T1 was useful in differentiating a fresh from an old ovarian chocolate cyst. We concluded that T1 relaxation time using the MR system was useful for the staging of an ovarian chocolate cyst without surgery.
Distribution of Pico- and Nanosecond Motions in Disordered Proteins from Nuclear Spin Relaxation.
Khan, Shahid N; Charlier, Cyril; Augustyniak, Rafal; Salvi, Nicola; Déjean, Victoire; Bodenhausen, Geoffrey; Lequin, Olivier; Pelupessy, Philippe; Ferrage, Fabien
2015-09-01
Intrinsically disordered proteins and intrinsically disordered regions (IDRs) are ubiquitous in the eukaryotic proteome. The description and understanding of their conformational properties require the development of new experimental, computational, and theoretical approaches. Here, we use nuclear spin relaxation to investigate the distribution of timescales of motions in an IDR from picoseconds to nanoseconds. Nitrogen-15 relaxation rates have been measured at five magnetic fields, ranging from 9.4 to 23.5 T (400-1000 MHz for protons). This exceptional wealth of data allowed us to map the spectral density function for the motions of backbone NH pairs in the partially disordered transcription factor Engrailed at 11 different frequencies. We introduce an approach called interpretation of motions by a projection onto an array of correlation times (IMPACT), which focuses on an array of six correlation times with intervals that are equidistant on a logarithmic scale between 21 ps and 21 ns. The distribution of motions in Engrailed varies smoothly along the protein sequence and is multimodal for most residues, with a prevalence of motions around 1 ns in the IDR. We show that IMPACT often provides better quantitative agreement with experimental data than conventional model-free or extended model-free analyses with two or three correlation times. We introduce a graphical representation that offers a convenient platform for a qualitative discussion of dynamics. Even when relaxation data are only acquired at three magnetic fields that are readily accessible, the IMPACT analysis gives a satisfactory characterization of spectral density functions, thus opening the way to a broad use of this approach.
ZHANG Feng; CHEN Feng; TANG Guochun
2004-01-01
Scheduling unrelated parallel machines with controllable processing times subject to release times is investigated. Based on the convex quadratic programming relaxation and the randomized rounding strategy, a 2-approximation algorithm is obtained for a special case with the all-or-none property and then a 3-approximation algorithm is presented for general problem.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L.
2014-01-01
The dynamics properties of a new "next generation" model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ˜42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu [Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881 (United States)
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times
Seta, Takeshi; Rojas, Roberto; Hayashi, Kosuke; Tomiyama, Akio
2014-02-01
In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multirelaxation time (MRT). The TRT is as effective in removing the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the δ function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re = 10, 20, and 40.
Determination of T1- and T2-relaxation times in the spleen of patients with splenomegaly
Thomsen, C; Josephsen, P; Karle, H
1990-01-01
Twenty-nine patients with known splenomegaly and seven healthy volunteers were examined. The T1 and T2 relaxation times were read out from a region of interest centrally in the spleen. Even though different mean T1 and T2 relaxation times were found between the groups, the great scatter and the c...... and the considerable overlap between the groups makes the contribution of relaxation time measurements to the differential diagnosis of splenomegaly of limited value....
Fan, Fanghui; Mou, Tian; Nurhadi, Bambang; Roos, Yrjö H.
2016-01-01
Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-rel...
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time
Angail A. Samaan
2011-01-01
Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.
A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times
Fabio Baselice
2015-01-01
Full Text Available Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.
The time dependence of rock healing as a universal relaxation process, a tutorial
Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie
2017-01-01
The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.
周运清; 杨芳; 李家荣
2003-01-01
From QGP kinetic equations with collision integrals,by using the realaxation time approximation,we calculate the distribution functions to the second order correction. We obtain the distribution functions for quarks (and anti-quarks) and gluons under the perturbation of the fluctuation of the color field.Then in the high-temperature-low-density area,we discuss the characteristics of the distribution functions,and use them to get the net baryon density and the energy density.%从有碰撞项的QGP动力论方程出发,在色涨落扰动下,利用弛豫时间近似,得到至二级修正的夸克和胶子分布函数,通过数值分析重点讨论了高温低密情况下QGP中成分粒子分布函数的特性,并且由分布函数得到净重子数密度和能量密度.
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80-100 ms before RRT, and MEPs were significantly greater in amplitude in the 60-80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
Multiple-relaxation-time lattice Boltzmann kinetic model for combustion.
Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun
2015-04-01
To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.
Hopman, C; Alexander, Tal; Hopman, Clovis
2006-01-01
Resonant relaxation (RR) of orbital angular momenta occurs near massive black holes (MBHs) where the stellar orbits are nearly Keplerian and so do not precess significantly. The resulting coherent torques efficiently change the magnitude of the angular momenta and rotate the orbital inclination in all directions. As a result, many of the tightly bound stars very near the MBH are rapidly destroyed by falling into the MBH on low-angular momentum orbits, while the orbits of the remaining stars are efficiently randomized. We solve numerically the Fokker-Planck equation in energy for the steady state distribution of a single mass population with a RR sink term. We find that the steady state current of stars, which sustains the accelerated drainage close to the MBH, can be up to ~10 times larger than that due to non-coherent 2-body relaxation alone. RR mostly affects tightly bound stars, and so it increases only moderately the total tidal disruption rate, which is dominated by stars originating from less bound orbi...
Managing Consistency Anomalies in Distributed Integrated Databases with Relaxed ACID Properties
Frank, Lars; Ulslev Pedersen, Rasmus
2014-01-01
In central databases the consistency of data is normally implemented by using the ACID (Atomicity, Consistency, Isolation and Durability) properties of a DBMS (Data Base Management System). This is not possible if distributed and/or mobile databases are involved and the availability of data also...... has to be optimized. Therefore, we will in this paper use so called relaxed ACID properties across different locations. The objective of designing relaxed ACID properties across different database locations is that the users can trust the data they use even if the distributed database temporarily...... been committed and completed, the execution has the consistency property. The above definition of the consistency property is not useful in distributed databases with relaxed ACID properties because such a database is almost always inconsistent. In the following, we will use the concept Consistency...
Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study
Kjaer, L; Thomsen, C; Henriksen, O
1987-01-01
Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...
Stretched Exponential Relaxation in Disordered Complex Systems: Fractal Time Random Walk Model
Ekrem Aydmer
2007-01-01
We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the relaxation function has stretched exponential, i.e. the Kohlrausch-Williams-Watts character for a fractal time random walk process.
Distribution of tsunami interevent times
Geist, E.L.; Parsons, T.
2008-01-01
The distribution of tsunami interevent times is analyzed using global and site-specific (Hilo, Hawaii) tsunami catalogs. An empirical probability density distribution is determined by binning the observed interevent times during a period in which the observation rate is approximately constant. The empirical distributions for both catalogs exhibit non-Poissonian behavior in which there is an abundance of short interevent times compared to an exponential distribution. Two types of statistical distributions are used to model this clustering behavior: (1) long-term clustering described by a universal scaling law, and (2) Omori law decay of aftershocks and triggered sources. The empirical and theoretical distributions all imply an increased hazard rate after a tsunami, followed by a gradual decrease with time approaching a constant hazard rate. Examination of tsunami sources suggests that many of the short interevent times are caused by triggered earthquakes, though the triggered events are not necessarily on the same fault.
Diffusion-relaxation distribution functions of sedimentary rocks in different saturation states.
Hürlimann, M D; Flaum, M; Venkataramanan, L; Flaum, C; Freedman, R; Hirasaki, G J
2003-01-01
We present diffusion-relaxation distribution functions measured on four rock cores that were prepared in a succession of different saturation states of brine and crude oil. The measurements were performed in a static gradient field at a Larmor frequency of 1.76 MHz. The diffusion-relaxation distribution functions clearly separate the contributions from the two fluid phases. The results can be used to identify the wetting and non-wetting phase, to infer fluid properties of the phases, and to obtain additional information on the geometrical arrangement of the phases. We also observe effects due to restricted diffusion and susceptibility induced internal gradients.
V. E. Merzlikin
2015-01-01
The article deals with the search for optimal parameter estimation of the parameters of the process of homogenization of dairy products. Provides a theoretical basis for relationship of the relaxation time of the fat globules and attenuation coefficient of ultrasonic oscillations in dairy products. Suggested from the measured acoustic properties of milk to make the calculations of the mass distribution of fat globules. Studies on the proof of this hypothesis. Morphological analysis procedure ...
Benavides, Francisco; Leiderman, Ricardo; Souza, Andre; Carneiro, Giovanna; Bagueira, Rodrigo
2017-09-01
In the present work, we formulate and solve an inverse problem to recover the surface relaxivity as a function of pore size. The input data for our technique are the T2 distribution measurement and the micro-tomographic image of the rock sample under investigation. We simulate the NMR relaxation signal for a given surface relaxivity function using the random walk method and rank different surface relaxivity functions according to the correlation of the resulting simulated T2 distributions with the measured T2 distribution. The optimization is performed using genetic algorithms and determines the surface relaxivity function whose corresponding simulated T2 distribution best matches the measured T2 distribution. In the proposed methodology, pore size is associated with a number of collisions in the random walk simulations. We illustrate the application of the proposed method by performing inversions from synthetic and laboratory input data and compare the obtained results with those obtained using the uniform relaxivity assumption.
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui;
2016-01-01
This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui
2016-01-01
This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
Vandewalle, S. [Caltech, Pasadena, CA (United States)
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature
Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth
2016-02-01
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α -relaxation regime.
Estimation of Hot Electron Relaxation Time in GaN Using Hot Electron Transistors
Dasgupta, Sansaptak; Lu, Jing; Nidhi; Raman, Ajay; Hurni, Christophe; Gupta, Geetak; Speck, James S.; Mishra, Umesh K.
2013-03-01
In this paper, we report for the first time an estimation of hot electron relaxation time in GaN using electrical measurements. Hot electron transistors (HETs) with GaN as the base layer and different base-emitter barrier-height configurations and base thicknesses were fabricated. Common-base measurements were performed to extract the differential transfer ratio, and an exponential decay of the transfer ratio with increasing base thickness was observed. A hot electron mean free path was extracted from the corresponding exponential fitting and a relaxation time was computed, which, for low energy injection, matched well with theoretically predicted relaxation times based on longitudinal optical (LO) phonon scattering.
Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole
2008-01-01
The stress in the startup of uniaxial elongational flow until steady state, followed by stress relaxation, has been measured for a narrow molar mass distribution polystyrene inelt with a molecular weight of 145 kg/mol. The experiments are conducted on a filament stretching rheometer, where a clos...... rates. (C) 2008 The Society of Rheology....
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui;
2016-01-01
solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
Vermey, G.F.
1975-01-01
To solve the differential equation for the heat in a two-layer, rectangular piece of skin tissue, a relaxation method, based on a finite difference technique, is used. The temperature distributions on the skin surface are calculated. The results are used to derive a criterion for the resolution for
TRANSVERSAL INERTIAL EFFECT ON RELAXATION/RETARDATION TIME OF CEMENT MORTAR UNDER HARMONIC WAVE
Jue Zhu; Yonghui Cao; Jiankang Chen
2008-01-01
Under dynamic loading, the constitutive relation of the cement mortar will be signif-icantly affected by the transversal inertial effect of specimens with large diameters. In this paper,one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.
Time-fractional derivatives in relaxation processes: a tutorial survey
Mainardi, Francesco
2008-01-01
The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classical theory of linear viscoelasticity, we contrast these two types of fractional derivatives in their ability to take into account initial conditions in the constitutive equations of fractional order. We also provide historical notes on the origins of the Caputo derivative and on the use of fractional calculus in viscoelasticity.
The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay
Gong Ailing; Zeng Chunhua [Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Wang Hua, E-mail: zchh2009@126.com [Province Engineering Research Center of Industrial Energy Conservation and New Technology, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)
2011-08-01
In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter {lambda} can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay {tau}. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay {tau} increases below the critical value of {lambda}. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and {tau} increase, i.e. a noise intensity D or Q and a time delay {tau} exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of {lambda}. The noise correlation parameter {lambda} first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, {lambda} increases it.
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko
2007-09-01
It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.
Spin relaxation time dependence on optical pumping in GaAs:Mn
Burobina, Veronika; Binek, Christian
2015-03-01
We analyze the dependence of electron spin relaxation time on optical pumping in a partially-compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, Utah 84112-0830 (United States); Binek, Ch. [Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska, P.O. Box 880299, Lincoln, Nebraska 68588-0299 (United States)
2014-04-28
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 10{sup 17} cm{sup −3}. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V.; Binek, Ch.
2014-04-01
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017 cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction
Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo
2016-07-01
In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.
Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis
Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian
2016-06-01
Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n = 4 and m = 0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.
Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis.
Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian
2016-06-01
Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts. Copyright © 2016 Elsevier Inc. All rights reserved.
Relaxation in distal and proximal arm muscles: a reaction time study.
Buccolieri, A; Avanzino, L; Trompetto, C; Abbruzzese, G
2003-02-01
To investigate whether the same mechanisms underlie muscle relaxation in proximal and distal arm muscles of normal subjects. Fourteen healthy subjects were studied using a simple visual reaction time paradigm. Relaxation reaction time (R-RT) and contraction reaction time (C-RT) were compared across different tasks involving distal (first dorsal interosseus, FDI, flexor carpi radialis, FCR) and proximal (biceps brachii, BB, triceps brachii, TR) arm muscles. Changes of FCR H-reflex before and during voluntary relaxation were investigated in two subjects. No significant difference was observed between R-RT and C-RT in the distal muscles. The R-RT was significantly shorter than C-RT in both the BB and TR muscles. The relaxation latency (R-RT) was significantly correlated to the subjects' age in all the muscles except the FDI. No inhibition of the FCR H-reflex could be observed in the 20 ms preceding muscle relaxation. Our findings suggest that neural mechanisms contribute differently to the relaxation of muscles with a different functional role. Voluntary relaxation in distal arm muscles is mainly related to the reduction of motor cortical output, while in proximal muscles a spinal disfacilitation is also present and possibly sustained by the modulation of presynaptic inhibition.
Source of non-arrhenius average relaxation time in glass-forming liquids
Dyre, Jeppe
1998-01-01
A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation time. This paper briefly reviews the classical phenomenological models for non-Arrhenius behavior the free volume model and the entropy model and critiques against these models. We...... are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a consequence of the fact that the instantaneous shear modulus increases upon cooling....
Cooking effects on water distribution in potatoes using nuclear magnetic resonance relaxation.
Mortensen, Margit; Thybo, Anette K; Bertram, Hanne C; Andersen, Henrik J; Engelsen, Søren B
2005-07-27
Continuous low-field (LF) (1)H NMR relaxometry was used to monitor the structural changes during cooking of potatoes with two different dry matter (DM) contents. A principal component analysis of the relaxation decay curves revealed major events related to water mobility during cooking, which occur at 53 and 60 degrees C for potatoes with medium and low DM contents, respectively. Exponential analysis of the relaxation decays reveals two major water populations in the potato: a slow-relaxing (assigned to water in cytoplasm and extracellular cavities) water component, T(22) ( approximately 350-550 ms), and a fast-relaxing component (primarily assigned to water associated with starch and cell walls), T(21) ( approximately 45-65 ms). Significant DM dependent shifts in both the T(21) and T(22) relaxation time constants were observed during cooking, indicating that starch gelatinizes between 53 and 70 degrees C with water exchanging with the hydroxyls of starch (transition in T(21)) and cells start to disrupt with an increase in diffusion volumes at approximately 60 degrees C (transition in T(22)). The study reveals that continuous LF NMR measurement is an excellent and highly sensitive method to study changes in water mobility and water populations during the cooking of potatoes.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
Maslennikov, Oleg V.; Nekorkin, Vladimir I. [Institute of Applied Physics of RAS, Nizhny Novgorod (Russian Federation)
2016-07-15
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Mitchell, J., E-mail: JMitchell16@slb.com [Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL (United Kingdom); Chandrasekera, T. C. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom)
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
SEMI-DEFINITE RELAXATION ALGORITHM FOR SINGLE MACHINE SCHEDULING WITH CONTROLLABLE PROCESSING TIMES
CHEN FENG; ZHANG LIANSHENG
2005-01-01
The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.
Jing, Yindi
2014-01-01
Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun
2016-01-01
panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large......There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...
Xingwen Zhu
2015-01-01
Full Text Available Smoothing analysis process of distributive red-black Jacobi relaxation in multigrid method for solving 2D Stokes flow is mainly investigated on the nonstaggered grid by using local Fourier analysis (LFA. For multigrid relaxation, the nonstaggered discretizing scheme of Stokes flow is generally stabilized by adding an artificial pressure term. Therefore, an important problem is how to determine the zone of parameter in adding artificial pressure term in order to make stabilization of the algorithm for multigrid relaxation. To end that, a distributive red-black Jacobi relaxation technique for the 2D Stokes flow is established. According to the 2h-harmonics invariant subspaces in LFA, the Fourier representation of the distributive red-black Jacobi relaxation for discretizing Stokes flow is given by the form of square matrix, whose eigenvalues are meanwhile analytically computed. Based on optimal one-stage relaxation, a mathematical relation of the parameter in artificial pressure term between the optimal relaxation parameter and related smoothing factor is well yielded. The analysis results show that the numerical schemes for solving 2D Stokes flow by multigrid method on the distributive red-black Jacobi relaxation have a specified convergence parameter zone of the added artificial pressure term.
A theoretical study of the stress relaxation in HMX on the picosecond time scale
Long, Yao; Chen, Jun
2015-12-01
The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.
Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time.
Smith, Pieter E S; Donovan, Kevin J; Szekely, Or; Baias, Maria; Frydman, Lucio
2013-09-16
The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties, such as size, as well as on dynamic ones, such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently, a number of single-shot-inversion-recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here, we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters
Appignanesi, G A; Rodriguez Fris, J A [Fisicoquimica, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina); Seccion de Fisicoquimica, Instituto de Quimica de la Universidad Nacional del Sur, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina)], E-mail: appignan@criba.edu.ar
2009-05-20
In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or {alpha} relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the {alpha} relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)
Ashvin Thambyah
2015-01-01
Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.
Bowler, R M; Yeh, C-L; Adams, S W; Ward, E J; Ma, R E; Dharmadhikari, S; Snyder, S A; Zauber, S E; Wright, C W; Dydak, U
2017-06-03
This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m(3). Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times. Copyright © 2017 Elsevier B.V. All rights reserved.
The short-time intramolecular dynamics of solutes in liquids. II. Vibrational population relaxation
Goodyear, Grant; Stratt, Richard M.
1997-08-01
Events such as the vibrational relaxation of a solute are often well described by writing an effective equation of motion—a generalized Langevin equation—which expresses the surrounding medium's influence on the intramolecular dynamics in terms of a friction and a fluctuating force acting on the solute. These quantities, though, can be obtained from the instantaneous normal modes (INMs) of the system when the relaxation takes place in a fluid, suggesting that we should be able to analyze in some detail the solvent motions driving the relaxation, at least for short times. In this paper we show that this promise can indeed be realized for the specific case of a vibrating diatomic molecule dissolved in an atomic solvent. Despite the relatively long times typical of vibrational population relaxation, it turns out that understanding the behavior of the vibrational friction at the short times appropriate to INMs (a few hundred femtoseconds) often suffices to predict T1 times. We use this observation to probe the dependence of these relaxation rates on thermodynamic conditions and to look at the molecular mechanisms underlying the process. We find that raising the temperature at any given density or raising the density at any given temperature will invariably increase the rate of energy relaxation. However, since these two trends may be in conflict in a typical constant-pressure laboratory experiment, we also find that it is possible to make sense of the "anomalous" inverted temperature dependence recently seen experimentally. We find, as well, that the INM theory—which has no explicit collisions built into it—predicts exactly the same density dependence as the venerable independent-binary-collision (IBC) theory (an intriguing result in view of recent claims that experimental observations of this kind of dependence provide support for the IBC theory). The actual mechanisms behind vibrational population relaxation are revealed by looking in detail at the
Multigrid waveform relaxation for the time-fractional heat equation
F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)
2017-01-01
textabstractIn this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense.
T2 relaxation time mapping of the cartilage cap of osteochondromas
Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)
2016-02-15
Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.
Distributed synthesis in continuous time
Hermanns, Holger; Krčál, Jan; Vester, Steen
2016-01-01
. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative......We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability....... The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME...
Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water
Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.;
We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....
ARTICLES: Time-Dependent Stokes Shift from Solvent Dielectric Relaxation
Xu, Jing; Wang, Quan-de; Zhu, Quan; Fu, Ke-xiang; He, Fu-cheng; Li, Xiang-yuan
2010-06-01
The Stokes shift response function, which is related to the time dependent solvation energy, is calculated with the dielectric response function and a novel expression of nonequilibrium solvation energy. In the derivation, relationship between the polarization and the dielectric response function is used. With the dipole-in-a-sphere model applied to the system coumarin 343 and water as the solvent, encouraging agreement with the experimental data from Jimenez et al. is obtained [Nature 369, 471 (1994)].
Electron-phonon relaxation and excited electron distribution in gallium nitride
Zhukov, V. P. [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Pervomayskaya st. 91, Yekaterinburg (Russian Federation); Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tyuterev, V. G., E-mail: valtyut00@mail.ru [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State Pedagogical University, Kievskaya st. 60, Tomsk (Russian Federation); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Chulkov, E. V. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain); Echenique, P. M. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain)
2016-08-28
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.
Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio
Tao Jiang; Qiwei Gong; Ruofan Qiu; Anlin Wang
2014-10-01
An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce `spurious velocity’. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent simulations with different relaxation time ratios.
ZHENG SHAO-KUAN; CHEN ZHONG; CHEN ZHI-WEI; ZHONG JIAN-HUI
2001-01-01
A one-dimensional NMR method is presented for measuring the transverse relaxation time, T2,n, of intermolecular multiple quantum coherences (IMQCs) of coherence order n in highly polarized spin systems. The pulse sequence proposed in this paper effectively suppresses the effects of radiation damping, molecular diffusion, inhomogeneity of magnetic field, and variations of dipolar correlation distance, all of which may affect quantitation of T2,n. This pulse sequence can be used to measure not only IMQC transverse relaxation time T2,n(n ＞ 1) quickly and directly, but also the conventional transverse relaxation time. Experimental results demonstrate that the quantitative relationship between T2,n(n≥1) and T2 is T2,n≈T2/n. These results will be helpful for understanding the fundamental properties and mechanisms of IMQCs.
Real-time Relaxation of Condensates and Kinetics in Hot Scalar QED Landau Damping
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.
1998-01-01
The real time evolution of field condensates with soft length scales k^{-1}>(eT)^{-1} is solved in hot scalar electrodynamics. We rederive the HTL effective action using the techniques of non-equilibrium field theory for small amplitude condensates. We find that transverse gauge invariant condensates relax as 1/t^2 and longitudinal condensates associated with plasmon (charge density) excitations relax with 1/[t log^2 t ] behavior to asymptotic amplitudes that are determined by the quasiparticle poles. The relaxational dynamics and relevant time scales are determined by the global analytic structure of the retarded propagators. To leading order, the long-time behaviour is determined by the Landau discontinuities associated with off-shell processes. Landau damping follows from the contribution of such discontinuities. We derive the influence functional for the soft (gauge invariant) degrees of freedom by integrating out the hard scales in the HTL approximation and obtain consistently the Langevin equation, the ...
Conductivity and relaxation time of porous silicon using the Kramers-Kronig relation
Dariani, R.S., E-mail: dariani@alzahra.ac.ir; Tavakoli, F.
2015-01-01
To review the dielectric characteristics of porous silicon samples with various porosities, an equivalent circuit including a capacitor and parallel resistance was used. By applying AC voltage with a constant amplitude of 200 mV to the circuit and using impedance measurements of the samples between 10–100 KHz, the variations in the capacitance, dielectric function, refractive index, and resistance for the samples at room temperature and up to 350 °C were studied. The dielectric characteristics of the samples decreased with increasing frequency. In addition, with increasing temperature, the pore diameters increased, and the dielectric characteristics varied. In this paper, we demonstrate that the relaxation time and DC conductivity could be obtained using the Kramers-Kronig function and Hilbert transformation. Our results indicate that the relaxation time and DC conductivity increase with increasing porosity, and with increasing temperature, the relaxation time decreases and the DC conductivity increases.
Relaxation Study of N-Submitted Amides with Alcohol Mixtures by Time Domain Reflectometry
A. Arunkumar
2016-08-01
Full Text Available Using Time Domain Reflectometry (TDR, dielectric relaxation studies have been carried out on binary mixtures of amides (N-methylacetamide, N,N-dimethylacetamide with alcohols (1-butanol, 1-pentanol for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time is vary with the chain length of alcohols and substituted amides are noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values vary from negative to positive for all the systems indicating the solute-solvent interaction to exist between alcohols and substituted amides for all the dynamics of the mixture.
Effects of cross-correlated noises on the relaxation time of the bistable system
谢崇伟; 梅冬成
2003-01-01
The stationary correlation function and the associated relaxation time for a general system driven by crosscorrelated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of λ (the correlated intensity between noises)exhibits very different behaviours for α＜ D and for α＞ D (α and D, respectively, stand for the intensities of additive and multiplicative noises). When α＞ D, Tc increases with increasing λ. But when α＜ D, Tc increases with λ for the case of weak correlated noises and sharply decreases with λ for the case of strong correlated noises, and thus Tc-λ curve behaves with one extremum.
Source of non-arrhenius average relaxation time in glass-forming liquids
Dyre, Jeppe
1998-01-01
then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions......A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation time. This paper briefly reviews the classical phenomenological models for non-Arrhenius behavior the free volume model and the entropy model and critiques against these models. We...... are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a consequence of the fact that the instantaneous shear modulus increases upon cooling....
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt
2013-01-01
magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate......We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external...... the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...
Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds
Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2017-07-01
Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.
Time derivatives of the spectrum: Relaxing the stationarity assumption
Prieto, G. A.; Thomson, D. J.; Vernon, F. L.
2005-12-01
Spectrum analysis of seismic waveforms has played a significant role towards the understanding of multiple aspects of Earth structure and earthquake source physics. In recent years the multitaper spectrum estimation approach (Thomson, 1982) has been applied to geophysical problems providing not only reliable estimates of the spectrum, but also estimates of spectral uncertainties (Thomson and Chave, 1991). However, these improved spectral estimates were developed under the assumption of local stationarity and provide an incomplete description of the observed process. It is obvious that due to the intrinsic attenuation of the Earth, the amplitudes, and thus the frequency contents are changing with time as waves pass through a seismic station. There have been incredible improvements in different techniques to analyze non-stationary signals, including wavelet decomposition, Wigner-Ville spectrum and the dual-frequency spectrum. We apply one of the recently developed techniques, the Quadratic Inverse Theory (Thomson, 1990, 1994), combined with the multitaper technique to look at the time derivatives of the spectrum. If the spectrum is reasonably white in a certain bandwidth, using QI theory, we can estimate the derivatives of the spectrum at each frequency. We test synthetic signals to corroborate the approach and apply it the records of small earthquakes at local distances. This is a first approach to try and combine the classical spectrum analysis without the assumption of stationarity that is generally taken.
Deconfinement Phase Transition in an Expanding Quark system in Relaxation Time Approximation
Yang, Z; Yang, Zhenwei; Zhuang, Pengfei
2004-01-01
We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.
Geerdink, J.B.W.; Hoekstra, A.G.
2009-01-01
We compare the Lattice BGK, the Multiple Relaxation Times and the Entropic Lattice Boltzmann Methods for time harmonic flows. We measure the stability, speed and accuracy of the three models for Reynolds and Womersley numbers that are representative for human arteries. The Lattice BGK shows
Stoch, G; Ylinen, E E; Birczynski, A; Lalowicz, Z T; Góra-Marek, K; Punkkinen, M
2013-02-01
A new method is introduced for analyzing deuteron spin-lattice relaxation in molecular systems with a broad distribution of activation energies and correlation times. In such samples the magnetization recovery is strongly non-exponential but can be fitted quite accurately by three exponentials. The considered system may consist of molecular groups with different mobility. For each group a Gaussian distribution of the activation energy is introduced. By assuming for every subsystem three parameters: the mean activation energy E(0), the distribution width σ and the pre-exponential factor τ(0) for the Arrhenius equation defining the correlation time, the relaxation rate is calculated for every part of the distribution. Experiment-based limiting values allow the grouping of the rates into three classes. For each class the relaxation rate and weight is calculated and compared with experiment. The parameters E(0), σ and τ(0) are determined iteratively by repeating the whole cycle many times. The temperature dependence of the deuteron relaxation was observed in three samples containing CD(3)OH (200% and 100% loading) and CD(3)OD (200%) in NaX zeolite and analyzed by the described method between 20K and 170K. The obtained parameters, equal for all the three samples, characterize the methyl and hydroxyl mobilities of the methanol molecules at two different locations.
Only through perturbation can relaxation times be estimated
Ditlevsen, Susanne; Lansky, Petr
2012-01-01
Estimation of model parameters is as important as model building, but is often neglected in model studies. Here we show that despite the existence of well known results on parameter estimation in a simple homogenous Ornstein-Uhlenbeck process, in most practical situations the methods suffer greatly...... from finite sample sizes and especially the estimator of the time constant of the system is degraded. Therefore an alternative solution is of paramount importance. We present such a solution based on perturbation of the system, observing trajectories far from equilibrium. The results are illustrated...... on computer experiments based on applications in neuroscience and pharmacokinetics, which show a striking improvement of the quality of estimation. The results are important for judicious designs of experiments to obtain maximal information from each data point, especially when samples are expensive...
Option pricing during post-crash relaxation times
Dibeh, Ghassan; Harmanani, Haidar M.
2007-07-01
This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.
Timing issues in distributed testing
HUANG Chuan-dong; JIANG Fan
2007-01-01
The objective of conformance testing is to determine whether an implementation under test (IUT) conforms to its specification. In distributed test architecture where there are multiple remote testers, the objective can be complicated by the fact that testers may encounter controllability and observability problems during the application of a test sequence. A certain amount of work has been done in the area of generating test sequence that is free from these problems. However, few researchers investigate them from the aspect of test execution. This work studies the test execution phase when test sequences are applied to the implementation and it is pointed out that controllability and observability problems can be resolved if and only if the test system implements some timing constraints. When determining these constraints, the dynamic time information during test is taken into account, which reduces the test execution time and improves test efficiency further.
Dielectric relaxation time and structure of bound water in biological materials
Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K.
1987-12-03
The dielectric behavior of living tissues and a number of biological materials was examined by new equipment of the time domain reflectometry method in a wide frequency range of 10/sup 7/-10/sup 10/ Hz. The authors found two peaks of Debye absorption around 100 MHz and 20 GHz for all the materials. The low-frequency absorption is probably due to bound water while the high-frequency absorption to free water. From the observed relaxation times of bound water a hypothesis is ventured on the structure of bound water and its relaxation mechanism.
Non-Fermi liquid behavior of thermal relaxation time in degenerate electron gas
Sarkar, Sreemoyee
2012-01-01
The thermal relaxation time ($\\tau_{\\kappa_{ee}}$) for the degenerate electron plasma has been calculated by incorporating non-Fermi liquid (NFL) corrections both for the thermal conductivity and specific heat capacity. Perturbative results are presented by making expansion in $T/m_D$ with next to leading order corrections. It is seen that unlike the normal Fermi liquid (FL) result where $\\tau_{\\kappa_{ee}}\\propto 1/T^2$, NFL corrections in leading order (LO) changes the temperature dependence of $\\tau_{\\kappa_{ee}}$ to 1/T. Incorporation of the phase space correction driven by the medium modified Fermion dispersion relation increases the relaxation time further.
Molecular motions and phase transitions. NMR relaxation times studies of several lecithins.
Bar-Adon, R; Gilboa, H
1981-01-01
The spin-lattice relaxation time, T1, and the dipolar energy relaxation time, TD, were measured as a function of temperature. The materials studied were samples of anhydrous L-dipalmitoyl lecithin, DL-dipalmitoyl lecithin, L-dimyristoyl lecithin, DL-dimyristoyl lecithin and their monohydrates, and of anhydrous egg yolk lecithin. It is shown that TD is a much more sensitive parameter than T1 for the determination of the Chapman phase transition. Comparison between T1 and TD provides informatio...
Zhang, Baoyong; Lam, James; Xu, Shengyuan
2015-07-01
This paper revisits the problem of asymptotic stability analysis for neural networks with distributed delays. The distributed delays are assumed to be constant and prescribed. Since a positive-definite quadratic functional does not necessarily require all the involved symmetric matrices to be positive definite, it is important for constructing relaxed Lyapunov-Krasovskii functionals, which generally lead to less conservative stability criteria. Based on this fact and using two kinds of integral inequalities, a new delay-dependent condition is obtained, which ensures that the distributed delay neural network under consideration is globally asymptotically stable. This stability criterion is then improved by applying the delay partitioning technique. Two numerical examples are provided to demonstrate the advantage of the presented stability criteria.
Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland
2016-09-01
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu
2016-05-01
One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).
Korchuganov, Denis S.; Gagnidze, Ivan E.; Tkach, Elena N.; Schulga, Alexey A.; Kirpichnikov, Mikhail P.; Arseniev, Alexander S. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation)], E-mail: aars@nmr.ru
2004-12-15
An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the determination of the protein rotational correlation time {tau}{sub R} from the heteronuclear relaxation data is proposed. The approach is based on a joint fit of relaxation data acquired at several viscosities of a protein solution. The method has been tested on computer simulated relaxation data as compared to the traditional {tau}{sub R} determination method from T{sub 1}/T{sub 2} ratio. The approach has been applied to ribonuclease barnase from Bacillus amyloliquefaciens dissolved in an aqueous solution and deuterated glycerol as a viscous component. The resulting rotational correlation time of 5.56 {+-} 0.01 ns and other rotational diffusion tensor parameters are in good agreement with those determined from T{sub 1}/T{sub 2} ratio.
Fragile-strong fluid crossover and universal relaxation times in a confined hard-disk fluid.
Yamchi, Mahdi Zaeifi; Ashwin, S S; Bowles, Richard K
2012-11-30
We show that a system of hard disks confined to a narrow channel exhibits a fragile-strong fluid crossover located at the maximum of the isobaric heat capacity and that the relaxation times for different channel widths fall onto a single master curve when rescaled by the relaxation times and temperatures of the crossover. Calculations of the configurational entropy and the inherent structure equation of state find that the crossover is related to properties of the jamming landscape for the model but that the Adam-Gibbs relation does not predict the relaxation behavior. We also show that a facilitated dynamics description of the system, where kinetically excited regions are identified with local packing arrangements of the disks, successfully describes the fragile-strong crossover.
Ma, Qiang; Chen, Zhenqian; Liu, Hao
2017-07-01
In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB simulation is compared with the experimental data and the finite-element solution, and the transient concentration distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation point is prolonged inversely.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study.
Mamisch, Tallal Charles; Hughes, Timothy; Mosher, Timothy J; Mueller, Christoph; Trattnig, Siegfried; Boesch, Chris; Welsch, Goetz Hannes
2012-03-01
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study
Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)
2012-03-15
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)
Wojnarowska, Z; Ngai, K L; Paluch, M
2014-12-01
The article reports the dependence of the conductivity relaxation on temperature T and pressure P in the canonical ionic glass former 0.4Ca(NO(3))(2)-0.6KNO(3)(CKN). At constant conductivity relaxation time τ(σ), the entire conductivity relaxation spectra obtained at widely different combinations of T and P superpose almost perfectly, and thus it is the ion-ion interaction but not thermodynamics that determines the frequency dispersion. Moreover, on vitrifying CKN by either elevating P or decreasing T, changes of P or T dependence of τ(σ) at the glass transition pressure P(g) and temperature T(g) are observed to occur at the same value, i.e., τ(σ)(P(g))=τ(σ)(T(g)), indicating that the relation between τ(σ) and the structural relaxation time τ(α) is also independent of P and T.
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.
2015-08-01
Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including
Adrjanowicz, K.; Paluch, M.; Ngai, K. L.
2010-03-01
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural α-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state τα is so long that it cannot be measured but τβ, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the α-relaxation and the secondary β-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times τα and τβ, respectively. Thus, τα of Telmisartan were determined by monitoring the change of the dielectric β-loss, ɛ'', with physical aging time at temperatures well below the vitrification temperature. The values of τα were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its β-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the β-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The τα found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter βKWW - M = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with βKWW = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric constants, such as the Telmisartan studied.
Aso, Y; Yoshioka, S; Kojima, S
2000-03-01
Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.
Singh, Jaswinder
2013-12-01
The analysis of a three-dimensional (3-D) wavelength/time/space (W-T-S) asynchronous optical CDMA code family is presented considering MAI only under relaxed cross-correlation (λc ⩾ 1). Based on the code performance, it is shown that for code-limited systems (when W and/or T are non-prime), the number of generated codes and hence the supported users can be significantly increased by relaxing the cross-correlation constraint if a slight degradation in code performance can be tolerated.
Khmelinskii, I.; Makarov, V.
2017-08-01
We report experimental temperature and concentration dependences of the natural spin relaxation time of superparamagnetic Fe3O4 and hemozoin nanocrystals. We recorded the 1H NMR spectrum of 0.5% benzene dissolved in CS2 in function of superparamagnetic particle concentration and temperature, interpreting the 7.261 ± 0.002 ppm benzene line broadening. Our model for the line broadening includes natural, hyperfine magnetic dipole-dipole, and contact hyperfine contributions. The latter arises due to exchange interaction between benzene molecules and suspended nanoparticles. Estimated frequency of fluctuation in the 1 cm3 sample volume is in the 107 Hz scale. Estimated natural electron spin-lattice relaxation frequencies of the superparamagnetic nanocrystals using frequency of fluctuations, and developed theoretical model applied to analysis of experimental data are in good agreement between each other. Thus the presently developed approach may be used to study fluctuations and natural spin-lattice relaxation frequencies in different media.
Halpern, Laurence; Japhet, Caroline
2010-01-01
We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Robin or Ventcell transmission conditions. We analyze the semi-discretization in time with Discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite elements in space.
Dzik-Jurasz, A.S.K.; Leach, M.O.; Rowland, Ian John
2004-01-01
demonstrated that in the presence of competitive binding of other ligands for common binding sites on albumin, the 19F longitudinal relaxation time of 5-fluorouracil can increase by up to 340% from its value in the absence of the competing ligand. The relevance of the findings to in vivo studies is discussed...
MR pulse sequences for selective relaxation time measurements: a phantom study
Thomsen, C; Jensen, K E; Jensen, M
1990-01-01
a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short...
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short...
Wolf, RFE; Slooff, MJH; Go, KG; Kamman, RL
1997-01-01
During cold preservation for transplantation the tissue hydration state changes, It is not known whether such changes lead to altered relaxation times of P-31 nuclei with potential consequences for the quantification of tissue metabolites, Therefore, P-31 spectroscopic and proton T-1 relaxometric
Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Arnaudov, L.N.; Pelan, E.G.; Lips, A.
2012-01-01
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
2013-01-01
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation (WR) method based on block Krylov subspaces. Second, we compare this new WR-Krylov implementation against Krylov subspace methods combined with the shift and invert (SAI)
Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell
2013-01-01
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.
Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)
2017-01-15
The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.
Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor
Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.
2017-06-01
We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.
V. E. Merzlikin
2015-01-01
Full Text Available The article deals with the search for optimal parameter estimation of the parameters of the process of homogenization of dairy products. Provides a theoretical basis for relationship of the relaxation time of the fat globules and attenuation coefficient of ultrasonic oscillations in dairy products. Suggested from the measured acoustic properties of milk to make the calculations of the mass distribution of fat globules. Studies on the proof of this hypothesis. Morphological analysis procedure carried out for homogenized milk samples at different pressures, as well as homogenized. As a result of research obtained distribution histogram of fat globules in dependence on the homogenization pressure. Also performed acoustic studies to obtain the frequency characteristics of loss modulus as a function of homogenization pressure. For further research the choice of method for approximating dependences is obtained using statistical moments of distributions. The parameters for the approximation of the distribution of fat globules and loss modulus versus pressure homogenization were obtained. Was carried out to test the hypothesis on the relationship parameters of approximation of the distribution of the fat globules and loss modulus as a function of pressure homogenization. Correlation analysis showed a clear dependence of the first and second statistical moment distributions of the pressure homogenization. The obtain ed dependence is consistent with the physical meaning of the first two moments of a statistical distribution. Correlation analysis was carried out according to the statistical moments of the distribution of the fat globules from moments of loss modulus. It is concluded that the possibility of ultrasonic testing the degree of homogenization and mass distribution of the fat globules of milk products.
Time-resolved torsional relaxation of spider draglines by an optical technique.
Emile, Olivier; Le Floch, Albert; Vollrath, F.
2007-01-01
International audience; The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroi...
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2016-10-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2017-08-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging
Fabio Baselice
2014-01-01
Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.
Ahmadi R.
2012-01-01
Full Text Available In this work, a new approach is described for the calculation of the relaxation time and magnetic anisotropy energy of magnetic nanoparticles. Ferrofluids containing monodispersed magnetite nanoparticles were synthesized via hydrothermal method and then heated using the 10 kA/m external AC magnetic fields in three different frequencies: 10, 50 and 100 kHz. By measuring the temperature variations during the application of the magnetic field, the total magnetic time constant including both Brownian and Neel relaxation times can be calculated. By measuring the magnetic core size and hydrodynamic size of particles, the magnetic anisotropy can be calculated too. Synthesized ferrofluids were characterized via TEM, XRD, VSM and PCS techniques and the results were used for the mentioned calculations.
Fedorov, Dmitry V; Gradhand, Martin; Ostanin, Sergey; Maznichenko, Igor V; Ernst, Arthur; Fabian, Jaroslav; Mertig, Ingrid
2013-04-12
The effect of electron-impurity scattering on momentum and spin relaxation times in graphene is studied by means of relativistic ab initio calculations. Assuming carbon and silicon adatoms as natural impurities in graphene, we are able to simulate fast spin relaxation observed experimentally. We investigate the dependence of the relaxation times on the impurity position and demonstrate that C or Si adatoms act as real-space spin hot spots inducing spin-flip rates about 5 orders of magnitude larger than those of in-plane impurities. This fact confirms the hypothesis that the adatom-induced spin-orbit coupling leads to fast spin relaxation in graphene.
Sensitivity of the simulated precipitation to changes in convective relaxation time scale
S. K. Mishra
2010-10-01
Full Text Available The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU of Zhang and McFarlane (ZM cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3. In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed.
The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower- and mid- troposphere increases. On the other hand, the shallow convective precipitation (SCP and large-scale precipitation (LSP intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The
In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle
Thomsen, C; Jensen, K E; Henriksen, O
1989-01-01
The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...
Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia
Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)
2008-02-15
Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal
Bradley, T D; McFerran, J J; Jouin, J; Debord, B; Alharbi, M; Thomas, P; Gerome, F; Benabid, F
2015-01-01
We report on the measurement of ground state atomic polarization relaxation tile of Rb vapor confined in five different hypocycloidal core shape Kagome hollow core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in optical waveguide and deduce the contribution of the atom's dwell time at the core wall surface. In contrast with convetional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by the atom-wall collisional relaxation from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Shear viscosity to relaxation time ratio in SU(3) lattice gauge theory
Kohno, Yasuhiro; Kitazawa, Masakiyo
2011-01-01
We evaluate the ratio of the shear viscosity to the relaxation time of the shear flux above but near the critical temperature $T_c$ in SU(3) gauge theory on the lattice. The ratio is related to Kubo's canonical correlation of the energy-momentum tensor in Euclidean space with the relaxation time approximation and an appropriate regularization. Using this relation, the ratio is evaluated by direct measurements of the Euclidean observables on the lattice. We obtained the ratio with reasonable statistics for the range of temperature $1.3T_c \\lesssim T \\lesssim 4T_c$. We also found that the characteristic speed of the transverse plane wave in gluon media is almost constant, $v \\simeq 0.5$, for $T \\gtrsim 1.5T_c$, which is compatible with the causality in the second order dissipative hydrodynamics.
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
The generalized Phillips-Twomey method for NMR relaxation time inversion.
Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming
2016-10-01
The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.
Enthalpy Relaxation of a DGEBA Epoxy as a function of Time, Temperature, and Cooling Rate
Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.
2015-03-01
Enthalpy relaxation resulting from physical aging of a DGEBA epoxy, Epon 828, cross-linked with an amine curative, Jeffamine T-403, was studied for two isothermal aging temperatures at sequential aging times up to two weeks. Results were analyzed using the peak shift method to obtain the relaxation parameters β, δ (H*), and χ. The individual effects of cooling rate from the equilibrated state, aging time, and aging temperature were isolated to understand the initial state of the glassy epoxy and its evolution during physical aging. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Chahid, M.; Benhamou, M. E-mail: benhamou.mabrouk@caramail.com
2000-08-01
The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T{sub i} to a final one T{sub f} very close to the critical temperature T{sub c}. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and {psi}. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and {psi}, a lowest-order coupling - Cphi (cursive,open) Greek{psi}, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters {delta}phi (cursive,open) Greek and {delta}{psi} from the equilibrium state. We find that this time dependence is completely controlled by two kinds of relaxation times {tau}{sub 1} and {tau}{sub 2}. The former is a long time and the second a short one, and they are associated, respectively, with long and local wavelength fluctuations. We find that, only the first relaxation time is relevant for physics, since it drives the system to undergo a phase transition. Spatial fluctuations are also taken into account. In this case, we find an explicit expression of the relaxation times, which are functions of temperature T, coupling constant C and wave vector q. We find that the critical mode is that given by the zero scattering-angle limit, i.e. q=0. Finally, we emphasize that the appearance of these two relaxation times is in good agreement with results reported in recent experimental work dealt with the Curie-Weiss paramagnet compound Li{sub x}Ni{sub 2-x}O{sub 2}, where the composition x is very close to 1.
Remarks concerning bulk viscosity of hadron matter in relaxation time ansatz
Khvorostukhin, A.S., E-mail: hvorost@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu (Moldova, Republic of); Toneev, V.D. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Voskresensky, D.N. [National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow 115409 (Russian Federation)
2013-10-03
The bulk viscosity is calculated for hadron matter produced in heavy-ion collisions, being described in the relaxation time approximation within the relativistic mean-field-based model with scaled hadron masses and couplings. We show how different approximations used in the literature affect the result. Numerical evaluations of the bulk viscosity with three considered models deviate not much from each other confirming earlier results.
In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs
Driscoll, Sean J.; Mao, Haiqing; Li, Guoan [Massachusetts General Hospital/Harvard Medical School, Bioengineering Laboratory, Department of Orthopaedic Surgery, Boston, MA (United States); Zhong, Weiye [Massachusetts General Hospital/Harvard Medical School, Bioengineering Laboratory, Department of Orthopaedic Surgery, Boston, MA (United States); Second Xiangya Hospital and Central South University, Department of Spinal Surgery, Changsha, Hunan (China); Torriani, Martin [Massachusetts General Hospital/Harvard Medical School, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Wood, Kirkham B.; Cha, Thomas D. [Massachusetts General Hospital/Harvard Medical School, Spine Service, Department of Orthopaedic Surgery, Boston, MA (United States)
2016-03-15
Limited research exists on T2-mapping techniques for cervical intervertebral discs and its potential clinical utility. The objective of this research was to investigate the in-vivo T2-relaxation times of cervical discs, including C2-C3 through C7-T1. Ten asymptomatic subjects were imaged using a 3.0 T MR scanner and a sagittal multi-slice multi-echo sequence. Using the mid-sagittal image, intervertebral discs were divided into five regions-of-interest (ROIs), centered along the mid-line of the disc. Average T2 relaxation time values were calculated for each ROI using a mono-exponential fit. Differences in T2 values between disc levels and across ROIs of the same disc were examined. For a given ROI, the results showed a trend of increasing relaxation times moving down the spinal column, particularly in the middle regions (ROIs 2, 3 and 4). The C6-C7 and C7-T1 discs had significantly greater T2 values compared to superior discs (discs between C2 and C6). The results also showed spatial homogeneity of T2 values in the C3-C4, C4-C5, and C5-C6 discs, while C2-C3, C6-C7, and C7-T1 showed significant differences between ROIs. The findings indicate there may be inherent differences in T2-relaxation time properties between different cervical discs. Clinical evaluations utilizing T2-mapping techniques in the cervical spine may need to be level-dependent. (orig.)
Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)
2010-03-31
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric
Shan, Ming-Lei; Zhu, Chang-Ping; Yao, Cheng; Yin, Cheng; Jiang, Xiao-Yan
2016-10-01
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
Kikuchi, Yuta; Kunihiro, Teiji
2016-01-01
We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\\tau_i$ that admit physically natural interpretations. As an example, we apply our microscopic expressions to calculate the transport coefficients and the relaxation times of the cold fermionic atoms in a quantitative way, where the transition probability in the collision term is given explicitly in terms of the $s$-wave scattering length $a_s$. We thereby discuss the quantum statistical effects, temperature dependence, and scattering-length dependence of the first-order transport coefficients and the viscous relaxation times: It is shown tha...
Richert, Ranko
2017-02-01
On the basis of adiabatic calorimetry data and results obtained from dielectric relaxation studies in the presence of a high static electric field, the effects of temperature and electric field induced changes of the excess entropy are compared for the same sample: supercooled cresolphthalein dimethylether. A field induced reduction of the excess entropy by 45 mJ K-1 mol-1 at constant temperature increases the structural relaxation time by 0.75%, while the same entropy change originating from lowering the temperature at constant field increases the time constant by 3.5%. Therefore, there is no simple link connecting excess entropy and relaxation time that is independent of the control parameter that is used to modify the entropy. A consequence is that the Adam-Gibbs approach does not provide a quantitative prediction for how the dynamics of liquids depend on the electric field, and, more generally, on excess entropy. This work compares the dynamics for temperature versus field induced changes of isobaric excess entropy, thereby eliminating previous uncertainties arising from isochoric versus isobaric conditions and from unknown relations between thermodynamic, excess, and configurational entropies.
Matteo, C.L. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Avda. Paseo Colon 850, 1063 Buenos Aires (Argentina); Lambri, O.A. [Instituto de Fisica Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Laboratorio de Materiales, Escuela de Ing. Electrica, Universidad Nacional de Rosario, Avda. Pellegrini 250, (2000) Rosario (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Instituto de Fisica Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Laboratorio de Materiales, Escuela de Ing. Electrica, Universidad Nacional de Rosario, Avda. Pellegrini 250, (2000) Rosario (Argentina); Sorichetti, P.A. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Avda. Paseo Colon 850, 1063 Buenos Aires (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)
2008-07-01
The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs.
Direct Time-domain Observation of Conformational Relaxation in Gas-phase Cold Collisions
Drayna, Garrett K; Wang, Kenneth; Domingos, Sergio R; Eibengerber, Sandra; Doyle, John M; Patterson, David
2016-01-01
Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from $\\sigma=4.7(3.0)\\times10^{-18}\\:\\mathrm{cm}^{2}$ to $\\sigma>5\\times10^{-16}\\:\\mathrm{cm}^{2}$. Our method is applicable to a broad class of molecules and could be used to provide information about the potential en...
Dynamical theory of spin noise and relaxation - prospects for real time NMR measurements
Field, Timothy
2014-03-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the stochastic dynamics of individual spins. Spin fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments, and are observed as ``spin noise'' in the absence of any radio frequency (RF) excitation. Using stochastic calculus we develop a dynamical theory of spin noise and relaxation whose origins lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation, in terms of a modified spin density (MSD), distinct from the density matrix, which is necessary to describe non-ensemble averaged properties of spin systems. With the prospect of ultra-fast digitization, the role of spin noise in real time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this presentation we outline prospects for harnessing the recent dynamical theory in terms of spin noise measurement, with attention to real time properties.
Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia
Lima, Enio, E-mail: lima@cab.cnea.gov.ar; De Biasi, Emilio; Zysler, Roberto D.; Vasquez Mansilla, Marcelo; Mojica-Pisciotti, Mary L. [Centro Atómico Bariloche/CONICET (Argentina); Torres, Teobaldo E.; Calatayud, M. Pilar; Marquina, C.; Ricardo Ibarra, M.; Goya, Gerardo F. [Universidad de Zaragoza, Instituto de Nanociencia de Aragón INA (Spain)
2014-12-15
We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.
De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.
2001-01-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.
Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest pacific islands.
Diamond, J M
1972-11-01
When species diversity S on an island is displaced from the equilibrium value by injection or removal of species, S relaxes to equilibrium by an imbalance between immigration and extinction rates. Estimates of exponential relaxation times, t(r), for avifaunas of New Guinea satellite islands are calculated from analysis of four "experiments of nature": recolonization of exploded volcanoes, contraction in island area due to rising sea level, severing of land bridges, and disappearance of landbridge relict species. t(r) is in the range 3,000-18,000 years for avifaunas of islands of 50-3000 square miles (130-7800 km(2)), and increases with island area. Immigration coefficients decrease and extinction coefficients increase with increasing S. The results may be relevant to the design of rainforest preserves.
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such
Thermoelastic Thick Plate under Illumination of a Uniform Laser Beam with one Relaxation time
Ezzat. F. Henain
2013-05-01
Full Text Available The problem of thermoelasticity, based on the theory of Lord and Shulman (L-S with one relaxation time, is used to solve a one dimensional boundary value problem of a thick plate. The upper surface of the medium is taken as traction free and heated by a pulsed laser beam. The lower surface of the medium rests on a rigid and thermally isolated. The general solution is obtained in the Laplace transform domain. Approximate small time analytical solutions to temperature, stress and displacement are obtained. Results of this problem are presented graphically.
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Time-Resolved Torsional Relaxation of Spider Draglines by an Optical Technique
Emile, O.; Floch, A. Le; Vollrath, F.
2007-04-01
The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroin systems. Torsion opens the way to further investigations towards unraveling the tiny torque effects in biological molecules.
Elastic Models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, Jeppe C.
2006-05-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion.
Pemrick, Suzanne M.; Edwards, Charles
1974-01-01
Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl2 or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state. PMID:4443791
T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.
Wiener, Edzard; Settles, Marcus; Diederichs, Gerd
2010-01-01
The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.
Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.
2016-09-01
We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Bienert, M; Kun, S Yu
2006-01-01
We estimate how accurate the phase relaxation time of quantum many-body systems can be determined from data on forward peaking of evaporating protons from a compound nucleus. The angular range and accuracy of the data needed for a reliable determination of the phase relaxation time are evaluated. The general method is applied to analyze the inelastic scattering of 18 MeV protons from Pt for which previously measured double differential cross sections for two angles in the evaporating domain of the spectra show a strong forward peaking. A new experiment for an improved determination of the phase relaxation time is proposed.
Ding, Tao; Li, Cheng; Yang, Yongheng
2017-01-01
The detailed topology of renewable resource bases may have the impact on the optimal power flow of the VSC-HVDC transmission network. To address this issue, this paper develops an optimal power flow with the hybrid VSC-HVDC transmission and active distribution networks to optimally schedule...... the generation output and voltage regulation of both networks, which leads to a non-convex programming model. Furthermore, the non-convex power flow equations are based on the Second Order Cone Programming (SOCP) relaxation approach. Thus, the proposed model can be relaxed to a SOCP that can be tractably solved...
Panczyk, Tomasz; Konczak, Lukasz; Zapotoczny, Szczepan; Szabelski, Pawel; Nowakowska, Maria
2015-01-01
In this work we have analyzed the influence of various factors on the transverse relaxation times T2 of water protons in suspension of magnetic nanoparticles. For that purpose we developed a full molecular dynamics force field which includes the effects of dispersion interactions between magnetic nanoparticles and water molecules, electrostatic interactions between charged nanoparticles and magnetic dipole-dipole and dipole-external field interactions. We also accounted for the magnetization reversal within the nanoparticles body frames due to finite magnetic anisotropy barriers. The force field together with the Langevin dynamics imposed on water molecules and the nanoparticles allowed us to monitor the dephasing of water protons in real time. Thus, we were able to determine the T2 relaxation times including the effects of the adsorption of water on the nanoparticles' surfaces, thermal fluctuations of the orientation of nanoparticles' magnetizations as well as the effects of the core-shell architecture of nanoparticles and their agglomeration into clusters. We found that there exists an optimal cluster size for which T2 is minimized and that the retardation of water molecules motion, due to adsorption on the nanoparticles surfaces, has some effect in the measured T2 times. The typical strengths of the external magnetic fields in MRI are enough to keep the magnetizations fixed along the field direction, however, in the case of low magnetic fields, we observed significant enhancement of T2 due to thermal fluctuations of the orientations of magnetizations. Copyright © 2014 Elsevier Inc. All rights reserved.
Sappey, R. E-mail: sappey@physics.ucsd.edu; Vincent, E.; Ocio, M.; Hammann, J
2000-11-01
We discuss here the nature of the low-temperature magnetic relaxation in samples of magnetic nanoparticles. In addition to usual magnetic viscosity measurement, we have used the residual memory ratio (RMR) method. This procedure enables us to overcome the uncertainties usually associated with the energy barrier distribution, thus giving a more detailed insight on the nature of the observed dynamics. A custom-made apparatus coupling dilution refrigeration and SQUID magnetometry allowed measurements of very diluted samples at temperatures ranging between 60 mK and 7 K. Two types of particles have been studied: {gamma}-Fe{sub 2}O{sub 3} of moderate anisotropy, and CoFe{sub 2}O{sub 4} of higher anisotropy where quantum effects are more likely to occur. In both cases, the data cannot simply be interpreted in terms of mere thermally activated dynamics of independent particles. The deviation from thermal activation seems to go opposite of what is expected from the possible effect of particle interactions. We therefore believe that it suggests the occurrence of quantum dynamics at very low temperatures.
Sappey, R; Ocio, M; Hammann, J
2000-01-01
We discuss here the nature of the low-temperature magnetic relaxation in samples of magnetic nanoparticles. In addition to usual magnetic viscosity measurement, we have used the residual memory ratio (RMR) method. This procedure enables us to overcome the uncertainties usually associated with the energy barrier distribution, thus giving a more detailed insight on the nature of the observed dynamics. A custom-made apparatus coupling dilution refrigeration and SQUID magnetometry allowed measurements of very diluted samples at temperatures ranging between 60 mK and 7 K. Two types of particles have been studied: gamma-Fe sub 2 O sub 3 of moderate anisotropy, and CoFe sub 2 O sub 4 of higher anisotropy where quantum effects are more likely to occur. In both cases, the data cannot simply be interpreted in terms of mere thermally activated dynamics of independent particles. The deviation from thermal activation seems to go opposite of what is expected from the possible effect of particle interactions. We therefore b...
Wan Xuewen; Kossler, William J.; Stronach, Carey E.; Noakes, David R. [College of William and Mary, Physics Department (United States)
1999-11-15
Zero-field muon spin relaxation (ZF-{mu}SR) data for dilute spin magnetic systems have been widely interpreted with what is called a Kubo-Toyabe form based on a Lorentzian distribution of local field components. We derive here the proper magnetic field magnitude distribution using independent and uncorrelated component distributions. Our result is then compared to the previously accepted formula for ZF-{mu}SR. We discuss the origins of the magnetic field component and magnitude distributions. Further, we found that after rescaling the magnetic field, the differences that are amenable to experimental examination are quite small, although the interpretations behind them are quite different.
Relaxation time of the Cooper pairs near Tc in cuprate superconductors
Ramallo, M. V.; Carballeira, C.; Viña, J.; Veira, J. A.; Mishonov, T.; Pavuna, D.; Vidal, F.
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, τ0, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa2Cu3O7 - δ (Y-123) crystals. It is found that in this HTSC τ0 follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by τ0 = πhbar/[8kB(T - Tc0)].
ZHU Ping; CHEN Shi-Bo; MEI Dong-Cheng
2006-01-01
We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises.The expressions of C(s) and Tc are derived by means of the projection operator method,and effects of correlations between an additive noise and a multiplicative noise are discussed by numerical calculation.Based on the calculated results,it is found that the correlation strength λ between the additive noise and the multiplicative noise can enhance the fluctuation decay of the laser intensity.
Research in Distributed Real-Time Systems
Mukkamala, R.
1997-01-01
This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.
Master equation for the Unruh-DeWitt detector and the universal relaxation time in de Sitter space
Fukuma, Masafumi; Sugishita, Sotaro
2013-01-01
de Sitter space is known to have a thermal character. This can be best seen by an Unruh-DeWitt detector which stays in the Poincare patch and interacts with a scalar field in the Bunch-Davies vacuum. However, since the Bunch-Davies vacuum is the ground state only at the infinite past, if the scalar field starts in the ground state at a finite past, an Unruh-DeWitt detector then will feel as if it is in a medium that is not in thermodynamic equilibrium and that undergoes a relaxation to the equilibrium corresponding to the Bunch-Davies vacuum. In this paper, we first develop a general framework to treat such circumstances and write down the master equation which completely describes the finite time evolution of the density matrix of an Unruh-DeWitt detector in arbitrary background geometry. We then apply this framework to an ideal detector in de Sitter space which can get adjusted to its environment instantaneously, and show that the density distribution of the detector certainly exhibits a relaxation to the G...
Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara
2014-09-09
Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.
Extending the EGP constitutive model for polymer glasses to multiple relaxation times
van Breemen, L. C. A.; Klompen, E. T. J.; Govaert, L. E.; Meijer, H. E. H.
2011-10-01
The one-mode EGP (Eindhoven glassy polymer) model captures the plastic flow at yield and post-yield quantitatively, but behaves poor in the non-linear viscoelastic pre-yield region. Since a proper description here is important in cases of complex loading and unloading situations, such as e.g. in indentation and scratching, an extension to non-linear modeling is required using a spectrum of relaxation times. It is shown that such a reference spectrum can be obtained from simple tensile tests. It shifts to shorter times under the influence of stress and is independent of the two important time-dependent processes in polymers: the strain rate applied during testing and the aging time during storage and use. The multi-mode model is critically tested and proves quantitative in describing the intrinsic polymer response and, based thereupon, in predicting the correct response in tensile testing, including necking, in flat tip indentation and in notched loading.
Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes
Tian Jinping; Yin Yingwu
2004-01-01
A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 ＞MgCl2 ＞CaCl2 ＞NaCl ＞KCl ＞LiClO4 ＞NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate
Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time
Mariana Bruno
2008-12-01
Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.
MRI-Based Visualization of the Relaxation Times of Early Somatic Embryos
Mikulka J.
2016-04-01
Full Text Available The large set of scientific activities supported by MRI includes, among others, the research of water and mineral compounds transported within a plant, the investigation of cellular processes, and the examination of the growth and development of plants. MRI is a method of major importance for the measurement of early somatic embryos (ESE during cultivation, and in this respect it offers several significant benefits discussed within this paper. We present the following procedures: non-destructive measurement of the volume and content of water during cultivation; exact three-dimensional differentiation between the ESEs and the medium; investigation of the influence of ions and the change of relaxation times during cultivation; and multiparametric segmentation of MR images to differentiate between embryogenic and non-embryogenic cells. An interesting technique consists in two-parameter imaging of the relaxation times of the callus; this method is characterized by tissue changes during cultivation at a microscopic level, which can be monitored non-destructively.
Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.
Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J
1998-01-01
Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.
Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.
1986-01-01
It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.
Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues
Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine; Suda, Syuichi; Fukuzaki, Minoru
1994-12-01
We investigated the nuclear magnetic resonance (NMR) relaxation times, T{sub 1} and T{sub 2}, for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T{sub 1} and T{sub 2} for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T{sub 1} and T{sub 2} between adenocarcinoma and lung tissue. The values of T{sub 1} and T{sub 2} for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T{sub 1} and T{sub 2} are not specific to malignant tissues. (author).
Pisane, K.L. [Department of Physics & Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Despeaux, E.C. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Seehra, M.S., E-mail: mseehra@wvu.edu [Department of Physics & Astronomy, West Virginia University, Morgantown, WV 26506 (United States)
2015-06-15
The role of particle size distribution inherently present in magnetic nanoparticles (NPs) is examined in considerable detail in relation to the measured magnetic properties of oleic acid-coated maghemite (γ-Fe{sub 2}O{sub 3}) NPs. Transmission electron microscopy (TEM) of the sol–gel synthesized γ-Fe{sub 2}O{sub 3} NPs showed a log-normal distribution of sizes with average diameter 〈D〉=7.04 nm and standard deviation σ=0.78 nm. Magnetization, M, vs. temperature (2–350 K) of the NPs was measured in an applied magnetic field H up to 90 kOe along with the temperature dependence of the ac susceptibilities, χ′ and χ″, at various frequencies, f{sub m}, from 10 Hz to 10 kHz. From the shift of the blocking temperature from T{sub B}=35 K at 10 Hz to T{sub B}=48 K at 10 kHz, the absence of any significant interparticle interaction is inferred and the relaxation frequency f{sub o}=2.6×10{sup 10} Hz and anisotropy constant K{sub a}=5.48×10{sup 5} erg/cm{sup 3} are determined. For T
Timing and time signal distribution in digital communications networks
Kihara, Masami; Imaoka, Atushi
1992-06-01
The timing signal distribution characteristics of a digital communications network are evaluated to determine the Maximum Time Interval Error (MTIE) of the network; reference is made to the performance of network components such as transmission systems, slave clocks and timing distribution systems in intraoffices. The MTIE of each component is measured and used to determine the allowable MTIE of that component. The maximum number of slave node chains is shown to be 20. Time signal distribution performance is detailed. It is shown that time synchronization accuracy is of the order of submicroseconds between nodes separated by 2400 km over a two year period. For intra-office time signal distribution, the relative time accuracy is less than 3 nanoseconds using an 8 Mb/s round trip digital interface to connect a time signal supply in an office to dispersed equipment.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
Prantner, Viktoria; Isaksson, Hanna; Nissi, Mikko J; Jurvelin, Jukka S [Department of Physics and Mathematics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Naervaeinen, Johanna; Groehn, Olli H J [Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Lammentausta, Eveliina [Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, 90029 OYS, Oulu (Finland); Avela, Janne, E-mail: hanna.isaksson@uef.f [Department of Biology of Physical Activity, University of Jyvaeskylae, PO Box 35, 40014 Jyvaeskylae (Finland)
2010-12-07
Nuclear magnetic resonance (NMR) spectroscopy provides a potential tool for non-invasive evaluation of the trabecular bone structure. The objective of this study was to determine the reproducibility of the NMR relaxation parameters (T{sub 2}, Carr-Purcel-T{sub 2}, T{sub 1}{rho}) for fat and water and relate those to the structural parameters obtained by micro-computed tomography ({mu}CT). Especially, we aimed to evaluate the effect of freezing on the relaxation parameters. For storing bone samples, freezing is the standard procedure during which the biochemical and cellular organization of the bone marrow may be affected. Bovine trabecular bone samples were stored at -20 {sup 0}C for 7 days and measured by NMR spectroscopy before and after freezing. The reproducibility of NMR relaxation parameters, as expressed by the coefficient of variation, ranged from 3.1% to 27.9%. In fresh samples, some correlations between NMR and structural parameters (Tb.N, Tb.Sp) were significant (e.g. the relaxation rate for T{sub 2} of fat versus Tb.Sp: r = -0.716, p < 0.01). Freezing did not significantly change the NMR relaxation times but the correlations between relaxation parameters and the {mu}CT structural parameters were not statistically significant after freezing, suggesting some nonsystematic alterations of the marrow structure. Therefore, the use of frozen bone samples for NMR relaxation studies may provide inferior information about the trabecular bone structure.
Akhmedshina, E. N.; Nefed'ev, L. A.; Garnaeva, G. I.
2016-09-01
The dependence of the time of the appearance of a Stark (gradient) echo response on the irreversible transverse relaxation time of a system in the nanosecond range and on the width of the excitation region of an inhomogeneously broadened line has been investigated. It has been shown that the use of nonresonant laser pulses with an artificially created spatial inhomogeneity makes it possible to determine the relaxation time in the nanosecond range from the time of the appearance of a Stark (gradient) echo response, which is a more accurate method than the method of determining the relaxation time from the decay of the intensity by varying time intervals of the exposure to inhomogeneous electromagnetic fields.
Eltrudis, K.; Al-Ashouri, A.; Beckel, A.; Ludwig, A.; Wieck, A. D.; Geller, M.; Lorke, A.
2017-08-01
We have measured the spin relaxation time of an excited two-electron spin-triplet state into its singlet ground state in self-assembled InAs/GaAs quantum dots. We use a time-resolved measurement scheme that combines transconductance spectroscopy with spin-to-charge conversion to address the |s ↑,p ↑ 〉 triplet state, where one electron is in the quantum dot s-shell and a second one in the p-shell. The evaluation of the state-selective tunneling times from the dots into a nearby two-dimensional electron gas allows us to determine the s- and p-shell occupation and extract the relaxation time from a rate equation model. A comparably long triplet-to-singlet spin relaxation time of 25 μs is found.
Energy Distribution in LTB Space-time
Salti, M; Salti, Mustafa; Havare, Ali
2005-01-01
Using general relativity analogs of Bergmann-Thomson, Papapetrou, Landau-Lifshitz and Einstein energy and momentum definitions, we find the energy distribution (due to matter plus fields) in the LTB Space-time. The energy distribution is found well defined and the same in all of these energy-momentum complexes.
Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions
Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek
2015-11-01
We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity ηsessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.
A new multiple-relaxation-time lattice Boltzmann model for incompressible flows in porous media
Liu, Qing; He, Chao
2013-01-01
In this paper, a two-dimensional eight-velocity (D2Q8) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy formulation. In the MRT-LB model, newly defined equilibrium moments are employed to account for the porosity of the porous media, and the linear and nonlinear drag forces of the media are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. The model is validated by simulating the 2D Poiseuille flow, Couette flow and lid-driven cavity flow in porous media. The numerical results are in excellent agreement with the analytical solutions and/or the well-documented data available in the literature.
Time-resolved photoluminescence study of excitonic relaxation in one-dimensional systems
Tanino, H.; Rühle, W. W.; Takahashi, K.
1988-12-01
Self-trapped exciton luminescence of quasi-one-dimensional (1D) halogen-bridged mixed-valence platinum complexes [Pt(II) (EA)4][Pt(IV)Cl2(EA)4] Cl4.4H2O (EA=ethylamine) and [Pt(II)(en)2] [Pt(IV)Cl2(en)2](ClO4)4 (en=1,2-diaminoethane) are studied by time-resolved photoluminescence experiments. The lifetimes of the luminescence of self-trapped exciton are exceptionally short, of the order of 100 psec. We interpret the short lifetime by a ``giant oscillator strength'' caused by a strong coupling between the electron and hole of the 1D charge transfer exciton and an extended polaronlike character of the 1D state. The lifetimes of the broad luminescence and of the resonant Raman lines during the barrier-free relaxation process are both faster than 7 psec.
Probe Spin-Velocity Dependent New Interactions by Spin Relaxation Times of Polarized $^{3}He$ Gas
Zhang, Y; Peng, S M; Fu, C B; Guo, Hao; Liu, B Q; Yan, H
2014-01-01
We have studied how to constrain the $\\alpha\\vec{\\sigma}\\cdot\\vec{v}$ type interactions with the relaxation time of spin polarized noble gases in magnetic fields. Using the longest $T_{2}$ measured in the laboratory and the earth as the source, we obtained constraints on three new interactions. We present a new experimental upper bound to the vector-axial-vector($V_{VA}$) type interaction for ranges between $1\\sim10^{8}$m. In combination with the previous result, we set the most stringent experiment limits on $g_{V}g_{A}$ ranging from $\\sim\\mu m$ to $\\sim10^{8}$m. We improve the laboratory limit to the axial-axial-vector($V_{AA}$) type interaction by $\\sim2$ orders or more for distances below $\\sim1$cm. To our best knowledge, we report the first experiment upper limit on torsion induced by the earth on its surface.
Relaxation time of the Cooper pairs near T{sub c} in cuprate superconductors
Ramallo, M.V.; Carballeira, C.; Vina, J.; Veira, J.A.; Mishonov, T.; Pavuna, D.; Vidal, F. [Santiago de Compostela Univ. (Spain). Lab. de Bajas Temperaturas y Superconductividad
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, {tau}{sub 0}, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) crystals. It is found that in this HTSC {tau}{sub 0} follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by {tau}{sub 0} = {pi}{Dirac_h}[8k{sub B}(T-T{sub c0})]. (orig.)
Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows
Liu, Qing; Li, Dong
2015-01-01
In this paper, a non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method for simulating incompressible thermal flows is presented. In the method, the incompressible Navier-Stokes equations and temperature equation (or convection-diffusion equation) are solved separately by two different MRT-LB models, which are proposed based on non-orthogonal transformation matrices constructed in terms of some proper non-orthogonal basis vectors obtained from the combinations of the lattice velocity components. The macroscopic equations for incompressible thermal flows can be recovered from the present method through the Chapman-Enskog analysis in the incompressible limit. Numerical simulations of several typical two-dimensional problems are carried out to validate the present method. It is found that the present numerical results are in good agreement with the analytical solutions or other numerical results of previous studies. Furthermore, the grid convergence tests indicate that the present MRT-LB met...
Intracerebral pH affects the T2 relaxation time of brain tissue
Schilling, A.M.; Blankenburg, F.B.; Bernarding, J.; Heidenreich, J.O.; Wolf, K.J. [Department of Radiology, University Hospital Benjamin Franklin, Free University Berlin, Hindenburgdamm 30, 12200 Berlin (Germany)
2002-12-01
Signal changes in activated brain areas are detectable by MRI and MR spectroscopy (MRS). Shifts in pH occur during brain activation. Our aim was to investigate the relationship between changes in pH and T2 relaxation times. T2 was determined in vitro at 24 MHz in various liquids at different pH using a Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence. We also studied five Fisher rats were studied at 2.4 tesla with a double-tuneable surface coil. After baseline measurements, potassium cyanide was injected, producing intracerebral acidosis. Alternating series of 1H CPMG spin-echo sequences and 31P spectra were acquired. True T2 relaxation times were calculated from a CPMG multi-echo train. Changes in intracellular pH determined from 31P spectra. In vitro measurements demonstrated a correlation between T2 and pH that could be described by a quadratic fit curve. Depending on the initial pH, changes of 0.2 induced changes in T2 of up to 150 ms. In vivo measurements confirmed these findings. After intraperitoneal injection of a sublethal dose of cyanide, T2 decreased by about 5% in four cases, followed by recovery after 2 h. The in vitro measurements demonstrated that changes in pH can lead to significant signal change on T2- or T2*- weighted images. The dependence of T2 on pH in vitro was confirmed in vivo; it may contribute to signal change in activated brain areas. (orig.)
Distributed Algorithms for Time Optimal Reachability Analysis
Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand
2016-01-01
Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule....... We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general....
Gilani, Syed Irtiza Ali
2008-09-15
Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase
MECHANICAL RELAXATION TIME OF A TWO-COMPONENT EPOXY NETWORK-LiClO4 POLYMER ELECTROLYTE
PENG Xinsheng; WU Shuyun; CHEN Donglin
1993-01-01
The mechanical relaxation time of a two-component epoxy network-LiClO4 system as a polymer electrolyte was investigated.The network is composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG),wherein LiClO4 was incorporated and acts as both the ionic carrier and the curing catalyst.As the relaxation time is informative to the segmental mobility,which is known to be essential for ionic conductivity,the average relaxation times of the specimens were determined through master curve construction.Experimental results showed that the salt concentration,molecular weight of PEG in DGEPEG and DGEPEG/TGEG ratio have profound effect on the relaxation time of the specimen.Among these factors,the former reinforces the network hains,leading to lengthen the relaxation time,whereas the latter two are in favour of the chain flexibility and show an opposite effect.The findings was rationalized in terms of the free volume concept.
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
Paruthi, Archini; Misra, Superb K.
2017-08-01
The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.
Kumar, Deepak; Subburaj, Karupppasamy; Lin, Wilson; Karampinos, Dimitrios C; McCulloch, Charles E; Li, Xiaojuan; Link, Thomas M; Souza, Richard B; Majumdar, Sharmila
2013-12-01
Controlled laboratory study using a cross-sectional design. To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .21-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals.
Distributed Algorithms for Time Optimal Reachability Analysis
Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand
2016-01-01
. We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...... algorithms with four models in terms of their ability to compute near- or proven-optimal solutions, their scalability, time and memory consumption and communication overhead. Our results show that distributed algorithms work much faster than sequential algorithms and have good speedup in general....
Dielectric relaxation studies in polyvinyl butyral
Mehendru, P. C.; Kumar, Naresh; Arora, V. P.; Gupta, N. P.
1982-10-01
Dielectric measurements have been made in thick films (˜100 μm) of polyvinyl butyral (PVB) having degree of polymerization n=1600, in the frequency range 100 Hz-100 KHz and temperature range 300-373 K. The results indicated that PVB was in the amorphous phase and observed dielectric dispersion has been assigned as the β-relaxation process. The β relaxation is of Debye type with symmetrical distribution of relaxation times. The dielectric relaxation strength Δɛ and the distribution parameters β¯ increase with temperature. The results can be qualitatively explained by assuming the hindered rotation of the side groups involving hydroxyl/acetate groups.
Time distributions in satellite constellation design
Arnas, David; Casanova, Daniel; Tresaco, Eva
2017-01-01
The aim of the time distribution methodology presented in this paper is to generate constellations whose satellites share a set of relative trajectories in a given time, and maintain that property over time without orbit corrections. The model takes into account a series of orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These perturbations are included in the design process of the constellation. Moreover, the whole methodology allows to design constellations with multiple relative trajectories that can be distributed in a minimum number of inertial orbits.
Lin, D.P.; Feng, D.F.; Ngo, F.Q.H.; Kevan, L.
1976-11-15
Electron--electron double resonance (ELDOR) has been used to measure cross-relaxation times between trapped electrons and trapped radicals produced by ..gamma.. irradiation of 2-methyltetrahydrofuran and 3-methylhexane organic glasses. The cross-relaxation times are measured as a function of temperature, radiation dose, and the frequency difference ..delta..f of the microwave frequencies used. The cross-relaxation times are nearly temperature independent and depend on ..delta..f/sup 2/ at doses where the spin concentrations approach uniformity; these features indicate the dominance of single step over multistep cross-relaxation processes. Equations have been derived to relate the dipolar cross-relaxation distance to the measured cross-relaxation times, and it is suggested that the cross-relaxation line shape is Lorentzian in magnetically dilute systems. Typical electron--radical correlation distances in these organic glasses are 10 A. (AIP)
Beralso e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos
2017-09-01
The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov–Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov–Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker–Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.
Solid State NMR Study of Polystyrene Nanolatex Particles(I) 13C Spin-Lattice Relaxation Time
无
2001-01-01
13C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.
Chahid, M
2000-01-01
The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T sub i to a final one T sub f very close to the critical temperature T sub c. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and psi. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and psi, a lowest-order coupling - Cphi (cursive,open) Greek psi, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters delta phi (cursive,open) Greek and delta psi from the equilibrium state. We find that this time dependence ...
El-Ballouli, Ala’a O.
2014-03-19
We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to Ne
Yoshioka, Sumie; Aso, Yukio; Osako, Tsutomu; Kawanishi, Toru
2008-10-01
In order to examine the possibility of determining the molecular mobility of hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation measurement, spin-spin relaxation and spin-lattice relaxation were measured for the 11 API hydrates listed in the Japanese Pharmacopeia using pulsed (1)H-NMR. For hydration water that has relatively high mobility and shows Lorentzian decay, molecular mobility as determined by spin-spin relaxation time (T(2)) was correlated with ease of evaporation under both nonisothermal and isothermal conditions, as determined by DSC and water vapor sorption isotherm analysis, respectively. Thus, T(2) may be considered a useful parameter which indicates the molecular mobility of hydration water. In contrast, for hydration water that has low mobility and shows Gaussian decay, T(2) was found not to correlate with ease of evaporation under nonisothermal conditions, which suggests that in this case, the molecular mobility of hydration water was too low to be determined by T(2). A wide range of water mobilities was found among API hydrates, from low mobility that could not be evaluated by NMR relaxation time, such as that of the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated by this method, such as that of the water molecules in ceftazidime hydrate. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Femtosecond Timing Distribution Using Optical Pulses
Winter, A; Winter, A
2005-01-01
Fourth-generation light sources, such as the European X-ray Free Electron Laser (XFEL) require timing signals distributed over distances of several kilometers with a stability in the order of femtoseconds. A promising approach is the use of a mode-locked laser that generates sub-picosecond pulses which are distributed in timing stabilized optical fiber links. A good candidate for a laser master oscillator (LMO) is a mode-locked Erbium-doped fiber laser, featuring extremely low phase noise far from the carrier. Results on the development of the LMO locked to an external reference microwave oscillator to suppress low frequency jitter, the distribution via timing stabilized optical fiber links and the reconversion of the optical pulses to a low phase noise microwave RF signals with overall femtosecond stability are presented.
Wang, Li-Na; Tao, Hong; Zhao, Yue; Zhou, Yu-Qiu; Jiang, Xiu-Rong
2014-07-01
Clinical studies have shown that biofeedback-assisted relaxation positively influences the treatment outcomes of sleep disturbance. However, there are only few studies reporting the timing of relaxation training initiation, and the relationships between the timing of initiation and the effectiveness of relaxation remain unclear. The aim of this study was to determine the optimal timing for initiating nurse-led biofeedback-assisted relaxation on hospitalized coronary heart disease patients with sleep disturbance. An experimental pretest and repeated posttest design was used to compare the effectiveness of nurse-led biofeedback-assisted relaxation. A total of 128 patients with coronary heart disease were randomly assigned to 1 of 4 groups: morning group, night group, morning-night group, or control group. Outcome measures included self-report of sleep-related indicators, the scores of the Pittsburgh Sleep Quality Index (PSQI) and the Zung's Self-rating Anxiety Scale (SAS), and the dosage of sleep medication used. A 2-way analysis of variance and a simple effect test were used to analyze the differences among the 4 groups. No significant differences could be detected at baseline. Compared with the control group, the nurse-led biofeedback-assisted relaxation yielded a greater benefit for patients in the 3 intervention groups. Group and time factors (pretest-protest) could explain the variation in the effectiveness of this program (main effect P sleep latency, experienced fewer awakenings, reported higher sleep quality, and used significantly fewer sleep medications than the morning group did (F = 32.97, P sleep quality and decrease the need for of sleep medications in hospitalized patients with sleep disturbance.
Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.
2013-09-01
This paper concerns with the possibilities of computational intelligence application for simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases by pulsed photoacoustics. Results regarding the application of neural computing through the use of feed-forward multilayer perception networks are presented. Feed-forward multilayer perception networks are trained in an offline batch training regime to estimate simultaneously, and in real-time, the laser beam spatial profile (profile shape class) and the vibrational-to-translational relaxation time from given (theoretical) photoacoustic signals. The proposed method significantly shortens the time required for the simultaneous determination of the laser beam spatial profile and relaxation time and has the advantage of accurately calculating the aforementioned quantities.
Linking age, survival, and transit time distributions
Calabrese, Salvatore; Porporato, Amilcare
2015-10-01
Although the concepts of age, survival, and transit time have been widely used in many fields, including population dynamics, chemical engineering, and hydrology, a comprehensive mathematical framework is still missing. Here we discuss several relationships among these quantities by starting from the evolution equation for the joint distribution of age and survival, from which the equations for age and survival time readily follow. It also becomes apparent how the statistical dependence between age and survival is directly related to either the age dependence of the loss function or the survival-time dependence of the input function. The solution of the joint distribution equation also allows us to obtain the relationships between the age at exit (or death) and the survival time at input (or birth), as well as to stress the symmetries of the various distributions under time reversal. The transit time is then obtained as a sum of the age and survival time, and its properties are discussed along with the general relationships between their mean values. The special case of steady state case is analyzed in detail. Some examples, inspired by hydrologic applications, are presented to illustrate the theory with the specific results. This article was corrected on 11 Nov 2015. See the end of the full text for details.
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
Farrokhi, Shawn; Colletti, Patrick M; Powers, Christopher M
2011-02-01
The origin of patellofemoral pain (PFP) may be associated with the inability of the patellofemoral joint cartilage to absorb and distribute patellofemoral joint forces. When compared with a pain-free control group, young active women with PFP will demonstrate differences in their baseline patellar cartilage thickness and transverse (T2) relaxation time, as well as a less adaptive response to an acute bout of joint loading. Controlled laboratory study; Level of evidence, 3. Ten women between the ages of 23 to 37 years with PFP and 10 sex-, age-, and activity-matched pain-free controls participated. Quantitative magnetic resonance imaging of the patellofemoral joint was performed at baseline and after participants performed 50 deep knee bends. Differences in baseline cartilage thickness and T2 relaxation time, as well as the postexercise change in patellar cartilage thickness and T2 relaxation time, were compared between groups. Individuals with PFP demonstrated reductions in baseline cartilage thickness of 14.0% and 14.1% for the lateral patellar facet and total patellar cartilage, respectively. Similarly, individuals with PFP exhibited significantly lower postexercise cartilage thickness change for the lateral patellar facet (2.1% vs 8.9%) and the total patellar cartilage (4.4% vs 10.0%) when compared with the control group. No group differences in baseline or postexercise change in T2 relaxation time were found. The findings suggest that a baseline reduction in patellar cartilage thickness and a reduced deformational behavior of patellar cartilage following an acute bout of loading are associated with presence of PFP symptoms.
WIERDA, JMKH; VANDENBROEK, L; PROOST, JH; VERBAAN, BW; HENNIS, PJ
1993-01-01
In a randomized study, we evaluated lag time (time from the end of injection of muscle relaxant until the first depression of the train-of-four response [TOF]), onset time (time from the end of injection of muscle relaxant until the maximum depression of the first twitch of the TOF [T1]), neuromuscu
Existence of the transverse relaxation time in optically excited bulk semiconductors
Zhang Hai-Chao; Lin Wei-Zhu; Wang Yu-Zhu
2006-01-01
Two basic types of depolarization mechanisms,carrier-carrier (CC) and carrier-phonon (CP) scattering,are investigated in optically excited bulk semiconductors (3D),in which the existence of the transverse relaxation time is proven based on the vector property of the interband transition matrix elements.The dephasing rates for both CC and CP scattering are determined to be equal to one half of the total scattering-rate-integrals weighted by the factors (1-COSx),wherex are the scattering angles.Analytical expressions of the polarization dephasing due to CC scattering are established by using an uncertainty broadening approach,and analytical ones due to both the polar optical-phonon and non-polar deformation potential scattering (including inter-valley scattering) are also presented by using the sharp spectral functions in the dephasing rate calculations.These formulas,which reveal the trivial role of the Coulomb screening effect in the depolarization processes,are used to explain the experimental results at hand and provide a clear physical picture that is difficult to extract from numerical treatments.
Structural relaxation time and cooling rate of a melt in the glass transition region
Sanditov, D. S.; Sydykov, B. S.
2015-03-01
The nature of the parameter involved in the Bartenev equation qτg = C relating the cooling rate of a glass-forming melt to its structural relaxation time in the glass transition region is discussed on the basis of the Volkenshtein-Ptitsyn theory using a number of known relationships. It is established that parameter C for amorphous substances with the same fragility is linearly temperature dependent. This parameter is shown to equal the narrow temperature range δ T g characterizing the liquid-glass transition region (by Nemilov); i.e., C = δ T g. It is concluded that δ T g for most glassy systems is only ˜0.7% of the glass transition temperature T g. The narrowness of temperature range δ T g is explained by the small fluctuation volume fraction f g "frozen" at the glass transition temperature. The concept of a close relationship between constant C and the structural order at T g (i.e., the characteristic of the inner state of a nonequilibrium "frozen" amorphous system) is developed.
Tovbin, Yu. K.
2017-08-01
The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).
Socratous, Josephine; Watanabe, Shun; Banger, Kulbinder K.; Warwick, Christopher N.; Branquinho, Rita; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Sirringhaus, Henning
2017-01-01
Despite the success of exploiting the properties of amorphous oxide semiconductors for device applications, the charge transport in these materials is still not clearly understood. The observation of a definite Hall voltage suggests that electron transport in the conduction band is free-electron-like. However, the temperature dependence of the Hall and field-effect mobilities cannot be explained using a simple bandlike model. Here, we perform gated Hall effect measurements in field-effect transistors, which allow us to make two independent estimates of the charge carrier concentration and determine the Hall factor providing information on the energy dependence of the relaxation time. We demonstrate that the Hall factor in a range of sputtered and solution-processed quaternary amorphous oxides, such as a-InGaZnO, is close to two, while in ternary oxides, such as InZnO, it is near unity. This suggests that quaternary elements like Ga act as strong ionized impurity scattering centers in these materials.
Doeblin, Patrick, E-mail: Patrick.doeblin@charite.de [Department of Cardiology, Charité – Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin (Germany); Schilling, Rene, E-mail: rene.schilling@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Wagner, Moritz, E-mail: moritz.wagner@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Luhur, Reny, E-mail: renyluhur@yahoo.com [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Huppertz, Alexander, E-mail: alexander.huppertz@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Imaging Science Institute, Charité, Berlin (Germany); Hamm, Bernd, E-mail: bernd.hamm@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Taupitz, Matthias, E-mail: matthias.taupitz@harite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); and others
2014-04-15
Purpose: To evaluate T1-relaxation times of chronic myocardial infarction (CMI) using gadobutrol and gadopentetate dimeglumine (Gd-DTPA) over time and to determine the optimal imaging window for late enhancement imaging with both contrast agents. Material and methods: Twelve patients with CMI were prospectively included and examined on a 1.5 T magnetic resonance (MR) system using relaxivity-adjusted doses of gadobutrol (0.15 mmol/kg) and Gd-DTPA (0.2 mmol/kg) in random order. T1-relaxation times of remote myocardium (RM), infarcted myocardium (IM), and left ventricular cavity (LVC) were assessed from short-axis TI scout imaging using the Look–Locker approach and compared intraindividually using a Wilcoxon paired signed-rank test (α < 0.05). Results: Within 3 min of contrast agent administration (CA), IM showed significantly lower T1-relaxation times than RM with both contrast agents, indicating beginning cardiac late enhancement. Differences between gadobutrol and Gd-DTPA in T1-relaxation times of IM and RM were statistically not significant through all time points. However, gadobutrol led to significantly higher T1-relaxation times of LVC than Gd-DTPA from 6 to 9 min (220 ± 15 ms vs. 195 ± 30 ms p < 0.01) onwards, resulting in a significantly greater ΔT1 of IM to LVC at 9–12 min (−20 ± 35 ms vs. 0 ± 35 ms, p < 0.05) and 12–15 min (−25 ± 45 ms vs. −10 ± 60 ms, p < 0.05). Using Gd-DTPA, comparable ΔT1 values were reached only after 25–35 min. Conclusion: This study indicates good delineation of IM to RM with both contrast agents as early as 3 min after administration. However, we found significant differences in T1 relaxation times with greater ΔT1 IM–LVC using 0.15 mmol/kg gadobutrol compared to 0.20 mmol/kg Gd-DTPA after 9–15 min post-CA suggesting earlier differentiability of IM and LVC using gadobutrol.
Long Spin Relaxation and Coherence Times of Electrons In Gated Si/SiGe Quantum Dots
He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.
2012-02-01
Single electron spin states in semiconductor quantum dots are promising candidate qubits. We report the measurement of 250 μs relaxation (T1) and coherence (T2) times of electron spins in gated Si/SiGe quantum dots at 350 mK. The experiments used conventional X-band (10 GHz) pulsed electron spin resonance (pESR), on a large area (3.5 x 20 mm^2) dual-gate undoped high mobility Si/SiGe heterostructure sample, which was patterned with 2 x 10^8 quantum dots using e-beam lithography. Dots having 150 nm radii with a 700 nm period are induced in a natural Si quantum well by the gates. The measured T1 and T2 at 350 mK are much longer than those of free 2D electrons, for which we measured T1 to be 10 μs and T2 to be 6.5 μs in this gated sample. The results provide direct proof that the effects of a fluctuating Rashba field have been greatly suppressed by confining the electrons in quantum dots. From 0.35 K to 0.8 K, T1 of the electron spins in the quantum dots shows little temperature dependence, while their T2 decreased to about 150 μs at 0.8 K. The measured 350 mK spin coherence time is 10 times longer than previously reported for any silicon 2D electron-based structures, including electron spins confined in ``natural quantum dots'' formed by potential disorder at the Si/SiO2ootnotetextS. Shankar et al., Phys. Rev. B 82, 195323 (2010) or Si/SiGe interface, where the decoherence appears to be controlled by spin exchange.
Kjaer, L; Henriksen, O
1988-01-01
(PSIR) sequence with TR varying between 0.24 and 8.0 s. The median T1 relaxation times obtained in cortical grey matter and cerebrospinal fluid were significantly shorter in the IR experiments at TR = 2 s than in those carried out at TR = 4 s. Concerning white matter the discrepancy was much less...
van Dijk, H; Hermens, Hermanus J.
Objective: To examine the combined effect of age and timing of augmented feedback on learning muscle relaxation. Performing a gross motor task, subjects had to lower their trapezius muscle activity using the electromyographic signal as visual myofeedback. Design: Healthy subjects (16 young adults:
Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions
Ball, A.; Harman, C. J.; Ward, A. S.
2014-12-01
Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.
Time-dependent species sensitivity distributions.
Fox, David R; Billoir, Elise
2013-02-01
Time is a central component of toxicity assessments. However, current ecotoxicological practice marginalizes time in concentration-response (C-R) modeling and species sensitivity distribution (SSD) analyses. For C-R models, time is invariably fixed, and toxicity measures are estimated from a function fitted to the data at that time. The estimated toxicity measures are used as inputs to the SSD modeling phase, which similarly avoids explicit recognition of the temporal component. The present study extends some commonly employed probability models for SSDs to derive theoretical results that characterize the time-dependent nature of hazardous concentration (HCx) values. The authors' results show that even from very simple assumptions, more complex patterns in the SSD time dependency can be revealed.
Study of Electron Distribution and Magnetism at the Relaxed SrTiO3/LaAlO3 Interface
Ghosh, Soham; Manousakis, Efstratios
2014-03-01
The presence of a two-dimensional electron gas (2DEG) at the interface between two insulators SrTiO3 and LaAlO3 makes it an interesting topic of condensed matter research. It exhibits a variety of properties such as high mobility, magnetism and superconductivity. Bandstructure calculations have linked the presence of the electon gas to polar catastrophe and oxygen vacancy, but the value of the carrier density and its distribution is a matter of debate. In the present work, we use Density Functional Theory to study the electron density distribution and the effect of ionic relaxations on the properties of the 2DEG. In order to understand the nature of magnetism, we construct localized Wannier functions from Bloch states given by DFT and use them to calculate hopping matrix elements and exchange integrals, which act as parameters in a model to understand electron-electron correlation at the interface.
Modeling utilization distributions in space and time.
Keating, Kim A; Cherry, Steve
2009-07-01
W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r = 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep (Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed.
Waiting time distributions in financial markets
Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P.
2002-05-01
We study waiting time distributions for data representing two completely different financial markets that have dramatically different characteristics. The first are data for the Irish market during the 19th century over the period 1850 to 1854. A total of 10 stocks out of a database of 60 are examined. The second database is for Japanese yen currency fluctuations during the latter part of the 20th century (1989-1992). The Irish stock activity was recorded on a daily basis and activity was characterised by waiting times that varied from one day to a few months. The Japanese yen data was recorded every minute over 24 hour periods and the waiting times varied from a minute to a an hour or so. For both data sets, the waiting time distributions exhibit power law tails. The results for Irish daily data can be easily interpreted using the model of a continuous time random walk first proposed by Montroll and applied recently to some financial data by Mainardi, Scalas and colleagues. Yen data show a quite different behaviour. For large waiting times, the Irish data exhibit a cut off; the Yen data exhibit two humps that could arise as result of major trading centres in the World.
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Mukaimoto, Takahiro; Semba, Syun; Inoue, Yosuke; Ohno, Makoto
2014-01-01
The purpose of this study was to examine the changes in the metabolic state of quadriceps femoris muscles using transverse relaxation time (T2), measured by muscle functional magnetic resonance (MR) imaging, after inactive or active recovery exercises with different intensities following high-intensity knee-extension exercise. Eight healthy men performed recovery sessions with four different conditions for 20 min after high-intensity knee-extension exercise on separate days. During the recovery session, the participants conducted a light cycle exercise for 20 min using a cycle (50%, 70% and 100% of the lactate threshold (LT), respectively: active recovery), and inactive recovery. The MR images of quadriceps femoris muscles were taken before the trial and after the recovery session every 30 min for 120 min. The percentage changes in T2 for the rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT were significantly lower than those in either inactive recovery or 100% LT. There were no significant differences in those for vastus lateralis and vastus intermedius muscles among the four trials. The percentage changes in T2 of rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in either inactive recovery or 100% LT. Those of vastus lateralis and vastus intermedius muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in 100% LT. Although the changes in T2 after active recovery exercises were not uniform in exercised muscles, the results of this study suggest that active recovery exercise with the intensities below LT are more effective to recover the metabolic state of quadriceps femoris muscles after intense exercise than with either intensity at LT or inactive recovery.
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun;
2016-01-01
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar pa...... to minimize the global line losses of the feeder. The mathematical model is presented in details. Further, case studies are completed with simulations involving a 15-bus radial distribution system. These simulations are run for 24 hour periods, with actual solar data and demand data....
Vazina, A. A.; Gadzhiev, A. M.; Gerasimov, V. S.; Gorbunova, N. P.; Sergienko, P. M.; Korneev, V. N.; Aulchenko, V. M.; Baru, S. E.
1995-02-01
The use of the modern time-resolved X-ray diffraction and sample technique has played an important role in studying muscle structures during contraction at various physiological conditions. We represent time-resolved X-ray data on equatorial diffraction and tension response of the frog sartorius muscle during relaxation. The measurements of the time-course of the intensity change of reflections (1,0), (1,1) and the background under them give a possibility to study the effect of potentiation of contraction by repetitive stimulation in fresh and tired muscles. Model calculations of meridional diffraction patterns for various configurations of cross-bridges in the relaxation phase were carried out.
Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid
Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom;
2013-01-01
asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...
A stable and accurate relaxation technique using multiple penalty terms in space and time
Frenander, Hannes; Nordström, Jan
2017-09-01
A new method for data relaxation based on weak imposition of external data is introduced. The technique is simple, easy to implement, and the resulting numerical scheme is unconditionally stable. Numerical experiments show that the error growth naturally present in long term simulations can be prevented by using the new technique.
Herrera, Adriana P.; Polo-Corrales, Liliana [Department of Chemical Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Chavez, Ermides; Cabarcas-Bolivar, Jari [Department of Physics, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Uwakweh, Oswald N.C. [Department of General Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Rinaldi, Carlos, E-mail: crinaldi@uprm.edu [Department of Chemical Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States)
2013-02-15
Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron-cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron-cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron-cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron-cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron-cobalt oleate precursor resulted in crossing of the in-phase {chi} Prime and out-of-phase {chi} Double-Prime components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for
Asymptotic Time Averages and Frequency Distributions
Muhammad El-Taha
2016-01-01
Full Text Available Consider an arbitrary nonnegative deterministic process (in a stochastic setting {X(t, t≥0} is a fixed realization, i.e., sample-path of the underlying stochastic process with state space S=(-∞,∞. Using a sample-path approach, we give necessary and sufficient conditions for the long-run time average of a measurable function of process to be equal to the expectation taken with respect to the same measurable function of its long-run frequency distribution. The results are further extended to allow unrestricted parameter (time space. Examples are provided to show that our condition is not superfluous and that it is weaker than uniform integrability. The case of discrete-time processes is also considered. The relationship to previously known sufficient conditions, usually given in stochastic settings, will also be discussed. Our approach is applied to regenerative processes and an extension of a well-known result is given. For researchers interested in sample-path analysis, our results will give them the choice to work with the time average of a process or its frequency distribution function and go back and forth between the two under a mild condition.
I. V. Glazunov
2016-01-01
Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns.
Kühne Titus
2010-07-01
Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.
Ethofer, Thomas; Mader, Irina; Seeger, Uwe; Helms, Gunther; Erb, Michael; Grodd, Wolfgang; Ludolph, Albert; Klose, Uwe
2003-12-01
In vivo longitudinal relaxation times of N-acetyl compounds (NA), choline-containing substances (Cho), creatine (Cr), myo-inositol (mI), and tissue water were measured at 1.5 and 3 T using a point-resolved spectroscopy (PRESS) sequence with short echo time (TE). T(1) values were determined in six different brain regions: the occipital gray matter (GM), occipital white matter (WM), motor cortex, frontoparietal WM, thalamus, and cerebellum. The T(1) relaxation times of water protons were 26-38% longer at 3 T than at 1.5 T. Significantly longer metabolite T(1) values at 3 T (11-36%) were found for NA, Cho, and Cr in the motor cortex, frontoparietal WM, and thalamus. The amounts of GM, WM, and cerebrospinal fluid (CSF) within the voxel were determined by segmentation of a 3D image data set. No influence of tissue composition on metabolite T(1) values was found, while the longitudinal relaxation times of water protons were strongly correlated with the relative GM content. Copyright 2003 Wiley-Liss, Inc.
Measurement of dead time by time interval distribution method
Arkani, Mohammad; Raisali, Gholamreza
2015-02-01
Non-random event losses due to dead time effect in nuclear radiation detection systems distort the original Poisson process into a new type of distribution. As the characteristics of the distribution depend on physical properties of the detection system, it is possible to estimate the dead time parameters based on time interval analysis, this is the problem investigated in this work. A BF3 ionization chamber is taken as a case study to check the validity of the method in experiment. The results are compared with the data estimated by power rising experiment performed in Esfahan Heavy Water Zero Power Reactor (EHWZPR). Using Monte Carlo simulation, the problem is elaborately studied and useful range for counting rates of the detector is determined. The proposed method is accurate and applicable for all kinds of radiation detectors with no potential difficulty and no need for any especial nuclear facility. This is not a time consuming method and advanced capability of online examination during normal operation of the detection system is possible.
Papaléo, R. M.; Leal, R.; Carreira, W. H.; Barbosa, L. G.; Bello, I.; Bulla, A.
2006-09-01
We report on measurements of relaxation times of nanometer-sized deformations resulting from the impact of individual energetic ions on poly(methyl methacrylate) surfaces at temperatures close to and below the glass transition Tg . The temporal evolution of the dimensions of the deformations is well described by a stretched exponential function, but with relaxation times τ(T) many orders of magnitude smaller than bulk values at the same T . The local Tg was around 86°C , roughly 30°C below the conventional bulk Tg . At the vicinity of the local Tg , τ(T) follows the Vogel-Fulcher type of T dependence, but at lower T a transition towards a less steep behavior is seen.
Liu, Qing; He, Ya-Ling
2015-11-01
In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.
Liu, Qing
2015-01-01
In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid phase change interface is traced through the liquid fraction which is determined by the enthalpy method. The model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.
Intraband relaxation time in wurtzite InGaN quantum-well lasers and comparison with experiment
Park, S H
1999-01-01
The intraband relaxation time for wurtzite (WZ) 3.5-nm In sub 0 sub . sub 1 sub 5 Ga sub 0 sub . sub 8 sub 5 N/In sub 0 sub . sub 0 sub 2 Ga sub 0 sub . sub 9 sub 8 N quantum well (QW) lasers is investigated theoretically. The results are also compared with those obtained from fitting the experimental data with a non-Markovian gain model with many-body effects. An intraband relaxation time of 25 fs is obtained from the comparison with experiment, which is in reasonably good agreement with the calculated value of 20 fs at the subband edge. These values are significantly shorter than those (40 - 100 sf) reported for zinc-blende crystals, such as InP and GaAs. This is because the hole effective masses of GaN are larger than those of GaAs and InP.
Zhen-Hua Chai; Tian-Shou Zhao
2012-01-01
In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.
SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats
Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)
2015-06-15
Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)
Yao, Weiwu; Qu, Nan; Lu, Zhihua; Yang, Shixun [Shanghai Jiaotong University, Department of Radiology, Shanghai (China)
2009-11-15
We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3{+-}27.7, 458.0{+-}55.9, 405.9{+-}57.3, and 357.9{+-}36.7 respectively (p<0.001). The mean T2 relaxation times of the four groups were: 37.8{+-}3.3, 44.0{+-}8.5, 50.9{+-}9.5, and 57.4{+-}4.8 respectively (p<0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p<0.001). No significant differences between the normal and OA groups using MTR were noted. T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding. (orig.)
Transition Path Time Distribution, Tunneling Times, Friction, and Uncertainty
Pollak, Eli
2017-02-01
A quantum mechanical transition path time probability distribution is formulated and its properties are studied using a parabolic barrier potential model. The average transit time is well defined and readily calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the crossover temperature. It provides a direct route for determining tunneling times. The average time may be also used to define a coarse grained momentum of the system for the passage from one side of the barrier to the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the location of the particle is shown under certain conditions to be smaller than the ℏ/2 formal uncertainty limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath. Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse grained uncertainty to approach the classical limit which is smaller than ℏ/2 when the friction is not too small. These results show how one obtains classical dynamics from a pure quantum system without invoking any further assumptions, approximations, or postulates.
Li Kai; Yang Shanlin
2008-01-01
A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time.Models and relaxations are collected.Most of these problems are NP-hard,in the strong sense,or open problems,therefore approximation algorithms are studied.The review reveals that there exist some potential areas worthy of further research.
Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand
2017-10-01
In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.
Polarized alkali vapor with minute-long transverse spin-relaxation time
Balabas, Misha; Ledbetter, Micah; Budker, Dmitry
2010-01-01
We demonstrate lifetimes of atomic populations and coherences in excess of 60 seconds in alkali vapor cells with inner walls coated with an alkene material. This represents two orders of magnitude improvement over the best paraffin coatings. Such anti-relaxation properties will likely lead to substantial improvements in atomic clocks, magnetometers, quantum memory, and enable sensitive studies of collisional effects and precision measurements of fundamental symmetries.
Measurement of relaxation times by NMR-CT of electric superconductivity
Shimizu, Koji; Yoshitoshi, Motosada (Shimadzu Corp., Kyoto (Japan)); Narise, Shoji; Hirakawa, Kogi
1984-08-01
Relaxation curves of T/sub 1/ in various tissues of the brain in patients with cerebral tumor and in healthy controls were obtained by saturation-recovery and inversion-recovery methods, whereby T/sub 1/ values were calculated. The results obtained were in good agreement with in vitro measurement results of excised brain tissues. Prolongation of T/sub 1/ values was evidently observed with increasing the strength of static magnetic field.
Xue, Yuting; Mishra, Brijes; Gao, Danqing
2017-09-01
Field observations have demonstrated that roof failure occurs spatially in a mine from the time of excavation. It is suspected that time-dependent deformation propagates failure in the rock mass. In this paper, the relaxation test is used to study variation in the time-dependent property of rock and the consequent effect on time-dependent roof failure. This investigation uses a numerical simulation in 3DEC. The relaxation equation is developed from Burgers model. Variations in the time-dependent property in the post-failure region show negligible variation and, therefore, are averaged to represent the time-dependent property of the failed rock. Finally, these parameters are used in the numerical simulation of underground excavations. Two groups of parameters are used to represent the time-dependent property for pre- and post-failure conditions. FISH functions within 3DEC are used to monitor the state of each zone. Once failure is detected, the parameters are changed to the values corresponding to failed rock. The results show that the new relaxation model accurately predicts the time-dependent propagation of the failure zone. The variation of the time-dependent parameters significantly affects the rock mass behavior and roof convergence.
The CMS Timing Control and Distribution System
AUTHOR|(CDS)2075794; Andre, Jean-marc Olivier; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Darlea, Georgiana Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Erhan, Samim; Fulcher, Jonathan Richard; Gigi, Dominique; Glege, Frank; Gomez Ceballos, Guillelmo; Hansen, Magnus; Holzner, Andre Georg; Jimenez Estupinan, Raul; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Troska, Jan; Vichoudis, Paschalis; Zejdl, Petr
2016-01-01
The Compact Muon Solenoid (CMS) experiment operating at the CERN (European Laboratory for Nuclear Physics) Large Hadron Collider (LHC) is in the process of upgrading several of its detector systems. Adding more individual detector components brings the need to test and commission those components separately from existing ones so as not to compromise physics data-taking. The CMS Trigger, Timing and Control (TTC) system had reached its limits in terms of the number of separate elements (partitions) that could be supported. A new Timing and Control Distribution System (TCDS) has been designed, built and commissioned in order to overcome this limit. It also brings additional functionality to facilitate parallel commissioning of new detector elements. We describe the new TCDS system and its components and show results from the first operational experience with the TCDS system in CMS.
Dreher, Wolfgang; Bardenhagen, Ingo; Huang, Li; Bäumer, Marcus
2016-04-01
Modern NMR imaging systems used for biomedical research are equipped with B0 gradient systems with strong maximum gradient strength and short switching time enabling (1)H NMR measurements of samples with very short transverse relaxation times. However, background signal originating from non-optimized RF coils may hamper experiments with ultrashort delays between RF excitation and signal reception. We demonstrate that two simple means, outer volume suppression and the use of shaped B0 fields produced by higher-order shim coils, allow a considerable suppression of disturbing background signals. Thus, the quality of NMR images acquired at ultrashort or zero echo time is improved and systematic errors in quantitative data evaluation are avoided. Fields of application comprise MRI with ultrashort echo time or relaxation time analysis, for both biomedical research and characterizing porous media filled with liquids or gases.
Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas
2014-11-11
NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2≈0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ≥10(-8) s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.
Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, West Bengal 700098 (India)
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
Waiting time distribution for continuous stochastic systems.
Gernert, Robert; Emary, Clive; Klapp, Sabine H L
2014-12-01
The waiting time distribution (WTD) is a common tool for analyzing discrete stochastic processes in classical and quantum systems. However, there are many physical examples where the dynamics is continuous and only approximately discrete, or where it is favourable to discuss the dynamics on a discretized and a continuous level in parallel. An example is the hindered motion of particles through potential landscapes with barriers. In the present paper we propose a consistent generalization of the WTD from the discrete case to situations where the particles perform continuous barrier crossing characterized by a finite duration. To this end, we introduce a recipe to calculate the WTD from the Fokker-Planck (Smoluchowski) equation. In contrast to the closely related first passage time distribution (FPTD), which is frequently used to describe continuous processes, the WTD contains information about the direction of motion. As an application, we consider the paradigmatic example of an overdamped particle diffusing through a washboard potential. To verify the approach and to elucidate its numerical implications, we compare the WTD defined via the Smoluchowski equation with data from direct simulation of the underlying Langevin equation and find full consistency provided that the jumps in the Langevin approach are defined properly. Moreover, for sufficiently large energy barriers, the WTD defined via the Smoluchowski equation becomes consistent with that resulting from the analytical solution of a (two-state) master equation model for the short-time dynamics developed previously by us [Phys. Rev. E 86, 061135 (2012)]. Thus, our approach "interpolates" between these two types of stochastic motion. We illustrate our approach for both symmetric systems and systems under constant force.
Liu, Y H; Hawk, R M; Ramaprasad, S
1995-01-01
RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.
Henriksen, O; de Certaines, J D; Spisni, A;
1993-01-01
T1 and T2 relaxation times are fundamental parameters for signal contrast behaviour in MRI. A number of ex vivo relaxometry studies have dealt with the magnetic field dispersion of T1. By means of multicenter study within the frame of the COMAC BME Concerted Action on Tissue Characterization by MRI...... and MRS, the in vivo field dispersion of T1 and T2 has been measured in order to evaluate whether ex vivo data are representative for the in vivo situation. Brain, skeletal muscle, and liver of healthy human volunteers were studied. Fifteen MR units with a field strength ranging from 0.08 T to 1.5 T took...... part in the trial, which comprised 218 volunteers. All the MR systems were tested for measurement accuracy using the Eurospin TO5 test object. The measured relaxation data were subsequently corrected according to the obtained calibration curves. The results showed a clear field dispersion of T1...
Träber, Frank; Block, Wolfgang; Lamerichs, Rolf; Gieseke, Jürgen; Schild, Hans H
2004-05-01
To measure 1H relaxation times of cerebral metabolites at 3 T and to investigate regional variations within the brain. Investigations were performed on a 3.0-T clinical whole-body magnetic resonance (MR) system. T2 relaxation times of N-acetyl aspartate (NAA), total creatine (tCr), and choline compounds (Cho) were measured in six brain regions of 42 healthy subjects. T1 relaxation times of these metabolites and of myo-inositol (Ins) were determined in occipital white matter (WM), the frontal lobe, and the motor cortex of 10 subjects. T2 values of all metabolites were markedly reduced with respect to 1.5 T in all investigated regions. T2 of NAA was significantly (P motor cortex (247 +/- 13 msec) than in occipital WM (301 +/- 18 msec). T2 of the tCr methyl resonance showed a corresponding yet less pronounced decrease (162 +/- 16 msec vs. 178 +/- 9 msec, P = 0.021). Even lower T2 values for all metabolites were measured in the basal ganglia. Metabolite T1 relaxation times at 3.0 T were not significantly different from the values at 1.5 T. Transverse relaxation times of the investigated cerebral metabolites exhibit an inverse proportionality to magnetic field strength, and especially T2 of NAA shows distinct regional variations at 3 T. These can be attributed to differences in relative WM/gray matter (GM) contents and to local paramagnetism. Copyright 2004 Wiley-Liss, Inc.
Propagation of plane waves in thermoelastic cubic crystal material with two relaxation times
Rajneesh Kumar; Manjeet Singh
2007-01-01
A problem concerned with the reflection and refraction of thermoelastic plane waves an imperfect interface between two generalized thermally conducting cutimes has been investigated.The generalized thermoelastic theory with two relaxation of retiected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness,transverse stiffness,themlal contact conductance,slip and welded boundaries. Amplitude ratios of different reflected and graphically for different incident waves.It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.
Zhongliang Zu; Qi Liu; Yanming Yu; Song Gao; Shanglian Bao
2008-01-01
Driven equilibrium single pulse observation of T1(DESPOT1)is a rapid spin-lattice relaxation constant(T1)mapping technique in magnetic resonance imaging(MRI).However,DESPOT1 is very sensitive to flip angle(FA)inhomogeneity,resulting in T1 inaccuracy.Here,a five-point DESPOTl method is proposed to reduce the sensitivity to FA inhomogeneity through FA measurement and calibra-tion.Phantom and in vivo experiments are performed to validate the technique.As a result.a rapid and accurate T1 mapping is acquired by using the proposed five-point DESPOT1 method.
王伟; 孙会君; 吴建军
2015-01-01
The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value (CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities. Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.
Lyulin, Alexey V; Michels, M A J
2007-08-24
Molecular-dynamics simulation is used to explore the influence of thermal and mechanical history of typical glassy polymers on their deformation. Polymer stress-strain and energy-strain developments have been followed for different deformation velocities, also in closed extension-recompression loops. The latter simulate for the first time the experimentally observed mechanical rejuvenation and overaging of polymers, and energy partitioning reveals essential differences between mechanical and thermal rejuvenation. All results can be qualitatively interpreted by considering the ratios of the relevant time scales: for cooling down, for deformation, and for segmental relaxation.
Buehler, Martin G.; Campbell, Zachary J.; Carter, Brady P.
2017-02-01
Dielectric relaxation methods are applicable to powdery materials such as carbohydrates. These materials have relaxations that occur in the milli-Hz range while samples are held at fixed temperatures and fixed water activities, a w, (relativity humidity). Under proper conditions these materials undergo physical changes where the initially glassy powder transitions to an amorphous equilibrium state at the glass transition temperature, T g. Determining this transition involves characterizing the boundary curve (T g versus a w) which determines T g and a w conditions where materials are stable with long-shelf life or unstable with very a short shelf-life. This paper serves to illustrate multiple methodologies which can be used to characterize glass transition from frequency-spectra. Three methodologies are described: peak-broadening, peak-shift, and single-frequency. The new single frequency method not only provides results that identical to those of the peak-shift method but increases the data acquisition speeds by a factor of 5. This method is illustrated on polydextrose, a common sugar substitute. The information gathered can then be used to construct the boundary curve which is used to characterize the shelf-life of a material at various conditions.
Weak Serializable Concurrency Control in Distributed Real-Time Database Systems
党德鹏; 刘云生; 等
2002-01-01
Most of the proposed concurrency control protocols for real-time database systems are based on serializability theorem.Owing to the unique characteristics of real-time database applications and the importance of satisfying the timing constraints of transactions,serializability is too strong as a correctness criterion and not suitable for real-time databases in most cases.On the other hand,relaxed serializability including epsilon-serializability and similarity-serializability can allow more real-time transactions to satisfy their timing constraints,but database consistency may be sacrificed to some extent.We thus propose the use of weak serializability(WSR)that is more relaxed than conflicting serializability while database consistency is maintained.In this paper,we first formally define the new notion of correctness called weak serializability.After the necessary and sufficient conditions for weak serializability are shown,corresponding concurrency control protocol WDHP(weak serializable distributed high prority protocol)is outlined for distributed real time databases,where a new lock mode called mask lock mode is proposed for simplifying the condition of global consistency.Finally,through a series of simulation studies,it is shown that using the new concurrency control protocol the performance of distributed realtime databases can be greatly improved.
Madhukar N Shinde; Ravindra B Talware; Pravin G Hudge; Yogesh S Joshi; Ashok C Kumbharkhane
2012-02-01
The complex permittivity, static dielectric constant and relaxation time for 1,3-propanediol, 1,4-dioxane and their mixtures have been studied using time domain reﬂectometry (TDR). The excess permittivity, excess inverse relaxation time and Kirkwood correlation factor have also been determined at various concentrations of dioxane. Hydrogen bonded theory was applied to compute the correlation terms for the mixtures. The Bruggeman model for the nonlinear case has been ﬁtted to the dielectric data for mixtures.
The effect of timing of intravenous muscle relaxant on the quality of double-contrast barium enema
Elson, E.M.; Campbell, D.M.; Halligan, S.; Shaikh, I.; Davitt, S.; Bartram, C.I
2000-05-01
AIM: To determine whether the timing of buscopan administration during double-contrast barium enema examination (DCBE) affects diagnostic quality. MATERIALS AND METHODS: In a prospective setting, 100 consecutive adult out-patients referred for DCBE received 20 mg buscopan (hyoscine-N-butylbromide) intravenously, either before infusion of barium suspension (Group A) or after barium infusion and gas insufflation (Group B). A subjective assessment of ease of contrast medium infusion was made at the time of examination and the films subsequently analysed by two radiologists unaware of the mode of relaxant administration, who noted the quality of mucosal coating and made subjective and objective measurements of segmental distension. RESULTS: There was no significant difference in screening times, infusion difficulty or colonic contrast medium coating between the two groups. Subjective assessment of distension of the caecum, ascending colon, transverse colon and rectum were not significantly different. Patients receiving intravenous relaxant after barium and gas infusion had less subjective descending (P = 0.05) and sigmoid (P = 0.04) colon distension, but there was no significant difference with respect to maximal bowel diameter in any of the segments measured. CONCLUSION: The timing of intravenous administration during DCBE is likely to have no significant effect on the diagnostic quality of the study. Elson, E.M. (2000)
Lai WL
2010-01-01
Full Text Available Abstract Ground penetrating radar (GPR was used to characterize the frequency-dependent dielectric relaxation phenomena in ordinary Portland cement (OPC hydration in concrete changing from fresh to hardened state. The study was experimented by measuring the changes of GPR A-scan waveforms over a period of 90 days, and processed the waveforms with short-time Fourier transform (STFT in joint time-frequency analysis (JTFA domain rather than a conventional time or frequency domain alone. The signals of the direct wave traveled at the concrete surface and the reflected wave from an embedded steel bar were transformed with STFT, in which the changes of peak frequency over ages were tracked. The peak frequencies were found to increase with ages and the patterns were found to match closely with primarily the well-known OPC hydration process and secondarily, the evaporation effect. The close match is contributed to the simultaneous effects converting free to bound water over time, on both conventional OPC hydration and dielectric relaxation mechanisms.
Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J
2012-02-01
Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.
Benchenane-Mehor, Halima, E-mail: halima_mehor_2000@yahoo.fr [Laboratoire CaSiCCE, Département de Génie Electrique, ENSET-Oran, B.P. 1523, El M’Naouer, 31000 Oran (Algeria); Laboratoire de Microphysique et de Nanophysique (LaMiN), Département de Physique-Chimie, ENSET-Oran, B.P. 1523 EL M’Naouer, 31000 Oran (Algeria); Soufi, Manil M.; Saiter, Jean-Marc; Benzohra, Mohamed [Laboratoire LECAP-AMME, EA 4528, Université de Rouen, Faculté des Sciences, Avenue de l' Université BP 12, 76801 Saint Etienne du Rouvray (France)
2013-03-01
The temporal technique analysis by a simplex optimization method of isothermal transient depolarization current measurements (Simplex-TSDC) is presented for the study of the glass transition domain of different polymers. The advantage of the present method compared to the classical TSDC is that it gives direct results comparable to the experiment and allows a good estimate of the relaxation time close to the glass transition temperature in dielectric thin films. The present method also allows a direct determination of two relaxation times corresponding to a fast and a slow dynamics; and then confirms the heterogeneous character of the molecular relaxation dynamics.
Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation.
Zhang, Y; Lapert, M; Sugny, D; Braun, M; Glaser, S J
2011-02-07
We consider the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence of relaxation and radiation damping effects, whose dynamics is governed by nonlinear equations generalizing the standard linear Bloch equations. For a single spin, the optimal control strategy can be fully characterized analytically. However, in order to take into account the inhomogeneity of the static magnetic field, an ensemble of isochromats at different frequencies must be considered. For this case, numerically optimized pulse sequences are computed and the dynamics under the corresponding optimal field is experimentally demonstrated using nuclear magnetic resonance techniques.
Zhi-Yong Wu
2014-07-01
Full Text Available The objective of this present study is to propose an approach to predict mass transfer time relaxation parameter for boiling simulation on the shell-side of LNG spiral wound heat exchanger (SWHE. The numerical model for the shell-side of LNG SWHE was established. For propane and ethane, a predicted value of mass transfer time relaxation parameter was presented through the equivalent evaporation simulations and was validated by the Chisholm void fraction correlation recommended under various testing conditions. In addition, heat transfer deviations between simulations using the predicted value of mass transfer time relaxation parameter and experiments from Aunan were investigated. The boiling characteristics of SWHE shell-side were also visualized based on the simulations with VOF model. The method of predicting mass transfer time relaxation parameter may be well applicable to various phase change simulations.
Yoon, Tae-Sik
2005-03-01
We report the experimental investigation of surface roughness and dislocation distribution of 1 μm-thick, compositionally graded, relaxed SiGe buffer layer with a final Ge surface content of 30%. Tensile-strained Si layers are inserted at various locations in the graded buffer during SiGe epitaxial growths. Slight reduction in surface roughness from about 10.3 nm to about 7.8 nm by inserting two 20 nm thick tensile-strained Si layers followed by SiGe growths. It turns out that majority of the residual surface roughness is developed during the SiGe growths on top of the topmost strain Si layer. The surface immediately after the growth of tensile strained Si is very flat with about 1.1 nm RMS roughness and without crosshatch morphology. Cross-sectional TEM shows clear signs of increased interaction between dislocation half-loops at the top surface of the strained Si layers. Our observation shows that although thin Si layers under tensile-strain are effective in reducing cross-hatch, they could in the meantime impede dislocation propagation leading to higher threading dislocation density. Considerations for an optimized scheme exploiting the flattening function of tensile-strained layers will be discussed.
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc
2017-03-01
Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.
Hansen, Alexandar L.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)
2011-08-15
A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly {sup 13}C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale. Comparison of exchange parameters extracted for this folding 'reaction' using the present methodology with those obtained from more 'traditional' {sup 15}N and backbone carbonyl probes establishes the utility of the approach. The extracted excited state side-chain carbonyl chemical shifts indicate that the Asx/Glx side-chains are predominantly unstructured in the Im7 folding intermediate. However, several crucial salt-bridges that exist in the native structure appear to be already formed in the excited state, either in part or in full. This information, in concert with that obtained from existing backbone and side-chain methyl relaxation dispersion experiments, will ultimately facilitate a detailed description of the structure of the Im7 folding intermediate.
Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno; Fries, Peter
2017-01-01
Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2(⁎) may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2(⁎) in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2(⁎). Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 (-/-)) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2(⁎) correlate differently to disease severity and etiology of liver fibrosis. T2(⁎) shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 (-/-) mice. Measurements of T1 and T2(⁎) may therefore facilitate discrimination between different stages and causes of liver fibrosis.
Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno
2017-01-01
Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 −/−) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 −/− mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis. PMID:28194423
Andreas Müller
2017-01-01
Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.
The effects of proteoglycan and type II collagen on T1rho relaxation time of articular cartilage
Choi, Won Seok; Yoo, Hye Jin; Hong, Sung Hwan; Choi, Ja Young [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)
2015-02-15
To evaluate the effects of proteoglycan and type II collagen within articular cartilage on T1rho relaxation time of articular cartilage. This study was exempted by the institutional and animal review boards, and informed consent was not required. Twelve porcine patellae were assigned to three groups of control, trypsin-treated (proteoglycan-degraded), or collagenase-treated (collagen-degraded). The T1rho images were obtained with a 3 tesla magnetic resonance imaging scanner with a single loop coil. Statistical differences were detected by analysis of variance to evaluate the effects of the enzyme on T1rho relaxation time. Safranin-O was used to stain proteoglycan in the articular cartilage and immunohistochemical staining was performed for type II collagen. Mean T1rho values of the control, trypsin-treated, and collagenase-treated groups were 37.72 +/- 5.82, 57.53 +/- 8.24, and 45.08 +/- 5.31 msec, respectively (p < 0.001). Histology confirmed a loss of proteoglycan and type II collagen in the trypsin- and collagenase-treated groups. Degradation of proteoglycans and collagen fibers in the articular cartilage increased the articular cartilage T1rho value.
Pasko, V. P.
2009-12-01
Thomas et al. [JGR, A12306, 2008] has reported lightning-driven electric (E) field pulses at 75-130 km altitude recorded during rocket experiment in 1995 from Wallops Island, Virginia. The measurements were compared to a 2D electromagnetic model of Cho and Rycroft [JASTP, 60,871,1998]. Thomas et al.[2008] indicated that the observed field magnitudes were an order of magnitude lower than predicted by the model and questioned validity of the electromagnetic pulse mechanism of elves. The goal of the present work, which utilizes Monte Carlo and FDTD electromagnetic modeling, is to emphasize range of validity of the local field approximation (LFA) employed in the Cho and Rycroft's [1998] model and other similar models for the cases when weak (~10 mV/m as reported in [Thomas et al., 2008]) E field pulses are considered. Glukhov et al. [GRL, 23, 2193, 1996] and Sukhorukov et al. [GRL, 23, 2911, 1996] performed Monte Carlo simulations for large E fields ~10V/m at typical altitudes of elves, which fully confirmed validity of models of elves based on LFA [Taranenko et al., GRL, 20, 2675, 1993; Inan et al., GRL, 23, 133, 1996]. We demonstrate that the time of relaxation of the momentum of the electron distributions subjected to the external E field scales approximately as 1/E and exceeds 10s of microseconds for E1 V/m when fast (10 kHz) processes are considered. The models of elves relying on LFA [e.g., Taranenko et al., 1993; Inan et al., 1996] generally require E>1 V/m for production of observable optical emissions at lower ionospheric altitudes and therefore remain valid, in agreement with original conclusions reached by Glukhov et al. [1996] and Sukhorukov et al. [1996]. Two additional factors may have contributed to the low field magnitudes reported in [Thomas et al., 2008]: 1) The measurements were conducted on September 2, 1995 around evening hours (9:22 PM local time) at which the lower ionosphere likely exhibited enhancement of electron density in comparison with
Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert
2014-05-28
The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.
Ultrafast energy relaxation in single light-harvesting complexes.
Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk
2016-03-15
Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.
Michaels, Chris Arthur
The relaxation of highly vibrationally excited donor molecules, C4H4N2 and C6F6, (E vib ~ 5 eV), by collisions with a bath of CO2 is investigated using high resolution, infrared transient absorption spectroscopy. The vibrationally hot donor molecules are formed by 248 nm excimer laser pumping, followed by rapid radiationless decay to the ground electronic state. This technique yields the nascent bath quantum state distributions following a single donor/bath collision. Absolute energy transfer rates are measured along with the partitioning of energy among the bath degrees of freedom. These measurements provide insight into the nature of the intermolecular forces mediating the energy transfer and allow the construction of energy transfer distribution functions, P(E,E') for these systems. Pyrazine/CO2 collisions which result in the excitation of bath vibrational modes, including the anti- symmetric stretch (0001), the Fermi-mixed symmetric stretch/bending overtone (1000 r1 and 1000 r2) and the unmixed bending overtone (0220), are studied. The vibrational energy transfer is accompanied by very little rotational and translational excitation and displays the characteristic strong, inverse temperature dependence (probability of transfer increases with decreasing temperature) expected of energy transfer mediated by a long range attractive interaction. Collisions between highly vibrationally excited C6F6 and CO2, which result in significant excitation of the bath rotational and translational degrees of freedom, are examined. This type of energy transfer is mediated by the short range repulsive region of the C6F6/CO2 intermolecular potential. A gap law model is used to fit the weak temperature dependence of these scattering processes in an effort to quantify the energy transfer magnitudes. A prescription for mapping bath quantum state resolved energy transfer rate constants onto an energy transfer probability distribution function, P(E,E') is described in detail. Analysis of
Nagasawa, Sh
2017-02-01
Paperboards are recognized to be important raw materials for packaging industry due to their advantages such as high strength-to-weight ratio, recyclability. Regarding the development of advanced packaging materials and the requirement of smart formed products, a study of sheet’s response behaviour is necessary for expanding the advanced converting industry. After introducing a couple of past research works concerned crease technologies, a fundamental mechanisms of crease deformation is reviewed using the scoring depth and the folding angle of a paperboard. Since one of important forming characteristics is a time-dependent stress relaxation or time-delayed strain during a fold/unfold process, the author’s experimental approaches for estimating a short term (less than 10 seconds) dynamic deformation behaviour of creased paperboard are discussed.
Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.
2016-09-01
Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.
Riviere, J. V.; Shokouhi, P.; Marone, C.; Elsworth, D.; Guyer, R. A.; Johnson, P. A.
2015-12-01
We study nonlinear elastic/acoustic phenomena in rocks at the laboratory scale, with the goal of understanding observations at crustal scales, for instance during strong ground motion and earthquake slip processes. In particular, a long-term goal is to relate microstructure of rocks/gouge to nonlinear acoustic properties. A dynamic perturbation with modest (i.e. acoustic) strain amplitude (10-6 Berea sandstone to explore short-term relaxation, down to 10-4s (DAE is the dynamic equivalent of measuring acoustic velocity as a function of applied pressure). We find that early recovery does not follow a logarithmic law, while some earlier studies based on resonance techniques and at times larger than 1s do exhibit log(t)-recovery. From this non-log(t) dataset, we extract a spectrum of relaxation rates and discuss the potential relation between characteristic rates and rock microstructure. We also discuss the possible links between transient elastic softening and transient increase in permeability due to dynamic perturbation.
Abad, Laura; Bermejo, Dionisio; Herrero, Víctor J.; Santos, J.; Tanarro, Isabel
1997-01-01
The relaxation of the energy stored in the translational and rotational degrees of freedom of N2 and CH4 in the course of free jet expansions has been experimentally studied. Rotational temperatures along the expansion axis were obtained by means of stimulated Raman spectroscopy, and terminal flow velocities and translational temperatures were determined from supersonic beam time-of-flight measurements. From these measurements low-temperature cross sections for rotational relaxation have been...
Climate change relaxes the time constraints for late-born offspring in a long-distance migrant.
Tomotani, Barbara M; Gienapp, Phillip; Beersma, Domien G M; Visser, Marcel E
2016-09-28
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Liu, Q
2016-01-01
In this paper, a three-dimensional (3D) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is presented for convection heat transfer in porous media at the representative elementary volume (REV) scale. The model is developed in the framework of the double-distribution-function (DDF) approach: an MRT-LB model of the density distribution function with the D3Q19 lattice (or D3Q15 lattice) is proposed to simulate the flow field based on the generalized non-Darcy model, while an MRT-LB model of the temperature distribution function with the D3Q7 lattice is proposed to simulate the temperature filed. The present model is employed to simulate mixed convection flow in a porous channel and natural convection in a cubical porous cavity. The numerical results demonstrate the effectiveness and accuracy of the present model in solving 3D convection heat transfer problems in porous media. The numerical results also demonstrate that the present model is approximately second-order accuracy in space. In addition, an ...
KUMAR, DEEPAK; SOUZA, RICHARD B.; SINGH, JUSTIN; CALIXTO, NATHANIEL E.; NARDO, LORENZO; LINK, THOMAS M.; LI, XIAOJUAN; MAJUMDAR, SHARMILA
2015-01-01
STUDY DESIGN Cross-sectional. OBJECTIVES To investigate the association between knee loading–related osteoarthritis (OA) risk factors (obesity, malalignment, and physical activity) and medial knee laminar (superficial and deep) T1rho and T2 relaxation times. BACKGROUND The interaction of various modifiable loading-related knee risk factors and cartilage health in knee OA is currently not well known. METHODS Participants with and without knee OA (n = 151) underwent magnetic resonance imaging at 3 T for superficial and deep cartilage T1rho and T2 magnetic resonance relaxation times in the medial femur (MF) and medial tibia (MT). Other variables included radiographic Kellgren-Lawrence (KL) grade, alignment, pain and symptoms using the Knee injury and Osteoarthritis Outcome Score, and physical activity using the International Physical Activity Questionnaire (IPAQ). Individuals with a KL grade of 4 were excluded. Group differences were calculated using 1-way analysis of variance, adjusting for age and body mass index. Linear regression models were created with age, sex, body mass index, alignment, KL grade, and the IPAQ scores to predict the laminar T1rho and T2 times. RESULTS Total IPAQ scores were the only significant predictors among the loading-related variables for superficial MF T1rho (P = .005), deep MT T1rho (P = .026), and superficial MF T2 (P = .049). Additionally, the KL grade predicted the superficial MF T1rho (P = .023) and deep MT T1rho (P = .022). CONCLUSION Higher physical activity levels and worse radiographic severity of knee OA, but not obesity or alignment, were associated with worse cartilage composition. PMID:25353261
Hertzog, R. C.; Geesey, G.; White, T.; Oram, L.; Seymour, J.; Codd, S.; Straley, C.; Bryar, T.
2003-12-01
This research leads to a better understanding of how physical and biological properties of porous media influence water and dense non-aqueous phase liquid (DNAPL) distributions under saturated and unsaturated conditions. Knowing how environmental properties affect DNAPL solvent flow in the subsurface is essential for developing models of flow and transport needed for designing remediation and long-term stewardship strategies. We investigate the capability and limitations of low-field nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. For in-situ subsurface environmental applications, low-field proton NMR measurements are preferred to conventional high-field techniques commonly used to obtain chemical shift data, because low field measurements are much less degraded by magnetic susceptibility variations between rock grains and pore fluids that significantly interfere with high-field NMR measurements. The research scope includes discriminating DNAPLs in water-wet or solvent-wet environments and the impact of biological processes on their transport mechanisms in porous media. Knowledge of the in situ flow properties and pore distributions of organic contaminants are critical to understanding where and when these fluids will enter subsurface aquifers. Experiments determined that commonly found subsurface DNAPLs containing hydrogen, such as trichloroethylene and dichloroethylene, are detectable and distinguished from water in soils. Related experiments concern the effects of bacterial accumulation in saturated and unsaturated porous media on water and DNAPL pore-size distributions. These include synthetic bio-film matrix as a surrogate bio-film and sand, biological agents to grow biofilms, and multiple pore sizes to determine if bio-films prefer certain pore-size ranges. NMR microscopy focused on imaging a single biofilm in a 1 mm capillary reactor. This system
Catchment mixing processes and travel time distributions
Botter, Gianluca
2012-01-01
...) of travel, residence and evapotranspiration times, which are comprehensive descriptors of the fate of rainfall water particles traveling through catchments, and provide key information on hydrologic...
Optimal distribution of measurement time in single channel measurements
Kaspar, J
2008-01-01
Single channel measurements play a minor role in today physics, but they are sometimes unavoidable. Comparing to multichannel measurements, there is distribution of measurement time to be chosen in an experiment design. A method to optimize distribution of measurement time is given, where optimal distribution minimizes standard deviation of a selected fit parameter. As an example, the method is applied to electron spectroscopy experiments.
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
Zhang Qiang
2008-01-01
The dynamics of discrete time delayed Hopfield neural networks is investigated.By using a difference inequality combining with the linear matrix inequality,a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found.The result obtained holds not only for constant delay but also for time-varying delays.
Nemati Hasan
2011-01-01
Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.
Macías-Hernández, Salvador Israel; Miranda-Duarte, Antonio; Ramírez-Mora, Isabel; Cortés-González, Socorro; Morones-Alba, Juan Daniel; Olascoaga-Gómez, Andrea; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania Inés; Cruz-Medina, Eva
2016-08-01
The objective of this study is to correlate T2 relaxation time (T2RT), measured by magnetic resonance imaging (MRI) with quadriceps and hamstring strength in young participants with risk factors for knee osteoarthritis (OA). A descriptive cross-sectional study was conducted with participants between 20 and 40 years of age, without diagnosis of knee OA. Their T2 relaxation time was measured through MRI, and their muscle strength (MS) was measured with an isokinetic dynamometer. Seventy-one participants were recruited, with an average age of 28.3 ± 5.5 years; 39 (55 %) were females. Negative correlations were found between T2RT and quadriceps peak torque (QPT) in males in the femur r = -0.46 (p = 0.01), tibia r = -0.49 (p = 0.02), and patella r = -0.44 (p = 0.01). In women, correlations were found among the femur r = -0.43 (p = 0.01), tibia r = -0.61 (p = 0.01), and patella r = -0.32 (p = 0.05) and among hamstring peak torque (HPT), in the femur r = -0.46 (p = 0.01), hamstring total work (HTW) r = -0.42 (p = 0.03), and tibia r = -0.33 (p = 0.04). Linear regression models showed good capacity to predict T2RT through QPT in both genders. The present study shows that early changes in femoral, tibial, and patellar cartilage are significantly correlated with MS, mainly QPT, and that these early changes might be explained by MS, which could play an important role in pre-clinical phases of the disease.
Pachowsky, Milena L; Trattnig, Siegfried; Apprich, Sebastian; Mauerer, Andreas; Zbyn, Stephan; Welsch, Goetz H
2013-11-01
The purpose of our study was to assess T2 and T2* relaxation time values of patella cartilage in healthy volunteers using three different coils at 3.0 Tesla MRI and their influence on the quantitative values. Fifteen volunteers were examined on the same 3-Tesla MR unit using three different coils: (i) a dedicated eight-channel knee phased-array coil; (ii) an eight-channel multi-purpose coil, and (iii) a one-channel 1H surface coil. T2 and T2* relaxation time measurements were prepared by a multi-echo spinecho respectively a gradient-echo sequence. A semi-automatic region-of-interest analysis was performed for patella cartilage. To allow stratification, a subregional analysis was carried out (deep-superficial cartilage layer). Statistical analysis-of-variance was performed. The mean quantitative T2 values showed statistically significant differences in all comparison combinations. The differences between the mean quantitative T2* values were slightly less pronounced than the T2 evaluation and only the comparison between (i) and (ii) showed a significant difference. The results of T2 and T2* values showed, independent of the used coil, higher values in the superficial zone compared to the deep zone (p < 0.05). Looking at the signal alterations, all coils showed clearly higher values (and thus more signal alterations as a sign of noise) in the deep layer. The validation of the reliability showed a high intra-class correlation coefficient and hence a very high plausibility (ICC was between 0.870 and 0.905 for T2 mapping and between 0.879 and 0.888 for T2* mapping). The present results demonstrate that biochemical T2 and T2* mapping is significantly dependent on the utilized coil.
Kockova, Radka; Kacer, Petr; Pirk, Jan; Maly, Jiri; Sukupova, Lucie; Sikula, Viktor; Kotrc, Martin; Barciakova, Lucia; Honsova, Eva; Maly, Marek; Kautzner, Josef; Sedmera, David; Penicka, Martin
2016-04-25
The aim of our study was to investigate the relationship between the cardiac magnetic resonance (CMR)-derived native T1 relaxation time and myocardial extracellular volume (ECV) fraction and the extent of diffuse myocardial fibrosis (DMF) on targeted myocardial left ventricular (LV) biopsy. The study population consisted of 40 patients (age 63±8 years, 65% male) undergoing valve and/or ascending aorta surgery for severe aortic stenosis (77.5%), root dilatation (7.5%) or valve regurgitation (15%). The T1 relaxation time was assessed in the basal interventricular septum pre- and 10-min post-contrast administration using the modified Look-Locker Inversion recovery sequence prior to surgery. LV myocardial biopsy specimen was obtained during surgery from the basal interventricular septal segment matched with the T1 mapping assessment. The percentage of myocardial collagen was quantified using picrosirius red staining. The average percentage of myocardial collagen was 22.0±14.8%. Both native T1 relaxation time with cutoff value ≥1,010 ms (sensitivity=90%, specificity=73%, area under the curve=0.82) and ECV with cutoff value ≥0.32 (sensitivity=80%, specificity=90%, area under the curve=0.85) showed high accuracy to identify severe (>30%) DMF. The native T1 relaxation time showed significant correlation with LV mass (P<0.01). Native T1 relaxation time and ECV at 10 min after contrast administration are accurate markers of DMF. (Circ J 2016; 80: 1202-1209).
Kim, Hee Kyung; Laor, Tal; Wong, Brenda [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Horn, Paul S. [University of Cincinnati, Cincinnati (United States)
2010-06-15
To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. Eleven boys with DMD (age range: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.
Design a Fault Tolerance for Real Time Distributed System
Ban M. Khammas
2012-01-01
This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...
Khan, Sabeel M.; Hammad, M.; Sunny, D. A.
2017-08-01
In this article, the influence of thermal relaxation time and chemical reaction is studied on the MHD upper-convected viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation for the first time in the literature. The flow-governing equations are formulated and are converted into their respective ordinary differential equations (ODEs) with the application of similarity functions. The resulting system of coupled nonlinear ODEs is solved along with the prescribed conditions at boundary using a finite-difference code in MATLAB. Influence of chemical reaction, thermal relaxation time and internal material parameter on the macroscopic and micropolar velocities as well as on the temperature and concentration profiles is examined along with other physical parameters ( e.g., magnetic parameter, Eckert number, Prandtl number and fluid relaxation time). The accuracy of the obtained numerical solution is shown by comparing the physical parameters of interest with particular cases of existing results in the literature.
Cory Wyatt
2015-10-01
Conclusion: T1ρ imaging at 7T has been established as a viable imaging method for the differentiation of degenerated cartilage despite previous concerns over specific absorption rate and imaging time. The potential increased sensitivity of T1ρ and T2 imaging at 7T may be useful for future studies in the development of OA.
Vďačný, Peter
2015-08-01
The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes.
New models and distributions of the electrical breakdown time delay in neon
Stamenkovic, S N, E-mail: ssuzana@pmf.ni.ac.rs [Department of Physics, University of Nis, P.O. BOX 224, 18001 Nis (Serbia)
2010-11-01
The measurements of the electrical breakdown time delay t{sub d} for a wide range of working voltages and at different preionization levels are presented. The statistical breakdown time delay t{sub s} and the discharge formative time t{sub f} are experimentally separated and theoretical models of their dependencies on the overvoltage and number densities of residual charges during relaxation are suggested. Several empirical and semiempirical models are used to describe the formative time delay dependence on working voltages t{sub f} (U). The empirical and theoretical models from the literature are also applied to the experimental data, without and with empirical corrections. Moreover, several new distributions are experimentally obtained: Gauss-exponential, Gaussian and double Gaussian ones for the statistical time delay, as well as Gaussian and double Gaussian distributions for the formative time. The measurements of the breakdown time delay at different preionization levels (afterglow periods) t{sub d} ({tau}) obtained with a galvanic layer of gold and a sub-layer of nickel on the copper cathode are compared to the measurements with a vacuum deposited gold layer on the cathode surface. It was found that the surface charges retaining on a galvanic layer of gold influence the breakdown time delay which leads to double Gaussian distributions of the formative and statistical time delay.
Liu, Q
2016-01-01
In this paper, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for convection heat transfer in porous media under local thermal non-equilibrium (LTNE) condition. The model is constructed within the framework of the three-distribution-function approach: two temperature-based MRT-LB equations are proposed for the temperature fields of fluid and solid phases in addition to the MRT-LB equation of a density distribution function for the velocity field described by the generalized non-Darcy model. The thermal non-equilibrium effects are incorporated into the model by adding source terms into the temperature-based MRT-LB equations. Moreover, the discrete lattice effects are considered in the introduction of source terms into the temperature-based MRT-LB equations. The source terms accounting for the thermal non-equilibrium effects are simple and the model retains the inherent features of the standard LB method. Numerical results demonstrate that the proposed model can be served as an accura...
Origin and Nonuniversality of the Earthquake Interevent Time Distribution
Touati, Sarah; Naylor, Mark; Main, Ian G.
2009-04-01
Many authors have modeled regional earthquake interevent times using a gamma distribution, whereby data collapse occurs under a simple rescaling of the data from different regions or time periods. We show, using earthquake data and simulations, that the distribution is fundamentally a bimodal mixture distribution dominated by correlated aftershocks at short waiting times and independent events at longer times. The much-discussed power-law segment often arises as a crossover between these two. We explain the variation of the distribution with region size and show that it is not universal.
The Origin of the Solar Flare Waiting-Time Distribution
Wheatland, M S
2000-01-01
It was recently pointed out that the distribution of times between solar flares (the flare waiting-time distribution) follows a power law, for long waiting times. Based on 25 years of soft X-ray flares observed by Geostationary Operational Environmental Satellite (GOES) instruments it is shown that 1. the waiting-time distribution of flares is consistent with a time-dependent Poisson process, and 2. the fraction of time the Sun spends with different flaring rates approximately follows an exponential distribution. The second result is a new phenomenological law for flares. It is shown analytically how the observed power-law behavior of the waiting times originates in the exponential distribution of flaring rates. These results are argued to be consistent with a non-stationary avalanche model for flares.
Langer, S F J; Habazettl, H; Kuebler, W M; Pries, A R
2005-01-01
The left ventricular isovolumic pressure decay, obtained by cardiac catheterization, is widely characterized by the time constant tau of the exponential regression p(t)=Pomega+(P0-Pomega)exp(-t/tau). However, several authors prefer to prefix Pomega=0 instead of coestimating the pressure asymptote empirically; others present tau values estimated by both methods that often lead to discordant results and interpretation of lusitropic changes. The present study aims to clarify the relations between the tau estimates from both methods and to decide for the more reliable estimate. The effect of presetting a zero asymptote on the tau estimate was investigated mathematically and empirically, based on left ventricular pressure decay data from isolated ejecting rat and guinea pig hearts at different preload and during spontaneous decrease of cardiac function. Estimating tau with preset Pomega=0 always yields smaller values than the regression with empirically estimated asymptote if the latter is negative and vice versa. The sequences of tau estimates from both methods can therefore proceed in reverse direction if tau and Pomega change in opposite directions between the measurements. This is exemplified by data obtained during an increasing preload in spontaneously depressed isolated hearts. The estimation of the time constant of isovolumic pressure fall with a preset zero asymptote is heavily biased and cannot be used for comparing the lusitropic state of the heart in hemodynamic conditions with considerably altered pressure asymptotes.
Distribution of time between unscheduled outages
Jaech, J.L.; Burke, R.C.
1963-01-02
A study is in progress in which reactor operations will be simulated on the computer, the primary purpose being to evaluate the costs associated with various administrative alternatives which may be followed in conducting the overall operation, in addition to defining how operational costs are affected by such things as changes in fuel quality. The problem is complicated by the fact that the operation of the reactors is largely affected by random occurrences; no one can predict exactly when a tube will leak, or when a rupture will occur. Therefore, basic to the study is a probabilistic function, or set of functions, which govern the random aspects of reactor outages, and which can be used in the simulation study to generate reactor outages. This report is concerned with the derivation of such probabilistic functions. Although derived specifically for the simulation study, they are deemed of sufficient interest to warrant a separate report. Similar documents will be issued from time to time as the study progresses, and as results are found which are considered worthy of reporting prior to completion of the study.
Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T
Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)
1994-08-01
In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)
A new method for multi-exponential inversion of NMR relaxation measurements
WANG; Zhongdong; XIAO; Lizhi; LIU; Tangyan
2004-01-01
A new method for multi-exponential inversion to NMR T1 and T2 relaxation time distributions is suggested and tested. Inversion results are compared with MAP-II which is based on SVD algorithm and widely accepted in the industry. Inversed NMR relaxation spectra that have different pre-assigned relaxation times from echo trains with different SNR confirm that the new method with 16 to 64 equally spaced time constants in logarithm scale will ensure the relaxation distribution. Testing results show that the new inversion algorithm is a valuable tool for rock core NMR experimental analysis and NMR logging data process and interpretation.
Richardson, P. M.; Voice, A. M.; Ward, I. M.
2013-12-01
Longitudinal relaxation (T1) measurements of 19F, 7Li, and 1H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D; Schick, Fritz
2010-09-01
The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.
Charged fluid distribution in higher dimensional spheroidal space-time
G P Singh; S Kotambkar
2005-07-01
A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.
Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi (National Inst. for Physiological Sciences, Okazaki, Aichi (Japan))
1989-08-01
Spin-lattice relaxation time (T{sub 1}) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T{sub 1}) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T{sub 1} values. T{sub 1} values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15 {plus minus} 0.02 sec (beta-ATP in the liver) to 8.5 {plus minus} 1.6 sec (PDE in the kidney). T{sub 1} value of beta-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T{sub 1} values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of {sup 13}P spectra, and for correcting distortions of signal intensities in the spectra. (author).
Distributed Time Delay Goodwin's Models of the Business Cycle
Antonova, A. O.; Reznik, S. N.; Todorov, M. D.
2011-11-01
We consider continuously distributed time delay Goodwin's model of the business cycle. We show that the delay induced sawtooth oscillations, similar to those detected by R. H. Strotz, J. C. McAnulty, J. B. Naines, Econometrica, 21, 390-411 (1953) for Goodwin's model with fixed investment time lag, exist only for very narrow delay distribution when the variance of the delay distribution much less than the average delay.
Nickolaisen, Scott L.; Cartland, Harry E.
1993-01-01
Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.
Provably secure time distribution for the electric grid
Smith IV, Amos M [ORNL; Evans, Philip G [ORNL; Williams, Brian P [ORNL; Grice, Warren P [ORNL
2015-01-01
We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.
Liu, Ding; Huang, Weichao; Zhang, Ni
2017-07-01
A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
Ding Liu
2017-07-01
Full Text Available A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM combined with the finite difference method (FDM is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr numbers, within the range of 105 ∼ 107, and different high Reynolds (Re numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
Fraind, Alicia M; Ryzhkov, Lev R; Tovar, John D
2016-02-11
We present a study to probe the formation of localized aromatic sextets and their effects on the charge transport properties in polymers with acene cores. Bithiophene-acene copolymers containing benzene, naphthalene, or anthracene as acene cores were synthesized using Yamamoto polymerization. Drop-casted polymer films were chemically doped and analyzed using high frequency saturation transfer EPR (HF ST-EPR), a method which has proven useful in the study of conducting polymers. The spin-spin and spin-lattice relaxation times were determined for these polymers at low temperatures (4 to 20 K) and used to obtain inter- and intrachain spin diffusion rates and conductivities. Similar interchain spin diffusion rates were seen across all polymer systems; however, anthracene containing polymer poly(hexylTTATT) was found to have the largest intrachain spin diffusion rate. The poly(hexylTTATT) intrachain spin diffusion rate may be artificially high if the anthracene ring restricts the diffusion of spin to the hexylated quaterthiophene segment in poly(hexylTTATT) whereas the spins diffuse through the acene cores in the benzene and naphthalene derivatives. Alternatively, as both the spin diffusion rates and conductivities vary unpredictably with temperature, it is possible that the π-electron localization previously seen in the anthracene core could be relieved at lower temperatures.
Baranowski, M; Woźniak-Braszak, A; Jurga, K
2011-01-01
This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio. Copyright © 2010 Elsevier Inc. All rights reserved.
Ammar, Sami; Pernaudat, Guillaume; Trépanier, Jean-Yves
2017-08-01
The interdependence of surface tension and density ratio is a weakness of pseudo-potential based lattice Boltzmann models (LB). In this paper, we propose a 3D multi-relaxation time (MRT) model for multiphase flows at large density ratios. The proposed model is capable of adjusting the surface tension independently of the density ratio. We also present the 3D macroscopic equations recovered by the proposed forcing scheme. A high order of isotropy for the interaction force is used to reduce the amplitude of spurious currents. The proposed 3D-MRT model is validated by verifying Laplace's law and by analyzing its thermodynamic consistency and the oscillation period of a deformed droplet. The model is then applied to the simulation of the impact of a droplet on a dry surface. Impact dynamics are determined and the maximum spread factor calculated for different Reynolds and Weber numbers. The numerical results are in agreement with data published in the literature. The influence of surface wettability on the spread factor is also investigated. Finally, our 3D-MRT model is applied to the simulation of the impact of a droplet on a wet surface. The propagation of transverse waves is observed on the liquid surface.
Sensor Distribution Design of Travel Time Tomography in Explosion
Yali Guo
2014-07-01
Full Text Available Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.
Sensor distribution design of travel time tomography in explosion.
Guo, Yali; Han, Yan; Wang, Liming; Liu, Linmao
2014-07-15
Optimal sensor distribution in explosion testing is important in saving test costs and improving experiment efficiency. Aiming at travel time tomography in an explosion, an optimizing method in sensor distribution is proposed to improve the inversion stability. The influence factors of inversion stability are analyzed and the evaluating function on optimizing sensor distribution is proposed. This paper presents a sub-region and multi-scale cell partition method, according to the characteristics of a shock wave in an explosion. An adaptive escaping particle swarm optimization algorithm is employed to achieve the optimal sensor distribution. The experimental results demonstrate that optimal sensor distribution has improved both indexes and inversion stability.
González Sagardoy, María Ujué; González Díez, Yolanda; González Sotos, Luisa
2002-01-01
Strain evolution during In0.2Ga0.8As/GaAs (001) growth by molecular beam epitaxy has been monitored in real time. We have detected that three main relaxation stages, related to different mechanisms, take place during growth, and we have obtained the thickness range where those mechanisms are active. The in situ measured relaxation behavior in the plastic stages has been described by means of a simple equilibrium model that takes into account dislocations generation and interaction between the...
Model for the distribution of aftershock interoccurrence times.
Shcherbakov, Robert; Yakovlev, Gleb; Turcotte, Donald L; Rundle, John B
2005-11-18
In this work the distribution of interoccurrence times between earthquakes in aftershock sequences is analyzed and a model based on a nonhomogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of interoccurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.
Satoh, Katsuhiko
2013-03-07
Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.
SHEN Ka
2009-01-01
We demonstrate that the peak in the density dependence of electron spin relaxation time in n-type bulk GaAs in the metallic regime predicted by Jiang and Wu[Phys.Rev.B 79 (2009) 125206]has been realized experimentally in the latest work[arXiv:0902.0270]by Krauβ et al.
Eto, Ayumu; Kinoshita, Yoshimasa; Matsumoto, Yoshihisa; Kiyomi, Fumiaki; Iko, Minoru; Nii, Kouhei; Tsutsumi, Masanori; Sakamoto, Kimiya; Aikawa, Hiroshi; Kazekawa, Kiyoshi
2016-11-01
Black-blood magnetic resonance imaging (BB-MRI) is useful for the characterization and assessment of carotid artery plaques. The plaque-to-muscle signal intensity (SI) ratio (plaque/muscle ratio [PMR]) is used widely to evaluate plaques. However, the correlation between the PMR and the T1 relaxation time needs to be determined. We measured the T1 relaxation time of carotid plaques using T1 mapping and compared the results with the PMR on BB-MRI scans. Between April 2014 and July 2015, 20 patients with carotid artery stenosis were treated by carotid artery stenting. All patients underwent preoperative magnetic resonance plaque imaging. The ratio of the plaque SI to the sternocleidomastoid muscle was calculated on T1-weighted BB-MRI scans. T1 mapping was performed in the region where the vessel was narrowest using the inversion recovery technique. The T1 relaxation time was recorded to determine whether there was a correlation with the PMR. The plaque T1 value was 577.3 ± 143.2 milliseconds; the PMR value obtained on BB-MRI scans was 1.23 ± .27. There was a statistically significant decrease in the T1 value as the PMR increased (P relaxation time was well correlated with the PMR on BB-MRI scans, the evaluation of vulnerable plaques using the PMR was reliable and convenient. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Investigating the distribution of the value of travel time savings
Fosgerau, Mogens
2006-01-01
The distribution of the value of travel time savings (VTTS) is investigated employing various nonparametric techniques to a large dataset originating from a stated choice experiment. The data contain choices between a fast and more expensive alternative and a slow and less expensive alternative....... Increasing the implicit price of time leads to an increased share of respondents who decline to pay to save time. But a significant proportion of respondents, 13%, remain willing to pay to save time at the highest price of time in the design. This means that the right tail of the VTTS distribution...... is not observed and hence the mean VTTS cannot be evaluated without additional assumptions. When socio-economic and situational variables are introduced into a semiparametric model it becomes possible to accept that the whole VTTS distribution is observed. Sixteen candidates for parametric VTTS distributions...
Quantitative study of MR T1 and T2 relaxation times and 1 HMRS in gray matter of normal adult brain
范国光; 吴振华; 潘诗农; 郭启勇
2003-01-01
Objective To evaluate magnetic resonance (MR) Imaging and 1 H magnetic resonance spectroscopy (1 HMRS) in the study of normal biochemical process of the brain, as well as differentiation of normal senile brain from cerebral diseases related to senility. Methods One hundred and eighty healthy adult volunteers were selected for MR examination and 60 other healthy subjects for 1 HMRS examination. Ages of subjects ranged from 18 to 80 years. They were divided into six age groups. A 0.35 T superconductive MR system was used to perform MR examination. Point resolved spectroscopy sequence was required for 1 HMRS. The metabolites in the spectra included: N-acetylaspartate (NAA), choline compounds (CHO), creatine compounds (CR), myo-inositol (MI), glutamate and glutamine (Glu-n). Results In 180 cases of MR, the shortest T2 relaxation time occurred in the deep gray matter within the same age group while the length of T1 relaxation time was ordered from low to high compared to age groups. T2 relaxation time decreased as age increased. The peaks, ordered from high to low, were as follows in 60 cases of 1 HMRS: NAA, CR, CHO, MI, Glu-n. The ratios of NAA/CR and Glu-n/CR were higher in the senile age group, while that of MI/CR was lower. The ratio of CHO/CR was increased as age decreased. The ratio of NAA/CR and MI/CR gradually decreased in relation to movement from the anterior to the posterior part of the brain; the ratio of CHO/CR was highest in the occipital cortex. Correlation of T1 relaxation time and partial metabolite ratios to age were present in gray matter.Conclusions Quantitative studies of MR T1 and T2 relaxation times and 1 HMRS are essential to evaluation of normal myelinization processes, neuronal integrity and age-related biochemical changes in the brain.
Fairbanks, Ethan Jefferson
1994-01-01
Off-resonance spin locking makes use of the novel relaxation time T_{1rho} ^{rm off}, which may be useful in characterizing breast disease. Knowledge of T _{rm 1rho}^{rm off} is essential for optimization of spin -locking imaging methods. The purpose of this work was to develop an optimal imaging technique for in vivo measurement of T_{rm 1rho}^ {rm off}. Measurement of T _{1rho}^{rm off } using conventional methods requires long exam times which are not suitable for patients. Exam time may be shortened by utilizing a one-shot method developed by Look and Locker, making in vivo measurements possible. The imaging method consisted of a 180^circ inversion pulse followed by a series of small-angle alpha pulses to tip a portion of the longitudinal magnetization into the transverse plane for readout. During each relaxation interval (between alpha pulses), a spin-locking pulse was applied off-resonance to achieve T_ {1rho}^{rm off} relaxation. The value of T_{rm 1rho}^{rm off} was then determined using a three-parameter non-linear least-squares fitting procedure. Values of T_ {1rho}^{rm off} were measured for normal and pathologic breast tissues at several resonant offsets. These measurements revealed that image contrast can be manipulated by altering the resonant offset of the spin-locking pulse. Whereas T _1 relaxation times were nearly identical for normal and cancerous tissues, T_{1 rho}^{rm off} relaxation times differed significantly. These results may be useful in improving image contrast in magnetic resonance imaging.
Response Time Analysis of Distributed Web Systems Using QPNs
Tomasz Rak
2015-01-01
Full Text Available A performance model is used for studying distributed Web systems. Performance evaluation is done by obtaining load test measurements. Queueing Petri Nets formalism supports modeling and performance analysis of distributed World Wide Web environments. The proposed distributed Web systems modeling and design methodology have been applied in the evaluation of several system architectures under different external loads. Furthermore, performance analysis is done to determine the system response time.
Mainali, Laxman; Feix, Jimmy B; Hyde, James S; Subczynski, Witold K
2011-10-01
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T(1)(-1)) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T(1)(-1) can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T(1)(-1) profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R(⊥), obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T(1)(-1) and R(⊥) profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).
Distributed energy storage: Time-dependent tree flow design
Bejan, A.; Ziaei, S.; Lorente, S.
2016-05-01
This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.
Quantum arrival-time distributions from intensity functions
Wlodarz, Joachim
2002-01-01
The quantum time-of-arrival problem is discussed within the standard formulation of nonrelativistic quantum mechanics with parametric time. It is shown that a general class of arrival-time probability distributions results from the assumption that the arrival process of a quantum particle...
Waiting time distribution in M/D/1 queueing systems
Iversen, Villy Bæk; Staalhagen, Lars
1999-01-01
The well-known formula for the waiting time distribution of M/D/1 queueing systems is numerically unsuitable when the load is close to 1.0 and/or the results for a large waiting time are required. An algorithm for any load and waiting time is presented, based on the state probabilities of M/D/1...
Valuing travel time variability: Characteristics of the travel time distribution on an urban road
Fosgerau, Mogens; Fukuda, Daisuke
2012-01-01
This paper provides a detailed empirical investigation of the distribution of travel times on an urban road for valuation of travel time variability. Our investigation is premised on the use of a theoretical model with a number of desirable properties. The definition of the value of travel time...... variability depends on certain properties of the distribution of random travel times that require empirical verification. Applying a range of nonparametric statistical techniques to data giving minute-by-minute travel times for a congested urban road over a period of five months, we show that the standardized...... travel time is roughly independent of the time of day as required by the theory. Except for the extreme right tail, a stable distribution seems to fit the data well. The travel time distributions on consecutive links seem to share a common stability parameter such that the travel time distribution...
A Flexible Logistics Distribution Hub Model considering Cost Weighted Time
Wenxue Ran
2017-01-01
Full Text Available The delivery time of order has become an important fact for customers to evaluate logistics services. Due to the diverse and large quantities of orders in the background of electronic commerce, how to improve the flexibility of distribution hub and reduce the waiting time of customers becomes one of the most challenging questions for logistics companies. With this in mind, this paper proposes a new method of flexibility assessment in distribution hub by introducing cost weighted time (CWT. The advantages of supply hub operation mode in delivery flexibility are verified by the approach: the mode has pooling effects and uniform distribution characteristics; these traits can reduce overlapping delivery time to improve the flexibility in the case of two suppliers. Numerical examples show that the supply hub operation mode is more flexible than decentralized distribution operation mode in multidelivery cycles.
Classification of EEG Signals Using Adaptive Time-Frequency Distributions
Khan Nabeel A.
2016-06-01
Full Text Available Time-Frequency (t-f distributions are frequently employed for analysis of new-born EEG signals because of their non-stationary characteristics. Most of the existing time-frequency distributions fail to concentrate energy for a multicomponent signal having multiple directions of energy distribution in the t-f domain. In order to analyse such signals, we propose an Adaptive Directional Time-Frequency Distribution (ADTFD. The ADTFD outperforms other adaptive kernel and fixed kernel TFDs in terms of its ability to achieve high resolution for EEG seizure signals. It is also shown that the ADTFD can be used to define new time-frequency features that can lead to better classification of EEG signals, e.g. the use of the ADTFD leads to 97.5% total accuracy, which is by 2% more than the results achieved by the other methods.
Prediction of residence time distributions in food processing machinery
Karlson, Torben; Friis, Alan; Szabo, Peter
1996-01-01
The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet.......The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet....
Prediction of residence time distributions in food processing machinery
Karlson, Torben; Friis, Alan; Szabo, Peter
1996-01-01
The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet.......The velocity field in a co-rotating disc scraped surface heat exchanger (CDHE) is calculated using a finite element method. The residence time distribution for the CDHE is then obtained by tracing particles introduced in the inlet....
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
Real Time Synchronization for Creativity in Distributed Innovation Teams
Peitersen, Dennis Kjaersgaard; Dolog, Peter; Pedersen, Esben Staunsbjerg
2009-01-01
In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings.......In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings....
Real Time Synchronization for Creativity in Distributed Innovation Teams
Peitersen, Dennis Kjaersgaard; Dolog, Peter; Pedersen, Esben Staunsbjerg
2009-01-01
In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings.......In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings....
Determining prescription durations based on the parametric waiting time distribution
Støvring, Henrik; Pottegård, Anton; Hallas, Jesper
2016-01-01
). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137, and 118 days for NSAIDs, warfarin, bendroflumethiazide...... two-component mixture model for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD), which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users......, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin, bendroflumethiazide, and levothyroxine. RESULTS: Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD estimation (Log-Normal...
Time-of-arrival distributions from position-momentum and energy-time joint measurements
Baute, A D; Muga, J G; Sala-Mayato, R
2000-01-01
The position-momentum quasi-distribution obtained from an Arthurs and Kelly joint measurement model is used to obtain indirectly an ``operational'' time-of-arrival (TOA) distribution following a quantization procedure proposed by Kocha\\'nski and Wódkiewicz [Phys. Rev. A 60, 2689 (1999)]. This TOA distribution is not time covariant. The procedure is generalized by using other phase-space quasi-distributions, and sufficient conditions are provided for time covariance that limit the possible phase-space quasi-distributions essentially to the Wigner function, which, however, provides a non-positive TOA quasi-distribution. These problems are remedied with a different quantization procedure which, on the other hand, does not guarantee normalization. Finally an Arthurs and Kelly measurement model for TOA and energy (valid also for arbitrary conjugate variables when one of the variables is bounded from below) is worked out. The marginal TOA distribution so obtained, a distorted version of Kijowski's distribution, is...
A bivariate limiting distribution of tumor latency time.
Rachev, S T; Wu, C; Yakovlev AYu
1995-06-01
The model of radiation carcinogenesis, proposed earlier by Klebanov, Rachev, and Yakovlev [8] substantiates the employment of limiting forms of the latent time distribution at high dose values. Such distributions arise within the random minima framework, the two-parameter Weibull distribution being a special case. This model, in its present form, does not allow for carcinogenesis at multiple sites. As shown in the present paper, a natural two-dimensional generalization of the model appears in the form of a Weibull-Marshall-Olkin distribution. Similarly, the study of a randomized version of the model based on the negative binomial minima scheme results in a bivariate Pareto-Marshall-Olkin distribution. In the latter case, an estimate for the rate of convergence to the limiting distribution is given.
Non-Poissonian Distribution of Tsunami Waiting Times
Geist, E. L.; Parsons, T.
2007-12-01
Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone
C. A. Trepmann
2013-04-01
Full Text Available Experiments comprising sequences of deformation (at 300 or 600 °C and annealing at varying temperature (700 to 1100 °C, time (up to 144 h and stress (up to 1.5 GPa were carried out in a Griggs-type apparatus on natural olivine-rich peridotite samples to simulate deformation and recrystallization processes in deep shear zones that reach mantle depth as continuations of seismically active faults. The resulting olivine microfabrics were analysed by polarization and electron microscopy. Core-and-mantle like microstructures are the predominant result of our experiments simulating rapid stress relaxation (without or with minor creep after a high-stress deformation event: porphyroclasts (> 100 μm are surrounded by defect-poor recrystallized grains with a wide range in size (2 to 40 μm. Areas with smaller recrystallized grains (> 10 μm trace former high-strain zones generated during initial high-stress deformation even after annealing at a temperature of 1100 °C for 70 h. A weak crystallographic preferred orientation (CPO of recrystallized olivine grains is related to the orientation of the host crystals but appears unrelated to the strain field. Based on these findings, we propose that olivine microstructures in natural shear-zone peridotites with a large range in recrystallized grain size, localized fine-grained zones, and a weak CPO not related to the strain field are diagnostic for a sequence of high-stress deformation followed by recrystallization at low stresses, as to be expected in areas of seismic activity. We extended the classic Avrami-kinetics equation by accounting for time-dependent growth kinetics and constrained the involved parameters relying on our results and previously reported kinetics parameters. Extrapolation to natural conditions suggests that the observed characteristic microstructure may develop within as little as tens of years and less than ten thousands of years. These recrystallization microstructures have a great
The coronal mass ejection waiting-time distribution
Wheatland, M S
2003-01-01
The distribution of times $\\Delta t$ between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996-2001 is examined. The distribution exhibits a power-law tail $\\propto (\\Delta t)^{\\gamma}$ with an index $\\gamma\\approx -2.36\\pm 0.11$ for large waiting times ($\\Delta t>10 {\\rm hours}$). The power-law index of the waiting-time distribution varies with the solar cycle: for the years 1996-1998 (a period of low activity), the power-law index is $\\gamma\\approx-1.86\\pm 0.14$, and for the years 1999-2001 (a period of higher activity), the index is $\\gamma\\approx-2.98\\pm 0.20$. The observed CME waiting-time distribution, and its variation with the cycle, may be understood in terms of CMEs occurring as a time-dependent Poisson process. The CME waiting-time distribution is compared with that for greater than C1 class solar flares in the Geostationary Operational Environmental Satellite (GOES) catalog for the same years. The flare and CME waiting-time distri...
Vibrational and Rotational Energy Relaxation in Liquids
Petersen, Jakob
the intramolecular dynamics during photodissociation is investigated. The apparent agreement with quantum mechanical calculations is shown to be in contrast to the applicability of the individual approximations used in deriving the model from a quantum mechanical treatment. In the spirit of the Bersohn-Zewail model......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...
Shioya, Sumie; Kurita, Daisaku; Haida, Munetaka; Tanigaki, Toshimori; Kutsuzawa, Tomoko; Ohta, Yasuyo [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine; Fukuzaki, Minoru
1997-05-01
To determine the transverse relaxation time (T{sub 2}) of biological tissues in nuclear magnetic resonance measurements, the Carr-Purcell-Meiboom-Gill (CPMG) method has been recommended to avoid the effect of external magnetic field inhomogeneity on T{sub 2} values. However, a dependence of T{sub 2} on the interpulse delay time (IPDT) in the CPMG measurements has been shown for biological tissues. The present study examined the dependence of the T{sub 2} on IPDT for muscle, lung (passively collapsed or degassed), and brain tissues. It was found that the CPMG T{sub 2} of the lung was strongly dependent upon the IPDT, in contrast to muscle and brain tissues. The IPDT dependence of the CPMG T{sub 2} for lung tissue, which was lessened by degassing, was affected by the magnetic field inhomogeneity due to air-tissue interfaces, but not by the spin-locking effect, since the T{sub 2} measured by the Carr-Purcell-Freeman-Hill (CPFH) method did not show this dependence. These results should aid in the evaluation of T{sub 2} values for biological tissues measured under various conditions and by different techniques. (author)
Olivares-Quiroz, Luis; Garcia-Colin, Leopoldo S
2009-10-01
In this work, we derive an analytical expression for the relaxation time tau as a function of temperature T for myoglobin protein (Mb, PDB:1MBN) in the high temperature limit (T>T(g)=200K). The method is based on a modified version of the Adam-Gibbs theory (AG theory) for the glass transition in supercooled liquids and an implementation of differential geometry techniques. This modified version of the AG theory takes into account that the entropic component in protein's denaturation has two major sources: a configurational contribution DeltaS(c) due to the unfolding of the highly ordered native state N and a hydration contribution DeltaS(hyd) arising from the exposure of non-polar residues to direct contact with solvent polar molecules. Our results show that the configurational contribution DeltaS(c) is temperature-independent and one order of magnitude smaller than its hydration counterpart DeltaS(hyd) in the temperature range considered. The profile obtained for log tau(T) from T=200 K to T=300 K exhibits a non-Arrhenius behavior characteristic of alpha relaxation mechanisms in hydrated proteins and glassy systems. This result is in agreement with recent dielectric spectroscopy data obtained for hydrated myoglobin, where at least two fast relaxation processes in the high temperature limit have been observed. The connection between the relaxation process calculated here and the experimental results is outlined.
Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan
2017-09-11
Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.
A model for the distribution of aftershock waiting times
Shcherbakov, R; Turcotte, D L; Yakovlev, G
2005-01-01
In this work the distribution of inter-occurrence times between earthquakes in aftershock sequences is analyzed and a model based on a non-homogeneous Poisson (NHP) process is proposed to quantify the observed scaling. In this model the generalized Omori's law for the decay of aftershocks is used as a time-dependent rate in the NHP process. The analytically derived distribution of inter-occurrence times is applied to several major aftershock sequences in California to confirm the validity of the proposed hypothesis.
Weis, Jan; Kullberg, Joel; Ahlström, Håkan
2017-04-17
To evaluate the feasibility of an expiration multiple breath-hold (1) H-MRS technique to measure glycogen (Glycg), choline-containing compounds (CCC), and lipid relaxation times T1 , T2 , and their concentrations in normal human liver. Thirty healthy volunteers were recruited. Experiments were performed at 3T. Multiple expiration breath-hold single-voxel point-resolved spectroscopy (PRESS) technique was used for localization. Water-suppressed spectra were used for the estimation of Glycg, CCC, lipid methylene (CH2 )n relaxation times and concentrations. Residual water lines were removed by the Hankel Lanczos singular value decomposition filter. After phase correction and frequency alignment, spectra were averaged and processed by LCModel. Summed signals of Glycg resonances H2H4', H3, and H5 between 3.6 and 4 ppm were used to estimate their apparent relaxation times and concentration. Glycg, CCC, and lipid content were estimated from relaxation corrected spectral intensity ratios to unsuppressed water line. Relaxation times were measured for liver Glycg (T1 , 892 ± 126 msec; T2 , 13 ± 4 msec), CCC (T1 , 842 ± 75 msec; T2 , 50 ± 5 msec), lipid (CH2 )n (T1 , 402 ± 19 msec; T2 , 52 ± 3 msec), and water (T1 , 990 ± 89 msec; T2 , 30 ± 2 msec). Mean CCC and lipid concentrations of healthy liver were 7.8 ± 1.3 mM and 15.8 ± 23.6 mM, respectively. Glycg content was found lower in the morning (48 ± 21 mM) compared to the afternoon (145 ± 50 mM). Multiple breath-hold (1) H-MRS together with dedicated postprocessing is a feasible technique for the quantification of liver Glycg, CCC, and lipid relaxation times and concentrations. 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Lim, Ae Ran; Kim, Sun Ha
2017-05-01
The structural geometry around the 133Cs nuclei in Cs2BBr4 (B = 57Co, 63Cu, and 65Zn) was investigated by examining the chemical shifts and spin-lattice relaxation times in a rotating frame. Two crystallographically inequivalent Cs(1) and Cs(2) sites were differentiated. The spin-lattice relaxation times T1ρ of 133Cs nuclei in three crystals were measured to obtain detailed information about their structural dynamics. Cs(1) surrounded by eleven bromide ions was found to have a longer relaxation time than Cs(2) surrounded by nine bromide ions. The nuclear magnetic resonance (NMR) results were compared to previously reported results for Cs2BCl4. The halogen species in Cs2BX4 (X = Br, Cl) was not found to influence the relaxation time, whereas the B metal ion (B = Co, Cu, and Zn) was found to alter the relaxation time mechanism.
Stephenson, Jack D.
1960-01-01
This report describes a technique which combines theory and experiments for determining relaxation times in gases. The technique is based on the measurement of shapes of the bow shock waves of low-fineness-ratio cones fired from high-velocity guns. The theory presented in the report provides a means by which shadowgraph data showing the bow waves can be analyzed so as to furnish effective relaxation times. Relaxation times in air were obtained by this technique and the results have been compared with values estimated from shock tube measurements in pure oxygen and nitrogen. The tests were made at velocities ranging from 4600 to 12,000 feet per second corresponding to equilibrium temperatures from 35900 R (19900 K) to 6200 R (34400 K), under which conditions, at all but the highest temperatures, the effective relaxation times were determined primarily by the relaxation time for oxygen and nitrogen vibrations.
Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad
2016-08-01
Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.
Analysis and Synthesis of Distributed Real-Time Embedded Systems
Pop, Paul; Eles, Petru; Peng, Zebo
Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computers. An important class of embedded computer systems is that of hard real-time systems, which have to fulfill strict timing...... in important reductions of design costs. Analysis and Synthesis of Distributed Real-Time Embedded Systems will be of interest to advanced undergraduates, graduate students, researchers and designers involved in the field of embedded systems....
BaF2 TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION SPECTROMETER
朱升云; 勾振辉; 等
1994-01-01
A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE.The time resolution of the spectrometer is 195ps and the nonlinearity is less than 2%.The spectrometer works very stably and no time drift is found over a period of experimental runs.This spectrometer has been successfully used in the g-factor measurement of 43Sc(19/2-,3.1232MeV).
Properties of Distributed Timed-Arc Petri Nets
Nielsen, M.; Sassone, V.; Srba, J.
2001-01-01
In [12] we started a research on a distributed-timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. This formalism enables to model e.g. hardware architectures like GALS. We give a formal de...... definition of process semantics for our model and investigate several properties of local versus global timing: expressiveness, reachability and coverability....
Distributed consensus on minimum time rendezvous via cyclic alternating projection
Hu, Chunhe; Chen, Zongji
2014-01-01
In this paper, we propose a distributed algorithm to solve planar minimum time multi-vehicle rendezvous problem with non-identical velocity constraints on cyclic digraph (topology). Motivated by the cyclic alternating projection method that can compute a point's projection on the intersection of some convex sets, we transform the minimum time rendezvous problem into finding the distance between the position plane and the intersection of several second-order cones in position-time space. The d...
Consequences of mixing assumptions for time-variable travel time distributions
Velde, van der Y.; Heidbüchel, I.; Lyon, S.W.; Nyberg, L.; Rodhe, A.; Bishop, K.; Troch, P.A.
2015-01-01
The current generation of catchment travel time distribution (TTD) research, integrating nearly three decades of work since publication of Water's Journey from Rain to Stream, seeks to represent the full distribution in catchment travel times and its temporal variability. Here, we compare conceptual
Consequences of mixing assumptions for time-variable travel time distributions
Velde, van der Y.; Heidbüchel, I.; Lyon, S.W.; Nyberg, L.; Rodhe, A.; Bishop, K.; Troch, P.A.
2015-01-01
The current generation of catchment travel time distribution (TTD) research, integrating nearly three decades of work since publication of Water's Journey from Rain to Stream, seeks to represent the full distribution in catchment travel times and its temporal variability. Here, we compare
Execution time support for scientific programs on distributed memory machines
Berryman, Harry; Saltz, Joel; Scroggs, Jeffrey
1990-01-01
Optimizations are considered that are required for efficient execution of code segments that consists of loops over distributed data structures. The PARTI (Parallel Automated Runtime Toolkit at ICASE) execution time primitives are designed to carry out these optimizations and can be used to implement a wide range of scientific algorithms on distributed memory machines. These primitives allow the user to control array mappings in a way that gives an appearance of shared memory. Computations can be based on a global index set. Primitives are used to carry out gather and scatter operations on distributed arrays. Communications patterns are derived at runtime, and the appropriate send and receive messages are automatically generated.
Turkey: distribution of cities and change over time.
Dokmeci, V F
1986-01-01
Patterns of urbanization in Turkey from 1945 to 1975 are examined, with emphasis on the analysis of rank-size patterns. Attention is given to changes over time in the national rank-size distribution of cities, the growth rates of new cities, and the rank-size distribution of cities in various regions. "In general, the patterns of distribution of cities in Turkey are quite regular when compared with other developing countries. Since 1945 the city system has moved to a state more adjusted to the rank-size rule, paralleling the economic development of the country." excerpt
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
El Ghazi, Haddou; Jorio, Anouar
2014-10-01
By means of a combination of Quantum Genetic Algorithm and Hartree-Fock-Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N-GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity.
El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE My Youssef, Rabat (Morocco); Jorio, Anouar [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco)
2014-10-01
By means of a combination of Quantum Genetic Algorithm and Hartree–Fock–Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N–GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity.
Zhuo, Congshan; Sagaut, Pierre
2017-06-01
In this paper, a variant of the acoustic multipole source (AMS) method is proposed within the framework of the lattice Boltzmann method. A quadrupole term is directly included in the stress system (equilibrium momentum flux), and the dependency of the quadrupole source in the inviscid limit upon the fortuitous discretization error reported in the works of E. M. Viggen [Phys. Rev. E 87, 023306 (2013)PLEEE81539-375510.1103/PhysRevE.87.023306] is removed. The regularized lattice Boltzmann (RLB) method with this variant AMS method is presented for the 2D and 3D acoustic problems in the inviscid limit, and without loss of generality, the D3Q19 model is considered in this work. To assess the accuracy and the advantage of the RLB scheme with this AMS for acoustic point sources, the numerical investigations and comparisons with the multiple-relaxation-time (MRT) models and the analytical solutions are performed on the 2D and 3D acoustic multipole point sources in the inviscid limit, including monopoles, x dipoles, and xx quadrupoles. From the present results, the good precision of this AMS method is validated, and the RLB scheme exhibits some superconvergence properties for the monopole sources compared with the MRT models, and both the RLB and MRT models have the same accuracy for the simulations of acoustic dipole and quadrupole sources. To further validate the capability of the RLB scheme with AMS, another basic acoustic problem, the acoustic scattering from a solid cylinder presented at the Second Computational Aeroacoustics Workshop on Benchmark Problems, is numerically considered. The directivity pattern of the acoustic field is computed at r=7.5; the present results agree well with the exact solutions. Also, the effects of slip and no-slip wall treatments within the regularized boundary condition on this pure acoustic scattering problem are tested, and compared with the exact solution, the slip wall treatment can present a better result. All simulations demonstrate
Towards a Notion of Distributed Time for Petri Nets
Nielsen, Mogens; Sassone, Vladimiro; Srba, Jiří
2001-01-01
We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks — possibly o...... per place — allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models....
Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R
2012-12-01
Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1.
Gao, Ying; Erokwu, Bernadette O; DeSantis, David A; Croniger, Colleen M; Schur, Rebecca M; Lu, Lan; Mariappuram, Jose; Dell, Katherine M; Flask, Chris A
2016-01-01
Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1 = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.
Verifying Automata Specification of Distributed Probabilistic Real—Time Systems
罗铁庚; 陈火旺; 等
1998-01-01
In this paper,a qualitative model checking algorithm for verification of distributed probabilistic real-time systems(DPRS)is presented.The model of DPRS,called real-time proba bilistic process model(RPPM),is over continuous time domain.The properties of DPRS are described by using deterministic timed automata(DTA).The key part in the algorithm is to map continuous time to finite time intervals with flag variables.Compared with the existing algorithms,this algorithm uses more general delay time equivalence classes instead of the unit delay time equivalence classes restricted by event sequence,and avoids generating the equivalence classes of states only due to the passage of time.The result shows that this algorithm is cheaper.
Yulmetyev, R M; Hänggi, P; Khusaenova, E V; Shimojo, S; Yulmetyeva, D G
2006-01-01
To analyze the crucial role of the fluctuation and relaxational effects in the human brain functioning we have studied a some statistical quantifiers that support the informational characteristics of neuromagnetic responses of magnetoencephalographic (MEG) signals. The signals to a flickering stimulus of different color combinations has been obtained from a group of control subjects which is contrasted with those for a patient with photosensitive epilepsy (PSE). We have revealed that the existence of the specific stratification of the phase clouds and the concomitant relaxation singularities of the corresponding nonequilibrium processes of chaotic behavior of the signals in the separate areas for a patient most likely shows the pronounced zones responsible the appearance of PSE.
Poverty Index With Time Varying Consumption and Income Distributions
Chattopadhyay, Amit K; Mallick, Sushanta K
2016-01-01
In a recent work (Chattopadhyay, A. K. et al, Europhys. Lett. {\\bf 91}, 58003, 2010) based on food consumption statistics, we showed how a stochastic agent based model could represent the time variation of the income distribution statistics in a developing economy, thereby defining an alternative \\enquote{poverty index} (PI) that largely agreed with poverty gap index data. This PI used two variables, the probability density function of the income statistics and a consumption deprivation (CD) function, representing the shortfall in the minimum consumption needed for survival. Since the time dependence of the CD function was introduced there through data extrapolation only and not through an endogenous time dependent series, this model left unexplained how the minimum consumption needed for survival varies with time. The present article overcomes these limitations and arrives at a new unified theoretical structure through time varying consumption and income distributions where trade is only allowed when the inc...
Poisson distributions for sharp-time fields antidote for triviality
Klauder, J R
1995-01-01
Standard lattice-space formulations of quartic self-coupled Euclidean scalar quantum fields become trivial in the continuum limit for sufficiently high space-time dimensions, and in particular the moment generating functional for space-time smeared fields becomes a Gaussian appropriate to that of a (possibly generalized) free field. For sharp-time fields this fact implies that the ground-state expectation functional also becomes Gaussian in the continuum limit. To overcome these consequences of the central limit theorem, an auxiliary, nonclassical potential is appended to the original lattice form of the model and parameters are tuned so that a generalized Poisson field distribution emerges in the continuum limit for the ground-state probability distribution. As a consequence, the sharp-time expectation functional is infinitely divisible, but the Hamiltonian operator is such, in the general case, that the generating functional for the space-time smeared field is not infinitely divisible in Minkowski space. Th...
Visualization of EEG using time-frequency distributions.
Stiber, B Z; Sato, S
1997-12-01
The EEG is a time-varying or nonstationary signal. Frequency and amplitude are two of its significant characteristics, and are valuable clues to different states of brain activity. Detection of these temporal features is important in understanding EEGs. Commonly, spectrograms and AR models are used for EEG analysis. However, their accuracy is limited by their inherent assumption of stationarity and their trade-off between time and frequency resolution. We investigate EEG signal processing using existing compound kernel time-frequency distributions (TFDs). By providing a joint distribution of signal intensity at any frequency along time, TFDs preserve details of the temporal structure of the EEG waveform, and can extract its time-varying frequency and amplitude features. We expect that this will have significant implications for EEG analysis and medical diagnosis.
New technique for single-scan T1 measurements using solid echoes. [for spin-lattice relaxation time
Burum, D. P.; Elleman, D. D.; Rhim, W. K.
1978-01-01
A simple technique for single-scan T1 measurements in solids is proposed and analyzed for single exponential spin-lattice relaxation. In this technique, the direct spin heating caused by the sampling process is significantly reduced in comparison with conventional techniques by utilizing the 'solid echo' to refocus the magnetization. The applicability of this technique to both the solid and liquid phases is demonstrated.
"Universal" Distribution of Inter-Earthquake Times Explained
Saichev, A
2006-01-01
We propose a simple theory for the ``universal'' scaling law previously reported for the distributions of waiting times between earthquakes. It is based on a largely used benchmark model of seismicity, which just assumes no difference in the physics of foreshocks, mainshocks and aftershocks. Our theoretical calculations provide good fits to the data and show that universality is only approximate. We conclude that the distributions of inter-event times do not reveal more information than what is already known from the Gutenberg-Richter and the Omori power laws. Our results reinforces the view that triggering of earthquakes by other earthquakes is a key physical mechanism to understand seismicity.
Time Synchronization and Distribution Mechanisms for Space Networks
Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.
2011-01-01
This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.
First-Passage-Time Distribution for Variable-Diffusion Processes
Barney, Liberty; Gunaratne, Gemunu H.
2017-05-01
First-passage-time distribution, which presents the likelihood of a stock reaching a pre-specified price at a given time, is useful in establishing the value of financial instruments and in designing trading strategies. First-passage-time distribution for Wiener processes has a single peak, while that for stocks exhibits a notable second peak within a trading day. This feature has only been discussed sporadically—often dismissed as due to insufficient/incorrect data or circumvented by conversion to tick time—and to the best of our knowledge has not been explained in terms of the underlying stochastic process. It was shown previously that intra-day variations in the market can be modeled by a stochastic process containing two variable-diffusion processes (Hua et al. in, Physica A 419:221-233, 2015). We show here that the first-passage-time distribution of this two-stage variable-diffusion model does exhibit a behavior similar to the empirical observation. In addition, we find that an extended model incorporating overnight price fluctuations exhibits intra- and inter-day behavior similar to those of empirical first-passage-time distributions.
MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems.
Ding, Bo; Wang, Huaimin; Fan, Zedong; Zhang, Pengfei; Liu, Hui
A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure. By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of this work.
Power Quality Analysis Using Bilinear Time-Frequency Distributions
Sha'ameri AhmadZuri
2010-01-01
Full Text Available Abstract Bilinear time-frequency distributions (TFDs are powerful techniques that offer good time and frequency resolution of time-frequency representation (TFR. It is very appropriate to analyze power quality signals which consist of nonstationary and multi-frequency components. However, the TFDs suffer from interference because of cross-terms. Many TFDs have been implemented, and there is no fixed window or kernel that can remove the cross-terms for all types of signals. In this paper, the bilinear TFDs are implemented to analyze power quality signals such as smooth-windowed Wigner-Ville distribution (SWWVD, Choi-Williams distribution (CWD, B-distribution (BD, and modified B-distribution (MBD. The power quality signals focused are swell, sag, interruption, harmonic, interharmonic, and transient based on IEEE Std, 1159-1995. A set of performance measures is defined and used to compare the TFRs. It shows that SWWVD presents the best performance and is selected for power quality signal analysis. Thus, an adaptive optimal kernel SWWVD is designed to determine the separable kernel automatically from the input signal.
Distributed LQR control for discrete-time homogeneous systems
Wang, Wei; Zhang, Fangfang; Han, Chunyan
2016-11-01
This paper investigates the distributed linear quadratic regulation (LQR) controller design method for discrete-time homogeneous scalar systems. Based on the optimal centralised control theory, the existence condition for distributed optimal controller is firstly proposed. It shows that the globally optimal distributed controller is dependent on the structure of the penalty matrix. Such results can be used in consensus problems and used to find under which communication topology (may not be an all-to-all form) the optimal distributed controller exists. When the proposed condition cannot hold, a suboptimal design method with the aid of the decomposition of discrete algebraic Riccati equations and robustness of local controllers is proposed. The computation complexity and communication load for each subsystem are only dependent on the number of its neighbours.
Real Time Scheduling Services for Distributed RT-CORBA Applications
Bineta Tresa Mathew
2012-12-01
Full Text Available Distributed computing environment is flexible to control in complex embedded systems and their software components gain complexity when these systems are equipped with many microcontrollers and software object which covers diverse platforms, this system is called as DRE system. These DRE systems need new inter-object communication solution thus QoS-enabled middleware services and mechanisms have begun to emerge. Real-time application domain benefit from flexible and open distributed architectures, such as those defined by the CORBA specification. CORBA is well-suited to conventional request/response applications, but not suited to real-time applications due to the lack of QoS features and performance optimizations. The paper shows the design and implementation of the high performance scheduling technique for the real time applications domain with CORBA systems. Four different algorithms are compared by using attributes of real time tasks constraints based on CORBA specification such as RMS, MLF, MUF and EDF.
Asaji, Tetsuo, E-mail: asaji@chs.nihon-u.ac.jp [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)
2013-05-15
The temperature dependences of spin-lattice relaxation time T{sub 1} of {sup 35}Cl and {sup 37}Cl NQR were studied for the co-crystal of tetramethylpyrazine (TMP) with chloranilic acid (H{sub 2}ca), TMP-H{sub 2}ca, in which one-dimensional hydrogen bonding is formed by alternate arrangement of TMP and H{sub 2}ca. The isotope ratio {sup 37}Cl T{sub 1} / {sup 35}Cl T{sub 1} was determined to be 1.0 {+-} 0.1 above ca. 290 K where a steep decrease of spin-lattice relaxation time T{sub 1} with increasing temperature was observed. In this temperature range it is suggested that the relaxation is originated from the slow fluctuation of electric field gradient (EFG). Beside EFG fluctuation due to the external-charge-density fluctuation, the small angle reorientation of the quantization axis triggered by a proton transfer motion between N...H-O and N-H...O hydrogen bonding states is proposed.
Ramu, L; Ramesh, K P; Ramananda, D; Chandramani, R
2010-08-01
The temperature and pressure dependence of (35)Cl NQR frequency and spin lattice relaxation time (T(1)) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T(1) were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation of motion of the CH(3) group. T(1) versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH(3) group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules.
Spatially distributed characterization of soil-moisture dynamics using travel-time distributions
Heße, Falk; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine
2017-01-01
Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike the streamflow hydrograph, they describe the movement and storage of water within and throughout the hydrological system. Until recently, studies using such travel-time distributions have generally either been applied to lumped models or to real-world catchments using available time series, e.g., stable isotopes. Whereas the former are limited in their realism and lack information on the spatial arrangements of the relevant quantities, the latter are limited in their use of available data sets. In our study, we employ the spatially distributed mesoscale Hydrological Model (mHM) and apply it to a catchment in central Germany. Being able to draw on multiple large data sets for calibration and verification, we generate a large array of spatially distributed states and fluxes. These hydrological outputs are then used to compute the travel-time distributions for every grid cell in the modeling domain. A statistical analysis indicates the general soundness of the upscaling scheme employed in mHM and reveals precipitation, saturated soil moisture and potential evapotranspiration as important predictors for explaining the spatial heterogeneity of mean travel times. In addition, we demonstrate and discuss the high information content of mean travel times for characterization of internal hydrological processes.
Analysis and Optimization of Distributed Real-Time Embedded Systems
Pop, Paul; Eles, Petru; Peng, Zebo
2006-01-01
An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware and software components, but also in terms of communication protocols...
GLOBAL STABILITY IN HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED TIME DELAYS
Zhang Jiye; Wu Pingbo; Dai Huanyun
2001-01-01
In this paper, without assuming the boundedness, monotonicity and differentiability of the activation functions, the conditions ensuring existence, uniqueness, and global asymptotical stability of the equilibrium point of Hopfield neural network models with distributed time delays are studied. Using M-matrix theory and constructing proper Liapunov functionals, the sufficient conditions for global asymptotic stability are obtained.
A distributed Real-Time Java system based on CSP
Hilderink, G.H.; Bakkers, André; Broenink, Johannes F.
2000-01-01
CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and
Residence Time Distributions in a Cold, Confined Swirl Flow
Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim;
1997-01-01
Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near-burner ...
Electron-vibration relaxation in oxygen plasmas
Laporta, V.; Heritier, K. L.; Panesi, M.
2016-06-01
An ideal chemical reactor model is used to study the vibrational relaxation of oxygen molecules in their ground electronic state, X3Σg-, in presence of free electrons. The model accounts for vibrational non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The vibrational levels of the molecules are treated as separate species, allowing for non-Boltzmann distributions of their population. The electron and vibrational temperatures are varied in the range [0-20,000] K. Numerical results show a fast energy transfer between oxygen molecules and free electron, which causes strong deviation of the vibrational distribution function from Boltzmann distribution, both in heating and cooling conditions. Comparison with Landau-Teller model is considered showing a good agreement for electron temperature range [2000-12,000] K. Finally analytical fit of the vibrational relaxation time is given.
实时脉冲光声法用于分子弛豫时间的测定%Real-time pulsed photoacoustics-molecular relaxation time measurements
Markushev Dragan; Rabasovic Mihailo; Lukic Mladena; Cojbasic Zarko; Todorovic Dragan
2013-01-01
脉冲光声光谱法一个重要的应用是确定气体分子的振动—平动弛豫时间τV-T.因激光光束的空间分布R(r)对光声测量有显著影响,我们发展了同时测定R(r)和τV-T的方法.本方法基于光声脉冲的实时信号和一种用于光声成像的数学运算法则.本文讨论了智能计算用于多原子气体分子的R(r)和τV-T同时和实时测定的可能性.进一步利用前馈多层神经网络的离线批训练法,结合一个理论光声信号对R(r)和τV-T进行了同时和实时分析.本方法可明显缩短确定上述参数所需时间.%Determination of the vibrational-to-translational relaxation time rv-T in gases is one of the applications of pulsed photoacoustic spectroscopy.Because the spatial profile of the laser beam R (r)can significantly influence the accuracy of the photoacoustic measurements,we developed the method for simultaneous determination of the R(r)and τv T.It is based on the temporal shape of the photoacoustic pulse and utilizes a mathematical algorithm developed for photoacoustic tomography.The possibilities of computational intelligence application for simultaneous and real-time determination of R(r)and rv-T values of polyatomic molecules in gases by pulsed photoacoustic are also discussed.Feed forward multilayer perception networks are trained in an offline batch training regime to estimate simultaneously,and in real-time,R(r) (profile shape class) and τv T from a given (theoretical) photoacoustic signals.Proposed method significantly shortens the time required for the simultaneous determination of the afore mentioned quantities.
Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran
2016-01-01
Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF) method is proven to be efficient in th...... profile of the feasible sub-injection (injection of nodes excluding the root/substation node) region...
Near-Optimal Sublinear Time Bounds for Distributed Random Walks
Sarma, Atish Das; Pandurangan, Gopal; Tetali, Prasad
2009-01-01
We focus on the problem of performing random walks efficiently in a distributed network. Given bandwidth constraints, the goal is to minimize the number of rounds required to obtain a random walk sample on an undirected network. Despite the widespread use of random walks in distributed computing, most algorithms that compute a random walk sample of length $\\ell$ naively, i.e., in $O(\\ell)$ rounds. Recently, the first sublinear time distributed algorithm was presented that ran in $\\tilde{O}(\\ell^{2/3}D^{1/3})$ rounds {$\\tilde{O}$ hides polylog factors in the number of nodes in the network} where $D$ is the diameter of the network [Das Sarma et al. PODC 2009]. This work further conjectured that a running time of $\\tilde{O}(\\sqrt{\\ell D})$ is possible and that this is essentially optimal. In this paper, we resolve these conjectures by showing almost tight bounds on distributed random walks. We present a distributed algorithm that performs a random walk of length $\\ell$ in $\\tilde{O}(\\sqrt{\\ell D})$ rounds, where...
Molecular Relaxation in Liquids
Bagchi, Biman
2012-01-01
This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs
Comby, Antoine; Boggio-Pasqua, Martial; Descamps, Dominique; Légaré, Francois; Nahon, Laurent; Petit, Stéphane; Pons, Bernard; Fabre, Baptiste; Mairesse, Yann; Blanchet, Valérie
2016-01-01
Unravelling the main initial dynamics responsible for chiral recognition is a key stepin the understanding of many biological processes. However this challenging task requires a sensitive enantiospecic probe to investigate molecular dynamics on their natural femtosecond timescale. Here we show that, in the gas phase, the ultrafast relaxationdynamics of photoexcited chiral molecules can be tracked by recording Time-ResolvedPhotoElectron Circular Dichroism (TR-PECD) resulting from the photoionisation bya circularly polarized probe pulse. A large forward/backward asymmetry along theprobe propagation axis is observed in the photoelectron angular distribution. Its evolution with pump-probe delay reveals ultrafast dynamics that are inaccessible in theangle-integrated photoelectron spectrum nor via the usual electron emission anisotropyparameter ($\\beta$). PECD, which originates from the electron scattering in the chiral molecular potential, appears as a new sensitive observable for ultrafast molecular dynamicsin ch...
Real-time modeling and simulation of distribution feeder and distributed resources
Singh, Pawan
The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.
Distributed, Embedded and Real-time Java Systems
Wellings, Andy
2012-01-01
Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems. This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain. Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...
Dose-time-response modeling using negative binomial distribution.
Roy, Munmun; Choudhury, Kanak; Islam, M M; Matin, M A
2013-01-01
People exposed to certain diseases are required to be treated with a safe and effective dose level of a drug. In epidemiological studies to find out an effective dose level, different dose levels are applied to the exposed and a certain number of cures is observed. Negative binomial distribution is considered to fit overdispersed Poisson count data. This study investigates the time effect on the response at different time points as well as at different dose levels. The point estimation and confidence bands for ED(100p)(t) and LT(100p)(d) are formulated in closed form for the proposed dose-time-response model with the negative binomial distribution. Numerical illustrations are carried out in order to check the performance level of the proposed model.
Stochastic tools hidden behind the empirical dielectric relaxation laws
Stanislavsky, Aleksander; Weron, Karina
2017-03-01
The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.
Distributed Load Shedding over Directed Communication Networks with Time Delays
Yang, Tao; Wu, Di
2016-07-25
When generation is insufficient to support all loads under emergencies, effective and efficient load shedding needs to be deployed in order to maintain the supply-demand balance. This paper presents a distributed load shedding algorithm, which makes efficient decision based on the discovered global information. In the global information discovery process, each load only communicates with its neighboring load via directed communication links possibly with arbitrarily large but bounded time varying communication delays. We propose a novel distributed information discovery algorithm based on ratio consensus. Simulation results are used to validate the proposed method.
Probability distribution of arrival times in quantum mechanics
Delgado, V
1998-01-01
In a previous paper [Phys. Rev. A, in press] we introduced a self-adjoint operator $\\hat {{\\cal T}}(X)$ whose eigenstates can be used to define consistently a probability distribution of the time of arrival at a given spatial point. In the present work we show that the probability distribution previously proposed can be well understood on classical grounds in the sense that it is given by the expectation value of a certain positive definite operator $\\hat J^{(+)}(X)$ which is nothing but a straightforward quantum version of the modulus of the classical current. For quantum states highly localized in momentum space about a certain momentum $p_0 \
A distributed scheduling algorithm for heterogeneous real-time systems
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
Temperature Distribution and Heat Saturating Time of Regenerative Heat Transfer
Li JIA; Ying MAO; Lixin YANG
2006-01-01
In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.
Time series power flow analysis for distribution connected PV generation.
Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger
2013-01-01
Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating
Optimization of Time-Partitions for Mixed-Criticality Real-Time Distributed Embedded Systems
Tamas-Selicean, Domitian; Pop, Paul
2011-01-01
In this paper we are interested in mixed-criticality embedded real-time applications mapped on distributed heterogeneous architectures. The architecture provides both spatial and temporal partitioning, thus enforcing enough separation for the critical applications. With temporal partitioning, each...
Time-evolving distribution of time lags between commercial airline disasters
Ausloos, M
2005-01-01
We have studied the time lags between commercial line airplane disasters and their occurrence frequency till 2002, as obtained from a freely available website. We show that the time lags seem to be well described by Poisson random events, where the average events rate is itself a function of time, i.e. time-dependent Poisson events. This is likely due to the unsteady growth of the industry. The time lag distribution is compared with a truncated Tsallis distribution, thereby showing that the ''phenomenon'' has similarities with a Brownian particle with time dependent mass. We distinguish between ''other causes'' (or natural causes) and ''terrorism acts", the latter amounts to about 5 percents, but we find no drastic difference nor impact due to the latter on the overall distribution.
Real-time dynamic imaging of virus distribution in vivo.
Sean E Hofherr
Full Text Available The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection.
Babintsev, Ilya A.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.
2014-08-01
The eigenvalues and eigenvectors of the matrix of coefficients of the linearized kinetic equations applied to aggregation in surfactant solution determine the full spectrum of characteristic times and specific modes of micellar relaxation. The dependence of these relaxation times and modes on the total surfactant concentration has been analyzed for concentrations in the vicinity and well above the second critical micelle concentration (cmc2) for systems with coexisting spherical and cylindrical micelles. The analysis has been done on the basis of a discrete form of the Becker-Döring kinetic equations employing the Smoluchowsky diffusion model for the attachment rates of surfactant monomers to surfactant aggregates with matching the rates for spherical aggregates and the rates for large cylindrical micelles. The equilibrium distribution of surfactant aggregates in solution has been modeled as having one maximum for monomers, another maximum for spherical micelles and wide slowly descending branch for cylindrical micelles. The results of computations have been compared with the analytical ones known in the limiting cases from solutions of the continuous Becker-Döring kinetic equation. They demonstrated a fair agreement even in the vicinity of the cmc2 where the analytical theory looses formally its applicability.
Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan
2007-05-01
Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2.
Le Botlan D.
2006-12-01
Full Text Available Dans un champ magnétique hétérogène, le signal RMN de précession libre (FID suit une évolution gaussienne. Le traitement du signal par une méthode discrète peut donner des composantes qui ne correspondent pas à un état physique réel. Par contre l'utilisation d'une méthode de déconvolution continue nous a donné des résultats quantitatifs tout à fait satisfaisants permettant de déterminer les distributions de temps de relaxation correspondant à des états intermédiaires entre les phases solides et liquides. La RMN du domaine du temps peut ainsi être considérée comme une méthode analytique complémentaire des techniques habituellement utilisées pour l'étude de composés complexes hétérogènes ATD, ACD, isothermes de sorption, etc. In a heterogeneous magnetic field, the freely precessing NMR signal (FID describes a Gaussian curve. Processing the signal using a discrete method can give rise to components that do not correspond to a real physical state. However, with a continuous deconvolution method, which gives quite satisfactory quantitative results, it is possible to determine the distributions of relaxation times that correspond to intermediate states between solid and liquid phases. Time-dependent NMR can thus be used to supplement the usual analytical methods, such as DTA, DCA and sorption isotherms, for studying complex heterogeneous compounds.
Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution
Bonior, Jason D [ORNL; Evans, Philip G [ORNL; Sheets, Gregory S [ORNL; Jones, John P [ORNL; Flynn, Toby H [ORNL; O' Neil, Lori Ross [Pacific Northwest National Laboratory (PNNL); Hutton, William [Pacific Northwest National Laboratory (PNNL); Pratt, Richard [Pacific Northwest National Laboratory (PNNL); Carroll, Thomas E. [Pacific Northwest National Laboratory (PNNL)
2017-01-01
Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.
Lightweight distributed computing for intraoperative real-time image guidance
Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie
2012-02-01
In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.
Cieszanowski, Andrzej; Szeszkowski, Wojciech; Golebiowski, Marek; Bielecki, Dennis K.; Pruszynski, Bogdan [2. Department of Clinical Radiology, Medical University of Warsaw, ul.Banacha 1a, 02097, Warsaw (Poland); Grodzicki, Mariusz [Department of Surgery and Liver Disease, Medical University of Warsaw, ul.Banacha 1a, 02097, Warsaw (Poland)
2002-09-01
The differentiation of hemangioma from other hepatic neoplasms using MRI usually relies on the evaluation of heavily T2-weighted images. The aim of this study was to assess the value of T2-relaxation times calculated from moderately T2-weighted turbo spin-echo (TSE) sequence in characterization of focal hepatic lesions, including hepatic malignancies, focal nodular hyperplasia (FNH), hemangioma, and cyst. Fifty-two patients with 114 proven lesions (61 malignant masses, 6 focal nodular hyperplasias, 28 hemangiomas, 19 cystic lesions) were examined on 1.5-T system using a double-echo TSE sequence (TR=1800 ms; TE{sub eff} 1=40 ms; TE{sub eff} 2=120 ms). Signal intensities (SI) of the liver as well as SI of all lesions were measured, and then the T2-relaxation times were calculated. The mean T2 time for the liver was 54 ms ({+-}8 ms), for FNH 66 ms ({+-}7 ms), for malignant hepatic lesions 85 ms ({+-}17 ms), for hemangiomas 155 ms ({+-}35 ms), and for cystic lesions 583 ms ({+-}369) ms. Most malignant hepatic lesions were best differentiated between the thresholds of 67 and 116 ms, generating a sensitivity of 90% and a specificity of 94%. There were six false-negative diagnoses of malignant tumor and three false-positive cases (two hemangiomas and one FNH). Calculation of the T2-relaxation times obtained from the double-echo TSE sequence with moderate T2-weighting allowed differentiation between malignant and benign hepatic lesions with high sensitivity and specificity. (orig.)
de Jong, Saskia; van Vliet, Ton; de Jongh, Harmen H. J.
2015-11-01
The recoverable energy (RE), defined as the ratio of the work exerted on a test specimen during compression and recovered upon subsequent decompression, has been shown to correlate to sensory profiling of protein-based food products. Understanding the mechanism determining the time-dependency of RE is primordial. This work aims to identify the protein-specific impact on the recoverable energy by stress dissipation via relaxation of (micro)structural rearrangements within protein gels. To this end, caseinate and gelatin gels are studied for their response to time-dependent mechanical deformation as they are known to develop structurally distinct network morphologies. This work shows that in gelatin gels no significant stress relaxation occurs on the seconds timescale, and consequently no time-dependency of the amount of energy stored in this material is observed. In caseinate gels, however, the energy dissipation via relaxation processes does contribute significantly to the time-dependency of reversible stored energy in the network. This can explain the obtained RE as a function of applied deformation at slow deformation rates. At faster deformation, an additional contribution to the dissipated energy is apparent, that increases with the deformation rate, which might point to the role of energy dissipation related to friction of the serum entrapped by the protein-network. This work shows that engineering strategies focused on controlling viscous flow in protein gels could be more effective to dictate the ability to elastically store energy in protein gels than routes that direct protein-specific aggregation and/or network-assembly.
A time reference distribution concept for a time division communication network
Stover, H. A.
1973-01-01
Starting with an assumed ideal network having perfect clocks at every node and known fixed transmission delays between nodes, the effects of adding tolerances to both transmission delays and nodal clocks is described. The advantages of controlling tolerances on time rather than frequency are discussed. Then a concept is presented for maintaining these tolerances on time throughout the network. This concept, called time reference distribution, is a systematic technique for distributing time reference to all nodes of the network. It is reliable, survivable and possesses many other desirable characteristics. Some of its features such as an excellent self monitoring capability will be pointed out. Some preliminary estimates of the accuracy that might be expected are developed and there is a brief discussion of the impact upon communication system costs. Time reference distribution is a concept that appears very attractive. It has not had experimental evaluation and has not yet been endorsed for use in any communication network.
Poverty Index With Time Varying Consumption and Income Distributions
2016-01-01
In a recent work (Chattopadhyay, A. K. et al, Europhys. Lett. {\\bf 91}, 58003, 2010) based on food consumption statistics, we showed how a stochastic agent based model could represent the time variation of the income distribution statistics in a developing economy, thereby defining an alternative \\enquote{poverty index} (PI) that largely agreed with poverty gap index data. This PI used two variables, the probability density function of the income statistics and a consumption deprivation (CD) ...
Wang, Qi
and DR resources, and upwardly trading in the TL real-time market, resulting in a proactive manner. The DL aggregator (DA) is dened to manage these small-scale and dispersed DGs and DRs. A methodology is proposed in this thesis for a proactive DISCO (PDISCO) to strategically trade with DAs......-level model is proposed to elaborate the interactions between the PDISCO's bids/offers and the TL market's outcomes. The PDISCO's trading performance features in a bidirectional transaction. In this thesis, replacing the lower-level problems with the primal-dual approach, each proposed bi-level model......Distributed energy resources (DERs), such as distributed generation (DG) and demand response (DR), have been recognized worldwide as valuable resources. High integration of DG and DR in the distribution network inspires a potential deregulated environment for the distribution company (DISCO...
Ultrafast Energy Relaxation in Single Light-Harvesting Complexes
Malý, Pavel; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk
2015-01-01
Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100 fs range. At the same time much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work we employ a pump-probe type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behaviour agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repe...
On enhanced time-varying distributed H systems
Sergey Verlan
2002-11-01
Full Text Available An enhanced time-varying distributed H system (ETVDH system is a slightly different definition of the time-varying distributed H system (TVDH system [9] and it was proposed by M. Margenstern and Yu. Rogozhin in [4] under the name of "extended time-varying distributed H system''. The main difference is that the components of the ETVDH system are H systems and therefore splicing rules may be applied more than once as it is done in TVDH systems. This leads to difficulties in investigating the behavior of such systems because they have a higher level of parallelism. It is proved that ETVDH systems of degree 2 (i.e. with 2 components generate all recursively enumerable languages in a sequential way [7] and that ETVDH systems of degree 4 generate all recursively enumerable languages in a "parallel'' way, modelling a formal type-0 grammar [11]. In this paper we improve the last result and we present an ETVDH system of degree 3 which generates all recursively enumerable languages modelling type-0 formal grammars. The problem of the existence of ETVDH systems of degree 2 which generate all recursively enumerable languages in a "parallel'' way is left open.
High-resolution time-frequency distributions for fall detection
Amin, Moeness G.; Zhang, Yimin D.; Boashash, Boualem
2015-05-01
In this paper, we examine the role of high-resolution time-frequency distributions (TFDs) of radar micro-Doppler signatures for fall detection. The work supports the recent and rising interest in using emerging radar technology for elderly care and assisted living. Spectrograms have been the de facto joint-variable signal representation, depicting the signal power in both time and frequency. Although there have been major advances in designing quadratic TFDs which are superior to spectrograms in terms of detailing the local signal behavior, the contributions of these distributions in the area of human motion classifications and their offerings in enhanced feature extractions have not yet been properly evaluated. The main purpose of this paper is to show the effect of using high-resolution TFD kernels, in lieu of spectrogram, on fall detection. We focus on the extended modified B-distribution (EMBD) and exploit the level of details it provides as compared with the coarse and smoothed time-frequency signatures offered by spectrograms.
Time and temporality: linguistic distribution in human life-games
Cowley, Stephen
2014-01-01
While clock-time can be used to clarify facts, all living systems construct their own temporalities. Having illustrated the claim for foxtail grasses, it is argued that, with motility and brains, organisms came to use temporalities that build flexibility into behavior. With the rise of human...... culture, individuals developed a knack of using linguistic distribution to link metabolism with collective ways of assessing and managing experience. Of human temporal management, the best known case is the mental time travel enabled by, among other functions, autobiographical memory. One contribution...